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Livestock grazing can trigger outbreaks of insect pests in steppe ecosystems of

Inner Mongolia in China. However, the physiological responses of the grasshopper

Chorthippus albonemus to grazing are not well-understood. Here we investigated the

effects of sheep grazing on the population dynamics and transcriptomic response of

C. albonemus. We collected the insects three times (about 20 days apart) in 1.33-ha

plots in which there were no grazing, light grazing, moderate grazing, heavy grazing, or

overgrazing. Our results showed that continuous grazing significantly decreased plant

biomass and influenced plant succession. Total insect species diversity significantly

declined along the grazing intensity gradient and over time. Results of the first two

collections of C. albonemus indicated that moderate grazing significantly increased the

abundance of C. albonemus. However, abundance was significantly decreased in plots

that were overgrazed, possibly because of food stress and environmental pressures.

Under moderate grazing, betA and CHDH genes were significantly upregulated in

C. albonemus. In response to higher grazing intensity, upregulated genes included

those involved in serine-type peptidase activity, anatomical structure development,

and sensory organ development; downregulated genes included those involved in

the structural constituents of the ribosome and ribosome processes. Genes strongly

upregulated in response to heavy grazing pressure included adaptive genes such as

those encoding ankyrin repeat domain-containing protein and HSP. These findings

improve our understanding of the role of the transcriptome in C. albonemus population

response to livestock grazing and may provide useful targets for grasshopper control.
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INTRODUCTION

Grasslands provide many essential ecosystem services, are
important for socioeconomic development, and support a diverse
range of plants and animals (Kang et al., 2007). However, these
ecosystems are especially sensitive to anthropogenic activity,
especially livestock grazing. Grasshopper is one of the most
dominant taxa in Inner Mongolian Plateau and an important
component of the grassland ecosystem (Zhou et al., 2011). Some
grasshoppers like Chorthippus albonemus, Oedaleus asiaticus
feed widely on plants in the Gramineae family (e.g., Stipa
bungeana, Leymus secalinus) and occasionally on Artemisia
frigid and Artemisia scoparia, having great influences on the
grassland plant composition. Although some grasshopper species
have disappeared on heavily grazed grasslands, others such as
C. albonemus remain prosperous (Shuhua et al., 2014). Because
of heavy livestock grazing and other anthropogenic practices,
grasshopper outbreaks have increased in frequency, causing
considerable losses in grass yields and posing a threat to animal
husbandry (Cease et al., 2012; Chen et al., 2012). In addition,
the large-scale degradation of grassland ecosystems in areas with
fragile environmental conditions has led to frequent dust storms
(Tao, 2004).

Livestock grazing has a significant effect on plant composition
and microenvironments in natural grassland habitats (Joern,
2005; Branson et al., 2006), and grassland degradation and
desertification resulting from long-term livestock grazing
strongly affects grasshopper diversity and abundance (Hao et al.,
2015). Numerous studies have investigated the relationship
between livestock grazing and grasshopper community
composition in grassland ecosystems around the world (Hao
et al., 2015; Joubert et al., 2016), with some studies reporting that
livestock grazing has positive effects on grasshopper diversity
(Jerrentrup et al., 2014; Zhong et al., 2014; Joubert et al., 2016),
and others reporting negative effects (Quinn and Walgenbach,
1990; Onsager, 2000). Several recent studies have demonstrated
that livestock grazing decreases grasshopper diversity and
increases the abundance of the main pest species. One study
showed that grasshopper abundance was lowest and diversity
was highest in plant communities with intermediate levels of
biomass and plant species richness (Hao et al., 2015). Another
study found that heavy livestock grazing promotes grasshopper
outbreaks by lowering the nitrogen content of plants (Cease
et al., 2012). Environmental fluctuations and habitat degradation
caused by anthropogenic disturbances alter plant diversity,
food quality, plant structure, microenvironment, and C: N: P
stoichiometry in grassland habitats (Kruess and Tscharntke,
2002; Torrusio et al., 2002; Gebeyehu and Samways, 2003; Zhang
et al., 2011), which in turn exert strong directional selection
on grasshoppers. Rapid local adaptation by grasshoppers may
involve physiological changes. In addition, alterations in the
grasshopper transcriptome may improve survival, change
its behavior, and increase the likelihood that it will form
swarms. Therefore, a better understanding of the effect of
environmental disturbances on the transcriptomic response
of grasshoppers is crucial for grassland conservation and
protection.

