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We survey the role of coherent vortices in two-dimensional turbulence, including formation

mechanisms, implications for classical similarity and inertial range theories, and character-

istics of the vortex populations. We review early work on the spatial and temporal scaling

properties of vortices in freely evolving turbulence, and more recent developments, including

a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We empha-

size that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed

as complementary, and together provide a more complete description of two-dimensional

turbulence. In particular, similarity theory has a continued role in describing the weak

filamentary sea between the vortices. Moreover, we locate both classical inertial and vor-

tex scaling ranges within the broader framework of scaling in far-from-equilibrium systems,

which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We

describe how stationary transport in a range of scales comoving with the dilatation of flow

features, as measured by the growth in vortex area, constrains the vortex number density

in both freely evolving and forced two-dimensional turbulence.

The new theories for coherent vortices reveal previously hidden nontrivial scaling, point

to new dynamical understanding, and provide a novel exciting window into two-dimensional

turbulence.
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I. INTRODUCTION

Coherent vortices form generically in both forced and freely evolving two-dimensional

(2D) turbulence, merging and generating time-evolving spatial hierarchies distributed over

a wide range of scales 1–7. Neither Batchelor’s similarity theory for freely evolving 2D

turbulence8 nor Kraichnan’s inertial range theory for forced 2D turbulence9 account for co-

herent vortices, and thus both incompletely describe turbulent flow. In particular, vortices

introduce spatial intermittency and non-Gaussianity10, interrupt cascade processes by trap-

ping energy and enstrophy11, and are associated with invariants, such as the peak vortex

intensity3,12, unaccounted for by Kraichnan-Batchelor theory.

Though they pose a challenge for traditional accounts of two-dimensional turbulence,

vortices themselves are distributed across scales in power law ranges that can be modelled

using concepts familiar from inertial range theory7. In fact, the energy and enstrophy

cascades of Kraichnan-Batchelor theory and the vortex scaling ranges of both freely evolving

and forced turbulence all fit together within the broader framework of far-from-equilibrium

systems, which exhibit multiple scaling ranges with distinct power law behaviour. These

scaling ranges are associated with non-thermal fixed points and with stationary transport of

conserved quantities across scales13. In the direct and inverse cascades enstrophy and energy

are transported through spectral space; the counterpart of this in vortex scaling ranges is

transport of conserved quantities defined on the vortex subfield across scales in vortex area

space by interactions between vortices7,14.

In this article we review the important role played by coherent vortices in 2D turbulence

and the scaling theories that have been developed to describe vortex populations in both

forced and freely evolving flows. Section II covers coherent vortex formation, the effect

vortices have on scaling and implications for the validity of similarity theories, as well as the

partition between the weak filamentary sea and intense long-lived vortices in both the forced

and freely evolving systems. Section III describes the relationship between inertial range

theory and spatiotemporal vortex scaling theories, and introduces key concepts. Scaling

theories for vortices in freely evolving 2D turbulence and the forced inverse energy cascade

are described in sections III A and III B, respectively, and section III C covers generalizations

of these theories to scale-dependent and time-varying vortex intensities. In section IV we

summarize our current understanding of vortex scaling ranges in 2D turbulence and some
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directions for further research.

II. VORTICES AND SIMILARITY THEORY

Freely evolving 2D turbulence started from random-phase fields with power at all scales

develops spatial hierarchies of vortices1,2,5,15,16. These coherent structures originate in the ini-

tial vorticity field as localized intense concentrations, which merge, partially axisymmetrize,

and develop into well-defined vortices that persist for time scales much longer than the en-

strophy transfer time Z−1/21,17,18, where Z ≡ 1
2D

∫
ω2dx is the enstrophy per unit area, with

ω = −∇2ψ the vorticity and ψ the streamfunction. Here, D is the area of a finite region

large enough that the statistics converge.

We illustrate the process of vortex formation and growth in figures 1a–1c, which show

vorticity fields from a direct numerical simulation (DNS) of freely evolving 2D turbulence

starting from an initial energy spectrum E(k) ∼ e−(k−k0)
2/σ2

, where k0 = 512 and σ = 50.

The resolution is 81922 and the fields are shown on a 3842 subdomain. Extrema in the

initial field (figure 1a) evolve into weakly elliptical coherent vortices, which can be seen

in figure 1b. Less intense fluctuations between the vortices are strained into filaments,

cascading enstrophy to smaller scales17, leaving essentially only the vortices at late times,

as evident in figure 1c.

Batchelor’s similarity theory for freely evolving two-dimensional turbulence assumes that

all enstrophy is involved in the cascade, such that in the long-time inviscid limit energy E

is the only invariant and a similarity state with

E(k) = E3/2tg(
√
Ekt), (1)

where g is a universal function and E ≡ 1
2D

∫
ψωdx is the energy, is established independent

of initial conditions8. Coherent vortices, however, trap enstrophy and protect it from the

cascade, breaking the similarity assumption of Batchelor’s theory16,17,19,20. As a result1,18

the observed energy spectrum is significantly steeper than k−3.

The situation is similar in the forced inverse energy cascade, where the vorticity field

is sensitive to forcing and dissipation, and coherent vortices form by a variety of distinct

mechanisms7,10,21–25. As just discussed in the context of freely evolving two-dimensional

turbulence, vortices arise from localized concentrations in the forcing field. This formation
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(d) (e) (f)

FIG. 1: (a)-(c) Vorticity fields from DNS of freely evolving turbulence starting from an initial

energy spectrum E(k) ∼ e−(k−k0)2/σ2
, where k0 = 512 and σ = 50, shown on a 3842 subdomain at

nondimensional times t/Tω = 4, 41, and 347, left to right, where Tω = 4π/ωrms(0) is an eddy

turnover time and ωrms(0) is the rms vorticity of the initial vorticity field. (d)-(f) Vorticity fields

from a forced inverse cascade with narrow-band δ-correlated forcing at wavenumber kf = 1024,

shown on a 1922 subdomain at nondimensional times t/TE = 9, 19, and 187, left to right, where

TE = (εk2f )−1/3, with ε the energy flux to large scales.

mechanism is evident in figure 1d, which shows the Gaussian forcing at the onset of nonlinear

self-advection, when localized regions in the random vorticity field are beginning to shear

and strain into filamentary structures. In panel 1e, small vortices have formed from forcing

field extrema; these vortices grow through merger, generating a population distributed across

scales, as shown in figure 1f. Vortex formation by this mechanism occurs for both narrow-

band and broadband spatially random forcing, independent of forcing bandwidth, forcing
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correlation time, and order of viscosity25.

