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In this letter, we address the chiral properties of valley exciton-polaritons in a monolayer of WS2 in 

the regime of strong light-matter coupling with a Tamm-Plasmon resonance. We observe that the 

effect of valley polarization, which manifests in the circular polarization of the emitted 

photoluminescence as the sample is driven by a circularly polarized laser, is strongly enhanced in 

comparison to bare WS2 monolayers, and can even be observed under strongly non-resonant 

excitation at ambient conditions. In order to explain this effect in more detail, we study the 

relaxation and decay dynamics of exciton-polaritons in our device, elaborate the role of the dark 

state and present a microscopic model to explain the wave-vector-dependent valley depolarization 

by electron-hole exchange interaction and the linear polarization splitting inherent to the 

microcavity. We believe that our finding are crucial for designing novel polariton-valleytronic devices 

which can be operated at room temperature. 
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Excitons which are hosted in two-dimensional atomic crystals of transition metal dichalcogenides 

(TMDCs) have a variety of intriguing optical properties, which puts them in the focus of advanced light-

matter coupling. This includes their enormous exciton binding energies up to 550 meV1,2, their ultra-

fast dipole transitions3 as well as the materials’ unique spin- and valley-related properties4–7. The latter 

are a direct consequence of the broken inversion symmetry of the monolayers in combination with a 

strong spin-orbit coupling inherited by the transition metal atoms, lifting the polarization degeneracy of 

the high-symmetry K points at the corners of the Brillouin zone. Thus, excitons at the K and K’ point 

are tagged with a valley index, or valley pseudospin, which is more robust with respect to depolarization 

as the exciton pseudospin conventional III-V semiconductors. The coupling of spin and valley degree 

of freedom in TMDC monolayers, in principle, allows to build electronic and opto-electronic devices 

based with rich polarization- and spin features, giving rise to the field of valleytronics7. Recently, it has 

been shown that cavity effects can enhance the time-averaged degree of exciton and trion valley 

polarization8–11, which is partly explained by a speed-up of the relaxation dynamics of excitons. 

However, no detailed time-resolved measurements have been presented along with this explanation. 

Moreover, the role of the dark exciton state, which is considered crucial for a high degree of valley 

polarization in tungsten-based TMDCs12, has not been elaborated in detail. In addition to the electron-

hole exchange interaction, the artificial magnetic field provided by the polarization splitting of the cavity 

resonances acts as depolarization mechanism which has to be taken into account. Here, we investigate 

the relaxation and valley depolarization of valley-tagged exciton-polaritons evolving in a Tamm-

plasmon structure13,14 with an integrated monolayer of WS2 at ambient conditions. Time-resolved 

photoluminescence measurements were carried out to shed more light onto the relaxation dynamics of 

the observed exciton-polaritons. We discuss the role of the interplay between dark and bright state, 

which is affected by a dramatic change of the bright state dispersion relation in the polariton framework. 

Finally, we present a theoretical model of the depolarization mechanism along the dispersion relation, 

which explains the measured, distinct polarization dependence on the in-plane wave vector. 

 

 

 



Monolayer characterization 

The investigated WS2 monolayer was mechanically exfoliated from a bulk crystal and subsequently 

transferred onto a distributed Bragg reflector (DBR) with a viscoelastic polymer stamp. The monolayer 

was identified by its optical contrast and its distinct photoluminescence (PL). The DBR is composed of 

10 SiO2/TiO2 layers with thicknesses of 105 nm/65 nm, respectively. The photoluminescence of the 

monolayer (on top of the DBR), presented in Fig. 1a, was recorded under 568 nm excitation (continuous-

wave laser (Coherent sapphire), 0.7 mW) and ambient condition. The spectrum shows a clear resonance 

at 618.57 nm/ 2.004 eV with a linewidth (FWHM) of 29 meV, which we attribute to the neutral excitonic 

transition of the A excitons. The low-energy shoulder of the peak can be assigned to a trionic transition 

with an exciton-trion energy splitting of 42 meV, which strongly grows in intensity at lower sample 

temperatures, in line with previous observations15. First, we study the polarization properties of our bare 

monolayer as a function of the detuning of the pump laser and temperature. Figure 1a depicts a 

polarization-resolved photoluminescence spectrum of the monolayer exciton recorded at 290 K. The 

sample was excited with a 𝜎+-polarized laser (568nm) and the luminescence is detected in 𝜎+/𝜎− 

configurations. The degree of circular polarization (DOCP) is calculated via P =  
𝐼(𝜎+)−𝐼(𝜎−)

