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Abstract 

During adolescence, animals leave the natal home and interact with potentially threatening 

stimuli (i.e. stressors), e.g. unfamiliar environments and conspecifics. Adolescent stressors can 

result in fewer interactions with unfamiliar stimuli in adulthood, plausibly due to sustained 

effects of glucocorticoid exposure on stress physiology (e.g. glucocorticoid secretion and 

receptor expression). The current thesis tested the hypothesis that adolescent glucocorticoid 

exposure and social experiences act as stressors by quantifying the effects of the adolescent 

experiences on behavioural responses to unfamiliar stimuli and the underlying neuroendocrine 

mechanisms when in adulthood using two captive species, zebra finches and rats. In study one, 

adolescent zebra finches were dosed with the glucocorticoid corticosterone. In adulthood, birds 

dosed with corticosterone in early adolescence took longer to enter an unfamiliar environment 

when tested individually and had lower expression of the glucocorticoid receptor GR in the 

hippocampus and hypothalamus, brain regions that regulate stress responses. Glucocorticoids 

therefore appear to be an endocrine mechanism behind the long-term effects of adolescent 

stress. Subsequent studies explored whether higher social density and more unfamiliar social 

interactions during adolescence act as stressors. In study two, early adolescent zebra finches 

were housed in groups varying in conspecific number and density. In adulthood, females raised 

in larger groups secreted a higher stressor-induced corticosterone concentration and, if raised 

at lower density, spent more time in an unfamiliar environment when group housed. In study 

three, adolescent female rats were housed in familiar pairs or exposed to unfamiliar 

conspecifics. Unfamiliar adolescent interactions had no effects on responses to unfamiliar 

environments or stress physiology in adulthood, but heightened ultrasonic call rates. In this 

thesis, adolescent social experiences do not act like stressors, but modulate (especially female) 

social behaviour. Adolescent stressors and social experiences therefore have distinct effects on 

responses to unfamiliar stimuli and stress physiology that are maintained into adulthood. 
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Chapter 1 

General Introduction 

Adolescence is a stage of development which occurs across a range of taxa, during which 

individuals leave the natal home, begin interacting with unfamiliar conspecifics, and transition 

toward sexual maturity (Brown & Spencer, 2013; Nelson, Leibenluft, McClure, & Pine 2005; 

Schlegel & Barry, 1991; Spear, 2000). In humans, interacting with unfamiliar conspecifics 

allows adolescents to integrate into a social group that they may spend the rest of their life with 

(Blakemore & Mills, 2014; Choudhury, Blakemore, & Charman, 2006; Schlegel & Barry, 

1991). Integrating into a peer group can provide benefits, with peers acting as ‘social buffers’ 

by providing social support in order to help cope with stress (Gunnar & Hostinar, 2015). 

However, adolescence is also the most common age for the onset of anxiety-related disorders 

(Kessler et al., 2005; McEvoy, Grove, & Slade,  2011), which may be caused by stress resulting 

from some adolescent social interactions, such as social instability and social rejection (Bakker, 

Ormel, Verhulst, & Oldehinkel, 2010; Sebastian, Viding, Williams, & Blakemore, 2015). 

Adolescence is therefore a stage of development in which individuals have the opportunity to 

establish a social network of peers that can be recruited in times of adversity, but adolescents 

are also vulnerable to the deleterious effects of stress and interpersonal relationships (Romeo, 

2010; Romeo, 2015).  

Adolescence is not limited to humans, with animals across a range of taxa leaving the 

natal home and interacting with unfamiliar conspecifics around the time of puberty, and these 

interactions can have long-term effects on adult social and stress-related phenotypes (Brown 

& Spencer, 2013; Hollis, Isgor, & Kabbaj, 2013; McCormick, Hodges, & Simone, 2015; 

Sachser, Hennessey, & Kaiser, 2011; Spear, 2000). Investigating adolescence in captive non-

human animals can be advantageous, as the lab environment can provide the opportunity to 

make detailed observations of behavioural changes across adolescence. In addition, the 
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physiological mechanisms (e.g. neural receptor expression) that underpin any behavioural 

changes can be investigated in more detail than can be achieved in humans. The study of human 

adolescence also relies on the use of correlational designs that limit the extent to which the 

variation in adolescent experiences can be said to cause later-life variation in adult phenotypes. 

The use of lab animals permits better controlled designs that can infer causation. The current 

thesis aims to investigate the long-term consequences of adolescent stressors, social housing, 

and social interactions on adult stress-related and social phenotypes in non-human animals. 

Rodents and, to a lesser extent, birds have been studied during adolescence (Brown & Spencer, 

2013) and the following introduction will therefore focus on outlining how these taxa 

contribute to an understanding of the short- and long-term effects of adolescent responses to 

stress, social housing, and social interactions. First, the events constituting adolescence will be 

described in more detail. Second, the responses of adolescents to stressors and social interaction 

will be outlined. Third, an explanation will be given for how adolescent stress and social 

interactions can have long-term effects on adult stress-related and social phenotypes. The 

structure of the remaining chapters of the thesis will then be outlined. 

1.1. Adolescence 

Adolescence is not a clearly demarcated stage of development, but a gradual transition toward 

living outside the natal home independent from parental influence within a species-typical 

social organisation as a sexually mature individual (Sachser, Hennessy, & Kaiser, 2011; 

Schlegel & Barry, 1991; Spear, 2000). This definition of adolescence will be elaborated in the 

following sections. 

1.1.1. Parental independence 

Nutritional independence facilitates dispersal from the natal home, as parental interactions 

become non-essential (Thiels, Alberts, & Cramer, 1990). Glucocorticoids (GCs), such as 



3 
 

corticosterone (CORT), are an endocrine mechanism facilitating dispersal across many taxa 

(Wada, 2008). Rats (Rattus norvegicus), for example, have a protracted stressor-induced 

secretion of CORT during days 28-30 (Klein & Romeo, 2013; Romeo, Patel, Pham, & So, 

2016), i.e. prior to nutritional independence and dispersal around day 30-35 (Calhoun, 1963; 

Thiels et al., 1990). The protracted rise in GC may be attributable to maturation of the adrenal 

glands (i.e. adrenarche: Pignatelli, Xiao, Gouveia, Ferreira, & Vinson, 2006). The immediate 

effects of an acute secretion of GCs include enhancing learning capability, in particular of fear-

evoking stimuli, and eliciting behaviours to avoid potential threats (Sapolsky, Romero, & 

Munck, 2000) which may be beneficial to adolescents entering unfamiliar environments and 

interacting with unfamiliar conspecifics (Wada, 2008). 

1.1.2. Peer interactions 

Social interactions with age-similar conspecifics supplant parental interactions during 

adolescence (Gunnar & Hostinar, 2015; Nelson et al., 2005; Nelson, Jarcho, & Guyer, 2016; 

Schlegel & Barry, 1991). Adolescents, compared to pre-adolescents, engage in more affiliative 

play with age-similar conspecifics across many taxa. Adolescent play is well documented in 

rodents, such as rats (Panksepp, Siviy, & Normansell, 1984; Vanderschuren, Niesink, & Ree, 

1997; Varlinskaya & Spear, 2008), mice (Mus musculus; Terranova et al., 1993), and golden 

hamsters (Mesocricetus auratus; Taravosh-Lahn & Delville, 2004; Wommack, Taravosh-

Lahn, David, & Delville, 2003). Rats are especially playful compared to other rodents (Pellis 

& Iwanuik, 2004). Adolescent birds also engage in playful interactions, such as play fighting 

in keas (Nestor notabilis) and play chasing in ravens (Corvus corax) (Diamond & Bond, 2003; 

Graham & Burghardt, 2010). However, some species (e.g. zebra finches, Taeniopygia guttata) 

are not observed engaging in adolescent play (Zann, 1996). Instead, zebra finches perch in 

closer proximity to unfamiliar conspecifics as adolescence progresses (Adkins-Regan & 

Leung, 2006), but more work is needed to determine if perching proximity is affiliative. 
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Affiliative behaviours are regulated by nonapeptides, such as oxytocin and vasopressin 

in mammals (OT and VP, respectively; Engelmann, Landgraf, & Wotjak, 2004; Neumann & 

Landgraf, 2012) and mesotocin and vasotocin in birds (MT and VT, respectively; Adkins-

Regan, 2009). Affiliative social relationships between conspecifics can be broken down into 

multiple stages, as animals first perceive a conspecific as a stimulus to approach and then begin 

to engage in affiliative social interactions, such as huddling in small rodents (Lim & Young, 

2006), and then need to remember the conspecific and interactions with the conspecific in order 

to maintain the affiliative relationship (Choleris, Clipperton-Allen, Phan, & Kavaliers, 2009). 

Nonapeptides, in particular OT/MT, regulate these aspects of affiliative social interactions, as 

inhibiting OT/MT functioning (e.g. blocking OT/MT receptors) results in animals that spend 

less time in proximity to one another and engage in fewer affiliative interactions (Lim & 

Young, 2006), and animals that are unable to discriminate between familiar and unfamiliar 

conspecifics indicating impaired social memory (Choleris et al., 2009). One example of this 

affiliation/nonapeptide interaction is pair bond formation in socially monogamous animals, 

such as prairie voles (Microtus ochrogaster) and zebra finches, in which two conspecifics 

establish and maintain a long-term socio-sexual relationship with one another; a relationship 

that can be formed or broken by the addition or inhibition of OT/MT, respectively (McGraw 

& Young, 2010; Prior & Soma, 2015).  

Little is known about the function of nonapeptides during adolescence, but OT and VP 

expression in the rat hypothalamus increases with age during adolescent development (Miller, 

Ozimek, Milner, & Bloom, 1989; van Tol, van den Busse, de Jong, & Burbach, 1988) and 

administering a VP receptor antagonist can lower playful social interaction time in rats 

compared to administering a vehicle solution (Veenema, Bredewold, & De Vries, 2012; 

Veenema, Bredewold, & De Vries, 2013). Administering OT (which binds to MT receptors) in 

adult zebra finches results in birds that perch alongside larger groups (vs. smaller groups) for 
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a longer duration compared to birds dosed with a vehicle solution (Goodson, Schrock, Klatt, 

Kabelik, & Kingsbury, 2009), suggesting MT can modulate social approach and affiliative 

behaviour in birds. The role of MT in adolescent social behaviour, such as flocking, in zebra 

finches and other birds remains to be investigated.  

GCs may also to play a role in adolescent affiliative interactions (Spencer, 2017). A 

positive correlations is present between an indirect measure of GC levels (faecal GC 

metabolites) and measures of affiliative behaviour (perching proximity, allopreening) in ravens 

(Corvus corax: Stӧwe, Bugnyar, Schloegl, Heinrich, Kotrschal, & Mӧstl, 2008). A higher GC 

concentration (like higher OT/MT concentration) may cause more affiliative interactions, but 

because of the correlational design adolescent social interactions could also cause higher GC 

levels. In support of the former hypothesis, rats injected with GC during adolescence engage 

in a higher quantity of play compared than saline injected rats when the animals are each 

allowed to interact with an unfamiliar conspecific (Veenit, Cordero, Tzanoulinou, & Sandi, 

2013). GCs therefore play a role in adolescent affiliative interactions, and data so far appear to 

show that higher GC concentration result in animals engaging in more affiliative interactions. 

1.1.3. Sexual maturation 

During adolescence, concentrations of gonadal hormones, such as testosterone and 

estradiol, become higher as age progresses (Delemarre-van de Waal, 2002; Sisk & Foster, 

2004). Gonadal hormones facilitate the development of primary (e.g. gonads) and secondary 

(e.g. adult plumage in birds) sexual characteristics and elicit motivation for sexual behaviour 

during adolescence (Blakemore, Burnett, & Dall, 2010; Delemarre-van de Waal, 2002; Sisk & 

Foster, 2004). When gonadal hormone concentrations begin to rise varies between species. In 

adolescent rats (postnatal days 35-65), testosterone concentration rises between days 35-65 in 

males and estradiol concentration rises between days 32-50 in females (Pignatelli et al., 2006; 
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Vetter-O’Hagan & Spear, 2012). In adolescent zebra finches (postnatal days 30-100), 

testosterone concentration begins to rise during late adolescence in males (around day 70), but 

when estradiol concentration rises in female zebra finches is not known (Zann, 1996).  

Adolescence ends when an individual is sexually mature, displaying adult-typical 

primary and secondary sexual characteristics (Brown & Spencer, 2013; McCutcheon & 

Marinelli, 2009; Schulz, Molenda-Figueira, & Sisk, 2009; Spear, 2000). For example, between 

days 30-100 zebra finches begin to develop adult plumage (black-barred chest, chestnut 

coloured flanks, orange beak and cheek patches) and learn to produce (males) or respond 

(females) to stereotyped songs used in adult mating (Zann, 1996). Sexual maturity is more than 

merely displaying adult typical morphology, and also reflects competent expression of socio-

sexual behaviour within a species-typical social organisation. For example, male guinea pigs 

(Cavia porcellus) are sexually competent by day 90, but typically do not reproduce until after 

day 240 as males need to negotiate access to females by attaining a dominant status in a social 

hierarchy (Hennessey, Kaiser, & Sachser, 2009; Sachser, 1986). When adolescence actually 

ends is therefore, to some extent, dependent on social context.  

1.2. Adolescent stress response 

1.2.1. Stressors 

Leaving the natal home exposes adolescents to a number of (potentially) life-threatening 

stimuli, including predation (Yoder, Marschall, & Swanson, 2004), group conflict (Calhoun, 

1963), and unfamiliar environments and conspecifics (Spear, 2000). Any unpredictable, 

uncontrollable, and (potentially) life-threatening stimuli are termed stressors (Schulkin, 2003; 

Chrousos, 2009; McEwen & Wingfield, 2010; Koolhaas et al., 2011). Stressors can be 

immediately threatening, such as predation or conflict, but can also be potentially threatening, 

such as unfamiliar environments and conspecifics (Herman et al., 2003; Herman, Ostrander, 
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Mueller, & Figueiredo, 2005). Stressors can also be acute (e.g. capture by a predator; Romero 

& Reed, 2005) or chronic (e.g. separation from conspecifics; Remage-Healey, Adkins-Regan, 

& Romero, 2003). Evidence suggests that adolescents respond to stressors differently 

compared to pre-adolescent and adult animals in terms of both behaviour and physiology 

(Brown & Spencer, 2013; Estanislou & Morato, 2006; Klein & Romeo, 2013), and this will be 

outlined in more detail below. The adult response to stressors will first be outlined, then 

comparisons will be made between the adolescent and adult responses to stressors. 

1.2.2 Adult responses to stressors 

Encountering a stressor triggers the secretion of GCs, such as CORT in rats and 

passerine birds and cortisol in humans and guinea pigs, into the general circulation (Chrousos, 

2009; McEwen, 1997; Romero & Butler, 2007; Sapolsky, Romero, & Munck, 2000). GCs are 

elevated above baseline within 2-3 minutes after a stressor is encountered, with CORT 

concentration typically peaking between 10-30 minutes after stressor onset, and returning to 

baseline approximately 90 minutes after stressor onset (Koolhaas, Meerlo, De Boer, Strubbe, 

& Bohus, 1997; Romero, 2004; Romero & Butler, 2007). An acute stressor-induced rise in 

circulating GC concentration raises blood glucose concentration and cardiovascular output, 

inhibits growth and reproduction, and alters affect, behaviour, and cognition in ways that 

facilitate the detection and termination of stressors (Chrousos & Gold, 1992; Chrousos, 2009; 

McEwen & Wingfield, 2003; Sapolsky et al., 2000). Although an acute stress response may be 

adaptive, a chronic stress response (i.e. prolonged GC secretion) may be maladaptive due to 

wear and tear of the physiological systems that regulate GC secretion (McEwen & Stellar, 

1993; McEwen, 1998).  

Behavioural responses to stressors in rats manifest as attempts to escape the stressor, 

with exposure to an unfamiliar environment triggering secretion of GCs that rise concomitantly 
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with locomotor activity, open space avoidance, rearing on the hind legs to assess risk by 

visually scanning the environment, and transient immobilisation (Haller, Halasz, Makara, & 

Kruk, 1998; Koolhaas, de Boer, Coppens, & Buwalda, 2010; Rodgers et al., 1999). Similarly, 

great tits (Parus major) selected for relatively low exploration of unfamiliar environments (vs. 

higher exploration) also secrete a higher concentration of CORT in response to a stressor 

(Baugh et al., 2012) or have higher faecal CORT metabolites (Stӧwe, Rosivall, Drent, & Mӧstl, 

2010). In contrast, a higher stressor-induced CORT concentration can result in some animals 

engaging in less avoidant behaviour compared to animals secreting less CORT. For example, 

adult zebra finches bred for higher stressor-induced CORT concentration are quicker to 

consume food from an unfamiliar feeder when placed in an unfamiliar environment compared 

to birds bred for relatively low CORT (Martins, Roberts, Giblin, Huxham, & Evans, 2007). 

However, being quicker to approach an unfamiliar feeder could plausibly still reflect greater 

stressor-avoidance in birds selected for relatively higher CORT concentration (e.g. more 

readily finding food could result in greater avoidance of under-nutrition and then more readily 

leaving and avoiding the potential threat of an unfamiliar environment). Social behaviour can 

also be affected during an acute stress response, with higher CORT concentration resulting in 

more antagonistic behaviour in adult male rats that may assist in coping with a social stressor, 

like a challenge by an unfamiliar conspecific over territory (Mikics, Kruk, & Haller, 2004). 

Stressors can also result in more affiliative behaviour (e.g. huddling in rats) that may result in 

animals seeking social support in order to cope with a stressor (Bowen et al., 2012), but whether 

an acute secretion of CORT is an endocrine mechanism resulting in more affiliative behaviour 

remains to be determined.  

GC secretion in birds and mammals is regulated by the hypothalamic-pituitary-adrenal 

(HPA) axis (Boonstra, 2004; Romero & Butler, 2007; Tsigos & Chrousos, 2002). In response 

to a stressor, hypothalamic paraventricular (PVN) neurons secrete corticotrophin releasing 
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hormone (CRH) into the hypophyseal portal circulation connecting the hypothalamus and 

pituitary gland (Bale & Vale, 2004; Romero & Butler, 2007; Tsigos & Chrousos, 2002). CRH 

binds to receptors in corticotroph cells of the anterior lobe of the pituitary gland, with 

corticotrophs secreting adrenocorticotrophic hormone (ACTH) into the general circulation 

(Bale & Vale, 2004). CRH works in conjunction with the nonapeptide VP (in mammals) or VT 

(in birds) to further stimulate ACTH secretion (Aguilera & Rabadan-Diehl, 2000; Lightman, 

2008; Scott & Dinan, 1998). ACTH binds to receptors in the adrenal cortex to initiate GC 

secretion into the general circulation (Elias & Clark, 2000) to initiate changes in behaviour 

(e.g. stressor avoidance) that have been identified above.   

The HPA axis is regulated by brain structures, such as the amygdala, hippocampus, and 

medial prefrontal cortex (mPFC; Herman et al., 2003; Herman et al., 2005). GC secretion is 

raised by amygdala stimulation of the PVN, whereas GC secretion is lowered via the 

hippocampus stimulating inhibitory neurons of the peri-PVN regions of the hypothalamus and 

by the mPFC inhibiting the amygdala (Herman et al., 2005; McEwen & Gianaros, 2011; Smith 

& Vale, 2006). The avian hippocampus and amygdala can modulate the HPA axis in a similar 

fashion to mammals (Boonstra, 2004), but the role of an mPFC-like structure in avian stress 

regulation is not known. The cortex of mammalian brains are laminated, whereas the cortex of 

avian brains are nucleated; cross-taxa comparisons are therefore difficult (Dugas-Ford, Rowell, 

Ragsdale, 2012; Harris, 2015). However, the avian nidopallium caudolaterale has been 

indicated as a putative homologue of the mammalian PFC (Güntürkün, 2005; Rose & Colombo, 

2005) and requires investigation as a possible site of avian HPA axis regulation.  

Basal and stressor-induced CORT concentrations are regulated by receptors expressed 

in many tissues, such as the amygdala, hippocampus, and mPFC (Smith & Vale, 2006). Under 

basal conditions, the suprachiasmatic nucleus stimulates the PVN to maintain a basal GC 

concentration that fluctuates along a circadian rhythm; peaking around the time of waking and 
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then declining over time (Lightman et al., 2008; Sarabdjitsingh, Joels, & de Kloet, 2012). 

Mineralocorticoid receptors (MR), especially those in the hippocampus, regulate basal GC 

concentration (Joëls, Karst, DeRijk, & de Kloet, 2007; de Kloet et al., 2000). Stressor-induced 

CORT concentration is regulated by the glucocorticoid receptor (GR), with CORT binding to 

GR in the PVN, anterior pituitary gland, hippocampus, and mPFC to lower further secretion of 

CORT due to negative feedback effects on the HPA axis (Joëls et al., 2007; Kloet et al., 2000). 

However, CORT binding to GR in the amygdala can further stimulate the secretion of CORT 

due to positive feedback effects on the HPA axis (Herman, McKlveen, Solomon, Carvalho-

Netto, & Myers, 2012; Shepard, Barron, & Myers, 2003). A stress response is therefore a trade-

off between negative and positive feedback mechanisms regulating GC secretion.  

1.2.3 Adolescent responses to stressors 

Adolescent stress responses have been investigated in a small number of rodent species, most 

commonly rats. Compared to adult rats, adolescent rats have a prolonged secretion of CORT 

in response to a capture and restraint stressor (Klein & Romeo, 2013) and, when tested in 

unfamiliar environments, spend less time in open spaces (Arakawa, 2005; Estanislau & Morato, 

2006; McCormick, Smith, & Mathews, 2008) and engage in more risk assessment (rearing) 

behaviour (Estanislau & Morato, 2005; Estanislau & Morato, 2006). A more prolonged 

secretion of CORT during adolescence compared to adults may therefore be responsible for 

more avoidant behavioural responses toward unfamiliar stimuli (i.e. neophobia) in adolescent 

rats compared to adult rats. However, when adolescents are exposed to an unfamiliar 

environment they have a lower stressor-induced CORT concentration compared to adults in a 

number of species, including rats (McCormick et al., 2008), mice (Adriani & Laviola, 2000), 

and guinea pigs (Hennessey, Hornschuh, Kaiser, & Sachser, 2006). Age-related differences in 

stressor-induced CORT secretion may therefore be dependent on stressor type and/or intensity, 
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but no study has yet compared CORT secretion in response to a number of different stressors 

across both adolescence and adulthood that would be necessary to test the hypothesis. 

 Despite investigation, no adolescent age-related changes in GR or MR expression have 

been found in the HPA axis or HPA axis regulators; no differences are found when comparing 

adolescents to adults on GR expression in PVN of rats (Dziedzic, Ho, Adabi, Foilb, & Romeo, 

2014; Goel & Bale, 2007), GR expression in mPFC of rats (Dziedzic et al., 2014), and both 

GR and MR expression in the hippocampus of rats and mice (Dziedzic et al., 2014; Green, 

Nottrodt, Simone, & McCormick, 2016; Pryce, 2008). The absence of age-related differences 

in GR expression also appears across taxa, with the number and density of GR-immunoreactive 

neurons being no different between pre-adolescent and adult male zebra finches (Shahbazi, 

Schmidt, & Carruth, 2011). Whether neural GR expression in adolescent zebra finches differs 

from pre- and post-adolescent neural GR expression remains to be tested. Furthermore, age-

related changes in GR and MR still need to be determined in all brain regions regulating stress 

responses (e.g. amygdala). However, current evidence suggests central receptor mechanisms 

are not responsible for age-related changes in stress responses. Peripheral mechanisms have 

recently been implicated, as pre-pubertal rats have a higher expression of the ACTH receptor 

in the adrenal gland compared to adult rats (Romeo et al., 2014). Whether adrenal sensitivity 

to stress is higher during adolescence compared to adults is not known. Furthermore, whether 

nonapeptide regulation of HPA axis functioning (e.g. VP/VT co-stimulation of ACTH in 

conjunction with CRH) is different between adolescents and adults remains to be investigated. 

1.3. Adolescent social interactions 

During adolescence, adolescents begin to interact more with unfamiliar conspecifics compared 

to when the animals were pre-adolescent (Blakemore & Mills, 2014; Nelson et al., 2005; 

Nelson et al., 2016; Sachser et al., 2011). Adolescent peer interactions facilitate learning of 
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species-typical social behaviour (Blakemore, 2008; Sachser et al., 2011), such as living within 

a social dominance hierarchy in rats (Pellis & Pellis, 2007; Pellis, Pellis, & Bell, 2010) and 

guinea pigs (Sachser, Lick, & Stanzel, 1993; Sachser, Kaiser, & Hennessy, 2013). In passerine 

songbirds, peer interactions can facilitate learning of nest building behaviour (Breen, Guillette, 

& Healey, 2016) and how to produce or respond to species-typical song in a social context 

(Beecher & Burt, 2004; King, West, & White, 2003; Mann & Slater, 1995). The following 

sections will outline the importance of adolescent peer interactions for two social behaviours, 

the ability to enter and maintain a position in a social group (i.e. social integration) and the 

ability to utilise a social group to lower responses to stressors (i.e. social buffering). 

1.3.1. Social integration 

Social integration refers to the ability to enter an unfamiliar group of conspecifics and then 

establish a position within the unfamiliar social network (Blakemore, 2008; Sachser et al., 

2011). In birds, adolescent social interactions are important for learning how to integrate into, 

and then live in, a species-typical flock social structure (Ruploh, Bischof, & von Engelhardt, 

2014; Templeton, Campbell, & Beecher, 2012; White, 2010). For example, learning to engage 

in affiliate interactions (e.g. clumping) that may result in more central positions in a flock social 

network (e.g. Ruploh et al., 2014). Social integration into a flock, as well as other social groups, 

is dependent on communicative competence, especially regarding mating interactions 

(Taborsky & Oliveira, 2012). Wild zebra finches live in groups of 150-350 birds (Griffiths & 

Buchanan, 2010; Zann, 1996) and during adolescence males learn to produce a stereotyped 

song from their father, whilst females learn to respond to a song (Holveck & Riebel, 2014; 

Nowicki, Peters, & Podos, 1998; Zann, 1996). Song is necessary to integrate into a group, as 

males emit song in order to attract a female and therefore pair bond with a group member 

(Hauber, Campbell, & Woolley, 2010; Zann, 1996). However, males who are already pair 

bonded may challenge unfamiliar males attempting to enter a social group due to potential mate 
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competition; learning when not to sing is therefore also important (Dunn & Zann, 1997; 

Ruploh, Bischof, & von Engelhardt, 2013; Ruploh et al., 2014). Adolescent social interactions 

are therefore important for learning how to integrate into a social group, but also for learning 

how to avoid group conflict that might threaten integration.  

Social separation can affect stress physiology, with higher stressor-induced CORT 

concentration detected in single housed animals compared to pair tested animals in a number 

of species (Armario, Luna, & Balasch, 1983; Hennessy, 1997; Remage-Healey et al., 2003). 

CORT elicits behavioural patterns that can terminate stressors (Sapolsky et al., 2000), such as 

re-establishing social contact (Hawkley, Cole, Capitanio, Norman, & Cacioppo, 2012). Adult 

male rats attempt to solicit social contact during separation by emitting ultrasonic calls (Wӧhr, 

Houx, Schwarting, & Spruijt, 2008). Rats typically emit 22 kHz calls in response to aversive 

stimuli, such as pain, and 50 kHz in response to appetitive stimuli, such as social interaction 

and mating; 50 kHz call rate is are also lowered in response to aversive stimuli (Brudzynski, 

2009; Burgdorf et al., 2008; Portfors, 2007). 50 kHz calls are emitted in the frequency range 

of 30-80 kHz and can be classified based on structure as either frequency-modulated or 

constant (Brudzynski, 2009; Burgdorf et al., 2008; Portfors, 2007). Wӧhr et al. (2008) report 

that during separation male rats emit both frequency-modulated and constant 50 kHz calls. 50 

kHz calls in rats may therefore be emitted in response to social interaction in order to re-

establish social contact and avoid separation. During adolescence, 50 kHz calls are emitted 

prior to and during play (Himmler Kisko, Euston, Kolb, & Pellus, 2014; Knutson, Burgdorf, & 

Panksepp, 1998) and absence of social contact during adolescence can lower overall 50 kHz 

call rate in adult male rats (Inagaki, Kuwahara, Tsubone, & Mori, 2013; Seffer, Rippberger, 

Schwarting, & Wӧhr, 2015). Adolescence may therefore be a stage of development in which 

rats undergo vocal learning and develop communicative competencies, similarly to that seen 

in birds. Whether emitting 50 kHz calls in order to solicit social contact during separation, are 
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also affected by adolescent social conditions other than single housing remains to be 

investigated.  

1.3.2. Social buffering 

Integration into a social group can be advantageous when coping with stress, as behavioural 

and physiological responses to stressors are lower (‘buffered’) when familiar conspecifics are 

present compared to when alone in mammalian species (Beery & Kaufer, 2015; DeVries, 

Glasper, & Detillion, 2003; Gunnar & Hostinar, 2015; Hennessey et al., 2009; Kikusui, 

Winslow, & Mori, 2006; Sanchez, McCormack, & Howell, 2015). For example, adult rats 

exposed to an unfamiliar environment in familiar pairs, compared to individually tested, exhibit 

fewer immobilisations (Latané, 1969; Taylor, 1981; Kiyokawa, Hiroshima, Takeuchi, & Mori, 

2014) and lower post-test CORT concentration (Armario et al., 1983). Birds may also be 

capable of social buffering, but the behavioural tasks used in the available data is open to other 

interpretations. Birds housed in familiar groups are quicker to contact a food-baited novel 

object compared to individually housed birds in zebra finches (Coleman & Mellgren, 1994) 

and budgerigars (Melopsittacus undulatus; Soma & Hasegawa, 2004). Being quicker to contact 

a food-baited novel object could be due to social buffering (i.e. lower neophobia in a group vs. 

individual context), but could also be due to social competition (e.g. competing over limited 

resources like food; Clayton, 1978; Webster & Ward, 2011). The current evidence for social 

buffering in birds therefore only reflects social facilitation, i.e. improved task performance in 

a group vs. individual context (Clayton, 1978; Nicol, 1995; Webster & Ward, 2011; Zajonc, 

1965). Further measures of social behaviour during the tasks (e.g. affiliation during buffering, 

antagonism in competition) could to be recorded to aid in interpretation of any context-

dependent effects on behavioural responses to unfamiliar stimuli. 
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 Peer-directed social buffering emerges during adolescence as animals begin to spend 

more time interacting with unfamiliar conspecifics (Gunnar & Hostinar, 2015; Hennessey et 

al., 2009; Hostinar & Gunnar, 2013; Siviy, 2010). Most research on adolescent social buffering, 

however, has been conducted on rodents and other taxa (e.g. birds) have not been investigated. 

Pairs of adolescent rats have lower CORT concentration after exposure to an unfamiliar 

environment compared to same-aged rats tested alone (Terranova, Cirulli, & Laviola, 1999). 

In adult rats, physical contact (huddling) occurs after stressor exposure (Bowen et al., 2012) 

and physical contact with conspecifics is necessary for social buffering to occur (Nakayasu & 

Kato, 2008). Whether physical contact influences adolescent social buffering remains to be 

determined, but play has been suggested as a behavioural mechanism of adolescent social 

buffering (Siviy, 2010). However, no differences have been detected in post-interaction CORT 

concentration between familiar and unfamiliar pairs, despite unfamiliar pairs engaging in more 

play than familiar pairs (Cirulli, Terranova, & Laviola, 1996). In Cirulli et al. (1996), CORT 

concentration was only determined at one time point. Group differences may have emerged 

during a specific time in the physiological stress response, but went unmeasured. For example, 

in guinea pigs, unfamiliar females emerge as social buffers for adolescents by lowering CORT 

secretion in response to an unfamiliar environment compared to when single housed (Graves 

& Hennessey, 2000; Hennessey, Maken, & Graves, 2000); an effect that emerges at 30 minutes 

(but not 10 minutes) into the task (Graves & Hennessy., 2000). Peer-directed social buffering 

can therefore emerge during adolescence, but the behavioural mechanisms (e.g. play) have not 

yet been determined. 

1.3.3. Social behaviour network 

Social behaviour are regulated by hormones binding to receptors throughout the social 

behaviour network (SBN; Goodson, 2005; Newman, 1999). The SBN comprises six inter-

connected regions of the brain: medial amygdala, lateral septum, preoptic area, anterior 
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hypothalamus, ventromedial hypothalamus, and midbrain (Goodson, 2005; Newman, 1999). 

Gonadal hormones were originally proposed as the endocrine mechanisms of social behaviour 

due to their effects on the SBN (Newman, 1999). Gonadal hormones, such as androgens (e.g. 

testosterone) and estrogens (e.g. estradiol), are primarily secreted from the gonads (Blakemore 

et al., 2010; Delemarre-van de Waal, 2002; Sisk & Foster, 2004). Estrogens act on estrogen 

receptors (ERα, ERβ) in order to stimulate the expression of female sexual behaviour (Wallen, 

1990; Rissman, Early, Taylor, Korach, & Lubahn, 1997) and affiliative behavioural responses, 

such as maternal care (Champagne, Weaver, Diorio, Sharma, & Meaney, 2003). Androgens act 

on the androgen receptor (AR) to stimulate the expression of male sexual behaviour in response 

to mating opportunities (Rubinow & Schmidt, 1996; Wilson, 2001) and antagonistic behaviour 

in response to social status challenge (Eisenegger, Haushofer, & Fehr, 2011; Gleason, 

Fuxjager, Oyegbile, & Marler, 2009; Oliveira & Oliveira, 2014). Estradiol also stimulates the 

expression of male sexual behaviour due to the conversion of testosterone into estradiol by the 

enzyme aromatase (McCarthy, 2010).  

Nonapeptides also facilitate the expression of affiliative and antagonistic behaviour 

(Goodson, 2008). Nonapeptides are synthesised by the hypothalamus (paraventricular and 

supraoptic nuclei) and secreted into the extracellular fluid surrounding the hypothalamus and, 

by the posterior pituitary gland, into the general circulation (Engelmann et al., 2004; Neumann, 

2008; Neumann & Landgraf, 2012). The behavioural effects of nonapeptides are mediated by 

neural receptors, with one receptor for OT/MT (OT receptor in mammals; VT3 receptor in 

birds) and three receptors for VP/VT (V1a, V1b, V2 receptors in mammals; VT1, VT2, VT4 

receptors in birds) having been identified (Baeyens & Cornett, 2006; Goodson, Kelly, & 

Kingsbury, 20012; Leung et al., 2011). Adults dosed with OT/MT, vs. saline, appear more 

affiliative, noted by OT-dosed rats spending a longer duration of time in contact with one 

another (Witt, Winslow, & Insel, 1992) and MT-dosed zebra finches perching for a longer 



17 
 

duration of time in proximity to larger (vs. smaller) groups (Goodson et al., 2009) compared to 

vehicle dosed animals. VP/VT are implicated in the expression of antagonistic behaviour; 

VP/VT mRNA expression in the hypothalamic supraoptic nucleus is positively correlated with 

antagonistic behaviour, whilst VP/VT binding in the medial bed nucleus of the stria terminalis 

can inhibit antagonistic behaviour (Kelly & Goodson, 2014). The supraoptic nucleus itself has 

not been shown to cause antagonistic behaviour, so VP/VT mRNA expression may become 

higher in response to antagonistic interactions (Kelly & Goodson, 2014). The bed nucleus of 

the stria terminalis stimulates the HPA axis and can result induce fearful behaviour (Lebow & 

Chen, 2016; Walker, Toufexis, & Davis, 2003), with higher VP/VT binding likely inhibiting 

antagonistic interactions due to a more fearful response to conspecifics (Kelly & Goodson, 

2013; Kelly & Goodson, 2014).  

1.3.4. Glucocorticoid interactions with gonadal hormones and nonapeptides 

Stressors can affect circulating concentration of gonadal hormones and nonapeptides, 

with exposure to an acute stressor in mammals stimulating testosterone and estradiol secretion 

(Ortiz, Armario, & Castellanos, 1984; Romeo, Lee, Chuua, McPherson, & McEwen, 2004; 

Yilmaz, 2003) as well as OT and VP secretion (Jezova, Skultetyova, Tokarev, Bakos, & Vigas, 

1995; Uvnäs-Moberg, Handlin, & Petersson, 2015). GC receptors are expressed through almost 

all cell types within an animal, including brain regions implicated in the expression of social 

behaviour like the SBN (Joëls et al., 2007; Morimoto, Morita, Ozawa, Yokoyama, & Kawata, 

1996; Sarabdjitsingh et al., 2012). Stressors may therefore modulate circulating concentration 

of gonadal hormones and nonapeptides (and therefore social behaviour) due to the actions of 

GCs, but the hypothesis requires testing. The following paragraphs will outline what is known 

about the adolescent emergence of glucocorticoid interaction with gonadal hormones and 

nonapeptides. 
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Androgen and estrogen concentrations become higher with progressing age during 

adolescence, with males typically having higher androgen concentrations and females having 

a higher estrogen concentrations by adulthood (Blakemore et al., 2010; Delemarre-van de 

Waal, 2002; Sisk & Foster, 2004). During adolescence, gonadal hormones also begin to 

regulate the secretion of CORT (McCormick & Mathews, 2007; Green & McCormick, 2016). 

Stressor-induced CORT is not affected by castration in pre-pubertal males (Romeo et al., 2004; 

Foilb, Lui, & Romeo, 2011) or ovariectomy in pre-pubertal females (Romeo, Lee, & McEwen, 

2004). However, adult stressor-induced CORT concentration is higher in castrated vs. intact 

males, and lower in ovariectomised, vs. intact, females (Handa & Weiser, 2014; McCormick 

& Mathews, 2007). Androgens therefore appear to inhibit stressor-induced CORT secretion, 

an effect that emerges during adolescence in male rats (Gomez, Manalo, & Dallman, 2004) and 

male guinea pigs (Hennessey et al., 2002). Whereas estrogens appear to stimulate stressor-

induced CORT responses (McCormick & Mathews, 2007), but whether the effect emerges 

during adolescence remains to be determined. Social interactions stimulate secretion of 

androgens, such as testosterone (Lürzel, Kaiser, & Sachser, 2011). Androgens can in turn 

inhibit the HPA axis (Gomez et al., 2004; Hennessey et al., 2002), so androgens may be one 

mechanisms by which social buffering occurs (Lürzel et al., 2011). The interaction between 

the HPA axis and gonadal hormones is bidirectional, with chronic exposure to GCs resulting 

in an inhibition of gonadal hormone secretion (Toufexis, Rivarola, Lara, & Viau, 2014). 

Androgens may therefore be able to buffer acute stress responses, but chronic stress may inhibit 

androgen secretion and therefore lower social buffering responses.   

During adolescent development OT and VP expression in the rat hypothalamus become 

higher with progressing age (Miller et al., 1989; van Tol et al., 1988), but little is known about 

the behavioural effects that emerge from rising nonapeptide concentrations during adolescence 

(e.g. Veenema et al., 2012). Whether nonapeptides are involved in the adolescent emergence 
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of social integration, social buffering, or HPA axis function have not been investigated. 

However, studies using adult animals clearly show OT/MT are implicated in these measures 

(DeVries et al., 2003; Hennessey et al., 2009). Higher OT/MT concentration results in 

behavioural responses that might be expected to improve social integration (e.g. more social 

contact: Witt et al., 1992; preference for larger flocks; Goodson et al., 2009). OT may also have 

social buffering effects (DeVries et al., 2003; Hennessey et al., 2009; Neumann, Krӧmer, 

Toschi, & Ebner, 2000). Social interactions also can cause a rise in OT concentration (Uvnäs-

Moberg, 1998; Uvnäs-Moberg et al., 2015). OT, vs. vehicle, dosed rats also spend more time 

in open areas of unfamiliar environments that may be indicative of lower neophobia (Bale, 

Davis, Auger, Dorsa, McCarthy, 2001; Blume et al., 2008; Windle, Shanks, Lightman, & 

Ingram, 1997) and have lower stressor-induced CORT concentration (Legros, 2001; Windle, 

Shanks, Lightman, & Ingram, 1997). OT may therefore have social buffering effects due to 

inhibitory effects on the HPA axis (DeVries et al., 2003; Hennessey et al., 2009; Neumann, 

Krӧmer, Toschi, & Ebner, 2000). Sex differences are present in neural expression of OT, with 

female rodents having more OT-immunoreactive neurons than males in regions such as the 

PVN (Dumais & Veenema, 2016). OT dosing can also sometimes only affect female not male 

affiliative behaviour (e.g. gaze duration in dogs, Canis familiaris: Romero, Nagasawa, Mogi, 

Hasegawa, & Kikusui, 2014). Male and female animals therefore need to be included in further 

investigations of OT on social behaviour and HPA axis regulation. Whether MT in birds 

functions similarly to OT in mammals has only been indirectly investigated (e.g. Goodson et 

al., 2009), so further work in avian species is required.    

As previously mentioned, VP/VT (by binding to V1b or VT2 receptors in mammals or 

birds, respectively, in the anterior pituitary gland) act in conjunction with CRH to further 

stimulate ACTH secretion and therefore further stimulate CORT secretion during a stress 

response (Aguilera & Rabadan-Diehl, 2000; Cornett, Kang, & Kuenzel, 2013). Unlike OT/MT, 
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VP/VT may therefore counter social buffering effects by stimulating the HPA axis. VP/VT 

may also impair social integration, as in most instances higher VP/VT concentration results in 

more antagonistic behaviour between conspecifics (Goodson & Thompson, 2010). However, 

VP/VT effects on social behaviour are far from clear and likely dependent on context (Albers, 

2015; Caldwell, Lee, Macbeth, & Young, 2008). For example, male zebra finches dosed with 

a VT antagonist engage in fewer antagonistic interactions with unfamiliar male conspecifics 

when initially placed in a novel mixed-sex colony compared to males dosed with a vehicle 

solution (Kabelik, Klatt, Kingsbury, & Goodson, 2009). However, after being housed with the 

colony for one day, the males dosed with a VT antagonist engaged in more antagonistic 

interactions with unfamiliar male conspecifics compared to vehicle dosed males (Kabelik et 

al., 2009). VT therefore appears to regulate antagonistic behaviour, but whether VT results in 

more or less antagonistic behaviour depends on contextual factors like conspecific familiarity. 

In some instances VP/VT manipulations only modulate antagonistic behaviour in male animals 

and have no effect on females (e.g. Albers, 2015; de Vries & Panzica, 2006). Sex differences 

are present in neural expression of VP/VT, with males having higher neural expression of 

VP/VT mRNA in regions such as the lateral septum and bed nucleus of the stria terminalis 

compared to females (Albers, 2015; Caldwell et al., 2015; Goodson & Thompson, 2010). Any 

investigation of VP/VT therefore needs to include both male and female animals to elucidate 

any sex differences.    

1.4. Adolescent stress: long-term effects 

1.4.1. Developmental stress 

The environmental conditions an individual experiences during development can have long-

term effects on later-life phenotypes (Knudsen, 2004; Kuzawa, 2005; Wells, 2007). One 

hypothesis, the predictive-adaptive response, proposes that developmental conditions forecast 
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conditions that an individual will experience when in adulthood, and thereby modulate an 

individual’s phenotype in order to better function in the anticipated future environment 

(Bateson, Gluckman, & Hanson, 2014; Fawcett & Frankenhuis, 2015; Fusco & Minelli, 2010; 

Groothius & Taborsky, 2015; Nettle, Frankenhuis, & Rickard, 2013; Sheriff & Love, 2013). 

For example, developmental exposure to stressors may indicate that the adult environment will 

be adverse (e.g. high predation risk or scare food availability) and thereby induce a more 

stressor-avoidant adult phenotype (e.g. more neophobic behavioural responses and greater 

stressor-induced CORT secretion) compared to animals that were exposed to fewer stressors 

during development (Bateson et al., 2014; Groothius & Taborsky, 2015; Nettle et al., 2013). 

Under adverse conditions, a more stressor-avoidant phenotype may result in improved survival 

compared to animals with a less avoidant phenotype, as the developmentally stressed animals 

may be better able to avoid life-threatening risks, such as predation (Ferrari, McCormick, 

Meekan, & Chivers, 2015; Ferrari, McCormick, Allan, et al., 2015). 

 Long-term effects of developmental stress exposure do not have to be (potentially) 

beneficial to an animal, as is assumed under the predictive-adaptive response hypothesis (e.g. 

Fawcett & Frankenhuis, 2015; Nettle et al., 2013). Chronic exposure to stress contributes to 

‘wear and tear’ of physiological systems involved in regulating a stress response (McEwen & 

Stellar, 1993; McEwen, 1998). For example, chronic exposure to stress in rats results in lower 

hippocampal neurogenesis and lower hippocampal cell survival that lead to impaired 

hippocampal function (e.g. impaired spatial learning and memory) compared to controls that 

experienced no such stress (McEwen, Eiland, Hunter, & Miller, 2012; McEwen, Nasca, & 

Gray, 2016). In male songbirds, chronic stress can impair neural social nuclei and the social 

leaning of song, that may in turn impair reproductive success as song is used during courtship 

(Nowicki et al., 1998; Spencer & MacDougall-Shackleton, 2011). Chronic stress can also lower 

survival prospects perhaps due to higher disease susceptibility, as has been reported in lab rats 
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(Cavigelli & McClintock, 2003; Cavigelli, Ragan, Michael, Kovacsics, & Bruscke, 2009) and 

lab housed zebra finches (Monaghan, Heidinger, D’Alba, Evans, & Spencer, 2012). The effects 

of chronic stress during development can persist into adulthood (e.g. Isgor, Kabbaj, Akil, & 

Watson, 2004) and can therefore have clearly deleterious effects on animal fitness and welfare.  

 Hormones have organisational effects on the developing brain, i.e. re-structuring of the 

brain resulting in sustained changes in hormone secretion and behaviour patterns in later-life 

(Blakemore et al., 2010; Brown & Spencer, 2013; Kawata, 1995; Lupien, McEwen, Gunnar, 

& Heim, 2009; McCarthy, 2010; Romeo, 2003). Hormones can therefore act as a mechanism 

whereby developmental experiences can induce changes in later-life phenotypes (Dufty, 

Colbert, & Møller, 2002; Monaghan, 2008). One endocrine mechanism that may underlie the 

long-term effects of developmental stress are GCs (Khulan & Drake, 2012; Schoech, Rensel, 

& Wilcoxen, 2012; Seckl, 2004; Spencer, Evans, & Monaghan, 2009; Welberg & Seckl, 2001). 

For example, exposing foetal Japanese quail (Coturnix coturnix) to CORT by injecting CORT 

(vs. peanut oil) into fertile eggs results in adult birds with a higher expression of GR in the 

pituitary gland and hypothalamus (Zimmer & Spencer, 2014), lower restraint stressor-induced 

CORT secretion (Hayward, Richardson, Grogan, & Wingfield, 2006; Zimmer, Boogert, & 

Spencer, 2013; Zimmer, Larriva, Boogert, & Spencer, 2017), and lower latency to enter an 

unfamiliar environment when tested individually (Zimmer et al., 2013; Zimmer et al., 2017). 

Whether the long-term effects of foetal CORT dosing reflect a predictive-adaptive response 

(e.g. more exploratory CORT dosed birds perhaps better at locating food and avoiding under-

nutrition in novel territory than oil dosed birds; Zimmer et al., 2013) or wear and tear (e.g. 

lower stressor-induced CORT secretion in CORT dosed birds may be an ineffective response 

to (potentially) threatening novelty compared to oil dosed birds) remains to be determined.   

During prenatal development, a foetuses experience of the environment are indirect due 

to mediation by the mother (e.g. placental transfer of hormones in mammals and depositing 
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hormones into eggs in birds) whereas during postnatal development animals experience their 

own environment directly (Groothius & Taborsky, 2015; Macri & Würbel, 2006; Uller, 2008). 

GCs can be orally administered to passerine birds during postnatal development to mimic 

stressor exposure and explore GCs as an endocrine mechanism of the long-term effects of 

developmental stress (Pakkala, Norris, Sedinger, & Newman, 2016; Schmidt, MacDougall-

Shackelton, Soma & MacDougall-Shackelton, 2014; Spencer, Buchanan, Goldsmith, & 

Catchpole, 2003). Zebra finches dosed with CORT, vs. vehicle, during nestling and fledgling 

development are quicker to approach an unfamiliar object in adolescence if male (Spencer & 

Verhulst, 2007) and in adulthood (Crino, Driscoll, Ton, & Breuner, 2014), and occupy more 

central foraging network positions in adolescence (Boogert, Farine, & Spencer, 2014). Birds 

dosed with CORT, vs. vehicle, during nestling and fledgling stages of development also have 

higher restraint stressor-induced CORT concentration in later-life (song sparrows, Melospiza 

melodia: Schmidt et al., 2014; zebra finches: Spencer et al., 2009). Whether a higher secretion 

of CORT and more readily contacting an unfamiliar object in CORT (vs. vehicle) dosed birds 

reflects more stressor-avoidance (e.g. quicker to locate food and potentially avoid under-

nutrition; Martins et al., 2007), better stressor-coping (e.g. quicker to learn that the unfamiliar 

stimuli are non-threatening), or an impaired response to a stressor (i.e. under-estimation of 

potential threat from unfamiliarity) remains to be determined. Furthermore, whether the long-

term effects of nestling and fledgling CORT dosing are due to developmental CORT exposure 

having organisational effects on the HPA axis remains to be investigated.  

1.4.2 Adolescent stress  

Exposure to stressors appears to have less pronounced effects on later-life phenotypes 

the later in postnatal development that the stressor occurs (e.g. Tsoory & Richter-Levin, 2006), 

but adolescence also appears to be a stage of development in which stressors can have long-

term effects on adult phenotypes (Hollis, Isgor, & Kabbaj, 2013). Adolescent rats exposed to 



24 
 

chronic variable stressors, compared to rats that experienced no such stress, develop into adults 

that spend less time exploring open spaces in unfamiliar environments when individually tested 

(Eiland & Romeo, 2013; Hollis et al., 2013; Romeo, 2010) and less time interacting with an 

unfamiliar conspecific in a dyadic interaction (Marquez et al., 2013; Tzanoulinou et al., 2014); 

potentially neophobic effects that can be attributed to higher (restraint) stressor-induced CORT 

concentration (Isgor et al., 2004; Pohl, Olmstead, Wynne-Edwards, Harkness, & Menard, 

2007) that in turn is attributable to down-regulation of GR expression in HPA axis inhibitors, 

such as the hippocampus (Isgor et al., 2004). Whether adolescent stress affects behavioural 

responses to unfamiliar environment in a group context and/or behavioural responses to 

unfamiliar conspecifics in a more ecologically realistic group context remains to be tested.  

The strength of the organisational effects of steroid hormones reduces as an individual 

progresses through post-natal development, but adolescence has also been shown to be a stage 

of development in which steroid hormones can have-long term effects on later-life phenotypes 

(Schulz et al., 2009; Schulz & Sisk, 2016). CORT may therefore be the endocrine mechanism 

behind the long-term effects of adolescent stress, but empirical investigations of this hypothesis 

are limited. In one study, male rats injected with CORT during adolescence (7 doses between 

days 28-42) developed into adults that spent less time interacting with an unfamiliar same-sex 

rat, but no differences between CORT and saline injected rats were found on adult behavioural 

responses to an unfamiliar environment when in adulthood (Veenit et al., 2013). CORT may 

therefore be a mechanism behind the long-term effects of adolescent stress on social behaviour, 

but not behavioural responses to unfamiliar non-social stimuli, like novel environments. The 

responses to an unfamiliar environment in Veenit et al., (2013) are clearly counter to multiple 

studies showing adolescent stress typically results in rats spending less time in exposed areas 

in unfamiliar environments compared to controls (Hollis et al., 2013). However, Veenit et al. 

(2013) is only one study that used one unfamiliar environment and unfamiliar conspecific task 
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in order to reach these conclusions. Research is therefore needed to corroborate the unexpected 

findings and rule out limitations in the design of Veenit et al. (2013). For example, further 

research could use a dose that is physiologically relevant to the animals, remove injection stress 

from the dosing protocol that may mask any effects of CORT, and quantify behaviour across 

multiple tasks. Furthermore, the effects of adolescent CORT dosing on later-life social 

behaviour require elucidation. Spending less time with an unfamiliar conspecific can occur for 

several reasons (e.g. more neophobic, more antagonistic), so more detailed analyses of the 

long-term effects of adolescent stress and CORT dosing on social behaviour are needed to 

determine if the protocols result in less social interaction time with an unfamiliar conspecific, 

compared to controls, for the same reasons.    

