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Abstract

It is known that if the underlying iterated function system satisfies the open set condition, then
the upper box dimension of an inhomogeneous self-similar set is the maximum of the upper box
dimensions of the homogeneous counterpart and the condensation set. First, we prove that this
‘expected formula’ does not hold in general if there are overlaps in the construction. We demonstrate
this via two different types of counterexample: the first is a family of overlapping inhomogeneous
self-similar sets based upon Bernoulli convolutions; and the second applies in higher dimensions and
makes use of a spectral gap property that holds for certain subgroups of SO(d) for d > 3.

We also obtain new upper bounds, derived using sumsets, for the upper box dimension of an
inhomogeneous self-similar set which hold in general. Moreover, our counterexamples demonstrate
that these bounds are optimal. In the final section we show that if the weak separation property is
satisfied, i.e. the overlaps are controllable, then the ‘expected formula’ does hold.
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1 Inhomogeneous iterated function systems

Inhomogeneous iterated function systems, introduced by Barnsley and Demko [BD], are natural general-
isations of classical iterated function systems and consist of a classical (homogeneous) iterated function
system (IFS) and a compact condensation set. Let {Si}i∈I be a classical IFS, i.e. a finite collection of
contracting self-maps on a compact subset of Euclidean space X and let C ⊆ X be the compact conden-
sation set. An elegant application of Banach’s contraction mapping theorem yields that there is a unique
non-empty compact set FC satisfying

FC =
⋃
i∈I

Si(FC) ∪ C,

which we refer to as the inhomogeneous attractor of the inhomogeneous IFS. Note that the attractors
of classical (or homogeneous) IFSs are inhomogeneous attractors with the condensation set equal to the
empty set. It turns out that FC is equal to the union of F∅ and all images of C by compositions of maps
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from the defining IFS. This means that for countably stable dimensions, like the Hausdorff dimension
dimH, one immediately obtains

dimH FC = max{dimH F∅, dimH C},

but establishing similar formulae for dimensions that are not countably stable is more challenging. As
such it is natural to study the upper and lower box dimensions, dimB and dimB. In what follows we will
focus on inhomogeneous self-similar sets, i.e. inhomogeneous attractors where the defining contractions
are similarities. For this class of attractors it was shown in [OS] that if the defining system satisfies
an ‘inhomogeneous strong separation condition’, then the ‘expected formula’ also holds for upper box
dimension, i.e.

dimBFC = max{dimBF∅, dimBC}. (1.1)

It was shown in [Fr2] that the analogous formula fails for lower box dimension, even if one has good
separation properties, and that (1.1) remains valid even if the separation condition from [OS] is relaxed
to the open set condition (OSC), which, in particular, does not depend on C. See [F2, Chapter 9] for the
definition of the OSC. In [Fr3] the problem was addressed for inhomogeneous self-affine sets and in this
context (1.1) does not generally hold for upper box dimension even if the OSC is satisfied.

In this paper we focus on the overlapping situation (i.e. without assuming the OSC) and prove that
(1.1) does not hold in general by considering a construction based on number theoretic properties of
certain Bernoulli convolutions (Section 2). In Section 3, relying on a specific spectral gap property of
SO(d) for d > 3, we provide another construction in Rd where dimB FC = d− 1− ε with F∅ and C being
singletons.

In Section 4 we show that these constructions (in a certain sense) give the highest possible value
of dimBFC . In particular, we provide new general upper bounds for dimBFC in terms of dimBF∅ and
dimB C.

Finally, in Section 5, we show that (1.1) does hold if the weak separation property is satisfied, and
make connections with the recent pioneering work of Hochman concerning homogeneous self-similar sets
with overlaps [H1, H2].

1.1 Box dimensions and structure of inhomogeneous self-similar sets

In this section we introduce some notation and state the main result of [Fr2] to put the rest of the paper
in context. For δ > 0 and bounded E ⊆ Rn, let Nδ(E) denote the number of half open cubes which
intersect E from the δ-mesh imposed on Rn oriented with the co-ordinate axes. Here a half open cube is
taken to mean a product of half open intervals [a, b). The upper and lower box dimensions of E can be
defined in terms of Nδ(E) by

dimBE = lim sup
δ→0

logNδ(E)

− log δ

and

dimBE = lim inf
δ→0

logNδ(E)

− log δ

respectively. If the upper and lower box dimensions are equal, then we denote the common value by
dimBE and call it the box dimension. For each similarity map Si in our defining IFS, let ci ∈ (0, 1) be
the contraction constant, i.e. the value such that

|Si(x)− Si(y)| = ci|x− y|

for all x, y ∈ X. The similarity dimension is the unique solution s > 0 of the Hutchinson-Moran formula∑
i∈I

csi = 1.