According to the intermediate disturbance hypothesis (IDH),
ecological disturbances strongly influence patterns of species
diversity, with maximum diversity observed at intermediate
levels of disturbance (MacKey and Currie, 2001). According
to this hypothesis, each habitat has a distinct level of species
diversity and susceptibility to anthropogenic disturbances. The
IDH is supported by studies of a variety of species and
ecosystems (Flöder and Sommer, 1999; Molino and Sabatier,
2001; Roxburgh et al., 2004; Yuan et al., 2016), including a
temperate grassland ecosystem (Yuan et al., 2016). However,
numerous empirical studies have described a variety of diversity-
disturbance relationships (MacKey and Currie, 2001; Cadotte,
2007; Randall Hughes et al., 2007; Hall et al., 2012). Some
researchers believe that the IDH should be abandoned on
empirical and theoretical grounds (Randall Hughes et al., 2007;
Fox, 2013), whereas other researchers believe the data support
the extension and refinement of the IDH (Randall Hughes
et al., 2007) and suggest that the IDH forms the basis for the
competition-colonization trade-off theory (Sheil and Burslem,
2013). According to Fox (2013), temporal variation can promote
coexistence if the average per-capita growth rates depends non-
additively on temporal variation (Fox, 2013). However, according
to Sheil and Burslem (2013), the IDH does not claim that all
stages are necessarily present in a succession, nor does the IDH
apply to mobile organisms (Sheil and Burslem, 2013).

As such, do mobile organisms such as grasshoppers conform
to IDH? How do mobile organisms perform along temporal
scale under different disturbance intensity? What’s the molecular
events underlining this abundance-disturbance relationship?
These questions are still not clear and are interesting extensions
for IHD. Insects are important parts of the grassland ecosystem
stability; however, little is known about their temporal and
physiological responses to heavy grazing. In this study, we chose
grassland insect community to test the above hypothesis, and
used a mobile organism, Chorthippus albonemus as a model
species to demonstrate the effect of grazing disturbance on
grasshopper abundance and transcriptomic response. This gives
us an opportunity to examine not just the assumptions and
predictions of diversity, but also the details of temporal patterns
and its underlying mechanisms from ecological and molecular
perspective.

MATERIALS AND METHODS

Study Site
The study site is located at an altitude of 1,121m in the
eastern Eurasian steppe at the grassland ecological protection
and sustainable utilization research station of the Institute of
Grassland Research, Chinese Academy of Agricultural Sciences,
Inner Mongolia, China (116◦32′E, 44◦15′N). The site has a
semiarid continental climate with a mean annual temperature
of −0.1◦C and annual precipitation of 350–450mm. The coldest
month is January (mean temperature: −22.0◦C, minimum:
−41◦C), the hottest month is July (mean temperature: 18.3◦C,
maximum: 38.5◦C), and the annual accumulated temperature is
∼2,100–2,400◦C.
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The major soil types of the study site are calcic chestnut
and calcic chernozem. The vegetation is typical of this region
and is dominated by two perennial grasses, Leymus chinensis
and Stipa grandis. Other common species include the perennial
plants Cleistogenes squarrosa and A. frigida and the annual plants
Chenopodium glaucum and Salsola collina. The study site was
not grazed from 2007 to 2014. Sheep grazing began in 2014, the
same year as insect collection. The C. albonemus investigation
and transcriptome were conducted in 2015, from early July to
middle August.

Experimental Design
A relatively flat area with homogenous soil conditions was
enclosed in 2014, and a total of sixteen 1.33-ha enclosures (100×
125m) were constructed with 1.5-m high iron netting to prevent
the movements of sheep in and out of the enclosures. Fifteen
enclosures were randomly assigned to five treatments: control,
light grazing, moderate grazing, heavy grazing, and overgrazing
with three replicates per treatment (one enclosure held the
meteorological station). According to local grazing management
practices, the number of sheep in the control, light grazing,
moderate grazing, heavy grazing, and overgrazing plots were 0,
4, 8, 12, 16 per enclosure, which corresponding to 0, 2, 6, 9,
12 individuals per hectare, respectively (Schönbach et al., 2011).
Sheep were allowed to graze in the enclosures from June 10, 2014
to September 10, 2015. All animals used in the experiment were
provided by the Chinese Academy of Agricultural Sciences.

Vegetation Survey
Vegetation was sampled at maximum biomass in early August
2015. In five randomly selected quadrats (1 × 1m) within
each plot, we evaluated the following attributes of each
plant species: cover (estimated visually), height (determined
by using measuring tape), density (number of plants/quadrat),
and biomass (g/m2). Above-ground biomass was measured by
clipping standing plant material to 1 cm above ground level using
shears. The litter was combed out, and the plants were separated
by species, stored temporarily in paper envelopes, and then dried
in the laboratory for 48 h at 80◦C to obtain the dry weight. Plant
samples were not taken within about 10m of the enclosure wall
to avoid the effect of heat from the galvanized iron netting.

Insect Survey
We evaluated insect diversity from 2014 to 2015. In Xiwu
Banner, Inner Mongolia, C. albonemus occurs from late June to
late August. According to its life cycle dynamics, samples were
collected three times from early July to mid-August (every 20
days) in 2015 corresponding to C. albonemus’s early, middle,
and late stages. We used the sweep method, which collects
all insects, in each of the 15 plots to estimate insect species
richness and abundance. In each plot, 200 nets were used to
collect insects, and each collection was replicated three times.
Insects were collected at least 10m from the plot boundary to
minimize edge effects. We checked the nets visually to ensure
that we gathered all insects. The insects were collected only under
favorable conditions (sunny days with minimal cloud cover, calm
or no wind) from 09:00 to 15:00 h, and the plots were randomly

sampled. The contents of the nets were preserved in Ziploc bags.
All individuals identified as C. albonemus were counted.