𝐼(𝜎+)+𝐼(𝜎−)
, where I is 

the integrated PL intensity. The degree of circular polarization of the emitted light as a function of 

temperature and excitation energy (532 nm vs. 568nm excitation) is plotted in Fig 1b. While the increase 

in P with decreasing temperature and an excitation energy closer to the exciton resonance is in excellent 

Figure 1 | Characterization of WS2 monolayer a) PL spectra of a monolayer (shown and 
marked by yellow lines in the inset where the scale bar corresponds to 30 µm)  at 290K under  
𝜎+ polarized excitation at 568nm recorded in 𝜎+/𝜎− configurations. b) Degree of circular 
polarization as a function of temperature for 532 nm and 568 nm excitation wavelengths. 



agreement with previous findings16, we emphasize that no significant DOCP can be extracted at ambient 

conditions.  

Exciton-Polaritons 

The photonic Tamm structure is completed by capping the WS2 monolayer by 70 nm of PMMA and 

evaporation of 40 nm of silver on top of the PMMA layer (Fig. 2a). A final SiO2 layer was deposited to 

protect the silver layer from degradation. The bottom DBR supports a very high reflectivity of 99.97 % 

in a spectral range between 540 nm and 680 nm, and the photonic microstructure features a strong field 

enhancement close to the metallic interface (see Fig. 2b) at the monolayer location.  This strong field 

enhancement makes such structures particularly interesting to study the physics of exciton-polaritons in 

solid state systems17. The layer thicknesses, illustrated in Fig. 2b as the sequence of the corresponding 

refractive indices, were designed to promote an optical mode energetically close to the exciton resonance 

and to spatially overlap with the monolayer. The resonance of the empty cavity was probed in a white 

light reflectivity measurement presented in Fig. 2c and corresponds to a quality factor of 120. 

The formation of room-temperature exciton-polaritons in our device is confirmed by single-shot angle-

resolved photoluminescence measurements in a back-Fourier plane imaging configuration (See 

supplementary S6). Utilizing a high magnification (50 x) microscope objective with a numerical aperture 

of 0.65 allows us to project an in-plane momentum range of up to 5.5 µm-1 onto the CCD chip of our 

spectrometer in this imaging configuration8. For polarization measurements we use a λ/4 waveplate to 

generate 𝜎+/𝜎− polarized light and analyzed the emitted signal with a rotatable λ/4 waveplate followed 

by a linear polarizer. We used a non-polarizing beam splitter preserving s- and p-components by 98%. 

In addition, the incident laser was analyzed by a polarimeter at various positions in the optical path and 

the λ/4 waveplate was slightly corrected in order to compensate for the loss in degree of circular 

polarization at the beam splitter. This ensures a circular degree of polarization of more than 99.9%. The 

emitted light on the detection path is still subject to a relative error of 2%. The main error contribution 

is the laser power fluctuation on the order of 1%. 

The luminescence which we collect from our device is depicted in Fig 2d). It features the typical, distinct 

dispersion relation of the lower branch of cavity exciton-polaritons, which emerge in the strong coupling 



regime between excitons and cavity photons. At low k values, this dispersion is dominated by the low 

mass18 of two-dimensional cavity photons (approx. 10-5 me, me being the free electron mass), while its 

curvature features an inflection point at k~ 3.0 µm-1. We can fit the dispersion with a two-coupled 

oscillator model17, to extract the Rabi splitting and the exciton-photon detuning of our device. Here, we 

take advantage of the fact that we can observe the empty cavity dispersion as a faint photoluminescence 

branch in the background. This PL stems from edge regions of the monolayer and is weakly coupled to 

the cavity mode. The fit yields a Rabi splitting as large as 80 meV, and an exciton-photon detuning of -

55 meV at k=0, which is in good agreement with previous findings on strongly coupled WS2 monolayers 

in a micro-cavity considering a comparable mode volume19. The upper polariton branch cannot be 

observed due to its very low thermal population resulting from the large normal mode coupling strength.  