Another vortex formation mechanism observed in the forced two-dimensional inverse

cascade is aggregation of anomalously intense vorticity regions, shown in figure 2; this occurs

in flows forced near the dissipation wavenumber, with small forcing Reynolds number25.

These flows have initially amorphous vorticity fields lacking both intense weakly elliptical

coherent vortices and the filamentary structures associated with the enstrophy cascade.

Nevertheless, using a threshold on vorticity one can still identify vorticity anomalies – regions

of intense vorticity concentration that lack the circular shape of coherent vortices seen in

simulations forced at larger scales. As shown in figure 2 (bottom row), the like-sign anomalies

so-identified cluster together. This suggests an aggregation process in which anomalies

cluster, merge, and eventually form the intense weakly elliptical coherent vortices visible in

the right panels. Thus the inverse energy cascade has a robust tendency to form coherent

vortices, even when the forcing Reynolds number is low. This formation mechanism again has

a parallel in freely evolving 2D turbulence, where patches of vorticity aggregate, culminating

in inelastic collisions between well-defined coherent vortices1.

In both forced and freely evolving two-dimensional turbulence coherent vortices coexist

with an incoherent filamentary sea, but the partition between the coherent and background

vorticity and its time evolution differ. In the freely evolving system the enstrophy decay rate

grows and peaks at early times. As the flow evolves, filaments in the sea are stretched out,

becoming increasingly passive, and cascade their enstrophy to smaller scales. At late times,

the filamentary sea has all but disappeared, leaving only the coherent vortices, which contain

almost all the energy and control the dynamics, including the enstrophy decay rate, since

only filaments shed during vortex mergers are now available to participate in the enstrophy

cascade. The progressive disappearance of the filamentary sea and persistence of coherent

vortices can be seen in figures 1a–1c.

In forced two-dimensional turbulence, on the other hand, the incoherent intervortex flow

is continuously replenished, compensating loss to dissipation; background vorticity levels

thus do not decay exponentially but equilibrate at a finite level, which is nonetheless much

lower than that found within the coherent vortices, where enstrophy is protected starting at

early times from dissipative decay. In this case strong, nearly-circular coherent vortices can

again be unambiguously distinguished from the weak filamentary background flow6,7,10,21–24.
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FIG. 2: Total vorticity (top) and anomaly (bottom) fields from an inverse cascade simulated by

Burgess & Scott25 at resolution 81922 with narrow-band δ-correlated forcing at wavenumber

kf = 2048 and 4th-order hyperviscosity. The subdomain is 3842 grid points, corresponding to side

length 96lf , where lf is the forcing length scale. The nondimensional times are t/TE = 183, 276,

and 577, left to right, where TE = (εk2f )−1/3, with ε the energy flux to large scales. The data is

from a simulation discussed in B. H. Burgess and R. K. Scott, “Robustness of vortex populations

in the two-dimensional inverse energy cascade,” J. Fluid Mech. (Submitted).

The persistance of the incoherent filamentary sea in the forced system and its disappear-

ance in the freely evolving system can been seen by comparing the top and bottom panels

in figure 1. In both systems, populations of long-lived weakly elliptical vortices emerge from

spatially random initial conditions, from either the initial vorticity field in freely evolving

turbulence or from the forcing field in forced turbulence, as evident in figures 1c and 1f,

though the properties of the vortex populations differ, as will be discussed in section III.

Though vortices alter the scaling of globally integrated quantities, steepening the energy

spectrum and introducing intermittency, continuous wavelet analysis shows that in the forced

inverse cascade the incoherent flow in regions sufficiently far from the vortices approximately

satisfies Kraichnan’s inertial range theory10. Vortices are first identified as regions exceeding

a threshold on vorticity, and the field over which the wavelet spectrogram is computed is
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(a) (b)

FIG. 3: (a) Vorticity field with light regions over which the wavelet spectrogram is computed

and (b) wavelet and Fourier spectra for the total vorticity field and light regions as selected by

two choices of vorticity threshold, 3ωrms and 4ωrms, as indicated. For each value of the threshold,

we show spectrograms corresponding to four increasing (top to bottom) minimum distances from

vortices, with k−5/3 scaling for comparison. Figures are reprinted with permission from Burgess

et al.10, copyright c© 2015 by Cambridge University Press.

restricted to subdomains, such as the light areas shown in figure 3a, sufficiently far from

vortices. The resulting spectrogram contains a range in which E(k) ∼ k−5/3, as predicted

by Kraichnan9, and this range extends to larger scales as the minimum allowed distance to

vortices increases, as is evident from examining the middle and lower sets of black curves in

figure 3b: these spectra correspond, from top to bottom, to increasing minimum distances

to vortices. Similarly, Fontane et al.6 found E(k) ∼ k−2 for the entire vorticity field, but

E(k) ∼ k−5/3 for the incoherent part, using a entirely different vortex extraction method.

Thus, despite the impact of coherent vortices on globally integrated properties, Kraichnan

inertial range theory has a continued role in describing the inverse cascade sufficiently far

from vortices.
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III. INERTIAL RANGE THEORY AND VORTEX SCALING RANGES

The dominance of coherent vortices at late times in freely evolving two-dimensional tur-

bulence and their robust formation in the inverse energy cascade mean that any account of

two-dimensional turbulence is incomplete without theories for these vortex populations. In

both flows vortices grow through merger and populate a wide and growing range of scales,

indicating that ultimately theories must describe temporally evolving spatial hierachies.