C. albonemus Tissue Collection for
Transcriptome Analysis
Grasshoppers were randomly selected from samples collected in
late July in each of the five grazing intensity treatments for a
total of 20 samples (2 females and 2 males per treatment × 5
treatments = 20 samples). Grasshoppers were frozen in liquid
nitrogen (Air Liquide, Voyageur 12) and stored at −80◦C until
RNA extraction.

Preparation and Sequencing of cDNA
Libraries
For each of the five grazing treatments, equal amounts
of body tissue (head, thorax, abdomen, legs, and ovaries)
from the four individuals were combined and homogenized.
Total RNA was extracted using TRIzol reagent (Invitrogen,
CA, USA) following the manufacturer’s instructions. RNA
quality (degradation and contamination) was determined by
agarose gel electrophoresis, and purity was determined by
using a NanoDropTM 2000 spectrophotometer (Thermo Fisher
Scientific). RNA concentration was determined by using a Qubit
H 2.0 Fluorometer (Life Technologies), and RNA integrity
was determined by using an Agilent 2100 Bioanalyzer (Agilent
Technologies). RNA was extracted using RNAprep pure Tissue
Kit (TIANGEN Biotech Co., Ltd., China). The RNA samples
were enriched for mRNA using magnetic beads conjugated
to oligo (dT) and fragmented into 400- to 600-bp fragments,
which were used as a template for first-strand and second-
strand cDNA synthesis. The double-stranded cDNA was then
purified using AMPure XP beads. After end repair of the double-
stranded cDNA, a poly A tail was added, followed by the
ligation of sequencing adapters. The cDNA fragments were then
selected based on size (150–200 bp) using AMPure XP beads
and amplified by PCR. The PCR products were purified using
AMPure XP beads to generate the cDNA libraries, which were
sequenced using the Illumina HiSeq 2000 platform and the NGS
Fast DNA Library Prep Set for Illumina. The paired-end method
was used, and the sequencing read length was 200 bp.

The G+C content was measured for each sequencing cycle
to determine whether the A+T and G+C levels differed. Using
the Illumina HiSeqTM 2000 platform, the relationship between
the sequencing error rate (e) and base quality (Qphred) can be
described as follows:

Qphred = −10 log10 (e).

The relationship between base call accuracy and Phred score was
calculated using Illumina Casava version 1.8.

To produce clean reads for subsequent assembly and analyses,
adapter sequences and low-quality data were removed from the
raw data as follows: (1) remove/trim the adapters, (2) discard data
for which the percentage of Ns (bases that could not be identified)
exceeds 10%, and (3) discard low-quality data (for which the
percentage of Qphred < 5 bases exceeds 50%).
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Transcript Assembly
Transcript assembly was carried out using Trinity software
version v2012-10-05 (Iyer et al., 2011) at min kmercov = 2;
default settings were used for the remaining parameters. The
assembly process was previously described (Grabherr et al.,
2011). The sequences assembled by Trinity were used as reference
sequences for the subsequent analysis. Trinity combined reads
with a certain length of overlap to form longer fragments
without N (contigs), which were subjected to further sequence
clustering to form longer sequences without N. For each gene, the
longest assembled sequence [more than one assembled sequence
(transcript) for each gene] was regarded as a unigene.

Annotation
BLAST searches against the NCBI non-redundant-redundant
(NR) and nucleotide sequence (NT) databases, SWISS-PROT,
PFAM, KEGG, and KOG were performed with a cut-off of 1e-5.
GO terms were assigned using Blast2GO version 2.5 (Götz et al.,
2008) by searching the NR database.

Reference Transcriptome Assembly and
Annotation
Data from each treatment were combined for the reference
assembly. Supplementary Table 8 lists the software and
parameters used for non-reference transcriptome assembly and
analysis.

Gene Expression Analysis
Clean reads for each sample were mapped onto the reference
transcriptome using RSEM software (Li and Dewey, 2011).
The read count for each gene was converted to FPKM using
the estimation method (Mortazavi et al., 2008). To verify the
expression profile of each sample, an FPKM density plot was
generated. To analyze read count data and identify differentially
expressed genes under different grazing intensity treatments,
FPKM in the different grazing intensity plots were compared
using DEGSeq and a cutoff value of p adj < 0.005 (Mortazavi
et al., 2008).

GO Enrichment Analysis
GO enrichment analysis of the differentially expressed genes was
carried by using the GOseq procedure, which is based on the
Wallenius non-central hypergeometric distribution (Young et al.,
2010), to adjust for gene length bias.

KEGG Pathway Analysis of Differentially
Expressed Genes
To identify the main biochemical and signal transduction
pathways in which differentially expressed genes were involved,
pathway enrichment analysis was performed using the KEGG
database. KEGG items were mapped using hypergeometric test
(Young et al., 2010). FDR corrections were performed for
correcting q-value using Benjamini and Hochberg (Shringarpure,
2012). Downstream products of differentially expressed genes
were evaluated to identify the substrate associated with the
response to grazing intensity. The differentially expressed genes

FIGURE 1 | The ordination triplot of sample plots-plant species-grazing

intensities. Arrows indicate plant species biomass. Ellipses indicate livestock

grazing intensities. Open circles with numbers indicate plot numbers within

grazing intensity. CK, control (no grazing); LG, light grazing (3 sheep/hectare);

MG, moderate grazing (6 sheep/ hectare); HG, heavy grazing (9 sheep/

hectare); OG, overgrazing (12 sheep/ hectare). Plant name abbreviations are

listed in Supplementary Table 9.

were filtered with q < 0.005 & |log2 (foldchange)| > 1
(Supplementary Table 8).