Figure 2 | Exciton-Polaritons a) Schematic illustration of the photonic structure with  the 
integrated WS2 monolayer. b) Layer sequence of the photonic structure illustrated by the 
corresponding refractive indices and the calculated optical field distribution within the 
photonic structure. The position of the monolayer in the photonic structure is marked as 
orange, dashed line. c) Measured reflectivity spectrum of the empty cavity at zero in-plane 
wave vector. The linewidth corresponds to a quality factor of 120. d) Exciton-polariton 
dispersion relation incl. a coupled oscillator fit. The upper and lower polariton branches are 
drawn in red and blue, respectively, where the uncoupled exciton and cavity modes are 
indicated by orange, dashed lines. Expected energies of trion and dark state are indicated in 
the background. 

 



We note that due to the large Rabi splitting, our polariton dispersion crosses both the (weakly coupled) 

trion resonance, as well as the dark exciton (55 meV below the exciton)20. Both resonances are indicated 

by arrows in Fig 2d). Neither the trion nor the dark state resonance are expected to carry enough 

oscillator strength at room temperature in order to strongly couple with the cavity mode. The small 

oscillator strength seems plausible since the resonances cannot be measured in absorption experiments 

at room temperature. Since the polariton bright state is now energetically favored and also carries 

significantly more oscillator strength, the PL intensity of the polariton branch governs the dispersion. 

However, since both resonances are in the perturbative regime with our cavity resonance, we believe 

that the weak coupling conditions can yield a transfer of populations to the polariton states.  

 

Exciton and Polariton Dynamics 

The fitting procedure also provides the light-matter coupling strength, which in turn can be used to 

assess the radiative lifetime of the WS2 valley excitons. The Rabi splitting yields a direct connection 

with the exciton oscillator strength and the effective cavity length21, which can be expressed as:  

 

𝛺𝑅 = 2 ∗ √
2𝛤0𝑐 

𝑛𝑐(𝐿𝐷𝐵𝑅 + 𝐿𝐶)
  

 

Here, Γ0 represents the radiative decay of the excitons, 𝑛𝑐 is the effective index of the cavity and 𝐿𝐷𝐵𝑅 +

𝐿𝐶 is the effective cavity length. c is the speed of light in free space. Introducing our system parameters 

(see supplementary information S1), we determine a radiative decay time as short as 220 fs. We note 

that this decay time is in good agreement with previous experimental studies on WSe2 monolayers3 and 

theoretical predictions22. In our case, we emphasize that our method allows us to solely probe the 

radiative decay time, as the non-radiative decay channels would not contribute to the light-matter 

coupling strength. In fact, a calculation of the lower polariton radiative lifetimes in our strongly coupled 

system yields values that are 3 - 9 times shorter as explained in supplementary S2. 



In order to assess the full relaxation dynamics of our system, we perform streak-camera measurements 

on the bare WS2 monolayer, as well as on the fully built cavity in the strong coupling regime. For this, 

the sample was excited by a frequency-doubled pulsed fiber laser system (TOPTICA TVIS, pulse length 

(FWHM) 180 fs,  pulse repetition rate 80 MHz) tuned to a central wavelength of 568 nm,  coupled into 

a 100x microscope objective and focused to a spot diameter of less than 1 µm on the sample surface. 

The PL from the sample was collected using the same objective and coupled into a grating spectrometer, 

where it was detected using a streak camera coupled to the spectrometer and electronically synchronized 

with the pulsed laser system. The temporal resolution of this setup (HWHM of the pulsed laser trace) is 

below 4 ps (see supplementary S6 for a schematic depiction of the setup).  

Fig 3a depicts the photoluminescence decay curves of polariton states at high in-plane k-vectors (~ 5 

µm-1), often referred to as the reservoir, and of the polariton ground state (k=0 µm-1). Both time traces 

exhibit two dominant exponential decay channels and a very weak third decay. The reservoir decay time 

constants τ1 and τ2 of 8.8 ps and 30.3 ps, respectively, are in excellent agreement with the reference 

measurement on the bare WS2 monolayer (8.2 ps and 31.6 ps, respectively, see supplementary 

information S3). This is well in line with the highly excitonic character of the polaritons at high k-

vectors and previous findings23,24. This also supports the idea that the scattering outside the light cone 

and close to light cone edge are not significantly affected. In contrast, the characteristic time constants 

decrease to 6.8 ps and 23.2 ps, respectively, in the polariton ground state. The third decay channel only 

makes up a minor fraction of the PL intensity (<1%) and is on the order of 100 ps in all measurements. 