It is well-known that the Hausdorff and box dimensions of the (homogeneous) self-similar set F∅ ⊂ Rn
are equal and bounded above by min{s, n} with equality occurring if the open set condition is satisfied,
[F2, Chapter 9]. The main result of [Fr2] was that for an inhomogeneous self-similar set we always have

max{dimBF∅, dimBC} 6 dimBFC 6 max{s, dimBC}, (1.2)
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which proves (1.1) in many situations, most notably when the open set condition is satisfied.
Let I∗ =

⋃
k>1 Ik denote the set of all finite sequences with entries in I and for I =

(
i1, i2, . . . , ik

)
∈ I∗

write
SI = Si1 ◦ Si2 ◦ · · · ◦ Sik

and
cI = ci1ci2 . . . cik

which is the contraction ratio of SI . The orbital set is defined by

O = C ∪
⋃
I∈I∗

SI(C)

and it is easy to see that FC = F∅ ∪ O = O (cf. [S, Lemma 3.9]).

2 Inhomogeneous Bernoulli convolutions and failure of (1.1)

We begin by computing the box dimensions of a family of overlapping inhomogeneous self-similar sets
based on Bernoulli convolutions. Fix λ ∈ (0, 1), let X = [0, 1]2 and let S0, S1 : X → X be defined by

S0(x) = λx and S1(x) = λx+ (1− λ, 0).

To the homogeneous IFS {S0, S1} associate the condensation set

C = {0} × [0, 1]

and observe that F∅ = [0, 1] × {0} and so dimB F∅ = dimB C = 1. We will denote the inhomogeneous
attractor of this system by FλC to emphasise the dependence on λ. In this section we construct several
counterexamples to (1.1). Our first counterexample makes use of a well known class of algebraic integers
known as Garsia numbers. We define a Garsia number to be a positive real algebraic integer with norm
±2, whose conjugates are all of modulus strictly greater than 1. Examples of Garsia numbers include n

√
2

and 1.76929 . . ., the appropriate root of x3 − 2x − 2 = 0. In [G] Garsia showed that whenever λ is the
reciprocal of a Garsia number, then the associated Bernoulli convolution is absolutely continuous with
bounded density.

Figure 1: Three plots of FλC , where λ is chosen to be 1/2 (where there are no overlaps), the reciprocal of
the golden mean (which is Pisot), and the reciprocal of

√
2 (which is Garsia).

Theorem 2.1. If λ ∈ (1/2, 1) is the reciprocal of a Garsia number, then

dimB F
λ
C =

log(4λ)

log 2
> 1.

We defer the proof of Theorem 2.1 to Section 2.2 below. For every λ ∈ (1/2, 1) which is the reciprocal of
a Garsia number, the set FλC provides a counterexample to (1.1) for the upper (and lower) box dimension,
but it is also worth noting that this example is ‘sharp’ in that, given the data: dimBF∅ = 1, dimBC = 1
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and s = − log 2/ log λ, we prove that this is as large as dimBFC can be. For more details, see Corollary
4.9 and Remark 4.10.

Our second source of counterexamples to (1.1) is a much larger set. As the following statement shows,
FλC typically provides a counterexample to (1.1) whenever λ lies in a certain subinterval of (1/2, 1).

Theorem 2.2. For Lebesgue almost every λ ∈ (1/2, 0.668) we have

dimB F
λ
C =

log(4λ)

log 2
.

The appearance of the quantity 0.668 is a consequence of transversality arguments used in [BS]. Our
proof of Theorem 2.2 will rely on counting estimates appearing in this paper and will be given in Section
2.3. We note that the value log(4λ)/ log 2 also appears as the dimension of a related family of sets. In
particular, for λ ∈ (1/2, 1), let Aλ be the (homogeneous) self-affine set associated to the IFS consisting
of affine maps T0, T1 : X → X defined by

T0(x, y) = (λx, y/2) and T1(x) = (λx+ 1− λ, y/2 + 1/2).

It follows from standard dimension formulae for self-affine sets that the box dimension of Aλ is given
by log(4λ)/ log 2 for every λ ∈ (1/2, 1), see for example [PU] or [Fr1, Corollary 2.7]. Also, for every
λ ∈ (0, 1/2], we have dimB F

λ
C = dimBA

λ = 1, but this case is not so interesting because the IFS
defining FλC does not have overlaps. The relevance of this comparison is purely aesthetic, noting that
the projection of this IFS onto the first coordinate gives the Bernoulli convolution and onto the second
coordinate gives a simple IFS of similarities yielding C as the attractor.

Figure 2: Three plots of Aλ, where λ is chosen to be the reciprocal of the golden mean, the reciprocal of√
2, and 4/5.

The key reason that the sets FλC provide counterexamples to (1.1) is that the set F∅ is trapped in a
proper subspace. The underlying IFS has potential to give rise to an attractor with dimension bigger than
1, but cannot because the attractor must lie in a 1 dimensional line. However, since the condensation
set does not lie in this subspace, it “releases” some of this potential dimension. At first sight, one might
expect this to be the only way to violate (1.1), so we briefly point out that this is not the case. In
particular, to the system considered in this section, add the similarity map S2 : x 7→ εx+ (0, 1− ε) where
ε is chosen in (0, 1 − λ). Let EλC and Eλ∅ denote the corresponding inhomogeneous and homogeneous

attractors of this system, respectively. Note that FλC ⊂ EλC and so

dimBE
λ
C >

log(4λ)