Systems far from equilibrium generically exhibit multiple scaling ranges with distinct

power laws at different scales, each range associated with a fixed point and stationary trans-

port of a conserved, or approximately conserved, quantity13. The dual cascades of Kraichnan

inertial range theory are a canonical example, in which the transported quantities are en-

strophy and energy in the direct and inverse cascades respectively9.

Given the generic occurence of such scaling ranges in far from equilibrium systems, it is

natural to develop a theory for the vortex populations of 2D turbulence within this frame-

work. Burgess & Scott7 first applied these ideas to the forced inverse energy cascade, extend-

ing inertial range arguments to the vortex subfield, with transport across scales in vortex

area space mediated by interactions between vortices taking the place of transport through

wavenumber space.

We begin our discussion of vortex scaling theories by introducing some basic concepts. We

then review early theories for vortices in freely evolving 2D turbulence, and the spatiotem-

poral theory of Dritschel et al.5, showing how the concept of stationary transport applies in

that system. In section III B we discuss the theory recently developed by Burgess & Scott

for vortices in the forced inverse energy cascade7. We conclude our discussion of vortex

scaling theories by considering in section III C generalizations to scale- and time-dependent

vortex intensities.

Two key assumptions in Kraichnan’s seminal theory of inertial ranges in two-dimensional

turbulence are self-similar scaling of the energy spectrum E(ak)/E(k) = a−m and triple

correlation function T (ak, ap, aq)/T (k, p, q) = a−(1+3m)/2, and k-independent energy and

enstrophy fluxes. In combination these two constraints fix the energy spectral scaling expo-

nents at m = 5/3 in the inverse energy cascade and m = 3 in the direct enstrophy cascade.

Self-similarity and k-independent flux, i.e. stationary transport of a conserved quantity, are

generically associated with fixed point solutions. With this in mind, we also combine these
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ingredients to constrain the spatial and temporal scaling exponents of the number density

distribution of vortices n(A) as a function of vortex area A, which we assume takes the

power law form

n(A, t) = c(t)A−ri ∼ tαiA−ri , i ∈ 1, ..., S, (2)

where c(t) ∼ tαi has dimensions Ari−1 and S is the number of scaling ranges. Here, the

number density is normalized such that n(A)dA is the number of vortices having areas

between A and A+ dA.

An immediate question is how to define the area A of a vortex. Coherent structure iden-

tification is complicated, and there does not at present exist an agreed-upon definition of

a coherent vortex, though two widely-accepted requirements are that vortices are concen-

trated regions of intense vorticity, and that they propagate with a high degree of material

invariance26. In defining vortex areas A, we wish to choose regions that describe the flow

in a way likely to yield new insight into turbulent dynamics. With this in mind, there are

theoretical reasons to expect vorticity isolines and their enclosed regions to be especially

significant in the description of two-dimensional turbulence. For example, the approach

of contour dynamics relies on the fact that the equations of motion for an incompressible

Eulerian fluid can be formulated in terms of vorticity isolines27. Furthermore, considering

two-dimensional incompressible fluids, Virasoro (1981) derives an action principle in which

the canonical coordinates are isovorticity lines, with ‘vorticity densities’ as the conjugate

momenta28. These theoretical considerations motivate our definition of a vortex as a region

of intense vorticity enclosed by a vorticity isoline, i.e. the vortex boundary is a level set of

vorticity. The support of the region is the area A, and we define the intensity of the vortex

as the mean square vorticity evaluated over its area A. The extraction method reflecting

these theoretical considerations, and therefore appropriate to the theory, is then a threshold

on vorticity.

Three candidate conserved quantities potentially associated with A-independent flux

through area space in distinct scaling ranges are the first three moments of ω2
vn(A),

Ev = 1
2D

∫
ω2
vA

2n(A)dA, (3)

Zv = 1
2D

∫
ω2
vAn(A)dA, (4)

σv = 1
2D

∫
ω2
vn(A)dA. (5)
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Here D is the area of a region large enough that the statistics have converged, and ω2
v is the

vortex intensity, or mean square vorticity evaluated over vortices of area A,

ω2
v(A) ≡ 1

N

N∑
i=1

1

Ai

∫
Ai

ω2dx, (6)

where Ai ∈ [A − dA,A + dA], i.e. the sum is taken over all vortices whose areas lie within

a bin centered on A, and N is the total number of such vortices. In practice these bins are

the same as those used to compute the number density. We will define the integration limits

for equations (3)–(5) shortly. The first two quantities are the vortex energy Ev and vortex

enstrophy per unit area Zv, given in equations (3)–(4) respectively, and we interpret the

third quantity, σv, given in (5) as an intensity-weighted vortex number, or ‘charge density’.

If ω2
v is independent of A and t, then conservation of σv is equivalent to conservation of

vortex number,

Nv =

∫
n(A)dA. (7)

The question now arises as to the appropriate A-space interval in which to enforce con-

servation, i.e. what the integration limits should be in equations (3)–(5) and (7). Firstly,

we note that in both freely evolving 2D turbulence and the forced inverse cascade there is a

dilatation of length scales associated with flow features growing larger in size. With this in

mind we borrow from cosmology the concept of a ‘comoving frame’, i.e. a frame comoving

with the expansion of the universe29. We apply this concept in A-space by considering a

range of scales that grows along with the dilatation of flow features. More specifically, we

define a ‘comoving’ interval [µA0(t), A0(t)], where 0 < µ < 1 is a constant, which has end-

points that evolve with the growth in vortex area. Any value may be chosen for µ as long

as µA0(t) and A0(t) fall within the same scaling range. It is in comoving intervals that we

will enforce conservation: this is motivated by the expectation that certain features of the

system should be invariant under the dilatation associated with the flow evolution. Which

features are invariant, and, relatedly, which quantities are conserved, will depend on the

particular scaling range in question.