Figure 3 | Relaxation dynamics a) Decay curves of the polariton reservoir (~ 5 µm-1) and the 
polariton ground state ( 0 µm-1)  b) Time constant τ1 as a function of emission energy. c) Time 
constant τ2 as a function of emission energy. Expected energies of the dark state X* and trion 
X- are indicated. 

 



In more detail, Figure 3b and 3c illustrate the decay constants τ1 and τ2 as a function of energy which is 

related to the in-plane wave vector through the dispersion relation. Here, the low-energy end at 1.94 eV 

represents the polariton ground state, whereas the high-energy tail at 2.01 eV is attributed to emission 

from the highly excitonic reservoir.  

 

Interestingly, both time constants feature a decrease towards lower energies, as well as a slight increase 

between 1.96 eV and 1.975 eV. In fact, this increase occurs at energies where the polariton dispersion 

crosses the dark state and the trion resonances, which feature slower decay dynamics25. This indicates 

an indirect pumping mechanism from these weakly coupled states into the polariton states.  

Because of the very fast radiative decay of the exciton and polariton states inside the light cone, we 

attribute the decay times as the depopulation dynamics of the original states from which 

excitons/polaritons scatter into the measured state. These states presumably lie outside the light cone or 

can be attributed to trion or dark states. Here, we attribute the first channel to fast, phonon-assisted 

carrier relaxation from outside of the light cone (followed by fast radiative decay) whereas the second, 

slower decay could be an indication for a transfer from the dark exciton state.  

 

Polariton Valley Polarization 

In the following, we address the spin- and valley-related properties of our polariton system via 

polarization-resolved spectroscopy. Here, we inject reservoir excitons non-resonantly via circularly 

polarized pump lasers with wavelengths of 532 nm or 568 nm, respectively, and measure the DOCP as 

a function of the polariton wave-vector. The results of this experiment, shown in Fig. 4a (532 nm 

excitation) and Fig 4b (568 nm excitation), are strikingly different to the case of the bare monolayer, 

where the DOCP is marginal at room temperature. For the case of 568 nm excitation wavelength, we 

observe a DOCP as large as 10 % from the polariton ground state at ambient conditions, which is slightly 

lower for the higher excitation energy (532 nm laser). These finding are well in line with very recent 

results11. We furthermore observe a distinct dependency of the DOCP on the in-plane wave vector. The 



observation of this high circular polarization from the polariton states is, at first sight, surprising, since 

the system follows the dynamics of the bright exciton reservoir, which manifest in the comparable 

scattering dynamics for the bare monolayer and the polariton at high wave vectors and which  we 

consider as strongly depolarized at 300 K (see Fig 1).  

 

While the relaxation into the bright exciton/exciton-polariton states is almost completely depolarizing, 

the dark exciton state is considered to maintain the excitation polarization12,26 as illustrated in Fig. 4c. 

While at zero in-plane wave vector the dark exciton has no oscillator strength, it significantly 

accumulates oscillator strength at large in-plane momenta27. Hence, it is reasonable to assume that it can 

weakly couple to corresponding high-k polariton states (illustrated in Fig. 4c), followed by a radiative 

decay or a redistribution along the polariton branch. The coupling to the bright state is strongly enhanced 

Figure 4 | Polariton valley-polarization a) Degree of circular polarization as a function of in-
plane wave vector under 532 nm excitation. b) Degree of circular polarization as a function of 
in-plane wave vector under 568 nm excitation. c) Schematic model for polariton valley 
polarization. 

 



by the cavity effect, since emitted light from the dark state can be reabsorbed by the bright polariton 

state. In fact, the emission of the dark state should be enhanced when weakly coupled to the cavity mode, 

whereas the absorption by the bright polariton state is more likely since it should carry significantly 

more oscillator strength even at high wave vectors.  Thus, we determine a second reservoir at large k||, 

which is robust against valley depolarization since dark excitons are not subject to strong exchange 

interactions12. (See supplementary information S4 for further details on the transfer from dark to bright 

state). 

The transfer from the dark state can be followed by a redistribution of polaritons along the polariton 

branch. However, in this case the polarized polaritons are again subject to the strong exchange 

interactions, which can lead to valley depolarization during their redistribution. In the following, we 

provide a description and an analytic expression of the valley depolarization in our polariton system. 