log 2
,

whenever λ is the reciprocal of a Garsia number by Theorem 2.1. Moreover, Eλ∅ ⊂ π1(Eλ∅ ) × π2(Eλ∅ ),
where π1 and π2 denote projection onto the first and second coordinates respectively. Both projections are
easy to understand since π1(Eλ∅ ) = [0, 1] and π2(Eλ∅ ) ⊂ [0, 1] is the homogeneous self-similar attractor of
{x 7→ λx, x 7→ εx+(1−ε)} and so has upper box dimension bounded above by the solution s = s(ε, λ) > 0
of λs+εs = 1. Using standard properties of the box dimension of products [F2, Chapter 7], this guarantees
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dimBE
λ
∅ 6 1 + s(ε, λ). By choosing ε sufficiently small (after fixing λ), s(ε, λ) can be made arbitrarily

small, in particular to guarantee

max{dimBE
λ
∅ , dimBC} 6 1 + s(ε, λ) <

log(4λ)

log 2
6 dimBE

λ
C

and so (1.1) fails despite the fact that EλC is not contained in a subspace. For more discussion on possible
mechanisms for violating (1.1), see Section 5.

2.1 Notational remark

For real-valued functions A and B, we will write A(x) . B(x) if there exists a constant c > 0 independent
of the variable x such that A(x) 6 cB(x), A(x) & B(x) if there exists a constant c′ > 0 independent
of the variable x such that A(x) > c′B(x) and A(x) � B(x) if A(x) . B(x) and A(x) & B(x). In our
setting, x is normally some δ > 0 from the definition of box dimension or some k ∈ N and the comparison
constant c, c′ can depend on fixed quantities only, like λ and the defining parameters in the IFS.

2.2 Proof of Theorem 2.1

Before we get to the proof we state a useful separation property that holds for the reciprocals of Garsia
numbers and demonstrate the relevance to our situation via (2.1) below.

Lemma 2.3 (Garsia [G]). Let λ ∈ (1/2, 1) be the reciprocal of a Garsia number and (ik)nk=1, (i
′
k)nk=1 ∈

{0, 1}n be distinct words of length n. Then∣∣∣(1− λ)

n∑
k=1

ikλ
k−1 − (1− λ)

n∑
k=1

i′kλ
k−1
∣∣∣ > K

2n
.

For some strictly positive constant K that only depends on λ.

This lemma is due to Garsia [G]. For a short self-contained proof of this fact we refer the reader to
[B1, Lemma 3.1]. We note that for any I = (i1, . . . , in) ∈ {0, 1}n we have

SI(C) = {SI(0, 0)} × [0, λn] =

{
(1− λ)

n∑
k=1

ikλ
k−1

}
× [0, λn]. (2.1)

Combining Lemma 2.3 with (2.1), we see that whenever λ is the reciprocal of a Garsia number the images
of C will be separated by a factor K ·2−n. This property is the main tool we use in our proof of Theorem
2.1.

Proof of Theorem 2.1. Fix δ > 0 and partition the unit square into horizontal strips of the form [0, 1]×
(λk+1, λk] for k ranging from 0 to k(λ, δ), defined to be the largest integer satisfying λk(λ,δ)+1 > δ.
Observe that the only part of FλC which intersect the interior of the kth vertical strip is

k⋃
l=0

⋃
I∈{1,2}l

SI(C)

which is a union of vertical lines. Within the kth vertical strip, each vertical line SI(C) appearing in the
above expression intersects on the order of λk/δ squares from the δ-mesh. However, if two of these lines
are too close to one another, they may not both contribute to the total intersections for FλC . In fact, the
number of lines which make a contribution to the total intersections is on the order of Nδ(Λ(k)), where

Λ(k) =

k⋃
l=0

⋃
I∈{1,2}l

SI(0, 0),

i.e. the number of base points of the lines intersecting the kth vertical strip which lie in different δ-
intervals. This yields

Nδ
(
FλC
)
� δ−1 +

k(λ,δ)∑
k=0

(
λk/δ

)
Nδ(Λ(k))
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where the δ−1 comes from the intersections below the k(λ, δ)th strip. It follows from Lemma 2.3 and
subsequent discussion that

Nδ(Λ(k)) � min{2k, δ−1}

which is the maximum value possible and where the ‘comparison constants’ are independent of δ and k,
but do depend on λ, which is fixed. Let k0(δ) be the largest integer satisfying 2k0(δ) < δ−1. It follows
that

Nδ
(
FλC
)
� δ−1 +

k0(δ)∑
k=0

(
λk/δ

)
2k +

k(λ,δ)∑
k=k0(δ)+1

(
λk/δ

)
δ−1

= δ−1 + δ−1
k0(δ)∑
k=0

(2λ)k + δ−2
k(λ,δ)∑

k=k0(δ)+1

λk

� δ−1 + δ−1 (2λ)k0(δ) + δ−2
(
λk(λ,δ) − λk0(δ)

)
� δ−1 + δ−1 δ− log(2λ)/ log 2 + δ−2

(
δ − δ− log λ/ log 2

)
� δ−1−log(2λ)/ log 2

which yields

dimBF
λ
C = dimBF

λ
C = 1 + log(2λ)/ log 2 =

log(4λ)

log 2

as required.

The above proof actually yields the following stronger result than Theorem 2.1 which gives the exact
rate of convergence to the box dimension. This type of problem was considered by Lalley [L] in the context
of homogeneous self-similar sets satisfying the open set condition, where the same rate was obtained.

