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Abstract Limits to the precision of circular data often cause
grouping of data points into discrete categories, but the effects
of grouping on tests for circular uniformity have been little
explored. The Rayleigh test is often applied to grouped circu-
lar data, despite it being designed for continuous data and the
statistical literature recommending a suite of alternative tests
specifically designed for grouped data. Here, we investigated
the performance of the Rayleigh test relative to four alterna-
tives for testing the null hypothesis of uniformity in grouped
circular data. We employed simulation, grouping data into a
discrete number of same-sized categories and with samples
drawn from a range of different distributions. We found that
grouping had little effect on the type I error rate or the power
of the Rayleigh test, and that the power of the Rayleigh test
was very similar to that of the previously recommended alter-
native tests designed specifically for grouped circular data. It
may thus be appropriate to apply the Rayleigh test to grouped
data, provided the situation is one in which the test has sub-
stantial statistical power.

Keywords Chi-squared test . Kolmogorov-Smirnov test .

Ordered categories . Periodic data . Rayleigh test

Introduction

Circular data is characterised by an inherent periodicity absent
from measurements made on a linear scale (such as mass or
length). Such data is generated by a range of common mea-
surements across scientific disciplines. The most obvious sit-
uation involves angles, compass bearings or orientations.
However, also common are measurements over time where
an inherent periodicity is relevant: e.g. time of day, seasonality
and point in the lunar cycle. Recent articles in Behavioral
Ecology and Sociology (BES) have used circular statistics to
explore issues as diverse as daily variation in mammalian
activity (Fancourt 2016), orientation of sandhoppers with re-
spect to the moon as part of their navigation (Ugolini 2016),
search strategies of desert ants (Schultheiss et al. 2016) and the
directions with respect to a threat adopted by fleeing deer
(Obleser et al. 2016). In the first 6 months of 2017, BES
published four papers utilising circular statistics investigating
the relative positioning of individuals in an orb-weaving spi-
der colony (Yip et al. 2017), navigation in ants (Amador-
Vargas and Mueller 2017), avian navigation by the stars
(Pakhomov et al. 2017) and integration of magnetic and visual
navigational cues in shorebirds (Vanni et al. 2017).

Circular data needs special treatment in data analysis, and a
range of texts has been dedicated to describing this: e.g.
Batschelet 1981; Fisher 1995; Mardia and Jupp 2000;
Jammalamadaka and SenGupta 2001; Pewsey et al. 2013;
Ley and Verdebout 2017. The most common statistical explo-
ration of circular data involves testing to see if there is a bias in
the distribution around the circle or whether the null hypoth-
esis that the underlying population involves a uniform spread
around the circle is supported. For example, one might test
whether the compass directions of the initial flights of released
homing pigeons are random or show a bias. In this situation,
one might expect that a bias would exist towards the direction
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of the home lofts of the pigeons. However, a low p value in a
Rayleigh test would only provide support for rejection of the
null hypothesis of a lack of bias leading to a uniform spread of
directions around the circle. Exploration of the nature of any
suggested biasmight be performed by visual inspection and/or
calculation of (for example) the mean direction. Provided the
number of groups is at least eight, texts such as
Jammalamadaka and SenGupta (2001) and Pewsey et al.
(2013) recommend that summary statistics (and confidence
intervals) be calculated making the assumption that each data
point in a group takes the value of the midpoint of the relevant
segment of the circle (see Pewsey et al. 2013 for details). For
very course grouping into fewer than eight segments, Pewsey
et al. (2013) present an alternate approach by Mardia (1972).