Statistical Analyses
Principal component analysis was used to evaluate relationships
between grasshopper number, vegetation variation, and grazing
intensity using the program CANOCO 4.5 (Ter Braak and
Smilauer, 2002). Experimental plots were sampled for grass-
biomass per species data. The Monte Carlo permutation test
was used (number of permutations 999, full model) to indicate
the main factors and correlation. The principal component
analysis plot (Figure 1) was constructed using CanoDraw 4.5.
Other figures were constructed using Microsoft Excel and
Origin 8.0. Transcriptomic analyses parameters were listed in
Supplementary Table 8.

RESULTS

Changes in Vegetation
The dominant plant species, grass cover (%), plant height
(cm), and plant biomass (g) differed significantly (P < 0.05)
between the following five grazing intensity levels: control (no
grazing), light grazing (3 sheep/hectare), moderate grazing (6
sheep/hectare), heavy grazing (9 sheep/hectare), and overgrazing
(12 sheep/hectare). In addition, grazing intensity influenced
plant succession (Figure 1). Plant species that were dominant
in the control plots (L. chinensis, S. grandis, and C. squarrosa)
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decreased significantly in biomass with increased grazing
intensity (Figure 1). The shift in dominant plants occurred
under moderate grazing intensity, with L. chinensis, S. grandis,
and C. squarrosa replaced by Carex korshinskyi and Artemisia
sieversiana as the dominant plant species in the heavy grazing
and overgrazing plots. Compared with the control (no grazing)
plots, species richness increased in the light grazing andmoderate
grazing plots and then decreased significantly in the heavy
grazing and overgrazing plots (Figure 1).

Insect Species Richness and C. albonemus

Temporal Variation
The total insect species diversity significantly declined along the
grazing intensity gradient and over time (from 2014 to 2015),
showing a significant linear relationship with sheep density
(Figure 2A). C. albonemus abundance also varied according to
grazing intensity (Figures 2B,C), demonstrating that grazing had
a significant impact on the temporal dynamics of C. albonemus.
In the five grazing intensities, C. albonemus abundance was
generally lowest in the early sample (early July) and highest in the
middle sample (late July; Figure 2). A quadratic correlation was
observed between abundance and grazing intensity in the early
and middle samples (early sample: df = 14, F = 8.47, P= 0.0051;
middle sample: df =13, F = 3.79, P = 0.0561). The abundance
of C. albonemus was greatest in the moderate and heavy grazing
plots in the early sample, and was greatest in the moderate
grazing plots in the middle sample. In contrast, a negative linear
relationship was observed between C. albonemus abundance and
grazing intensity in the late sample (middle August; df = 14, F =

7.78, P = 0.0153). These results demonstrate that heavy grazing
and overgrazing decreased the C. albonemus population size.

Reference Transcriptome Assembly and
Annotation
Sequencing of the C. albonemus adult transcriptome yielded
more than 42,359,852 clean reads from the 43,962,497 raw
reads, and a total of 154,164,934 nucleotides (transcripts;
Supplementary Tables 1, 2). A set of 190,722 transcripts and
132,710 unique sequences were generated, with N50 values
of 1,548 and 1,286, respectively (Supplementary Tables 2, 3;
Supplementary Figure 1). As expected, half of the sequences
annotated in theNCBI non-redundant protein sequence database
matched those of insect species, including Tribolium castaneum
(15.4%), Acyrthosiphon pisum (6.9%), and Pediculus humanus
(6.5%; Supplementary Figure 2). Of the 39,090 (29.45%) unique
sequences that were annotated through BLAST searches against
the seven indicated databases (NR, NT, SWISS-PROT, PFAM,
KEGG, KOG, and GO), 28,999 (21.85%) were annotated using
the Gene Ontology (GO) database, and 4,530 were annotated
using the nucleotide database (NT; Supplementary Table 4). In
the EuKaryotic Orthologous Groups (KOG) database, 13,712
annotated genes were assigned to 26 groups; most of the
annotated genes were categorized into the following groups:
R, general functional prediction only (4,602 genes); T, signal
transduction mechanisms (1,606 genes); and O, posttranslational
modification, protein turnover, and chaperones (1,081 genes;

FIGURE 2 | (A) Variation in total insect species richness across a grazing

intensity gradient. Results are expressed as mean ± SE. The comparisons

with different letters are for within-year at the significance of P <0.05.

(B) Chorthippus albonemus abundance under different grazing intensities.

(C) Temporal dependent disturbance-abundance relationship. Early, early July;

Middle, late July; Late, middle August.
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Supplementary Table 5). The Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway database was used to annotate
8,600 genes, most of which were categorized as being involved
in signal transduction (939 genes), translation (650 genes),
or carbohydrate metabolism (550 genes; Figure 3A). The
transcriptome data of C. albonemus was submitted to the NCBI
Sequence Read Archive (SRA) database (ID: SRP058368).