The long-term behavioural effects of developmental CORT dosing appear to differ 

depending on whether doses are administered prior to or during adolescence. For example, 

nestling/fledgling zebra finches dosed with CORT develop into interacting with more 

conspecifics than vehicle dosed birds in later-life (Boogert et al., 2014) whereas adolescent rats 

dosed with CORT spend less time interacting with conspecifics in later-life compared to 

vehicle dosed rats (Veenit et al., 2013). The effects on developmental CORT dosing on social 

behaviour could be due to species-typical social organisation, but little consideration has been 

given to the hypothesis. Zebra finches live in large flocks (150-350 birds) and spent a large 

proportion of time engaging in affiliative interactions with a pair-bonded partner (Griffith & 

Buchanan, 2010; Zann, 1996), whereas rats live largely solitary lives except for antagonistic 

and reproductive interactions (Calhoun, 1963). CORT dosing may therefore exaggerate a 

species-typical phenotype, with CORT-dosed rats more solitary than vehicle dosed rats (Veenit 

et al., 2013) and CORT dosed zebra finches more gregarious than vehicle dosed finches (e.g. 

Boogert et al., 2014; Spencer & Verhulst, 2008). Whether such differences in species-typical 

social organisation account for the species differences in behavioural responses have garnered 
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little consideration and require direct investigation. The different long-term effects of CORT 

dosing on adult social behaviour could also be due to the different ages of animals used. One 

way to test this would be to dose adolescent zebra finches with CORT and compare the long-

term effects to those reported in other species (e.g. rats). In the current thesis, Chapter 2 presents 

a study in which adolescent zebra finches were orally dosed with CORT or saline during 

adolescence and behavioural responses to unfamiliar stimuli (environments and conspecifics), 

stress physiology, and social physiology were then quantified in later-life.  

1.5. Adolescent social interactions: long-term effects 

As has previously been discussed, peer-directed interactions become more common 

during adolescence compared to pre-adolescence (Nelson et al., 2005; Schlegel & Barry, 1991; 

Varlinskaya & Spear, 2008). Adolescent social interactions both trigger the secretion of 

hormones and are regulated by hormones, suggesting social interactions during adolescence 

can have organisational effects on the developing individual and thereby influence later-life 

phenotypes (Buwalda, Geerdink, Vidal, & Koolhaas, 2011; McCormick et al., 2015; Sachser 

et al., 2011). The following section will outline three lines of research that attempt to 

understand how adolescent social interactions can influence later-life behavioural responses to 

unfamiliar social and non-social stimuli and the endocrine mechanisms that underpin such 

differences in stress and social physiology, namely: social re-housing, social novelty, and social 

density. The majority of the research that examines these adolescent social conditions have 

been studied in laboratory rodents that typically live in small groups, especially rats (e.g. 

McCormick et al., 2015), mice (e.g. Van Loo, Mol, Koolhaas, Van Zutphen, & Baumans, 

2001), and guinea pigs (e.g. Lürzel et al., 2011). As a general criticism, a more comparative 

approach is needed to determine if the reported effects of adolescent social conditions on later-

life phenotypes is dependent on factors such as typical group size (e.g. small to large) and social 

organisation (e.g. solitary to gregarious).   
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1.5.1. Social re-housing 

Adolescent rats play more if their play partner is unfamiliar compared to familiar (Cirulli et al., 

1996; McCormick, Merrick, Secen, & Helmreich, 2006; Smith, Wilkins, Mogavero, & 

Veenema, 2015; Veenema et al., 2012). Taking advantage of this, a protocol has been 

developed to investigate the long-term effects of more adolescent social interactions by 

repeatedly pair housing unfamiliar rats together for twenty three hours after one hour of single 

housing over a period of fifteen days during adolescence (postnatal days 30-45: McCormick et 

al., 2015). In adulthood, male rats that underwent social re-housing, vs. rats left in familiar 

pairs, engage in more locomotor activity and spend less time in open spaces in an unfamiliar 

environment (McCormick et al., 2008), spend a shorter duration of time in contact with a novel 

object (Green, Barnes, & McCormick, 2013), and spend a shorter duration of time interacting 

with an unfamiliar male rat (Green et al., 2013). Male adolescent social interactions may 

therefore result in a more neophobic behavioural response when in adulthood, similar to the 

effects that emerge in response to rats that are exposed to more stressors during adolescence 

(Hollis et al., 2013). Adolescent social re-housing raises circulating CORT concentration 

during adolescence (Mathews et al., 2008) and may exert long-term effects on later-life 

responses to unfamiliar stimuli due to organisational effects on the HPA axis. Whether 

unfamiliar social interactions cause the long-term effects on behaviour is difficult to state, as 

exposing rats to an unfamiliar conspecific is conflated with single housing and re-housing 

without control groups for comparison. Single housing or re-housing stress, not unfamiliar 

social interactions, may therefore be causing the long-term effects of the protocol on behaviour. 

Social re-housing in adolescent female rats results in animals that spend more time in 

open areas in an unfamiliar environments during proestrous when in adulthood compared to 

female rats that were raised in stable pairs during adolescence (McCormick et al., 2008). In 

contrast to male rats, adolescent social re-housing result in female rats that are less neophobic 
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when in adulthood compared to stable housed rats. However, during proestrous female rats 

attempt to solicit sexual interactions from males by engaging in more exploratory behaviour 

than when in other estrous cycle stages (Morgan, Schulkin, & Pfaff, 2004). Socially re-housed 

females may therefore not be less neophobic, but spending more time exploring an unfamiliar 

environment in order to find a mate compared to stable housed females. The long-term effects 

of social re-housing may therefore not be affecting behavioural responses to unfamiliar stimuli 

due to organisational effects on the HPA axis. Instead, adolescent social re-housing may be 

affecting social (e.g. reproductive) behaviour in later-life due to organisational effects on social 

physiology (e.g. HPG axis and/or SBN). No study has investigated the long-term effect of 

adolescent social re-housing on female rats socio-sexual behaviour. However, adolescent social 

re-housing in male rats results in delayed copulation time when in adulthood compared to stable 

housed males, suggesting social re-housing can affect adult reproductive behaviour 

(McCormick et al., 2013). In promiscuous rats, delayed copulation time would likely be a 

disadvantage to males due to lost mating opportunities (McCormick et al., 2013) whereas more 

exploration in proestrous may improve reproductive success in females due to more effective 

solicitation of a mate (Morgan et al., 2004). Further work is needed to explore the extent to 

which adolescent social re-housing may impair later-life sexual behaviour (i.e. wear and tear 

hypothesis) or improve reproductive success in certain contexts (i.e. predictive-adaptive 

response) in both males and females.   

The long-term effects of adolescent social re-housing on behavioural responses to 

unfamiliar stimuli, a mild stressor, could be attributed to differences in HPA axis functioning. 

However, social re-housing in adolescent rats has no long-term effects on stressor-induced 

CORT concentration (McCormick, Robarts, Gleason, & Kelsey, 2004; McCormick, Robarts, 

Kopeikina, & Kelsey, 2005; Mathews, Wilton, Styles, & McCormick, 2008; McCormick et al., 

2008). All stressors used were asocial (e.g. restraint, open platform, forced swim) and social 
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interactions may only modify CORT secretion in response to social stressors. Alternatively, 

adolescent social re-housing may affect later-life phenotypes via modulation of social 

hormones, such as gonadal hormones and nonapeptides. For example, social challenge raises 

circulating testosterone concentration when in adulthood (Wingfield, Hegner, Dufty, & Ball, 

1990; Wingfield, Ball, Dufty, Hegner, & Ramenofsky, 2005) and adolescent testosterone can 

have long-term effects on adult phenotypes (Schulz et al., 2009; Schulz & Sisk, 2016). 

Adolescent male rats injected with testosterone spend less time in open areas of an unfamiliar 

environment when in adulthood (Olivares et al., 2014); similar to the effects of adolescent 

stress (Hollis et al., 2013) and social re-housing in males (McCormick et al., 2008). Social re-

housing may raise testosterone during adolescence, and have long-term organisational effects 

on the HPG axis that may affect later-life responses to unfamiliar stimuli. Adolescent social re-

housing in male rats results in lower basal testosterone concentration in adulthood compared 

to adolescent males from stable pairs (McCormick et al., 2013). A testosterone-mediated effect 

of social re-housing on adult behavioural responses to unfamiliar stimuli is plausible, but 

requires further testing to elucidate the mechanism (e.g. lower androgenic inhibition of the 

HPA axis). Whether social re-housing affects other social hormones (e.g. estradiol, OT, and 

VP) and what mechanisms may be affected in female’s remains to be investigated. 

The organisational effects of adolescent social re-housing on neural GC receptor 

distribution have not been investigated in rats, so inferring that any long-term effects of 

adolescent social re-housing on behavioural responses to unfamiliar stimuli are due to such 

changes is premature. However, adult GR and MR have been investigated in response to a re-

housing protocol in mice (Sterlemann et al., 2008). Adolescent mice were re-housed in 

unfamiliar same-sex groups of four twice per week for seven weeks during adolescence 

(Schmidt et al., 2010). Social re-housing in male mice has no effect on hippocampal GR 

expression, but lowered hippocampal MR when compared to mice that had stable adolescent 
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housing (Sterlemann et al., 2008). The limited effects of adolescent social re-housing in mice 

on hippocampal GC receptor expression cannot explain the long-term behavioural effects of 

adolescent social re-housing in rats. However, further investigation is required to assess how 

adolescent social re-housing affects GC receptor expression in other regions regulating the 

HPA axis (e.g. hypothalamus and amygdala). Adolescent social re-housing may not affect 

later-life responses to stressors, like unfamiliar stimuli, via organisational effects on the HPA 

axis but may do so by affecting social physiology (e.g. HPG axis and/or SBN). However, to 

date no study has investigated the effect of adolescent social re-housing on later-life neural 

expression of gonadal hormone or nonapeptide receptors to test the hypothesis.  

One caveat of the social rehousing in mice is that the protocol had no long-term effects 

on behavioural responses to unfamiliar environments (Sterlemann et al., 2008; Schmidt et al., 

2007; Schmidt et al., 2010) or basal CORT concentration (Sterlemann et al., 2008); stressor-

induced CORT concentration was not quantified. Social re-housing in mice would therefore be 

predicted not to have organisational effects on the HPA axis. The mouse social re-housing 

protocol, unlike the rat social re-housing protocol, does not conflate unfamiliar social 

interactions with single housing. Absence of effects of mouse social re-housing on responses 

to unfamiliar stimuli may therefore be further evidence that any effects of adolescent social re-

housing in rats are not caused by unfamiliar social interactions. Instead, single housing either 

by itself or in interaction with unfamiliar conspecifics may be the cause of the long-term effects 

of adolescent social re-hosing in rats. Further work is needed to determine whether unfamiliar 

adolescent social interactions have long-term effects on behavioural responses to stressors and 

stress physiology using a design that excludes single housing effects to adequately test whether 

adolescent social interactions affect later-life phenotypes via organisational effects on the HPA 

axis. 
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1.5.2. Social novelty 

Re-housing protocols have investigated the effects of prolonged exposure to unfamiliar 

conspecifics during adolescence, but animals become familiar to each other as time progresses. 

The initial interactions with an unfamiliar conspecific (i.e. social novelty) may be sufficient to 

affect later-life responses to stressors. One hypothesis has proposed that interactions with 

unfamiliar age-similar conspecifics prepares an animal to respond to unfamiliar stimuli in later-

life, thereby lowering neophobic behavioural responses and CORT secretion in adulthood 

(Cooke & Shukla, 2011; Pellis & Pellis, 2007; Spinka, Newberry, & Bekoff, 2001). In line with 

the hypothesis, pair housed guinea pigs (one male, one female per pair) exposed to a different 

unfamiliar adult conspecific for 10 minutes on alternate days in late adolescence (20 sessions 

total) had a lower CORT concentration in response to a mild stressor (novel environment) when 

in adulthood compared to pairs of guinea pigs that did not experience such social novelty 

(Lürzel et al., 2011). Twice weekly novel social interactions (8 sessions in total) in late 

adolescent guinea pigs had no effect on adult CORT concentration (Lürzel, Kaiser, & Sachser, 

2010), indicating that unfamiliar interactions need to be of sufficient quantity and/or duration 

to affect phenotypes in later-life. A sufficient number of novel social interactions with 

unfamiliar adult conspecifics appear to lower the acute physiological response to stress when 

in adulthood. Social re-housing studies do not find long-term effects of adolescent social 

interactions on later-life CORT secretion (e.g. Mathews et al., 2008), perhaps because the 

effects of social novelty were lessened by familiarisation with the novel conspecific during re-

housing. Social re-housing studies also typically expose animals to unfamiliar adolescents (e.g. 

McCormick et al., 2015), whereas social novelty studies have exposed animals to unfamiliar 

adults (Lürzel et al., 2010). Whether brief interactions with novel age-similar conspecifics 

during adolescence affects later-life responses to unfamiliar stimuli, social behaviour, and the 

neuroendocrine mechanisms underpinning any differences in behaviour remains to be tested.  
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Whether the long-term effect of adolescent social novelty on CORT are present in 

females remains to be assessed as, despite opposite-sex adolescent pairs being exposed to novel 

conspecifics in Lürzel et al. (2011), only male guinea pigs were tested in adulthood. The 

immediate effects of adolescent social novelty have been well documented in male and female 

rats (e.g. Cirulli et al., 1996; Himmler et al., 2014; McCormick et al., 2006; Smith et al., 2015; 

Veenema et al., 2012). A clear sex difference in adolescent social novelty is present, with 

adolescent male rats engaging in a greater quantity of play and different style of play (e.g. 

greater use of counter-attacks) than adolescent females when paired with an unfamiliar age-

similar rat when placed in both same- and opposite-sex pairings (Argue & McCarthy, 2015a; 

Argue & McCarthy, 2015b; Pellis, 2002; Pellis, Field, Smith, & Pellis, 1997; Smith et al., 2015; 

Smith, Forgie, & Pellis, 1998; Veenema et al, 2012). Adolescent male rats also emit more 50 

kHz calls than females during adolescent play (Himmler et al., 2014). Whether the sex 

difference in adolescent social novelty affects responses to stressors in later-life in a similar 

manner to males has not been investigated. In the current thesis, Chapter 4 presents a study to 

discern whether adolescent social novelty in female rats has long-term effects on adult 

behavioural and endocrine responses to unfamiliar stimuli. 

1.5.3. Social density 

Adult animals in a number of species (e.g. rats, mice, meadow voles: Microtus 

pennsylvanicus, and chickens: Gallus gallus domesticus) housed in higher, vs. lower, densities 

engage in more antagonistic interactions and have a higher basal CORT concentration; perhaps 

as competition over limited resources becomes more common (e.g. territory, mates, and food: 

Boonstra & Boag, 1992; Christian, 1950; Craig & Swanson, 1994; Creel, Dantzer, Goymann, 

& Rubenstein, 2013; Kang, Park, Kim, & Kim, 2016; Van Loo et al., 2001). High density 

housing may therefore act as a stressor due to familiar conspecifics engaging in antagonistic 

interactions with one another than at lower density (Creel et al., 2013; Van Loo et al., 2001). 
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Higher social density housing during adolescence may therefore function as a stressor, resulting 

in animals that engage in more neophobic behaviour and secrete a higher concentration of 

stressor-induced CORT when in adulthood. In line with this hypothesis, mice raised at higher 

social density in adolescence spend less time in the exposed areas of an unfamiliar environment 

when in adulthood (Reiss, Wolter-Sutter, Krezel, & Ouagazzal, 2007) and secrete a higher 

concentration of CORT when single housed and exposed to a loud noise in adulthood (Ortiz, 

Armario, Castellanos, & Balasch, 1985) compared to conspecifics raised at lower densities. 

However, mice housed at higher density spend more time in the open spaces of an unfamiliar 

environment when still in adolescence compared to mice raised at lower density (Ago et al., 

2014) and mice housed at different social densities have similar basal CORT concentrations 

(Ago et al., 2014; Laviola, Adriani, Morley-Fletcher, & Terranova, 2002). Adolescent social 

density may therefore not have long-term effects by acting as a stressor and modulating the 

developing stress physiology. However, the studies investigating the short-term effects of 

adolescent density on CORT concentration did not compare the behavioural responses to 

unfamiliar stimuli across ages and only basal CORT concentrations were quantified (e.g. Ago 

et al., 2014; Laviola et al., 2002). Further work is therefore needed to fully explore the effects 

of adolescent social density on behavioural responses to unfamiliar stimuli and the acute stress 

response, including basal and stressor-induced CORT concentrations, in both adolescent and 

adult animals to adequately assess the effects of adolescent social density on responses to 

stressors. 

Two important caveats are present in social density studies: conflating group size with 

density, and only studying male animals. Social density studies achieve higher social density 

by placing more animals in a cage without changing cage size (e.g. Ago et al., 2014; Ruploh et 

al., 2014; Sachser et al., 1993) and therefore conflate social density and group size effects (Van 

Loo et al., 2001). Future work therefore needs to control for group size when investigating the 
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effects of social density to determine whether the absolute number of conspecifics and/or 

housing density of conspecifics during adolescence has long-term effects on responses to 

unfamiliar stimuli. Adolescent social density studies also mostly use male animals (e.g. Ortiz 

et al., 1985; Sachser et al., 1993). Adult females respond similarly to adult males when housed 

at higher social density (e.g. more antagonistic behaviour and higher basal CORT: Craig & 

Swanson, 1994; Kang et al., 2016) compared to lower social density. However, sex differences 

have occurred in response to social density in some species (e.g. rats) with higher density 

raising CORT concentration in male rats but lowering CORT concentration in female rats 

(Brown & Grunberg, 1995). Whether sex differences are present in response to adolescent 

social density variations is little investigated, but future research needs to include both male 

and female animals to detect any potential sex differences in response to adolescent social 

density. Chapter 3 presents a study in which adolescent zebra finches (both male and female) 

were housed in cages varying in conspecific number and density in order to identify the long-

term effects of the variables on later-life behavioural responses to unfamiliar stimuli (e.g. 

environments, objects, and conspecifics) and the neuroendocrine mechanisms that underlie any 

behavioural differences (i.e. concentrations of CORT and gonadal hormones). 

1.6. Thesis aims and structure 

The introductory chapter has outlined adolescence as a transition from the natal home 

to the adult environment, during which individuals interact with stressors and conspecifics that 

have long-term effects on behavioural responses to stressors, such as unfamiliar stimuli, and 

the neuroendocrine mechanisms that may underpin differences in behaviour, e.g. HPA axis, 

HPG axis, and SBN (Hollis et al., 2013; McCormick et al. 2015). The data presented in 

Chapters 2, 3, and 4 outline attempts to further investigate the long-term effects of adolescent 

CORT exposure, adolescent social density, and adolescent social novelty. The results outlined 

in the experimental chapters are then discussed in Chapter 5; comparing the novel findings 
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with those previously described in the available literature, identifying any limitations of the 

research conducted for this thesis, and outlining directions for future work.  

Chapter 2 will investigate the hypothesis that exposure to CORT is the mechanism 

behind the long-term effects of adolescent stress. Adolescent zebra finches were orally dosed 

with CORT and the behavioural responses to unfamiliar environments were quantified in 

adulthood in both an individual context and a group context. The contexts were chosen to 

quantify behaviour in and out of a group context. The behavioural responses to an unfamiliar 

group of birds was also undertaken to investigate how adolescent CORT affects later-life social 

behaviour. To determine the long-term neuroendocrine effects that may cause behavioural 

differences between adolescent CORT dosed and control animals, CORT concentration was 

quantified in response to a restraint stressor (in adolescence and adulthood) and neural 

expression of the GC receptors (GR, MR) were quantified in the HPA axis (in adulthood). To 

investigate the endocrine mechanism that may mediate the effects of adolescent CORT dosing 

on social behaviour, the basal concentrations of gonadal hormones (i.e. testosterone and 

estradiol) and the neural expression of nonapeptide receptors (VT1, VT3) were quantified in 

adulthood. 

The remaining chapters focused on how adolescent social experiences could affect 

later-life responses to unfamiliar stimuli. Chapter 3 describes a study in which adolescent zebra 

finches were housed in cages varying in the number and density of conspecifics. When in 

adulthood, the same behavioural and plasma hormone measures as described in Chapter 2 were 

quantified in order to compare the extent to which adolescent social density has similar long-

term effects to adolescent CORT dosing. Chapter 4 then goes on to describe a study that 

investigated the long-term effects of brief unfamiliar social interactions in adolescent female 

rats on adult responses to unfamiliar stimuli, such as unfamiliar environment. 50 kHz call rate 

was also quantified in response to social separation from and then reunion with a familiar 
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conspecific. CORT secretion in response to a familiar vs. unfamiliar conspecific were also 

quantified. The latter two tasks were included to examine the effects of adolescent social 

novelty on social measures in adulthood. 

The thesis investigates two species that have previously been used to explore the long-

term effects of adolescent stress and social experiences, rats (e.g. Veenit et al., 2013) and zebra 

finches (e.g. Ruploh et al., 2013). These two species vary in some aspects of their life histories, 

including species-typical social organisation and mating system. Rats spend most of their time 

alone, with the few social interactions engaged in typically involving antagonistic interactions 

in order to establish or maintain a positon in a social hierarchy, and reproductive encounters 

with several different conspecifics due to a promiscuous mating system (Calhoun, 1963). In 

contrast, zebra finches are affiliative animals that live in groups and establish socially 

monogamous pair bonds (Zann, 1996). Adolescent rats engage in play fighting with unfamiliar 

conspecifics in order to learn how to function in a social hierarchy in adulthood (Pellis & Pellis, 

2007; Pellis et al., 2010), whilst adolescent zebra finches learn to maintain proximity to 

unfamiliar conspecifics (Adkins-Regan & Leung, 2006) possibly to better function in a social 

group in adulthood. Through the inclusion of these two species comparisons can be made 

between rats and zebra finches to explore the potential effects of species-typical differences in 

adolescent social behaviour (i.e. play fighting vs. proximity), adult social behaviour (i.e. 

antagonistic vs. affiliative interactions), social organisation (i.e. solitary vs. group-living), and 

mating system (i.e. promiscuous vs. pair bond) as variables that may mediate the long-term 

effects of adolescent stress and social experiences on adult behavioural responses to unfamiliar 

stimuli and stress physiology. 
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Chapter 2 

Adolescent corticosterone exposure in zebra finches: long-term effects on behavioural 

responses to unfamiliar stimuli, stress physiology, and gonadal hormones 
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2.1. Introduction 

Exposure to CORT during early-life can modulate later-life responses to unfamiliar 

stimuli, but most studies expose developing animals to stressors and assume CORT is causing 

the effects (Hollis et al., 2013; Sachser et al., 2011; McCormick et al., 2015). In contrast, studies 

using passerine birds have involved oral dosing with solutions containing CORT. CORT 

dosing during pre-adult development typically results in birds that more readily interact with 

unfamiliar environments and objects in later-life compared to vehicle dosed controls (Pakkala 

et al., 2016; Schmidt et al., 2014; Spencer et al., 2003). For example, male zebra finches dosed 

with CORT during the nestling and fledgling stages (twice per day during postnatal days 12-

28) were quicker to contact an unfamiliar object than vehicle dosed birds when tested later in 

life (Crino, Driscoll, Ton et al., 2014; Spencer & Verhulst, 2007). Approaching unfamiliar 

objects may be a stressor-avoidant response in zebra finches, as CORT dosed birds were more 

likely to find food in unfamiliar foraging locations and avoid under-nutrition compared to 

controls (Crino, Driscoll, Ton, et al., 2014). The zebra finch studies tested the birds’ responses 

to unfamiliar objects when the birds were single housed. In adulthood, familiar conspecifics 

can lower physiological responses to stressors (e.g. CORT secretion) and thereby lower 

stressor-induced behavioural responses compared to when single housed, potentially due to a 

social buffering effect (DeVries et al., 2003; Hennessy et al., 2009). Assuming unfamiliar 

stimuli are stressors (Haller et al., 1998; Rodgers, Cao, Dalvi, & Holmes, 1997), the presence 

of familiar conspecifics during adult testing may buffer (i.e. cancel out) the long-term effects 

of developmental CORT dosing on behavioural responses to unfamiliar stimuli. However, no 

study has yet investigated whether developmental CORT dosing affects behavioural responses 

to unfamiliar stimuli in both individual and familiar group contexts. 

Behavioural effects of developmental CORT dosing in passerine birds appear to have 

similar effects on social behaviour. Zebra finches dosed with CORT prior to adolescence (twice 
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per day from postnatal days 12-28) developed into adolescents that entered a seed-filled 

foraging box with a greater number of unfamiliar conspecifics compared to vehicle dosed birds 

when the birds were housed in mixed-sex and mixed-age flocks of 29-34 birds (Boogert et al., 

2014). Interacting with more unfamiliar birds could be due CORT dosed birds interacting with 

all unfamiliar stimuli more, but CORT could also have effects on behavioural interactions 

between conspecifics. For example, CORT dosed birds may engage in fewer antagonistic 

interactions (e.g. beak fencing, perch displacement) and/or more gregarious interactions (e.g. 

allopreening, clumping) resulting in the birds interacting with more unfamiliar conspecifics 

than control birds. However, pre-adolescent CORT dosing in zebra finches has no effect on 

antagonistic behaviour when in adolescence (Spencer & Verhulst, 2007), and the effects on 

gregarious behaviour have not yet been quantified. Interacting with more unfamiliar birds does 

not necessarily reflect social competence, but could reflect that a bird is unable to establish 

reliable foraging partners and must therefore interact more with unfamiliar birds. In zebra 

finches, pre-adolescent CORT dosing results in adult males with lower quality and less 

attractive songs than vehicle dosed controls that may be due to CORT impairing song learning 

(Spencer et al., 2003; Spencer et al., 2005). CORT dosing could therefore also impair other 

social behaviour not yet quantified, resulting in CORT dosed birds interacting with a greater 

number of birds than vehicle dosed birds. Whether CORT dosing results in more social 

interactions with unfamiliar conspecifics than controls due to more gregariousness, more social 

impairment, or less neophobia remains to be tested.  

The long-term effects of pre-adolescent CORT exposure appear similar across species, 

as pre-adolescent rats dosed with CORT (transferred in milk from CORT-fed mothers) develop 

into adults that interact with unfamiliar stimuli more than rats fed by non-dosed mothers 

(Catalani, Alemà, Cinque, Zuena, & Casolini, 2011). Interacting more with unfamiliar stimuli 

in response to CORT exposure during pre-adolescent may therefore be a typical occurrence 
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across taxa, rather than a phenomenon specific to passerine birds. This comparative approach 

has begun to hint at a route via which developmental CORT exposure results in lasting effects 

on adult behaviour. CORT-dosed mother rats engage in more maternal care than control 

mothers (Catalani et al., 2011), and  greater quantity of maternal care can result in offspring 

developing into adults that interact with unfamiliar stimuli more than control offspring (Diorio 

& Meaney, 2005; Francis & Meaney, 1999). The long-term effects of pre-adolescent CORT 

dosing may therefore not be indirect modulation of parental behaviour, rather than the direct 

effect of elevated CORT concentration. Whether the similar long-term effects of pre-adolescent 

CORT exposure found across species is similarly due to CORT modulating parental behaviour 

has not been studied. 

One way to investigate the long-term effects of CORT exposure without the effect of 

parental behaviour would be to dose animals in adolescence, as animals can live independent 

of their parents during this time (Sachser et al., 2011; Spear, 2000). However, the organisational 

effects of exposure to steroid hormones declines as age progresses (Schulz & Sisk, 2009; 

Schulz & Sisk, 2016). Adolescent CORT dosing may therefore have diminished or even no 

effects on later-life phenotypes. The one study to investigate the long-term effects of adolescent 

CORT dosing on behavioural responses to unfamiliar stimuli (7 injections of CORT in male 

rats between postnatal days 28-42) found no difference between CORT and saline injected rats’ 

responses to an unfamiliar environment (Veenit et al., 2013). The effects of CORT exposure 

on adult phenotypes may only be present in response to pre-adolescent CORT dosing, perhaps 

due to indirect effects on parental behaviour. However, the design used in Veenit et al. (2013) 

has several limitations. The study ended up comparing two stress groups; injection stress vs. 

injection stress and CORT. Animals in both groups would therefore be expected to interact less 

with unfamiliar stimuli compared to non-injected controls that were not included in the design. 

Any effect of CORT dosing on responses to unfamiliar stimuli in Veenit et al. (2013) may have 
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been masked by comparing two injection stress groups. Avoiding injections, for example by 

orally dosing with CORT, would therefore allow less ambiguous inferences to be made. Oral 

dosing with CORT is achievable in passerine birds (e.g. Spencer et al., 2003), so investigating 

the effects of adolescent CORT exposure may be better determined using such species. 

Adolescent CORT exposure affects later-life behavioural responses to unfamiliar social 

stimuli, as adolescent male rats injected with CORT (vs. saline) develop into adults that spend 

less time interacting with an unfamiliar conspecific (Veenit et al., 2013). Adolescent CORT 

exposure may therefore influence the ontogeny of social behaviour. Male rats, in semi-natural 

enclosures, are observed to be mostly solitary except for occasional bouts of antagonistic 

interactions between males (Calhoun, 1963). A lower interaction time in CORT (vs. saline) 

dosed rats may reflect that the rats are more avoidant of potentially injurious encounters with 

unfamiliar conspecifics. However, spending less time with an unfamiliar conspecific could also 

reflect that CORT dosed rats are more socially impaired (i.e. don’t know how to interact with 

an unfamiliar conspecific) than controls. The two dosing conditions could also be engaging in 

different types of social behaviour (e.g. less gregarious or more antagonistic interactions in 

CORT vs. saline dosed rats). Whether adolescent CORT dosing affects specific adult 

behavioural interactions with conspecifics (e.g. affiliative or antagonistic) have not been 

investigated, as Veenit et al. (2013) only reported social interaction time. Further work is 

therefore needed to determine how adolescent CORT affects later-life social behaviour, not 

just social interaction time.  

To determine the effects expected to occur from adolescent glucocorticoid exposure, 

animals can be directly exposed to stressors during adolescence. Experiments in rats and mice 

show that exposure to stressors during adolescence results in adult animals that are less likely 

to explore unfamiliar environments and less likely to interact with unfamiliar objects when in 

adulthood compared to control animals that received no such stress (Eiland & Romeo, 2013; 



42 
 

Hollis et al., 2013). Like the effects seen for CORT dosing, adolescent rats exposed to stressors 

also spend less time with an unfamiliar conspecific than control animals when in adulthood 

(Marquez et al., 2013; Tzanoulinou et al., 2014). Adolescent stressor exposure can therefore 

result in animals that interact less with unfamiliar stimuli compared to controls, and research 

now needs to establish whether adolescent CORT has a similar effect. The long-term effects of 

adolescent stressor and CORT exposure (in rats; Hollis et al., 2013; Veenit et al., 2013) are the 

opposite of those reported in response to pre-adolescent CORT dosing (rats: Catalani et al., 

2011; zebra finches: Spencer & Verhulst, 2007). Differences in developmental stage (i.e. 

preadolescent vs. adolescent) are the most likely explanation for the age-specific effects, with 

adolescent effects perhaps resulting from exposure to developmental stress without the 

compensatory effects of greater parental care. However, differences in testing context may also 

explain the reported effects. Responses to unfamiliar conspecifics, for example, were 

quantified in mixed-sex mixed-age flocks of 29-34 birds in zebra finches (Boogert et al., 2014), 

but in response to a single male conspecific in rats (Veenit et al., 2013). The social context 

during testing (e.g. number, density, age, and sex of conspecifics present during testing) may 

therefore mediate the long-term effects of CORT exposure on behavioural responses to 

unfamiliar conspecifics. Quantifying the behavioural effects of adolescent CORT exposure 

across different social testing contexts when in adulthood could help explore these putatively 

mediating variables. 

Developmental stressor exposure has long-term effects on the secretion of CORT in 

response to an acute stressor when in adulthood (e.g. Isgor et al., 2004; Spencer et al., 2009). 

For example, adolescent stress in rats results in adult animals with a prolonged CORT secretion 

in response to restraint compared to rats that experienced no such stress (Isgor et al., 2004; Pohl 

et al., 2007). CORT dosing prior to adolescence has a similar effect, as zebra finches dosed 

with CORT during nestling and fledgling stages had a prolonged secretion of CORT in 
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response to restraint compared to vehicle dosed controls when the birds were adolescents 

(Spencer et al., 2009). Song sparrows dosed with CORT (twice per day from days 7-60) 

continuously through nestling, fledgling, and adolescent stages had a higher CORT 

concentration in response to an ACTH challenge in adulthood compared to control birds 

(Schmidt et al., 2014). Greater stressor-induced CORT concentration can result in more 

neophobic behavioural responses in adult rats (Haller et al., 1998), so developmental stressors 

may result in greater stressor-induced CORT secretion as a proximate mechanism underlying 

the long-term effects on behavioural responses to unfamiliar stimuli (Isgor et al., 2004; Spencer 

& Verhulst, 2007). However, recent research has not been able to corroborate the effects in 

Spencer et al. (2009) and found that CORT dosing zebra finches during nestling and fledgling 

stages had no effect on the acute stress response at either day 60 or day 90 (Crino, Driscoll, & 

Breuner, 2014). CORT dosed birds in Crino et al. (2014) did have a prolonged CORT secretion 

to restraint at day 30 compared to control birds, so CORT dosing may only have transient 

effects on the acute stress response. However, Crino et al. (2014) used the same stressor (i.e. 

restraint) at all three ages and the bird’s absence of differences at later ages may reflect that the 

birds had habituated to the restraint stressor after the first exposure. If a different stressor was 

used at each sampling age then differences in stressor-induced CORT concentration between 

the conditions may have been present at later-ages.  

The greater secretion of stressor-induced CORT in adulthood that occurs in response to 

adolescent stress (Isgor et al., 2004; Pohl et al., 2007) may be attributable to lower negative 

feedback and/or more positive feedback acting on the HPA axis (Isgor et al., 2004). Adolescent 

stress in male rats results in lower expression of the glucocorticoid receptor GR in the 

hippocampus, a brain region that can inhibit the HPA axis, when in adulthood compared to 

adult control rats that were not subject to such adolescent stress (Isgor et al., 2004). Adolescent 

stress can therefore result in lower negative feedback of the HPA axis compared to controls; 
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further work is necessary to test whether the effect is seen in the other brain regions that can 

inhibit the HPA axis (e.g. prefrontal cortex and hypothalamus: Herman et al., 2003; Herman et 

al., 2005). The nidopallium caudolaterale in avian species has similar functions to the prefrontal 

cortex in mammals (e.g. working memory: Güntürkün, 2005), but whether developmental 

stress has similar effects on these structures (e.g. lower GR expression) remains to be assessed. 

Whether adolescent stress also results in more positive feedback by up-regulating GR 

expression in HPA axis stimulators (e.g. amygdala: Herman et al., 2012; Shepard et al., 2003) 

compared to control animals also remains to be determined. Higher MR expression can cause 

higher basal activity of the HPA axis that can result in a quicker rise in CORT concentration 

during an acute stress response (de Kloet et al., 2000; Joëls et al., 2007; Oitzl, Champagne, van 

der Veen, & de Kloet, 2010). Adolescent stress does not appear to affect basal CORT 

concentration in rats (Isgor et al., 2004; Pohl et al., 2007), so adolescent stress would be 

expected to also have no effect on neural MR expression. However, the hypothesis needs 

testing as to date no study has quantified the long-term effects of adolescent stress or CORT 

dosing on MR expression when in adulthood. An additional measure, the GR/MR ratio has 

been linked to HPA axis functioning, with lower GR to MR ratio in brain regions that can 

inhibit the HPA axis (e.g. hippocampus) resulting in lower negative feedback efficiency 

compared to animals with more balanced GR to MR ratio (de Kloet, Vreugdenhil, Oitzl, & 

Joëls, 1998; Groneweg, Karst, de Kloet, & Joëls, 2011). Whether adolescent stress results in a 

lower ratio of GR to MR in order to lower HPA axis negative feedback remains to be tested. 

The effects of developmental stress or CORT dosing could be attributed to differences 

in CORT secretion, but ‘social hormones’ (i.e. gonadal hormones and nonapeptides) are also a 

possible mechanism. Adolescent stress in rats has no long-term effects on basal testosterone 

concentration in males or basal estradiol concentration in females compared to control rats that 

received no such stress in adolescence (Bourke et al., 2013). Gonadal hormones may therefore 
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not be a mechanism by which adolescent stress has long-term effects on behavioural responses 

to unfamiliar stimuli. However, adolescent CORT dosing has inconsistent effects on later-life 

measures of gonadal hormones. Adolescent CORT dosing in rats resulted in lower basal 

testosterone concentration in adult males compared to control animals, but did not affect basal 

estradiol concentration in females (Kaplowitz et al., 2016). In song sparrows, CORT dosing 

during nestling, fledgling, and adolescent development resulted in higher basal testosterone 

than in adult males, and lower estradiol in females, compared to same-sex controls (Schmidt et 

al., 2014). The inconsistent effects of CORT dosing on later-life gonadal hormone 

concentration may reflect species-specific effects for reasons that are currently unclear. Any 

effects may also be confounded by the doses used, as neither study specified why the doses 

were selected, with administered CORT doses potentially lacking physiological relevance to 

the animals. Whether administering physiologically relevant CORT doses during adolescence 

affects basal concentration of gonadal hormones when in adulthood remains to be tested. 

Nonapeptides also regulate social behaviour by acting on nonapeptide receptors in the 

social behaviour network (Goodson, 2005, Goodson, 2013). Oxytocin binds to the oxytocin 

receptor and mesotocin binds to the VT3 receptor in mammals and birds, respectively, resulting 

in more affiliative interactions with unfamiliar conspecifics (e.g. Witt et al., 1992; Goodson et 

al., 2009). Vasopressin binds to V1a/V1b receptors and vasotocin binds to VT1/VT4 receptors 

in mammals and birds, respectively, and can result in more antagonistic interactions with 

unfamiliar conspecifics (Goodson & Thompson, 2010); but fewer antagonistic interactions 

with familiar conspecifics (e.g. Kabelik et al., 2009). In mammals (mostly rats and mice), early 

postnatal stressors (e.g. parental absence) can result in adults with lower oxytocin receptor 

binding in the social behaviour network (Francis, Young, Meaney, & Insel, 2002; Lukas, 

Bredewold, Neumann, & Veenema, 2010) and higher vasopressin mRNA expression in the 

paraventricular nucleus of the hypothalamus (Pan, Liu, Young, Zhang, & Wang, 2009; 
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Veenema, Blume, Niederle, Buwalda, & Neumann, 2006) compared to control animals without 

such stress. However, non-social stressors (e.g. maternal restraint during pregnancy) in 

development have little effect on nonapeptide receptor expression in the offspring in later-life 

(Lee, Brady, Shapiro, Dorsa, & Koenig, 2007). Social experiences in development may 

therefore have long-term effects on the nonapeptide system, but developmental stressors may 

have no such long-term effects. Developmental CORT dosing affects behaviour that are 

regulated by nonapeptides (e.g. social interaction with unfamiliar conspecifics: Boogert et al., 

2014; Veenit et al., 2013), but whether developmental CORT dosing (in order to mimic 

developmental stress) has any effects on nonapeptide functioning in later-life remains to be 

tested. 

The current study aimed to investigate the hypothesis that adolescent exposure to 

glucocorticoids, such as CORT, are an endocrine mechanism that has long-term effects on 

behavioural responses to unfamiliar stimuli and the acute stress response when in adulthood 

due to organisational effects on glucocorticoid receptor expression in the regulatory 

mechanisms of the HPA axis. The study also investigated the hypothesis that the long-term 

effects of adolescent glucocorticoid exposure on later-life phenotypes is more pronounced the 

earlier in pre-adult development that the exposure occurs. Zebra finches were used as several 

studies have used the species to detail the long-term effects of CORT dosing during pre-

adolescent development on behavioural responses to unfamiliar stimuli (Boogert et al., 2014; 

Crino, Driscoll, Ton, et al., 2014; Spencer & Verhuslt, 2007) and the acute stress response 

(Crino et al., 2014; Spencer et al., 2009). The previous work can therefore be used here in order 

to make informed predictions about the effects of adolescent CORT dosing. 

Zebra finches in the current study were dosed with CORT or saline during early (day 

40-60) or late (day 65-85) adolescence. The age ranges were selected as they are ten days either 

side of different stages of social maturation in adolescent zebra finches. Around day 50, zebra 



47 
 

finches begin to spend more time with unfamiliar conspecifics compared to the parents 

(Adkins-Regan & Leung, 2006). Around day 75, zebra finches begin to use courtship behaviour 

in mating contexts and begin to form pair bonds (Zann, 1996). The two age ranges were 

selected to assess the age-related effects of steroid hormone dosing. As the organisational 

effects of steroid hormones appear to decline with age, all effects throughout this chapter were 

predicted to be more pronounced in response to early adolescent CORT dosing compared to 

late adolescent CORT dosing (based on Schulz & Sisk, 2016). Birds were trained to enter a 

‘dosing box’ attached to the home cage in order to consume cucumber cubes injected with the 

dose; a dosing method that avoids injection stress. Latency to enter the dosing box was recorded 

in order to determine whether the dosing was having any immediate effects on behaviour. 

 In adulthood (day 100+), birds were exposed to unfamiliar environments that contained 

spinach-baited unfamiliar objects in an individual context and a group context. In line with 

previous research (e.g. Pakkala et al., 2016; Schmidt et al., 2014; Spencer et al., 2003), CORT-

dosed birds were predicted to interact more with unfamiliar stimuli than saline dosed birds 

when in an individual context (quicker to enter the unfamiliar environments, more entries into 

the unfamiliar environments, more time perching in the unfamiliar environments, more time 

foraging next to the unfamiliar objects, more hops between perches, and more head turns). 

Number of head turns increases when birds are exposed to predators (Jones, Krebs, & 

Whittingham 2007), and this measure was recorded here as a novel measure of risk assessment 

in zebra finches. In a group context, familiar conspecifics may cancel out any long-term effects 

of developmental CORT dosing (e.g. DeVries et al., 2003; Hennessey et al., 2009), so no 

differences were predicted to occur between adolescent conditions on behavioural responses to 

the environment (listed above) or social behaviour during the task (allopreening, beak fencing, 

clumping, perch displacement, and time alone). 
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Later in adulthood, behavioural responses to an unfamiliar mixed-sex group of birds 

were quantified. CORT-dosed birds were predicted to spend less time alone than saline-dosed 

birds, as CORT-dosed birds were expected to spend more time interacting with unfamiliar 

conspecifics compared to control birds (based on Boogert et al, 2014). CORT-dosed birds were 

predicted to engage in fewer courtship behaviour (fewer directed song bouts emitted by males 

or directed to females, fewer mounts) than saline-dosed birds (based on Spencer et al., 2003; 

Spencer et al., 2005). Gregarious behaviour (allopreens, clumps) and antagonistic behaviour 

(displacements, beak fencing) were not expected to differ between dosing conditions (based on 

Spencer & Verhulst, 2007). 

CORT concentration was quantified in response to a standard capture and restraint 

stressor in adolescence and adulthood. Basal concentrations of male testosterone and female 

estradiol were also quantified in adulthood. Plasma was taken to determine basal mesotocin 

and vasotocin concentrations, but due to unavailability of equipment necessary for extraction 

the hormones were not quantified. Stressor-induced CORT concentration was predicted to be 

higher in CORT-dosed birds during both adolescence and adulthood (based on Spencer et al., 

2009), but testosterone and estradiol concentrations were predicted not to differ between CORT 

and saline dosed birds (based on Bourke et al., 2013)  

RNA expression of neural glucocorticoid and nonapeptide receptors were determined 

using quantitative polymerase chain reaction (qPCR). GR expression was predicted to be lower 

in brain regions that may inhibit the HPA axis (i.e. hypothalamus, hippocampus, nidopallium 

caudolaterale) and higher in brain regions that may stimulate the HPA axis (i.e. amygdala) in 

CORT-dosed compared to saline-dosed birds (based on Isgor et al., 2004; Herman et al., 2012). 

MR expression was predicted not to differ across dosing conditions (based on Isgor et al., 2004; 

Pohl et al., 2007). Expression of oxytocin-like VT3 receptor and the vasotocin receptor VT1 

were not predicted to be different between adolescent conditions (based on Lee et al., 2007). 



49 
 

2.2. Methods 

2.2.1. Ethical statement 

All ethical guidelines and requirements, as set out in the Principles of Laboratory Animal Care 

(NIH, Publication No. 85–23, revised 1985) and the UK Home Office Animals (Scientific 

Procedures) Act 1986, were adhered to under project licence 70/8159 and personal licences 

IDFA58352, IEBE43CFF, and 60/13261. 

2.2.2. Pilot study 

To determine the physiologically relevant dose of CORT that was to be administered to the 

adolescent zebra finches, a pilot study was undertaken. Previous research has dosed birds with 

a concentration at two standard deviations above the sample mean of CORT in response to a 

restraint stressor (Crino et al., 2014; Spencer et al., 2009). In order to determine the restraint 

stressor-induced CORT concentration of adolescent zebra finches ten birds (5M, 5F) aged 40-

60 days (mean = 51.45) and ten birds (5M, 5F) aged 65-85 days (mean = 73.14), were obtained 

from local breeders. Birds were housed in same-sex age-similar groups of two or three in cages 

measuring 90 x 40 x 40 cm (length x height x depth) in a single holding room (lights on 07:00-

19:00, temperature 22+2°, and relative humidity 55+5%). Birds had ad libitum access to seed 

in hoppers (Food for Finches, Johnson & Jeff, UK), water hoppers, grit tray, and a water bath. 

Diets were supplemented with spinach leaves once per week with spinach provided to the birds 

in black plastic dishes.  

Birds were captured for blood sampling between 9-11 AM on one day. Cages 

containing the birds were arranged so the experimenter could capture a cage of birds without 

being seen by the other cages; a disturbance that might affect CORT concentration in birds yet 

to be sampled. Two blood samples were collected by puncturing a brachial vein with a 27-

gauge needle. The first sample (basal) of approx. 40µl was collected within three minutes of 
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entering the holding room. Birds were then restrained in a black cloth bag for fifteen minutes 

to induce restraint stress. A second sample (stressor-induced) of approx. 40µl was collected 

following the same method. The second sample was collected at 10 minutes, as previous 

research has indicated this time point as the peak CORT concentration in response to a restraint 

stressor in zebra finches (Spencer et al., 2009). Blood samples were centrifuged (3500g for 10 

minutes), and plasma was removed and stored at -20°C. CORT concentration was then 

determined using a radioimmunoassay (Zimmer et al., 2013), the procedural details of which 

can be found in the 2.2.8. Hormone assays sub-section later in this chapter. All pilot study 

samples were run in a single assay with an intra-assay co-efficient of variation of 10.72% and 

with 50% binding of 0.65 ng/ml.  

A linear mixed model with age group, sex, and sample time entered as fixed factors 

(main effects and interactions) and sample time entered as a repeated measure was used to 

assess whether any differences were present in the CORT concentration (ng/ml). CORT 

concentration was subject to a square root transform to achieve normality due to a positive 

skew in the raw residuals (Shapiro-Wilk, p < 0.05). No differences were found between ages 

(F1,16 = 0.006, p = 0.939), sexes (F1,16 = 0.067, p = 0.799), or an age and sex interaction (F1,16 

= 0.640, p = 0.435). Sampling time was significant with a higher CORT concentration at 10 

minutes than baseline (F1,16 = 66.588, p < 0.001, d = 2.18; Figure 2.1.). Sampling time did not 

interact with any variable (age: F1,16 = 0.052, p = 0.822; sex: F1,16 = 0.022, p = 0.883; age x 

sex: F1,16 = 1.002, p = 0.332). The mean stressor-induced CORT concentration across all birds 

was 12.14 ng/ml (SD = 6.34). It was therefore determined that the CORT concentration in the 

plasma should be raised to 25 ng/ml (i.e. two standard deviations above the sample mean) for 

all birds as no effects of age or sex emerged. 
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Figure 2.1. Corticosterone concentration (ng/ml) secreted by early and late adolescent zebra 

finches at baseline and 10 minutes after restraint. Values are mean + two standard deviation of 

the mean. a vs. b = p < 0.05. 

 

2.2.3. Establishing the experimental population 

A total of 66 zebra finches were used in the current study. Birds were bred from twenty adult 

breeding pairs from the breeding colony based at the University of St Andrews. All birds 

(breeding pairs and offspring) were housed in a single colony room with environmental 

conditions and food / water availability the same as those described in the pilot study. Diets 

were supplemented with spinach once per week. Adult breeding birds (n = 20 male, 20 female) 

were selected from an in house breeding stock and placed in one of two white powder coated 

steel breeding cages (100 x 100 x 50 cm, length x height x depth) with 10 males and 10 female 

per cage. Birds were observed daily for two hours, one hour between 8:30-13:00 and one hour 

between 13:00-17:30, for fourteen days to identify birds that had, or were beginning to have, 

formed a pair bond. Pairs were identified by observing a male and female engaging in mating 

a 

b 
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behaviour on three consecutive observations. Mating behaviours were: following, directed 

song, mounting, and sharing a nest box (Zann, 1996). Birds were allowed to choose their 

partner as this results in a higher number of offspring than birds that are force paired (Griffith 

et al., 2017) and may therefore reduce the number of breeding animals needed for the study. 

Once a pair was identified, the individuals were removed from the colony cage and 

housed in individual white powder coated steel breeding cages (60 x 50 x 50 cm, length x 

height x depth; MB 3612 Metal Double Breeding Cage, R.J. Leigh Ltd., UK). Breeding cages 

had a layer of wood pellets covering the base of the cage (Stovies Wood Pellets, Arbuthnott 

Wood Pellets Ltd, UK) and contained two 50 cm plastic perches. Each breeding cage also had 

access to a cardboard nest box (14 x 11 x 11 cm, height x length x depth) with a rectangular 

aperture of 7.5 x 11 cm (height x length). Nests were checked daily and each breeding cage 

was given new nesting materials (hay, jute fibre; Liverine Pet and Animal Health Care Ltd., 

UK) and fresh egg food (approx. 1.5g of CéDé Premium Egg Food, Belgium) after each nest 

check. New nesting materials were given until egg incubation began and fresh egg food was 

given until the offspring reached nutritional independence on post-hatch day (PHD) 32.  

Upon laying, each egg was removed and replaced with a fake egg (Staedtler Fimo Soft 

Oven Hardened Modelling Clay (white), UK). Eggs were returned when females had stopped 

laying on two consecutive days. Eggs were returned on the same day in order to standardise 

hatch day and thereby control for any variation in hatch order, a variable that has been shown 

to influence adult exploratory behaviour and attractiveness (Mainwaring, Blount, & Hartley, 

2012; Mainwaring & Hartley, 2013). On incubation day 7, clutches were candled and infertile 

clutches were removed to allow relaying. After hatching, chicks were given a temporary ID on 

PHD 5 (coloured nail polish applied to each leg, re-applied on PHD 8) and a permanent ID on 

PHD 10 (one uniquely numbered orange leg ring, one coloured leg ring: pink, yellow, light 

blue, or white). Leg ring colour can affect zebra finch behaviour (e.g. red bands are perceived 
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as more attractive and can result in males engaging in more courtship behaviour: Burley, 

Krantzberg, & Radman, 1982; Zann, 1994), so the colours used in the current study were 

selected as there is no evidence indicating they affect zebra finch behaviour. Offspring (n = 66) 

were re-housed in same-sex, non-sibling triplets in cages identical to the breeding cages at PHD 

35 (+ 2 days). The three birds in each cage were of a similar mass (within 1g of one another). 

2.2.4. Molecular sexing 

To determine the sex of the birds prior to dosing, a blood sample was taken for molecular 

sexing. A 5µl sample was taken from each bird on PHD 12-15 after pricking a brachial vein 

with a 27-gauge needle. DNA was extracted using a DNeasy Blood and Tissue kit (Qiagen Ltd) 

following the nucleated erythrocytes protocol. PCR was used to amplify CHD gene fragments 

with the primer pair P2 (5’-TCTGCATCGCTAAATCCTTT-3’) / P17 (5’-

GAAGAAAATAATTCCAGAAGTCCA-3’) that has been developed for sexing zebra finches 

(Arnold et al., 2003). All reactions were run in a final volume of 10µL (0.8L of P2 and P17 

primers, 200M of each dNTP, 0.8L of 25mM MgCl2, 2L (5x) of GoTAQ Flexi buffer 

(Promega, UK), 0.35 units of GoTaq polymerase (Promega, UK), and 100 M of target DNA). 