Theorem 2.4. If λ ∈ (1/2, 1) is the reciprocal of a Garsia number, then

logNδ
(
FλC
)

− log δ
=

log(4λ)

log 2
+ O

( 1

− log δ

)
.

2.3 Proof of Theorem 2.2

To prove this theorem we show that a separation condition similar to that stated in Lemma 2.3 holds
for a generic λ ∈ (1/2, 0.668). Throughout this section we let J := (1/2, 0.668). Before we state our
separation condition we recall some results from [B2] and [BS].

In [BS] Benjamini and Solomyak study the distribution of the set

An(λ) :=
{

(1− λ)

n∑
k=1

ikλ
k−1 : (ik) ∈ {0, 1}n

}
.

Given s > 0, λ ∈ (1/2, 1), and n ∈ N they associate the set

R2(s, λ, n) :=
{

(a, b) ∈ An(λ)2 : a 6= b, |a− b| 6 s

2n

}
.

They conjectured that for almost every λ ∈ (1/2, 1), there exists c, C > 0 such that

cs 6
#R2(s, λ, n)

2n
6 Cs

for all n ∈ N and s > 0. In [BS] the authors did not prove this conjecture, however, they did prove several
results which indicate that it is true; one of which is the following.
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Theorem 2.5 (Theorem 2.1 from [BS]). There exists C1 > 0 such that∫
J

#R2(s, λ, n)

2n
6 C1s

for all n ∈ N and s > 0.

Theorem 2.5 will be essential when it comes to showing that a generic λ ∈ J satisfies a separation
property. Importantly the C1 appearing in Theorem 2.5 does not depend on n or s. In [B2] the first author
studied the approximation properties of β-expansions. To understand these properties the following set
was studied

T (s, λ, n) :=
{
a ∈ An(λ) : ∃b ∈ An(λ) satisfying a 6= b and |a− b| 6 s

2n

}
.

In [B2] it was shown that
#T (s, λ, n) 6 #R2(s, λ, n). (2.2)

If T (s, λ, n) is a small set then the elements of An(λ) are well spread out within [0, 1]. As was seen in the
proof of Theorem 2.1, if the elements of An(λ) are well spread out then FλC can be a counterexample to
(1.1). We do not show that a separation condition as strong as Lemma 2.3 holds for a generic λ ∈ J , but
we can prove a weaker condition holds, a condition which turns out to be sufficient to prove Theorem
2.2.

Proposition 2.6. For Lebesgue almost every λ ∈ J , the following inequality holds for all but finitely
many n ∈ N:

2n−1 6 #
{
a ∈ An(λ) : |a− b| > 1

n22n
for all b ∈ An(λ) \ {a}

}
.

To prove Proposition 2.6 we use the Borel-Cantelli lemma and the counting bounds provided by
Theorem 2.5. The following lemma gives an upper bound on the Lebesgue measure of the set of λ which
exhibit contrary behaviour to that described in Proposition 2.6. The proof of this lemma is based upon
an argument given in [B2]. We write L for Lebesgue measure.

Lemma 2.7. We have

L
(
λ ∈ J : 2n−1 6 #T (n−2, λ, n)

)
6

2C1

n2
.

Proof. Observe that

L
(
λ ∈ J : 2n−1 6 #T (n−2, λ, n)

)
6 L

(
λ ∈ J : 2n−1 6 #R2(n−2, λ, n)

)
(by (2.2))

=
2nL

(
λ ∈ J : 2n−1 6 #R2(n−2, λ, n)

)
2n

6 2

∫
λ∈J :2n−16#R2(n−2,λ,n)

#R2(n−2, λ, n)

2n

6 2

∫
J

#R2(n−2, λ, n)

2n

6
2C1

n2
(by Theorem 2.5)

as required.

Applying Lemma 2.7 we see that

∞∑
n=1

L
(
λ ∈ J : 2n−1 6 #T (n−2, λ, n)

)
6

∞∑
n=1

2C1

n2
< ∞.

Thus, the Borel-Cantelli lemma implies that for almost every λ ∈ J there exists finitely many n satisfying
2n−1 6 #T (n−2, λ, n). If λ does not satisfy a height one polynomial then #An(λ) = 2n. Combining this
statement with the above consequence of the Borel-Cantelli lemma we may conclude Proposition 2.6.
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Note that Proposition 2.6 implies that for Lebesgue almost every λ ∈ J , there exists a constant κ > 0
for which

2n−1 6 #
{
a ∈ An(λ) : |a− b| > κ

n22n
for all b ∈ An(λ) \ {a}

}
(2.3)

is true for every n ∈ N. Equation (2.3) guarantees that at least 2n−1 elements of An(λ) will be separated
by a factor κ(n22n)−1 holds for every n ∈ N. The proof of Theorem 2.2 now follows similarly to the proof
of Theorem 2.1, so we only point out the differences.