Transcript Levels of C. albonemus along a
Grazing Intensity Gradient
Transcript levels of C. albonemus differed according to grazing
intensity, as assessed by fragments per kilobase per million
(FPKM) mapped reads. The FPKM distributions of the five
grazing intensity plots were similar, with the histogram showing
a peak on either side of zero. The highest transcript level was
observed in the heavy grazing plots (Supplementary Figure 3).
The highest number of differentially expressed genes was
observed in the moderate grazing plots (Figure 3B), and the
lowest number in the heavy grazing and overgrazing plots.
Results of gene cluster analyses showed similar gene expression
patterns in grasshoppers collected in the control plots (no
grazing) and moderate grazing plots, with greater numbers of
genes identified (Figure 4A). Gene expression patterns were
similar between the heavy grazing and overgrazing plots, and
more downregulated genes were observed in C. albonemus
collected in these plots. Analysis of genes involved in stress
response associated with grazing pressure and grasshopper
population dynamics showed the upregulation of certain
genes with increased grazing intensity (Figures 4B,C), such
as polyprotein-like protein, ankyrin repeat domain-containing
protein, eupolytin, and late trypsin (Supplementary Data 1).
Genes that were downregulated with increased grazing intensity
(Figures 4D,E) included yellow-g protein, cadherin-related
tumor suppressor-like protein, ribosomal protein S5, and cuticle
protein (Supplementary Data 1). To identify the biological
functions of these gene products, the differentially expressed
genes were mapped to the GO and KEGG databases. More than
20 pathways were enriched by grazing treatment (P < 0.05)
including galactose metabolism, lysosome, starch and sucrose
metabolism, and other glycan degradation (Table 1).

Gene Ontology Annotation
A total of 28,999 unigenes of C. albonemus were subcategorized
into 50 GO classes (Supplementary Table 6). Most of these
transcripts were assigned to biological processes (47.65%),
cellular components (29.89%), or molecular function (22.46%).
In the biological processes category, many of the transcripts
appear to be involved in cellular processes (16,580 genes,
22.04%). In the cellular components category, many of the
transcripts appear to be involved in cell biology (8,967 genes,
19.00%). In the molecular function category, many of the
transcripts appear to be involved in binding (16,593 genes,
46.81%; Supplementary Table 6). Compared with gene expression
in the control plots (no grazing), the highest number of
upregulated genes were observed in the light grazing plots. They
included genes involved in serine-type, peptidase activity, serine
hydrolase activity, peptidase activity acting on L-amino acid

peptides, and hydrolase activity (Supplementary Table 7). Genes
upregulated in the moderate grazing plots were involved in chitin
binding, chitin metabolic processes, glucosamine-containing
compoundmetabolic processes, carbohydrate derivative binding,
and amino sugar metabolic processes. Genes upregulated in
the heavy grazing plots included those involved in serine-
type endopeptidase activity, serine-type peptidase activity, serine
hydrolase activity, multicellular organism reproduction, and lipid
transporter activity. Genes upregulated in the overgrazing plots
included those involved in structural constituents of eye lens,
single-organism developmental processes, anatomical structure
development, sensory organ development, and developmental
process metabolism. Compared with gene expression in the
control plots, downregulated genes in the moderate grazing
plots belonged to only two categories: structural constituents of
cuticle and structural molecule activity (Supplementary Table 7).
Downregulated genes in other grazing treatments were involved
in structural constituents of ribosome, ribosome biogenesis,
ribonucleoprotein complex biogenesis, translation, ribosome,
chitin binding, and chitin metabolic processes (Supplementary
Table 7).

KEGG Pathway Enrichment
KEGG pathway analysis provided insight into the transcriptional
responses to grazing intensity. Upregulated genes in the light
grazing plot were primarily involved in galactose metabolism,
lysosome, starch, and sucrose metabolism, and other glycan
degradation (Table 1). Only three genes involved in galactose
metabolism (E1.1.99.1, betA, CHDH) were significantly
upregulated in the moderate grazing intensity plot. Genes
encoding proteins that are processed in the endoplasmic
reticulum (e.g., MAN2B1, HSP) were significantly enriched
in the high grazing and overgrazing plots (Table 1). Most of
the downregulated genes in plots other than the moderate
grazing plots were associated with ribosomes; they included
RP-S26e, RPS26, RP-L15e, RPL15, RP-L23e, RPL23, RP-S23e,
and RPS23, RP-L12e (q < 0.05; Table 1). Downregulated genes
in the moderate grazing plots included LCT and malZ, which
are associated with galactose metabolism (q < 0.05). Other
downregulated genes in heavy grazing plots included those
involved in lysosomes, starch and sucrose metabolism, and
amino sugar and nucleotide sugar metabolism.