We note that individually vortices may jump from scale to scale and even decrease in size

as a result of mergers, rather than increasing in size steadily30. However, we can picture

an average ‘statistical vortex’ as increasing in size continually at the vortex growth rate.

In a comoving interval one imagines following such a statistical vortex as it grows in area,
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moving through A-space toward larger scales. We assume that statistical vortices in all

scaling ranges grow at the same rate, which can be derived using similarity arguments in

both the forced and freely evolving systems. This assumption amounts to using the vortex

growth as a measure of the dilatation and assuming that a single time-dependent dilatation

factor is relevant to understanding the number density at all scales.

Unlike energy E and enstrophy Z in the familiar Kraichnan-Batchelor inertial range theo-

ries, there are no exact flux form conservation laws for the flow of Ev, Zv, and σv past a given

A. Nonetheless, we will still find scaling ranges in n(A, t) associated with local conservation

of Ev, Zv, and σv despite the fact that these quantities are not globally conserved. Similar

situations arise in other nonequilibrium systems, where scaling ranges associated with local

conservation are seen despite the fact that the theory does not exactly conserve the quan-

tity. For example, relativistic quantum field theories that have particle number changing

processes can nonetheless exhibit approximate particle number conservation in weak wave

turbulence scaling regimes13.

A. Scaling theories for vortices in freely evolving two-dimensional turbulence

The earliest vortex scaling theories for freely evolving 2D turbulence treated the spatial

and temporal aspects of the population separately. Benzi et al.1 linked the scaling of the

energy spectrum to a hierarchical population of self-similar vortices with an algebraic number

density n(R) ∼ R−α, where R is vortex radius. A measured value α = 1.9 yielded E(k) ∼

k−4.1, close to their observed spectrum E(k) ∼ k−4.3. In addition, they predicted α = 2

based on energy-conserving mergers, but assumed an equilibrated state, in which n(R) had

no overall time dependence. Carnevale et al.3 and Weiss & McWilliams4 took the opposite

approach, developing a ‘mean-vortex’ theory for a dilute vortex gas consisting of N vortices

with average radius ra and vorticity amplitude ζa. Assuming that energy E ∼ Nζ2ar
2
a and

the vorticity amplitude ζa were conserved, and that the vortex number evolved algebraically,

N(t) = N(t0)(t/t0)
−ξ, they obtained ra(t) = ra(t0)(t/t0)

ξ/4, and measured ξ = 0.75 from

numerical simulations. Subsequent studies2,4,11,31–38 found values that ranged from ξ = 0.4432

to ξ = 136, though most were close to ξ ≈ 0.7. A number of theories were proposed to predict

ξ, including ballistic aggregation35,39,40, a Coulomb gas model41, and mean field models36,42,43.

Lacasce44 linked the decay of the vortex density to dispersion, and showed that, given the
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measured mean vortex area growth rate, the density decay rate could be predicted from a

scaling relation involving the collision time.

Since the vortex population observed in freely evolving 2D turbulence is neither time-

invariant nor characterised by a single scale, Dritschel et al.5 set out to unify the spatial and

temporal scaling theories. In their theory, vortices are assumed to contain almost all the

energy E, and the vortex intensity ω2
v is taken to be independent of vortex area A and time

t. The number density is thought of as having only one scaling range, and the exponent is

fixed by requiring a scale-invariant distribution of vortex areas, such that

n(A) = c(t)A−1. (8)

The energy scales in the same way as the vortex energy defined in equation (3),

E ∼ Ev =
1

2D

∫ A0

µA0

ω2
vA

2n(A)dA ∼ c(t)A2
0. (9)

Energy conservation implies

c(t) ∼ A−20 , (10)

and in turn vortex number and enstrophy scale as

Nv ∼ A−20 , Zv ∼ A−10 , (11)

which follows from substituting equations (10) and (8) into (7) and (4).

The theory is closed by relating the growth rate of the area of a statistical vortex to the

rate dZv/dt at which enstrophy is transferred to filaments. These rates are naturally linked

because both vortex growth and processes such as filament ejection and vortex destruction,

which lead to enstrophy dissipation, occur as a result of vortex interactions. Self-similarity

is again a key ingredient: enstrophy per unit area ω2
vAn(A)dA is required to decay at a scale-

invariant rate, which is assumed proportional to the collision probability pcol, the enstrophy

Zv, and inversely proportional to the interaction time Tint,

dZv

dt
∼ −pcol

Zv

Tint
. (12)

Now, the collision probability is proportional to the vortex number density, pcol ∼ c ∼ A−20 ,

where we have used equation (10). The interaction time Tint = r/Uv measures the time a

vortex travelling at speed Uv takes to travel a distance r ∼ (1/Nv)
1/2 ∼ c−1/2 ∼ A0, where

13



r is the characteristic intervortex distance of vortices with areas A between µA0 and A0.

The speed Uv is taken to be constant, an assumption verified in our simulations, where

translational vortex speeds depend only weakly on vortex area, as shown in figure 4c for

a pseudospectral simulation labelled Tophat-PS (simulation details given below). We thus

have Tint = r/Uv ∼ A0. Substituting Zv ∼ A−1, pcol ∼ A−2, and Tint ∼ A (where we have

renamed A0 to A) into (12), one obtains

A−2dA/dt ∼ A−4, (13)

which implies

A(t) ∼ t1/3. (14)

Vortex number and enstrophy then follow the decay laws,

Nv ∼ t−2/3, Zv ∼ t−1/3, (15)

obtained by substituting A0 ∼ t1/3 into (11). Substituting the vortex area growth law into

equation (10) one arrives at the prediction

n(A) ∼ t−2/3A−1. (16)