Just like linear measurements, circular measurements can
be continuous or discrete. We surveyed recent papers in the
top 20 ecological journals (based on citation rates) by
searching for papers including the term ‘circular’ or
‘Rayleigh test’ and investigating what type of data the test
was used on and how precisely the data measurements were
taken in the most recent 60 relevant papers. We found that
discrete data is commonplace, generally with the circular data
being divided into k equally spaced ordered categories, with
values of k = 4 (e.g. N, E, S or W), 8 (e.g. N, NE,… NW) or
12 (e.g. Jan, Feb,… Dec). Orientation or heading angles—of
up to 360°—are sometimes split into eight sectors of 45°
(Chittka et al. 1999; Davoren et al. 2003). Where orientation
is relative to a structure or location, an angle of 180° may
indicate an individual facing in the opposite direction, and
orientation can be estimated to the nearest category, such as
12 sections of 15° (McLaughlin 2001). Twelve categories are
also a common grouping for months of the year (Proença et al.
2012; Hirsch et al. 2016), but directional preferences and
headings are commonly grouped by a greater number of
equally spaced categories (Wiltschko et al. 2003, 2006,
2009; Kullberg et al. 2007; Winklhofer et al. 2013; Wystrach
et al. 2015). There is no reason to expect that grouping in
circular data would not also be commonplace in other fields.
In recent BES papers, we found that it was not always possible
to identify precision of measurements from the provided in-
formation, but we found examples of discrete data, with the
circle being divided into equal-sized arcs numbering 48
(Fuchikawa et al. 2014), 36 (Obleser et al. 2016) and 8
(Villarreal and Gilbert 2014).

Our literature review also found a strong discrepancy be-
tween how the statistical literature recommends testing the
null hypothesis of circular uniformity and the practice in em-
pirical science. We found that in the ecological literature, cir-
cular uniformity is almost invariably tested using the Rayleigh
test (introduced by Lord Rayleigh in 1880, but also defined in
the monographs listed above). This is also true of recent BES
papers (see references previously given). The Rayleigh test
was designed to be applied to continuous data, and its

application to discrete grouped data does not have a theoreti-
cal or empirical basis in the statistical literature. Instead, cir-
cular statistic texts recommend a suite of tests designed spe-
cifically for grouped circular data. Tests for unordered catego-
ries such as the chi-squared or G tests could be applied but,
because these tests essentially leave unused information about
the ordering of categories, they are not as powerful as
purpose-designed tests for circular grouped data (Reijneveld
1990; Steele and Chaseling 2006; Watkins and Di Stefano
2013).

The most recent textbooks on circular statistics (Mardia
and Jupp 2000; Pewsey et al. 2013) recommend three alterna-
tive tests for deviation from uniformity in grouped circular
data: a modified Watson test by Choulakian et al. (1994),
another modification of this test by Brown (1994) and a mod-
ification of the Kolmogorov-Smirnov test by Freedman
(1979). Fisher (1995) recommends the first and the last of
these tests. None of these texts offers advice on selecting
one of these alternatives over another. The earlier text of
Batschelet (1981) recommends the chi-squared test or the
Rayleigh test only after a correction factor for grouping has
been applied. Here, we explore the performance of the un-
modified Rayleigh test in comparison to these four alterna-
tives for testing the null hypothesis of uniformity in grouped
circular data. BES authors regularly generate circular data,
often in discrete rather than continuous form, and the
Rayleigh test is the most commonly used statistical treatment
of that data. Thus, this work should significantly enhance the
statistical treatment of such data in the future and allow
readers to draw more reliable inferences from previously pub-
lished papers.

Methods

For our simulations, samples were drawn from five different
distributions: (i) a uniform distribution to allow us to study the
type I error rate, (ii) a von Mises distribution (a symmetrical
distribution often described as the circular equivalent to a nor-
mal distribution), (iii) a wrapped Cauchy distribution (another
symmetrical unimodal distribution), (iv) an equal mixture of
two vonMises distributions with means selected independent-
ly from a uniform distribution (giving a bimodal distribution
or asymmetric unimodal one), and (v) an equal mixture of two
von Mises distributions with mean values at the exactly oppo-
site sides of the circle. For odd sample sizes, in the two mix-
ture models, one subsample (selected stochastically) was one
larger than the other. For the von Mises distribution, the con-
centration parameter κ was set to 0.8 throughout; for the
wrapped Cauchy distribution, the concentration parameter ρ
was set to 0.5. Descriptions of the uniform, von Mises and
wrapped Cauchy distributions can be found in Pewsey et al.
(2013). Samples were drawn stochastically using functions