DISCUSSION

Livestock grazing has increasingly caused pest outbreaks and
biodiversity losses in the steppe ecosystems of Inner Mongolia
(Kang et al., 2007). Previous studies have described the effects
of livestock grazing on grasshopper abundance, with some
grasshopper species significantly increasing their abundance in
grazing areas (Batáry et al., 2007; Cease et al., 2012; Gao
et al., 2014; Jerrentrup et al., 2014; Hao et al., 2015). Although
C. albonemus is a rare species in Central and South China, it
is one of the main pest species in the Tibetan Plateau (Zhou
et al., 2006). Grasshopper species composition, diversity, and
abundance in grasslands have previously been described (Sun
et al., 2015). However, no systematic studies have addressed the
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FIGURE 3 | (A) KEGG classification. The X-axis indicates the percentage of genes accounting for the KEGG items, and the Y-axis indicates the KEGG items. A, B, C,

D, E indicate cellular processes, environmental information processing, genetic information processing, metabolism, organismal systems, respectively. (B) Number of

differentially expressed genes of Chorthippus albonemus in response to different levels of grazing intensity. CK, indicates control (no grazing); LG, light grazing; MG,

moderate grazing; HG, heavy grazing; OG, overgrazing.

temporal dynamics and physiological responses of C. albonemus
to grazing intensity in Inner Mongolia. In this study, we
investigated population dynamics of C. albonemus andmolecular
mechanisms involved in habitat adaptation by evaluating its

transcriptomic response to sheep grazing. We investigated
diversity-disturbance relationships by combining various levels
of biodiversity (plant community composition, population
dynamics, and intraspecific responses to levels of disturbance).
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FIGURE 4 | Gene expression patterns of Chorthippus albonemus in response to different levels of grazing intensity. (A) Clusters of differentially expressed genes. Red

indicates upregulated genes, blue indicates downregulated genes, and white indicates no difference in gene expression. Differences in color intensity indicate higher

or lower expression [log10 (FPKM+1)]. Two patterns were observed for upregulated gene expression, involving (B) a cluster of five genes and (C) a cluster of 16

genes. Two patterns were observed for downregulated gene expression, involving (D) a cluster of 30 genes and (E) a cluster of 23 genes. The gray lines indicate gene

expression under different grazing intensities relative to the no grazing control [gene log2 (ratios)], and the blue lines indicate average relative expression of all genes in

the cluster. Significant differential expression was set at q < 0.005, |log2 fold change| >1. G_Ch1 to G_Ch5 indicate grazing intensity, namely, no grazing (G_Ch1),

light grazing (G_Ch2), moderate grazing (G_Ch3), heavy grazing (G_Ch4), and overgrazing (G_Ch5), respectively.

Frontiers in Ecology and Evolution | www.frontiersin.org 8 November 2017 | Volume 5 | Article 136

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Qin et al. Eco-transcriptomic Response to Disturbance

TABLE 1 | KEGG pathways in Chorthippus albonemus affected by grazing intensity.