Sample number densities and vortex intensities from freely evolving 2D turbulence are

shown at three times compensated by t2/3 (upper gray curves) in figure 4. The stage of the

flow evolution in the freely evolving simulations discussed here and below in section III C is

given in terms of the dimensionless time

τ = t/Tω, (17)

where Tω = 4π/ωrms(0) is an eddy turnover time and ωrms(0) is the rms vorticity of the initial

vorticity field. In panel (a) the densities are from a contour advection (CA) simulation

performed by the Combined Lagrangian Advection Method (CLAM)45 on a 20482 basic

inversion grid, with effective resolution (16 · 2048)2 = 32, 7682; the initial energy spectrum

is centered on k0 = 64 with E(k) constant for k ∈ [26.5, 101.5]. In panels (b) and (c) the

densities are from a standard pseudospectral (PS) simulation at resolution 81922 with fourth-

order hyperviscosity; the initial energy spectrum is centered on k0 = 512 and constant for

14



 2

 3

 4

 5

 6

 7

 8

-5 -4 -3 -2

log10(A)

−1

−1

log10(ω2
v)

Tophat-CA

  τ = 956  
  τ = 1076
  τ = 1195

(a)

 4

 5

 6

-4.8 -4.6 -4.4 -4.2 -4 -3.8

log10(A)

−1

−1

log10(ω2
v)

Tophat-PS

  τ = 62
  τ = 66
  τ = 70

(b)

 2

 3

 4

-4.8 -4.6 -4.4 -4.2 -4 -3.8 -3.6

log10(A)

log10(Uv)

Tophat-PS

     τ = 62

     τ = 66

     τ = 70

(c)

FIG. 4: Vortex intensities log10[ω
2
v(A, t)] and compensated number densities log10[t

2/3n(A)]

(upper gray curves) and log10[t
2/3n(A)/ω2

v] (lower black curves) from simulations (a)

Tophat-CA and (b) Tophat-PS14 at three times with −1 slope (solid black line) for

comparison. The slopes of the ranges spanned by the −1 line are (a) −1.14± 0.05 (gray)

and −1.06± 0.03 (black) and (b) −1.13± 0.02 (gray) and −0.99± 0.02 (black). The

densities and intensities are shifted for clarity of presentation. (c) Normalized number

densities log10[n(A)/N ], where N is the total number of vortices, and vortex translational

speeds log10(Uv) for simulation Tophat-PS at three times with −1 slope (solid black line)

for comparison. Data is from simulations discussed in Burgess et al.,“Extended scale

invariance in the vortices of freely evolving two-dimensional turbulence,” Phys. Rev.

Fluids (Submitted).

k ∈ [212, 812]. The simulations are labelled Tophat-CA and Tophat-PS, respectively, where

Tophat refers to the shape of the initial energy spectrum. For these initial conditions, n(A)

approximately follows the scaling A−1, with the closest agreement at the small-scale end of

the number density in simulation Tophat-PS (right panel), though the slope is somewhat

steeper than the prediction of equation (16) in both simulations. We will discuss the modified

scaling shown in the black curves in section III C below.
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FIG. 5: (a) Nv (dotted), Zv (dash-dot), and Ev (solid) for the A−1 range; (b) endpoints of

the corresponding comoving interval [µA0(τ), A0(τ)] and area Amax of the largest vortex.

Data is from a simulation discussed in Burgess et al., “Extended scale invariance in the

vortices of freely evolving two-dimensional turbulence,” Phys. Rev. Fluids (Submitted).

Figure 5a shows the time evolution of vortex energy Ev, vortex enstrophy per unit area

Zv, and vortex number Nv as functions of nondimensional time τ for simulation Tophat-PS

in a comoving interval [µA0(τ), A0(τ)], whose endpoints are shown in 5b, together with the

area Amax of the largest vortex. Comparing with figure 4b, shows that µA0(τ) and A0(τ)

both fall within the approximate A−1 scaling range. Vortex energy Ev is conserved, and Nv

and Zv follow the predicted decay laws given in equation (15).

B. Forced inverse cascade

There has long been evidence for the presence of vortices in the forced inverse energy

cascade of two-dimensional turbulence21–24, but appreciation for the complex hierarchical

structure of these populations is much more recent6,7,10. Fontane et al.6 studied the vortex

number density in forced two-dimensional turbulence and found a transition of the scaling at

k ≈ kf , where kf is the forcing wavenumber. However, there was insufficient range between

the forcing and domain scale to draw any firm conclusions.
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As discussed above, vortices form and grow in the forced inverse energy cascade via the

same mechanisms observed in freely evolving two-dimensional turbulence, namely persis-

tence of intense vorticity concentrations arising in the initial field, aggregation, and merger

processes. However there are some important differences between freely evolving 2D turbu-

lence and the forced inverse energy cascade. One difference is the presence of an additional

scale in the problem, namely the forcing scale, which suggests immediately that the number

density will have a more complex structure with at least one additional range. Secondly,

unlike freely evolving 2D turbulence the forced inverse energy cascade involves an inco-

herent intervortex flow containing substantial amounts of energy and enstrophy, which is

replenished by the forcing, as shown in figure 1d–1f. This incoherent flow interacts with the

vortices and may modify their dynamics. It is natural to expect that these differences will

be reflected in the dynamics and scaling of the vortex population.

Taking into account the presence of the forcing scale and an equilibrated incoherent

intervortex flow, Burgess & Scott7 formulated a scaling theory for vortices in the inverse

energy cascade with energy injected at a constant rate, such that E ∼ t. They postulated

that a scale-invariant distribution of vortex areas, as seen in the freely evolving system, would

also be found in the forced system far enough away from the forcing scale and the largest

vortex. The continuous effect of forcing, especially on smaller-scale structures in the inverse

cascade, suggests an additional range located between the forcing and the scale-invariant

area distribution. Likewise, the largest vortex introduces a scale that disrupts self-similarity,

suggesting a third range between the upper end of the scale-invariant area distribution and

the largest vortex. These considerations lead to a minimal picture of a three-part vortex

number density,

n(A, t) = c(t)A−ri ∼ tαiA−ri , i ∈ 1, 2, 3. (18)

A schematic number density is shown in figure 6 with ranges (1)-(3) labelled, along with

the characteristic forcing-scale vortex area Af , maximum vortex area Amax, and transition

regions A− and A+ demarcating the intermediate scale-invariant range (2).