All reactions were carried out on a TGradient 96 Biometra thermal cycler (Biometra GmBH, 

Goettingen, Germany) at: 94°C for 2 min, 29 cycles of 94°C for 30s, 49°C for 45s, 72°C for 

40s, 49°C for 1 min, and 72°C for 5 min. PCR products were separated by electrophoresis on 

2% agarose gels stained with ethidium bromide and visualized using a Bio-Rad Gel Doc XR+ 

system (Bio-Rad Laboratories Ltd.). All molecular sexing was performed by Aileen Adams at 

Glasgow University. 

2.2.5. Experimental design 

Adolescent dosing. Each cage of three birds was allocated to one of four groups that varied in 

the age of dosing and type of dose: early adolescent saline dosing (E-SAL; n = 9M, 6F); early 
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adolescent CORT dosing (E-CORT; n = 9M, 9F), late adolescent saline dosing (L-SAL; n = 

9M, 6F), and late adolescent CORT dosing (L-CORT; n = 9M, 9F). Early adolescent birds were 

dosed twice per day from PHD 40-60 and late adolescence birds were dosed twice per day from 

PHD 65-85. Ages the birds were dosed in relation to the rest of the experiment are presented 

in Figure 2.2. Saline dosed birds were given 10µl of autoclaved saline (PBS, Sigma Aldrich, 

UK; 0.01M, pH 7.4). CORT dosed birds were administered 10µl of a 0.36mg/ml CORT 

solution (Sigma Aldrich, UK) that was expected to raise the plasma concentration of CORT to 

25ng/µl based on Spencer et al. (2009). The CORT solution was made from powdered CORT 

(18mg) that was initially dissolved in 300µl of 100% ethanol before being diluted in autoclaved 

saline to a final volume of 50ml. The saline solution also contained 300µl of 100% ethanol in 

a final volume of 50ml to control for ethanol content between dose types. Solutions were stored 

at 4°C prior to and between uses. 

Doses of saline or CORT were administered by feeding the birds a cube of cucumber 

(approximately 0.5 cm3) injected with the relevant substance twice per day. Doses were 

administered twice per day, with CORT dosed birds receiving a total daily CORT of 7.2µg. To 

avoid the effects of handling stress, birds were trained to enter a dosing box apparatus (a plastic 

mesh box affixed to the front of the home cage) in order to receive their cucumber. All birds 

therefore remained in the familiar triplets in the home cage during dosing. The rectangular 

boxes measured 13 x 13 x 23 cm (length x height x depth). Birds entered the dosing box and 

cucumber was placed next to them via a hole in the box wall and onto a small black dish. ID 

rings were used to ensure each bird received one dose per trial. Birds learned to enter box from 

their parents, who were trained to enter the box to obtain cucumber (not dosed) starting when 

their chicks were PHD 5. All of the fledglings were observed following their parents into the 

dosing box between PHD 19-23 and then independently entering the dosing box between PHD 

28-33.  
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Figure 2.2. Timeline detailing the age at which the birds were dosed with corticosterone (blue), 

when behavioural testing occurred (green), and when blood sampling occurred and brains were 

removed (red).  

 

2.2.6. Behavioural measures 

Adolescent behaviour. Latency (seconds) to enter the dosing box was recorded for each bird. 

A bird was considered inside the box when both feet were on the floor of the dosing box. 

Individual and group responses to unfamiliar environments. Adult behavioural responses to an 

unfamiliar environment where quantified when individually housed and when housed in 

familiar social groups during adulthood (PHD 116-139; see Figure 2.2.). Task order (individual 

or group context first) was counter-balanced across treatment groups and sexes. Tasks were 

carried out in white powder coated steel cages measuring 120 x 50 x 50 cm (length x height x 

depth) that were identical to the home cage, but twice the length. Cages were split into two 

zones each measuring 60 x 50 x 50 cm (length x height x depth) by placing an opaque white 

wrought iron divider down the middle of the cage. One zone was identical to the home cage 

(two 50 cm plastic perches and ad libitum access to seed, water, and grit) and was therefore 

considered a familiar environment. The other zone was largely identical to the home cage (two 

50 cm perches, but no seed, water, or grit), but had the addition of three unfamiliar objects 

attached to the two perches. The side of the cage that was ‘familiar’ or contained the unfamiliar 

objects was counter-balanced across treatment groups and sexes. In the individual context the 

objects were a pink ball, a pyramid of three coloured blocks, and two intertwined dark blue 

pipe cleaner rings. In the group context the objects were a yellow tub, a green pipe cleaner 



56 
 

helix, and a ‘U’ of coloured blocks. A new set of unfamiliar objects was used in each context 

in order to prevent habituation to the unfamiliar objects across contexts. Unfamiliar objects had 

a black dish of shredded spinach (identical to those used for weekly spinach supplements) next 

to them to encourage birds to interact with the objects. A schematic diagram of each unfamiliar 

environment cage can be found in Figure 2.3. A pilot study was conducted on stock adult birds 

(n = 6M, 6F) to see whether the objects were sufficiently aversive. Object arrangements used 

resulted in a mean latency (minutes) to enter the unfamiliar environment of 21.09 mins (SD = 

5.481) with individual context objects and 22.32 mins (SD = 4.42) with group context objects. 

Figure 2.3. Schematic diagram of the unfamiliar environments used in an a) individual context 

and b) group context. Within each diagram, a familiar environment is shown on the left and the 

unfamiliar object filled environment on the right. A dashed line shows where a removable 

divider was placed to separate the familiar and unfamiliar environments.  

 

In the individual context, birds were captured from their home cages and single housed 

in the ‘familiar’ environment in the unfamiliar environment task cages placed in a room 

separate from the colony room. All three birds from a single cage were captured at the same 

time and housed in the task cages whilst in acoustic, but not visual, contact with one another. 

One home cage of birds (i.e. three birds) was housed in the task room at any given time. Birds 

had ad libitum access to food and water, a grit tray, and a water bath as in the home cage. Birds 

were left 24 hours to habituate to the task cages before the task began and at no point could see 

the unfamiliar environment. In the group context, instead of capture and single housing, birds 
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were captured and immediately returned to their colony room home cage with their familiar 

cage mates in order to control for any handling effects across contexts. 

A video camera (Sony Handycam, HDR-PJ24OE) was placed around 60 cm in front of 

each task cage. Prior to the task, birds were recorded for 30 minutes in order to quantify 

locomotor and risk assessment behaviour (i.e. pre-exposure). Locomotor behaviour recorded 

was number of hops between perches and risk assessment behaviour recorded was number of 

ninety degree head turns. After 30 mins pre-exposure recording had elapsed, the opaque white 

divider was removed from each of the three cages to expose the birds to the unfamiliar 

environment (i.e. exposure). Birds were free to explore the unfamiliar environment for sixty 

minutes during which latency to enter the unfamiliar environment (seconds), number of entries 

into the unfamiliar environment, duration of time spent perching in the unfamiliar environment 

(seconds), number of object contacts, duration of time spent in contact with the objects 

(seconds), total number of hops between perches, and total number of ninety degree head turns 

were recorded. A bird was considered inside the unfamiliar environment if both feet were in 

the unfamiliar environment, and considered to be in contact with an object when physically 

touching any of the objects. In a group context, additional measures were taken of social 

behaviour throughout the task, namely: number of allopreens, number of beak fence bouts, 

number of clumps, and duration of time perching alone (seconds). These behaviours are defined 

in Table 2.1. All behaviour were recorded manually, with a stopwatch used to record durations. 

After sixty minutes had elapsed the birds were ushered back into the familiar environment and 

the divider replaced. Birds were then captured and returned to their home cages in their familiar 

groups of three. 
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Table 2.1. Description of the social behaviour coded during the group context response to an 

unfamiliar environment and when housed with unfamiliar conspecifics based on the definitions 

in Alger, Juang, & Riters (2011), Goodson & Adkins-Regan (1999), Ruploh et al. (2014), and 

Zann (1996). 

 

Unfamiliar conspecifics task. Behavioural responses of experimental birds to a mixed-sex 

group of unfamiliar conspecifics were quantified between PHD 196-206 (see Figure 2.2.). A 

total of 24 birds (12 male, 12 female) were used to create the mixed-sex groups, with each 

group consisting of two male and two females. Birds in the mixed-sex groups were selected 

from an in-house stock and had been housed together for at least thirty days before testing 

began and were therefore considered familiar to one another. Each mixed-sex group was 

housed in a white powder coated steel cage measuring 60 x 50 x 50 cm (length x height x depth) 

that was identical to the home cages, but in a room separate from the colony room. Each 

unfamiliar social group was in auditory, but not visual contact, with one another. 

To begin the task, test birds (i.e. three home cage birds) were captured and placed in 

separate cages each containing an unfamiliar mixed-sex group. Each group was then video 

Behaviour  Definitions 

Perching 

alone 

 

A bird is on a perch with no other bird on the perch 

 

 

Ground alone 

 

A bird is on the ground with no other bird on the ground 

 

Allopreen 

 

A bird grooms the neck and/or head of another bird with its beak 

 

Clumping 

bout 

 

Two birds sit in contact with one another for at least 5 seconds 

 

 

Displacement 

 

 

A bird hops at another bird causing the receiving bird to hop away;  

can be given or received 

 

Beak fence 

bout 

 

Two birds jab their beaks together for at least 2 seconds 

 

 

Directed song 

bout 

 

A male looks at a female and emits a stereotyped series of calls for at 

least 2 seconds 

 

Mount A male hops on top of a female as an attempt to copulate 
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recorded (Sony Handycam, HDR-PJ24OE) for sixty minutes starting when a test bird was 

placed in the cage from a distance of around 60 cm using a separate camera for each group. 

The social behaviour of the bird introduced into each group was then quantified (see Table 2.1. 

for definitions). Affiliative and gregarious behaviour patterns recorded were: number of 

allopreens, number of clumps, duration of time perching alone (seconds), and duration of time 

on ground alone (seconds). Antagonistic behaviour patterns recorded were: number of beak 

fence bouts, duration of beak fence bouts (seconds), number of displacements given, and 

number of displacements received. Each antagonistic behaviour with an unfamiliar bird was 

individually recorded and then summed for each unfamiliar bird sex. Courtship behaviour 

recorded were: number of directed song bouts emitted by males, number of directed song bouts 

received by females, total duration of song bouts emitted by males (seconds), total duration of 

song bouts received by females (seconds), number of mounts given by males, and number of 

mounts received by females. After sixty minutes had elapsed, the three test birds were captured 

and returned to the home cages in their familiar triplets. Each unfamiliar social group was 

introduced to one unfamiliar test bird per day over eleven consecutive days. 

2.2.7. Hormone sampling 

Plasma corticosterone, testosterone, and estradiol concentrations were determined as described 

below. CORT concentration in response to a standard capture-restraint stressor (Wingfield et 

al., 1997) was quantified at two age points, first three days after each dosing period had ended 

(E-SAL and E-CORT birds at PHD 63, L-SAL and L-CORT birds at PHD 88) and then in 

adulthood between PHD 130-145 (see Figure 2.2.). Basal concentrations of testosterone in 

males and estradiol in females were determined once between PHD 204-220 (see Figure 2.2.). 

Corticosterone. White curtains were hung in the holding room prior to blood sampling so the 

birds could not see the experimenter catching another cage of birds; a disturbance that might 
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affect CORT concentration in birds yet to be sampled. Curtains were hung 48 hours prior to 

blood sampling so the birds could habituate to the curtains. On the sampling day, all three birds 

in a home cage were captured and transferred in a carry cage to a separate room for blood 

sampling. A brachial vein of each bird was punctured with a 27-gauge needle to collect a basal 

blood sample (approximately 40µl). Basal samples were collected within three minutes of 

entering the colony room to ensure that a basal concentration was determined (Romero, 2004). 

Blood samples were collected into heparinised capillary tubes and then placed into an 

Eppendorf on wet ice. Birds were then placed into separate black cloth bags to induce restraint 

stress. At 10 and 30 minutes after entering the colony room, birds were removed from their 

black cloth bags and further blood samples (approximately 30µl) were taken as described 

above. The time points were chosen as previous work in zebra finches has revealed that 10 and 

30 minutes reflect peak and post-peak CORT concentration, respectively, in response to a 

restraint stressor (Spencer et al., 2009). After the final sample was taken, birds were returned 

to their home cages in their familiar triplets. Blood samples were then centrifuged (3500g for 

10 minutes) to separate the plasma and red blood cells. Plasma was then removed and placed 

into a separate Eppendorf tube that was then stored at -20°C. 

Gonadal hormones. Curtains were hung in the holding room like that described for CORT 

sampling. On the sampling day, all three birds in a home cage were captured and transferred to 

a separate room for blood sampling. A brachial vein was punctured with a 27-gauge needle tip 

and 100µl of blood was collected into heparinised capillary tubes. All samples were collected 

within four minutes of entering the holding room to ensure basal testosterone concentration 

was collected (Wingfield & Wada, 1989). Blood samples were placed into an Eppendorf on 

wet ice until the samples could be centrifuged (3500g for 10 minutes) to separate the plasma 

and red blood cells. Plasma was then removed and placed into a separate Eppendorf tube that 

was then stored at -20°C.      



61 
 

2.2.8. Hormone assays 

Corticosterone. Radioimmunoassay was used to quantify CORT in 10-30μl of plasma as 

described in Spencer et al. (2009). All samples were extracted with 1ml diethyl ether after being 

spiked with 25µl of [1,2,6,7-3H]-CORT label (Perkin Elmer Inc., UK). Extracted samples were 

evaporated at 42°C and reconstituted in 300µl of assay buffer (0.01M PBS, pH 7.4, 0.25% 

BSA). 50µl aliquots of the reconstituted samples were used to determine the extraction 

efficacy, which ranged between 71.24-100%. CORT concentration was then determined in two 

100µl aliquots of the reconstituted samples using anti-CORT antiserum (Esoterix 

Endocrinology, USA, B3-163; 1:15000 dilution in assay buffer) and [1,2,6,7-3H]-CORT label 

(Perkin Elmer, UK). The reactions were incubated for 24 hours at 4°C, and the unbound 

antigens were then removed by the addition of 100µl of a dextran coated charcoal suspension 

(0.5% charcoal, 0.25% dextran in assay buffer) and centrifuging the samples at 2000g for 20 

minutes. The supernatant was then removed and used to quantify the bound antigens using a 

radioactivity counter (Packard Tri-Carb 1600 TR Liquid Scintillation Analyser, Perkin Elmer 

Inc., UK). A total of six assays were performed, with all samples from a single individual run 

in duplicate in the same assay. Treatment groups and sexes were spread across the assays. Each 

assay included a ten point standard curve ranging from 0.04-20 ng/ml. 50% binding (ng/ml) 

were 0.68, 0.64, 0.64, 0.72, 0.65, and 0.73. Intra-assay coefficients of variation (%) were 9.13, 

8.3, 11.34, 11.11, 10.07, and 12.42. Inter-assay coefficient of variation (%) was 14.64.  

Testosterone. Radioimmunoassay was used to quantify testosterone in 20-30µl of plasma 

following the protocol described for CORT. However, anti-testosterone antiserum (MP 

Biomedicals, LLC., USA, 07-189016) and [1,2,6,7-3H]-testosterone label (Perkin Elmer, UK) 

were used in the testosterone assay. A ten point standard curve ranging from 0.04-20 ng/ml 

was included in the assay. Extraction efficiency was 75-100%. All samples were run in 
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duplicate in one assay. 50% binding was 0.38 ng/ml, intra-assay co-efficient of variation was 

10.62%, and the detection limit was 0.04 ng/ml. 

Estradiol. An enzyme immunoassay kit (Cayman Chemical Company, Estradiol EIA Kit, Ann 

Arbor, Michigan, USA) that has been previously used to quantify estradiol in zebra finches 

(Remage-Healey, Maidment, & Schlinger, 2008; Remage-Healey, Dong, Chao, & Schlinger, 

2012) was used to determine estradiol concentration in the female plasma samples. Following 

the manufacturer’s guidelines, 10-30µl samples of plasma were diluted in assay buffer to 

105µl. 50 µl aliquots were run in duplicate on one plate with an eight point standard curve 

ranging from 6.6-4000 pg/ml. The plate was read on a Biochrom Anthos 2010 Microplate 

Reader, ADAP 2.0 (Biochrom Ltd., UK) at a wavelength of 405 nm.  Intra-assay coefficient of 

variation was 12.73% and the detection limit was 6.6 pg/ml. 

2.2.9. Neural receptor expression 

All birds were injected with around 0.5 ml sodium pentobarbital (Dolethal: Vetoquinol, 

Buckingham, UK) immediately after the blood samples were taken for gonadal hormones 

between PHD 204-220 (see Figure 2.2.). The brain was quickly extracted from the skull of each 

bird (< 90 seconds), frozen on dry ice, and then stored at -80°C. 

Micro-dissection. Each brain was placed ventral side up into a brain matrix (Roboz Surgical 

Instrument Co., Gaithersburg, MD, USA) with a 1mm graduated scale. The matrix was placed 

on top of a mixture of dry and wet ice to keep the brain frozen. A brain atlas for zebra finches 

(Nixdorf-Bergweiler & Bischof, 2007) and a detailed study of the blue tit brain (Cyanistes 

coeruleus: Montagnese, Szekely, Csillag, & Zchar, 2015) were then used as guides for micro-

dissection. The blue tit atlas was used as blue tits have a similarly sized brain to that of zebra 

finches, and the blue tit guide was more detailed than that for zebra finches. Starting at the 

rostral orientation, a razor blade was used to make a coronal slice 1mm into the brain and a 
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second razor blade was used to make a coronal slice 2mm into the brain. The 1mm coronal 

section was then removed from the brain and two bilateral punches (each 1mm in diameter) 

were obtained from one area that included BNST, nucleus accumbens, and lateral septum (i.e. 

BNS punch; abbreviation of BNST, nucleus accumbens, and septum). The BNS punch 

contained all of these regions as the individual regions were too small to punch and would not 

have yielded enough RNA for qPCR. Starting from the rostral orientation, a razor blade was 

placed 4mm into the brain and a second razor blade was placed 6mm into the brain. The 2mm 

coronal section was then removed from the brain and two 1mm bilateral punches were obtained 

for each of three brain regions corresponding to the medial amygdala, hippocampus, and 

nidopallium caudolaterale. A single 1mm punch was taken from a posterior portion of the 

section corresponding to the medial hypothalamus. The five samples were immediately placed 

in separate Eppendorf’s and kept on dry ice until they could be stored at -80°C. 

qPCR. Total RNA was extracted from each sample using Absolutely RNA Miniprep kits 

(Agilent Technologies, Santa Clara, CA, USA) following the manufacturer’s guidelines for 

extracting extremely small samples. Extracted samples were eluted in 60µl (30µl x2) of 

warmed (60°C) elution buffer. Quantity and integrity of RNA were determined using an RNA 

6000 Pico assay kit with an Agilent 2100 Bioanalyzer (Agilent Technologies, USA) following 

the manufacturer’s guidelines. Mean RIN was 8.50 (range 4.7–10). Some samples had low 

quality and/or insufficient RNA and therefore could not be kept in the experiment (23.1% of 

BNS samples, 21.5% of hypothalamus samples, 4.6% of hippocampus samples, and 0% of 

amygdala and nidopallium samples were excluded). Final sample sizes for each group and for 

each brain region used for qPCR are summarised in Table 2.2. After RNA measures were 

quantified, samples were stored at -80°C. RNA was reverse transcribed to produce cDNA using 

AffinityScript QPCR cDNA Synthesis Kit (Agilent Technologies, USA) following the 

manufacturers guidelines for the use of random primers. Extraction and reverse transcription 
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can contribute to inter-sample variation (Kozera & Rapacz, 2013; Vandesompele et al., 2002). 

A GeNorm kit (PrimerDesign, Southampton, UK) was therefore used to determine a reference 

gene that was stable in brain tissue across the adolescent conditions that could then be used to 

scale each sample to an endogenous control. Experimental conditions can affect reference gene 

expression (Kozera & Rapacz, 2013), but selecting a stable reference gene allows the detection 

of a reference gene that was likely unaffected by adolescent condition. The GeNorm kit was 

performed for six reference genes available for zebra finches (ATP5B, B2M, RPS13, RPL30, 

ACT5C, & GAPDH) on brain tissue from 16 birds (2 male, 2 female from each adolescent 

group). GAPDH was determined as the most stable reference gene (M value = 0.6).  

 

Table 2.2. Final sample sizes used for qPCR split by each brain region and adolescent dosing 

condition. 

 

 

 

 

 

 

Specific hydrolysis probes were designed and validated by PrimerDesign for the genes 

of interest based on the published zebra finch genome. GenBank Accession No. for the genes 

of interest were: GR (XM_002192952), MR (NM_001076690), VT1 (XM_002195382), VT3 

(XM_002188266), and GAPDH (NM_001198610). qPCR reactions for each reference gene 

within each brain region for each individual were run in duplicate on BrightWhite real-time 

PCR plastic plates (PrimerDesign, UK). Each well contained 10µl of x2 Brilliant III Ultra-Fast 

QPCR MasterMix (Agilent Technologies, USA), 1µl of reference gene specific hydrolysis 

primer, and 9µl of the appropriate cDNA. To determine the optimal concentration of cDNA, 

standard curves were performed on the same samples that were used for the GeNorm kit. qPCR 

output from a 10 point standard curve (range 25ng to 50pg total cDNA) revealed that the 

Region 
Adolescent Condition 

Total 
E-SAL E-CORT L-SAL L-CORT 

BNS 12 17 10 11 50 

Hypothalamus 8 16 15 12 51 

Hippocampus 14 17 16 15 62 

Amygdala 14 18 18 15 65 

Nidopallium 14 18 18 15 65 
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quantity of cDNA necessary to detect genes of interest (Ct value below 30) was 300pg total 

cDNA. R2 for each gene of interest were: GAPDH = 0.955, GR = 0.932, MR = 0.943, VT1 = 

0.934, VT3 = 0.942. qPCR reactions were carried out on a Stratagene MX 3005P (Agilent 

Technologies) at 95°C for 3 minutes, then 40 cycles of 95°C for 20 seconds and 60°C for 20 

seconds with fluorescence collected via the FAM channel at the end of each cycle. The delta 

Ct method was used to quantify expression of GR, MR, VT1, and VT3 relative to GAPDH 

expression with the formulae 2-(Ct for gene of interest – Ct for GAPDH) (Dorak, 2006).  

2.2.10. Data Analysis 

SPSS version 22 was used to conduct all analyses. After performing each test, residuals 

were checked for normality (Shapiro-Wilk, p > 0.05). Variables with residuals that were not 

normally distributed due to a positive skew in their distribution were either square root or log10 

transformed to achieve normality where stated. Variables that could not be transformed to 

achieve a normal distribution were analysed using generalized linear models. Nest ID and 

brood size were entered as random factors in all mixed models to control for pre-adolescent 

variation. In adolescent dosing box latency model and behavioural response to an unfamiliar 

environment group context mixed models, home cage ID was entered as a random factor to 

control for the effects of cage mates on individual bird behaviour. In the behavioural response 

to unfamiliar conspecifics mixed models, test cage ID was entered as a random factor to control 

for the effect of being housed with different groups. Statistically significant effects were 

identified with p < 0.05. Sidak and Bonferroni post hoc tests were used to further investigate 

any significant effects for independent and repeated measures, respectively. Cohen’s d was 

calculated as a measure of effect size for all significant post hoc pairwise comparisons. All data 

presented are mean + one standard error of the mean. 

Adolescent behaviour. Latency to enter the dosing box was calculated as the mean of the two 

dosing sessions on each day, with latency for each twenty dosing days reduced to five time 
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blocks by calculating the mean latency of trials for every consecutive four days, i.e. 1-4, 5-8, 

9-12, 13-16, and 17-20. Latency to enter the dosing box for the five time blocks was entered 

as a dependent variable in a linear mixed model (LMM) with adolescent condition, sex, and 

time block entered as fixed factors (main effects and interactions). Time block (1-5) was also 

entered as a repeated measure to account for the non-independence of latencies across blocks.  

Individual context unfamiliar environment. Square root latency to enter the unfamiliar 

environment, square root number of entries into unfamiliar environment, square root duration 

of time perching in unfamiliar environment, square root number of hops between perches 

during exposure, and number of ninety degree head turns during exposure were entered as 

dependent variables in separate LMMs. Adolescent condition and sex (main effects and 

interaction) were entered as fixed factors in all models. For hops and head turn exposure 

models, pre-exposure number of hops and number of head turns were entered as co-variates to 

control for any differences in behaviour prior to the task. No differences were found in pre-

exposure measures (see Appendix A Table A.1. and Table A.2. for analysis and output). 

Number of object contacts, and duration of object contacts were not analysed as the behaviour 

occurred too infrequently (i.e. fewer than 1 in 10 birds displayed each behaviour). 

Group context unfamiliar environment. Square root latency to enter unfamiliar environment, 

square root number of entries into unfamiliar environment, square root duration of time 

perching in unfamiliar environment, square root number of hops between perches, square root 

number of head ninety degrees turns, and duration of time perching alone were entered as 

dependent variables in separate LMMs. Adolescent condition and sex (main effects and 

interaction) were entered as fixed factors in all models. For hops and head turn exposure 

models, pre-exposure number of hops and number of head turns were entered as co-variates to 

control for any differences in behaviour prior to the task. No differences were found in pre-

exposure measures (see Appendix A Table A.1. and Table A.2. for analysis and output). 
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Allopreening, beak fencing, clumping, and perch displacements, number of object contacts, 

and duration of object contacts were not analysed as the behaviour occurred too infrequently 

(i.e. fewer than 1 in 10 birds displayed each behaviour). 

Unfamiliar conspecifics. Exploratory correlations (Spearman’s rank) revealed some behaviour 

to be correlated. Number and duration of beak fence bouts were highly correlated (r = 0.96, p 

< 0.001) and therefore only one variable, duration of time beak fencing, was analysed. Song 

bout number, song bout duration, and mount number variables were correlated within each sex 

(Table 2.3.). As the two song variables were highly correlated, song bout duration was omitted 

from subsequent analyses. Principal component analyses revealed that number of song bouts 

and number of mounts could be reduced to a single variable for males (KMO = 0.500; Bartlett’s 

Test, χ2 (1) = 4.127, p = 0.042) and females (KMO = 0.500; Bartlett’s Test, χ2 (1) = 4.324, p = 

0.038). The PCA model was used to create a new component (i.e. courtship behaviour) score 

between the variables. Allopreening and clumping occurred too infrequently (i.e. fewer than 1 

in 10 birds displayed each behaviour) and were therefore not analysed. 

Table 2.3. Correlations between courtship behaviour quantified during the unfamiliar 

conspecifics task split by sex.   

 

 

Duration of time alone was entered as a dependent variable in a LMM with location 

(perch, ground), adolescent condition, and sex entered as fixed factors (main effects and all 

interactions). Location was also entered as a repeated measure to control for non-independence 

of time alone between locations. Log10 duration of time spent beak fencing, number of times 

a test bird displaced an unfamiliar bird, and log10 number of times a test bird was displaced by 

Variables 
Male Female 

r p r p 

Song bout number and song bout duration 0.928 <0.001 0.960 <0.001 

song bout number and mount number 0.406 0.014 0.448 0.013 

song bout duration and mount number 0.487 0.003 0.461 0.010 
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an unfamiliar bird were entered as dependent variables in separate LMMs with adolescent 

condition, test bird sex, and unfamiliar bird sex entered as a fixed factors (main effects and 

interactions). In beak fencing and displacement models, unfamiliar bird sex was also entered 

as a repeated measure to control for non-independence of each behaviour between unfamiliar 

males and females. Male courtship behaviour and female courtship factor scores were entered 

as dependent variables in separate LMMs with adolescent condition entered as a fixed factor. 

Variables excluded in response to PCA analysis, i.e. number of beak fence bouts and duration 

of song bouts, were analysed in an identical manner to their respective included variables as 

described above. Models for included and excluded variables within each behaviour (i.e. beak 

fencing and courtship) had similar outputs (data not shown), indicating that excluding these 

variables did not qualitatively affect the results. 

Hormones. Log10 CORT concentration (ng/ml) was analysed in a LMM with adolescent 

condition, sampling time (0, 10, and 30 min), age (adolescent adult), and sex entered as fixed 

factors (main effects and interactions). Sampling time and age were also entered as repeated 

measures. Highest CORT concentration (i.e. highest concentration at either 10 or 30 mins) was 

analysed to further investigate the physiological stress response. Highest CORT concentration 

(ng/ml) was entered as a dependent variable in a LMM with adolescent condition, age, and sex 

entered as fixed factors (main effects and interactions). Age was also entered as a repeated 

measure (to control for the non-independence of CORT across ages) and basal CORT was 

entered as a co-variate (to control for initial CORT concentration). Log10 male testosterone 

concentration (ng/ml) and raw female estradiol concentration (pg/ml) were entered as 

dependent variables in separate LMMs with adolescent condition entered as a fixed factor. 

qPCR. Each gene of interest (GR, MR, VT1, and VT3) within each brain (BNS, hypothalamus, 

hippocampus, amygdala, and nidopallium caudolaterale) region was analysed in separate 

LMMs that had adolescent condition and sex (main effects and interaction) entered as fixed 
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factors. For the BNS, all genes of interest were square root transformed; for the hippocampus, 

GR was log10 transformed and all other genes were square root transformed; for the 

hypothalamus and amygdala, only VT1 was square root transformed and raw data were used 

for the remaining variables; and for the nidopallium caudolaterale, GR and MR were square 

root transformed and raw data were used for the remaining variables.  

GR/MR ratio was calculated by dividing GR by MR for each bird within each brain 

region. GR/MR ratio was entered as a dependent variable in separate models for each brain 

region. GR/MR ratio was square root transformed in BNS and hippocampus models and log10 

transformed in the hypothalamus model. Amygdala and nidopallium caudolaterale GR/MR 

ratio were analysed using generalized linear mixed models with data fitted to a gamma 

distribution with a log link function as the residuals could not be transformed to normality. 

Correlations. As hormones mediate the relationship between brain and behaviour, the 

correlations between hormone concentrations with both behavioural and neural receptor 

variables were assessed using Spearman’s rank correlation. Models were conducted separately 

for adolescent and adult variables, with models then split by sex if sex-specific effects occurred. 

Adolescent CORT measurements were correlated with adolescent latency to enter the dosing 

box. Adult CORT and gonadal hormone variables were correlated with behaviour and neural 

receptor variables in which a main effect or interaction implicating adolescent condition were 

found to see if variation in hormone concentration was related to the observed effects. 

Bonferroni corrections were applied to account for multiple comparisons. 

 

 

 

 



70 
 

2.3. Results 

2.3.1. Adolescent behaviour 

E-CORT birds took longer to enter the dosing box with each subsequent dosing block. Latency 

to enter the dosing box differed between dosing conditions (F3,14.650 = 6.261, p = 0.006), time 

blocks (F4,58 = 9.831, p < 0.001), and an interaction was found between dosing condition and 

time block (F12,58 = 11.578, p = < 0.001; Figure 2.4.). Post hoc tests exploring the interaction 

revealed that E-CORT birds took longer to enter the dosing box than all other groups during 

time block 3 (E-SAL: p = 0.032, d= 0.86; L-SAL: p = 0.029, d = 1.15; L-CORT: p = 0.035, d 

= 0.92), time block 4 (E-SAL: p = 0.001, d = 1.62; L-SAL: p = 0.002, d = 1.32; L-CORT: p < 

0.001, d = 1.67), and time block 5 (E-SAL: p < 0.001, d = 2.30; L-SAL: p < 0.001, d = 2.06; 

L-CORT: p < 0.001, d = 2.63). Sex did not influence any variable (sex: F1,14.650 = 0.032, p = 

0.860; sex x condition: F3,14.650 = 2.258, p = 0.125; sex x session: F(4,58) = 0.341, p = 0.849; sex 

x condition x session: F12,58 = 0.822, p = 0.627).  

Figure 2.4. Latency to enter the dosing box (seconds) across the five time blocks split by 

adolescent dosing condition. Data presented are mean + one standard error of the mean. Letters 

denote significant differences (p < 0.05) within each time block, i.e. a vs. b, c vs. d, e vs. f.  

a 

b 
b 

b 

c 

e 

d 
d 

d 
f 

f 

f 
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2.3.2. Adult behavioural responses to unfamiliar environments 

 In the individual context unfamiliar environment task, E-CORT birds took longer to enter the 

unfamiliar environment than birds from other dosing conditions (dosing condition: F3,58 = 

4.095, p = 0.011; E-CORT vs. E-SAL: p = 0.048, d = 1.08; E-CORT vs. L-SAL; p = 0.030, d 

= 0.88; E-CORT vs. L-CORT: p = 0.047, d = 1.02; Figure 2.5.1.a). However, individual context 

latency was not affected by sex (sex: F1,58 = 1.486, p = 0.228; dosing condition x sex: F3,58 = 

0.508, p = 0.678). No effects were found on latency to enter the unfamiliar environment in the 

group context (adolescent group: F3,58 = 0.311, p = 0.817; sex: F1,58 = 2.078, p = 0.155; 

adolescent group x sex: F3,58 = 2.129, p = 0.106; Figure 2.5.1.b). 

Birds entered the unfamiliar compartment a similar number of times regardless of 

dosing condition and sex in both an individual context (adolescent condition: F3,58 = 1.540, p 

= 0.214; sex: F1,58 = 0.009, p = 0.925; adolescent condition x sex: F3,58 = 0.777, p = 0.511; 

Figure 2.5.2.a) and a group context (adolescent condition: F3,58 = 0.367, p = 0.777; sex: F1,58 = 

0.164, p = 0.687; adolescent condition x sex: F3,58 = 1.591, p = 0.201; Figure 2.5.2.b). 

 In the individual context, E-CORT birds spent more time perching in the unfamiliar 

environment than birds from other dosing conditions (F3,58 = 13.056, p < 0.001; E-CORT vs. 

E-SAL: p < 0.001, d = 1.42; E-CORT vs. L-SAL: p < 0.001, d = 1.26; E-CORT vs. L-CORT: 

p < 0.001, d = 1.58 Figure 2.5.3.a). Individual context duration of time perching in the 

unfamiliar environment was no different between sexes (main effect, sex: F1,58 = 1.569, p = 

0.215; interaction, adolescent dosing and sex: F3,58 = 1.014, p = 0.393). In contrast to the 

individual context, birds spent a similar duration of time spent perching in the unfamiliar 

environment in group context regardless of adolescent dosing and sex (adolescent condition: 

F3,58 = 0.383, p = 0.766; sex: F1,58 = 1.124, p = 0.294; adolescent condition x sex: F3,58 = 1.345, 

p = 0.269; Figure 2.5.3.b).  
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Figure 2.5. Latency (mins) to enter the unfamiliar environment (2.5.1.), number of entries into 

the unfamiliar environment (2.5.2.), and duration (secs) perching in unfamiliar environment 

(2.5.3.) split by dosing condition in a) individual context and b) group context. Data presented 

are mean + one standard error of the mean. Significant differences (p < 0.05) between 

conditions within a single behavioural measure in a single context are shown by a vs. b. 
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Number of hops between perches during exposure did not differ between adolescent conditions 

in either an individual context (F3,57 = 0.290, p = 0.832; Figure 2.6.a) or a group context (F3,57 

= 0.487, p = 0.693; Figure 2.6.b). In addition, no sex differences were found on number of hops 

in the individual context (sex: F1,57 = 0.002, p = 0.968; sex x group: F3,57 = 0.220, p = 0.882) 

or the group context task (sex: F1,57 = 0.929, p = 0.339; sex x group: F3,57 = 0.396, p = 0.757). 

Figure 2.6. Number of hops when exposed to an unfamiliar environment split by adolescent 

dosing condition in an a) individual context and b) group context. Data presented are mean + 

one standard error of the mean. All comparisons were not significant (p > 0.05).  

 

In the individual context, number of head turns was affected by dosing condition (F3,57 = 5.953, 

p = 0.001) but the effect was dependent on sex (sex x dosing condition: F3,57 = 4.824, p = 0.005; 

Figure 2.7.a). E-CORT females engaged in more head turns when exposed to an unfamiliar 

environment compared to all other conditions (E-CORT vs. E-SAL, p < 0.001, d= 1.98; E-

CORT vs. L-SAL, p < 0.001, d = 2.38; E-CORT vs. L-CORT, p = 0.002, d = 1.72). Males and 

females overall had a similar number of head turns in the individual context (F1,58 = 2.119, p = 

0.151). In a group context, number of head turns when exposed to an unfamiliar environment 

was similar for all birds regardless of dosing condition (F3,57 = 0.038, p = 0.990) or sex (sex: 

F1,57 = 0.013, p = 0.908; sex x group: F3,57 = 1.188, p = 0.322; Figure 2.7.b).  
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Figure 2.7. Number of head turns when exposed to an unfamiliar environment split by sex and 

adolescent dosing condition in an a) individual context and b) group context. Data presented 

are mean + one standard error of the mean. Significant differences (p < 0.05) between female 

groups in an individual context are shown, a vs. b. 

 

In the group context, all birds spend a similar number of seconds perching alone when exposed 

to an unfamiliar environment irrespective of adolescent dosing condition (F3,57 = 1.306, p = 

0.281; E-SAL: M = 398.73, SEM = 33.25; E-CORT: 325.44, SEM = 31.04; L-SAL: 396.47, 

SEM = 40.84; L-CORT: 322.67, SEM = 34.85). Duration of time spent perching alone when 

exposed to an unfamiliar environment in a group context similarly did not differ according to 

a bird’s sex (sex: F1,57 = 0.557, p = 0.459; sex x condition: F3,57 = 0.340, p = 0.796). 

 

 

 

 

 

a 
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b 

b 



75 
 

2.3.3. Adult behavioural responses to unfamiliar conspecifics 

Time alone. Duration of time alone differed between adolescent dosing conditions at a specific 

location (dosing condition: F3,57.987 = 3.179, p = 0.031; location: F1,58 = 55.240, p < 0.001; 

dosing condition x location: F3,58 = 4.781, p = 0.005; Figure 2.8.a,b). Post hoc tests revealed 

that differences between adolescent conditions were only present when birds perched alone, 

with CORT dosed birds spending less time alone on the perches compared to birds dosed with 

saline (E-CORT vs. E-SAL, p = 0.002, d = 1.73; E-CORT vs. L-SAL, p = 0.017, d = 1.43; L-

CORT vs. E-SAL, p = 0.002, d = 1.42; L-CORT vs. L-SAL, p = 0.015, d = 1.17). Duration of 

tie alone did not differ according to sex (test bird sex: F1,57.987 = 0.039, p = 0.845; test bird sex 

x dosing condition: F3,57.987 = 0.268, p = 0.849; test bird sex x location: F1,58 = 0.594, p = 0.444; 

test bird sex x dosing condition x location: F3,58 = 0.361, p = 0.781). 

Figure 2.8. Duration of time (seconds) a) perching alone and b) on the ground alone when 

housed with an unfamiliar group of conspecifics split by dosing condition. Data presented are 

mean + one standard error of the mean. Significant differences (p < 0.05) between conditions 

are shown by a vs. b.  

 

 

a 

a 

b b 
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Beak fencing. Male test birds spent more time beak fencing than female test birds (F1,57.608 = 

5.695, p = 0.020; male: M = 64.42, SEM = 6.25; female: M = 41.43, SEM = 5.41), and 

unfamiliar males engaged in a longer duration of beak fencing than unfamiliar females (F1,50.417 

= 30.354, p < 0.001; male: M = 73.44, SEM = 6.60; female: M = 34.50, SEM = 4.42). However, 

test bird and unfamiliar bird sex did not interact to affect duration of time beak fencing (F1,50.417 

= 2.114, p = 0.152). All main effects and interactions that investigated the effect adolescent 

CORT dosing on fencing factor score were not significant (dosing condition: F3,62.161 = 0.576, 

p = 0.633; test bird sex x dosing condition: F3,62.161 = 0.569, p = 0.637; unfamiliar bird sex x 

dosing condition: F3,51.981 = 1.957, p = 0.132; test bird sex x unfamiliar bird sex x dosing 

condition: F3,51.981 = 0.556, p = 0.647). 

Displacements. Test birds dosed with CORT in late adolescence displaced unfamiliar birds less 

often than saline dosed birds (dosing condition: F3,58.022 = 5.030, p = 0.004: L-CORT vs. E-

SAL, p = 0.003, d = 1.22; L-CORT vs. L-SAL, p = 0.046, d = 0.95; Figure 2.9.a), but test birds 

dosed with CORT in early adolescence displaced unfamiliar birds to the same extent as all 

other groups (E-CORT vs. E-SAL, p = 0.356; E-CORT vs. L-SAL, p = 0.930; E-CORT vs. L-

CORT, p = 0.298). Sex differences were also apparent as male test birds displaced unfamiliar 

birds significantly more than female test birds (F1,57.996 = 5.471, p = 0.023; male: M = 23.50, 

SEM = 1.56; female: M = 17.38, SEM = 1.34), and test bird displaced unfamiliar males 

significantly more than unfamiliar females (F1,58.022 = 37.346, p < 0.001; male: M = 24.44, SEM 

= 1.52; female: M = 17.00, SEM = 1.39). All interactions involving test bird sex and unfamiliar 

bird sex were not significant (test bird sex x unfamiliar bird sex: F1,58.048 = 0.751, p = 0.390; 

test bird sex x dosing condition: F3,57.996 = 0.537, p = 0.659; unfamiliar bird sex x dosing 

condition: F3,57.996 = 0.847, p = 0.474; test bird sex x unfamiliar bird sex x dosing condition: 

F3,58.022 = 0.406, p = 0.749).  
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 Number of times a test bird was displaced by an unfamiliar bird was similar in all birds 

regardless of dosing condition (F3,54.484 = 1.106, p = 0.355; Figure 2.9.b). However, male test 

birds were displaced by unfamiliar birds more often than female test birds were displaced by 

unfamiliar birds (F1,55.108 = 4.510, p = 0.038; male: M = 50.88, SEM = 8.50; female: M = 27.18, 

SEM = 7.11). In addition, test birds were displaced by unfamiliar males more often than 

unfamiliar females (F1,57.098 = 22.231, p < 0.001; male: M = 62.74, SEM = 10.05; female: M = 

17.47, SEM = 3.93). All interactions involving test bird and unfamiliar bird sex were not 

significant (test bird sex x unfamiliar bird sex: F1,57.098 = 0.081, p = 0.776; test bird sex x dosing 

condition: F3,54.484 = 1.085, p = 0.306; unfamiliar bird sex x dosing condition: 3,56.448 = 0.869, p 

= 0.463; test bird sex x unfamiliar bird sex x dosing condition: F3,56.448 = 1.102, p = 0.356). 

Figure 2.9. Number of times a) a test bird displaces and unfamiliar bird and b) a test bird is 

displaced by an unfamiliar bird split by adolescent dosing condition. Data presented are mean 

+ one standard error of the mean. Significant differences (p < 0.05) between conditions are 

shown by a vs. b. 

a 

a 
a 

b 
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Courtship. Females had similar courtship factor scores regardless of dosing condition (F3,26 = 

0.143, p = 0.933; Figure 2.10.a). In males, birds dosed with CORT had lower courtship factor 

scores than males dosed with saline (F3,32 = 16.959, p < 0.001: E-CORT vs. E-SAL, p = 0.001, 

d = 2.51; E-CORT vs. L-SAL, p = 0.011, d = 2.03; L-CORT vs. E-SAL, p < 0.001, d = 2.85; 

L-CORT vs. L-SAL, p < 0.001, d = 2.22; Figure 2.10.b).  

Figure 2.10. Courtship behaviour (number of song bouts and number of mounts) expressed as 

a component score calculated in a PCA model for a) females and b) males split by adolescent 

dosing condition. Data presented are mean + one standard error of the mean. Significant 

differences (p < 0.05) between conditions are shown by a vs. b. 

 

2.3.4. Hormones 

Corticosterone time-response to capture and restraint. Birds had similar CORT concentrations 

in response to capture and restraint irrespective of a bird’s dosing condition or sex (dosing 

condition: F3,55.9 = 0.887, p = 0.454; sex: F1,55.331 = 0.286, p = 0.595; dosing condition x sex: 

F3,56.282 = 2.237, p = 0.094). However, CORT concentration was affected by restraint stress and 

changed across sampling times (F2,58.034 = 220.357, p < 0.001; Figure 2.11.). Post hoc tests 

revealed that when samples were averaged across dosing conditions, ages, and sexes, CORT 

concentration was higher at 10 mins compared to baseline (p < 0.001, d = 1.21), 30 mins 

a 
a 

b 
b 
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compared to baseline (p < 0.001, d = 1.78), and 30 mins compared to 10 mins (p < 0.001, d = 

0.65). CORT concentration was also affected by age (F1,57.942 = 16.378, p = < 0.001, d = 0.15) 

and the age difference was dependent on sampling time (F2,57.934 = 20.718, p < 0.001). Post hoc 

tests revealed that when samples were averaged across dosing conditions and sexes, CORT 

concentration was higher in adolescents compared to adults at baseline (p < 0.001, d = 1.11) 

and 10 mins (p = 0.040, d = 0.46) but no age difference was detected at 30 mins (p = 0.244). 

Age differences at specific sampling times did not further differ due to a bird’s dosing condition 

or sex (dosing condition: F6,57.928 = 0.603, p = 0.727; sex: F2,57.934 = 2.078, p = 0.134; dosing 

condition x sex: F6,57.928 = 0.377, p = 0.890). Sampling time differences in CORT concentration 

did not differ according to a bird’s dosing condition or sex (dosing condition: F6,58.030 = 0.398, 

p = 0.877; sex: F2,58.034 = 1.065, p = 0.351; dosing condition x sex: F6,58.030 = 0.502, p = 0.804) 

and neither did age differences in CORT concentration (dosing condition: F3,57.934 = 0.536, p = 

0.660; sex: F1,57.942 = 0.086, p = 0.771; dosing condition x sex: F3,57.938 = 1.238, p = 0.304).  

Figure 2.11. Corticosterone concentration (ng/ml) in response to capture and restraint in 

adolescent and adult birds. Data presented are mean + one standard error of the mean. 

Significant differences (p < 0.05) within each sampling time are shown: a vs. b, c vs. d.  

a 

b 

c 

d 
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Highest corticosterone concentration in response to capture and restraint. Highest CORT 

concentration secreted in response to capture and restraint was not different between adolescent 

conditions (F3,57.953 = 0.456, p = 0.714; Figure 2.12.a,b) and no differences were found between 

adolescent conditions when split by age (F3,57.424 = 0.506, p = 0.680), sex (F3,59.416 = 1.241, p = 

0.303), or age and sex (F3,57.861 = 0.556, p = 0.646). Similarly, highest CORT concentration 

was not different between birds according to sex (F3,57.942 = 0.531, p = 0.469), age (F1,67.860 = 

2.110, p = 0.151), or an interaction between the two (F1,57.475 = 0.939, p = 0.337). 

Figure 2.14. Highest corticosterone concentration (ng/ml) in response to capture and restraint 

split by dosing condition in a) adolescent and b) adult birds. Data presented are mean + one 

standard error of the mean. All comparisons were not significant (p > 0.05). 

 

Gonadal hormones. Male testosterone concentrations were similar regardless of adolescent 

dosing (F3,29 = 0.591, p = 0.626), as were female estradiol concentrations (F3,26 = 0.211, p = 

0.888). The concentrations of each hormone are summarised in Table 2.4. 

Table 2.4. Male testosterone concentration (ng/ml) and female estradiol concentration (pg/ml) 

split by dosing condition. Data are mean (standard error of the mean). 

Hormone 

 

Adolescent Condition 

E-SAL E-CORT L-SAL L-CORT 

Testosterone (ng/ml) 1.23 (0.29) 1.04 (0.21) 1.54 (0.37) 1.29 (0.25) 

 Estradiol (pg/ml) 43.44 (17.92) 40.66 (6.78) 51.58 (10.22) 38.01 (9.57) 



81 
 

2.3.5. Neural receptor expression 

Glucocorticoid receptors. In the hypothalamus, E-CORT birds had significant lower relative 

GR expression than saline dosed birds (dosing condition: F3,43 = 3.891, p = 0.015; E-CORT vs. 

E-SAL, p = 0.036, d = 1.62;  E-CORT vs. L-SAL, p = 0.044, d = 1.15 Figure 2.13a), whereas 

L-CORT birds were no different from any other group (E-SAL, p = 0.578; E-CORT, p = 0.611; 

L-SAL, p = 0.824). MR expression was similar across birds regardless of dosing condition 

(F3,43 = 0.742, p = 0.533; Figure 2.13b). No sex differences were detected for hypothalamic 

relative GR expression (sex: F1,43 = 1.957, p = 0.169; sex x adolescent condition: F3,43 = 0.499, 

p = 0.685) or relative MR expression (sex: F1,43 = 0.033, p = 0.857sex x adolescent condition: 

F3,43 = 0.223, p = 0.880). 

Figure 2.13. Relative expression of the glucocorticoid receptors (a) GR and (b) MR in the 

hypothalamus split by adolescent dosing condition. Data presented are mean + one standard 

error of the mean. Significant differences (p < 0.05) between conditions shown by a vs. b.  

 

 

 

 

a 

b 
b 
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Relative GR expression in the hippocampus was lower in  E-CORT birds compared to saline 

dosed birds (dosing condition: F3,54 = 4.160, p = 0.010; E-CORT vs. E-SAL, p = 0.035, d = 

1.13; E-CORT vs. L-SAL, p = 0.016, d = 1.10 Figure 2.14a), whereas L-CORT birds were no 

different from any group (E-SAL, p = 0.824; E-CORT, p = 0.462; L-SAL, p = 0.695). Relative 

expression of hippocampal MR was similar for all birds irrespective of dosing condition (F3,54 

= 0.221, p = 0.882; Figure 2.14b). No sex differences were found for hippocampal relative GR 

expression (sex: F1,54 = 0.093, p = 0.761; sex x adolescent condition: F3,54 = 0.564, p = 0.641) 

or relative MR expression (sex: F1,54 = 0.153, p = 0.697; sex x adolescent condition: F3,54 = 

0.425, p = 0.736). 

Figure 2.14. Relative expression of the glucocorticoid receptors (a) GR and (b) MR in the 

hippocampus split by adolescent dosing condition. Data presented are mean + one standard 

error of the mean. Significant differences (p < 0.05) between conditions shown by a vs. b. 

 

 

 

 

 

a 

b b 
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Adolescent condition had no effect on relative expression of either GC receptor in the BNS 

(GR: F3,42 = 0.512, p = 0.676; MR: F3,42 = 0.114, p = 0.952), amygdala (GR: F3,57 = 0.902, p = 

0.446; MR: F3,57 = 0.419, p = 0.740), or nidopallium (GR: F3,57 = 0.522, p = 0.669; MR: F3,57 = 

0.051, p = 0.985). Relative expression of GR and MR split by group are summarised for the 

BNS, amygdala, and nidopallium in Table 2.5. 

Table 2.5. Relative expression of genes of interest (GOI) GR and MR in BNS, amygdala, and 

nidopallium caudolaterale punches split by adolescent dosing condition. Data presented are 

mean + one standard error of the mean. All comparisons were not significant (p > 0.05). 

GOI Region 
Adolescent Condition 

E-SAL E-CORT L-SAL L-CORT 

GR BNS 0.0165 (0.0024) 0.0204 (0.0028) 0.0171 (0.0017) 0.0164 (0.0015) 

 Amygdala 0.0214 (0.0021) 0.0270 (0.0026) 0.0229 (0.0023) 0.0239 (0.0027) 

 Nidopallium 0.0183 (0.0021) 0.0181 (0.0023) 0.0155 (0.0015) 0.0157 (0.0019) 

MR BNS 0.0183 (0.0029) 0.0189 (0.0024) 0.0169 (0.0029) 0.0176 (0.0027) 

 Amygdala 0.0206 (0.0022) 0.0224 (0.0020) 0.0188 (0.0024) 0.0201 (0.0027) 

  Nidopallium 0.0155 (0.0040) 0.0148 (0.0027) 0.0159 (0.0031) 0.0160 (0.0025) 

 

Relative expression of GR did not differ according to a bird’s sex in the BNS (sex: F1,42 = 

0.002, p = 0.961; sex x dosing condition: F3,42 = 0.437, p = 0.728), amygdala (sex: F1,57 = 0.034, 

p = 0.854; sex x dosing condition: F3,57 = 0.313, p = 0.816), and nidopallium (sex: F1,57 = 0.058, 

p = 0.810; sex x dosing condition: F3,57 = 1.946, p = 0.132). An identical pattern was found for 

MR, as relative MR expression did not differ according to a bird’s sex in the BNS (sex: F1,42 = 

0.219, p = 0.642; sex x dosing condition: F3,42 = 0.052, p = 0.984), amygdala (sex: F1,57 = 0.383, 

p = 0.538; sex x dosing condition: F3,57 = 0.211, p = 0.888), and nidopallium (sex: F1,57 = 0.198, 

p = 0.658; sex x dosing condition: F3,57 = 1.187, p = 0.323). 
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The ratio between GR and MR was not different between adolescent dosing conditions (all p 

> 0.229) and/or sexes (sex, main effect: all p > 0.437; sex x dosing condition, interaction: all p 

> 0.280). Data are not shown, but outputs from GR/MR models are provided in Table 2.6.   