Proof of Theorem 2.2. First note that the upper estimate

Nδ
(
FλC
)

. δ−1−log(2λ)/ log 2

remains valid for any λ ∈ (1/2, 1), which yields

dimBF
λ
C 6

log(4λ)

log 2

as required. Let ε > 0 and consider the lower bound. In light of Proposition 2.6 and the discussion above
we can guarantee that for almost every choice of λ ∈ J we have

Nδ(Λ(k)) & min{2k, δ−1}

as long as
1

k22k
> δ. (2.4)

Let k1(δ) denote the maximum value of k for which (2.4) holds and note that

k1(δ) .
− log δ

(1 + ε) log 2
.

For k 6 k1(δ) we have 2k 6 δ−1 and so

Nδ
(
FλC
)

&
k1(δ)∑
k=0

(
λk/δ

)
2k = δ−1

k1(δ)∑
k=0

(2λ)k & δ−1 (2λ)k1(δ) & δ−1−log(2λ)/((1+ε) log 2)

which yields

dimBF
λ
C > 1 +

log(2λ)

(1 + ε) log 2
.

Since ε > 0 was arbitrary, the desired lower bound follows.

Note that the weaker separation estimate used in proving Theorem 2.2 means that we cannot obtain
the exact rate of convergence to the box dimension as we did for reciprocals of Garsia numbers in Theorem
2.4.

3 Large inhomogeneous self-similar sets in higher dimensions

If the maps of an IFS share a common fixed point, then the attractor is trivial (a singleton). However,
the inhomogeneous attractor can be still be highly non-trivial. In this section we will exhibit an inhomo-
geneous self-similar set in Rd (d > 3) of large box dimension such that F∅ is a singleton, and C is also a
singleton. This is not possible in R or R2 (see Corollary 4.11). Our construction is based on Drinfeld’s
result [D] that SO(3) contains finitely generated subgroups with the spectral gap property.

Theorem 3.1. Let d > 3. There are finitely many rotations g1, . . . , gk ∈ SO(d) and ε > 0 such that for
any x ∈ Rd with ‖x‖ = 1,

Nδ(G
n(x)) > min

{
(1 + ε)n, εδ−(d−1)

}
where

Gn(x) = {gI(x) : I is a multi-index of length n}.
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Proof. Let Sd−1 be the unit sphere in Rd endowed with the probability Lebesgue measure. Let L2(Sd−1)
denote the L2 space of real valued functions f : Sd−1 → R. By Drinfeld [D] (when d = 3) and by Margulis
[M] and Sullivan [Su] (when d > 4), there exist rotations g1, . . . , gk and ε > 0 for which the operator

A : L2(Sd−1)→ L2(Sd−1),

Af(x) =
1

k

k∑
i=1

f(g−1i (x))

has a spectral gap, namely

‖Af‖2 6 (1− ε)‖f‖2 whenever

∫
f = 0.

Let f be the function which is 1 on the δ neighbourhood of x in Sd−1, and zero otherwise. Then∫
f ≈ δd−1. We have∥∥Anf − ∫ f∥∥

2
=
∥∥An(f −

∫
f)
∥∥
2
6 (1− ε)n

∥∥f − ∫ f∥∥
2
6 O(1)(1− ε)nδ(d−1)/2. (3.1)

Notice that
∫
Anf =

∫
f . Let E ⊂ Sd−1 denote the support of Anf and λ denote the measure of E.

Observe that E is contained by the δ-neighbourhood of Gn(x), which implies

λ = O(1)δd−1Nδ(G
n(x)). (3.2)

Then ∫
Sd−1\E

(Anf −
∫
f)2 = (1− λ)(

∫
f)2

and by Cauchy–Schwarz,∫
E

(Anf −
∫
f)2

∫
E

1 >

(∫
E

Anf −
∫
f

)2

= (1− λ)2(
∫
f)2.

Combining these two, we obtain∫
Sd−1

(Anf −
∫
f)2 >

(
1− λ+ (1− λ)2/λ

)
(
∫
f)2 = (1/λ− 1)(

∫
f)2.

Comparing this to (3.1) gives
1/λ 6 1 +O(1)(1− ε)2nδ−(d−1).

Using (3.2) we obtain
1/Nδ(G

n(x)) 6 O(1)δd−1 +O(1)(1− ε)2n.

This implies the theorem (with a different ε).

Theorem 3.2. Let d > 3. For every ε > 0 there is an IFS of similarities in Rd such that the attractor,
F∅, consists of 1 point, but

dimB FC > d− 1− ε

whenever C is a singleton not equal to F∅.

Proof. Let g1, . . . , gk and ε > 0 be as in Theorem 3.1. Fix c < 1 sufficiently close to 1. Consider the
contractive similarities

Si(x) = c · gi(x).

Then F∅ = {0} and let C = {x} for some x 6= 0, which we may assume satisfies ‖x‖ = 1. Then

FC = {0} ∪
∞⋃
n=0

cnGn(x).

Hence, for any m,n ∈ N,

Ncm(FC) > Ncm(cnGn(x)) = Ncm−n(Gn(x)) > min
{

(1 + ε)n, εc(n−m)(d−1)
}
.
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It can be shown that (1 + ε)n > εc(n−m)(d−1) for n = α(c)m+O(1) where

α(c) :=
(d− 1) log 1/c

log(1 + ε)− (d− 1) log c
.

Note that α(c)→ 0 as c→ 1. This choice of n then yields

dimB(FC) > (1− α(c))(d− 1).