To proceed with the theory, a prediction is needed for the vortex area growth law. To

obtain this, we consider the dimensionless combination

k
√

4E/Z, (19)
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FIG. 6: Schematic of a three-part number density n(A), with forcing-scale area Af ,

transitional areas A− and A+, and maximum vortex area Amax labelled. Data is from a

simulation discussed in Burgess et al., “Extended scale invariance in the vortices of freely

evolving two-dimensional turbulence,” Phys. Rev. Fluids (Submitted).

where k ≡ 2π/l is the wavenumber associated with length scale l and 1/
√
Z is an eddy

turnover time. Enstrophy can neither increase nor decrease in the inverse cascade, where

we expect vanishing enstrophy flux; hence, Z = constant. Substituting this and E ∼ t into

(19) we obtain

lω ≡ 2
√

4E/Z ∼ t1/2. (20)

This length scale can be associated with a vortex core as follows: noting that intense vortices

dominate the velocity field1, we identify the tangential speed of the vortex core with u =
√

2E. Relating this tangential speed to the angular velocity
√

2Z/2 then yields the prediction

d = lω = 2
√

4E/Z for the vortex diameter. In turn, this yields a vortex area growth law

A ∼ l2ω ∼ t. (21)

This is much faster than the A(t) ∼ t1/3 growth law found in freely evolving two-dimensional

turbulence5, and most likely reflects a higher merger rate in the forced system.

We now discuss the three proposed scaling regimes depicted in figure 6. Range (1) extends

over the scales Af < A < A−; it is ‘pinned’ at one end to the forcing scale Af and we imagine
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it to be equilibrated with the forcing, which injects energy at a constant rate. Because this

range is equilibrated, σv, Nv, Zv, and Ev will all be constant in the fixed interval [µA1, A1],

where A1 does not vary in time and again 0 < µ < 1 is a constant factor. This conservation

requirement sets α1 = 0. We also postulate that Ev will be conserved in a comoving interval,

[µA0(t), A0(t)], where A0(t) ∼ t. This is analogous to k-independent energy flux through

energy-cascading subranges in two dimensional turbulence, except that here we are working

in A-space, and the flux is restricted to the vortex subfield. Conservation of Ev implies

r1 = 3, such that n(A) ∼ A−3 and

Ev =
1

2D

∫ A0(t)

µA0(t)

ω2
vA

2n(A)dA ∼
∫ A0(t)

µA0(t)

A−1dA ∼ − log µ ∼ t0. (22)

Using A0(t) ∼ t and assuming ω2
v is constant, it follows that

Zv ∼ t−1, Nv ∼ t−2. (23)

The intermediate scaling regime (2) extends over the range A− < A < A+. A self-similar

distribution of vortex areas in this range again constrains the number density n(A) ∼ A−1.

In the forced system we expect enstrophy lost to filament shedding during merger to be

replaced, so that Zv remains constant,

Zv =
1

2D

∫ A0(t)

µA0(t)

ω2
vAn(A)dA ∼ c(t)ω2

vA0(t) ∼ t0, (24)

Substituting in A0(t) ∼ t and again assuming that ω2
v is constant in time, we obtain

c(t) ∼ t−1. (25)

Equations (3) and (7) in turn yield

Ev ∼ t, Nv ∼ t−1. (26)

The predicted c(t) ∼ t−1 decay of the vortex density is also faster than the c(t) ∼ t−2/3

found for freely evolving turbulence5. Again, the difference most likely reflects a higher

vortex merger rate.

In regime (3) vortices populate new and larger scales. We imagine that the vortices, which

are spaced far apart, merge with other large vortices only rarely, such that the number of
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FIG. 7: Number density n(A) compensated by t (main panel), uncompensated thermal

bath (upper inset), and large-scale front compensated by t−5 (lower inset). The densities

are shown at nondimensional times t/TE, where TE = (εk2f )
−1/3 is a characteristic time

based on the enstrophy injection rate, and ε is the constant energy flux to large scales.

Figure reprinted with permission from Burgess & Scott7, copyright c© 2017 Cambridge

University Press.

vortices Nv in a comoving interval [µA0(t), A0(t)] remains constant. Substituting (18) into

(7) and integrating then gives the condition α3 = r3 − 1. From conservation of Nv it also

follows that

Ev ∼ t2, Zv ∼ t. (27)

Because of the lower merger rate within range (3), we expect enhanced occupation numbers,

resulting in a steeper slope than in the intermediate range.
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FIG. 8: (a) Ev, (b) Zv, (c) Nv, and (d) σv integrated over comoving intervals in ranges (1),

(2), and (3), with slope lines for comparison, all plotted as functions of the nondimensional

time t/TE, where TE = (εk2f )
−1/3. Figures reprinted with permission from Burgess &

Scott7, copyright c© 2017 Cambridge University Press.
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In summary, we predict a vortex number density of the form

n(A, t) ∼


A−3, Af ≤ A < A−,

t−1A−1, A− < A < A+,

tr3−1A−r3 , A+ < A ≤ Amax,

(28)

where A− and A+ are time-evolving transitional vortex areas. Matching the number densities

at A− and A+ yields

A− ∼ t1/2, A+ ∼ tr3/(r3−1). (29)

Figure 7 shows n(A) compensated by t (main panel), uncompensated in the thermal bath

range (1) (upper inset), and compensated by t−5 in the large-scale front range (3) (lower

inset). There are three distinct regimes, and the prediction of equation (28) is well satisfied,

though the collapse is not perfect in range (2). The scaling in range (3) suggests r3 = 6, such

that n(A) ∼ t5A−6, though the evidence for a power law and collapse of the curves is weakest

in this range. In section III C we will explore modifications to equation (28) following from

allowing ω2
v to depend on A and t.