Table 2.6. Outputs for models exploring the ratio between GR and MR in BNS, hypothalamus, 

hippocampus, amygdala, and nidopallium punches. All comparisons were not significant (p > 

0.05). 

 

 

 

 

 

 

 

 

 

 

 

Nonapeptide receptors. Relative VT1 and VT3 receptor expression in the BNS, hypothalamus, 

hippocampus, amygdala, and nidopallium did not differ according to a bird’s adolescent dosing 

condition, sex, or an interaction between the two (Table 2.7). Relative expression of VT1 and 

VT3 split by dosing condition are summarised in Table 2.8. 

 

 

 

 

 

 

Region Factor 
GR:MR 

F or χ2 df p 

BNS Condition F = 0.232 3,42 0.954 

 Sex F = 0.110 1,42 0.632 

 Condition * Sex F = 0.305 3,42 0.822 

Hypothalamus Condition F = 0.472 3,43 0.703 

 Sex F = 0.567 1,43 0.456 

 Condition * Sex F = 0.413 3,43 0.744 

Hippocampus Condition F = 1.486 3,54 0.229 

 Sex F = 0.002 1,54 0.966 

 Condition * Sex F = 0.675 3,54 0.571 

Amygdala Condition χ2 = 0.304 3,57 0.823 

 Sex χ2 = 0.529 1,57 0.470 

 Condition * Sex χ2 = 0.186 3,57 0.905 

Nidopallium Condition χ2 = 0.311 3,57 0.817 

 Sex χ2 = 0.002 1,57 0.969 

  Condition * Sex χ2 = 1.310 3,57 0.280 
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Table 2.7. Model outputs exploring VT1 and VT3 receptor expression in BNS, hypothalamus, 

hippocampus, amygdala, and nidopallium. All comparisons were not significant (p > 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.8. Relative expression of genes of interest (GOI) VT1 and VT3 receptors split by brain 

region and adolescent dosing condition. Data presented are mean + standard error of the mean.  

 

2.3.6. Correlations 

After correcting for multiple comparisons all adolescent correlations were not significant (all 

p > 0.076; Bonferroni corrected α = 0.0025) and all adult correlations were not significant (all 

p > 0.012; Bonferroni corrected α = 0.0017). Outputs from correlation analyses are presented 

in Appendix B (Table B.1., Table B.2., and Table B.3.). 

Region Factor 
VT1 VT3 

F df p F df p 

BNS Condition 0.133 3,42 0.940 0.470 3,42 0.705 

 Sex 0.331 1,42 0.568 0.006 1,42 0.938 

 Condition * Sex 0.105 3,42 0.957 0.176 3,42 0.912 

Hypothalamus Condition 0.545 3,43 0.654 0.316 3,43 0.814 

 Sex 0.021 1,43 0.885 0.030 1,43 0.863 

 Condition * Sex 0.503 3,43 0.682 0.509 3,43 0.678 

Hippocampus Condition 0.283 3,54 0.837 0.212 3,54 0.888 

 Sex 0.001 1,54 0.976 0.217 1,54 0.643 

 Condition * Sex 1.070 3,54 0.370 0.680 3,54 0.568 

Amygdala Condition 0.283 3,57 0.837 1.072 3,57 0.368 

 Sex 0.017 1,57 0.897 0.298 1,57 0.588 

 Condition * Sex 0.873 3,57 0.461 2.713 3,57 0.053 

Nidopallium Condition 0.988 3,57 0.405 0.071 3,57 0.975 

 Sex 0.101 1,57 0.752 0.227 1,57 0.636 

  Condition * Sex 1.197 3,57 0.319 0.173 3,57 0.914 

GOI Region 
Adolescent Condition 

E-SAL E-CORT L-SAL L-CORT 

VT1 BNS 0.0031 (0.0003) 0.0033 (0.0004) 0.0030 (0.0004) 0.0032 (0.0004) 

 Hypothalamus 0.0033 (0.0005) 0.0038 (0.0004) 0.0032 (0.0004) 0.0036 (0.0004) 

 Hippocampus 0.0019 (0.0003) 0.0018 (0.0003) 0.0022 (0.0004) 0.0016 (0.0003) 

 Amygdala 0.0027 (0.0003) 0.0026 (0.0002) 0.0030 (0.0004) 0.0027 (0.0004) 

 Nidopallium 0.0016 (0.0003) 0.0019 (0.0002) 0.0014 (0.0002) 0.0015 (0.0002) 

VT3 BNS 0.0041 (0.0005) 0.0047 (0.0004) 0.0041 (0.0006) 0.0048 (0.0006) 

 Hypothalamus 0.0052 (0.0003) 0.0050 (0.0003) 0.0050 (0.0004) 0.0046 (0.0004) 

 Hippocampus 0.0030 (0.0005) 0.0026 (0.0005) 0.0028 (0.0005) 0.0024 (0.0004) 

 Amygdala 0.0030 (0.0004) 0.0038 (0.0005) 0.0032 (0.0004) 0.0040 (0.0005) 

  Nidopallium 0.0025 (0.0003) 0.0028 (0.0004) 0.0026 (0.0004) 0.0026 (0.0004) 
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2.4. Discussion 

The findings presented in this chapter are the first to document that adolescent CORT exposure 

can modulate responses to both unfamiliar environments and unfamiliar conspecifics when in 

adulthood. However, the effects of CORT on responses to unfamiliar environments are 

dependent on adolescent age of dosing and adult social context. When individually housed, 

birds dosed with CORT in early adolescence took longer to enter an unfamiliar environment in 

adulthood, perched in the unfamiliar environment for longer, and, if female, engaged in more 

head turns when compared to all other birds. No group differences in response to an unfamiliar 

environment were found when the birds were housed in familiar groups. Late adolescent CORT 

dosing had no long-term effects on behavioural responses to an unfamiliar environment. In 

response to unfamiliar conspecifics, birds dosed with CORT during adolescence spent less time 

perching alone compared to birds dosed with saline which, in males, may be attributable to 

lower courtship behaviour from CORT dosed compared to saline dosed males. The behavioural 

effects do not appear to be attributable to differences in circulating CORT, T, or E2 

concentrations. However, birds dosed with CORT in early adolescence had lower relative 

expression of GR in the hypothalamus and hippocampus that may reflect that the birds’ HPA 

axis had lower negative feedback efficiency compared to all other dosing conditions. The 

findings presented partially support the hypothesis that adolescent CORT exposure would 

result in birds that interacted more with unfamiliar stimuli in adulthood. However, the data 

revealed more nuanced effects that will now be discussed. 

2.4.1. Adolescent behaviour 

During adolescent dosing, immediate behavioural effects were detected, with birds 

dosed with CORT during early adolescence gradually taking longer to enter the dosing box 

compared to all other conditions. The longer latency to enter the dosing box cannot be attributed 

to short-term changes in CORT concentration, as CORT concentration quantified shortly (three 
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days) after the dosing had ended were no different between conditions. However, quantifying 

CORT concentration three days after dosing had ended may have been too late to indicate the 

short-term effects of dosing. Future work may therefore wish to determine how adolescent 

CORT dosing influences the acute stress response during the early adolescent dosing window.  

CORT dosing may have induced behavioural changes in early (but not late) adolescent 

birds that were causing the effect on dosing box latency. Dosing sessions were not recorded, 

so any behavioural changes that may have been present were not quantified. A longer latency 

to enter the dosing box in E-CORT birds could reflect that the birds are more avoidant of the 

dosing box, perhaps because the birds formed an association between the dosing box and an 

aversive experience that arises from consuming CORT. For example, CORT dosing may 

trigger a stress response that is perceived as aversive or CORT doses may taste more unpleasant 

than saline doses. Adult rats will self-administer a physiologically relevant dose of stressor-

induced CORT (but not doses that are more/less than a physiologically relevant concentration) 

indicating that CORT dosing may not be experienced as aversive (Piazza et al., 1993). Lower 

aversive response to CORT and/or less unpleasant taste perception in late vs. early adolescent 

zebra finches would also be necessary in order for the age-specific effects to occur, but such 

ideas have not been investigated. Rather than associating the dosing box with aversive effects, 

delayed entry latency in E-CORT birds may be due to changes in stress-related behaviour, such 

as lower locomotor activity (Koolhaas et al., 1999), heightened risk assessment behaviour 

(Rodgers et al., 1999), or modulation of startle response (Glowa, Geyer, Gold, & Stemberg, 

1993). Social behaviour could also be changed by dosing, with E-CORT birds possibly 

distracted from the dosing box by attempting to spend more or less time interacting with 

conspecifics than other dosing conditions (Boogert et al., 2014; Veenit et al., 2012). To 

determine if behavioural changes are causing the effects on dosing box latency further work is 

necessary to quantify stress-related and social behavioural responses to adolescent CORT 
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dosing. Whether adolescent age-related changes in stress-related and/or social behaviour occur 

in zebra finches has not been explored, so both early and late adolescent zebra finches should 

be included in any future work attempting to explore the short-term effects of adolescent CORT 

dosing in order to explore the age-specific effects on dosing box entry latency. 

The absence of effects of late adolescent CORT dosing on dosing box latency may be 

consistent with the finding that animals become less responsive to steroid hormones as 

adolescence progresses, as indicated for gonadal steroids (e.g. Schulz & Sisk, 2016). However, 

CORT may have had short-term effects on unmeasured behavioural responses. Further research 

is needed to quantify the short-term effects of CORT vs. saline dosing in late adolescence on 

stress-related and social behaviour to determine whether CORT has any immediate effects on 

unmeasured late adolescent behaviour. An alternative explanation for the lack of effects of 

CORT on late adolescent behaviour is that the doses used may have been inadequate for effects 

to occur in late adolescence. A pilot study determined a physiologically relevant dose of 

stressor-induced CORT to administer to the birds. The model output suggested that there was 

no difference in stressor-induced CORT between early and late adolescence, so identical doses 

were used for early and late adolescent birds in the current study. However, model used to 

analyse the data may have been over-parametrised by including three fixed factors, two of 

which were repeated measures, with a sample size of only twenty birds. This may have resulted 

in a sample with high variability and lack of statistical power, so any small differences in 

stressor-induced CORT concentration between early and late adolescence may have been 

undetected. Further research is therefore needed to replicate the pilot study from the current 

thesis with a larger sample size to determine if the doses used in the current study were accurate.  
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2.4.2. Adult behavioural responses to unfamiliar environments 

In adulthood, birds dosed with CORT during early adolescence took longer to enter the 

unfamiliar environment when individually housed compared to birds from all other conditions. 

Adolescent stress in rats results in a similar effect, with ‘stressed’ rats taking longer to contact 

an unfamiliar object when in adulthood when compared to rats that received no such stress 

(Eiland & Romeo, 2013; Hollis et al., 2013; McCormick et al., 2015). Stressor exposed and 

CORT dosed adolescents taking longer to interact with unfamiliar stimuli may be indicative of 

a more neophobic behavioural response when in adulthood compared to controls. Whether 

CORT is an endocrine mechanism underlying the long-term effects of adolescent stress on 

responses to unfamiliar stimuli has remained unclear (Veenit et al., 2013), but the data in the 

current chapter are the first to support the hypothesis. 

Female zebra finches that received early adolescent CORT doses engaged in more head 

turns than birds from all other conditions. Only males have been studied to investigate the long-

term effects of adolescent CORT dosing on responses to unfamiliar stimuli (Veenit et al., 

2013). The current data are therefore the first to indicate that adolescent CORT exposure can 

affect behavioural responses to unfamiliar environments in a sex-dependent manner. Number 

of head turns has been proposed as a measure of risk assessment in birds (Fernandez-Juricic, 

2012; Jones et al., 2007), but the current data are the first to quantify the behaviour in zebra 

finches. Female birds dosed with CORT in early adolescence may therefore be engaging in 

more risk assessment (potentially a more neophobic response) than birds in all other dosing 

conditions. As the measure is novel, head turns may not reflect risk assessment as is proposed 

here. Female birds may be more responsive to social separation, with more head turns reflecting 

an attempt to find conspecifics. However, no group differences in head turns were found during 

pre-exposure, indicating that more head turns in E-CORT birds than other dosing conditions is 

not due to absence of conspecifics, but is a response to an unfamiliar environment.  
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Although E-CORT birds took longer to enter the unfamiliar environment and, if female, 

engaged in more head turns in response to the environment, the same birds spent a longer 

duration of time perching in the unfamiliar environment. E-CORT birds did not spend more 

time in the unfamiliar environment because they entered the environment more often than birds 

from other conditions. Previous work has typically found that adolescent stress results in adult 

rats that spend less time in exposed areas of unfamiliar environments compared to animals that 

did not experience any such stress (Eiland & Romeo, 2013; Hollis et al., 2013; McCormick et 

al., 2015), but developmental stress can also result in animals spending more time in unfamiliar 

environments than control animals (e.g. Toledo-Rodriguez & Sandi, 2011; Zimmer et al., 

2013). Why E-CORT birds spent more time in the unfamiliar environment is not clear, but 

stressor-induced immobilisation is a possible explanation (Koolhaas et al., 1999). E-CORT 

birds may have been more immobile in the unfamiliar environment than birds from other 

conditions; an effect that would be consistent with E-CORT birds having a more neophobic 

response to an unfamiliar environment than controls. If E-CORT birds were more immobile 

then the birds would be expected to engage in fewer hops, but no difference in number of hops 

was found between conditions. The birds rarely interacted with the novel objects, so were also 

unlikely to have been immobile whilst investigating and/or hiding amongst the objects. 

Stressor-induced immobility is therefore unlikely, with future work required to explore why E-

CORT birds spent more time perching in the unfamiliar environment. For example, E-CORT 

birds may spend more time in the environment to forage more and avoid the stress of under-

nutrition compared to other dosing conditions (e.g. Crino, Driscoll, Ton, et al., 2014). Foraging 

behaviour was not quantified in the current chapter, but future research could do so.  

The effects of adolescent CORT on behavioural responses to an unfamiliar environment 

were entirely dependent on social context. In the presence of familiar birds, adolescent CORT 

dosing had no effects on any behavioural measure during the unfamiliar environment task. 
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Group housing with familiar conspecifics has been shown to act as a social buffer, with 

neophobic behavioural responses lower when animals are tested with familiar conspecifics 

compared to when single housed (Beery & Kaufer, 2015; Sanchez et al., 2015). The current 

findings may therefore suggest that presence of familiar conspecifics in adulthood can buffer 

the long-term effects of adolescent CORT on adult behavioural responses to an unfamiliar 

environment. Adolescent CORT exposure has no effect on adult behaviour in a social buffering 

context when in adulthood, either in terms of task performance (e.g. latency to enter unfamiliar 

environment) or social interaction (e.g. more affiliative or less antagonistic behaviour). 

Adolescent CORT dosing may therefore not improve or impair social behaviour related to 

social buffering when in adulthood, an effect that is in line with previous work investigating 

the developmental antecedents of social buffering (e.g. pre-adolescent social density: Branchi 

& Alleva, 2006). However, the birds may not interpret group exposure to an unfamiliar 

environment as a social buffering context. For example, the birds may interpret the test as 

competition over limited food resources as the unfamiliar objects in the unfamiliar environment 

were baited with spinach. Adolescent CORT dosing may therefore have no effects on foraging 

competition in the presence of familiar conspecifics, rather than social buffering. Further work 

could avoid different behavioural interpretations by investigating whether adolescent CORT 

dosing affects group vs. individual responses to stressor-induced CORT concentration to 

determine if adolescent CORT affects later-life social buffering of the acute stress response. 

Although the group context may cancel out any effects of adolescent CORT dosing, an 

individual context may also have effects on animals that facilitate the emergence of behavioural 

differences in response to an unfamiliar environment. For example, zebra finches have a higher 

basal CORT concentration 24 hours after single housing compared to when housed with a pair 

mate (Remage-Healey et al., 2003). Consequently, social context may affect behaviour via 

changes in stress physiology with higher pre-test CORT concentration in an individual context 
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may prime birds to respond to a stressor. Birds that were dosed with CORT in early adolescence 

may have a higher CORT concentration than other conditions when individually housed in 

adulthood prior to any tasks. Future work could explore how adolescent CORT dosing affects 

pre-test CORT concentration across social contexts, e.g. individual vs. group, when in 

adulthood to test the hypothesis. Another difference between the contexts was the unfamiliar 

object arrangements. Adult birds responded similarly to both sets of objects during the pilot 

study, suggesting that object differences are not the cause of the context-dependent effects of 

early adolescent CORT dosing. However, further work is needed to repeat the current 

experiment but with the unfamiliar object arrangements counter-balanced across contexts to 

rule out any effects of the apparatus used. 

2.4.3. Adult behavioural responses to unfamiliar conspecifics 

As predicted, when separated from a familiar conspecific and housed with an unfamiliar group, 

CORT dosed birds spent less time alone on the perches compared to birds dosed with saline 

during adolescence. Spending less time alone in an unfamiliar group in adulthood could not be 

attributed to CORT dosed birds engaging in more gregarious interactions with unfamiliar birds 

as no differences could be detected for clumping and allopreening as the behaviour were too 

infrequent for analysis. Spending less time alone need not reflect gregariousness, but could also 

reflect that CORT dosed birds were just sitting in proximity to others with little interaction 

compared to saline dosed birds. Counter to the latter hypothesis, zebra finches dosed with 

CORT as nestlings and fledglings forage with more unfamiliar conspecifics than vehicle dosed 

birds when in adolescence (Boogert et al., 2014). Whether a similar effect occurs in response 

to adolescent CORT dosing remains to be tested, but the evidence intimates that CORT dosed 

birds may not spend less time alone due to more social inactivity than saline dosed birds.  
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Zebra finches have a higher CORT concentration when separated from a familiar pair 

mate compared to when with a pair mate, possibly indicating that separation from a familiar 

conspecific is a stressor in the species (Remage-Healey et al., 2003). Birds in the current study 

were separated from familiar conspecifics immediately prior to testing. CORT dosed birds may 

experience more separation stress than saline dosed birds, resulting in CORT dosed birds 

spending less time alone with unfamiliar birds to lower their greater separation stress compared 

to saline dosed birds. No differences between adolescent conditions were found in pre-exposure 

behaviour in the individual context unfamiliar environment tasks, indicating that the birds may 

have an equal response to social separation. However, pre-exposure behaviour was quantified 

24 hours after single housing and may not reflect immediate behavioural differences in 

response to social separation. Further work needs to explore whether E-CORT birds display 

greater separation stress (e.g. more locomotor activity, more risk assessment, higher CORT 

concentration) immediately after being single housed compared to birds from other conditions. 

Male birds dosed with CORT engaged in less courtship behaviour when exposed to an 

unfamiliar mixed-sex group in adulthood. A lower expression of courtship behaviour could 

reflect that CORT dosed males were less sexually competent than saline dosed males as has 

been reported in rats in response to adolescent stress (Almeida, Kempinas, & Carvalho, 2000; 

McCormick et al., 2013; Toth et al., 2008). A lower expression of courtship behaviour could 

also indicate that CORT dosed males are less attractive than saline dosed males, as has been 

reported in zebra finches that were dosed with CORT during nestling and fledgling 

development (Spencer et al., 2003; Spencer et al., 2005). Courtship competence and 

attractiveness were not quantified, so further work is needed to determine if males dosed with 

CORT are less sexually competent or less attractive than saline dosed males. If CORT dosing 

does not impair courtship behaviour or lower attractiveness compared to saline dosing, then 

the effects may be context-dependent. CORT dosed males may lower courtship behaviour to 
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better integrate into an unfamiliar group and better avoid social separation stress compared to 

saline dosed birds, but when already in a familiar group no group differences may be detected 

in courtship behaviour as there is no separation stress. Further work is therefore needed to 

determine the effects of adolescent CORT on courtship behaviour across social contexts (e.g. 

with and without familiar conspecifics). 

Whether adolescent stress affects female courtship competence and/or attractiveness 

has been largely ignored by previous research (e.g. Almeida et al., 2000; Toth et al., 2008), but 

the current study found no effects of adolescent CORT on female courtship behaviour. Only 

male courtship behaviour may have been affected as, for the measures taken in the current 

study, males can inhibit their expression of courtship behaviour whereas females cannot (e.g. 

males can stop singing, but females cannot stop being sung at). Female courtship behaviour 

may have been affected by adolescent CORT, just not on the measures that were quantified in 

the current study. For example, female zebra finches may attract a mate by being active (e.g. 

hopping: Zann, 1996) which may have been lower in CORT dosed females compared to saline 

dosed females. Adolescent CORT has sex-dependent effect on adult courtship behaviour, 

emphasising that future work should include male and female animals to elucidate any further 

sex differences in adult courtship behaviour (e.g. activity). 

L-CORT birds displaced unfamiliar birds less than birds from any other condition. 

Zebra finches dosed with CORT as nestlings and fledglings develop into adolescents that are 

supplanted from a perch more often than vehicle dosed birds when competing over access to a 

single perch, suggesting birds dosed with CORT during development may be more subordinate 

or less dominant than controls in later-life (Spencer & Verhulst, 2007). L-CORT birds in the 

current chapter may have engaged in fewer antagonistic interactions as the birds were more 

subordinate or less dominant than birds from other dosing conditions, but the hypothesis 

requires testing. Early adolescent CORT dosing had no effect on antagonistic behaviour when 
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in adulthood. Adolescent CORT exposure may therefore interact with age-specific expression 

of competitive behaviour that emerges in late adolescence. For example, zebra finches begin 

to compete over mates and establish pair bonds during late adolescence (around day 70; Zann, 

1996) and CORT may affect antagonistic behaviour used during mate competition during this 

period and have persistent effects that result in more antagonistic behaviour when in adulthood. 

However, more work is necessary to document the ontogeny of adolescent zebra finch social 

behaviour (e.g. competitiveness, dominance) and then explore how exposure to stressors and 

CORT can shape the developmental trajectories of such behaviour. 

2.4.4. Glucocorticoids and glucocorticoid receptors 

No differences in either basal or stressor-induced CORT concentrations were found 

between dosing conditions. The current chapter therefore provides no support for the prediction 

that stressor-induced CORT concentration would be higher in birds dosed with CORT 

compared to birds dosed with saline. Previous work in rats has shown that adolescent stress 

results in a higher stressor-induced secretion of CORT compared to control rats that were not 

exposed to the adolescent stressors (Isgor et al., 2004; Pohl et al., 2007). The contradictory 

effects are unlikely due to a difference in stressor type (i.e. CORT dosing vs. external stressors) 

as nestling/fledgling zebra finches dosed with CORT have a higher stressor-induced CORT 

concentration when in adolescence compared to control birds (Spencer et al., 2009). Instead, 

absence of group differences in CORT concentration are likely due to an incomplete stress 

response being quantified. Birds in the current study were continuing to secrete a higher CORT 

concentration at each consecutive sampling point, with no post-peak concentration quantified. 

A similar effect has also been reported for zebra finches fed CORT during the 

nestling/fledgling period (Crino et al., 2014), suggesting that a time series from 0-30 mins is 

insufficient to quantify all aspects of a stress response in zebra finches. However, the models 

used to analyse CORT concentrations may have also been over-parameterised. The CORT 
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response across sampling times model included four fixed factors of which two were repeated 

measures, and the peak CORT concentration model included three fixed factors one of which 

was a repeated measure. Adolescent CORT dosing may have had an effect on stressor-induced 

CORT concentration, but the models used to analyse this data may have lacked statistical power 

due to the use of complex models and smaller than required sample sizes. The experiment needs 

to be replicated with a larger sample size in order to rule out that adolescent CORT dosing had 

no effect on stressor-induced CORT concentrations due to statistical limitations.  

GR was significantly lower in the hippocampus and hypothalamus of E-CORT birds 

compared to saline dosed birds dosed. GR regulates stressor-induced CORT concentration, 

with higher hippocampal and hypothalamic GR acting to inhibit CORT secretion during a stress 

response (Herman et al., 2003; Herman et al., 2005). E-CORT birds may have lower negative 

feedback efficiency of the HPA axis compared to birds dosed with saline. Lower hippocampal 

GR has previously been found in adult rats exposed to stress during adolescence compared to 

rats that experienced no such stress (Isgor et al., 2004). The current results are the first to 

suggest that early adolescent exposure to CORT is a mechanism behind the long-term effects 

of adolescent stress on GR and that hypothalamic GR may also be affected by adolescent stress. 

Late adolescent CORT dosing effects on relative GR expression appear intermediate between 

saline and early CORT dosing, indicating that the extent to which CORT can affect neural GR 

expression may decline with age. Previous work that has shown similar effects for other steroid 

hormones, like testosterone (Schulz & Sisk, 2009; Schulz & Sisk, 2016), but more research is 

needed to determine why the age-related decline occurs. 

GR expression in the amygdala and NPC were not affected by adolescent CORT. 

CORT can have a positive feedback effect on the HPA axis by binding to amygdala GR to 

further stimulate CORT secretion during a stress response (Herman et al., 2012; Shepard et al., 

2003), but can also have a negative feedback effect on the HPA axis by binding to GR in the 
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PFC to inhibit further CORT secretion during a stress response (Diorio, Viau, & Meaney, 1993; 

Herman et al., 2012). The current study suggests that adolescent CORT dosing does not have 

long-term effects on an amygdala-mediated positive feedback mechanism or a NPC-mediated 

negative feedback mechanism that act on the HPA axis. The NPC is an avian homologue of 

the mammalian PFC (Güntürkün, 2005; Rose & Colombo, 2005), but future work should 

investigate adolescent CORT dosing across taxa to see if the dosing has long-term effects on 

GR expression in the mammalian PFC and amygdala.  

No differences were found in the relative expression of MR or the ratio between GR 

and MR. In brain regions that can inhibit the HPA axis like the hippocampus and hypothalamus, 

a higher MR expression results in a faster rise in stressor-induced CORT concentration by 

lowering the threshold for triggering a stress response (de Kloet et al., 2000; Joëls et al., 2007; 

Oitzl et al., 2010). A higher expression of MR in brain regions that inhibit the HPA axis can 

also result in a lower GR/MR ratio in these regions, which in turn can result in lower negative 

feedback efficiency of the HPA axis compared to animals with a more balanced GR to MR 

ratio (de Kloet et al., 1998; Groneweg et al., 2011). Adolescent CORT having no influence on 

MR expression may be advantageous as a lower threshold for responding to stress can be 

costly, with higher sensitivity resulting in more frequent false positive responses to benign 

events (Bateson et al., 2011; Nettle & Bateson, 2012). Through a selective lowering of 

hippocampal and hypothalamic GR, adolescent CORT exposure may result in animals with a 

greater response to unambiguous stressors than control animals whilst being no more likely 

than controls to mount a stress response to benign events.  

The samples collected for glucocorticoid receptor analysis were coarse, with RNA 

expression quantified from large samples in some areas (e.g. hypothalamus and amygdala) and 

from multiple regions in a single punch for others (e.g. BNS). Taking such coarse samples may 

have obscured some effects of adolescent CORT dosing, so future work is necessary to use 
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techniques other than qPCR that can provide a more detailed analysis of the long-term effects 

of adolescent CORT dosing on glucocorticoid receptor expression. For example, in situ 

hybridisation could be used to display the RNA distribution of glucocorticoid receptors on a 

finer scale. For example, adolescent CORT may have specific effects on GR or MR expression 

in the BNST that may be obscured by conflating multiple regions into a single punch. 

Immunohistochemistry could also be used to display the protein distribution of glucocorticoid 

receptors on a finer scale. Glucocorticoid receptor RNA and protein measures typically 

correlate (e.g. Han, Ding, & Shi, 2014; Sotnikov et al., 2014), but protein expression still needs 

to be quantified to determine if adolescent conditions have protein-specific effects. Adolescent 

stress can impair neurogenesis in the hippocampus, resulting in fewer hippocampal neurons 

compared to control animals (Isgor et al., 2004). Using techniques that are more detailed than 

qPCR could indicate whether adolescent CORT results in lower hippocampal GR due to fewer 

hippocampal neurons. 

2.4.5. Gonadal hormones and nonapeptide receptors 

Basal concentration of testosterone in males and estradiol in females were no different 

between CORT and saline dosed birds. A similar effect was found in rats, with rats subjected 

to chronic variable stress in adolescence no different from rats that experienced no such stress 

in basal testosterone or basal estradiol concentrations in males and females, respectively 

(Bourke et al., 2013). In contrast to basal measures, adolescent stress can blunt a stressor-

induced rise in testosterone in male rats and blunt a stressor-induced fall in estradiol in female 

rats (Bourke et al., 2013). A lower testosterone concentration in male guinea pigs is associated 

with lower antagonistic and courtship behaviour when housed with an unfamiliar male and 

female (Sachser et al., 1993). In the current study, lower courtship behaviour in CORT dosed 

males compared to saline dosed males could be due to lower testosterone secretion in response 

to being housed in an unfamiliar mixed-sex group but the hypothesis requires testing. Further 
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work is needed to explore how adolescent CORT dosing influences time-dependent gonadal 

hormone responses to unfamiliar stimuli, like environments and conspecifics. 

Nonapeptides are a plausible mechanism that contribute to the social behaviour effects 

found in the current chapter, but quantifying circulating nonapeptide concentrations was not 

possible as the equipment necessary for extraction was not available. However, nonapeptide 

receptors VT1 and VT3 were quantified in adulthood and CORT dosing had no effect on 

relative expression of either receptor. Adolescent CORT therefore has little influence on neural 

regulation of nonapeptide functioning, but VT2 receptor expression in the pituitary gland and 

VT4 receptor throughout the SBN still require quantification. In mammals, parental absence 

and low parental care typically result in adult animals with lower oxytocin receptor binding in 

the BNS (e.g. Francis et al., 2002; Lukas et al., 2010) and higher vasopressin RNA expression 

in the PVN of the hypothalamus (e.g. Pan et al., 2009; Veenema et al., 2006). Developmental 

stressors that are not social (e.g. maternal restraint during offspring prenatal development) have 

little effect on offspring nonapeptide receptor expression in later-life (Lee et al., 2007). 

Nonapeptide functioning may be affected by developmental social experiences, not stressors. 

Adolescent CORT dosing would not be expected to have any influence on nonapeptide receptor 

expression, but adolescent social experiences like social instability (McCormick et al., 2015) 

and social density (Sachser et al., 1993) may. However, the hypothesis that adolescent social 

experiences affect adult nonapeptide receptor expression requires testing. 

2.4.6. Summary 

In summary, the current chapter clearly show that adolescent CORT dosing can have 

long-term effects on later-life responses to unfamiliar stimuli (environments, objects, and 

conspecifics) and on stress physiology by affecting neural expression of GR. The long-term 

effects of adolescent CORT dosing on behavioural responses to an unfamiliar environment and 
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GR expression were similar to the effects seen in response to adolescent stress in rats. CORT 

may therefore be an endocrine mechanisms behind the long-term effects of adolescent stress. 

Encountering stress during adolescence is a common occurrence as animals leave the natal 

home and encounter unfamiliar environments and predators (Spear, 2000; Yoder et al., 2004). 

The findings presented in the current chapter suggest that, due to greater glucocorticoid 

exposure, exposure to stressors in adolescence can affect behavioural responses to unfamiliar 

stimuli and stress physiology when in adulthood. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



101 
 

Chapter 3 

Early adolescent group size and social density in zebra finches: long-term effects on 

behavioural responses to unfamiliar stimuli, corticosterone, and gonadal hormones 
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3.1. Introduction 

Living at higher social density during adulthood may be a stressor, as animals may engage in 

more antagonistic interactions as they competition over limited resources (e.g. territory, food) 

becomes more common (Craig & Swanson, 1994; Judge & deWaal, 1993; van Loo et al., 

2001). Whether higher social density is a stressor in adolescents is unclear. Adolescent social 

density may modulate social behaviour rather than stress, with adolescents raised at higher 

social density developing into adult animals that engage in more affiliative behaviour in 

adulthood compared to conspecifics raised at a lower density. For example, male zebra finches 

housed six birds per cage in adolescence clump more with unfamiliar birds when housed in an 

unfamiliar social group in adulthood compared to birds raised two per cage in adolescence 

(Ruploh et al., 2014). However, the long-term effects of adolescent social density could be 

interpreted in terms of stress. In Ruploh et al. (2014), the birds were removed from their 

adolescent housing conditions (two or six birds per cage) in early adulthood (postnatal day 108-

112) and then single housed for a mean duration of 245 days prior to testing. High density 

reared birds may therefore clump with unfamiliar birds more than low density reared birds to 

better avoid social separation stress. In line with the stress avoidance hypothesis, male mice 

raised seven per cage in adolescence develop into adults that spend less time in open spaces in 

an unfamiliar environment compared to mice raised one per cage (Reiss et al., 2007). Higher 

adolescent social density may therefore result in adults that are more stress avoidant than 

animals raised at lower density. However, adult social context may modulate the effect. Mice 

raised at higher density prior to adolescence (three nests per cage) developed into adults that 

spent less time in open areas of an unfamiliar environment than mice raised at lower density, 

but only when the animals were individually tested (Branchi & Alleva, 2006). When tested in 

familiar pairs, no group differences were present (Branchi & Alleva, 2006). Familiar 

conspecifics can lower stressor avoidant responses due to social buffering (DeVries et al., 2003; 
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Hennessy et al., 2009). Familiar conspecifics may therefore buffer the behavioural responses 

to unfamiliar stimuli in adulthood, thereby negating any long-term effects of adolescent social 

density. However, the hypothesis requires testing as all studies that have assessed the long-

term effects of adolescent density on responses to unfamiliar environments and objects have 

done so in an individual context. 

Adolescent social density can have different effects on responses to unfamiliar stimuli 

depending on an animal’s developmental stage during testing. Male mice housed twenty per 

cage during adolescence spend more time interacting with an unfamiliar conspecific and more 

time in open spaces in an unfamiliar environment whilst in adolescence compared to male mice 

housed four per cage (Ago et al., 2014). The mice in Ago et al. (2014) were tested immediately 

after the housing variation, so the effects may reflect either developmental stage (i.e. 

adolescence vs. adulthood) or time between housing variation and testing (i.e. short-term vs. 

long-term). In contrast to Ago et al. (2014), adult male rats housed at higher density spend less 

time in open spaces in an unfamiliar environment compared to rats housed at lower density 

when tested immediately after the housing density variation (Botelho, Estanislou, & Morato, 

2007; Daniels, Pietersen, Carstens, Daya, & Stein, 2000). Developmental stage, not duration 

of time until testing, therefore better explains the effect in Ago et al. (2014). Higher adolescent 

social density may result in animals that are more likely to approach unfamiliar stimuli in 

adolescence, but more likely to avoid unfamiliar stimuli in adulthood. The rise in gonadal 

hormones during adolescence results in more risk-taking behaviour within adolescence 

(Cyrenne & Brown, 2011; Steinberg, 2008), and social density may interact with such pubertal 

maturation in order to result in the adolescent-specific effects reported in Ago et al. (2014). 

However, no study has quantified the short- and long-term effects of adolescent social density 

on behavioural responses to unfamiliar stimuli within the same study to determine whether the 
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same animals display different responses across development and therefore determine if the 

effects of Ago et al. (2014) are age-specific. 

Adolescent social experiences, such as social re-housing or single housing, have long-

term effects on adult behavioural responses to unfamiliar stimuli, and these effects have been 

attributed to higher exposure to glucocorticoids during adolescence compared to control 

animals (Buwalda et al., 2011; McCormick et al., 2015; Sachser et al., 2011). Higher social 

density in adult animals results in a higher basal CORT concentration compared to animals 

raised at lower density of some species, suggesting that higher social density may act as a 

stressor (Christian, 1950; Creel, 2013). Higher adolescent social density could therefore also 

act as a developmental stressor, resulting in higher CORT concertation when in adulthood as 

has been shown to occur in response to other adolescent stressors (Hollis et al., 2013). 

Adolescent social density has no effect on basal CORT concentration in adolescent mice (Ago 

et al., 2014; Laviola et al., 2002) or adult mice (Ortiz et al., 1985), but male mice housed at 

higher density in adolescence secrete a higher concentration of CORT when exposed to a 

stressor (loud noise when single housed) in adulthood compared to male mice from a lower 

density housing condition (Ortiz et al., 1985). However, male guinea pigs housed at higher 

density throughout adolescence had lower cortisol concentrations in response to encountering 

two unfamiliar conspecifics (one male, one female) in adulthood compared to guinea pigs 

raised in pairs in adolescence (Sachser et al., 1993). Adolescent social density may therefore 

affect stressor-induced CORT secretion in a context- or species-dependent manner. Animals 

raised at higher social density in adolescence may secrete more CORT in an individual context 

(or if mice; Ortiz et al., 1985), but secrete less CORT in a group context (or if guinea pigs; 

Sachser et al., 1993), compared to animals reared at a lower social density However, further 

work is needed to determine the effects of adolescent social density on adult CORT secretion 
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in response to a stressor (e.g. unfamiliar environment) in individual and group contexts within 

the same animals to test these hypotheses. 

Adult animals engage in more antagonistic interactions when at higher social density 

compared to lower social density across a range of taxa (e.g. birds: Craig & Swanson, 1994; 

primates: Judge & deWaal, 1993; rodents: van Loo et al., 2001), and more antagonistic 

interactions results in a higher testosterone concentration (Wingfield et al., 1990; Wingfield et 

al., 2005). Animals living at higher (vs. lower) social density may therefore have higher 

concentrations of testosterone, as has been shown in both males and females adults across taxa 

as social density varies over the breeding season (e.g. birds: Smith, Raouf, Brown, Wingfield, 

& Brown, 2005; mammals: Hirschenhauser & Oliveira, 2006; Schradin, 2008). Adolescent 

male guinea pigs raised at higher density throughout adolescence have higher basal testosterone 

concentration in adolescence compared to guinea pigs raised at lower density (Sachser & 

Prӧve, 1988). Adolescent social density could therefore affect gonadal hormone functioning, 

with subsequent effects on adult social behaviour. However, adolescent social density has no 

long-term effects on basal testosterone concentration in adulthood for mice (Nicholson et al., 

2009; Ortiz et al., 1984; Smith, Mabus, Stockwell, & Muir, 2004) or male guinea pigs (Lürzel 

et al., 2010). Whether adolescent social density affects estradiol concentration in male and/or 

female animal’s remains to be investigated. Furthermore, whether adolescent social density 

modulates gonadal hormone concentration in avian species has not been investigated. 

Adolescent social density affects adult social behaviour, as animals raised at higher density in 

adolescence engage in less courtship and antagonistic behaviour when in adulthood compared 

to animals raised at lower density (e.g. zebra finches, Ruploh et al., 2014; guinea pigs, Sachser 

et al., 1993). The current evidence suggests that the effects of adolescent social density on adult 

social behaviour cannot be attributed to any long-term changes in differences in the circulating 

concentration of gonadal hormones.  



106 
 

Nonapeptides also regulate behavioural responses to conspecifics, but have not been 

investigated in the context of adolescent social density. Higher adolescent social density results 

in adult animals that engage in more affiliative behaviour, less antagonistic behaviour, and less 

courtship behaviour when in adulthood compared to animals raised at lower density (Ruploh 

et al., 2013; Ruploh et al., 2014; Sachser et al., 1993). Higher concentration of oxytocin (OT; 

in mammals) and mesotocin (MT; in birds) results in animals typically engaging in more 

affiliative behaviour with unfamiliar conspecifics, such as social contact in rats (Witt et al., 

1992) and flocking in birds (Goodson et al., 2009). Higher concentration of vasopressin (VP; 

in mammals) and vasotocin (VT; in birds) results in animals typically engaging in more 

antagonistic behaviour with unfamiliar conspecifics (Goodson & Thompson, 2010), for 

example in a mate competition context in zebra finches (Kabelik et al., 2009). Higher 

adolescent social density could therefore result in animals with higher OT/MT concentration 

and lower VP/VT concentration when in adulthood compared to animals raised in lower density 

groups in order to explain the effects of adolescent social density on adult social behaviour, but 

these suggestions require testing. 

An important caveat in the social density literature is that animals are often made to 

live at higher social density by housing animals in larger groups. For example, social density 

has been varied in zebra finches by housing birds in groups of either two or six in same sized 

enclosures (Ruploh et al., 2013). Any effects reported to arise from variation in social density 

could be attributed to either variation in the absolute number of animals an individual was 

housed with and/or the number of animals per square metre. Larger group size in adults, 

independent of social density, can either result in more antagonistic behaviour (Craig & 

Swanson, 1994; van Loo et al., 2001) or less antagonistic behaviour (D’Eath & Keeling, 2003; 

Hughes, Carmichael, Walker, & Grigor, 1997). A social hierarchy may become more difficult 

to maintain in larger groups, so animals may engage in more antagonistic behaviour to better 
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establish a position in the hierarchy (van Loo, van Zutphen, & Baumans, 2003) or less 

antagonistic behaviour as animals begin to use alternative methods (for example, body size 

and/or mass) for forming a hierarchy (D’Eath & Keeling, 2003; Pagel & Dawkins, 1997). 

During adolescence, animals enter larger social networks than before adolescence (Nelson et 

al., 2016) and learn how to function in social hierarchies (Pellis & Pellis, 2007). Adolescent 

group size itself, or in interaction with social density, could therefore influence responses to 

unfamiliar stimuli through changes in antagonistic behaviour but these variables are rarely 

tested concurrently.  

The current study aimed to investigate the hypothesis that living at high social density 

during adolescence acts as a stressor, resulting in adult animals that spend less time interacting 

with unfamiliar stimuli and have a prolonged secretion of CORT during an acute stress 

response compared to animals raised at a lower density in adolescence. Zebra finches were 

used, as adolescent social density has previously been shown to have long-term effects on 

social behaviour in the birds (Ruploh et al., 2014) and Chapter 2 revealed when in adolescence 

zebra finches appear most sensitive to glucocorticoid exposure (postnatal days 40-60). During 

days 40-60 zebra finches begin to perch in closer proximity to unfamiliar conspecifics instead 

of the parents (Adkins-Regan & Leung, 2005; Zann, 1996), so the age range may be a time 

when adolescent zebra finches are most responsive to different social contexts. Zebra finches 

were therefore housed in groups varying in number and density of birds from days 40-60.  

On day 60, the manipulation was ended by re-housing birds in same-sex pairs and the 

behavioural interactions between the re-housed birds were quantified to assess the short-term 

effects of the housing conditions. Birds raised at high density during days 40-60 were predicted 

to spend less time alone during the initial re-housing compared to all other groups (based on 

Ago et al., 2014). Adolescents raised at higher density were also expected to engage in more 

gregarious behaviour (allopreens, clumps), less antagonistic behaviour (beak fences, 
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displacements), and less neophobic behaviour (hops, head turns) compared to the other housing 

conditions (based on Branchi & Alleva, 2006; Pellis & Pellis, 2007). 

In adulthood (day 100+), behavioural responses toward unfamiliar environments and 

objects were quantified in individual and group contexts. The unfamiliar environments were 

identical to those described in Chapter 2, but the unfamiliar object tasks were new and consisted 

of exposing the birds to a novel perch with coloured card on the end. In line with previous work 

investigating adolescent stressors (e.g. Chapter 2; Hollis et al., 2013), high density raised birds, 

compared to all other groups, were predicted to interact less with an unfamiliar environment 

when individually tested (slower to enter unfamiliar environment, fewer entries into unfamiliar 

environment, less time perching in unfamiliar environment, less time foraging next to the 

unfamiliar objects, more hops between perches, and more head turns) and to an unfamiliar 

object when individually tested (slower to perch on unfamiliar object, fewer number of times 

contacting unfamiliar object, shorter time perching on unfamiliar object, more hops between 

perches, and more head turns). In a group context, adolescent social density was not predicted 

to have any effects on behavioural responses to an unfamiliar environment or object and social 

behaviour during the task (time alone, allopreening, clumping, beak fencing, perch 

displacements) based on previous research (Chapter 2; Branchi & Alleva, 2006). 

The birds’ behavioural responses to an unfamiliar mixed-sex group of conspecifics 

were quantified later in adulthood in a task identical to that described in Chapter 2. Birds reared 

at higher adolescent social density were predicted to spend less time alone and, if male, engage 

in less courtship behaviour compared to all other groups (based on Chapter 2; Ruploh et al., 

2014). Birds raised at higher density were also predicted to engage in more gregarious 

behaviour (allopreens, clumping) and less antagonistic behaviour (displacements, beak fences) 

compared to all other groups (based on Ruploh et al., 2014; Sachser et al., 1993).  
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CORT concentration was quantified in response to a standard capture and restraint 

stressor during the adolescence and in adulthood. Basal concentrations of male testosterone 

and female estradiol were quantified in adulthood. Blood samples were collected in adulthood 

for nonapeptide assays, but due to lack of equipment the assays were not performed. Birds 

reared at higher density were predicted to have a higher stressor-induced CORT concentration 

in adolescence and adulthood compared to all other groups (based on Ortiz et al., 1985). Basal 

testosterone and estradiol concentrations were predicted to be unaffected by group size or social 

density in line with previous research (e.g. Ortiz et al., 1984; Smith et al., 2004). 

3.2. Methods 

3.2.1. Ethical statement 

All ethical guidelines and requirements, as set out in the Principles of Laboratory Animal Care 

(NIH, Publication No. 85–23, revised 1985) and the UK Home Office Animals (Scientific 

Procedures) Act 1986, were adhered to under project licence 70/8159 and personal licences 

IDFA58352, IEBE43CFF, and 60/13261. 

3.2.2. Establishing the experimental population 

A total of 76 zebra finches were used in the current study. The zebra finches were offspring 

from 23 breeding pairs that were established as described in Chapter 2. 12 males and 12 females 

were taken from an in-house breeding stock and housed together in one of two 100 x 100 x 50 

cm (length x height x depth) cages. Birds were observed to determine opposite-sex pairs that 

engaged in any sexual behaviour (e.g. following, directed song, mounting). Once a pair was 

identified they were removed from the colony cage and housed in individual breeding cages 

(60 x 50 x 50 cm, length x height x depth; MB 3612 Metal Double Breeding Cage, R.J. Leigh 

Ltd., UK) with access to a cardboard nest box (11 x 14 x 11 cm, length x height x depth) with 

a rectangular aperture of 11 x 7.5 cm (length x height). Birds had ad libitum access to seed 
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hoppers (Food for Finches, Johnson & Jeff, UK), water hoppers, a water bath, and a grit tray 

at all times. Diets were supplemented with spinach leaves once per week. Breeding cages were 

outfitted with two 50 cm perches, and the cage floor was covered with wood pellets (Stovies 

Wood Pellets, Arbuthnott Wood Pellets Ltd, UK). All breeding birds were housed in a single 

colony room with lights on at 07:00-19:00, temperature 22+2°, and relative humidity 55+5%. 

Each breeding cage was given new nesting material (hay and jute fibre; Liverine Pet 

and Animal Health Care Ltd., UK) once per day until the birds had laid a clutch and egg food 

(approx. 1.5g of CéDé Premium Egg Food, Belgium) once per day until the chicks reached 

nutritional independence (30 days old). After laying each egg, the egg was removed and 

replaced with a fake egg (Staedtler Fimo Soft Oven Hardened Modelling Clay (white), UK). 

All of the real eggs were returned to the birds when the females had stopped laying for two 

consecutive days. Real eggs were returned at the same time in order to synchronise hatching 

and remove any effects that can arise from hatch order (e.g. exploration: Mainwaring et al., 

2012; attractiveness: Mainwaring & Hartley, 2013). Clutches were candled on incubation day 

7 to determine egg fertility, with any infertile clutches removed to allow relaying.  

On the first day of hatching, brood sizes were standardised to four chicks per nest to 

control for variation in pre-adolescent group size and social density. Any nests with more than 

four chicks (2/24) were reduced to four by placing chicks in donor nests that were not used, 

whilst nests with fewer than four chicks (2/24) were not used in the study. Each chick was 

given a temporary ID by applying coloured nail polish to each leg when 5 and 8 days old. 

Chicks were given a permanent ID when 10 days old (one uniquely numbered orange leg ring, 

one coloured leg ring: pink, yellow, light blue, or white). The colours were selected as no 

evidence suggests that they affect behaviour (unlike for red bands, e.g. Burley et al., 1982). 
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3.2.3. Experimental design 

At 40 days of age, adolescent birds were housed in one of four groups of same-sex and age-

similar (+1 day) birds that varied in the number and density of birds per cage. Groups were 

termed low number (LN), low number/control (LN/C), high number/low density (HN/LD), and 

high number/high density (HN/HD; Figure 3.1). The birds were continuously housed in the 

four conditions between days 40 and 59. On day 60 (+1), group size and density was 

standardised by pair housing all birds in cages measuring 0.6 x 0.5 x 0.5 metres (length x height 

x depth). HN/LD, HN/HD, and LN birds were re-housed with a same-sex age-similar (+1 day) 

bird from a different replicate of the same group (birds were unfamiliar to one another), 

whereas LN/C birds were re-housed with their familiar cage mate. LN/C birds were included 

in the design to investigate the effects of re-housing a bird with an unfamiliar conspecific as 

part of the attempt to standardise housing. LN/C birds can be compared to LN birds in order to 

draw inferences regarding the effects of adolescent social novelty on later-life measures.  

Group size was investigated by the inclusion of low number housing conditions (LN & 

LN/C) that could be compared with higher number housing conditions (HN/LD & HN/HD). 

LN and LN/C groups were housed two birds per cage (each condition had n = 18, 10 male and 

8 female, split into 9 replicates) in cages measuring 0.6 x 0.5 x 0.5 metres (length x height x 

depth). To investigate social density, birds in HN/LD and HN/HD conditions were housed five 

birds per cage (each condition had n = 20, 10 male and 10 female, split into four replicates). 

Each HN/LD replicate was housed in cages measuring 1.2 x 0.5 x 0.5 metres (length x height 

x depth), whilst each HN/HD replicates were housed in cages measuring 0.6 x 0.5 x 0.5 m 

(length x height x depth). The HN/LD group had 0.06m3 per bird whereas the HN/HD group 

had 0.03m3 per bird, hence being termed high number/low density and high number/high 

density. To control for differences in foraging competition across group sizes, large group size 

replicates had access to two seed hoppers, two water hoppers, two water baths, and two grit 
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trays whereas smaller group replicates only had one of each item. Birds in HN/HD, LN, and 

LN/C replicates had access to two 50cm perches, whereas birds in the HN/LD replicates had 

access to four 50cm perches so they could occupy more space. The ages the birds underwent 

the housing manipulation in relation to the rest of the experiment is presented in Figure 3.2. 

Figure 3.1. Summary diagram of the early adolescent housing condition variation. Birds were 

housed in one of four groups varying in group size and/or density between days 40-59. On day 

60 the LN, HN/HD, and HN/LD were re-housed in unfamiliar pairs. 

Figure 3.2. Timeline detailing the age at which the birds underwent the adolescent variation 

in housing conditions (blue), when behavioural testing occurred (green), and when blood 

sampling occurred (red). 
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3.2.4. Adolescent behavioural responses to conspecifics during re-housing 

On day 60, birds were video recorded for the first thirty minutes after being re-housed. Digital 

cameras (Sony Handycam, HDR-PJ24OE) were positioned around 60 cm in front of the cages. 

Recordings were used to quantify affiliation-related behaviour (duration of time perching 

alone, number of allopreens, and number and duration of clumping), antagonistic behaviour 

(number of perch displacements, number and duration of beak fencing), courtship behaviour 

(number and duration of directed song, number of mounts), and neophobia-related behaviour 

(number of hops, number of head turns) that are described in Table 3.1. 

Table 3.1. Descriptions of zebra finch behaviour that were quantified during the adolescent 

social interactions, adult group context unfamiliar stimuli tasks, and adult social integration 

task. Definitions are based on those in Alger et al. (2011), Goodson & Adkins-Regan (1999), 

Ruploh et al. (2014), and Zann (1996). 

 

 

 

 

 

 

 

 

 

 

 

 

Behaviour  Description 

Perching 

alone 

 

A bird is on a perch with no other bird on the perch 

 

 

Allopreen 

 

 

A bird grooms the neck and/or head of another bird 

with its beak 

 

Clumping 

bout 

 

Two birds sit in contact with one another for at least 5 

seconds 

 

Displacement 

 

 

Beak fence 

bout 

A bird hops at another bird causing the receiving bird 

to hop away; can be given or received 

 

Birds jab their beaks together for at least 2 seconds 

 

  

Directed 

song bout 

 

A male looks at a female and emits a stereotyped series 

of calls for at least 2 seconds 

 

Mount 

 

 

A male hops on top of a female as an attempt to 

copulate 

 

Hop 

 

 

A bird jumps from one location to another; hops can be 

perch-to-perch, perch-to-ground, or ground-to-perch. 