Treatments Pathway Genes Rich factor q-value Gene sample

number

LG vs. CK

upregulated

Galactose metabolism LCT, GLA, malZ 0.145631 5.61E-11 15

Lysosome CTSC, NPC1, ATPeV0C, ATP6L E3.2.1.25, MANBA, manB, GBA, srfJ,

MAN2B1, LAMAN, uidA, GUSB, GLA

0.074074 0.000194 10

Starch and sucrose

metabolism

malZ, K01176, uidA, GUSB, E3.2.1.4, UGT 0.051613 0.013187 8

Other glycan

degradation

MAN2B1, LAMAN, E3.2.1.25, MANBA, manB, GBA, srfJ, FUCA 0.121212 0.015276 4

MG vs. CK

upregulated

Galactose metabolism E1.1.99.1, betA, CHDH 0.058252 0.042584 6

HG vs. CK

upregulated

Protein processing in

endoplasmic reticulum

HSPA18, CRYAB, htpG, HSP90A 0.036145 0.018274 6

Other glycan

degradation

MAN2B1, LAMAN, GBA, srfJ 0.090909 0.038741 3

OG vs. CK

upregulated

Protein processing in

endoplasmic reticulum

HSPA18, CRYAB, HSPA5, BIP, htpG, HSP90A 0.054217 2.23E-09 9

LG vs. CK

downregulated

Ribosome RP-S26e, RPS26, RP-L15e, RPL15, RP-L23e, RPL23, RP-S23e,

RPS23, RP-L12e, RPL12, RP-S13e, RPS13, RP-S6e, RPS6,

RP-L13Ae, RPL13A, RP-L17e, RPL17, RP-L5e, RPL5, RP-L8e, RPL8,

RP-S5e, RPS5, RP-L9e, RPL9, RP-S3e, RPS3, RP-S4e, RPS4,

RP-L26e, RPL26, RP-S14e, RPS14, RP-LP0, RPLP0, RP-L7e, RPL7,

RP-L13e, RPL13, RP-S15e, RPS15, RP-S8e, RPS8, RP-L10e, RPL10,

RP-L21e, RPL21, RP-SAe, RPSA, RP-L32e, RPL32, RP-L18e, RPL18,

RP-L4e, RPL4, RP-L11e, RPL11, RP-L3e, RPL3, RP-S3Ae, RPS3A,

RP-L7Ae, RPL7A, RP-S2e, RPS2

0.107143 0 33

MG vs. CK

downregulated

Galactose metabolism LCT, malZ 0.058252 0.005069 6

HG vs. CK

downregulated

Galactose metabolism LCT, malZ 0.242718 4.43E-12 25

Ribosome RP-S26e, RPS26, RP-L15e, RPL15, RP-L23e, RPL23, RP-S23e,

RPS23, RP-L12e, RPL12, RP-S13e, RPS13, RP-S6e, RPS6,

RP-L13Ae, RPL13A, RP-L17e, RPL17, RP-L5e, RPL5, RP-L8e, RPL8,

RP-S5e, RPS5, RP-L9e, RPL9, RP-S3e, RPS3, RP-S4e, RPS4,

RP-L26e, RPL26, RP-S14e, RPS14, RP-LP0, RPLP0, RP-L7e, RPL7,

RP-L13e, RPL13, RP-S15e, RPS15, RP-S8e, RPS8, RP-L10e, RPL10,

RP-L21e, RPL21, RP-SAe, RPSA, RP-L32e, RPL32, RP-L18e, RPL18,

RP-L4e, RPL4, RP-L11e, RPL11, RP-L3e, RPL3, RP-S3Ae, RPS3A,

RP-L7Ae, RPL7A, RP-S2e, RPS2

0.107143 2.57E-06 33

Lysosome CTSC, HEXAB, ATPeV0C, ATP6L, CD63, MLA1, TSPAN30, E3.2.1.25,

MANBA, manB, GBA, srfJ, SLC17A5, LIPA, NPC1, CTNS, ATPeV0A,

ATP6N, HGSNAT, ARSB, GLA, HEXAB

0.140741 2.62E-05 19

Starch and sucrose

metabolism

UGT, E3.2.1.28, treA, treF, E3.2.1.28, malZ, K01176, E3.2.1.4 0.109677 0.002277 17

Amino sugar and

nucleotide sugar

metabolism

HEXAB, CHS1, E3.2.1.14, CHS1, UAP1 0.151515 0.004541 10

OG vs. CK

downregulated

Ribosome RP-L15e, RPL15, RP-L23e, RPL23, RP-S23e, RPS23, RP-S13e,

RPS13, RP-S6e, RPS6, RP-L13Ae, RPL13A, RP-L17e, RPL17,

RP-L5e, RPL5, RP-L8e, RPL8, RP-S5e, RPS5, RP-S3e, RPS3,

RP-S4e, RPS4, RP-L26e, RPL26, RP-S14e, RPS14, RP-LP0, RPLP0,

RP-L7e, RPL7, RP-L13e, RPL13, RP-S15e, RPS15, RP-S8e, RPS8,

RP-L10e, RPL10, RP-L21e, RPL21, RP-SAe, RPSA, RP-L32e, RPL32,

RP-L4e, RPL4, RP-L11e, RPL11, RP-L3e, RPL3, RP-S3Ae, RPS3A,

RP-L7Ae, RPL7A, RP-S2e, RPS2

0.094156 0 29

CK, control; HG, heavy grazing; LG, light grazing; MG, moderate grazing; OG, overgrazing. Differential gene expression at q < 0.05.
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Insect species diversity didn’t conform to IDH. But C. albonemus
population dynamics showed a unimodal distribution similar
to IDH pattern, with population size increasing significantly in
plots with a moderate level of grazing in early and late July.
However, a negative linear relationship between grazing intensity
and population size was observed in the last sample (middle
August). We propose that resource-dependent competition and
physiological compensation are the main processes that account
for these results.

Previous empirical studies have described various
disturbance-diversity/abundance relationships, including
polynomial and negative linear relationships, as shown in
our study. Factors that influence these relationships include
interspecific competition (Menge and Sutherland, 1987), trophic
cascades (Polis, 1994), environmental fluctuations, and negative
frequency dependence or stabilizing mechanisms (Chesson,
1994, 2000). Our results showed that total plant species diversity
decreased as grazing intensity increased, whereas C. albonemus
abundance rose during the early and middle stages of plant
succession and declined during late succession. These diversity-
disturbance relationships reflect different species responses to
temporal changes in resources and environment (Roxburgh et al.,
2004). A species may peak at intermediate disturbance levels
because of a trade-off between competitive ability and colonizing
ability. Although, total insect diversity decreased as grazing
intensity increased in our study, C. albonemus abundance was
highest at intermediate levels of disturbance, which might be
described by resource-dependent competition: food resource
partitioning and frequency-dependent predation due to plant
composition change and species diversity decline, as well as
fluctuations in population densities and environmental factors
in space and time (Chesson, 1994, 2000; Figure 2C). The linear
relationship indicates resource-dependent competitive exclusion
(Armstrong andMcGehee, 1980) and temporal stability (Lehman
and Tilman, 2000), in which long-term species diversity depends
on the average values of fluctuating environmental variables (i.e.,
food and microthermal).

Two-dimensional grasshopper abundance variations
(Figure 2C) and the responses of two organismal levels suggest
that C. albonemus abundance exhibited temporal disturbance
(temporal variations in plant abundance and resource-dependent
competition) and molecular responses (trophic cascades and
physiological compensation).