Figures 8a–8b show the evolution of the vortex energy Ev and vortex enstrophy Zv defined

in equations (3) and (4), respectively. These quantities are integrated over comoving intervals

falling within ranges (1), (2), and (3). In range (1) the vortex energy is conserved, and in

range (2) the vortex enstrophy is conserved, as predicted. We will discuss the vortex number

Nv and intensity-weighted vortex number σv in section III C.

C. The effect of time-varying area-dependent vortex intensities

The theories of Dritschel et al.5 and Burgess & Scott7 both assume that vortex intensities

ω2
v are uniform in A and time-invariant. In this section we discuss the scaling of the number

density when ω2
v(A, t) is non-uniform in A and/or time-dependent.

Forced inverse cascade

Beginning with the forced inverse cascade, we allow ω2
v = ω2

v(A, t) to depend on A and t

and require conservation of Ev and Zv to continue holding in ranges (1) and (2). We note
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FIG. 9: Number density n(A) compensated by ω2
vt (main panel), uncompensated thermal

bath (upper inset), and large-scale front compensated by ω2
vt
−5 (lower inset). The densities

are shown at nondimensional times t/TE, where TE = (εk2f )
−1/3.

that conservation of vortex number Nv is no longer equivalent to conservation of σv since

ω2
v is not constant, and we now hypothesize that σv will be conserved in range (3). Similar

scaling arguments to those above give a modified three part number density7:

n(A, t) ∼


A−3, Af ≤ A < A−,

ω2
v

−1
t−1A−1, A− < A < A+,

ω2
v

−1
tr3−1A−r3 , A+ < A ≤ Amax.

(30)

Allowing ω2
v to evolve differently in ranges (2) and (3) gives transitional areas7

A− ∼ (ω2
v)

1/2
2 t1/2, A+ ∼

[
(ω2

v)2

(ω2
v)3

]1/(r3−1)
tr3/(r3−1), (31)
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where the subscript on ω2
v indicates the range.

The number density at three times compensated by ω2
vt is shown in figure 9. The effect

on the scaling is most noticeable in range (2), where the collapse of the curves is significantly

better, and the scaling range also extends to smaller scales, reflecting weak A-dependence

of ω2
v. As shown in figure 8c, the vortex number does not follow the predicted decay laws

in ranges (2) and (3); instead, Nv ∼ t−1/3 and Nv ∼ t−2/3 in these ranges respectively. In

contrast, σv ∼ t−1 in range (2) and σv ∼ t0 in range (3), as shown in figure 8d, demonstrating

that the scaling theory is more properly formulated in terms of intensity-weighted vortex

number σv rather than raw vortex number Nv. Further evidence that this is the case comes

from measuring the transitional areas A− and A+ by fitting lines of slope −1, and −3,

and −6 through the ranges and finding their intersection. The resulting transitional areas

are shown in figure 10, and clearly do not follow the predictions in equation (29). Rather,

A− ∼ t0.659 and A+ ∼ t1.16, consistent with equation (31) with (ω2
v)2 ∼ t1/3 and (ω2

v)3 ∼ t2/3.

Importantly, though the scaling is not clean in range 3 and the evidence for a power

law is weakest at these scales, the conservation properties of this regime are clearly distinct

from those of ranges 1 and 2, and are consistent with the theoretical arguments of intensity-

weighted number conservation motivating equation (30). This suggests that regime 3 is

dynamically distinct from ranges 1 and 2, even though power law scaling is questionable.
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We note that the time-variation and weak A-dependence of ω2
v are sensitive to dissipation.

In particular, simulations with Laplacian (normal) viscosity, as opposed to hyperviscosity,

develop vortex populations in which ω2
v is time-invariant except at the largest scales25. In

that case the number density follows (18). However, though the time-variation and area-

dependence of ω2
v are non-universal and depend at least on dissipation, considering these

corrections to the theory has elucidated the conservation structure in the three ranges;

namely σv, the natural third member in the hierarchy of conserved quantities (3)–(5), and

not the vortex number Nv, is the correct quantity to consider in the large-scale range.

Freely evolving turbulence

In freely evolving two-dimensional turbulence the distribution of vortex intensities and

the scaling of the number density are sensitive to the initial conditions14. As discussed above

in section IIIA and shown in figure 4, top hat initial energy spectra yield distributions of

intensities ω2
v that vary weakly with area A and time t, in which case the number density

approximately follows the prediction of equation (16). However Gaussian initial energy spec-

tra yield intensities ω2
v(A, t) that vary appreciably with A and evolve in time, as shown in

figures 11a-11b. In this case, the number density no longer follows the A−1 law associated

with a scale-invariant vortex area distribution, but rather develops two scaling ranges on

either side of the area Ap at which ω2
v reaches its maximum. The data are from a contour

advection simulation labelled mGauss-CA on a 20482 basic inversion grid, with effective res-

olution (16 · 2048)2 = 32, 7682, starting from an initial energy spectrum E(k) ∼ k3e−2(k/k0)
2
,

where k0 = 256. Even under these conditions, an extended form of scaling holds, in which

the number density compensated by the vortex intensity assumes a self-similar form

n(A)/ω2
v(A, t) ∼ t−2/3A−1, (32)

as shown in figure 11c.