 

Head turns 

 

 

A bird turns its head ninety degrees, with zero degrees 

being head facing forward with beak aligned with the 

midline of the body 
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3.2.5. Adult behavioural testing 

Four tasks were used to quantify behavioural responses to unfamiliar stimuli when in adulthood 

(PHD 103-138); two tasks exposed birds to an unfamiliar environment, two tasks exposed birds 

to an unfamiliar object. Each task occurred once when birds were individually housed 

(individual context) and once when birds were housed in familiar social groups (group context). 

Tasks within each context occurred on the same day for each bird, with each task separated by 

four hours (individual context start time 9 AM or 1 PM; group context start time 9.15 AM or 

1.15 PM). Individual and group context tasks were separated by at least 7 days for each bird 

and counter-balanced across treatment groups and sexes. Unfamiliar environment and object 

task order were counter-balanced across treatment groups and sexes within each day. Later in 

adulthood (PHD 147-166) after behavioural responses to unfamiliar non-social stimuli were 

completed, birds were exposed to a fifth task used to quantify behavioural responses to an 

unfamiliar mixed-sex social group of birds. 

Unfamiliar environment tasks. The tasks were identical to those described in Chapter 2, and 

only a brief summary will be presented here. Tasks were carried out in cages measuring 120 x 

50 x 50 cm (length x height x depth) that were split into two zones each measuring 60 x 50 x 

50 cm (length x height x depth) with a white wrought iron divider. One zone was identical to 

the home cage and was therefore considered a familiar environment, whereas the other identical 

to the home cage but with the addition of three unfamiliar objects attached to the perches. 

Individual context objects were a pink ball, a pyramid of three coloured blocks, and two 

intertwined dark blue pipe cleaner rings. Group context objects were a yellow tub, a green pipe 

cleaner helix, and a ‘U’ of coloured blocks. Unfamiliar objects were baited with a dish of 

spinach to encourage the birds to approach the objects. Familiar/unfamiliar cage side was 

counter-balanced across treatment groups and sexes. 
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In individual context tasks, birds were captured from their home cages and single 

housed in the familiar environment of the unfamiliar environment task cages that were in a 

room separate from the colony room. All birds from a single cage were captured at the same 

time and housed in the unfamiliar environment cages whilst in acoustic, but not visual, contact 

with one another. Birds were left twenty fours before the first task began. A video camera 

(Sony Handycam, HDR-PJ24OE) was placed around 60 cm in front of the task cages. For each 

task, birds were recorded for thirty minutes in order to quantify locomotor activity (number of 

hops between perches) and risk assessment behaviour (number of ninety degree head turns) 

prior to exposing the birds to the unfamiliar environment (i.e. pre-exposure). After thirty 

minutes had elapsed the divider separating the familiar/unfamiliar compartments was removed 

to expose birds to the unfamiliar environment (i.e. exposure) for sixty minutes. During 

exposure the following behaviour were recorded: latency to enter unfamiliar environment 

(seconds), number of entries into unfamiliar environment, duration of time spent perching in 

unfamiliar environment (seconds), number of objects contacts, duration of time spent in contact 

with objects (seconds), total number of hops between perches, and total number of ninety 

degree head turns.  

In group context tasks, birds were captured and immediately returned to their home 

cage in the colony room with their familiar cage mates to control for handling effects between 

individual and group conditions. After 24 hours had then elapsed, the task began and was 

identical to that described for the individual context unfamiliar environment task except two 

birds were tested at the same time. In the group context, the same behavioural measures were 

recorded as in the individual context task for each bird. Additionally, measures were taken of 

social behaviour, namely: number of allopreens, number of beak fence bouts, duration of time 

beak fencing (seconds), number of clump bouts, duration of time clumping (seconds), and 

duration of time perching alone (seconds). Social behaviour are defined in Table 3.1. After 
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sixty minutes had elapsed birds were ushered back into the familiar environment and the 

divider replaced. If the individual context unfamiliar environment task was the last task of the 

day, birds were captured and returned to their home cages in their familiar pairs in the colony 

room. 

Unfamiliar object tasks. The individual context task occurred in what was the familiar 

environment in the unfamiliar environment task cages described above, whereas the group 

context task occurred in the home cage. The task consisted of inserting a 15cm white perch 

into the centre of the front of the cage (level with the two 50cm perches already present). On 

the end of each perch was a coloured piece of card (Paper2Go, Rainbow Card Bright’s) that 

the birds had never been exposed to, making the perch an unfamiliar object. The individual 

context object was a 7cm diameter orange circle (Figure 3.3. a), whereas the group context task 

object was a 6 x 6 cm pink square (Figures 3.3. b). A pilot study was conducted on stock adult 

birds (n = 5M, 5F) to determine which objects should be used. When individually housed, stock 

birds had a mean latency to perch on the novel objects described above of around 25 minutes 

(individual context object: M = 26.25, SD = 6.03; group context object: M = 24.73, SD = 5.86) 

in a 60 minute test. Objects were therefore considered sufficiently and similarly aversive. 

Figure 3.3. Objects used in unfamiliar object tasks, a) individual context and b) group context. 

In order to quantify any behavioural differences prior to the tasks, locomotor behaviour 

(number of hops between perches) and risk assessment (number of ninety degree head turns) 

were recorded for thirty minutes prior to exposing the birds to the unfamiliar objects. After 

thirty minutes had elapsed the objects were inserted into the task cages. Objects remained in 



117 
 

the task cages for sixty minutes and the behavioural responses to the objects were recorded. 

Behaviour quantified were duration of time flying in response to the object (seconds), latency 

to perch on unfamiliar object (seconds), number of perches on unfamiliar object, duration of 

time spent perching on unfamiliar object (seconds), total number of hops between perches, and 

total number of ninety degree head turns. In the group context, social behaviour between the 

birds was also quantified. Social behaviour quantified were number of allopreens, number of 

beak fence bouts, duration of beak fence bouts (seconds), number of clumps, duration of time 

clumping (seconds), and duration of time perching alone (seconds). After sixty minutes of 

exposure to the unfamiliar object the object was removed. If the unfamiliar object task was the 

last task of the day, birds were then captured and returned to their home cages in their familiar 

pairs in the colony room. 

Unfamiliar conspecifics task. A test bird was captured from the home cage and housed in one 

of four unfamiliar social groups. Each unfamiliar social group consisted of two adult male and 

two adult female birds taken from a stock population. Each unfamiliar social group has been 

housed in cages measuring 60 x 50 x 50 cm (length x height x depth) for 30 days prior to the 

beginning of testing task and were therefore considered familiar to one another. All four 

unfamiliar social groups were housed in the same room and were in auditory, but not visual, 

contact with one another. The room in which the unfamiliar conspecifics task occurred was 

outside that of the holding room. 

Two birds from the same home cage were captured and housed in separate unfamiliar 

social groups for 60 minutes and cages were video recorded (Sony Handycam, HDR-PJ24OE) 

from a distance of around 60 cm in front of the test cages. Video records were used to quantify 

social behaviour that the test bird engaged in with unfamiliar birds. Affiliation-related 

behaviour recorded were: number of allopreens, number of clumps, duration of time perching 

alone (seconds), and duration of time on ground alone (seconds). Antagonistic behaviour 
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recorded were: beak fence bouts (number and duration), number of times a test bird displaced 

an unfamiliar bird, number of times an unfamiliar bird displaced a test bird. Courtship 

behaviour recorded were: directed song bouts emitted by test males toward unfamiliar females 

(number and duration), directed song bouts sang to test females by unfamiliar males (number 

and duration), number of times a test male and an unfamiliar female engaged in mounting, and 

number of times a test female and unfamiliar male engaged in mounting. Beak fencing and 

perch displacement behaviour were recorded separately for unfamiliar males and unfamiliar 

females. Social behaviour are defined in Table 3.1. After sixty minutes had elapsed both test 

birds were captured and returned to their home cage. Each unfamiliar social group was exposed 

to one test bird every day over a period of nineteen days. 

3.2.6. Hormone sampling 

Plasma CORT concentration in response to a standard capture-restraint stressor (Wingfield et 

al., 1997) was quantified during adolescence (PHD 54-56) and then in adulthood (PHD 147-

177). Basal plasma concentration of testosterone in males and estradiol in females were 

determined between from blood samples taken between PHD 166-196.  

Corticosterone. Three blood samples were collected from each bird in response to a standard 

capture and restraint stressor over a period of 45 minutes. The first sample (approx. 40µl) was 

collected within three minutes of entering the holding room to ensure that CORT was at basal 

concentration (Romero, 2004). Birds were then restrained in black cloth bags. A second sample 

(approx. 30µl) was taken 15 minutes into restraint, and a third sample (approx. 30µl) was taken 

45 minutes into restraint. The time points were chosen to attempt to quantify basal, peak, and 

post-peak CORT concentration in response to a stressor. Chapter 2 revealed that 10 minutes 

was an inaccurate time to detect peak CORT concentration and 30 minutes was an insufficient 

duration of time to determine post-peak CORT. Consequently, the blood sampling times were 
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later compared to chapter 2. 15 minutes and 45 minutes into restraint were selected as later 

sampling times to attempt to quantify peak and post-peak CORT concentrations, respectively. 

Blood samples were collected by pricking a brachial vein of each bird with a 27-gauge needle 

tip. Samples were collected into heparinised capillary tubes, placed in an Eppendorf on wet ice, 

and then centrifuged at 3500g for 10 minutes to separate the plasma and red blood cells. Plasma 

was then removed and placed into a separate Eppendorf tube that was then stored at -20°C. All 

birds in a home cage were captured and sampled at the same time to control for any effects of 

cage disturbance. After the final blood sample was taken, the birds were returned to their home 

cages in their familiar pairs. 

Gonadal hormones. Birds from a home cage were captured and transferred to a separate room 

for blood sampling. A brachial vein was punctured with a 27-gauge needle tip and 100µl of 

blood was collected into heparinised capillary tubes. All samples were collected within four 

minutes of entering the holding room to ensure basal testosterone concentration was collected 

(Wingfield & Wada, 1989). Blood samples were placed into an Eppendorf on wet ice before 

being centrifuged at 3500g for 10 minutes to separate the plasma and red blood cells. Plasma 

was then removed and placed into a separate Eppendorf tube that was then stored at -20°C.      

3.2.7. Hormone assays 

CORT. Radioimmunoassay (Spencer et al., 2009) was used to quantify CORT in 10-30μl of 

plasma. All samples were extracted with 1 ml diethyl ether after being spiked with 25µl of 

[1,2,6,7-3H]-CORT label (Perkin Elmer Inc., UK). Extracted samples were evaporated at 42°C 

and reconstituted in 300µl of assay buffer (0.01M PBS, pH 7.4, 0.25% BSA). 50µl aliquots of 

the reconstituted samples were used to determine the extraction efficacy, which ranged between 

71.24-100%. The concentration of CORT was then determined in two 100µl aliquots of the 

reconstituted samples using anti-CORT antiserum (Esoterix Endocrinology, USA, B3-163; 
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1:15000 dilution in assay buffer) and [1,2,6,7-3H]-CORT label (Perkin Elmer, UK). The 

reactions were incubated for 24 hours at 4°C, and the antibody-bound antigens were then 

removed by the addition of 100µl of a dextran coated charcoal suspension (0.5% charcoal, 

0.25% dextran in assay buffer) and centrifuging the samples at 2000g for 20 minutes. The 

supernatant was then removed and used and radioactivity quantified using a radioactivity 

counter (Packard Tri-Carb 1600 TR Liquid Scintillation Analyser, Perkin Elmer Inc., UK). A 

total of six assays were performed, with all samples from a single individual run in duplicate 

in the same assay. Treatment groups and sexes were spread across the assays. Each assay 

included a ten point standard curve ranging from 0.04-20 ng/ml. Intra-assay coefficients of 

variation (%) were 10.51, 9.74, 12.86, 10.12, 11.37, and 13.15. Inter-assay coefficient of 

variation (%) was 12.70. 50% binding (ng/ml) were 0.79, 0.74, 0.80, 0.76, 0.92, and 0.81. 

Testosterone. Radioimmunoassay was used to quantify testosterone in 20-30µl of plasma 

following the protocol described for CORT. However, anti-testosterone antiserum (MP 

Biomedicals, LLC., USA, 07-189016) and [1,2,6,7-3H]-testosterone label (Perkin Elmer, UK) 

were used in the testosterone assay. A ten point standard curve ranging from 0.04-20 ng/ml 

was included in the assay. The extraction efficiency was 75-100%. All samples were run in 

duplicate in one assay. The intra-assay co-efficient of variation was 5.34%, 50% binding was 

0.39 ng/ml, and the detection limit was 0.04 ng/ml. 

Estradiol. An enzyme immunoassay kit (Cayman Chemical Company, Estradiol EIA Kit, Ann 

Arbor, Michigan, USA) was used to determine estradiol concentration in female plasma 

samples. The kit has previously been used to quantify estradiol in zebra finches (Remage-

Healey et al., 2008; Remage-Healey et al., 2012).  Following the manufacturer’s guidelines 10-

30µl samples of plasma were diluted in assay buffer to 105µl. 50 µl aliquots were run in 

duplicate on one plate with an eight point standard curve ranging from 6.6-4000 pg/ml. The 

plate was read on a Biochrom Anthos 2010 Microplate Reader, ADAP 2.0 (Biochrom Ltd., 
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UK) at a wavelength of 405 nm. Intra-assay coefficient of variation was 9.74% and the 

detection limit was 6.6 pg/ml. 

3.2.8. Data Analysis 

SPSS version 22 was used to conduct all statistical tests. Residuals from each analysis were 

checked for normality (Shapiro-Wilk, p > 0.05). Variables that had positively skewed residuals 

were square root or log10 transformed to achieve normality where stated. Transformations are 

indicated in brackets after each dependent variable; no bracketed information indicates that raw 

data was used. If a variable could not be transformed to normality, a generalized linear model 

was used. Each model was conducted twice for all dependent variables. The first model 

included only LN and LN/C as a fixed factor to determine the effects of re-housing a bird with 

a familiar or unfamiliar conspecific in adolescence (referred to as the familiarity model). The 

second model included LN/C, HN/LD, and HN/HD data as a fixed factor to determine the 

effects of early adolescent group size and/or social density (referred to as the housing condition 

model). Nest ID was entered as a random factor in all mixed models to control for pre-

adolescent variation. Home cage ID was added as a random factor in group context behavioural 

responses to unfamiliar environment and object mixed models to control for the effects of 

conspecifics on individual bird behaviour. Test cage ID was entered as a random factor in 

behavioural response to unfamiliar conspecific mixed models to control for effects of different 

groups on test bird behaviour. An alpha value of p < 0.05 was used as the threshold for 

statistical significance in all tests. Sidak and Bonferroni post hoc tests were used to investigate 

significant effects for independent and repeated measures in all models, respectively. Partial 

eta squared was calculated as a measure of effect size for significant main effects and 

interactions in general linear models, whilst Cohen’s d was calculated as a measure of effect 

size for all significant post hoc comparisons. All data presented are mean + one standard error 

of the mean.  
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Adolescent behaviour. Exploratory correlations (Spearman’s rank) revealed significant 

relationships between clumping behaviour (number and duration of clumps: familiarity model, 

r = 0.622, p < 0.001; housing condition model: r = 0.747, p < 0.001) and between beak fencing 

behaviour (number and duration of beak fence bouts: familiarity model, r = 0.867, p < 0.001; 

housing condition model, r = 0.854, p < 0.001). Consequently, only one clumping variable 

(duration of time clumping) and one beak fencing variable (duration of time spent beak 

fencing) were used for analysis of these behaviour in each model. Durations were chosen in 

order to maintain a consistent scale of measurement between adolescent social behaviour (i.e. 

along with duration perching alone). 

Duration of time perching alone and number of head turns were entered as dependent 

variables in separate linear mixed models (LMM). Duration of time spent clumping (square 

root in housing condition model) and time spent beak fencing (square root in housing condition 

model) were entered as a dependent variables in separate general linear models (GLM). For 

each behaviour, one model included familiarity conditions (LN, LN/C) as a fixed actor and one 

model included housing conditions (LN, HN/LD, HN/HD) as a fixed factor. Sex was entered 

as a fixed factor in all models. In time alone and head turn models, individual birds were the 

unit of analysis with cage number entered as a random factor to control for the dependency of 

birds behaviour on one another. In clumping and beak fencing models, cage number was the 

unit of analysis as each behaviour was not specific to a bird but emerged whilst two birds were 

interacting. Allopreening, perch displacements, song, and mounts occurred infrequently (i.e. 

fewer than 1 in 10 birds displayed each behaviour) and were therefore not analysed. Variables 

excluded in response to PCA analysis, i.e. number of beak fence bouts and duration of song 

bouts, were analysed in an identical manner to their respective included variables as described 

above. Models for included and excluded variables within each behaviour (i.e. clumping and 
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beak fencing) had similar outputs (data not shown), indicating that excluding these variables 

did not qualitatively affect the results. 

Unfamiliar environment individual context. Latency to enter unfamiliar environment, number 

of entries into unfamiliar environment, and duration of time perching in unfamiliar were 

entered as dependent variables in a multivariate general linear model. Number of hops during 

exposure and number of head turns during exposure (square root in both familiarity condition 

and housing condition models) were entered as dependent variables in separate LMMs. For 

each behaviour, one model included familiarity conditions (LN, LN/C) as a fixed actor and one 

model included housing conditions (LN, HN/LD, HN/HD) as a fixed factor. Sex was entered 

as a fixed factor in all models. In hop and head turn models, the pre-exposure quantities of each 

behaviour were entered into corresponding models as co-variates to control for any behavioural 

differences prior to the task. No differences were found in pre-exposure measures (see 

Appendix A Table A.3., Table A.4, and Table A.5.). Number of object contacts and duration 

of object contact occurred infrequently (i.e. fewer than 1 in 10 birds displayed each behaviour) 

and were therefore not analysed. 

Unfamiliar environment group context. Latency to enter unfamiliar environment, number of 

entries into unfamiliar environment, duration of time perching in unfamiliar environment, 

number of hops during exposure, number of head turns during exposure, and duration of time 

perching alone during exposure (square root in both familiarity and housing condition models) 

were entered as dependent variables in separate LMMs. For each behaviour, one model 

included familiarity conditions (LN, LN/C) as a fixed actor and one model included housing 

conditions (LN, HN/LD, HN/HD) as a fixed factor. Sex was entered as a fixed factor in all 

models. In hop, head turn, and time alone models, pre-exposure quantities of each behaviour 

were entered into corresponding models as co-variates to control for any differences prior to 

the task. No differences were found in pre-exposure measures (see Appendix A Table A.3., 
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Table A.4., and Table A.5.). Allopreening, beak fencing, clumping, perch displacements, 

number of object contacts, and duration of object contact occurred infrequently (i.e. fewer than 

1 in 10 birds displayed each behaviour) and were not analysed. 

Unfamiliar object individual context. Latency to perch on unfamiliar object, duration of time 

perching on unfamiliar object, number of hops (square root in both familiarity and housing 

condition models), and number of ninety degree head turns were entered as dependent variables 

into separate LLMs. Number of perches on unfamiliar object were entered as a dependent 

variable in a generalized linear mixed model (GzLM) with data fitted to a gamma distribution 

with a log link function. For each behaviour, one model included familiarity conditions (LN, 

LN/C) as a fixed actor and one model included housing conditions (LN, HN/LD, HN/HD) as 

a fixed factor. Sex was entered as a fixed factor in all models. In hop and head turn models, 

pre-exposure quantities of each behaviour were entered into corresponding models as co-

variates to control for any differences prior to the task. No differences were found in pre-

exposure measures (see Appendix A Table A.6., Table A.7., and Table A.8.). 

Unfamiliar object group context. Latency to perch on unfamiliar object, number of perches on 

unfamiliar object, duration of time perching on unfamiliar object, number of hops between 

perches (square root in housing condition model), number of ninety degree head turns, and 

duration of time perching alone during exposure were entered as dependent variables in 

separate LMMs. For each behaviour, one model included familiarity conditions (LN, LN/C) as 

a fixed actor and one model included housing conditions (LN, HN/LD, HN/HD) as a fixed 

factor. Sex was entered as a fixed factor in all models.  In hop, head turn, and time alone models, 

the pre-exposure quantities of each behaviour were entered into corresponding models as co-

variates to control for any behavioural differences prior to the task. No differences were found 

in pre-exposure measures (see Appendix A Table A.6., Table A.7., and Table A.8.). 
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Allopreening, beak fencing, clumping, and displacements were not analysed as the behaviour 

occurred infrequently (i.e. fewer than 1 in 10 birds displayed each behaviour). 

Unfamiliar conspecifics task. Exploratory correlations (Spearman’s rank) revealed a significant 

relationship between beak fencing behaviour (number and duration of beak fences: familiarity 

model, r = 0.953, p < 0.001; housing condition model, r = 0.969, p < 0.001). Only duration of 

time beak fencing was therefore used in further analyses. Correlations were also present 

between courtship behaviour in males and between courtship behaviour in females (Table 3.2.). 

Duration of song bouts was omitted from future analyses. A principal components analysis 

(PCA) revealed the number of song bouts and number of mounts could be reduced to single 

factors for males (familiarity condition: KMO = 0.682; Bartlett’s Test, χ2 (1) = 30.676, p < 

0.001; housing condition: KMO = 0.749; Bartlett’s Test, χ2 (1) = 78.281, p < 0.001), and 

females (familiarity condition: KMO = 0.517; Bartlett’s Test, χ2 (1) = 25.874, p < 0.001; 

housing condition: KMO = 0.700; Bartlett’s Test, χ2 (1) = 52.491, p < 0.001). The PCA model 

was used to create a new component (i.e. courtship behaviour) score between the variables. 

Allopreening and clumping occurred infrequently (i.e. less than 1 in 10 birds engaged in the 

behaviour) and were therefore not analysed. 

Table 3.2. Correlations between courtship behaviour quantified in the unfamiliar conspecifics 

task split by sex and adolescent condition model (familiarity, housing).   

 

 

 

 

Variables 
Male Female 

r p r p 

Familiarity conditions model 

Song bout number and song bout duration 0.825 <0.001 0.770 <0.001 

Song bout number and mount number 0.475 0.034 0.778 <0.001 

Song bout duration and mount number 0.513 0.021 0.512 0.013 

Housing conditions model     

Song bout number and song bout duration 0.900 <0.001 0.807 <0.001 

Song bout number and mount number 0.760 <0.001 0.763 <0.001 

Song bout duration and mount number 0.716 <0.0001 0.611 0.001 
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Duration of time alone was entered as a dependent variables in LMMs. One model 

contained familiarity condition (LN, LN/C) as a fixed factor, whilst a second model contained 

housing condition (LN, HN/LD, HN/HD) as a fixed factor. Sex and location (perch, ground) 

were entered as fixed factors in both models, and location was also entered as a repeated 

measure. Duration of time spent beak fencing, number of times a test bird displaces an 

unfamiliar bird (square root transformed in housing condition model), and number of times an 

unfamiliar bird displaces a test bird (square root transformed in familiarity and housing 

condition models) were entered as dependent variables in separate LMMs. One model 

contained familiarity condition (LN, LN/C) as a fixed factor, whilst a second model contained 

housing condition (LN, HN/LD, HN/HD) as a fixed factor. Test bird sex and unfamiliar bird 

sex were also entered as fixed factors in beak fencing and displacement models, with unfamiliar 

bird sex also entered as a repeated measure to account for non-independence of the behaviour 

between unfamiliar bird sexes. Male and female courtship factors were entered as dependent 

variables in separate LMMs. Familiarity condition (LN, LN/C) and housing condition (LN, 

HN/LD, HN/HD) were entered as fixed factors in two separate models for each sex. Variables 

excluded in response to PCA analysis, i.e. number of beak fence bouts and duration of song 

bouts, were analysed in an identical manner to their respective included variables as described 

above. Models for included and excluded variables within each behaviour (i.e. beak fencing 

and courtship) had similar outputs (data not shown), indicating that excluding these variables 

did not qualitatively affect the results. 

Hormones. To analyse CORT concentration over time in response to capture and restraint, 

log10 CORT concentration (ng/ml) was entered as a dependent variable in two separate LMMs 

(familiarity model and housing condition model). Adolescent familiarity conditions (LN, 

LN/C) or housing condition (LN, HN/LD, HN/HD) were entered as fixed factors in separate 

models alongside the fixed factors of sampling time, age group, and sex that were entered as 
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in both models. Sampling time and age were also entered as repeated measures in both models. 

To further analyse CORT, change in CORT concentration between 15 and 45 mins into 

restraint was calculated (i.e. 45 min sample minus 15 min sample for each bird). Change in 

CORT concentration (ng/ml) was entered as a dependent variable in two separate LMMs 

(square root transformed data was used for the familiarity model and raw data was used for the 

housing condition model). Adolescent familiarity (LN, LN/C) or housing condition (LN, 

HN/LD, HN/D) were entered as fixed factors alongside in separate models alongside the fixed 

factors of age group and sex entered in both models. Age group was also entered as a repeated 

measure, and basal CORT concentration was entered as a co-variate in both models. Log10 

male testosterone concentration (ng/ml) and square root female estradiol concentration (pg/ml) 

were each entered as dependent variables in two separate LMMs. For each hormone, one model 

had familiarity condition (LN, LN/C) entered as a fixed factor and one model had housing 

condition (LN, HN/LD, HN/HD) entered as a fixed factor. Spearman’s rank correlation were 

conducted to investigate the relationship between hormone concentrations and behavioural 

variables that were significantly affected by adolescent group size and/or density, with models 

conducted separately for each age group and sex. In adolescent models, beak fencing and 

clumping factors were omitted as the unit of analysis was cage and these variables could not 

be correlated with CORT concentrations quantified for individual birds.  

Correlations. Correlations between hormone concentrations with behavioural variables were 

assessed using Spearman’s rank correlation. Models were conducted separately for adolescent 

and adult variables and for each sex. Adolescent CORT measurements were correlated with 

adolescent behavioural after re-housing that were affected by adolescent condition. Adult 

CORT and gonadal hormone concentrations were correlated with behaviour in which a main 

effect or interaction implicating adolescent housing condition were found. Bonferroni 

corrections were applied to account for multiple comparisons. 
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3.3. Results 

3.3.1. Adolescent behavioural responses to conspecifics after re-housing  

Perching alone. Birds that were unfamiliar spent more time perching alone than birds that were 

familiar (F1,15.813 = 14.479, p = 0.002; Figure 3.4.); effects that were independent of sex (sex: 

F1,15.321 = 0.018, p = 0.896; sex x familiarity: F1,14.956 = 0.088, p = 0.770). When housed with 

an unfamiliar conspecific, time perching alone differed according to a bird’s prior housing 

condition and sex (housing condition: F2,28.704 = 3.929, p = 0.031; sex: F1,30.104 = 13.600, p = 

0.001; housing condition x sex: F2,25.050 = 3.666, p = 0.040; Figure 3.4.). Within females, 

HN/HD birds perched alone less than LN birds (p = 0.002, d = 3.16) but HN/LD birds perched 

alone to a similar extent as birds from other conditions (LN, p = 0.210; HN/HD, p = 0.180). 

Within males, all birds perched alone to a similar extent regardless of prior housing conditions 

(LN vs. HN/LD, p = 0.998; LN vs. HN/HD, p = 0.995; HN/LD vs. HN/HD, p = 1.0). HN/HD 

females spent less time perching alone than HN/HD males (p < 0.001, d = 0.29), but sex 

differences were not present between LN (p = 0.062) and HN/LD conditions (p = 0.988).     

Figure 3.4. Duration of time birds spent perching alone during adolescent social interactions 

split by housing condition for a) female birds and b) male birds. Data are mean + one standard 

error of the mean. Significant differences (p < 0.05) in each sex are shown: a vs. b, c vs. d. 

a 

b,c 

d 

a 

b 
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Clumping. Unfamiliar pairs of bird’s spent less time clumping together than familiar pairs of 

birds (F1,14 = 8.444, p = 0.012, ηp
2 = 0.376; Figure 3.5.), and this effect was present regardless 

of a bird’s sex (sex: F1,14 = 0.205, p = 0.658; sex x familiarity: F1,14 = 3.870, p = 0.069). When 

housed with an unfamiliar conspecific, clumping duration differed with a bird’s prior housing 

condition and sex (housing condition: F2,23 = 8.823, p = 0.001, ηp
2 = 0.595; sex: F1,23 = 11.578, 

p = 0.002, ηp
2 = 0.335; housing condition x sex: F2,23 = 16.885, p < 0.001, ηp

2 = 0.434; Figure 

3.5.). Within females, HN/HD birds spent more time clumping than birds from other housing 

conditions (LN, p < 0.001, d = 6.03; HN/LD, p = 0.001, d = 5.21) and clumping duration was 

similar between LN and HN/LD birds (p = 0.934). Within males, LN birds clumped more than 

HN birds (HN/LD, p = 0.002, d = 1.69; HN/HD, p = 0.022, d = 1.55) and clumping duration 

was similar between HN birds (p = 0.715). LN males clumped more than LN females (p = 

0.040, d = 1.27), but HN females clumped more than HN males (HN/LD, p = 0.040, d = 0.97; 

HN/HD, p < 0.001, d = 6.57).  

Figure 3.5. Clumping duration of birds during adolescent social interactions for a) female birds 

and b) male birds. Data are mean + one standard error of the mean. Significant differences (p 

< 0.05) within each sex are shown: a vs. b and c vs. d. 

a 

d 

a 

b,c 
c 

b b 
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Beak fencing. Unfamiliar pairs of birds spent more time beak fencing than familiar pairs (F1,14 

= 5.888, p = 0.029, ηp
2 = 0.296; Figure 3.6.); an effect that was present regardless of a bird’s 

sex (sex: F1,14 < 0.001, p = 1.0; sex x familiarity: F1,14 = 0.073, p = 0.791). When housed with 

an unfamiliar conspecific, beak fencing duration did not differ with housing condition itself 

(F2,23 = 2.197, p = 0.134) but did differ with a bird’s prior housing condition and sex (sex: F1,23 

= 17.353, p < 0.001, ηp
2 = 0.430; housing condition x sex: F2,23 = 5.064, p = 0.015, ηp

2 = 0.306; 

Figure 3.6.). In males, HN birds fenced more than LN birds (LN vs. HN/LD, p = 0.044, d = 

0.84; LN vs. HN/HD, p = 0.003, d = 2.18). In females, all birds beak fenced for a similar 

duration regardless of prior housing condition (LN vs. HN/LD, p = 0.867; LN vs. HN/HD, p = 

0.867; HN/LD vs. HN/HD, p = 1.0). Males from HN conditions fenced more than females from 

the respective HN conditions (HN/LD, p = 0.005, d = 1.77; HN/HD, p < 0.001, d = 2.69), but 

male and female LN birds fenced to a similar extent (p = 0.905). 

Figure 3.6. Duration of time spent beak fencing during adolescent social interactions split by 

housing condition for a) female birds and b) male birds. Data are mean + one standard error of 

the mean. Significant differences (p < 0.05) within each sex are shown: a vs. b, c vs. d. 

b,c 

a 

b 

a 

d 

d 
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Head turns. Birds housed with an unfamiliar conspecific engaged in more head turns than birds 

housed with a familiar conspecific (F1,50.320 = 15.018, p < 0.001); effects that were independent 

of a bird’s sex (sex: F1,30.088 = 0.010, p = 0.921; sex x familiarity: F1,29.705 = 0.371, p = 0.547). 

The number of head turns that occurred in response to an unfamiliar conspecific was similar 

irrespective of a bird’s prior group size and social density (F2,48.073 = 0.656, p = 0.523) and 

irrespective of a bird’s sex (sex: F1,50.227 = 1.385, p = 0.245; sex x adolescent condition: F1,47.075 

= 0.270, p = 0.764).  

Figure 3.7. Number of head turns by birds during the adolescent social interactions split by 

adolescent housing condition and sex. Data are mean + one standard error of the mean. 

Significant differences (p < 0.05) are shown by a vs. b. 
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3.3.2. Adult behavioural responses to unfamiliar environments 

Adolescent re-housing with a familiar vs. unfamiliar conspecific had no effect on the latency 

to enter the unfamiliar environment, number of entries into the unfamiliar environment, or 

duration of time spent in the unfamiliar environment when in an individual context (familiarity: 

F1,32 = 0.519, p = 0.673; sex: F1,32 = 0.594, p = 0.624; familiarity x sex: F1,32 = 0.236, p = 0.871). 

Adolescent group size and/or social density prior to being re-housed with an unfamiliar 

conspecific in adolescence also had no effect on the same behavioural measures (housing 

condition: F2,51 = 1.028, p = 0.388; sex: F1,51 = 1.828, p = 0.154; housing condition x sex: F2,51 

= 0.298, p = 0.827). Data for the latency to enter the unfamiliar environment (Table 3.3.), 

number of entries into the unfamiliar environment (Table 3.4.), and duration of time spent 

perching in the unfamiliar environment (Figure 3.8.) are presented below alongside group 

context data for comparison. 
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In a group context, all birds entered the unfamiliar environment at a similar time 

regardless of whether they were re-housed with a familiar or unfamiliar conspecific in 

adolescence (familiarity: F1,14.334 = 2.356, p = 0.147; sex: F1,14.373 = 0.185, p = 0.674; familiarity 

x sex: F1,14.277 = 0.017, p = 0.898; Table 3.3.) and regardless of early adolescent group size and 

and/or social density (housing condition: F2,23 = 1.122, p = 0.372; sex: F1,23 = 0.437, p = 0.534; 

housing condition x sex: F2,23 = 0.850, p = 0.372; Table 3.3.). 

Table 3.3. Latency to enter the unfamiliar environment split by housing condition in individual 

and group contexts. Data are mean (one standard error of the mean). All comparisons were not 

significant (p > 0.05). 

  

 

 

 Birds entered the group context unfamiliar environment a similar number of times 

regardless of whether the birds were re-housed with a familiar or unfamiliar conspecific in 

adolescence (familiarity: F1,14 = 0.028, p = 0.868; sex: F1,14 = 0.309, p = 0.587; familiarity x 

sex: F1,14 = 0.028, p = 0.868; Table 3.4.) and regardless of early adolescent group size and/or 

social density (housing condition: F2,23 = 0.313, p = 0.721; sex: F1,23 = 0.125, p = 0.731; housing 

condition x sex: F2,23 = 0.342, p = 0.812; Table 3.4.).  

Table 3.4. Number of entries into the unfamiliar environment split by housing condition in 

individual and group contexts. Data are mean (one standard error of the mean). All comparisons 

were not significant (p > 0.05). 

 

 

Behaviour Context 
Adolescent Housing Condition 

LN/C   LN        HN/LD     HN/HD 

Latency to 

enter 

unfamiliar 

environment  

Individual 
36.81 

(2.91) 

37.60 

(3.15) 

38.23 

(2.84) 

34.49 

(2.62) 

Group 
36.89 

(3.13) 

34.42 

(2.91) 

29.72 

(3.93) 

38.64 

(3.09) 

Behaviour Context 
Adolescent Housing Condition 

LN/C   LN        HN/LD     HN/HD 

Number of 

entries into 

unfamiliar 

environment  

Individual 
6.67 

(0.88) 

8.28 

(1.27) 

8.16 

(1.53) 

7.10 

(0.84) 

Group 
15.28 

(2.63) 

14.33 

(3.48) 

17.95 

(4.26) 

15.05 

(3.47) 
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In the group context, birds re-housed with a familiar or unfamiliar conspecific in 

adolescence spent similar lengths of time perching in the unfamiliar environment (familiarity: 

F1,32 = 0.246, p = 0.623; sex: F1,32 = 0.224, p = 0.639; familiarity x sex: F1,32 = 1.428, p = 0.241; 

Figure 3.8.). Duration of time perching in the unfamiliar environment was also similar between 

birds housed in different group sizes and densities in adolescence (F1,49.478 = 2.768, p = 0.073). 

However, adolescent group size and density had sex-specific effects on unfamiliar environment 

perching duration (sex: F1,50.140 = 4.582, p = 0.037; sex x housing condition: F1,48.906 = 5.683, p 

= 0.006; Figure 3.8.). In females, HN/LD birds perched in the unfamiliar environment longer 

than birds from other conditions (LN, p = 0.006, d = 1.90; HN/HD, p = 0.007, d = 1.68), but 

no difference was found between LN and HN/HD birds (p = 0.992). In males, birds perched in 

the unfamiliar environment for similar durations regardless of housing condition (LN vs. 

HN/LD, p = 1.0; LN vs. HN/HD, p = 0.496; HN/LD vs. HN/HD, p = 0.459). Female HN/LD 

birds perched in the unfamiliar environment longer than HN/LD males (p < 0.001, d = 1.57), 

but no sex differences were found for LN (p = 0.691) and HN/HD birds (p = 0.554).     

Figure 3.8. Duration of time perching in the unfamiliar environment split by sex and housing 

condition in a) individual context and b) group context task. Data are mean + one standard error 

of the mean. Significant differences (p < 0.05) between female housing conditions in a group 

context are shown: a vs. b, p < 0.05. 

a a 

b 



135 
 

When exposed to an unfamiliar environment in an individual context, the number of 

hops was not differ according to whether a bird was re-housed with a familiar or unfamiliar 

conspecific in adolescence (familiarity: F1,18.042 = 0.356, p = 0.558; sex: F1,30.463 = 0.488, p = 

0.490; familiarity x sex: F1,30.903 = 0.600, p = 0.444) or what group size and/or social density a 

bird was raised in during early adolescence (housing condition: F2,50 = 0.329, p = 0.721; sex: 

F1,50 = 0.670, p = 0.417; housing condition x sex: F2,50 = 2.032, p = 0.142). 

Identical effects were found for the number of hops that occurred in when exposed to 

an unfamiliar environment in a group context, with a similar number of hops occurring in birds 

re-housed with a familiar or unfamiliar conspecific in adolescence (familiarity: F1,15.820 = 0.121, 

p = 0.733; sex: F1,16.493 = 2.005, p = 0.175; familiarity x sex: F1,15.372 = 0.307, p = 0.587) and in 

birds housed in different group sizes and/or social densities in early adolescence (housing 

condition: F2,21.622 = 0.440, p = 0.650; sex: F1,21.683 = 1.051, p = 0.317; housing condition x sex: 

F2,21.160 = 0.170, p = 0.844). Hops data are summarised in Table 3.5. 

Table 3.5. Number of hops by birds when exposed to an unfamiliar environment split by 

housing condition and social context. Data are mean (one standard error of the mean). No 

significant differences were found in each task (p > 0.05). 

 

 

 

 

 

Behaviour Context 
Adolescent Housing Condition 

LN/C   LN        HN/LD     HN/HD 

Number 

of hops 

Individual 
20.83 

(4.73) 

24.22 

(4.86) 

23.16 

(3.98) 

28.35 

(5.73) 

Group 
258.33 

(28.25) 

269.11 

(34.04) 

244.80 

(30.88) 

290.25 

(31.10) 
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In an individual context, the number of head turns a bird engaged in when exposed to 

an unfamiliar environment did not differ according to whether a bird was re-housed with a 

familiar or unfamiliar conspecific in adolescence (familiarity: F1,31 = 1.359, p = 0.253; sex: 

F1,31 = 0.611, p = 0.440; familiarity x sex: F1,31 = 0.047, p = 0.830) or what group size and/or 

social density a bird was raised in during early adolescence (housing condition: F2,51 = 0.281, 

p = 0.756; sex: F1,51 = 1.126, p = 0.294; housing condition x sex: F2,51 = 1.378, p = 0.261).  

In a group context, the number of head turns a bird engaged in when exposed to an 

unfamiliar environment was similar regardless of whether birds were re-housed with a familiar 

or unfamiliar conspecific in adolescence (familiarity: F1,31 = 0.002, p = 0.962; sex: F1,31 = 0.403, 

p = 0.530; familiarity x sex: F1,31 = 0.014, p = 0.905) and what group size and/or social density 

the birds were housed in during early adolescence (housing condition: F2,51 = 1.403, p = 0.255; 

sex: F1,51 = 0.049, p = 0.825; housing condition x sex: F2,51 = 0.228, p = 0.797). Head turns data 

are summarised in Table 3.6. 

Table 3.6. Number of head turns by birds when exposed to an unfamiliar environment split by 

housing condition and social context. Data are mean (one standard error of the mean). No 

significant differences were found (p > 0.05). 

 

 

 

 

 

Behaviour Context 
Adolescent Housing Condition 

LN/C LN HN/LD HN/HD 

Number of 

head turns 

Individual 
101.06 

(17.43) 

119.56 

(15.33) 

130.37 

(18.86) 

111.95 

(14.27) 

Group 
136.56 

(11.95) 

126.11 

(14.30) 

162.30 

(17.42) 

135.35 

(9.41) 
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Birds re-housed with a familiar or unfamiliar conspecific in adolescence spent similar 

lengths of time perching alone when exposed to the unfamiliar environment (familiarity: 

F1,12.963 = 0.108, p = 0.748; sex: F1,13.491 = 0.003, p = 0.961; familiarity x sex: F1,13.179 = 0.437, 

p = 0.520; Figure 3.9.). Duration of time perching alone also differed between birds housed in 

different group sizes and/or densities in early adolescence in a sex-specific manner (housing 

condition: F2,22.352 = 9.388, p = 0.001; sex: F1,22.291 = 7.614, p = 0.011; sex x housing condition: 

F2,22.289 = 9.314, p = 0.001; Figure 3.9.). Within females, HN/LD birds spent more time alone 

than birds from other housing conditions (LN, p < 0.001, d = 2.40; HN/HD, p < 0.001, d = 

2.09) and LN and HN/HD birds spent similar lengths of time perching alone (p = 0.883). Within 

males, birds spent a similar duration of time perching alone regardless of adolescent group size 

and/or density (LN vs. HN/LD, p = 0.779; LN vs. HN/HD, p = 0.178; HN/LD vs. HN/HD, p = 

0.641). Female HN/LD birds also perched alone more than male HN/LD birds (p < 0.001, d = 

2.34), but sex differences were not present for LN (p = 0.628) and HN/HD (p = 0.476) birds. 

Figure 3.9. Duration of time perching alone in a group context unfamiliar environment split by 

sex and housing condition. Data are mean + one standard error of the mean. Significant 

difference (p < 0.05) within females are shown by a vs. b. 

 

a 

b 
b 
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3.3.3. Adult behavioural responses to unfamiliar objects 

Birds re-housed with either a familiar or unfamiliar conspecific in adolescence had 

similar latencies to contact the unfamiliar object in both an individual context (familiarity: 

F1,23.480 = 0.637, p = 0.433; sex: F1,31.243 = 0.066, p = 0.799; familiarity x sex: F1,31.929 = 0.098, 

p = 0.757) or group context (familiarity: F3,28.796 = 0.277, p = 0.841; sex: F1,29.940 = 0.158, p = 

0.694; familiarity x sex: F3,29.435 = 0.199, p = 0.896). 

Latency to contact the unfamiliar object did not differ with early adolescent group size 

and/or density in an individual context (housing condition: F2,43.757 = 0.433, p = 0.651; sex: 

F1,45.268 = 0.764, p = 0.387; housing condition x sex: F2,39.964 = 1.241, p = 0.300) or group 

context (housing condition: F2,22.608 = 0.178, p = 0.838; sex: F1,22.753 < 0.001, p = 0.999; housing 

condition x sex: F2,22.458 = 0.070, p = 0.933). Latency data are summarised in Table 3.7. 

Table 3.7. Latency to perch on the unfamiliar object in an individual and group context split 

by housing condition. Data are mean (one standard error of the mean). No significant 

differences were found (p > 0.05). 

Behaviour Context 
Adolescent Housing Condition 

LN/C LN HN/LD HN/HD 

Latency to 

perch on 

unfamiliar 

object (mins) 

Individual 
25.23  

(1.82) 

27.43  

(1.80) 

27.31 

(1.47) 

28.46 

(1.78) 

Group 
24.67  

(2.03) 

27.32  

(1.95) 

26.86 

(1.88) 

25.35 

(2.03) 
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Birds re-housed with either a familiar or unfamiliar conspecific in adolescence had 

similar latencies to contact the unfamiliar object in both an individual context (familiarity: χ2
1,32 

= 0.206, p = 0.653; sex: χ2
1,32 = 0.376, p = 0.544; familiarity x sex: χ2

1,32 = 0.876, p = 0.356) or 

group context (familiarity: F1,14.001 = 0.562, p = 0.466; sex: F1,14.001 = 0.587, p = 0.456; 

familiarity x sex: F1,14.001 = 0.307, p = 0.588). 

Latency to contact the unfamiliar object did not differ with early adolescent group size 

and/or density in an individual context (housing condition: χ2
2,51 = 0.101, p = 0.904; sex: χ2

1,51 

= 0.190, p = 0.665; housing condition x sex: χ2
2,51 = 0.484, p = 0.619) or group context (housing 

condition: F2,22.514 = 0.802, p = 0.461; sex: F1,22.789 = 0.849, p = 0.367; housing condition x sex: 

F2,22.269 = 0.460, p = 0.637). Latency data are summarised in Table 3.8. 

Table 3.8. Number of perches on an unfamiliar object in an individual and group context split 

by housing condition. Data are mean (one standard error of the mean). No significant 

differences were found (p > 0.05). 

 

 

 

 

Duration of time spent perching on the unfamiliar object did not differ between birds that were 

re-housed with a familiar or unfamiliar conspecific in adolescence when the birds were exposed 

to the unfamiliar object either individually (familiarity: F1,32 < 0.001, p = 0.991; sex: F1,32 = 

0.239, p = 0.629; familiarity x sex: F1,32 = 0.345, p = 0.561) or when in groups (familiarity: 

F1,32 = 0.042, p = 0.840; sex: F1,32 = 1.026, p = 0.319; familiarity x sex: F1,32 = 0.064, p = 0.802). 

 Birds spent a similar length of time perching on an unfamiliar object when individually 

tested regardless of early adolescent group size and social density (housing condition: F2,46.535 

= 0.153, p = 0.859; sex: F1,47.676 = 2.959, p = 0.092; housing condition x sex: F2,43.778 = 0.873, 

Behaviour Context 
Adolescent Housing Context 

LN/C LN HN/LD HN/HD 

Number of 

perches on 

unfamiliar 

object 

Individual 
2.56  

(0.40) 

2.22  

(0.35) 

2.47  

(0.50) 

2.20  

(0.28) 

Group 
6.00      

(0.95) 

4.94  

(0.88) 

6.50  

(0.82) 

7.20  

(1.05) 
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p = 0.425). In the group context, duration of time perching on the unfamiliar object differed in 

response to adolescent housing in different group sizes and densities in a sex-specific manner 

(housing condition: F2,19.968 = 12.086, p < 0.001; sex: F1,20.009 =11.918, p = 0.003; sex x housing 

condition: F1,19.588 = 4.049, p = 0.034; Figure 3.10.). Within females, HN/LD birds perched on 

the unfamiliar object longer than birds from other conditions (LN, p = 0.001, d = 2.49; HN/HD, 

p < 0.001, d = 2.23), but no difference was found between LN and HN/HD birds (p = 0.989). 

Within males, birds perched on the unfamiliar object for a similar lengths of time regardless of 

early adolescent group size and/or social density (LN vs. HN/LD, p = 0.709; LN vs. HN/HD, 

p = 0.949; HN/LD vs. HN/HD, p = 0.396). HN/LD females also perched on the unfamiliar 

object longer than HN/LD males (p < 0.001, d = 2.27), but no sex differences were found for 

LN (p = 0.474) and HN/HD birds (p = 0.337).     

Figure 3.10. Duration of time perching on the unfamiliar object split by sex and housing 

condition in a) individual context and b) group context. Data are mean + one standard error of 

the mean. Significant differences (p < 0.05) between female conditions in a group context are 

shown by a vs. b. 

a 

b b 
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The number of hops that occurred in response to being individually exposed to an 

unfamiliar object did not differ according to whether a bird was re-housed with a familiar or 

unfamiliar conspecific in adolescence (familiarity: F1,23.050 = 0.007, p = 0.933; sex: F1,30.871 = 

0.015, p = 0.902; familiarity x sex: F1,30.807 = 0.039, p = 0.846) or what group size and/or social 

density a bird was raised in during early adolescence (housing condition: F2,44.977 = 0.803, p = 

0.454; sex: F1,46.107 = 1.833, p = 0.182; housing condition x sex: F2,42.201 = 0.452, p = 0.639).  

Similarly, number of hops that occurred in response to being exposed to an unfamiliar 

object in pairs did not differ for birds re-housed with a familiar or unfamiliar conspecific in 

adolescence (familiarity: F1,12.154 = 0.111, p = 0.744; sex: F1,12.558 = 0.226, p = 0.643; familiarity 

x sex: F1,12.594 = 0.012, p = 0.915) and for birds housed in different group sizes and/or social 

densities in early adolescence (housing condition: F2,23.022 = 0.470, p = 0.631; sex: F1,23.410 = 

0.744, p = 0.397; housing condition x sex: F2,22.803 = 0.671, p = 0.521). Hops data are 

summarised in Table 3.9. 

Table 3.9. Number of hops when exposed to an unfamiliar object split by housing condition 

and social context. Data are mean (one standard error of the mean). No significant differences 

were found within each task (p > 0.05). 

Behaviour Context 
Adolescent Housing Condition  

LN/C LN HN/LD HN/HD 

Number of 

hops 

Individual 
17.39 

(3.86) 

17.50 

(3.89) 

16.58 

(3.94) 

12.15 

(2.86) 

Group 
22.28 

(4.26) 

24.78 

(4.37) 

32.35 

(4.40) 

28.00 

(3.96) 
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Number of head turns in response to being exposed to an unfamiliar environment in an 

individual context did not differ depending on whether a bird was re-housed with a familiar or 

unfamiliar conspecific in adolescence (familiarity: F1,31 = 2.658, p = 0.113; sex: F1,31 = 0.275, 

p = 0.604; familiarity x sex: F1,31 = 2.523, p = 0.122) or what group size and/or social density 

a bird was raised in during early adolescence (housing condition: F2,44.843 = 0.152, p = 0.860; 

sex: F1,46.075 = 1.691, p = 0.200; housing condition x sex: F2,42.117 = 2.807, p = 0.072).  

Number of head turns in response to being exposed to an unfamiliar environment in a 

group context also did not differ depending on whether a bird was re-housed with a familiar or 

unfamiliar conspecific in adolescence (familiarity: F1,13.592 = 0.019, p = 0.893; sex: F1,13.473 = 

0.019, p = 0.894; familiarity x sex: F1,13.396 = 0.512, p = 0.487) or housed in a different group 

sizes and/or social densities in early adolescence (housing condition: F2,21.451 = 2.611, p = 

0.097; sex: F1,21.364 = 4.115, p = 0.055; housing condition x sex: F2,21.422 = 0.173, p = 0.842). 

Head turns data are summarised in Table 3.10.  

Table 3.10. Number of head turns when exposed to an unfamiliar object split by housing 

condition and social context. Data are mean (standard error of the mean). No significant 

differences were found within each task (p > 0.05). 

 

 

 

 

 

 

 

Behaviour Context 
Adolescent Housing Condition 

LN/C LN HN/LD HN/HD 

Number of 

head turns 

Individual 
59.33 

(10.38) 

79.17 

(9.09) 

90.26 

(9.50) 

84.25 

(9.51) 

Group 
61.78 

(8.27) 

59.94 

(5.90) 

76.10 

(5.59) 

79.20 

(6.62) 
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Birds re-housed with a familiar or unfamiliar conspecific in adolescence did not differ 

in time spent perching alone when exposed to an unfamiliar object (familiarity: F1,12.741 < 0.001, 

p = 0.992 sex: F1,13.078 = 0.328, p = 0.576; familiarity x sex: F1,13.233 = 0.568, p = 0.464; Figure 

3.11.). Duration of time perching alone also did not differ between males and females (F1,21.157 

= 0.243, p = 0.627), but did differ between birds housed in different group sizes and/or densities 

in early adolescence in a sex-specific manner (housing condition: F2,21.116 = 7.137, p = 0.004; 

sex x housing condition: F2,21.037 = 5.165, p = 0.015; Figure 3.11.). In females, HN/LD birds 

perched alone more than birds from other conditions (LN, p = 0.001, d = 2.69; HN/HD, p = 

0.004, d = 2.16) and LN and HN/HD birds were no different in duration of time perching alone 

(p = 0.685). In males, birds spent similar lengths of time perching alone irrespective of 

adolescent group size and/or density (LN vs. HN/LD, p = 0.914; LN vs. HN/HD, p = 0.887; 

HN/LD vs. HN/HD, p = 1.0). Female HN/LD birds perched alone more than male HN/LD birds 

(p = 0.008, d = 1.52), but similar durations were found for males and females from LN (p = 

0.256) and HN/HD conditions (p = 0.419). 