Choosing c sufficiently close to 1 proves our result.

Remark 3.1. When C and F∅ are singletons, the (lower and upper) box dimension of FC is always less
than d− 1 (see Corollary 4.12).

4 New upper bounds

4.1 Upper bound for the box dimension of an inhomogeneous self-similar set

Recall that Si : Rd → Rd (i ∈ I) are contracting similarity maps with scaling ratio ci defining the
self-similar set F∅ ⊂ Rd. We assume that C ⊂ Rd. To simplify notation in this section, we will write:

s = similarity dimension of F∅ (with the given similarities);

α = dimH F∅ = dimB F∅;

β = dimBC.

Recall that the box dimension of a (homogeneous) self-similar set always exists and equals the Hausdorff
dimension, see [F1, Corollary 3.3].

Definition 4.1. Assuming Si(x) = ciMi(x) + bi for an orthogonal matrix Mi and bi ∈ Rd, let Ti(x) =
ciMi(x). Let GC be the inhomogeneous self-similar set defined by the maps Ti (i ∈ I) and C.

Definition 4.2. For k > 0 let Ik denote the set of those multi-indices I for which 2−k−1 < cI 6 2−k.

The similarity dimension s gives the bound

|Ik| 6 2(s+ok(1))k (4.1)

where we use the standard ok notation; i.e. ok(f(k))/f(k) tends to zero as k → ∞ (this sequence may
depend on the IFS). To see this, observe that

|Ik| 6
∑
I∈Ik

(
2k+1cI

)s
6 2sk+s

∑
I∈Ik

csI 6 2sk+sO(1) = 2(s+ok(1))k.

From the definition of upper box dimension, we immediately have

N2−n(C) 6 2βn+on(n). (4.2)

Definition 4.3. Let γ > 0 be the unique real number for which

lim sup
k→∞

|{TI : I ∈ Ik}|1/k = 2γ .

(In fact, this sequence is essentially sub-multiplicative and therefore the limit exists.)

Note that γ 6 s by (4.1).

Lemma 4.4. If d = 1 or d = 2 (that is, FC is a subset of R or R2) or the matrices Mi are commuting,
then γ = 0.
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Proof. If the matrices are commuting then the maps Ti are commuting, hence every TI (I ∈ I) is of the
form ∏

i∈I
Tni
i

with cni
i > 2−k−1. Therefore |{TI : I ∈ Ik}| is at most polynomial in k, implying γ = 0.

If d = 1 then the maps are commuting. For d = 2, notice that it is enough to show that |{MI : I ∈
Ik}|1/k → 0. This then follows by noticing that rotations of R2 commute and that RM = M−1R for any
reflection R and rotation M .

For sets X,Y ⊂ Rd, let X + Y = {x+ y : x ∈ X, y ∈ Y } and when X ⊂ R let XY = {xy : x ∈ X, y ∈
Y }.

Lemma 4.5. Let X,Y ⊂ Rd. Then Nδ(X + Y ) 6 2dNδ(X)Nδ(Y ).

Proof. Consider the product set X×Y ⊆ Rd×Rd and the map p : Rd×Rd → Rd defined by p(x, y) = x+y.
Let {Ui}i and {Vj}j be the half open δ-cubes intersecting X and Y respectively. Then {p(Ui × Vj)}i,j
is the set of half open 2δ-cubes intersecting X + Y . Each of these cubes intersects 2d half open δ-cubes,
which proves the result.

Definition 4.6. Let
F kC =

⋃
I∈Ik

SI(C) and GkC =
⋃
I∈Ik

TI(C).

Proposition 4.7. Let 0 6 k 6 n. Then

N2−n(F kC) 6 2on(n)2ks+(n−k)β (4.3)

N2−n(F kC) 6 2on(n)2kα+(n−k)d (4.4)

N2−n(F kC) 6 2on(n)2nα+(n−k)(β+d−1) (4.5)

N2−n(F kC) 6 2on(n)2nα+kγ+(n−k)β . (4.6)

Proof of (4.3). For I ∈ Ik we have

N2−n(SI(C)) = N2−(n−k)(2k · SI(C)) 6 N2−(n−k)(C).

Using (4.1),

N2−n(F kC) 6 |Ik|N2−(n−k)(C) 6 2sk+ok(k)N2−(n−k)(C)

6 2sk+ok(k)2(n−k)β+on−k(n−k) 6 2on(n)2ks+(n−k)β .

Proof of (4.4). Let B(X, r) stand for the r-neighbourhood of a set X. Assuming C ⊂ B(F∅, r), we
clearly have F kC ⊂ B(F∅, r2

−k). As F∅ intersects at most 2kα+ok(k) grid cubes of side-length 2−k, the
r2−k-neighbourhood of F∅ intersects at most 2kα+ok(k) grid cubes of side-length 2−k also. Splitting each
of these into 2(n−k)d cubes of side-length 2−n in the obvious way and replacing 2ok(k) with 2on(n) yields
the result.