Figure 12(a) shows Nv, Zv, and Ev integrated over a comoving interval [µAtyp, Atyp],

where

Atyp ≡
1

2

∫ Amax

Amin
ω2
vA

2n(A)dA∫ Amax

Amin
ω2
vAn(A)dA

(33)

is an intensity-weighted ‘typical’ vortex area, which evolves at the mean growth rate, Atyp ∼

t1/3, as shown in (c). The integration limits are [Amin, Amax], where Amin and Amax are the
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FIG. 11: (a)-(b) mGauss-CA vortex number density n(A) and intensities ω2
v(A, t)

compensated by the indicated factors of t and (c) mGauss-CA number density

compensated by t2/3/ω2
v. The slopes of the scaling ranges are determined by least squares

fit to be (a) (0.82± 0.05) and (−0.17± 0.05), (b) (−0.32± 0.01) and (−1.28± 0.03). Data

is from a simulation described in Burgess et al., “Extended scale invariance in the vortices

of freely evolving two-dimensional turbulence,” Phys. Rev. Fluids (Submitted).

areas of the smallest and largest vortices present at a given time. In the freely evolving

system, vortex interactions generate a growing population of smaller and smaller vortices46;

Amin is the smallest of these. The subpopulation of vortices contained in [µAtyp, Atyp] follows

the decay laws Nv ∼ t−2/3, Zv ∼ t−1/3, and Ev ∼ t0 predicted by the scale-invariant theory

of Dritschel et al.5, and as seen above in the A−1 range of simulation Tophat-PS (figure 5,

left). In contrast, the vortex enstrophy decay rate in the comoving interval [Atyp(t), Amax(t)]

shown in (b) is Zv ∼ t−0.44. This is the global decay rate, suggesting that vortex interactions

in this range of scales are predominantly responsible for coherent enstrophy decay in the

system.
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FIG. 12: Nv (dashed), Zv (dash-dot), and Ev (solid) for (a) a comoving interval [µAtyp, Atyp]

and (b) a comoving interval [Atyp, Amax]; (c) interval endpoints, along with Ap, the area at which

ω2
v(A, t) peaks, and Amax. Data is from a simulation described in Burgess et al., “Extended scale

invariance in the vortices of freely evolving two-dimensional turbulence,” Phys. Rev. Fluids

(Submitted).

Even in simulations Tophat-CA and Tophat-PS, where the scaling of the number density

is much closer to A−1, compensating n(A) by t2/3/ω2
v yields an extended scaling range with

improved A−1 scaling, as can be seen by examining the black curves in figure 4, which show

t2/3n(A)/ω2
v at the same three times used for the gray curves (t2/3n(A)). The extended

scaling range is marked by a −1 slope line. Least squares fits over this range yield slopes

of −1.14 ± 0.05 for compensation by t2/3 (gray curves) and −1.06 ± 0.03 for compensa-

tion by t2/3/ω2
v (black curves) in simulation Tophat-CA (left panel), and −1.13 ± 0.02 for

compensation by t2/3 (gray curves) and −0.99 ± 0.02 for compensation by t2/3/ω2
v (black

curves) in simulation Tophat-PS (middle panel). This demonstrates that the extended scal-

ing improves the scaling in this range, though interestingly not at smaller scales. Further

exploration of the dependence of n(A) on the initial conditions, and the regimes of validity

of equation (32), will be the subject of future research.

This extended self-similar form n(A)/ω2
v ∼ t−2/3A−1 preserves scale invariance in the

vortex population. To see this, we consider a natural time scale associated with vortices,
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the turnover time,

Tv ≡
[
ω2
v(A, t)

]−1/2
, (34)

which is a function of A, and associate with Tv a length scale Lv defined as the distance over

which a vortex of area A travelling at the mean speed u ≡
√

2E completes one turnover,

Lv(A, t) ≡ u [ω2
v(A, t)]−1/2. (35)

All vortices are assumed to travel at the same mean speed u, which holds to a very good

degree in the simulations. The average intervortex distance is

Lr(A, t) ≡
[∫ A

µA

n(A′)dA′
]−1/2

, (36)

where 0 < µ < 1 is a constant. Inserting the form n(A) ∼ t−2/3ω2
vω
−2
maxA

−1, where ωmax is

the conserved global vorticity maximum, we obtain

Lr(A, t) ∼

√
t2/3ω2

max

ω2
v(A, t)

. (37)

Using this with (35) and assuming energy conservation yields

Lr(A, t)

Lv(A, t)
∼ t1/3, (38)

such that the ratio of the average intervortex distance to the distance travelled in one

turnover time is independent of scale. This is a basic requirement for self-similar vortex

dynamics.

IV. CONCLUSIONS AND OUTLOOK

We have reviewed the shared mechanisms by which vortices form in both forced and freely

evolving two-dimensional turbulence, merging and generating time-evolving spatial hierar-

chies with nontrivial spatiotemporal scaling in multiple distinct ranges. Though the original

similarity theories of two-dimensional turbulence neglect vortices, they have a continued

role in describing the incoherent intervortex flow. Classical similarity theories and vortex

scaling theories are thus complementary, rather than in competition with each other, and

together provide a more complete description of two-dimensional turbulent flows. Moreover,
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as we have shown, the scaling ranges found in the vortex populations of two-dimensional

turbulence can be modelled using concepts familiar from inertial range theory. Both classical

inertial ranges and vortex scaling ranges can be understood as examples of fixed point solu-

tions associated with stationary transport of conserved quantities, a generic phenomenon in

far-from-equilibrium systems. In the forced system, in particular, the hierarchy of conserved

quantities associated with a three-part number density provides an exciting new window into

the forced inverse cascade. These findings suggest potential areas for further investigation,

such as studying vortex interactions within and between the scaling ranges to understand

the processes involved at different scales. Another interesting focus of research is the scale-

invariant range common to forced and freely evolving vortex populations: specific questions

include the extent to which the dynamics generating this range are shared between the

forced and freely evolving systems, and how they are affected by the energetic background

flow in the forced system. The dependence of n(A), and the range of validity of the extended

scaling form equation (32), also deserve further investigation. Another natural extension of

this work is to three-dimensional quasi-geostrophic turbulence47, which for constant Coriolis

and buoyancy frequencies may be expected to exhibit analogous vortex scaling properties48.

These investigations promise to yield an even more complete and unified understanding of

two-dimensional turbulence and related fluid-dynamical systems.
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