Figure 3.11. Duration of time perching alone when exposed to an unfamiliar object split by sex 

and adolescent housing condition. Data are mean + standard error of the mean. Significant 

differences between female housing conditions are shown: a vs. b, p < 0.05. 

a 

b 

b 
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3.3.4. Adult behavioural responses to unfamiliar conspecifics 

Time Alone. Whether a bird was re-housed with a familiar or unfamiliar conspecific in 

adolescence had no effect on the length of time a bird spent alone when housed with unfamiliar 

conspecifics in adulthood (Table 3.11.). 

Table 3.11. Output for the model exploring the effects of re-housing with a familiar or 

unfamiliar conspecific in adolescence on duration of spent alone when housed with unfamiliar 

conspecifics in adulthood. No significant differences were found (p > 0.05). 

 

 

 

 

 

Duration of time spent alone when housed with unfamiliar conspecifics differed with 

adolescent group size and/or social density in a location-specific manner (housing condition: 

F2,40.491 = 3.619, p = 0.036; location: F1,52 = 4.424, p = 0.040; housing condition x location: 

F2,52 = 3.410, p = 0.041; Figure 3.12.). HN/LD birds spent less time alone on the ground 

compared to birds from other housing conditions (LN, p = 0.003, d = 0.35; HN/HD, p = 0.004, 

d = 0.45), but LN and HN/HD birds spent similar lengths of time on the ground (p = 0.988). 

HN/LD birds also spent less time alone on the ground compared to the perches (p = 0.002, d = 

0.48), but birds from all other housing conditions spent an equal duration of time on the ground 

and perches (LN, p = 0.613; HN/HD, p = 0.310). Male and female birds spent a similar length 

of time alone when housed with unfamiliar conspecifics (sex: F1,42.684 = 0.442, p = 0.510; sex 

x housing condition: F2,41.640 = 0.852, p = 0.434; sex x location: F1,52 = 0.355, p = 0.554; sex x 

housing condition x location: F2,52 = 0.315, p = 0.731). 

Variable 
Test spent alone 

df F p 

Familiarity  1,30.006 1.043 0.315 

Location 1,32 0.062 0.805 

Sex 1,29.968 1.043 0.315 

Familiarity x location 1,32 0.152 0.700 

Familiarity x sex 1,32.272 2.856 0.101 

Location x sex 1,32 0.119 0.733 

Familiarity x location x sex 1,32 0.742 0.395 
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Figure 3.12. Duration of time alone on a) perches and b) ground when housed with an 

unfamiliar group of conspecifics split by housing condition. Data are mean + one standard error 

of the mean. Significant differences (p < 0.05) are shown by a vs. b. 

 

Beak fencing. Length of time spent beak fencing with unfamiliar conspecifics did not differ 

depending on whether a birds was re-housed with a familiar or unfamiliar conspecific in 

adolescence (familiarity: F1,32.041 = 0.748, p = 0.394; familiarity x test bird sex: F1,18.649 = 0.140, 

p = 0.712; familiarity x unfamiliar bird sex: F1,32 = 0.058, p = 0.812; familiarity x test bird sex 

x unfamiliar bird sex: F1,32 = 0.393, p = 0.535). Regardless of whether a bird was re-housed 

with a familiar or unfamiliar conspecific in adolescences, test males spent more time beak 

fencing than test females (F1,18.096 = 9.511, p = 0.006; test male: M = 139.1, SEM = 9.65; test 

female: M = 91, SEM = 6.52) and birds spent more time beak fencing with unfamiliar males 

than unfamiliar females (F1,32 = 7.880, p = 0.008; unfamiliar male: M = 132.5, SEM = 9.92; 

unfamiliar female: M = 102.94, SEM = 8.40). These sex differences were dependent on one 

another (F1,32 = 4.732, p = 0.037) as male test birds spent more time beak fencing with 

unfamiliar males than unfamiliar females (p < 0.001, d = 1.14; unfamiliar male: M = 163.25, 

SEM = 12.37; unfamiliar female: M = 114.95, SEM = 12.97), but test birds spent an equal 

a 
a 

b 
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duration of time beak fencing an unfamiliar male or female (p = 0.675; unfamiliar male, M = 

94.06, SEM = 9.85; unfamiliar female, M = 87.94, SEM = 8.81). 

Birds raised in different group sizes and/or social densities during early adolescence 

did not differ in duration of time spent beak fencing with unfamiliar conspecifics (housing 

condition: F2,52 = 0.442, p = 0.658; housing condition x test bird sex: F2,52 = 0.107, p = 0.899; 

housing condition x unfamiliar bird sex: F2,52 = 0.669, p = 0.517; housing condition x test bird 

sex x unfamiliar bird sex: F2,52 = 0.091, p = 0.913). Irrespective of whether early adolescent 

group size and/or social density, test males spent more time beak fencing than test females 

(F1,152 = 22.227, p < 0.001; test male: M = 134.12, SEM = 8.97; test female: M = 80.45, SEM 

= 5.39) and birds spent more time beak fencing with unfamiliar males than unfamiliar females 

(F1,52 = 21.458, p < 0.001; unfamiliar male: M = 128, SEM = 8.87; unfamiliar female: M = 

88.41, SEM = 6.79). These sex differences were dependent on one another (F1,52 = 13.623, p = 

0.001) as male test birds spent more time beak fencing with unfamiliar males than unfamiliar 

females (p < 0.001, d = 1.16; unfamiliar male: M = 168.57, SEM = 11.40; unfamiliar female: 

M = 99.67, SEM = 10.75), but test birds spent an equal duration of time beak fencing an 

unfamiliar male or female (p = 0.675; unfamiliar male: M = 84.54, SEM = 7.68; unfamiliar 

female: M = 76.36, SEM = 7.63). 

Displacements. The number of times a test bird displaced an unfamiliar bird did not differ 

depending on whether a bird was re-housed with a familiar or unfamiliar conspecific in 

adolescence (familiarity: F1,21.590 = 0.226, p = 0.640; familiarity x test bird sex: F1,46.349 = 0.143, 

p = 0.708; familiarity x unfamiliar bird sex: F1,48.911 = 0.122, p = 0.729; familiarity x test bird 

sex x unfamiliar bird sex: F1,48.911 = 0.284, p = 0.597). Regardless of whether birds were re-

housed with a familiar or unfamiliar conspecific, male test birds displaced more unfamiliar 

birds than female test birds (F1,37.165 = 17.677, p < 0.001; test male: M = 17, SEM = 1.05; test 

female: M = 11.19, SEM = 0.91) and test birds displaced more unfamiliar males than unfamiliar 
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males (F1,48.911 = 6.379, p = 0.015; unfamiliar male: M = 16.08, SEM = 1.20; unfamiliar female: 

M = 12.75, SEM = 0.94). These sex differences were not dependent on one another (F1,49.911 = 

0.474, p = 0.494). 

Birds raised in larger groups in early adolescence displaced unfamiliar birds less often 

than birds reared in smaller groups, regardless of whether large group reared birds were raised 

at low density (housing condition: F2,48.507 = 11.168, p < 0.001;LN vs. HN/LD, p < 0.001, d = 

1.19) or high density (LN vs. HN/HD, p = 0.001, d = 0.92 Figure 3.13.a ). Birds raised in large 

groups in early adolescence displaced unfamiliar birds to a similar extent (p = 0.941). Male test 

birds displaced unfamiliar birds more often than female test birds (F1,50.528 = 7.397, p = 0.009; 

test male: M = 11.48, SEM = 0.84; test female: M = 8.27, SEM = 0.72) and unfamiliar male 

birds displaced test birds more often than unfamiliar female birds (F1,52 = 4.6, p = 0.037; 

unfamiliar male: M = 10.72, SEM = 0.82; unfamiliar female: M = 9.12, SEM = 0.79); these 

effects did not depend on one another (F1,52 = 0.106, p = 0.746). The effects of adolescent group 

size on the number of times a test bird displaced an unfamiliar bird did not differ with sex 

(housing condition x test bird sex: F2,47.68 = 0.071, p = 0.931; housing condition x unfamiliar 

bird sex: F2,52 = 0.091, p = 0.913; housing condition x test bird sex x unfamiliar bird sex: F2,52 

= 0.608, p = 0.548).  

Birds re-housed with a familiar or unfamiliar conspecific in adolescence were displaced 

by an unfamiliar bird a similar number of times (familiarity: F1,29.564 = 1.647, p = 0.209; 

familiarity x test bird sex: F1,30.115 = 0.150, p = 0.701; familiarity x unfamiliar bird sex: F1,32 = 

0.092, p = 0.763; familiarity x test bird sex x unfamiliar bird sex: F1,32 = 0.091, p = 0.765). 

Irrespective of whether the birds were re-housed with a familiar or unfamiliar conspecific in 

adolescence, male test birds were displaced by unfamiliar birds more than female test birds 

(F1,29.478 = 7.659, p = 0.010; test male: M = 14, SEM = 0.92; test female: M = 10.59, SEM = 

0.91) and test birds were displaced more by unfamiliar males than unfamiliar females (F1,32 = 
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7.664, p = 0.009; unfamiliar male: M = 14.14, SEM = 0.99; unfamiliar female: M = 10.83, 

SEM = 0.85); effects that were not dependent on one another (F1,32 = 0.025, p = 0.876). 

Birds were displaced by an unfamiliar conspecific a similar number of times regardless 

of early adolescent group size and/or social density (housing condition: F2,45.019 = 1.837, p = 

0.171; housing condition x test bird sex: F2,43.483 = 0.693, p = 0.506; housing condition x 

unfamiliar bird sex: F2,52 = 0.507, p = 0.605; housing condition x test bird sex x unfamiliar bird 

sex: F2,52 = 0.038, p = 0.962; Figure 3.13.b). Irrespective of early adolescent group size and/or 

social density, male test birds were displaced by unfamiliar birds more than female test birds 

(F1,47.842 = 7.875, p = 0.007; test male: M = 14.20, SEM = 0.72; test female: M = 11.93, SEM 

= 0.66) and test birds were displaced more by unfamiliar males than unfamiliar females (F1,52 

= 16.441, p < 0.009; unfamiliar male: M = 15.02, SEM = 0.72; unfamiliar female: M = 11.19, 

SEM = 0.60); effects that were not dependent on one another (F1,52 = 0.041, p = 0.841). 

Figure 3.13. Number of times a) a test bird displaces an unfamiliar bird and b) an unfamiliar 

bird displaces a test bird when housed with an unfamiliar group of conspecifics split by 

adolescent housing condition. Data are mean + one standard error of the mean. Significant 

differences (p < 0.05) shown by a vs. b. 

a 

b 
b 
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Courtship factors. Female courtship behaviour was similar for all birds regardless of whether 

a bird was re-housed with a familiar or unfamiliar conspecific in adolescence (F1,7.811 = 0.340, 

p = 0.576) or by being housed in a different group size and/or social density housing condition 

(F1,20.096 = 2.803, p = 0.084; Figure 3.14.a). In males, courtship behaviour was similar between 

birds re-housed with a familiar or unfamiliar conspecific in adolescence (F1,18 = 0.003, p = 

0.956; Figure 3.14.b). However, males raised in larger groups engaged in less courtship 

behaviour than males reared in smaller groups (housing condition: F1,18.176 = 11.177, p = 0.001), 

regardless of whether large group reared males were raised at low density (LN vs. HN/LD, p = 

0.001, d = 1.46) or high density (LN vs. HN/HD, p = 0.005, d = 1.28). Males raised in larger 

groups engaged in similar quantities of courtship behaviour irrespective of early adolescent 

social density (HN/LD vs. HN/HD, p = 0.860) 

Figure 3.14. Courtship behaviour for a) females and b) males when housed with an unfamiliar 

group of conspecifics split by housing condition. Data are mean + one standard error of the 

mean. Significant differences (p < 0.05) shown by a vs. b. 

 

a 

b 
b 
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3.3.5. Hormones 

Corticosterone time-response. Regardless of whether a bird was re-housed with a familiar or 

unfamiliar conspecific in adolescence, CORT concentration secreted in response to capture and 

restraint differed over time (Table 3.12.; Figure 3.15.). Birds had a lower CORT concentration 

at baseline compared to 15 min (p < 0.001, d = 2.18) and 45 min (p < 0.001, d = 1.94); no 

difference in CORT concentration was found between 15 and 45 mins (p = 0.707). 

 Table 3.12. Outputs from models exploring the effect of re-housing a bird with a familiar or 

unfamiliar conspecific in adolescence, and adolescent group size and density on corticosterone 

concentration in response to capture and restraint. Significant effects (p < 0.005) are in bold. 

 

Irrespective of early adolescent group size and/or social density, CORT concentration 

changed across sampling times (Table 3.12.) with basal concentrations lower than later time 

points (15 min: p < 0.001, d = 1.98; 45 min: p < 0.001, d = 1.87) and CORT concentration at 

45 mins higher than 15 mins (p = 0.004, d = 0.55). CORT concentration in response to restraint 

differed over time in response to early adolescent group size and did so in a sex-specific manner 

when birds CORT concentrations were averaged (mean) across ages (Table 3.12.; Figure 

Variable 
Familiarity Group size and density 

df F p df F p 

Adolescent condition 1,31.365 1.431 0.241 2,43.223 2.481 0.095 

Sex 1,22.804 2.101 0.161 1,44.628 1.213 0.277 

Age 1,32 0.477 0.495 1,52 3.855 0.055 

Time 2,32 201.788 <0.001 2,52 278.069 <0.001 

Adolescent condition x sex 1,22.379 0.019 0.891 2,39.306 0.145 0.865 

Adolescent condition x age 1,32 0.007 0.935 2,52 2.188 0.122 

Adolescent condition x time 2,32 0.005 0.995 4,52 2.674 0.042 

Sex x age 1,32 0.418 0.522 1,52 0.144 0.706 

Sex x time 2,32 1.371 0.268 2,52 5.118 0.059 

Age x time 2,32 2.149 0.133 2,52 13.787 <0.001 

Sex x age x time 2,32 0.529 0.594 2,52 10.018 <0.001 

Adolescent condition x sex x age 1,32 0.619 0.437 2,52 1.349 0.268 

Adolescent condition x sex x time 2,32 0.605 0.552 4,52 7.621 <0.001 

Adolescent condition x age x time 2,32 0.318 0.730 4,52 0.791 0.536 

Adolescent condition x sex x age x 

time 

2,32 

 

0.531 

 

0.593 

 

4,52 

 

0.913 

 

0.464 
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3.15.). In female conditions, basal CORT concentrations were similar (LN vs. HN/LD, p = 

0.727; LN vs. HN/HD, p = 0.680; HN/LD vs. HN/HD, p = 1.0). 15 mins into restraint, CORT 

concentrations of HN/HD females were lower than those of female birds from other conditions 

(LN, p = 0.002, d = 0.78; HN/LD, p = 0.006, d = 0.90) whilst LN and HN/LD were not different 

(p = 0.944). 45 mins into restraint, females from larger groups had higher CORT concentration 

than females from smaller groups (LN vs. HN/LD, p = 0.009, d = 1.08; LN vs. HN/HD, p = 

0.006, d = 1.12) and females from larger groups did not differ (HN/LD vs.  HN/HD, p = 0.999). 

All comparisons between male housing conditions were not significant at 0 min (LN vs. 

HN/LD, p = 0.704; LN vs. HN/HD, p = 0.914; HN/LD vs. HN/HD, p = 0.323), 15 min (LN vs. 

HN/LD, p = 0.994; LN vs. HN/HD, p = 0.958; HN/LD vs. HN/HD, p = 0.995), and 45 min 

(LN vs. HN/LD, p = 0.926; LN vs. HN/HD, p = 0.416; HN/LD vs. HN/HD, p = 0.164).   

Figure 3.15. Corticosterone concentration (ng/ml) in response to capture and restraint averaged 

across ages for a) females and b) males split by sampling time and housing condition. Data are 

mean + one standard error of the mean. Significant differences (p < 0.05) in each female 

sampling time are show by a vs. b, c vs. d. 

a a 

b 

c 

d d 
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CORT concentration secreted in response to capture and restraint differed over time in 

an age-specific manner, and these age-specific effects were in turn sex-specific when averaged 

(mean) across housing conditions (Table 3.12.; Figure 3.16). In adolescent females, birds had 

a CORT concentration that was higher than baseline at both 15 min (p < 0.001, d = 2.72) and 

45 min (p < 0.001, d = 2.57), but 15 and 45 min concentrations were no different (p = 0.997). 

In adult females, birds had a higher CORT concentration at each subsequent sampling time (0 

vs. 15 min, p < 0.001, d = 1.53; 0 vs. 45 min, p < 0.001, d = 2.28; 15 vs. 45 min, p < 0.001, d 

= 1.23). In adolescence and adult males, birds had a CORT concentration that was higher than 

baseline at 15 min (adolescent: p < 0.001, d = 2.42; adult: p < 0.001, d = 2.36) and 45 min 

(adolescent: p < 0.001, d = 1.77; adult: p < 0.001, d = 1.78), whilst no differences were found 

between 15 and 45 min concentrations (adolescent, p = 0.948; adult, p = 0874). 

Figure 3.18. Corticosterone concentration (ng/ml) in response to capture and restraint averaged 

across housing conditions for a) adolescents and b) adults split by sampling time and sex. Data 

are mean + one standard error of the mean. Significant differences (p < 0.05) within each sex 

in adolescence are a vs. b and c vs. d, within each sex in adults are a vs. b vs. c and d vs. e. 

a 

b b 

c 

d d 

a 

b 

c 

d 

e 
e 
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Stressor-induced corticosterone concentration change over time. Being re-housed with a 

familiar or unfamiliar conspecific in adolescence had no effect on the change in stressor-

induced CORT concentration between 15 and 45 mins into restraint (Table 3.13.). 

Table 3.13. Outputs from models exploring the effect of re-housing a bird with a familiar or 

unfamiliar conspecific in adolescence, and adolescent group size and density on change in 

corticosterone concentration between 15 and 45 mins into restraint. Significant effects (p < 

0.005) are in bold. 

  

Early adolescent housing condition itself did not affect the change in stressor-induced CORT 

concentration between 15 and 45 mins into restraint, but females had a higher change in CORT 

concentration than males when data were averaged (mean) across ages and housing conditions 

(female: M = 3.34, SEM = 0.85; male: M = 0.90, SEM = 0.70) and adults had a higher change 

in CORT concentration than adolescents when data were averaged (mean) across sexes and 

housing conditions (adolescent: M = 0.24, SEM = 0.62; adult: M = 3.87, SEM = 0.88) over the 

same period of time during restraint (Table 3.13.). The sex-specific and age-specific effects 

depended on one another (Table 3.13.), as adult females had a higher change in CORT between 

15 and 45 mins than adolescent females (p < 0.001, d = 1.25; adolescent female: M = 0.20, 

SEM = 0.72; adult female: M = 6.47, SEM = 1.36) but no age differences were found in males 

(p = 0.127; adolescent male: M = 0.27, SEM = 0.99; adult male: M = 1.52, SEM = 1.01). The 

female- and adult-specific effects on the change in CORT concentration also depended on early 

adolescent group size (Table 3.13.; Figure 3.17.). Within adolescent females, change in CORT 

concentration between 15 and 45 min did not differ with early adolescent group size and/or 

Variable 
Familiarity Group size and social density 

df χ2 p df χ2 p 

Housing condition 1,25 <0.001 0.998 2,43.863 2.455 0.098 

Sex 1,25 2.763 0.109 1,44.911 15.057 <0.001 

Age 1,25 1.172 0.289 1,49.558 28.012 <0.001 

Housing condition x sex 1,25 0.493 0.489 2,41.941 8.677 0.001 

Housing condition x age 1,25 2.602 0.199 2,49.578 3.696 0.032 

Sex x age 1,25 0.061 0.807 1,50.087 16.656 <0.001 

Housing condition x sex x age 1,25 1.072 0.31 2,50.261 3.522 0.043 
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social density (LN vs. HN/LD, p = 1.0; LN vs. HN/HD, p = 0.527; HN/LD vs. HN/HD, p = 

0.384). Within adult females, birds raised in larger group during early adolescence had a higher 

change in CORT concentration between 15 and 45 min relative to birds raised in smaller groups 

in early adolescence (LN vs. HN/LD, p = 0.005, d = 1.31; LN vs. HN/HD, p < 0.001, d = 1.53); 

no difference was detected between birds raised in larger groups at different densities (HN/LD 

vs, HN/HD, p = 0.440). Comparing across ages, females raised in larger groups in early 

adolescence had a higher change in CORT concentration between 15 and 45 min when in 

adulthood compared to when in adolescence (HN/LD, p < 0.001, d = 1.29; HN/HD, p < 0.001, 

d = 1.42). Females reared in smaller early adolescent groups had a similar change in CORT 

concentration across ages (LN, p = 0.469). Within males, birds from different early adolescent 

housing condition had similar changes in CORT concentration between 15 and 45 mins when 

in adolescence (LN vs. HN/LD, p = 0.994; LN vs. HN/HD, p = 0.538; HN/LD vs. HN/HD, p 

= 0.724) and in adulthood (LN vs. HN/LD, p = 0.989; LN vs. HN/HD, p = 0.698; HN/LD vs. 

HN/HD, p = 0.513). Males from different early adolescent housing conditions also had similar 

changes in CORT concentrations between 15 and 45 mins across adolescence and adulthood 

(LN, p = 0.743; HN/LD, p = 0.397; HN/HD, p = 0.788). 
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Figure 3.17. Change in corticosterone concentration (ng/ml) between 15 and 45 min in response 

to capture and restraint split by sex and housing conditions for a) adolescents and b) adults. 

Data are mean + one standard error of the mean. Significant differences (p < 0.05) between 

housing conditions in adult females are show by a vs. b. 

 

Gonadal hormones. Male testosterone concentrations were similar between all male birds 

regardless of whether a bird was re-housed with a familiar or unfamiliar bird in adolescence 

(F1,12.605 = 0.469, p = 0.506;) or early adolescent group size and/or social density (F2,20.587 = 

0.034, p = 0.967). Estradiol concentration was also similar in all female birds irrespective of 

whether a bird was re-housed with a familiar or unfamiliar bird in adolescence (F1,14 = 0.006, 

p = 0.942) or early adolescent group size and/or social density (F2,15.261 = 1.348, p = 0.289). 

The gonadal hormone data are summarised in Table 3.14. 

Table 3.14. Female estradiol concentration (pg/ml) and male testosterone concentration (ng/ml) 

split by housing condition. Data are mean (one standard error of the mean). Comparisons 

between conditions in each sex were not significant (p > 0.05).  

Gonadal Hormone 

 

Adolescent Housing Condition 

LN LN/C HN/LD HN/HD 

Estradiol (pg/ml) 51.38 (11.08) 50.13 (12.68) 39.02 (6.00) 48.00 (12.13) 

Testosterone (ng/ml) 1.36 (0.43) 1.58 (0.39) 1.42 (0.45) 1.15 (0.27) 

a 

b 

b 
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3.3.6. Correlations 

All correlations were not significant when alpha values were Bonferroni corrected for multiple 

comparisons in both adolescent models (p > 0.036; Bonferroni corrected α = 0.003) and both 

adult models (p > 0.031; Bonferroni corrected α = 0.0014). Outputs from correlation analyses 

are presented in Appendix B (Table B.4., Table B.5., and Table B.6.). 

3.4. Discussion 

The current chapter tested the hypothesis that higher social density during adolescence would 

act as a stressor, resulting in animals that spent less time with unfamiliar stimuli in adulthood 

and a greater stressor-induced CORT concentration compared to animals raised at lower 

density. However, the findings presented suggest that higher social density in adolescence is 

not a stressor. Instead, adolescent group size by itself and, in some instances, in interaction 

with low density rearing conditions, affect social behaviour. In the short-term, males raised in 

large groups were more antagonistic toward an unfamiliar conspecific and females raised at 

high density were more affiliative toward an unfamiliar conspecific compared to lower number 

and lower density conditions, respectively. These immediate effects of adolescent housing are 

not directly mirrored by behavioural measures taken in later-life. Female birds raised in larger 

groups at lower density during adolescence spent more time in an unfamiliar environment, 

more time on an unfamiliar object, and more time perching alone during adult testing compared 

to all other conditions. In response to unfamiliar conspecifics, birds raised in larger groups at 

lower density spent less time alone on the ground compared to all other conditions. However, 

birds raised in larger groups engaged in fewer perch displacements and males raised in larger 

groups engaged in less courtship behaviour when the birds were compared to birds raised in 

smaller groups. The effects of adolescent housing conditions on social behaviour are 

inconsistent, and emphasise that differences in age, sex, and social context can modulate the 
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effects of adolescent social housing. Hormonal effects were more consistent, with a longer 

stressor-induced secretion of CORT found in female birds from larger adolescent groups 

compared to smaller groups, an effect that emerges in adolescence and is sustained into 

adulthood. However, peak CORT was higher in females raised in larger groups compared to 

smaller groups only in adulthood. The nuanced effects of adolescent group size and density on 

behavioural responses to unfamiliar stimuli and the endocrine mechanisms underpinning the 

effects will now be discussed.  

3.4.1. Adolescent behavioural responses to conspecifics after re-housing 

Female zebra finches housed at higher density spent less time alone and engaged in 

more clumping behaviour with an unfamiliar same-sex conspecific during adolescence 

compared female zebra finches housed in smaller and lower density groups. A similar effect 

has been reported in male mice, with male mice raised in higher density groups during 

adolescence spending more time interacting with an unfamiliar conspecific compared to male 

mice raised in lower density groups during adolescence (Ago et al., 2014). However, the mouse 

findings created a higher density by housing more animals per cage without changing cage size 

thereby conflating group size with social density. Furthermore, the mouse findings did not 

quantify social behaviour to discern why higher density reared mice spent more time interacting 

with an unfamiliar conspecific than lower density reared mice (e.g. more affiliative or 

antagonistic interactions). These two limitations in Ago et al. (2014) were not present in the 

current study, with the present findings revealing that higher social density (not group size) 

results in more affiliative (not antagonistic) interactions between unfamiliar conspecifics 

compared to animals raised at lower social density for female zebra finches.  

Male zebra finches raised in larger groups in early adolescence engaged in less 

clumping behaviour and more beak fencing behaviour compared to males raised in smaller 
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groups. This is in agreement with previous work in territorial adult animals (e.g. Craig & 

Swanson, 1994; Van Loo et al., 2001). As group size becomes larger, maintaining a position 

in a social hierarchy may become more difficult, with animals resorting to more antagonistic 

behaviour to maintain high status (van Loo et al., 2003). Although zebra finches rarely engage 

in antagonistic behaviour outside of a mating context (Zann, 1996), the birds do live in social 

hierarchies that can be maintained by use of antagonistic behaviour (Ardia, Broughton, & 

Gleicher, 2010; Bonoan et al., 2013; Zann, 1996). A larger adolescent group size may therefore 

affect dominance-related behavioural responses to unfamiliar conspecifics. However, the 

current study did not test birds in a context that would be required to uncover such dominance-

related behaviour. Further work could therefore explore whether a larger adolescent group size 

results in birds that engage in more dominance-related behaviour in tasks such as competing 

over a single perch (Spencer & Verhulst, 2007) or over limited food (Bonoan et al., 2013).  

Previous work investigating the effects of adolescent social density on social behaviour 

has predominantly used males (e.g. Ago et al., 2014; Ruploh et al., 2014; Sachser et al., 1993). 

Consequently, no sex-specific predictions regarding the effects of adolescent social density and 

group size on adolescent social behaviour could be made a priori. The clearly sex-dependent 

difference in adolescent behavioural responses to unfamiliar conspecifics presented in the 

current chapter show the need to include both male and female animals in future research 

investigating the effects of adolescent group size and social density. Why the sex differences 

occurred is not known. In adult zebra finches, males engage in more antagonistic behaviour 

than females (Ikebuchi & Okanaya, 2006; Zann, 1996), but no sex differences are found in 

affiliative behaviour (Goodson et al., 2009; Silcox & Evans, 1982; Svec, Licht, & Wade, 2009; 

Zann, 1996). In adolescence (days 50-60), no sex differences in antagonistic behavioural 

response to unfamiliar conspecifics are present (Spencer & Verhulst, 2007), and no attempt has 

been made to investigate sex differences in adolescent affiliative behaviour. Although data are 
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clearly limited, sex differences in behavioural responses to unfamiliar conspecifics appear to 

emerge during early adolescence and, as suggested in the current chapter, are modulated by 

social context. Further research is needed to document the behaviour of zebra finches 

throughout adolescence, with birds housed in groups varying in group size and density, to track 

the ontogeny of sex differences in antagonistic and affiliative behaviour of zebra finches across 

different social contexts. Male birds would be expected to engage in more antagonistic 

interactions with an unfamiliar conspecific compared to females during early adolescence, and 

a larger group size in males (but not females) may result in even more antagonistic interactions 

between unfamiliar conspecifics. A further concern regarding the nature of these sex-dependent 

effects is that they are based on small sample sizes (n = 4-5 per housing condition), as clumping 

and beak fencing were analysed with cage (not individual bird) as the unit of analysis. The 

models used to analyse these behaviour may therefore have been over-parameterised given the 

small samples, resulting in higher variability in the dataset and lower statistical power than 

would be achieved with larger sample sizes. The experiment therefore needs to be replicated 

with larger sample sizes in order to corroborate the novel sex-specific effects that have been 

reported here. 

3.4.2. Adult behavioural responses to unfamiliar environments and objects  

Adolescent group size and/or social density had no long-term effects on behavioural 

responses to an unfamiliar environment or an unfamiliar object when the birds were tested 

individually in adulthood. Adolescent mice housed at a higher social density spent less time in 

open spaces in an unfamiliar environment when individually tested in adulthood compared to 

adolescent mice raised at a lower social density (Reiss et al., 2007); an effect that also occurs 

in adolescent rodents exposed to developmental stressors (Buwalda et al., 2011; Hollis et al., 

2013). Previous rodent work therefore suggests higher adolescent social density may be a 

stressor that results in animals engaging in more stressor avoidant behaviour in adulthood, but 
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no support for the hypothesis was found in the current chapter. A difference in species between 

previous research and the current chapter may account for the different findings. Mice engage 

in more antagonistic interactions at higher density (Van Loo et al., 2001), but the behavioural 

responses to social density variation in zebra finches has not been quantified. As zebra finches 

are affiliative birds (Zann, 1996), the birds may not engage in more antagonistic behaviour at 

higher social density. Social density may only be a stressor in species that respond to higher 

social density by engaging in more antagonistic interactions (e.g. mice; Reiss et al., 2007; Van 

Loo et al., 2001), and therefore account for the absence of effects in the current chapter. 

Methodological differences were also present between previous research investigating 

the long-term effects of adolescent social density on later-life responses to unfamiliar stimuli 

and the current chapter. In Reiss et al. (2007), the variation in group size and social density 

were greater (1 vs. 7 mice per cage) and maintained for longer (13 weeks) compared to the 

parameters used in the current chapter. Higher adolescent social density may therefore act as a 

stressor, but only when animals are housed at a sufficiently high density for a sufficiently long 

duration, a hypothesis that now requires direct testing. Reiss et al. (2007) also compared mice 

raised at higher density with mice that were housed one per cage. Mice housed one per cage 

are not just living in a smaller group or less dense cage, but were also experiencing social 

deprivation and single housing stress (Fone & Porkess, 2008). Whether single housed animals 

are an appropriate comparison is debatable, given that density effects are conflated with social 

deprivation and stress effects. Zebra finches in the current study were always with other 

conspecifics when in different housing conditions, thereby excluding single housing effects. 

The absence of group size and/or social density on later-life behavioural responses to 

unfamiliar stimuli in an individual adult context in the current study may therefore be due to 

the more appropriate comparison of small vs. large groups and low vs. high density that have 

been omitted in previous work. 
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In the presence of a familiar conspecific, female zebra finches raised in a larger group 

at a lower density spent more time in an unfamiliar environment and more time perching on an 

unfamiliar object compared to all other groups. The study is the first to show that variation in 

adolescent group size and density can have long-term effects on behavioural responses to 

unfamiliar stimuli in a group context. The findings may indicate that rearing in a larger group 

at a sufficiently low density during adolescence may improve social buffering when in 

adulthood, as the birds were more likely to interact with unfamiliar stimuli when in groups, but 

not individually. However, no differences between adolescent conditions were found in other 

behavioural measures related to neophobia (e.g. locomotor activity or risk assessment). Female 

zebra finches reared in larger groups at lower density may therefore be more effective social 

buffers than birds from other housing conditions, but the data are not sufficiently consistent to 

exclude other hypotheses related to social facilitation (e.g. competition: Clayton, 1978; 

Webster & Ward, 2011). As the unfamiliar objects in both tasks were baited with spinach, the 

effects may have resulted from differences in foraging competition. For example, female birds 

raised in larger groups at a lower density may have spent more time in the unfamiliar 

environment and on the unfamiliar perch as the birds were attempting to consume more spinach 

than their cage mate compared to other housing conditions, but the hypothesis requires direct 

testing. 

Why group context behavioural responses to unfamiliar stimuli were affected by an 

interaction between adolescent group size and social density in female zebra finches is not 

known. In male mice, communal rearing results in pups engaging in a higher number of 

affiliative interactions compared to mice raised in single nests (Branchi, 2009). A higher 

quantity of affiliative interactions during pre-adult development may therefore have long-term 

effects on adult behavioural responses to unfamiliar stimuli when in a group context. However, 

pre-adolescent communal (vs. single nest) rearing in mice had no effects on group context 
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responses to unfamiliar stimuli when in adulthood (Branchi & Alleva, 2006). Furthermore, 

female zebra finches reared in larger groups at lower density did not appear more affiliative 

than any other housing condition in terms of behavioural responses to an unfamiliar conspecific 

in adolescence. Quantifying interactions with an unfamiliar conspecific may not be an adequate 

way of assessing whether birds engaged in more affiliative interactions during the housing 

manipulation. The current experiment therefore needs to be repeated in order to quantify 

affiliative behaviour (e.g. allopreening, clumping, and perching proximity) during days 40-60, 

when the birds were housed in varied group sizes and densities. The effects cannot be attributed 

to differences in adult social behaviour during the group context tasks as all birds engaged in 

too few encounters for analysis. However, female birds raised in larger groups at lower density 

did spend more time perching alone in both the unfamiliar environment and object tasks 

compared to all other conditions. Adolescent group size and density may therefore have long-

term effects on a bird’s proximity to other birds. For example, female birds raised in large 

groups at low density in adolescence may develop into adults that have less interest in 

interacting with a familiar conspecific or be more able to tolerate lack of physical proximity to 

a familiar conspecific compared to other housing conditions, but the hypotheses require testing.  

The findings in the current chapter suggest that adolescent social housing has long-term 

effects on behavioural responses to unfamiliar stimuli in a group context, but limitations in the 

design and statistical analyses need to be addressed before such a conclusion can be assured. 

For example, the birds raised in larger groups at lower density were housed in larger cages 

during adolescence compared to all other housing conditions. Prior experience with housing in 

a larger cage may therefore have resulted in female birds spending more time in a larger 

unfamiliar environment in adulthood. However, such an explanation cannot account for why 

female birds were no different across housing conditions in response to a larger environment 

in an individual context. Furthermore, female birds raised in larger groups at lower density also 
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spent more time on an unfamiliar object in the group context unfamiliar object task, when the 

birds were not housed in larger cages. The context-specific and cross-task effects suggest that 

adolescent social housing, not cage size, appear to have long-term effects on behavioural 

responses to unfamiliar stimuli. To investigate any potential effects of cage size, a further study 

could use a two-by-two design (crossing group size with density, with density varied by 

changing cage size) to investigate the effects of adolescent group size, social density, and cage 

size on later-life behavioural responses to unfamiliar stimuli. A second design limitation in the 

design of the current study is that two different sets of objects were used between individual 

and group context tasks. The effect of context may therefore actually be an effect of object set. 

Although pilot studies were conducted to ensure the objects elicited similar responses, further 

work could repeat the current experiment with the objects counter-balanced across contexts to 

rule out any effects of object type. A further limitation is that the statistical models used to 

analyse the behaviour may have been over-parameterised, especially given the smaller sample 

sizes used to explain the housing condition- and sex-specific effects that were found. The novel 

findings in the current study may have therefore been a product of potentially more variable 

data given the small sample sizes, so the experiment needs to be replicated with larger samples 

in order to corroborate the effects presented here.      

3.4.3. Adult behavioural responses to unfamiliar conspecifics 

Birds raised in larger groups spent less time alone on the ground compared to all other 

conditions when raised at a sufficiently low density, but no group differences were found for 

duration of time alone on the perches. Zebra finches spend most of their time perching in 

proximity to relatively familiar birds (Zann, 1996), so unfamiliar birds may be relegated to 

more distant locations from the group, such as the ground, before gradually integrating into a 

more central position in a group. Birds raised in larger groups at lower density may therefore 

have an accelerated social integration response intimated by spending less time alone the 
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ground. If testing had been longer, the large groups birds may have also gone on to spend less 

time alone on the perches. A larger adolescent group size has previously been indicated to have 

such an accelerating effect on adult social integration in male zebra finches (Ruploh et al. 

(2014), but the current data specify that a larger group size must be at a sufficiently low density 

for the effect to occur and that the effect occurs in both males and females.  

Why birds raised in larger groups at lower density spent less time alone on the ground 

is not obvious from the current data. Birds raised in larger groups at lower density do not appear 

to spend less time alone because they are more sociable than any other condition, as no 

differences could be detected in affiliative behaviour (i.e. allopreening and clumping). 

However, the behaviour were rarely seen and could not be analysed. Greater sociability can 

therefore not be ruled out as an explanation until more data is available to show what effects 

adolescent social housing conditions have on adult affiliative behaviour in zebra finches. 

Instead of sociability, adolescent group size and social density may interact to affect later-life 

responses to unfamiliar stimuli when in a group context; like that identified in tasks measuring 

group context behavioural responses to an unfamiliar environment and object. Birds raised in 

larger groups at a sufficiently low density during adolescence may develop into adults that are 

more likely to approach or less likely avoid unfamiliar stimuli, but only when in a group 

context. As the effects are limited to a group context, social facilitation effects may be the cause 

of the adolescent group differences in duration of time spent on the ground alone when housed 

with unfamiliar conspecifics. Further work is now necessary to explore the long-term effects 

of adolescent group size and social density on later-life social facilitation related behaviour 

when with unfamiliar conspecifics. For example, testing whether birds raised in large groups 

at low density are more effective social buffers with unfamiliar conspecifics or engage in more 

social competition with unfamiliar conspecifics when in adulthood compared to other groups.  
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 Birds reared in larger groups in early adolescence engaged in fewer displacements and, 

if male, engaged in less courtship behaviour directed toward unfamiliar females. Previous work 

has also shown that larger group size can result in lower antagonistic and courtship behaviour 

in male guinea pigs (Sachser et al., 1993) and male zebra finches (Ruploh et al., 2014). 

However, the previous work did not control for cage size and therefore conflated group size 

with social density. The work presented in this chapter controlled for social density effects and 

clearly showed that group size, not density, has long-term effects on adult antagonistic and 

courtship behaviour. Furthermore, previous work investigating the long-term effects of 

adolescent group size and social density on later-life social behaviour only used male animals. 

The current work indicates that adolescent group size affects antagonistic behaviour in both 

males and females, but group size only affects male courtship behaviour. Male and female 

animals therefore need to be included in future work to determine sex differences in the long-

term effects of adolescent group size and density on adult social behaviour. Why only male 

courtship behaviour was affected is not known. For the current measures, males can inhibit 

their expression of courtship behaviour whereas females cannot (e.g. males can stop singing, 

but females cannot equally stop being sung at). Further work could therefore assess whether 

courtship-related behaviour that females can regulate (e.g. activity, such as hops: Zann, 1996) 

are also lower in adulthood in response to being reared in a larger adolescent group size. 

During adolescence, animals enter into larger social networks (Nelson et al., 2016) and 

learn how to function in social hierarchies by, for example, avoiding competition with 

dominant conspecifics (Pellis & Pellis, 2007). Adolescent group size may therefore affect 

dominance-status when in adulthood. Animals raised in larger groups may adopt a more 

subordinate position amongst unfamiliar conspecifics compared to animals raised in smaller 

groups. Lower antagonistic behaviour and male courtship behaviour in birds raised in larger 

adolescent groups may therefore reflect that the birds are less likely to compete with unfamiliar 
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conspecifics over a mate compared to birds raised in smaller groups during adolescence. An 

alternative (but not mutually exclusive) explanation is that adult birds raised in larger 

adolescent groups are less attractive than birds raised in smaller groups, an effect that has been 

previously found in male zebra finches (Ruploh et al., 2013). However, Ruploh et al. (2013) 

conflated group size with social density, so no data are currently available to determine whether 

larger adolescent group size is the cause of lower attractiveness when in adulthood. Further 

work is necessary to elaborate on the hypotheses presented above, for example, by investigating 

the long-term effects of adolescent group size on adult competitive and dominance-related 

behaviour (e.g. competition over a single perch: Spencer & Verhulst, 2007) as well as measures 

of attractiveness (e.g. male song quality: Spencer et al., 2003; Spencer et al., 2005). 

3.4.4. Corticosterone 

Female birds housed in larger groups in early adolescence had a higher concentration 

of CORT 45 mins into restraint in both adolescence and adulthood compared to birds housed 

in smaller groups and males housed in larger groups. In addition, females that were housed in 

larger groups in early adolescence had a greater change in CORT concentration between 15 

and 45 mins into restraint when in adulthood (but not in adolescence) compared to birds raised 

in smaller groups where no change in CORT concentration occurred between 15 and 45 mins 

into restraint. Female birds raised in larger groups in early adolescence therefore appear to have 

a longer stress response when in adulthood relative to females raised in smaller groups. The 

age-dependent effects may be attributable to the fact that different aspects of the stress response 

are quantified, i.e. concentrations at specific time-points during restraint in the first model and 

change in CORT concentration between 15 and 45 mins in the second model. However, the 

models also differed in complexity. The initial model analysing CORT concentration across 

sample times included four fixed factors of which two factors were repeated measures, perhaps 

resulting in a model that was over-parameterised, given the sample sizes and sex-specific 
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effects, resulting in a lack of statistical power. The CORT concentration change between 15 

and 45 mins model removed the repeated measure of restraint duration from the analysis, likely 

improving the power of the model output and providing a more accurate summary of the effects 

of adolescent group size. Adolescent group size may therefore only affect, or have a stronger 

effect on, adult CORT secretion compared to adolescent CORT secretion. Previous work has 

found that variation in adolescent group size and social density has no short-term effects on 

basal glucocorticoid concentration (Ago et al., 2014; Laviola et al., 2002; Ortiz et al., 1985; 

Sachser et al., 1993). The current data may extend upon the inferences drawn from the previous 

work to suggest that both basal and stressor-induced secretion of glucocorticoids may not be 

affected by adolescent group size and/or density in the short-term, or at least less affected by 

adolescent group size and/or density than in the long-term. The absence (or lower magnitude) 

of short-term effects of adolescent social density on glucocorticoid secretion may be due to the 

age at which the neural expression of glucocorticoid receptors differs between low and high 

density reared birds. The difference in adolescent social density may set the birds on different 

developmental trajectories, with glucocorticoid receptor expression differences accumulating 

with age and only resulting in functional differences in the acute stress response in later-life 

(e.g. adulthood). To date, no study has determined when (and if) glucocorticoid receptor 

expression in the brain occurs in response to different adolescent social densities and therefore 

needs to be investigated to explore the hypothesis outlined above (i.e. that adolescent social 

density results in differences in glucocorticoid receptor expression in the brain in later-life, not 

immediately).  

In the current thesis, glucocorticoids were quantified 15 days after the birds were placed 

into different housing conditions. Prior work investigating the short-term effects of adolescent 

group size and social density on glucocorticoid secretion has quantified the hormones between 

9 and 29 days into the housing variation (e.g. Ago et al., 2014; Laviola et al., 2002; Ortiz et al., 
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1985). Any immediate effects of adolescent group size and density on glucocorticoid 

concentration have therefore not been quantified. Initially, adult animals respond to housing in 

larger and denser groups by engaging in more antagonistic interactions that gradually decrease 

over time (deWaal, 1989; Judge & deWaal, 1993; Judge & deWaal, 1997). Whether 

adolescents also engage in more antagonistic interactions upon initially being housed in larger 

groups compared to smaller groups remains to be determined. If found to be the case, 

adolescents living in larger groups may secrete more CORT than adolescents living in smaller 

groups but only shortly after being placed in different group sizes due to the initially higher 

number of antagonistic interactions in larger groups compared to smaller groups. The absence 

(or lower magnitude) of short-term effects of group size and density on glucocorticoid secretion 

in the current thesis and previous work (e.g. Laviola et al., 2002; Ortiz et al., 1985) may 

therefore be due to quantifying the hormones too late into the variation in group size and/or 

social density. Hormone sampling therefore needs to occur at multiple time points after housing 

animals in different group sizes during adolescence to plot how glucocorticoid concentrations 

may change over time (for example, sampling animals at postnatal days 40, 50, and 60 in the 

design used in the current study). 

Female birds raised in larger groups in early adolescence secreted a higher CORT 

concentration between 15 and 45 mins into restraint when in adulthood compared to all other 

conditions. This effect may reflect that female birds raised in larger groups in early adolescence 

have a longer stress response when in adulthood, resulting in more CORT being secreted in 

response to a stressor in larger group reared females. Previous work has shown that male mice 

raised in larger adolescent groups develop into adults with a higher CORT concentration in 

response to a stressor (loud noise when single housed) compared to male mice raised in smaller 

groups (Ortiz et al., 1985). However, Ortiz et al., (1985) only quantified CORT at one time 

point during stressor exposure. By measuring CORT more than once during stressor exposure 
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when zebra finches were sampled, the findings from the current thesis suggest that adolescent 

group size may result in a higher stressor-induced CORT concentration as the animals have a 

longer stress response than birds from smaller adolescent groups. Two stressor-induced 

samples were taken from zebra finches at two different times as an attempt to quantify peak 

and post-peak stressor-induced CORT concentration (e.g. Spencer et al., 2009). However, birds 

from all conditions did not show a decline in CORT concentration with progressing restraint 

time. Further experiments are therefore required to quantify aspects of the stress response that 

were not measured in the current experiment, i.e. peak and post-peak stressor-induced CORT 

concentrations, in order to obtain more holistic representations of how birds from different 

adolescent housing conditions respond to a stressor. As adult females from larger adolescent 

groups appear to have a longer stress response, stressor-induced CORT concentration in 

females from larger groups would be expected to take longer to return to baseline, indicated by 

higher post-peak CORT concentration, relative to females from smaller adolescent groups. This 

prediction now needs to be tested. 

In contrast to the zebra finches in the current thesis and the mice in Ortiz et al. (1985), 

male guinea pigs raised in a larger group throughout adolescence secreted a lower 

concentration of cortisol in response to being housed with an unfamiliar male and female when 

in adulthood (mate competition context) compared to guinea pigs raised in smaller groups in 

adolescence (Sachser et al., 1993). Social context may therefore modulate the long-term effects 

of adolescent group size on CORT secretion. Stressor-induced CORT secretion affects 

behavioural responses to stressors, for example by eliciting avoidant behaviour to escape a 

stressor (Haller et al., 1998; Rodgers et al., 1999) or by eliciting antagonistic behaviour to 

compete against a social stressor (Mikics et al., 2004). Adolescent group size may modulate 

later-life CORT secretion, but in a direction that results in a greater avoidance of stress. 

Secreting more CORT when in an individual context may therefore result in better avoidance 
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of a (potentially) threatening stimuli, whereas secreting less CORT in a social context may 

result in less antagonistic interactions and lower injury risk. In order to test the hypothesis, 

research is now necessary to investigate the long-term effects of adolescent group size on adult 

CORT secretion across social contexts in the same animals, for example CORT secretion in 

response to an unfamiliar object vs. an unfamiliar conspecific. 

3.4.5. Corticosterone: sex differences 

Adolescent group size and density had no effects on secretion of CORT in male zebra 

finches. Why early adolescent group size only affected CORT secretion in females is not clear. 

The sex-dependent effects were not predicted, but most research investigating adolescent group 

size and social density have only used males (e.g. Ago et al., 2014; Lürzel et al., 2010; Lürzel 

et al., 2011; Ortiz et al., 1985; Sachser et al., 1993), and the one study to include both males 

and females found no sex-dependent effects of group size/density on CORT secretion in 

adolescent mice (Laviola et al., 2002). The current work is therefore the first to investigate the 

long-term effects of adolescent group size on later-life CORT secretion in females. Previous 

work has shown that adolescent female zebra finches (day 60) have a higher basal and peak 

CORT concentration in response to capture and restraint compared to age-similar males (Crino 

et al., 2014), but these effects may be limited to birds from smaller broods (i.e. three chicks per 

nest vs. more than three chicks per nest: Spencer et al., 2009). The standardised brood size in 

the current study rules out brood size effects, but the prior findings emphasise that social 

context during development can influence sex differences in CORT secretion. Sex-dependent 

effects of early-life social conditions (e.g. brood size, adolescent group size) on glucocorticoid 

secretion may be attributable to differences in nonapeptide functioning. Nonapeptides are 

regulated by social context, can either inhibit (e.g. mesotocin) or stimulate (e.g. vasotocin) 

CORT secretion, and have sex differences in functioning, e.g. female rats have a higher number 

of OT-immunoreactive neurons in the PVN compared to male rats (Dumais & Veenema, 2016; 
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Goodson et al, 2015; Neumann, 2008). Social conditions experienced during development may 

modulate sex differences in nonapeptide functioning to account for the effects of nestling brood 

size and adolescent group size on glucocorticoid secretion outlined above. For example, 

housing zebra finches with fewer familiar siblings in the nest and, separately, more unfamiliar 

conspecifics when in adolescence may result in lower mesotocin and/or higher vasotocin 

concentration in female birds that would be expected to result in greater glucocorticoid 

secretion. No research has yet investigated whether the social conditions birds experience 

during development affect the nonapeptide systems, but these could now be a focus of future 

investigation.  

Sex differences in pubertal maturation are typically not present in zebra finches, as male 

and female birds develop over a similar time scale and reach sexual maturity at similar ages 

(Perfito, 2010; Zann, 1996). The adolescent sex differences in CORT secretion found in the 

current chapter and previous work (e.g. Spencer et al., 2009) are therefore not likely to be due 

to male and female birds being in different stages of maturation. As adolescence progresses, 

basal testosterone concentration becomes higher in male zebra finches compared to females 

(around day 75, i.e. late adolescence; Zann, 1996). Higher basal testosterone concentration may 

result in more antagonistic behaviour in males, as observed in adults (Ardia, Broughton, & 

Gleicher, 2010). Males raised in larger and/or denser groups during late adolescence may, due 

to the effects of testosterone, engage in more antagonistic interactions and have a higher CORT 

concentration than males reared in smaller and/or less dense groups during late adolescence, as 

has been reported in adult male rodents (e.g. Creel, 2013; Van Loo et al., 2001). CORT 

secretion in males may therefore have been affected by variation in group size and/or social 

density in late adolescence. The hypothesis now requires testing by repeating the current 

experiment in late adolescence, for example between days 65-85 as investigated in Chapter 2.  
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3.4.6. Gonadal hormones and nonapeptides 

Basal gonadal hormone concentrations were no different between housing conditions 

in the current chapter, suggesting adolescent group size and social density do not have long-

term effects on adult behaviour due to organisational effects on gonadal hormone secretion. 

Previous work has also shown that adolescent group size and/or social density do not affect 

basal testosterone concentration (Nicholson et al., 2009; Ortiz et al., 1984; Sachser et al., 1993; 

Smith et al., 2004), but the novel finding here is that estradiol in females is similarly unaffected. 

Estradiol stimulates the HPA axis in mammalian species, resulting in higher CORT 

concentration in female compared to male animals (McCormick & Mathews, 2007). As adult 

estradiol concentration was unaffected by adolescent housing conditions it is therefore unlikely 

to be a mechanism contributing to the effects of group size on stressor-induced CORT 

concentration. However, work is still needed to determine the long-term effects adolescent 

group size and density on the time-dependent responses of gonadal hormones to social 

challenge (Wingfield et al., 1990) and stressors (Ortiz et al., 1984; Romeo et al., 2004b; Yilmaz, 

2003). In addition to, or instead of, affecting circulating gonadal hormone concentrations, 

adolescent housing conditions may affect an animal’s neural sensitivity to gonadal hormones 

by regulating the neural expression of gonadal hormone receptors. For example, greater neural 

sensitivity to androgens due to higher androgen receptor expression in the PVN of the 

hypothalamus may result in lower stressor-induced CORT (Handa & Weiser, 2014). Neural 

expression of androgen and estrogen receptors in adulthood therefore still need to be quantified 

in animals raised in the different adolescent housing conditions used in the current chapter. 