Proof of (4.5). For simplicity assume that 0 ∈ F∅. Then SI(0) ∈ F∅ for all I.
For I ∈ Ik,

SI(C) = SI(0) + TI(C) ⊂ F∅ + TI(C) ⊂ F∅ + cI |C|Sd−1

where |C| = {‖x‖ : x ∈ C} ⊂ R and Sd−1 = {x ∈ Rd : ‖x‖ = 1}. Therefore

F kC ⊂ F∅ + {cI : I ∈ Ik}|C|Sd−1,

and by Lemma 4.5,

N2−n(F kC) 6 2dN2−n(F∅) ·N2−n({cI : I ∈ Ik}|C|Sd−1)

6 2dN2−n(F∅) ·N2−(n−k)({2kcI : I ∈ Ik}|C|Sd−1)

6 2d ·N2−n(F∅) · |{2kcI : I ∈ Ik}| ·N2−(n−k)(|C|Sd−1) (4.7)
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where in the last step we used that 2kcI 6 1 for I ∈ Ik. Since multiplication of scalars is commutative,
|{2kcI : I ∈ Ik}| is polynomial in k, bounded by kD for some D ∈ N say. The upper box dimension of
|C|Sd−1 is at most β + d− 1. Therefore (4.7) implies

N2−n(F kC) 6 2d2nα+on(n)kD2(n−k)(β+d−1)+on−k(n−k)

6 2on(n)2nα+(n−k)(β+d−1).

Proof of (4.6). For I ∈ Ik,
SI(C) = SI(0) + TI(C) ⊂ F∅ + TI(C),

so
F kC ⊂ F∅ +

⋃
I∈Ik

TI(C).

We again have N2−n(F∅) 6 2nα+on(n), and

N2−n(∪I∈IkTI(C)) 6 |{TI : I ∈ Ik}|N2−n(TI(C)) 6 2kγ+ok(k)2(n−k)β+on−k(n−k).

So by Lemma 4.5,

N2−n(F kC) 6 2d2nα+on(n)2kγ+ok(k)2(n−k)β+on−k(n−k) 6 2on(n)2nα+kγ+(n−k)β .

Now we state and prove the main result of this Section.

Theorem 4.1. Let FC ⊂ Rd be an inhomogeneous self-similar set and let α, β, γ be as above. Then

dimBFC 6 max
06x61

min
{
xs+ (1− x)β,

xα+ (1− x)d,

α+ (1− x)(β + d− 1),

α+ xγ + (1− x)β
}
.

Proof. For some constant r, we have FC ⊂ B(F∅, r2
−n) ∪

(
∪n−1k=0F

k
C

)
. Therefore

N2−n(FC) 6 O(1)N2−n(F∅) +

n−1∑
k=0

N2−n(F kC) 6 O(1)N2−n(F∅) + n max
k∈{0,...,n−1}

N2−n(F kC).

Since N2−n(F∅) 6 O(1)N2−n(Fn−1C ), we obtain

logN2−n(FC)

log 2n
6 max
k∈{0,...,n−1}

logN2−n(F kC)

log 2n
+ on(1).

Using Proposition 4.7, the obvious substitution x = k/n, and taking the limit, we conclude the proof.

We will see that Theorem 4.1 is sharp in many cases.

4.2 Corollaries of Theorem 4.1

An immediate corollary is the following.

Corollary 4.8.

• If max(α, β) < s then dimBFC < s.

• If max(α, β) < d then dimBFC < d.

Proof. These are clear by using the first two terms inside the minimum in Theorem 4.1.

Corollary 4.9. Assume that γ = 0 (which is the case whenever the orthogonal matrices are commuting,
or d = 1 or d = 2). Then

dimBFC 6 max{β, α+ β − αβ/s}
(where α = dimH F∅ and β = dimB C).
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Proof of Corollary 4.9. We will use the first and the fourth estimate of Theorem 4.1. Let f(x) = xs +
(1− x)β and g(x) = α+ (1− x)β. Both function are monotone. We have f(x) = g(x) if x = α/s and at
this point, the common value is α + (1 − α/s)β = α + β − αβ/s. We also have f(0) = β and g(1) = α.
The maximum of these three values gives the claimed upper bound.

Remark 4.10. Corollary 4.9 shows that the box dimension of the inhomogeneous self-similar set of
Theorem 2.1 is as large as possible, as it is exactly α+β−αβ/s = 2− 1/s. In other words, Corollary 4.9
is sharp in some sense.

If C has box dimension zero then we have the following corollary.

Corollary 4.11. Assume that β = 0 (for example, C consists of a single point). Then

dimBFC = α = dimH F∅ if d = 1, 2 or γ = 0;

dimBFC 6
s

1 + (s− α)/d′
=

d′

1 + (d′ − α)/s
if d > 3,

where d′ = min(d, α+ d− 1).

Proof. If d = 1, 2 or γ = 0 then this is immediate from Corollary 4.9.
Using the first three terms in Theorem 4.1 with β = 0 we obtain

dimBFC 6 max
06x61

min
(
xs, xα+ (1− x)d, α+ (1− x)(d− 1)

)
= max

06x61
min

(
xs, xα+ (1− x)d′

)
.

Calculating this maximum gives the required result.

Corollary 4.12. Let d > 2 and assume that all similarity maps share a common fixed point, that is, F∅
is a singleton and α = 0. If C is a singleton (or any compact set of box dimension 0), we have

dimBFC 6
s

1 + s
d−1

=
d− 1

1 + d−1
s

< d− 1.