Here, we consider a gas of free polaritons with parabolic dispersion. We will account for (1) acoustic 

phonon-assisted energy relaxation, which is dominant below the condensation threshold, and (2) 

Maialle-Silva-Sham-type spin relaxation stemming from the interplay of momentum-dependent 

effective magnetic field acting on the polariton pseudospin and stochastic elastic momentum scattering. 

The dynamics of spin relaxation in a polariton gas has been modelled numerically by solving the full set 

of Boltzmann kinetic equations28. In contrast, here we opted for a simplified analytical model with a 

very limited number of free parameters. We are interested in the analytical expression for the circular 

polarization of the polariton emission as a function of the in-plane momentum, for the stationary state 

corresponding to the CW pumping regime. 

We discretize the continuous problem and reformulate it in terms of a ladder of discrete quantum states, 

where direct transitions are only allowed between the neighboring energy levels. We consider phonon 

assisted inelastic transitions for a polariton with the momentum 𝐩 and neglected nonlinear effects caused 

by exciton-exciton scattering. In contrast to quantum-well-based microcavities, where the main 

contribution to phonon-assisted exciton energy relaxation stems from the phonons with momenta 

oriented along the growth direction29, the TMDC atomic layers are only coupled to the substrate by the 

Van der Waals force, so that the excitons only emit in-plane phonons30. The characteristic energy lost 

in a single act of scattering that is taken as an interlevel distance in our model, is then derived from the 



energy and momentum conservation rules. The rates of polariton transitions between the levels α𝑖  =

α 𝑝𝑖
3 depend on the wave vector via the exciton-phonon matrix element, the exciton Hopfield coefficient, 

and the density of polariton states. 

The spin relaxation rate γ𝑖 is governed by the Maialle-Silva-Sham mechanism γ𝑖 = Ω𝑖
2 τ, where Ω𝑖 is 

the value of the effective magnetic field and τ is the polariton transport time, which we assume as 

constant. The effective field  Ω𝑖 originates from the TE-TM splitting of the photonic polariton 

component and the long-range part of the electron-hole exchange acting on the excitonic component. In 

the vicinity of the polariton dispersion minimum the photonic component is dominant, hence, the 

effective field is given by the TE-TM splitting, which is quadratic in polariton momentum, allowing us 

to assume γ𝑖  = β 𝑝𝑖
4. 

This yields an analytical expression for the DOCP as a function of the momentum which reads 

𝑃(𝑝) = 𝑃(0) +
𝛽

2𝛼
𝑝2 

As shown in Fig. 4a and 4b, our data can be well fitted by this expression, which confirms our initial 

assumptions about the important effect of both the electron-hole exchange interaction and the TE-TM 

splitting in our cavity on the spin-depolarization of valley excitons in TMDC based cavities. 

Although our model succeeds to fit the experimental data very well, we note that direct polariton-

polariton scattering from reservoir states must be taken into consideration in particular for large pump 

powers, where the exciton-exciton scattering and the bosonic stimulation become important.  This 

process would result in a speed up in the relaxation dynamics, which is in fact observed for the ground 

state.  

 

Conclusion 

In conclusion, our study sheds light onto the interplay between relaxation, depolarization and decay of 

valley exciton-polaritons. First, we demonstrate the formation of exciton-polaritons in a photonic 

microstructure with excitons in a WS2 monolayer with a light-matter coupling strength of 80 meV, 



corresponding with a purely radiative decay time of excitons as short as 220 fs. We find that the polariton 

scattering dynamics at high wave vector and close to the light cone edge are not strongly affected as 

compared to the bare monolayer, yet relaxation of polaritons towards the ground state is slightly 

enhanced even at modest densities. Despite the slow relaxation, we map out a significant enhancement 

of polaritonic valley polarization up to 14 % at high wave vectors. We attribute this increase to the 

cavity-enhanced transfer from dark exciton states to the polariton branch, which is more effective at 

high wave vectors. The polarization relaxation is explained within a microscopic model, which accounts 

for energy and spin-relaxation of exciton-polaritons in the presence of the linear polarization splitting 

of the micro cavity. We believe that our findings represent a major step towards harnessing spin-valley 

coupling in light-matter-coupled devices operated at room temperature.  
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