VP/VT regulate antagonistic interactions, with higher VP/VT resulting in more 

antagonistic interaction with unfamiliar conspecifics (e.g. Goodson & Thompson, 2010). A 

lower VT concentration could account for the lower antagonistic behaviour toward unfamiliar 

conspecifics that was observed in birds reared in larger groups compared to smaller groups, but 
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this suggestion requires testing. Oxytocin and possibly mesotocin inhibit CORT secretion 

(Neumann, 2008; Goodson, Schrock, & Kingsbury, 2015), whereas vasopressin and vasotocin 

further stimulate CORT secretion during a stress response (Aguilera & Rabadan-Diehl, 2000; 

Cornett et al., 2013). A lower mesotocin and/or higher vasotocin plasma concentration in 

female zebra finches raised in larger groups during adolescence compared to smaller groups 

could result in effects on CORT concentration found in the current study. Further work is 

needed to explore the effects of adolescent housing conditions on adult nonapeptide 

concentrations to test the above hypotheses. 

3.4.7. Summary 

In summary, the findings presented in the current chapter clearly show that adolescent 

group size and social density have long-term effects on adult behavioural responses to 

unfamiliar stimuli (environments, objects, and conspecifics) when in a group context. Birds 

raised in larger groups at a sufficiently low density in early adolescence interact more with 

unfamiliar objects and environments (if female) and spend less time alone amongst unfamiliar 

conspecifics (males and females) when in the presence of familiar conspecifics in adulthood. 

Birds raised in larger groups in early adolescence also engage in less antagonistic and courtship 

behaviour when amongst unfamiliar conspecifics in adulthood. The long-term behavioural 

effects of group size in females may be attributable to differences in stress physiology, with 

large group reared females secreting a greater concentration of CORT in response to an acute 

stressor when in adulthood relative to smaller group reared females. The mechanisms 

underpinning the effects of density and any effects in males still remain to be elucidated. 

Previous work has focused on male animals and conflated the effects of group size with social 

density. The current work is an improvement upon much prior work as the design could detect 

the separate effects of group size and social density, whilst both males and females were 

included in order to detect sex differences. Entering into unfamiliar social groups that vary in 
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both number and density of conspecifics is an inevitable event in many social species, 

especially in highly gregarious species like zebra finches (Griffith & Buchanan, 2010; Zann, 

1996). The current findings indicate that adolescent group size and density can independently, 

and in interaction with one another, affect behavioural responses to unfamiliar stimuli and 

stress physiology in adulthood. 
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Chapter 4 

Adolescent interactions with unfamiliar conspecifics: long-term effects on behavioural 

and endocrine responses to unfamiliar stimuli 
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4.1. Introduction 

Upon dispersing from the natal home, adolescents begin to interact with unfamiliar 

conspecifics (Nelson et al., 2005; Nelson et al., 2016; Schlegel & Barry, 1991). Unfamiliar 

adolescent interactions have been proposed to affect responses to unfamiliar stimuli in later-

life, with more unfamiliar social interactions during adolescence resulting in adult animals that 

interact more with unfamiliar stimuli (i.e. less neophobic) compared to animals that engaged 

in fewer unfamiliar social interactions during adolescence (Spinka et al., 2001). Late adolescent 

pairs of guinea pigs (days 80-120) briefly exposed to unfamiliar conspecifics for ten minutes 

per day every other day (20 interactions in total), vs. stable pair housing, had lower cortisol 

concentration in response to an unfamiliar environment later in adolescence (Lürzel et al., 

2011); but ten interactions had no effect (Lürzel et al., 2010). A sufficient number of unfamiliar 

interactions can therefore lower the physiological response to unfamiliar stimuli, a mild 

stressor, in adolescent guinea pigs. The guinea pigs exposed to more unfamiliar social 

interactions (vs.no such interactions) would therefore be expected to engage in less neophobic 

behaviour when in adulthood. However, the long-term effects of unfamiliar adolescent social 

interactions on adult neophobic behaviour and glucocorticoid secretion or the adolescent 

behavioural cause of any long-term effects on such adult measures remain to be determined in 

the species. 

Attempts have been made to determine the adult behavioural effects of unfamiliar 

adolescent social interactions in rats by repeatedly re-housing unfamiliar rats together for 

twenty three hours after one hour of single housing on successive days during early adolescence 

(days 30-45: McCormick et al., 2015). Re-housed male rats (domesticated, Long Evans), vs. 

familiar stable pair housing, developed into adults who moved more in an unfamiliar elevated-

plus maze (McCormick et al., 2008) and spent less time in contact with an unfamiliar object 

(Green et al., 2013). In contrast to males, female rats (domesticated, Long Evans) subjected to 
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the adolescent re-housing protocol described above developed into adults who spent more time 

on the open arms of an elevated-plus maze during estrous (McCormick et al., 2008).Activity 

and avoidance are neophobic behavioural responses (Haller et al, 1998), suggesting more 

unfamiliar adolescent social interactions may result in a more neophobic phenotype in male 

rats and less neophobic phenotype in female rats (McCormick et al., 2015). However, the re-

housing protocol conflates unfamiliar social interactions with single housing and absence of a 

familiar rat. Social separation is a stressor in a number of social species (Ferland & Schrader, 

2011; Hennessey, 1997; Remage-Healey et al., 2003). Any effects of the re-housing protocol 

could therefore be attributed to unfamiliar social interactions, but could also reflect stress from 

single housing and/or absence of familiar conspecifics. 

A rat’s appraisal of unfamiliar stimuli can be interpreted in part by the type of ultrasonic 

call emitted during exposure to the stimuli (Portfors, 2007; Schwarting & Whӧr, 2012). In 

response to unfamiliar stimuli rats can emit 22 kHz calls to signal a stimulus is perceived as 

(potentially) threatening and should be avoided (e.g. predator, handling) and 50 kHz calls to 

signal a stimulus is (potentially) appetitive and can be approached (e.g. adolescent play, adult 

mating) (Brudzynski, 2009; Burgdorf et al., 2008; Portfors, 2007). During social separation 

male rats also emit 50 kHz calls, perhaps as an attempt to solicit social contact to terminate 

social separation (Whӧr et al., 2008). Adolescent social interactions affect the emission of 

ultrasonic calls in later-life, with male rats single housed during adolescence developing into 

adults that emit fewer 22 kHz calls in response to handling than male rats pair housed during 

adolescence (Inagaki et al., 2005). Adolescent social interactions also affect behavioural 

responses to ultrasonic calls in later-life, with male rats single housed during adolescence 

approaching playback of 50 kHz calls to a lesser extent than male rats pair housed during 

adolescence (Seffer et al., 2015). Single housing may therefore remove opportunities for vocal 

learning in adolescence, resulting in lower and/or impaired vocal production in adulthood. The 
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effect of more unfamiliar adolescent social interactions on vocal behaviour in later-life remains 

to be tested. 

The long-term behavioural effects of unfamiliar adolescent social interactions on adult 

responses to unfamiliar stimuli may reflect changes in CORT secretion (McCormick et al., 

2015; Sachser et al., 2011). However, the rat re-housing protocol described earlier has no long-

term effects on CORT concentration (McCormick et al., 2004; McCormick et al., 2005; 

Mathews et al., 2008; McCormick et al., 2008). To date, all re-housing studies have only 

quantified CORT concentration in response to non-social stressors, such as restraint and 

confinement on an open platform. Adolescent social interactions may only have effects on adult 

social interactions, including the secretion of CORT in response to social interactions (van den 

Berg et al., 1999). When investigating the long-term endocrine effects of adolescent social 

interactions, the social context in which CORT concentration is quantified should be taken into 

consideration. 

The reason why unfamiliar adolescent social interactions have long-term effects on 

adult responses to unfamiliarity is not clear. However, the adult differences may emerge during 

adolescence from behavioural differences in responses to familiar vs. unfamiliar conspecifics. 

There is no clear evidence of differences in non-social investigation (e.g. locomotor activity 

and rearing) occurring between familiar and unfamiliar rats (Cirulli et al., 1996; Terranova et 

al., 1999), but social behaviour is less ambiguous. Rodents, especially domesticated rats, 

engage in rough-and-tumble play and investigatory sniffing with one another in adolescence 

(Panksepp et al., 1984; Pellis & Iwanuik, 2004; Pellis & Pellis, 2007; Varlinskaya & Spear, 

2008) and emit 50 kHz calls during play (Himmler et al., 2014). Play and sniffing is more 

common between unfamiliar rats compared to familiar rats during brief (10-30 minute) 

encounters (Barefoot et al., 1975; Cirulli et al., 1996; McCormick et al., 2006; Thor & 
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Holloway, 1984; Veenema et al., 2012), suggesting the quantity of social interaction may be 

the cause of the long-term effects on adult responses to unfamiliarity. 

The current study investigated two hypotheses. First, interacting with unfamiliar 

conspecifics during adolescence results in adult animals that are less neophobic, indicated by 

the animals interacting more with unfamiliar non-social stimuli and secreting a lower 

glucocorticoid concertation in response to an unfamiliar conspecific (Spinka et al., 2001). 

Second, interacting with unfamiliar conspecifics in adolescence results in adult animals engage 

in more and/or improved vocal communication in adulthood, indicated by the animals emitting 

more 50 kHz calls at baseline and fewer 50 kHz calls in response to social separation (based 

on Seffer et al., 2015; Whӧr et al., 2008). Male rats have been the focus of most prior research 

investigating unfamiliar social interactions during adolescence on adult phenotypes 

(McCormick et al., 2015). The current study used only female rats as an attempt to provide a 

detailed investigation of how female rats specifically respond to unfamiliar adolescent social 

interactions. Previous research has shown that, in line with the hypothesis being tested in the 

current chapter, female (not male) rats interacted with unfamiliar stimuli more in adulthood 

after being re-housed with unfamiliar conspecifics compared to stable housing (McCormick et 

al., 2008). However, McCormick et al. (2008) cannot convincingly claim the effects were due 

to more unfamiliar social interactions due to the uncontrolled confounds of single housing and 

re-housing that were present in the design. These confounds will be controlled for in the current 

study in order to provide less ambiguous evidence of the long-term effects of unfamiliar 

adolescent social interactions on adult responses to unfamiliar stimuli. This study is also the 

first to investigate the long-term effects of adolescent social novelty on adult vocalisation rate 

in female rats.  

During early adolescence (days 34-46) rats in the current study experienced one of three 

conditions: paired with an unfamiliar partner in a test arena for ten minutes per day (n = 12), 
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paired with a familiar cage mate in a test arena for ten minutes per day (n = 12), or left in the 

home cage (n = 12). Previous work had indicated that 10 minutes is sufficient for unfamiliar 

pairs of rats to have engaged in more play than familiar pairs of rats (Cirulli et al., 1996) and 

long-term effects to occur in guinea pigs (Lürzel et al., 2011). During the interactions in the 

test arena recordings were made of social behaviour (time in proximity, number of investigative 

sniffs, number of play encounters) and risk-related behaviour (rearing, freezing) as an 

indication of the proximate behavioural cause of any long-term effects. Unfamiliar, vs. 

familiar, pairs were predicted to be more affiliative, indicated by more time in proximity, 

engaging in more sniffing and play (based on, for example, McCormick et al., 2006; Thor & 

Holloway, 1984) but no differences were expected for rears and freezes (based on Cirulli et al., 

1996; Terranova et al., 1999).  

In adulthood (day 65+), behavioural responses to unfamiliar stimuli were quantified in 

three unfamiliar environments. The first environment was an elevated-plus maze, which 

permits rats to explore aversive open arms and less aversive closed arms on an elevated ‘plus’ 

shaped maze (Carobrez & Bertoglio, 2005). The second environment was a light-dark box, 

which permits rats to freely enter an aversive well-lit compartment from a less aversive dark 

compartment (Bourin & Hascoët, 2003). The third environment was an object/social novelty 

task, which permits rats to explore an unfamiliar arena containing a novel object and novel 

male rat (Brown, Kulbarsh, Spencer, & Duval, 2015). Rats exposed to unfamiliar adolescent 

interactions, vs. other conditions, were predicted to interact more with unfamiliar stimuli in the 

elevated-plus maze (enter the open arms more, spend more time on the open arms, an engage 

in more risk assessment on the open arms), light-dark box (entering the light compartment more 

quickly, entering the light compartment more often, spending more time in the light 

compartment, and rearing in the light compartment more), and object/social novelty task (more 



181 
 

time in proximity to the unfamiliar object and conspecific, more rears when in proximity to the 

unfamiliar object and conspecific) based on the findings of McCormick et al. (2008).  

In adulthood, responses to unfamiliar social contexts were quantified in two separate 

tasks. First, the number of ultrasonic calls were quantified prior to, during, and immediately 

after single housing. 50 kHz call rate during social separation was predicted to be lower in rats 

that interacted with unfamiliar conspecifics during adolescence compared to control conditions 

that did not interact with unfamiliar conspecifics (based on Wӧhr et al., 2008). Second, urinary 

CORT concentration was quantified both prior to and after housing with a familiar and 

unfamiliar conspecific. CORT concentration in response to an unfamiliar conspecific was 

predicted to be lower in rats that interacted with unfamiliar conspecifics during adolescence 

compared to control conditions that did not interact with unfamiliar conspecifics (based on 

Lürzel et al., 2011). 

4.2. Methods 

4.2.1. Ethical statement 

Ethical guidelines as set out in the Principles of Laboratory Animal Care (NIH, Publication 

No. 85–23, revised 1985) and the UK Home Office Animals (Scientific Procedures) Act 1986 

were adhered to under Project Licence 60/4354 and Personal Licence IDFA58352. 

4.2.2. Animals and housing 

36 female Lister hooded rats derived from nine litters that were bred in-house from stock 

animals (Harlan, UK) were used as test subjects in the current study. Additionally, 12 females 

and 6 males from these litters were used as unfamiliar social interaction partners. Pups were 

reared by their mothers in plastic cages measuring 52 x 40 x 26 cm (length x depth x height) 

with a wire mesh top. Pups were weaned on postnatal day (PND) 26 and housed in same-sex 

sibling pairs in cages measuring 45 x 28 x 21 cm cages (length x depth breadth x height). Pups 
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were weighed upon weaning and given unique tail markings with semi-permanent marker. Rats 

continued to be weighed and marked weekly throughout the experiment. Rats had ad libitum 

access to soya-free pellet food (DBM Food Hygiene Supplies Ltd, Scotland) and water when 

in the home cage. All animals were held in a single holding room throughout the experiment 

and were kept on a 12:12 light-dark cycle (lights on at 07:00), with temperature and humidity 

maintained at 20+1° and 55+5%, respectively. All interactions with the rats occurred during 

lights-on. All cages received weekly husbandry. 

4.2.3. Experimental Design 

Adolescence. Three groups were established that differed in adolescent social experience: 

familiar social interactions (FS; n = 12 pair housed rats), unfamiliar social interactions (US; n 

= 12 pair housed rats), and unmanipulated controls (C; n = 12 pair housed rats). The litters were 

distributed across the different conditions to reduce any pre-weaning effects, and both rats in 

the same cage were in the same group. FS rats were housed in a test arena with their cage mate 

for 10 minutes per day, US rats were housed in a test arena with one unfamiliar same-sex age-

similar (+1 day) play mate for 10 minutes per day, and C rats were left undistributed in their 

home cages except for regular husbandry in order to control for the effects of handling, 

transport, and exposure to the test arena. As all rats were handled regularly during weekly 

husbandry a separate handling control group was not needed. The unfamiliar playmates (n = 

14) used were not from the same litter as the US rat undergoing testing.  

The FS and US interactions occurred in one of two identical and adjoined arenas 

measuring 48 x 47 x 44 cm (length x height x depth) with sawdust covering the base and black 

card covering the exterior walls. The arenas were separated from one another with an opaque 

plastic barrier. The arena was surrounded by a black curtain to standardise the testing 

environment. US rats were carried in a test cage to the test arena and placed one rat per test 
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arena. Each test arena contained one unfamiliar play mate rat that was placed in the arena less 

than two minutes prior to placing the US rat in the arena. The unfamiliar rats were allowed to 

interact for 10 minutes before being placed back into a carry box and returned to the home cage 

with their familiar partner. FS rats were carried to the test arena in a carry box and both rats 

were placed in the same arena and allowed to interact for 10 minutes before being put back in 

a carry box and returned to the home cage with their familiar partner. FS and US rats underwent 

this process once per day from PND 34-45. Unfamiliar playmates were used once per day. The 

test arenas were wiped down with 70% ethanol between each interaction to remove odour cues. 

A video camera mounted into the ceiling was used to video record the interactions. Six 

of the twelve daily interactions were video recorded (half of animals were recorded on odd 

days and half on even days) to provide a measure of behaviour change across adolescence. The 

six interactions are referred to as sessions. From the view of the camera, the test arena was 

divided into equally sized quadrants by lines of string that were fastened to the top of the test 

arena. The duration of time both rats were in the same quadrant (seconds) was recorded as a 

measure of social proximity. Number of rough-and-tumble play behaviours, number of 

investigative sniffs, number of rears, and number of freezes were also recorded. Table 4.1. 

contains definitions of the coded behaviour. Measured behaviour were not independent of each 

rat, so each behaviour was recorded per pair of rats. 

Adulthood. In adulthood (PND 96-111), behavioural responses to unfamiliar stimuli were 

quantified by exposing animals to unfamiliar environments (see ‘Unfamiliar environments’ 

below). Rats were tested over a period of three weeks with one task per week. The three 

environments used were an elevated-plus maze, a light-dark box, and an object/social novelty 

task. The first task occurred on PND 96 or 97, the second on PND 103 or 104, and the third on 

PND 110 or 111. All tasks were counter-balanced across testing ages, adolescent conditions, 

and time of day (8:30-13:00 vs.13:00-17:30). Later in adulthood, responses to changes in social 
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context were quantified (see ‘CORT response to social interactions’ below). In one task, urine 

samples were collected before and after social interaction with a familiar or unfamiliar same-

sex adult female rat (PND 122-132). A pre-interaction urine sample was taken after removing 

a rat from a home cage, and a post-interaction urine sample was taken after three hours of pair 

housing with a familiar or unfamiliar rat. Three hours has been indicated as a sufficient duration 

of time to determine stressor-induced CORT in urine (Bamberg, Palme, & Meingassner, 2001). 

Urine sampling for each rat occurred on two consecutive days, with partner familiarity and 

conditions counter-balanced across the two days. The chronological order of testing was also 

counter-balanced across conditions. Later in adulthood (PND 156-169), ultrasonic calls were 

recorded (see ‘Ultrasonic call response to social separation and reunion’ below). The calls 

were recorded during three phases of a social separation task (pre-separation, separation, and 

reunion) during which a rats was separated from its familiar cage mate and single housed. A 

summary diagram of the design used in the current chapter is presented in Figure 4.1. 

Table 4.1. Behaviours coded during adolescent observations which were based on: 1. Cirulli et 

al. (1996), 2. Klein, Padow, & Romeo, 2010, 3. Rodgers et al. (1999), 4. Blanchard, Griebel, 

Pobbe, & Blanchard (2011), 5. Kiyokawa et al. (2004). 

 

Variable 
Composite 

Behaviours 
Description 

Play1,2 Nape attack A rat contacts the back of the neck of another rat 

 Boxing 
Rats stand on their hindpaws and push one another  

with their forepaws 
 Pin A rat holds another rat down on its back or side 

 Evasion 
A rat runs, leaps, or swerves from a rat during play 

 

Investigation
1,2 

Facial sniffs 
A rat contacts, with its snout, the head and nape of  

another rat 

 Flank sniffs 
A rat contacts, with its snout, either side of the body  

of another rat 

 Anogenital 

sniffs 

A rat contacts, with its snout, the ano-genital region  

of another rat 

Rears3,4 

- 

A rat raises its forepaws off the ground and stands on 

the hind legs to horizontally investigate the 

environment  

Freezes4,5 
- 

A rat suddenly stops moving for a minimum of two 

seconds 
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Figure 4.1. Timeline detailing the age at which the rats were underwent the familiar or 

unfamiliar social interaction manipulation (blue), when behavioural responses were recorded 

(green), and when urine sampling occurred (red).  

 

4.2.4. Apparatus and measures 

Unfamiliar environments. All unfamiliar environment testing occurred in the same room as the 

adolescent interaction sessions. Each unfamiliar environment apparatus was surrounded by a 

black curtain to standardise the testing environment. Each task was recorded using a camera 

mounted into the ceiling above the apparatus. All rats were tested individually and each 

apparatus was wiped down with 70% ethanol after each test to remove odour cues. 

Elevated-plus maze (EPM). The EPM consisted of a wooden ‘plus’ shaped platform made up 

of four grey-painted wooden arms. Each arm was 51cm long and 11cm wide, extending out 

from a central square (11 x 11 cm) to form a ‘plus’ shape. Two opposing arms were open 

platforms, whilst the other two opposing arms had walls (back wall, two side walls). The central 

square was present to ensure behavioural recordings from each arm were independent from one 

another. A metal frame elevated the maze to a height of 56cm.  

Recording began when a single rat was placed in the centre square facing an open arm. 

Number of open and closed arm entries (all four paws in an arm), time spent in open and closed 

arms (seconds), and number of rears in open and closed arms (rat stands on its hind legs within 

an arm) were recorded for five minutes before returning the rat to the home cage. 
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Light-dark box (LDB). An arena (119 x 47 x 44 cm, length x height x width) was split into 

two adjacent compartments with an opaque plastic divider An 11 x 11cm archway at the bottom 

of the divider allowed movement between compartments. A dark compartment (49 x 47 x 44 

cm, length x height x width) was created by covering the exterior walls in black card and 

covering the compartment with a wooden lid. A light compartment (70 x 47 x 44 cm, length x 

height x width) was created by covering the exterior walls of the compartment with white card 

and exposing the compartment from above with artificial light (150 lux on compartment floor).  

A single rat was placed in the dark compartment to begin the task. Latency to enter the 

light compartment (all four paws in light compartment), number of head pokes into the light 

compartment (only snout to ears in light compartment), number of entries into the light 

compartment (all four paws in light compartment), duration of time spent in the light 

compartment (seconds), and number of rears in the light compartment (rat stands on hind legs 

in light compartment) were recorded for five minutes before returning the rat to the home cage. 

Object/social novelty (OSN) task. An arena (119 x 47 x 44 cm, length x height x width) was 

covered with black card on the exterior walls. A Perspex box (24 x 46 x 21 cm, length x height 

x width) was placed in the top right corner and the bottom left corner of the arena. During 

testing one box (‘object box’) contained one of six novel objects (glass jar filled with stones, 

blue plastic bottle filled with sand, orange plastic watering can, spiky yellow ball, and a multi-

coloured tower of Lego® blocks) and the other box (‘social box’) contained one of six novel 

males (adult males from same litters as females in the current study, but not related to the test 

female). The arena floor was divided into three zones: left, right, and centre. The left and right 

zones were 48 x 47 cm (length x depth) and each included one of the Perspex boxes. The left 

and right zones are referred to as ‘object area’ or ‘social area’ depending on the contents of 

each Perspex box in that zone. The centre zone measured 24 x 47 cm (length x depth) and was 

included so behaviour in the left and right zones could be measured independent of one another. 
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The order of each object and male (1-6) and the location of the object box/area and social 

box/area (left vs. right) were counter-balanced across conditions.  

A rat was placed in the centre zone to start testing. The number of entries into the object 

area and social area (four paws in the area), the duration of time in the object area and social 

area (seconds), the number of rears in the object area and social area (rat stands on hind legs), 

the number of times in contact with the object and social box (rat touches a box with head, 

body, or paws), and the duration of time in contact with the object and social box (seconds) 

were recorded for five minutes before returning the rat to the home cage. 

CORT response to social interaction. A pair of rats were moved to a separate room for urine 

collection. Rats were individually housed in clean cages (39 x 26 x 57 cm, length x height x 

depth) with cling film covering the base of the cage. A pre-interaction urine sample (minimum 

50 µl) was collected by holding a rat under the arms and lifting the rat off the ground; the rat 

responded by urinating on the cling film. Urine was collected in an Eppendorf, put on wet ice, 

and stored at -20°C until assayed. Rats were then pair housed in new clean cages identical to 

the urine collection cages, but with sawdust bedding and ad libitum access to soya-free pellets 

and water, in a separate room to the urine collection room. Rats were pair housed with either a 

familiar or unfamiliar rat for three hours. The familiar rats were cage mates. The unfamiliar 

rats were one of the subjects in the current study was not the cage mate. The condition (FS, 

US, C) that the unfamiliar rat belonged to was counter-balanced with the condition of the rat 

undergoing testing. After three hours had elapsed the rats were returned to the urine collection 

room and a second urine sample was collected like that described above. Rats were then 

returned to their home cages with their original familiar cage mate. 

Ultrasonic call before, during, and after social separation. During pre-separation, two familiar 

rats were removed from their home cage and placed in separate but adjacent 32 x 47 x 44 cm 
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(length x height x depth) arenas for five minutes. Arenas were covered with black card on the 

exterior walls and a perforated clear Perspex divider separated one arena from the other. A rat 

was in visual, auditory, and olfactory contact with the other rat. Rats were then single housed 

in separate 39 x 26 x 57 cm cages for sixty minutes with one rat moved to a different room to 

ensure no contact could occur (separation). Rats had ad libitum soya-free pellets and water 

during separation. After sixty minutes elapsed, rats were returned to their original pre-

separation compartments (reunion) for five minutes before being returned to their home cages 

in the holding room. To control for any relocation effects the task occurred twice (separated by 

seven days) with each rat experiencing relocation. Chronological order of testing was counter-

balanced across conditions. 

Ultrasonic calls were recorded during social separation task using UltraSoundGate 

Condenser Microphone CM16/CMPA (Avisoft-96 Bioacoustics, Germany; frequency range 

10–200 kHz). During pre-separation and reunion a microphone was suspended above each 

arena to record calls from each rat for five minutes. During separation, a microphone was 

suspended above each cage and calls were recorded for the first five minutes of single housing. 

Audacity®, version 2.0.5 was used to visualise calls. 50 kHz calls (frequency range 30-80 kHz) 

were classified into one of fifteen call types based on call shape, duration, and bandwidth 

(Table 4.2.) based on the call types described in Wright, Gourdon, & Clarke (2010). 22 kHz 

calls (near constant structure, frequency range 20-25 kHz, duration > 0.1 seconds) were also 

quantified, but so few rats emitted them (4/36) that the calls were not further considered.   
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Table 4.2. 50 kHz call types coded during social separation and reunion. Calls followed by a 

(FM) are frequency modulated (frequency range >5 kHz) and calls followed by a (C) are 

constant (frequency range <5 kHz).  

 

 

 

Call Definition 

Complex (FM) 
Call with at least three directional changes; frequency range > 8 kHz; 

duration > 0.02 seconds 

Sub-complex (FM) 
Call with at least three directional changes; frequency range 5-8 kHz; 

duration > 0.02 seconds 

Upward ramp (FM) 
Call gradually increases in frequency and may end in a plateau or 

slight dip; frequency range > 5 kHz; duration > 0.02 seconds 

Downward ramp (FM) 
Call gradually decreases in frequency and may end in a plateau or 

slight rise; frequency range > 5 kHz; duration > 0.02 seconds 

Step up (FM) 
A constant call that terminates with an isolated call that is a higher 

frequency; frequency range > 10 kHz; duration > 0.02 seconds 

Step down (FM) 
A constant call that terminates with an isolated call that is a lower 

frequency; frequency range > 10 kHz; duration > 0.02 seconds 

Multi-step (FM) 

Central section of a call is separated from preceding/succeeding 

sections and falls to a lower frequency; sections can be any call, but 

not trills; frequency range > 10 kHz; duration > 0.05 seconds 

Trill (FM) 
Continuous and connected rapid frequency oscillations; frequency 

range of each trill component is > 8 kHz; duration > 0.04 seconds 

Trill plus (FM) A trill call that contains any additional call type 

Inverted U (FM) 
A single call that contains a frequency increase then frequency 

decrease; frequency range > 5 kHz; duration > 0.005 seconds 

Cluster inverted U (FM) 
Two or more inverted U calls separated by no more than 0.005 

seconds 

Composite (FM) 
Two or more different types of call as detailed above; must not 

contain trills 

Short (C) 
Rapid call isolated from other calls by > 0.03 seconds; frequency 

range < 5kHz; duration < 0.015 seconds 

Flat (C) 
A constant call with frequency range < 3 kHz; duration > 0.012 

seconds; must be detected above 30 kHz 

Near constant (C) 
A mostly constant call with a frequency range 3-5 kHz; duration > 

0.015 seconds; must be detected above 30 kHz  
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4.2.5. Hormone assays 

Creatinine. An enzyme immunoassay kit was used to determine the concentration of creatinine 

in each urine sample to control for urine concentration (Creatinine (urinary) Colorimetric 

Assay Kit, Cayman Chemical, USA). Following the manufacturers guidelines, 5µl urine 

samples were diluted with distilled water to a final concentration of 1:20 in 40µl. 15µl samples 

were run in duplicate across two plates, with all samples from a single animal on the same plate 

and condition distributed across the plates. Each plate contained a separate eight point standard 

curve ranging from 0-15 mg/dl. All plates were read on a Biochrom Anthos 2010 Microplate 

Reader, ADAP 2.0 (Biochrom Ltd., UK) at a wavelength of 492 nm. The intra-plate 

coefficients of variation (%) were 9.74% and 11.52. The inter-plate coefficient of variation (%) 

was 10.63. 

CORT. Radioimmunoassay following a previous protocol (Spencer et al., 2009) was used to 

determine CORT concentration in 50µl urine samples. Prior to assay the samples were spiked 

with 25µl of [1,2,6,7-3H]-CORT label (Perkin Elmer Inc., UK) and extracted with 1ml diethyl 

ether. Extracted samples were evaporated at 42°C and reconstituted in 300µl of assay buffer 

(0.01M PBS, pH 7.4, 0.25% BSA). 50µl aliquots of the reconstituted samples were taken to 

determine the extraction efficacy, which ranged between 75-100%. The CORT concentration 

was then determined in 100µl aliquots of the reconstituted samples using anti-CORT antiserum 

(Esoterix Endocrinology, USA, B3-163; 1:15000 dilution in assay buffer) and [1,2,6,7-3H]-

CORT label (Perkin Elmer, UK). After incubating the reactions for 24 hours at 4°C the 

unbound antigens were removed by adding 100µl of a charcoal-dextran suspension (0.5% 

charcoal, 0.25% dextran in assay buffer) to each sample and centrifuging the samples at 2000g 

for 20 minutes. The supernatant was collected in order to quantify the antibody-bound antigens 

using a radioactivity counter (Packard Tri-Carb 1600 TR Liquid Scintillation Analyser, Perkin 

Elmer Inc., UK). All samples were run in duplicate across two assays. Each assay contained 
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all samples from a single rat, and conditions were distributed across assays. Each assay 

contained a separate ten point standard curve ranging from 0.04-20 ng/ml. 50% binding (ng/ml) 

for each assay was 0.71 and 0.75. Intra-assay coefficients of variation (%) for each assay were 

14.35 and 11.33. Inter-assay coefficient of variation (%) was 12.84.  

4.2.6. Data Analysis 

SPSS version 22 was used to conduct all analyses. After performing each test the 

residuals were checked for normality (Shapiro-Wilk, p > 0.05), with some variables found to 

be non-normal due to a positive skew in the distribution. Consequently, some variables were 

square root or log10 transformed to achieve normality in residuals. Those variables that could 

not be transformed to normality were analysed using generalized linear models. In any mixed 

models, litter ID and litter size was entered as random factors to control for pre-adolescent 

experiences. Statistically significant effects were classed as those with a p < 0.05. Significant 

main effects and interactions were further explored using Bonferroni post hoc tests. Cohen’s d 

was calculated as a measure of effect size for all significant post hoc pairwise comparisons. All 

data presented are means + standard error of the mean. 

Adolescent interactions. Linear mixed models (LMM) were used to analyse the adolescent 

behaviour as the interaction sessions were a repeated measure. Duration of time in same 

quadrant, square root number of play behaviours, number of investigatory sniffs, square root 

number of rears, and number of immobilisations were entered as dependent variables in 

separate models. Fixed factors included adolescent condition, session, and the interaction 

between the two. Session was entered as repeated measure to account for the non-independence 

of observations across the adolescence recordings.  

EPM. Exploratory correlations (Spearman’s rank) revealed significant correlations between the 

variables (arm entries v. arm duration: r = 0.832, p < 0.001; arm entries vs. rears: r = 0.445, p 
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< 0.001; arm duration vs. rears: r = 0.498, p < 0.001). A multivariate general linear model 

would be inappropriate given the repeated nature of the data (i.e. open v. closed arm). One 

variable, duration of time in each arm, was therefore analysed. Square root duration of time in 

the arms was entered as a dependent variable in a LMM with arm type (open, closed) and 

adolescent condition entered as fixed factors. Arm type was also entered as a repeated measure 

to account for the non-independence between spending time in each arm. Variables excluded 

in response to the PCA analysis, i.e. number of arm entries and number of rears, were analysed 

in models identical to those for duration of time on the arms. Model outputs from the excluded 

variable models were identical to that of the included variable (data not shown), indicating that 

excluding these variables did not qualitatively affect the results. 

LDB. A multivariate analysis of variance was used to analyse LDB variables in order to 

simultaneously analyse all variables whilst accounting for the co-variance between variables. 

Log10 light latency (seconds), number of head pokes, number of light compartment entries, 

duration of time in light compartment (seconds), and number of rears were entered as 

dependent variables in one model with adolescent condition entered as a fixed factor.  

OSN. Exploratory correlations (Spearman’s rank) found that the dependent variables recorded 

were positively correlated with one another (see Appendix B Table B.7.). A multivariate 

general linear model would be inappropriate given the repeated nature of the data (i.e. social v. 

object area/box). Only one behaviour, duration of time in contact with the stimulus box, was 

therefore analysed. Duration of time in contact with the stimulus box was entered as a 

dependent variable in a LMMs with adolescent condition and box type (social, object) entered 

as fixed factors. Box type was also entered as a repeated measure to account for the non-

independence between times spent with either stimulus box. The variables excluded in response 

to the PCA analysis, i.e., were analysed in models identical to those for duration of time in 

contact with the stimulus box. Model outputs from the excluded variable models were identical 
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to that of the included variable (data not shown), indicating that excluding these variables did 

not qualitatively affect the results. 

CORT response to social interactions. The creatinine concentration was calculated following 

the manufacturers guidelines for the creatinine EIA kit. CORT concentration was expressed as 

10-5 CORT (ng/ml)/creatinine (mg/dl). Log10 pre-interaction CORT concentration was first 

analysed for differences between conditions using a univariate general linear model with 

adolescent condition entered as a fixed factor. No significant difference was detected (F2,69 = 

0.236, p = 0.791). A change in urinary CORT concentration variable was then created by 

subtracting pre-interaction CORT concentration from post-interaction CORT concentration. A 

LMM was then used to analyse change in 10-5 CORT (ng/ml)/creatinine (mg/dl) with 

adolescent condition and partner familiarity entered as fixed factors. Partner familiarity was 

also entered as a repeated measure to account for the non-independence of CORT across task 

contexts. Partner condition was entered as a random factor to control for any effects of partner 

adolescent experience. The pre-interaction CORT concentration was entered as a co-variate to 

control for individual differences in the pre-interaction CORT concentration. 

Ultrasonic calls before, during, and after social separation. The mean call rate across the two 

recording days was calculated, and then split into two categories: FM calls (>5 kHz bandwidth), 

and constant calls (<5 kHz bandwidth). The total number of calls was entered as a dependent 

variable in a generalized linear mixed model with adolescent condition, call category, task 

phase, and the interaction between them entered as fixed factors. The call categories and task 

phases were also entered as repeated measures to account for the non-independence of calls 

across categories and task phases. The data were fitted to a gamma distribution (with log link) 

using a robust estimation in order handle possible violations of the model assumptions. A 

gamma distribution was chosen to account for a positive skew in the residuals of the raw data. 
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4.3. Results 

4.3.1. Adolescent interactions 

Unfamiliar pairs spent more time in the same quadrant than familiar pairs (F1,17.356 = 

20.965, p < 0.001; familiar: M = 268.47, SEM = 8.43; unfamiliar: M = 328.61, SEM = 5.45), 

but session had no effect on quadrant time (session: F5,16.543 = 2.247, p = 0.098; session x 

condition: F5,16.543 = 1.815, p = 0.165). Unfamiliar pairs also engaged in more investigatory 

sniffs than familiar pairs (F1,17.992 = 40.063, p  < 0.001; familiar: M = 10.11, SEM = 0.73; 

unfamiliar: M = 20.67, SEM = 0.72), but session had no effect on sniffing (session: F5,16.985 = 

1.503, p = 0.241; session x condition: F5,16.985 = 1.503, p = 0.241). Unfamiliar pairs also played 

more than familiar pairs (F1,17.973 = 18.549, p < 0.001), but this was dependent on session 

number (F5,16.905 = 9.273, p < 0.001; Figure 4.2.). Unfamiliar pairs played more than familiar 

pairs in session 4 (p = 0.02, d = 1.15), 5 (p < 0.001, d = 2.14), and 6 (p < 0.001, d = 1.88). 

Session itself did not affect play (F5,16.905 = 2.046, p = 0.124).  

Figure 4.2. Number of play behaviour between familiar and unfamiliar rats during adolescent 

social interaction sessions. Data are mean + one standard error of the mean. Letters denote 

significant difference (p < 0.05) between conditions in a session, i.e. a vs. b, c vs. d, e vs. f. 
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d 
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Rats engaged in fewer freezes in session 1 compared to all other sessions (session: 

F5,15.966 = 18.396, p < 0.001; 1 vs. 2: p < 0.001, d = 1.49; 1 vs. 3: p < 0.001, d = 1.84; 1 vs. 4: p 

< 0.001, d = 1.86: 1 vs 5: p < 0.001, d = 2.13; 1 vs. 6: p < 0.001, d = 2.59). Data are summarised 

in Table 4.3. Adolescent condition did not affect freezing (condition: F1,16 = 0.437, p = 0.518; 

session x condition: F5,15.966 = 0.951, p = 0.476).  

Table 4.3. Number of freezes during each of the six sessions of adolescent social interaction 

split between familiar and unfamiliar pairs. Data presented are mean (one standard error of the 

mean). A main effect of session was found denoted by bold vs. not bold, with fewer freezes in 

session 1 vs. session 2-6 regardless of condition (p < 0.05). 

 

  

 

 

 

 

Rats engaged in a similar number of rears regardless of adolescent condition or test 

session (condition: F1,15.931 = 2.031, p = 0.173; session: F5,15.769 = 1.848, p = 0.161; condition x 

session: F5,15.769 = 1.108, p = 0.39). Data are summarised in Table 4.4. 

Table 4.4. Number of rears during each of the six sessions of adolescent social interaction split 

between familiar and unfamiliar pairs. Data presented are mean (one standard error of the 

mean). No significant effects were detected (p > 0.05). 

 

 

 

 

 

 

 

 

Session 
Freezes 

Familiar (M+SEM) Unfamiliar (M+SEM) 

1 2.67 (1.04) 2.04 (0.48) 

2 5.75 (1.54) 6.33 (0.84) 

3 8.00 (0.55) 7.25 (1.23) 

4 8.92 (0.98) 6.79 (1.11) 

5 10.25 (2.25) 9.38 (1.22) 

6 9.58 (1.21) 8.91 (1.07) 

Session 
Rears 

Familiar (M+SEM) Unfamiliar (M+SEM) 

1 41.17 (2.35) 38.96 (1.69) 

2 37.25 (1.36) 42.96 (2.38) 

3 41.67 (3.08) 42.17 (2.65) 

4 33.58 (4.34) 35.17 (1.99) 

5 34.33 (2.31) 40.29 (2.14) 

6 36.42 (1.39) 42.91 (3.33) 
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4.3.2. Adult behavioural responses to unfamiliar environments 

In the EPM, rats did spend more time on the open arms compared to the closed arms regardless 

of adolescent condition (F2,33 = 67.927, p < 0.001; Figure 4.3.). However, rats spend a similar 

total duration of time on the arms regardless of adolescent conditions (dosing condition: F2,33 

= 0.449, p = 0.642) and a similar duration of time on each specific arm (dosing condition x arm 

type: F2,33 = 0.367, p = 0.695).  

Figure 4.3. Duration of time spent on the arms of an elevated-plus maze split by arm type and 

adolescent condition. Data presented are mean + one standard error of the mean. Letters denote 

a significant differences; a vs. b, p < 0.05. 
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In the LDB, all rats entered the light compartment at a similar time (F2,32 = 0.050, p = 

0.952), entered the light compartment a similar number of times (F2,32 = 0.463, p = 0.634), and 

spent a similar duration of time in the light compartment (F2,32 = 0.1, p = 0.905). In addition, 

all rats engaged in a similar number of head pokes into the light compartment (F2,32 = 3.0, p = 

0.065) and a similar number of rears in the light compartment (F2,32 = 0.51, p = 0.951). Data 

are summarised in Table 4.5. 

Table 4.5. Behavioural measures in the LDB split by adolescent condition. Data presented are 

mean (one standard error of the mean). No significant effects were detected (p > 0.05). 

 

 

 

 

 

 

 

 

 

Measure 

Adolescent Condition 

Control  

(M+SEM) 

Familiar  

(M+SEM) 

Unfamiliar  

(M+SEM) 

Latency to enter light   

    compartment (sec) 
52.48 (24.42) 46.8 (20.58) 49.68 (28.58) 

Number of head pokes  

     into light compartment 
2.09 (0.44) 2.64 (0.56) 3.9 (0.59) 

Number of light       

    compartment entries 
3.91 (0.65) 4 (0.45) 4.7 (0.76) 

Duration in light  

    compartment (sec) 
78.63 (15.55) 73.88 (12.61) 69.61 (14.07) 

Number of rears in light  

    Compartment 
4.73 (0.54) 4.91 (0.72) 5.0 (0.56) 
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In the OSN task, rats spent more time in contact with the social box compared to the 

object box (F2,32 = 128.212, p < 0.001; Figure 4.4.). However, rats spent a similar duration of 

time interacting with the stimulus boxes regardless of adolescent condition (condition: F2,32 = 

1.910, p = 0.165; condition x area: F2,32 = 0.739, p = 0.485).  

Figure 4.4. Duration of time spent in contact with the stimulus boxes in the OSN task split by 

box type and adolescent condition. Data presented are mean + one standard error of the mean. 

Letters denote a significant differences; a vs. b, p < 0.05. 
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4.3.3. CORT response to social interactions 

Change in urinary CORT/creatinine ratio was similar in all rats regardless of adolescent 

condition and partner familiarity (condition: F2,15.220 = 0.459, p = 0.641; partner familiarity: 

F1,27.068 = 0.124, p = 0.727; condition x partner familiarity: F2,29.301 = 1.204, p = 0.314; Figure 

4.5.). 

Figure 4.5. Change in CORT concentration in response to social interaction (post-interaction 

minus pre-interaction) scaled for creatinine concentration. CORT concentration is presented 

for each condition split by familiar vs. unfamiliar partner. Data presented are mean + one 

standard error of the mean. No significant differences were detected (p > 0.05). 
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4.3.4. Ultrasonic calls before, during, and after social separation 

In the social separation task, the number of 50 kHz calls emitted by rats depended on the task 

phase (F2,172 = 54.656, p < 0.001). Compared to pre-separation, more calls were emitted during 

separation (p < 0.001, d = 1.16) and reunion (p < 0.001, d = 0.55). In addition, more calls were 

emitted during separation compared to reunion (p = 0.025, d = 0.55). Comparison between call 

categories was also significant, with rats emitting more FM calls compared to constant calls 

(F1,172 = 467.206, p < 0.001). In all task phases rats emitted more FM calls compared to constant 

calls (task phase x call type: F2,172 = 11.407, p < 0.001: pre-separation: p < 0.001, d = 0.60; 

separation: p < 0.001, d = 1.36; reunion: p < 0.001, d = 0.71). 

Total number of 50 kHz calls emitted by the rats differed with adolescent condition 

(F2,172 = 7.109, p = 0.002), but this was dependent on task phase (F4,172 = 6.347, p < 0.001) and 

call category (F2,172 = 13.279, p < 0.001). These separate interactions were overshadowed by a 

three way interaction between adolescent condition, task phase, and call category (F4,172 = 

4.034, p = 0.004; Figure 4.6.). First, the adolescent social experience effects on FM calls were 

dependent on task phase. During pre-separation, US rats emitted more FM calls compared to 

FS (p = 0.018, d = 0.92) and C rats (p = 0.014, d = 0.93), but C and FS rats were no different 

(p = 0.608). There were no effects of adolescent condition on FM calls during separation (C 

vs. FS, p = 0.456; C vs. US, p = 0.423; FS vs. US, p = 0.241). During reunion, US rats emitted 

more FM calls than C rats (p = 0.023, d = 0.90) but not FS rats (p = 0.302) and no difference 

was found between C and FS (p = 0.161). Second, condition effects on constant calls were also 

dependent on task phase. During pre-separation, US rats emitted more constant calls than C (p 

= 0.016, d = 0.81) and FS rats (p = 0.001, d = 0.98) but no differences were found between C 

and FS rats (p = 0.204). No differences were found between adolescent conditions for constant 

calls during separation (C vs. FS, p = 0.157; C vs. US, p = 0.287; FS vs. US, p = 0.062) or 

reunion (C vs. FS, p = 0.955; C vs. US, p = 0.333; FS vs. US, p = 0.333).  
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Figure 4.6. Number of 50 kHz calls emitted during social separation and reunion split by call 

categories, task phase, and adolescent condition. Data presented are mean + one standard error 

of the mean. Significant differences (p < 0.05) between conditions within a task phase shown 

by a vs. b, c vs. d, e vs. f. 

 

4.4. Discussion 

The findings of the current study clearly show that brief unfamiliar social interactions during 

early adolescence have no effect on adult behavioural responses to unfamiliar stimuli or CORT 

secretion in domesticated female rats. Instead, unfamiliar adolescent interactions resulted in 

adult female rats that emitted more 50 kHz calls both before and after separation in adulthood. 

During adolescence, unfamiliar rats played and sniffed one another more than familiar rats. 

However, no difference were found in risk assessment or freezing behaviour. The hypothesis 

that unfamiliar social interactions during adolescence would result in adult animals that interact 

more with unfamiliar stimuli when in adulthood is therefore rejected. The results instead 

suggest that brief unfamiliar social interactions in female rats have immediate social effects 

and may modulate adult social behaviour through changes in auditory communication.  
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4.4.1. Adolescent interactions 

During adolescent social interactions, unfamiliar rats were found to maintain closer 

proximity, engage in more play fighting, and engage in more investigative sniffing than 

familiar pairs of rats; effects that are corroborated by a plethora of previous work investigating 

how both male and female rats respond to unfamiliar conspecifics (e.g. Cirulli et al., 1996; 

McCormick et al., 2006; Thor & Holloway, 1984; Veenema et al., 2012). The current study 

focused on the behaviour in the test arena, but did not quantify the home cage behaviour after 

each treatment session. Unfamiliar interactions may have also resulted in rats playing more in 

the home cage thereby amplifying the effects of the unfamiliar interactions to permit any long-

term effects, but this requires testing. In addition, only behaviour was documented during 

adolescence. Given that vasopressin is an endocrine factor that regulates play in rats (Smith et 

al., 2015; Veenema et al., 2012), it could be hypothesised that vasopressin secretion would 

differ between FS and US rats and could provide a mechanism through which adolescent social 

behaviour could affect adult phenotype. Future work is necessary to determine the relative 

contribution of each of these hypotheses on adult social behaviour. In addition, males typically 

play more than females during adolescence (Argue & McCarthy, 2015a; Pellis, 2002; Smith et 

al., 1998), play is more antagonistic in males than females (Pellis et al., 1997; Pellis, 2002), 

and males emit more 50 kHz calls during play compared to females (Himmler et al., 2014). If 

differences in play are the mechanism behind the long-term effects of unfamiliar social 

interactions then sex differences would be expected in the long-term effects of adolescent social 

interactions. Future work should therefore also investigate any potential sex differences in the 

short- and long-term effects of unfamiliar adolescent social interactions on behavioural 

responses to unfamiliar stimuli.  

Prior research investigating non-social behaviour during adolescent play is limited, but 

those studies that report any effects are not consistent (Cirulli et al., 1996; Terranova et al., 
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1999). In the current study, the familiarity of the interaction partner during adolescence had no 

effect on non-social activities (i.e. freezes or rears). However, the number of freezes became 

higher as sessions progressed. A sudden cessation of activity typically occurs when a rat is 

startled, possibly as a method of avoiding detection (Blanchard et al., 2011; Boissy, 1995). The 

unfamiliar test arena would have been expected to be a mild stressor, with the number of freezes 

declining across sessions as the rats habituate to the test arena due to repeated exposure (i.e. 

familiarisation) to the arena. However, the progressively higher number of freezes suggests 

rats may have become sensitised to the test arena over time. The test arena may therefore have 

not acted as a stressor. Freezing is a complete cessation of movement (Blanchard et al., 2011; 

Boissy, 1995), but the camera angle (birds-eye view) may not have been able to discern whether 

the rat had completely stopped moving. The rats may have therefore just stopped abruptly to 

investigate the ground, with more investigation occurring as the test sessions progressed. 

4.4.2. Adult behavioural responses to unfamiliar stimuli 

Unfamiliar adolescent social interactions do not appear to affect later-life responses to 

unfamiliar stimuli as no differences between conditions were detected on any behavioural 

measure in the EPM, LDB, or OSN tasks. Previous work has shown that unfamiliar re-housing 

during early adolescence in rats results in estrous females that may be less neophobic (e.g. 

spend more time on the open arms in the EPM) when tested individually compared to estrous 

females raised in stable housing (McCormick et al., 2008). Estrous cycle was not determined 

in the current study and effects dependent on estrous cycle stage may therefore have been 

masked by merging rats’ behavioural responses across estrous cycle stages. Alternatively, as 

the short-term effects of the current study are purely social, unfamiliar adolescent social 

interactions may have only modulated adult behavioural responses to unfamiliar stimuli in a 

group context. Adolescent unfamiliar social interactions may have effected social behaviour 

that influences social buffering ability when in adulthood, but the effects may not have been 
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detected in the current chapter as rats were only tested in an individual context. Future work 

would benefit by investigating the effects of adolescent social interactions on behavioural 

responses to unfamiliar stimuli across social contexts.   

The unfamiliar environments used during adult testing are standard tests used with 

small rodents. The EPM is one of the most common tests for quantifying behavioural responses 

to unfamiliarity (Carobrez & Bertoglio, 2005). Female rats typically spend a small proportion 

(20-40%) of test time on the open arms (Lynn & Brown, 2010; Marcondes, Miguel, Melo, & 

Spadari-Bratfisch, 2001; McCormick et al., 2008), but in the current study female rats spent 

most of the time on the open arms. Why the rats performed in such a manner is not obvious, 

but could be due to the testing environment. Rats spend more time on the open arm when light 

intensity is low (Garcia, Cardenas, & Morato, 2005), but rats have spent more time in the closed 

arms at light levels lower than the 40 lux used here (e.g. 25 lux: Lynn & Brown, 2010). 

Regardless of cause, the atypical performance of rats in the EPM questions the credibility of 

any inferences drawn from the task. However, the absence of findings in the EPM are 

corroborated by typical performance in the LDB and OSN tasks. Previous work with the LDB 

has indicated that female rats spend around 25% of test time in the light compartment (Brown 

et al., 2015; Ramos et al., 2002) and in the current study female rats spent a similar proportion 

of time in the light compartment. In the OSN task female rats spend around 25% of the test 

time in contact with the social stimulus and spend very little time with the object (Cavigelli et 

al., 2011), and both findings were found in the current study.   

4.4.3. CORT response to social interactions 

Across conditions, rats were no different from one another in urinary CORT 

concentration in response to a familiar or unfamiliar social interaction. Previous work has also 

shown that re-housing unfamiliar rats together during adolescence has no effect on adult plasma 
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CORT secretion in response to non-social stressors (McCormick et al., 2004; McCormick et 

al., 2005; Mathews et al., 2008; McCormick et al., 2008). Rats therefore provide no support 

for the hypothesis that CORT is an endocrine mechanism via which unfamiliar adolescent 

social interactions can modulate later-life behaviour (McCormick et al., 2015; Sachser et al., 

2013). Although the effect was not significant, US rats appear to have secreted less CORT in 

response to handling, restraint, and re-housing with a familiar conspecific whereas controls 

secreted more CORT in response to the protocol. US rats’ greater reduction in CORT 

concentration in a familiar social context may be a tentative indication that US rats are better 

social buffers than control rats. Little is known about the developmental antecedents of social 

buffering competency (Armario et al., 1983; Beery & Kaufer, 2015), but brief unfamiliar 

adolescent social interactions may have been in the process of shifting US rats toward improved 

social buffering. One reason the difference did not reach statistical significance may be that 

urinary CORT concentration was time-integrated and very variable. Plasma CORT is a more 

accurate, dynamic, and time-sensitive measure of stressor-induced CORT concentration 

(Koolhaas et al., 1997) and may have revealed an effect of condition at a specific time-point in 

the stress response. Future work would benefit by determining the plasma CORT response to 

social interactions and potential effects of social buffering to account for any inaccuracies in 

the urine sampling method.  