From an ecological point of view, grazing resulted in rapid
plant succession, with some dominant species decreasing in
abundance, and other plant species becoming dominant. In
addition, grazing creates a more suitable environment for
grasshoppers by altering habitat structure and food availability
(Kang and Chen, 1995). Furthermore, disturbance decreases
total insect species diversity, thereby weakening competition
(Chesson, 2000). Hence, resource-dependent competition is one
mechanism underlying the grasshopper population fluctuations.

The physiological responses of C. albonemus were rapid,
as demonstrated by the transcriptome analysis. Previous
studies have shown that grasshopper life history traits can
be strongly affected by plant nutritional status (Scriber and
Slansky, 1981). Grasses contain more carbohydrates, which

is especially important for grasshopper survival (Joern and
Behmer, 1997). Heavy livestock grazing has been shown to
lower plant nitrogen content, which is avoided by grasshoppers
and decreases performance (Cease et al., 2012). However,
our results show that higher grazing intensity decreases the
abundance of preferred grasses and increases food stress, as
demonstrated by the upregulation of genes involved in stress
resistance, such as HSP and ankyrin repeat domain-containing
protein. These gene patterns are consistent with C. albonemus
population performance and dynamics, which can be explained
by physiological compensation for changes of food quantity and
nutritional pressure.

Management practices can strongly influence the health
of grassland ecosystems (Ammann et al., 2007). Continuous
grazing significantly decreases plant biomass and influences plant
succession. In our study, we found that heavy grazing decreased
the biomass of the dominant plants species L. chinensis, S. grandis,
and C. squarrosa, which are the main foods of local herbivores
and insects. A decrease in plant biomass, in turn, affects the
temporal dynamics of insects (Huntly, 1991). The abundance
of C. albonemus was found to be lowest in the overgrazing
plots and highest in the moderate grazing plots (Figure 2),
which is consistent with the results of previous studies of other
grasshopper species (Kang and Chen, 1995; Cease et al., 2012;
Hao et al., 2015). These results indicate that moderate grazing
improves the habitat suitability for C. albonemus, increasing
survival and the possibility of outbreaks. However, heavy grazing
intensity increases the mortality of late-stage grasshopper and
likely lowers the fecundity of adults because of the shortage of
food.

The molecular mechanisms underlying the rapid population
response and adaptation of C. albonemus to sheep grazing
were investigated by analyzing the transcriptome, which
revealed 1,477 differentially expressed genes across five grazing
treatments. The highest transcript level was observed in
grasshoppers collected in the heavy grazing plots (Supplementary
Figure 3), and the highest number of differentially expressed
genes was observed in grasshoppers collected in the moderate
grazing plots (Figure 3B). The differentially expressed genes
included adaptive genes such as polyprotein-like protein,
ankyrin repeat domain-containing protein, eupolytin, late
trypsin, yellow-g protein, cadherin-related tumor suppressor-like
protein, ribosomal protein S5, and cuticle protein. Polyproteins
have been reported to play a role in virus resistance in plants
(Ponz et al., 1988; Reddy et al., 2001), but have not been well-
studied in grasshoppers. Cuticular protein genes, which were
upregulated in the high grazing and overgrazing plots, may
play an important role in stress resistance, as demonstrated by
changes in body cuticle that occur in response to environmental
stress and poor food quality (Zhang et al., 2008). Furthermore,
the upregulated genes were primarily involved in serine-type
peptidase activity and chitin metabolic processes, whereas the
downregulated genes were primarily involved in the structural
constituents of cuticle, structural molecule activity, and the
ribosome.

As an important part of rapid adaptation, transcriptomic
response in grasshopper needs timely, and effective genes
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and pathways for regulation. Signatures indicate that galactose
metabolism, lysosome, starch and sucrose metabolism, protein
processing in endoplasmic reticulum are the key pathways
involved in response to grazing, of which, LCT, GLA, malZ,
betA, CHDH in galactose metabolism, CTSC, NPC1, ATPeV0C,
ATP6L E3.2.1.25,MANBA,manB, GBA, srfJ,MAN2B1, LAMAN,
uidA, GUSB, GLA in lysosome, malZ, K01176, GUSB, E3.2.1.4,
UGT in starch and sucrose metabolism, and HSPA18, CRYAB,
HSPA5, BIP, htpG, HSP90A in protein processing etc. are the key
genes responsible for the regulation of the physiological change.
These transcriptomic signatures illustrate the molecular basis of
response to grazing pressure in C. albonemus.

CONCLUSIONS

In this study, we used large enclosures to study the effects
of sheep grazing in the grasslands of Inner Mongolia on
C. albonemus population dynamics and gene expression. We
found that grazing affected habitat quality by decreasing plant
abundance and quality and influencing plant succession. These
effects point to resource-dependent competition explaining the
unimodal disturbance-abundance dynamics with physiological
compensation. Our results show that transcriptional changes
in the grassland pest C. albonemus underlie its adaptation to
livestock grazing. The identification of differentially expressed
genes involved in adaptability may provide new targets for
the control of grasshopper populations to improve grassland
management.
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