 167 Page 2 of 7 Behav Ecol Sociobiol  (2017) 71:167 



provided by the package circular (Agostinelli and Lund 2013)
in R (R Core Team 2016). When data were grouped into k
equal-length categories, each data point was rounded down to
the nearest value in the list: 0, 2π/k, … (k − 1) × 2π/k.

Power and type I error rates of the unmodified Rayleigh
test were evaluated over 100,000 stochastic simulations. Only
the unmodified Rayleigh test was available in an R package,
and the rayleigh.test function in the package circularwas used
for this. For all other tests, the p value was evaluated by sim-
ulation, as the fraction of 1000 samples drawn from a uniform
distribution which produced a test statistic at least as great as
the observed one. Test statistics for the various tests were
defined as follows: Throughout, we assume k equal-sized or-
dered categories, indexed by j = 1,… k, with observed values
Oj and expected values under the null hypothesis of uniformi-
ty Ej. The total sample size is defined as n, so that each Ej is n/
k, and

∑k
j¼1Oj ¼ n ð1Þ

For the modified Watson test introduced by Choulakian
et al. (1994), we first define

S j ¼ ∑ j
i¼1 Oi−Eið Þ: ð2Þ

Then, the test statistic is given by

U 2
G ¼ 1

nk
∑k

j¼1 S j−
1

k
∑k

i¼1Si

� �2

: ð3Þ

For the alternative version proposed by Brown (1994), we
first define pj = Ej/n, Yj = 0.5(Oj − Ej) when j = 1; otherwise,

Y j ¼ ∑ j¼1
i¼1 Oi−Eið Þ þ 0:5 Oj−E j

� �
: ð4Þ

Then, the test statistic is given by

U2
d ¼

1

n
∑k

j¼1pjY
2
j− ∑k

j¼1pjY j

� �2
� �

þ 1

6
∑k

j¼1p
2
j 1−0:5pj

� �

þ 1

12n
∑k

j¼1pj Oj−E j
� �2

:

ð5Þ

The method of Freedman (1979) first involves defining

F j ¼ ∑ j
i¼1

Ei

n
Fn

j ¼ ∑ j
i¼1

oi
n
: ð6Þ

Then, the test statistic is found from the maximum and
minimum values of the differences between these two series,
specifically

VN ¼ max FN−F
� �þ min FN−F

� ��� �� ð7Þ

For continuous data, the test statistic for the Rayleigh
test is the mean vector length r. For n measurements M1,

… Mn recorded as radians on in the interval [0, 2π], this is
defined as

r ¼ 1

n
∑n

i¼1sin Mið Þ� �2 þ ∑n
i¼1cos Mið Þ� �2� �

: ð8Þ

If, as in our case, data has been grouped to take one of k
discrete values, then, Batschelet (1981) recommends multi-
plying the test statistic r in the Rayleigh test by a correction
factor c:

c ¼
π
k

sin
π

k

� � : ð9Þ

Results

The Rayleigh test appears to maintain type I error rate at close
to the nominal 5% level regardless of how strongly grouped
the data are (Fig. 1a). Similarly, although grouping the data
leads to a reduction in power, this effect is relatively slight
(Fig. 1b). Turning to comparison with the three non-
parametric tests designed for grouped data, Fig. 2 shows that
there is relatively little difference in power between all four
tests, for a broad range of sample sizes and for different types
of underlying distribution. All four tests show a good ability to
detect unimodal departures from uniformity; their power is
reduced for potentially bimodal distributions and is very low
indeed if the departure involves two symmetrical distributions
at opposite points on the circle. Figure 2 uses extremely
grouped data, organised into only 4 categories, but changing
to 12 categories makes very little difference (see Fig. 3). In
supplementary Figs. S1 and S2, we present analogous results
for two further shapes of underlying distribution: a symmetric
Jones-Pewsey distribution with parameters chosen to give a
smooth broad distribution and an additional skewed version of
the symmetric Jones-Pewsey distribution (the sine-skewed
Jones-Pewsey). Using the correction suggested by Batschelet
(1981) does not seem to offer any significant improvement to
the power of the Rayleigh test, even in the extreme case of
grouping data into four categories (see Fig. 4). In Fig. S3, we
again demonstrate essentially similar observations for two ad-
ditional distributions.

Examples

Brown (1994) provides data on the number of marriages in a
rural district of Tasmania over the period 1838–1849. For four
quarters of the year, there are 16, 25, 22 and 37, respectively.
Applying the range of tests considered here, the p values as-
sociated with the null hypothesis of uniformity between the
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quarters are 0.17 for the Rayleigh test, 0.06 for Watson’s test,
0.24 for Brown’s test, 0.06 for Freedman’s test and 0.16 for
the corrected Rayleigh test. Thus, although there is consider-
able variation in the p values, all tests give no grounds for
rejecting the null hypothesis of uniform frequency of marriage
across the four quarters, using the criterion of α = 0.05.

Bell (1983) recorded the distribution of house martin
(Delichon urbica) nests in relation to the compass aspect of
the wall of the dwelling they were attached to. These were
grouped into eight quadrants (N, NE, E, SE, S, SW, W,

NW). The observed counts were N = 36, NE = 53, E = 38,
SE = 31, S = 26, SW = 21,W = 13, and NW= 35. From visual
inspection, it appears that the birds show a preference for NE
and E and against SW and W. Testing the hypothesis of no-
preference (uniformity) yielded pvalues of < 0.001 for the
Rayleigh test, Watson’s test, Brown’s test, Freedman’s test
and for the corrected Rayleigh test. Using the criterion of
α = 0.05, all tests suggest rejection of the null hypothesis of
uniform frequency of nest distribution across the eight quad-
rants of compass aspect. Full code for this example is given in
the supplementary material.

Discussion

Future developments and broader implications

We can envisage some useful extensions to the results present-
ed here. We have only explored a limited number of different
underlying circular distributions here. The Rayleigh test is the
most powerful invariant test for continuous data from a von
Mises distribution (e.g. Mardia and Jupp 2000). Whilst no
longer guaranteed to be optimal, it is known to offer reason-
able performance when applied to many other unimodal dis-
tributions (Bogdan et al. 2002 and references therein), a con-
clusion further supported in our simulations. Further, our
mixed distribution covered both asymmetric and bimodal dis-
tributions. In these situations, the power of the Rayleigh test
was reduced compared to symmetric unimodal distributions,
but this performance still compared well to alternative tests.
Finally, we explored the situation of symmetrical distributions
where for continuous data, the Rayleigh test is known to per-
form poorly (Bogdan et al. 2002). Here, all the tests we con-
sidered had similarly very low power. Despite this broad array
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Fig. 2 The statistical power of
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of underlying distributions, it is possible to imagine alterna-
tives that we have not considered. The most obvious addition-
al distribution to consider is the sinusoid, but a range of other
circular distributions is available (see Pewsey et al. 2013 for
an overview). Even for the distributions used here, different
parameter values could be explored. Lastly, we have only
considered equal-sized categories, but there are circumstances
(e.g. months of the year) where researchers may be interested
in unequal-sized categories. We see no reason to expect that
these situations will generate significantly different patterns
from those seen here, but such explorations would still be
valuable. Pending such investigations, we consider that our
work here is a considerable step towards offering hitherto

missing empirical support for the widespread use of the
Rayleigh test to grouped circular data. Ley and Verdebout
(2017) provide the most up-to-date summary of recent re-
search on this test when applied to ungrouped data.