Proof. Immediate from Corollary 4.11.

Remark 4.13. The d− 1 bound in Corollary 4.12 is sharp by Theorem 3.2.

5 The weak separation condition case

Our next result provides a simple sharpening of (1.2), which will allow us to extend the class of inho-
mogeneous self-similar sets for which we know that (1.1) holds. In particular, the separation property
required in [Fr2] can be significantly weakened to the weak separation property.

For I = (i1, i2, . . . , ik) ∈ I∗, let I† = (i1, i2, . . . , ik−1) and for r ∈ (0, 1), let

I(r) = {I ∈ I∗ : cI 6 r < cI†}

be the set of finite strings whose corresponding contraction ratio is approximately r. For convenience we
assume the map corresponding to the empty word is the identity with ratio 1. Let ∼ be the relation on
I∗ defined by I ∼ J if SI = SJ . Thus

I(r)/ ∼
is the set of finite strings whose corresponding similarity maps are distinct and have contraction ratio
approximately r. In a slight abuse of notation we identify equivalence classes with an arbitrarily chosen
representative from the class. Note that F∅ is the attractor of {SI}I∈I(r)/∼ for all r. Finally let α(r) be
the similarity dimension for this reduced IFS, i.e. the unique solution of∑

I∈I(r)/∼

c
α(r)
I = 1.

It is straightforward to see that α(r) decreases as r decreases and so we define the modified similarity
dimension as

s∗ = lim
r→0

α(r) = inf
r∈(0,1)

α(r)

and note that it is an upper bound for the upper box dimension of F∅. The next theorem is a sharpening
of [Fr2, Theorem 2.1].
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Theorem 5.1. If FC is an inhomogeneous self-similar set, then

max{dimBF∅, dimBC} 6 dimBFC 6 max{s∗, dimBC}.

Proof. It suffices to show that dimBFC 6 max{α(r), dimBC} for all r ∈ (0, 1), recalling that the lower
bound is trivial. Fix r ∈ (0, 1) and let

J (r) = {I ∈ I∗ : I is a subword of I ′ for some I ′ ∈ I(r)}.

Let
C(r) =

⋃
I∈J (r)

SI(C) ∪ C

and observe that this is a finite union of compact sets and so is itself compact and, moreover, has upper
box dimension equal to that of C. This latter fact is due to upper box dimension being stable under
taking finite unions and bi-Lipschitz images, see [F2, Chapter 3]. Let FC(r) denote the inhomogeneous
attractor of the reduced IFS corresponding to I(r)/ ∼ along with the compact condensation set C(r). It
follows from (1.2) that

dimBFC(r) 6 max{α(r), dimBC(r)} = max{α(r), dimBC}.

Finally, observe that FC(r) = FC because the extra copies of C found in C(r) precisely fill the gaps left
by considering the reduced IFS.

The weak separation property is a much weaker condition than the open set condition and has proved
very useful in the study of self-similar sets with overlaps. It is satisfied if the identity map is not an
accumulation point of the set

{S−1I ◦ SJ : I, J ∈ I∗}

equipped with the uniform norm, see [Z]. Zerner [Z, Theorem 2] proved that if F∅ ⊆ Rn is a self-similar
set which does not lie in a hyperplane and the defining IFS satisfies the weak separation property, then
dimBF∅ = s∗. This yields the following immediate corollary.

Corollary 5.2. If FC is an inhomogeneous self-similar set such that the restriction of the underlying
IFS to the smallest hyperplane containing F∅ satisfies the weak separation property, then

dimBFC = max{dimBF∅, dimBC}.

We note that Corollary 5.2 implies that the set FλC satisfies (1.1) if λ is such that the underlying
IFS satisfies the weak separation property. This happens if, for example, λ is the reciprocal of a Pisot
number; see the second example from Figure 2.

In light of Theorem 5.1, in order to find examples where (1.1) fails for FC ⊆ Rn, one is forced to find
examples where dimBF∅ < min{s∗, n}. This is linked to an important open conjecture in the study of
homogeneous self-similar sets, see for example [PS, H2], which states that the only mechanism for the
Hausdorff dimension of a self-similar set in R to be strictly less than min{1, s} is for the IFS to have
exact overlaps. Exact overlaps are precisely what causes s∗ < s and so it may be true that the Hausdorff
dimension of such a self-similar set is always equal to min{1, s∗}.

Conjecture 5.3. If FC ⊂ R is an inhomogeneous self-similar, then (1.1) is satisfied, i.e. dimBFC =
max{dimBF∅, dimBC}.

Finally we point out that one can deduce several corollaries from the work of Hochman [H1, H2] of the
form: “for some continuously parameterised family of IFSs of similarities acing on Rn, (1.1) holds almost
surely for the corresponding inhomogeneous self-similar set FC for any compact C ⊆ Rn”. This is because
Hochman gives several such results guaranteeing dimH F∅ = min{s, n} almost surely with respect to the
specific parameterisation. In fact, the results often hold outside exceptional sets of dimension strictly less
than the dimension of the parameter space. Rather than state these explicitly we refer the reader to [H2,
Theorem 1.12, 1.13].
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