Another logical extension to the investigations here would
be extension to another commonly explored situation in cir-
cular statistics—investigating the support for two or more
samples which have been drawn from the same underlying
distribution. For example, researchers might want to test
whether there are any differences in seasonal variation of
whale strandings on the eastern and western Atlantic coast-
lines. If the data here is grouped (e.g. into 12 months), then,
Pewsey et al. (2013) recommend comparing via a chi-squared
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approach to a contingency table. However, since this test takes
no account of the ordering of months, it may be fruitful to
explore if more powerful alternatives for the use of grouped
data in this context can be developed.

Advice to researchers stemming from our study

Here, we found that grouping data into a discrete number of
same-sized categories had little effect on either the type I error
rate or the power of the Rayleigh test, even for as few as four
categories. Further, the power of the Rayleigh test was very
similar to that of recommended goodness-of-fit tests designed
especially for grouped circular data. On this basis, the appli-
cation of the Rayleigh test to grouped data might sometimes
be appropriate. However, our exploration of grouped data
echoes the well-known observation of continuous data that
the Rayleigh test can have reduced power when the underly-
ing distribution has multiple peaks. Further, if these peaks are
regularly spaced around the circle, then, this reduction in pow-
er can be very substantial. Similar loss of power can be seen
for the alternative tests for grouped data. Thus, researchers
should visually inspect their data before interpreting the out-
come of any formal test of the null hypothesis of uniformity.
Such inspection could inform both the situation where the null
is rejected and the situation where it is not rejected. In the latter
case, failure to reject may be related to the issue of low power
against some distributions just discussed. As our simulations
demonstrate, grouping data leads to a reduction in power, so
there are certainly no circumstances where the Rayleigh test
can be recommended for grouped data when it would not be
recommended for analogous ungrouped data. There are cir-
cumstances where the Rayleigh test (and all the tests consid-
ered here) has very low power. If researchers have reason to
suspect that they are in such a situation, then, they should not
apply any of these tests or at the very least treat the results with
caution (see Button et al. 2013 for a general discussion of the
problems associated with low power).

We have not seen a previous exploration of the grouping
correction for the Rayleigh test recommended by Batschelet
(1981), although he states (p. 38) that it has minimal effect for
k > 12. In fact, we find that it has very little effect on the power
of the Rayleigh test, even if k = 4, sowe do not recommend the
use of this correction factor when applying the Rayleigh test.

Our suggestion that the Rayleigh test could sometimes ap-
propriately be applied to grouped data is based on its empirical
performance in our simulations, ease of use and familiarity; it
does not have a theoretical justification. For those researchers
who would rather use a method for which there is theoretical
justification (rather than just the simulation support provided
here), we can offer comparison between three commonly rec-
ommended methods based on the existing literature and our
investigations. There has been relatively little previous
comparison of tests for patterns in grouped circular data.

Reijneveld (1990) found that the test of Freedman (1979) gave
better or equivalent power to detect sinusoidal deviations from
uniformity, compared to a number of tests specifically de-
signed to detect such deviations, and warned that these other
tests are unreliable if there is a deviation from uniformity, but
it is not sinusoidal. Similar conclusions had been reached pre-
viously by Marrero (1983). Here, we found very strong sim-
ilarity between the three methods tested. None of these
methods is currently implemented in software packages that
we know of; however, an R code for each of them is provided
in the context of the house martin nest distribution example
outlined above (see supplementary material). In terms of ease
of calculation and speed of implementation, there is little to
choose between the three methods. The calculations of
Brown’s test are more involved than those of Watson’s but
offer no clear performance benefit in our simulations.
Freedman’s test offers conceptual similarity to the
Kolmogorov-Smirnov test, the modified Watson’s test and
the range of other tests commonly used in circular statistics
originally developed by Watson. Pending further research,
selection can be based on which of these similarities resonates
most with the individual researcher.
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