4.4.4. Ultrasonic calls in response to social separation and reunion 

Brief unfamiliar social interactions during adolescence had a long-term effect on 

communication, with US rats developing into adults that emitted more 50 kHz calls (FM and 

constant) compared to control rats. Adolescent social interactions can therefore influence adult 

rat communication as has been documented previously (Inagaki et al., 2005; Seffer et al., 2015), 

but the current study is the first to show that 50 kHz call rate can become higher in response to 

more adolescent interactions. Unfamiliar adolescent interactions may therefore be able to 
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modulate later-life social behaviour, given that ultrasonic communication is vital to functioning 

in a rat social organisation (Brudzynski, 2009; Burgdorf et al., 2008; Portfors, 2007). One 

function of 50 kHz calls (FM and constant) in male rats is to solicit social contact during social 

separation (Wӧhr et al., 2008). The current study corroborates Wӧhr et al. (2008), and further 

indicates that female rats may also solicit social contact through increased 50 kHz call rate 

during separation. In addition, unfamiliar adolescent social interactions may heighten the 

attempt to solicit social contact as US rats emitted more FM calls than C rats during reunion. 

Future work could investigate whether physiological responses to social separation, such as 

CORT secretion (Ferland & Schrader, 2011; Hennessey, 1997; Remage-Healey et al., 2003), 

are also modulated in the same direction. Call rate during reunion was also no different (i.e. 

intermediate) between FS rats and the other conditions, suggesting that handling and re-housing 

may have subtle effects on 50 kHz call rate during social reunion when in adulthood. Further 

research would therefore be useful to explore whether later-life call rates can be modulated by 

more or less handling and/or re-housing during adolescence. Future research may also wish to 

use larger sample sizes than those used here, as FM call rates during separation and reunion 

were noticeably variable. The variable nature of the separation and reunion FM call rate may 

have result in models with diminished statistical power, resulting in some effects not reaching 

statistical significance (e.g. comparison between FS and US rats FM calls during reunion). A 

larger sample size may also counter the complex nature of the model used to analyse the 50 

kHz calls data, a model that included three fixed factors of which two were repeated measures. 

Replicating the current study with a larger sample size is now necessary to account for the 

statistical limitations outlined above and to corroborate the findings presented here.     

50 kHz calls (both FM and constant) were already higher in US compared to control 

rats prior to separation, suggesting that the 50 kHz calls may have functions other than 

soliciting social contact upon separation. In the current study, US rats spent more time in 
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contact with the social box than the other conditions during the OSN task but the effect did not 

reach significance. A sufficient number of brief unfamiliar adolescent interactions may 

therefore influence gregariousness or mate attraction. Brief unfamiliar adolescent interactions 

with females could signal that the fore-coming adult social environment is populous and/or has 

a female-biased sex ratio. Adult US rats emitting more 50 kHz calls could reflect a more 

gregarious and/or reproductively competitive life history strategy. These hypotheses are yet to 

be investigated, but deprivation of adolescent social contact provides tentative support for both. 

Male rats single housed in adolescence develop into adults who lacked the typical approach to 

a playback of 50 kHz calls compared to pair housed rats (Seffer et al., 2015), suggesting rats 

have become less gregarious in response to fewer social interactions. Male rats singly housed 

during adolescence also develop into adults who emit fewer 50 kHz calls in response to an 

unfamiliar female compared to pair housed rats (Inagaki et al., 2013), possibly because the rats 

have become less reproductively-competitive in response to fewer interactions. Single housing 

is a stressor in rats (e.g. Lukkes, Mokin, Scholl, & Forster, 2009) and the effects of the social 

deprivation studies conflate social and stress effects. The specific effects of unfamiliar 

adolescent social interactions on later-life social behaviour requires direct investigation. 

4.4.5. Summary 

In summary, the findings from the current study show that female rats that engaged in 

more unfamiliar social interactions during adolescence developed into individuals that emitted 

more 50 kHz calls in adulthood. A higher number of playful and social investigatory behaviour 

between unfamiliar, compared to familiar, rats during adolescence is likely the behavioural 

mechanism behind the effect. The current study is the first to show that more unfamiliar 

adolescent interactions can result in a higher 50 kHz call rate. Further research is necessary to 

establish the context in which a higher 50 kHz call rate may be useful, such as attracting a mate 

or living in a larger group. In contrast, female rats that engaged in more unfamiliar social 
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interactions during adolescence were no different from control rats on measures of behavioural 

and endocrine responses to unfamiliar stimuli when in adulthood. The novel findings are at 

odds with similar work that has investigated the long-term effects of unfamiliar adolescent 

social interactions on adult behavioural responses to unfamiliar stimuli in rats (McCormick et 

al., 2015), plausibly because the unfamiliar interaction protocol used in the current study 

improved on previous studies designs by controlling for stress confounds. 
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Chapter 5: General Discussion 

The current thesis aimed to investigate the long-term effects of adolescent stress, social 

housing, and social interactions on behavioural responses to unfamiliar stimuli (environments, 

objects, and conspecifics) when in adulthood and the physiological mechanisms that underpin 

these effects. Chapter 2 explored the long-term effects of mimicking adolescent stress via 

CORT dosing, whilst Chapters 3 and 4 investigated the long-term effects of adolescent social 

housing via manipulating group size and density (Chapter 3) and the quantity of unfamiliar 

interactions (Chapter 4). This discussion will outline and explain the key findings from the 

chapters, then address limitations in the current research and the direction for future research. 

5.1. Hormonal sensitivity 

Developmental exposure to steroid hormones has effects on later-life behaviour, but the 

later in development the hormone exposure occurs the lower the change in later-life behaviour 

(i.e. decline in hormone sensitivity: Schulz & Sisk, 2009; Schulz & Sisk, 2016). Previous work 

has found a decline in sensitivity to stressors from pre-pubertal to adolescent development in 

male rats (Tsoory & Richter-Levin, 2006), but the data presented in Chapter 2 are the first to 

show that sensitivity to CORT declines during adolescence, at least for some measures. For 

example, zebra finches dosed with CORT in early adolescence (E-CORT) developed into 

adults with lower hippocampal and hypothalamic GR compared to birds dosed with saline, but 

no effects were found in birds dosed with CORT in late adolescence. However, time perching 

alone and male courtship behaviour amongst unfamiliar conspecifics in adulthood was equally 

lowered by early and late adolescent CORT dosing compared to control birds. No clear 

explanation is available for why sensitivity to CORT declined for some measures and not 

others. In zebra finches, sensitive periods for both sexual imprinting and song learning end 

during adolescence; an effect that is attributed to a decline in neuronal spine density in regions 
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regulating these behaviour in response to relevant stimuli, e.g. opposite-sex conspecifics for 

sexual imprinting (Bischof & Rollenhagen, 1999; Bischof, 2007). The current thesis focused 

on glucocorticoid receptor expression, but further work could explore whether adolescent 

CORT exposure differently affects neuronal spine density in brain regions that regulate the 

HPA axis (e.g. hippocampus) and social behaviour (e.g. amygdala) during adolescence to 

explain how different sensitivities may occur across different measures. 

5.2. Individual context behavioural responses to unfamiliar environments and objects 

Animals that experience stress during adolescence are assumed to be more neophobic 

(i.e. interact less with unfamiliar stimuli) than control animals in adulthood (e.g. Hollis et al., 

2013; McCormick & Green, 2013; Romeo, 2010). In Chapter 2, E-CORT birds took longer to 

enter an unfamiliar environment, spent longer perching in the unfamiliar environment, and, if 

female, engaged in more head turns compared to other adolescent conditions, supporting the 

hypothesis that CORT affects later-life responses to unfamiliar stimuli. E-CORT bird’s 

behavioural responses to an unfamiliar environment are not consistent, and could be interpreted 

as more or less novelty-avoiding depending on the measure in question. A more parsimonious 

explanation may be that E-CORT birds navigate an unfamiliar environment differently 

compared to other adolescent conditions. Adolescent stress in male rats can result in poorer 

spatial learning when in adulthood compared to control rats that experienced no such stress 

(Isgor et al., 2004; McCormick et al., 2012). E-CORT birds may have slower spatial learning, 

with E-CORT birds needing more time (longer latency to enter unfamiliar environment), more 

exposure (more time perching in unfamiliar environment), and more environmental scanning 

(more head turns in females) to learn the layout of an unfamiliar environment compared to 

other conditions. Chapter 2 thus clearly revealed that early adolescent CORT exposure 

modulates later-life behavioural responses to unfamiliar environments, but more work is 

needed to explore why the effects occurred (e.g. responses to unfamiliar settings and/or spatial 



211 
 

learning) and why some effects were limited to females (i.e. head turns). The explanations may 

not be mutually exclusive, with greater neophobia possibly explaining the delayed entry latency 

and slower spatial learning perhaps explaining greater perching duration and head turn number. 

Spatial learning has been investigated in zebra finches by housing birds in an unfamiliar cage 

with access to empty and seed-filled opaque hoppers, then upon re-exposure a day later 

quantifying the bird’s ability to find the seed-filled hoppers (Bailey, Wade, & Saldanha, 2009). 

Early adolescent nutritional stress (food restriction) has no long-term effect on such spatial 

learning in adult zebra finches (Kriengwatana, Farrell, Aitken, Garcia, & MacDougall-

Shackleton, 2014). However, a future study could investigate whether mimicking stress by 

dosing early adolescent zebra finches with CORT leads to lower ability to find seed-filled 

hoppers in a spatial memory task when in adulthood compared to saline dosed control.  

Adolescent social stressors, such as chronic variable social stress and social instability, 

can mimic the effects of non-social adolescent stressors and result in adult rats that interact less 

with unfamiliar stimuli than controls that did not experience social stress (Isgor et al., 2004; 

McCormick et al., 2015). Adolescent social experiences in the current thesis, such as variation 

in group size and density in zebra finches (Chapter 3) or exposure to unfamiliar conspecifics 

in rats (Chapter 4), had no effect on behavioural responses to unfamiliar environments and 

objects when in adulthood. In contrast to the current thesis, prior social stress research has 

exposed adolescent rats to social interactions that were structured to resemble stressors (i.e. 

unpredictable, uncontrollable, and potentially threatening) and then find long-term effects on 

responses to unfamiliar stimuli (Isgor et al., 2004; McCormick et al., 2015). Social interactions 

may therefore only affect later-life responses to unfamiliar objects and environments when 

structured to act as stressors. For example, in rats, repeated unfamiliar social interactions do 

not affect later-life behavioural responses to unfamiliar environments (Chapter 4) but when 

taking place in addition to repeated single housing and re-housing the interactions can result in 
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animals that interact less with unfamiliar stimuli when in adulthood compared to controls (e.g. 

McCormick et al., 2008). The absence of effects of adolescent social conditions on behavioural 

responses to unfamiliar stimuli in an individual context may reflect that the conditions were 

not sufficiently like stressors for long-term effects to emerge. However, it cannot be ruled out 

that the adolescent social conditions used here did sufficiently resemble stressors but were 

insufficiently intense for long-term effects to emerge. Repeating the experiments in the current 

thesis, but with larger and/or denser groups than those in Chapter 3 and more conspecifics than 

in Chapter 4, would be one way to test whether more intense versions of the social conditions 

manipulated in the current thesis can result in long-term effects on adult phenotypes.  

The developmental age at which social conditions used in the current thesis were varied 

may also explain why the conditions had no long-term effects on adult behavioural responses 

to unfamiliar stimuli in an individual context. Adolescents engage in more antagonistic 

interactions in late adolescence compared to early adolescence (e.g. Delville et al., 2003; 

Terranova et al., 1993). Had the adolescent social conditions varied in the current thesis been 

varied later in adolescence then, due to higher rates of antagonistic interactions, the conditions 

may have acted as more intense stressors and long-term effects may have emerged. Late 

adolescent animals predominantly engage in antagonistic interactions with adult conspecifics 

(e.g. Sachser & Prӧve, 1988; Templeton et al., 2012), as adolescents begin attempts to enter 

into social groups outside the natal home that contain likely more dominant unfamiliar adult 

conspecifics (Spear, 2000). Presence of more dominant conspecifics and/or a higher adult to 

adolescent ratio during adolescence may act as stressors, resulting in animals that are less likely 

to interact with unfamiliar stimuli in adulthood. Subjugation by more dominant conspecifics 

during adolescence can result in more neophobic behaviour when in adulthood in rats (Ver 

Hoeve et al., 2013; Vidal et al., 2011), but a higher adult to adolescent ratio in adolescent zebra 

finches had no effect on behavioural responses to unfamiliar conspecifics when in adulthood 
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(Bӧlting & von Engelhardt, 2017). Having more interactions with dominant conspecifics in 

adolescence, rather than having more interactions with older conspecifics, may result in 

animals that interact less with unfamiliar stimuli when in adulthood. However, research still 

needs to explore whether a higher adult to adolescent ratio results in less interaction with 

unfamiliar non-social stimuli (e.g. objects) in zebra finches and whether age ratio during 

adolescence has any long-term effects in different species. As zebra finches are particularly 

affiliative (Zann, 1996), absence of effects of adolescent age ratio in the species may be due to 

low levels of antagonistic interactions between adolescents and adults; but no study has yet 

quantified such interactions. Further research could therefore explore the effects of adolescent 

age ratio in more antagonistic species (e.g. rats) to explore whether such a social condition has 

long-term effects on adult behavioural responses to unfamiliar stimuli that are dependent on 

species-typical social behaviour.  

5.3. Group context behavioural responses to unfamiliar environments and objects 

Social facilitation refers to the higher expression of a given behaviour when in the 

presence of conspecifics compared to when alone, that is often attributed to either a social 

buffering or social competition effect (Clayton, 1978; Nicol, 1995; Webster & Ward, 2011; 

Zajonc, 1965). Adolescents learn to utilise conspecifics outside of the natal home as social 

buffers (Gunnar & Hostinar, 2015). In the current thesis, housing female (but not male) birds 

in larger groups at lower density during early adolescence resulted in adult birds that interacted 

more with unfamiliar stimuli when with familiar conspecifics compared to other housing 

conditions (Chapter 3) whereas exposure to CORT during adolescence had no effect on 

responses to an unfamiliar environment when in a group context (Chapter 2). Adolescent social 

interactions, not CORT exposure, may therefore affect later-life social buffering ability. In 

rodents, physical contact (huddling) occurs after stressor exposure (e.g. Bowen et al., 2012) 

and social buffering is dependent on physical contact with conspecifics (Nakayasu & Kato, 
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2008). In Chapter 2, adolescent dosing had no effect on group context responses to an 

unfamiliar environment and, as would expected, no differences were found on measures related 

to social proximity (e.g. time spent alone). However, female birds raised in larger groups at 

lower density spent more time interacting with unfamiliar stimuli than other housing conditions 

despite spending more time alone during testing than the other conditions (Chapter 3). Rodents 

and birds may differ in the behavioural basis of social buffering, with only rodents needing 

social contact for buffering to occur. However, exposure to a mild stressor like unfamiliar 

stimuli may not be an appropriate stimulus to measure social buffering effects. Further work is 

necessary to explore how adolescent experiences affect social buffering of adult fear-related 

responses to more threatening stimuli than unfamiliar stimuli. For example, adult rats can act 

as social buffers to one another in response to predation cues (Bowen et al., 2012) and foot 

shocks (Kiyokawa et al., 2014). No study has yet investigated whether adolescent experiences 

effect adult social buffering in response to similarly threatening stimuli, but future research 

could test whether female zebra finches raised in larger groups at lower density in early 

adolescence can buffer fear-related responses to exposure to predation cues when in adulthood. 

In adulthood, birds more readily contact food dishes and consume more food when in 

groups compared to when alone regardless of whether feeders used were familiar (Dally, 

Clayton, & Emery, 2008) or unfamiliar to the birds (Coleman & Mellgren, 1994; Soma & 

Hassegawa, 2004). Foraging competition, rather than social buffering of responses to 

unfamiliarity, may therefore better explain the group context behavioural effects in Chapters 2 

and 3. Unfamiliar stimuli used in unfamiliar environment and unfamiliar object tasks were 

baited with a food source (spinach) to encourage birds to engage with the task. Birds’ diets 

were supplemented with a limited quantity (once per week) of spinach outside the behavioural 

testing period. Birds may have interpreted the group context unfamiliar environment and object 

tasks as competition over a limited quantity of appetitive food. In Chapter 3, spending more 
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time alone and more time amongst the spinach-baited stimuli may reflect more competitive 

behaviour in female birds raised in larger groups at lower density during early adolescence 

compared to other housing conditions. Nutritional independence occurs around the start of 

adolescence in some altricial species (e.g. rats: Thiels et al., 1990; zebra finches: Zann, 1996). 

Animals therefore learn foraging behaviour during adolescence, and further research could 

explore whether adolescent experiences can affect foraging behaviour. For example, one 

hypothesis that could be investigated is whether a larger adolescent group size at a sufficiently 

low density results in animals that forage in larger groups when in adulthood compared to 

animals raised in smaller groups, an effect that in turn could result in more foraging 

competition. Why female, but not male, zebra finches behaviour was affected also remains to 

be determined by including both sexes in future studies. For example, females reared in larger 

groups at sufficiently low density may be more competitive in a foraging context than males 

reared in similar conditions, but the hypothesis requires testing. 

5.4. Behavioural responses to unfamiliar conspecifics 

Adolescent experiences can have long-term effects on social behaviour related to social 

integration and the formation of social networks (Ruploh et al., 2014; Veenit et al., 2013). In 

the current thesis, adolescent CORT exposure (Chapter 2) and early adolescent housing in 

larger groups at lower density (Chapter 3) resulted in zebra finches that spent less time alone 

with unfamiliar conspecifics when in adulthood. Spending less time alone when housed with 

unfamiliar conspecifics could result in birds that are better able to integrate into an unfamiliar 

group (Ruploh et al., 2014). Previous work has already found that developmental CORT 

exposure in nestling and fledgling zebra finches resulted in adolescent birds with more central 

positions in foraging networks compared to control birds that were not CORT dosed (Boogert 

et al., 2014). However, social proximity networks may be better indicators of social networks 

than foraging networks (Kendal et al., 2010). For example, perching networks may be more 
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indicative of social networks than foraging networks in birds (Boogert, Nightingale, Hoppitt, 

& Laland, 2014). Further work is now necessary to explore whether adolescent experiences, 

such as CORT dosing and group size/density, have long-term effects on social network 

position. One hypothesis that requires testing is whether zebra finches dosed with CORT (vs. 

saline) or raised in larger groups at lower density (vs. smaller groups and higher density groups) 

in adolescence results in birds that are more socially integrated into adult flocks by occupying 

more central positions in adult perching networks. 

 Group living in many species provides access to potential mates (Evans, Votier, & Dall, 

2012; Silk, 2007). Male zebra finches engaged in fewer courtship behaviour with unfamiliar 

female conspecifics when housed with an unfamiliar mixed-sex group in adulthood if dosed 

with CORT in adolescence compared to saline dosed controls (Chapter 2) or if the housed in 

larger groups in early adolescence compared to smaller groups (Chapter 3). Engaging in fewer 

courtship behaviour may indicate impaired socio-sexual behaviour (e.g. Almeida et al., 2000; 

Toth et al., 2008) or lower attractiveness (e.g. Spencer et al., 2003; Spencer et al., 2005). 

However, effects of adolescent experiences on socio-sexual behaviour are typically quantified 

in short interactions between small groups of unfamiliar conspecifics (e.g. Chapters 2 and 3; 

Ruploh et al., 2014; Toth et al., 2008). The testing context is not ecologically realistic for many 

species, like colonially breeding zebra finches (Griffith & Buchanan, 2010; Zann, 1996), and 

does not indicate reproductive success between familiar breeding pairs. Few studies have 

investigated the effects of developmental stress on reproductive success in a group breeding 

context (Crino & Breuner, 2015). One study has found that male zebra finches dosed with 

CORT during nestling and fledgling development raised more chicks to fledging when in a 

group context compared to vehicle dosed birds (Crino, Prather, Driscoll, Good, & Breuner, 

2014). However, following the same dosing protocol, reproductive success is no different 

between CORT vs. saline dosed zebra finches that are forced and housed together in individual 
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breeding cages when in adulthood (Monaghan et al., 2012). Developmental CORT exposure 

may therefore be able to improve reproductive success in an ecologically relevant context.  

The differences in reproductive success between CORT dosed and control birds when 

in a group context may be due to differences in socio-sexual interactions with non-pair bonded 

birds. In Crino et al. (2014), control males reared more non-genetic (but a similar number of 

genetic) offspring than CORT dosed males. CORT dosed males also interact with a greater 

number of unfamiliar conspecifics in later-life relative to control males (Boogert et al., 2014); 

an effect that may result in CORT dosed males interacting with more non-pair bonded females 

in adulthood. A greater number of interactions with non-pair bonded females may result in 

more reproductive encounters and higher reproductive success. However, more detailed 

analyses are needed of how developmental CORT exposure affects later-life socio-sexual 

interactions to explore this suggestion. Socio-sexual interactions (e.g. perching proximity, 

sharing nest box) could be quantified using social network analyses to explore the formation 

and maintenance of socio-sexual networks that may mediate the effects of adolescent 

conditions on reproductive success. Previous work investigating how adolescent experiences 

affect socio-sexual behaviour have used males (e.g. Almeida et al., 2000; Toth et al., 2008), 

but mixed-sex flocks could be used to explore male and female effects within the same context.   

5.5. Stress physiology 

The current thesis found that a larger early adolescent group size in female zebra finches 

resulted in a higher restraint stressor-induced CORT concentration compared to female birds 

raised in smaller groups (Chapter 3). However, adolescent CORT dosing (Chapter 2) or 

unfamiliar social interaction quantity (Chapter 4) had no effect on later-life measures of CORT. 

Glucocorticoid hormones (GCs) are secreted into the general circulation as part of an acute 

stress response and bind to glucocorticoid receptors to have effects (Sapolsky et al., 2000). 
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Plasma glucocorticoids are bound to binding globulins, such as corticosterone binding globulin 

(CBG), with only unbound GCs able to bind to glucocorticoid receptors (Breuner, Delehanty, 

& Boonstra, 2013; Malisch & Breuner, 2010). CBG bound GCs can be biologically active in 

some instances, with CBG/CORT complexes acting on membrane binding sites to facilitate 

intracellular translocation of CORT, e.g. at sites of inflammation (Breuner & Orchinik, 2002; 

Hammond, 1995). However, the effects of GCs are primarily mediated by the unbound GCs 

binding to glucocorticoid receptors (Breuner & Orchinik, 2002). Only total CORT (bound and 

unbound combined) was quantified in the current thesis and any inferences drawn may be 

misleading without accounting for what proportion of CORT is unbound. Further work is now 

necessary to explore the effects of adolescent experiences on CBG and unbound CORT 

concentrations. For example, a larger early adolescent group size in female zebra finches would 

be expected to result in higher unbound CORT concentration in response to a stressor compared 

to birds raised in smaller or denser groups.  

 An acute rise in glucocorticoids can aid in coping with a short-term stressor, as secreting 

more CORT in response to a stressor can elicit risk-avoidant behaviour (Haller et al., 1998) 

that may result in more successful avoidance of life-threatening stressors in harsh environments 

(e.g. high predation risk: Ferrari et al., 2015; Ferrari, McCormick, Allan, et al., 2015). 

However, glucocorticoids exposure can also have detrimental effects (McEwen, 1998; 

McEwen & Wingfield, 2003). For example, glucocorticoid exposure can result in exposure to 

oxidative stress (Constantini, Maraasco, & Møller, 2011) and greater disease susceptibility 

(Cavigelli et al., 2009) that would be expected to lower longevity (Cavigelli & McClintock, 

2003; Cavigelli et al., 2009; Monaghan et al., 2012) and impair fitness (Bonier, Martin, Moore, 

& Wingfield, 2009; Breuner, Patterson, & Hahn, 2008). In Chapter 3, female zebra finches 

reared in larger groups during early adolescence secreted more CORT in response to a stressor 

compared to female birds reared in smaller groups. Secreting more CORT in response to a 
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stressor could impair fitness (more oxidative stress, shorter lifespan) or improve fitness (more 

threat-avoidance in harsh environments), but further work is needed to investigate these 

hypotheses and explore how adult context (e.g. high vs. low predation risk) may modulate the 

effects of adolescent experiences on fitness. As the group size effect on stressor-induced CORT 

concentration were female-specific, any future research investigating the fitness-related effects 

of adolescent group size needs to include both sexes to reveal any potentially sex-dependent 

effects. 

Adolescent stressors result in lower hippocampal GR expression compared to control 

animals that experienced no such stress (Isgor et al., 2004), and comparable effects were found 

in Chapter 2, with birds exposed to CORT in early adolescence having lower hippocampal and 

hypothalamic GR expression compared to all other adolescent conditions. Adolescent stress, 

via greater exposure to CORT, may therefore lower negative feedback efficiency of the HPA 

axis. Glucocorticoid receptors are well documented regulators of HPA axis function (de Kloet 

et al., 1998; Oitzl et al., 2010), but how other stress-related mechanisms are affected by 

adolescent experiences have been little investigated. For example, corticotrophin releasing 

hormone (CRH) regulates behavioural responses to unfamiliar stimuli via CRH-1 and CRH-2 

receptors (Bale & Vale, 2004). Mice exposed to adolescent stress have lower amygdala CRH-

2 receptor expression and spend less time in exposed areas of an unfamiliar environment when 

in adulthood compared to control mice that had no such stress (Yohn & Blendy, 2017). CRH 

stimulates adrenocorticotrophic hormone (ACTH) secretion from the anterior pituitary gland 

that binds to melanocortin type 2 (MC2) receptors in the adrenal cortex to stimulate CORT 

secretion (Fridmanis, Roga, & Klovins, 2017; Gallo-Payet, 2016). Rats with a history of 

adolescent stress have lower ACTH secretion in adulthood compared to control rats (e.g. 

Goliszek et al., 1996), but no work has investigated whether adolescent stress affects adrenal 

sensitivity to ACTH via MC2 receptor expression. Stressor-induced ACTH secretion is co-
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stimulated by vasopressin (via V1b receptors) and vasotocin (via VT2 receptors) in mammals 

and birds, respectively (Aguilera & Rabadan-Diehl, 2000; Cornett et al., 2013; Leung et al., 

2011). However, the effects of adolescent stress on anterior pituitary V1b/VT2 receptor 

expression remains to be investigated. Future studies could examine whether adolescent CORT 

dosing affects CRH/CRH-R, ACTH/MC2R, and pituitary VP/VT function to provide a broader 

understanding of the mechanisms behind the long-term effects of adolescent stress. For 

example, two hypotheses that could now be addressed are whether adolescent stress results in 

higher stressor-induced CORT secretion in adulthood (Isgor et al., 2004; Pohl et al., 2007) due 

to higher adrenal gland MC2 receptor expression and/or higher pituitary gland V1b/VT2 

expression compared to control animals. 

5.6. Social physiology 

Social behaviour patterns are regulated by both gonadal hormones (Eisenegger et al., 

2011; Oliveira & Oliveira, 2014) and nonapeptides (Adkins-Regan, 2009; Kelly & Goodson, 

2014; Goodson, 2005). Basal plasma concentrations of gonadal hormones rise during 

adolescence (Delemarre-van de Waal, 2002; Sisk & Foster, 2004), as do basal concentrations 

of nonapeptides (Miller et al., 1989; van Tol et al., 1988). In the current thesis, adolescent 

exposure to CORT (Chapter 2) or variation in early adolescent group size/density (Chapter 3) 

have no effect on adult basal concentrations of male testosterone and female estradiol. Whether 

adolescent conditions affected basal nonapeptide concentrations remains to be quantified. 

However, adolescent experiences may have long-term effects on the concentration of gonadal 

hormones and nonapeptides secreted in response to stressors rather than basal concentrations 

of the hormones. Acute stressors can stimulate testosterone and estradiol secretion (Ortiz et al., 

1984; Romeo et al., 2004; Romeo, Lee, & McEwen, 2004; Yilmaz, 2003), as well as oxytocin 

and vasopressin secretion (Uvnäs-Moberg, 1998; Uvnäs-Moberg et al., 2015). In male rats, 

stressor exposure during adolescence results in a blunted stressor-induced rise in testosterone 
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when in adulthood compared to control rats (Bourke et al., 2013). As testosterone can inhibit 

CORT secretion (Gomez et al., 2004), a lower rise in testosterone concentration may result in 

a higher stressor-induced CORT concentration that has been reported to occur in response to 

adolescent stress (e.g. Pohl et al., 2007). One hypothesis that could be further investigated is 

whether adolescent stress results in higher secretion of stressor-induced CORT in adulthood 

due to effects on social hormones. For example, adolescent stress could result in a lower 

stressor-induced secretion of social hormones that inhibit the HPA axis, like testosterone 

(Gomez et al., 2004) and oxytocin/mesotocin (Windle et al., 1997), and/or higher stressor-

induced secretion of social hormones that stimulate the HPA axis (e.g. estradiol, McCormick 

& Mathews, 2007: vasopressin/vasotocin: Cornett et al., 2013). 

 Plasma testosterone concentration rises during antagonistic interactions (Wingfield et 

al., 1990; Wingfield et al., 2005), and plasma oxytocin concentration rises during affiliative 

interactions (Uvnäs-Moberg, 1998; Uvnäs-Moberg et al., 2015). Testosterone secretion in 

response to antagonistic interactions emerges during adolescence in male guinea pigs (e.g. 

Lürzel et al., 2010; Sachser & Prӧve, 1988), but emergence of an oxytocin response to 

affiliative interactions during adolescence has not been investigated. CORT does not appear to 

be the mechanism behind the effects of adolescent social experiences, as few similarities were 

present between the findings in Chapter 2 compared to Chapters 3 and 4. However, gonadal 

hormones and/or nonapeptides may be mechanisms behind long-term effects of adolescent 

social experiences. For example, similarly to the long-term effects of adolescent stress, male 

rats repeatedly injected with testosterone during adolescence developed into adults that 

engaged in more antagonistic interactions with an unfamiliar same-sex rat and spent less time 

in exposed areas of unfamiliar environments when in adulthood compared to male rats that 

were injected with vehicle (e.g. Olivares et al., 2014). Adolescent testosterone dosing studies 

typically administer supra-physiological doses to mimic anabolic androgen abuse 
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(Cunningham, Lumia, & McGinnis, 2013). Whether physiologically relevant testosterone 

doses affect later-life responses to unfamiliar stimuli remains to be investigated. Further work 

is needed to quantify gonadal hormone and/or nonapeptide concentrations in response to social 

interactions during adolescence that could be used to determine a physiologically relevant dose 

(like for CORT in Chapter 2). Dosing adolescent animals with gonadal hormones or 

nonapeptides, like for CORT in Chapter 2, could then reveal whether these hormones function 

as an endocrine basis of the long-term effects of adolescent social interactions on later-life 

responses to unfamiliar stimuli.  

 The behavioural results from the current thesis have indicated that the long-term effects 

of adolescent experiences depend on social context when in adulthood, but the extent to which 

the neural correlates of these effects are also context-dependent has only recently begun to be 

investigated (Ahern, Goodell, Adams, & Bland, 2016; Lukkes, Burke, Zelin, Hale, & Lowry, 

2012; Wall, Fischer, & Bland, 2012). In one recent study, rats single housed during adolescence 

had fewer c-fos positive neurons (indicating lower neural activity) in the amygdala and lateral 

septum when exposed to an unfamiliar conspecific in later-life relative to rats that were group 

housed in adolescence (Ahern et al., 2016). No differences in c-fos expression between rats 

that were single housed and group housed during adolescence were found when the rats were 

placed in an asocial context (i.e. single housed: Ahern et al., 2016). The amygdala and lateral 

septum are regions of the SBN (Goodson, 2005; Newman, 1999), so the findings of Ahern et 

al. (2016) may indicate that context-dependent SBN activity may be a neural mechanism 

underpinning the context-dependent behaviour patterns that vary in response to adolescent 

experiences. Whether the context-dependent behavioural effects in this thesis can be attributed 

to context-dependent activity in the SBN now requires testing. Research could now begin to 

explore this hypothesis, but using a wider range of adolescent social conditions and adult social 

contexts. Ahern et al. (2016) conflated group size and density in the adolescent group housing 
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condition and only quantified c-fos expression in response to two social contexts (asocial and 

unfamiliar conspecific). One future study could raise adolescents in groups that vary in number 

and/or density, then quantify adult social behaviour and c-fos expression in the SBN in 

response to more varied social contexts (e.g. asocial, familiar conspecific, and unfamiliar 

conspecifics) and/or more varied characteristics than conspecific presence and familiarity (e.g. 

adolescent vs. adult, male vs. female, subordinate vs. dominant). This research could highlight 

that activity in the neural mechanisms underlying the effects of adolescent experiences on adult 

social behaviour is, like behaviour itself, flexible and dependent on adult social context. 

5.7. Test vs. control comparisons  

The current thesis explored the long-term effects of experiencing more glucocorticoid exposure 

in adolescence (Chapter 2), living with more conspecifics (Chapter 3), and more interactions 

with unfamiliar conspecifics (Chapter 4). To determine the effects of these experiences the 

control conditions included animals only exposed to stress (and presumably glucocorticoid 

exposure) during regular husbandry (Chapter 2) and animals that lived in pairs of familiar 

conspecifics (Chapters 3 and 4). These control comparisons may not be appropriate given the 

typical ecology of adolescent animals. Adolescents typically experience rises in glucocorticoid 

concentration as they encounter stressors outside of the natal home (e.g. Brown & Spencer, 

2013; Wada, 2008), enter into social networks and live amongst age-similar conspecifics (e.g. 

Nelson et al., 2005; Nelson et al., 2016), and engage in interactions with unfamiliar 

conspecifics (e.g. Adkins-Regan & Leung, 2006; Pellis & Iwanuik, 2004). The test conditions 

may therefore be more realistic control conditions, and the control conditions perhaps better 

resemble test conditions by depriving adolescents of typical stress and social experiences. 

 The results from this thesis could be reinterpreted, with the test conditions assumed to 

be more realistic control conditions. For example, zebra finches that lived with no stress except 
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for regular husbandry during early adolescence developed into adults that may have been less 

neophobic than birds exposed to additional stress via CORT dosing (Chapter 2). Less exposure 

to glucocorticoids during adolescence may prevent animals from acquiring stressor avoidant 

behavioural responses, potentially a disadvantage given that animals typically live in ecological 

contexts that contain many stressors that will need to be avoided in order to survive (Boonstra, 

2013). Zebra finches that lived in smaller groups in early adolescence engaged in more 

antagonistic and (if male) more courtship behaviour with unfamiliar conspecifics in adulthood 

compared to birds raised in larger groups (Chapter 3). Living in a smaller group during 

adolescence may therefore deprive animals of opportunities to learn how to live within a group, 

resulting in more behaviour that would likely impair social integration (as has been suggested 

to occur in guinea pigs, e.g. Sachser et al., 2011). Rats that were raised in familiar pairs 

throughout adolescence emitted fewer 50 kHz calls when in adulthood compared to rats that 

interacted with unfamiliar conspecifics (Chapter 4). Interacting with fewer conspecifics during 

adolescence may result in fewer opportunities for vocal learning (as has been suggested by 

adolescent single housing studies in rats, e.g. Seffer et al., 2015). The test conditions used in 

this thesis may therefore be more ecologically realistic controls, with the control conditions 

revealing effects due to deprivation from stress and social experiences that would typically 

experience by an animal.   

The lab environment provides greater control over experimental variables than can be 

achieved in field studies, whilst field studies provide more ecological realism (e.g. Calisi & 

Bentley, 2009). The current thesis may indicate that simulating more ecologically realistic 

conditions during development may strengthen any inferences drawn by accounting for 

alternative explanations of the data (e.g. deprivation effects). One approach to gain more 

ecological realism whilst retaining control over independent variables would be to replicate the 

experiments in the current thesis in a semi-natural setting. For example, the effects of 
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adolescent glucocorticoid exposure could be investigated by dosing adolescent zebra finches 

with CORT whilst the birds are housed in outdoor aviaries to provide exposure to typical field 

stressors (e.g. weather) and living in flocks to provide typical social stress (e.g. social hierarchy 

formation). As all birds would have been exposed to stressors, any effects of CORT could not 

be due to comparison with a control condition that had been deprived of nearly all stress. 

Adolescent group size/density and number of unfamiliar conspecifics could also be 

experimentally manipulated in avian species whilst the birds live in flocks in aviaries. As all 

birds would have been living in groups, any effects could not be due comparing animals reared 

in larger/denser flocks or animals exposed to more unfamiliar conspecifics with control 

conditions that had been deprived of social interactions. Through the use of experiments in 

semi-natural settings more realistic experimental and control conditions can be created to 

provide more convincing inferences regarding the effects of adolescent experiences on adult 

phenotypes than those drawn from the data presented in the current thesis.  

5.8. Comparative perspectives 

Comparative psychology can provide a more holistic understanding of behaviour by comparing 

how behaviour are expressed across species that differ in certain species-typical characteristics, 

such as social organisations and mating systems (Adkins-Regan, 1990). The species studied in 

this thesis vary in terms of both species-typical social organisation and mating system. Rats are 

largely solitary animals, except for occasional bouts of antagonistic interactions to maintain a 

positon in a social hierarchy, and occasional reproductive encounters with different 

conspecifics as part of a promiscuous mating system (Calhoun, 1963). Contrastingly, zebra 

finches are group-living animals that typically engage in affiliative interactions with 

conspecifics and establish socially monogamous pair bonds (Zann, 1996). Comparisons 

between rats and zebra finches could therefore provide insights into whether species-typical 



226 
 

social structure and mating system mediate the long-term effects of adolescent stress and social 

experiences on adult phenotypes.  

To a large extent the findings from the current thesis reveal similar effects occurring in 

response to adolescent stress and social experience between rats and zebra finches. For 

example, adolescent stress appears to impair spatial memory and/or result in more neophobic 

behaviour when individually exposed to an unfamiliar environment in rats (Hollis et al., 2013; 

Isgor et al., 2004) and zebra finches (Chapter 2). Adolescent social experiences also appear to 

have similar effects across species, as providing more opportunities to interact with age-similar 

conspecifics during adolescence may result in more affiliative adult behaviour in rats (Chapter 

4) zebra finches (Chapter 3). Species-typical social organisation may, however, mediate the 

effects of adolescent stress on adult behavioural responses to unfamiliar conspecifics. In male 

rats, adolescent stress results in animals that, in adulthood, spend less time interacting with an 

unfamiliar conspecific (Tzanoulinou et al., 2014; Veenit et al., 2013) and engage in more 

antagonistic behaviour with an unfamiliar male (Marquez et al., 2013; Veenit et al., 2013) 

compared to control rats that experienced no such stress. Contrary effects were found in 

Chapter 2, as zebra finches dosed with CORT during adolescence spent less time alone when 

housed with unfamiliar conspecifics and, if dosed in late adolescence, engaged in less 

antagonistic behaviour compared to saline dosed birds. Adolescent CORT exposure may result 

in relatively solitary and/or antagonistic animals, like male rats (Calhoun, 1963), becoming 

more solitary and antagonistic, but relatively gregarious and/or affiliative animals, like zebra 

finches (Zann, 1996), may become more gregarious and affiliative. Future research could 

explore how adolescent stress affects later-life social behaviour in species varying along a 

solitary-gregarious continuum. For example, finch species vary from territorial pair-living 

Melba finches to more gregarious flock-living zebra finches (Goodson & Kingsbury, 2011; 

Goodson et al., 2012). A hypothesis that now requires testing is whether adolescent CORT 
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dosing results in more affiliative adult behaviour in zebra finches and more antagonistic adult 

behaviour in Melba finches compared to saline dosed control birds within each species. 

Comparative psychology can also be used to provide insights into human behaviour, in 

particular to address research questions that may be difficult to explore using human subjects, 

such as the causes of mental illness and the underpinning physiological mechanisms (Palanza, 

2001; Rodgers et al., 1997; Steimer, 2011). Adolescence in humans is the most common time 

of life for the diagnosis of anxiety-related disorders (Kessler et al., 2005; McEvoy et al., 2011), 

with such psychopathologies possibly caused by adolescent stress (Bakker et al., 2010; 

Sebastian et al., 2015). Adolescent rats and zebra finches have been used as model organisms 

in order to explore human development and psychopathologies (e.g. McCormick & Green, 

2013; Mori & Wada, 2015). The findings from the current thesis may therefore provide insights 

into the effect of stress and social experiences on adolescent development and the emergence 

of anxiety-related disorders in humans. In the current thesis, zebra finches dosed with CORT 

in early adolescence may have engaged in more neophobic behaviour in response to an 

unfamiliar environment; an effect that may have been attributable to lower GR expression in 

the hypothalamus and hippocampus, regions that inhibit the HPA axis (Chapter 2). Greater 

neophobic behaviour is indicative of anxiety-related disorders in humans (Kagan & Snidman, 

1999). Chapter 2 may therefore suggest that glucocorticoid exposure during adolescence is a 

contributing factor to the emergence of anxiety-related illnesses in humans, potentially due to 

a lowering of glucocorticoid receptor expression in brain regions that inhibit the HPA axis.  

The findings from the current thesis also provide tentative support for methods that aid 

in the prevention or treatment of anxiety-related disorders. Social support can buffer responses 

to stressors in humans, and a greater availability of social support is associated with a lower 

incidence of anxiety-related disorders (Kawachi & Berkman, 2001; Smith & Christakis, 2008). 

In zebra finches, early adolescent CORT dosing had no effect on behavioural responses to an 
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unfamiliar environment in adulthood when the birds were housed with familiar conspecifics. 

Chapter 2 may therefore indicate that conspecifics in adulthood can potentially buffer the long-

term effects of adolescent stress, further suggesting that social support in adulthood could be 

used to prevent or treat anxiety-related disorders. Social support within adolescence (i.e. greater 

number of friends) can also be used to lower the likelihood of diagnosis of an anxiety-related 

disorder (Frenkel et al., 2015; La Greca & Harrison, 2005). Friendships are established by 

individuals engaging in mutually reciprocated affiliative interactions (Hartup & Stevens, 

1997). Adolescent social conditions that foster affiliative interactions between conspecifics 

may therefore result in individuals with greater access to social support, resulting in a lower 

likelihood of being diagnosed with an anxiety-related disorder (Frenkel et al., 2015; La Greca 

& Harrison, 2005). In the current thesis, a larger group size at a sufficiently low density in 

zebra finches (Chapter 3) and interacting with more unfamiliar conspecifics in rats (Chapter 4) 

appear to result in animals that engage in more affiliative behaviour in adulthood. In zebra 

finches, a larger adolescent group size at a sufficiently low density appeared to lower neophobic 

behaviour in response to an unfamiliar environment in adulthood when familiar conspecifics 

were present. The findings from Chapter 3 may therefore support the notion that affiliative 

adolescent interactions can result in adults that can better use social support and thereby buffer 

anxiety-like responses to stressors. One advantage of identifying this putative effect in a lab 

animal is that further investigations can now elucidate the underlying mechanism of the effect. 

Higher oxytocin concentration results in more affiliative behaviour and social buffering 

(Neumann, 2008; Witt et al., 1992), with mesotocin perhaps having a similar effect in birds 

(Goodson et al., 2009; Goodson et al., 2015). More affiliative interactions during adolescence 

may therefore result in adults with higher plasma oxytocin/mesotocin concentration and/or 

higher oxytocin/mesotocin receptor expression in the SBN compared to animals with fewer 
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affiliative interactions in adolescence; such predictions could not be adequately explored on 

human subjects due to the difficulty in collecting the necessary tissue. 

5.9. Developmental perspectives 

Developmental stages that occur prior to adulthood (i.e. foetal, early postnatal, and adolescent 

stages) are described as sensitive periods, and experiences that occur during these sensitive 

periods can have long-term effects on adult phenotypes (e.g. Kapoor et al., 2006; Levine, 2005; 

Romeo, 2010). The current thesis has explored the long-term effects of adolescent experiences, 

including adolescent exposure to glucocorticoids (Chapter 2) and different social conditions 

(Chapters 3 and 4), whilst leaving foetal and early postnatal development unmanipulated. This 

approach allowed for a direct exploration of adolescence as a sensitive period of development, 

but animals are unlikely to experience glucocorticoid exposure and different social conditions 

only during adolescence. During foetal development, for example, animals can be exposed to 

glucocorticoids from the mother via placental hormone transfer in mammals (Macri & Würbel, 

2006) and depositing hormones into eggs in birds (Groothius & Taborsky, 2015). In early 

postnatal development, animals can also be exposed to different social conditions such as 

variation in parental care (e.g. Angelier & Chastel, 2009; Champagne et al., 2003; Levine, 

2001). Animals are therefore likely to experience variations in glucocorticoid exposure and 

social conditions across multiple developmental stages, and such experiences likely interact in 

order to shape adult phenotypes (e.g. Gottlieb & Lickliter, 2004; Romeo & McEwen, 2006).  

 Adolescent stressor exposure can mediate the long-term effects of pre-adolescent 

stressor exposure (Ricon, Toth, Leshem, Braun, & Richter-Levin, 2012; Toth, Avital, Leshem, 

Richter-Levin, & Braun, 2008). Exposure to pre-adolescent maternal separation and adolescent 

chronic variable stress results in adult rats that potentially engage in more neophobic behaviour 

(i.e. more locomotor activity in an unfamiliar environment) than occurs in rats that experienced 
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either stressor independently (Toth, Avital, et al., 2008). However, exposure to pre-adolescent 

maternal separation and a milder adolescent chronic variable stress paradigm than that of Toth, 

Avital, et al. (2008) has been shown to result in animals that are no different from 

unmanipulated controls in terms of neophobic behaviour (Ricon et al., 2012). Pre-adolescent 

stress and higher intensity adolescent stressors may therefore have cumulative long-term 

effects, whilst the long-term effects of pre-adolescent stress and lower intensity stressors may 

negate one another. The mechanism explaining these different effects remains to be 

determined, but future work could explore the role of glucocorticoid exposure. An investigation 

could explore if glucocorticoid exposure prior to and during adolescence results in, a) more 

neophobic behaviour in adulthood than when the dosing periods occur independently due to a 

cumulative effect of developmental stress (Toth, Avital, et al., 2008), or b) neophobic behavior 

that is no different from non-dosed controls as glucocorticoid exposure during both 

developmental stages negate one another (Ricon et al., 2012). Physiologically-relevant 

glucocorticoid doses have been determined for pre-adolescent and adolescent zebra finches 

(Spencer & Verhulst, 2008; Chapter 2), so a future study could dose zebra finches with CORT 

during early postnatal development and/or during adolescence to explore how glucocorticoid 

exposure interacts across development stages in order to shape adult phenotypes. The findings 

could indicate whether adolescence is a period of vulnerability to the accumulating effects of 

glucocorticoid exposure (Toth, Avital, et al., 2008), or an opportunity to undo the potentially 

deleterious effects of pre-adolescent glucocorticoid exposure (Ricon et al., 2012).    

Adolescent enrichment may attenuate the long-term effects of pre-adolescent stress, as 

rat pups exposed to maternal separation develop into adults that engage in more neophobic 

behaviour and have greater stressor-induced CORT concentration in later-life compared to rats 

not exposed to such separation, but no difference between the conditions is found if maternally 

separated rats are housed in enriched environments (e.g. larger cage size, access to toys, more 
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conspecifics) in adolescence (e.g. Berdaro, Fabio, & Pautassi, 2016; Francis, Diorio, Plotsky, 

& Meaney, 2002; Vivinetto, Suárez, & Rivarola, 2013). Interacting with more conspecifics 

during adolescence, one variable manipulated during environmental enrichment, itself may be 

able to lessen or negate the long-term effects of experiences prior to adolescence on adult 

stress-related phenotypes, but few investigations have directly explored such a suggestion (e.g. 

Gariépy, Rodriguiz, & Jones, 2002). The social conditions explored in the current thesis, 

namely larger and/or denser group housing (Chapter 2) and interacting with more unfamiliar 

conspecifics (Chapter 4), may lessen or negate the long-term effects of pre-adolescent stress 

on adult stress-related measures (e.g. neophobic behaviour, stressor-induced glucocorticoid 

secretion, glucocorticoid receptor expression). Zebra finches dosed with CORT during nestling 

and fledgling development are quicker to approach an unfamiliar object later in life (Spencer 

& Verhulst, 2008), but if raised in larger (vs. smaller) group size during adolescence the effects 

may not emerge. The results could demonstrate whether adolescence presents an opportunity 

to overturn the potentially deleterious long-term effects of pre-adolescent stress via appropriate 

social housing conditions, a suggestion that has received limited empirical exploration (e.g. 

Gariépy et al., 2002).  

5.10. Conclusion 

Adolescent exposure to stressors and social conditions can have long-term effects on later-life 

responses to potentially threatening stimuli and conspecifics (Brown & Spencer, 2013; Hollis 

et al., 2013; McCormick et al., 2015). The findings from the current thesis clearly show that 

CORT is a mechanism behind the long-term effects of adolescent stressor exposure (Chapter 

2), but the long-term effects of adolescent group size/density (Chapters 3) and number of 

unfamiliar social interactions (Chapter 4) did not have similar effects to those reported in 

Chapter 2 or previous research exploring the long-term effects of adolescent stress. Adolescent 

social conditions in the current thesis may have therefore not been sufficiently intense stressors 
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for long-term effects to occur, or may have needed to occur in different periods of adolescent 

for long-term effects to occur (e.g. late adolescence). Alternatively to acting as stressors, 

adolescent social conditions may have instead affected social learning of a sex- and species-

specific repertoire of social behaviour and thereby have long-term effects on later-life 

responses to social stimuli (Sachser et al., 2011). Future work should therefore take a more 

comparative approach that includes both male and female animals to explore how species-

specific social organisation and sex mediate the long-term effects of adolescent stressors and 

social conditions. Through further exploration of endocrine mechanisms, such as gonadal 

hormones and nonapeptides, and a broader range of behavioural measures, such as socio-sexual 

and foraging behaviour, research can continue to elucidate the formative experiences in 

adolescence that affect phenotypic traits an individual may live with for the rest of their life. 
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Appendix A: supplementary data analyses 

The number of hops, number of head turns, and duration of time (second) spent perching alone 

prior to exposure to an unfamiliar environment were entered as dependent variables in separate 

LMMs. Any transformations required to achieve normality of the residuals (Shapiro-Wilk, p > 

0.05) are stated below. Adolescent dosing condition and sex were entered as fixed factors (main 

effects and interaction). In Chapter 2 models, nest ID and brood size were entered as random 

factors in all models to control for pre-adolescent experiences. In Chapter 3 models, only nest 

ID was entered as a random factor as brood size was standardised. All models were conducted 

separately for each context (individual, group), with cage number entered as a random factor 

in group context models to account for group influence on individual behaviour. All 

comparisons were not significant and each section below provides a table of raw data split 

adolescent condition for each task and then two tables (one for familiar conditions model, one 

for housing conditions model) summarising the model output for each task.   
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Chapter 2: Behaviour prior to exposure to an unfamiliar environment 

Prior to analysis, the number of hops in an individual context was square root transformed and 

the duration of time spent perching alone in a group context was log10 transformed. Raw data 

were used for all other variables. Raw data split by adolescent dosing condition are summarised 

in Table A.1. and the output from the models are summarised in Table A.2.  

Table A.1. Behavioural measures taken prior to exposure to an unfamiliar environment in 

Chapter 2 split by adolescent dosing condition and social context of testing. Data presented are 

mean (standard error of the mean). 

 

Table A.2. Output from models analysing the effects of adolescent dosing condition in Chapter 

2 on behavioural measures taken prior to exposure to an unfamiliar environment split by social 

context of testing. All comparisons were not significant (p > 0.05). 

 

 

 

 

Measure 
Adolescent dosing condition 

E-SAL E-CORT L-SAL L-CORT 

Individual context     

Number of hops  39.07 (6.40) 48.56 (6.25) 50.44 (8.65) 53.69 (8.87) 

Number of head turns 72.40 (6.17) 53.83 (6.32) 65.61 (7.74) 69.40 (7.89) 

Group context     

Number of hops  45.21 (6.26) 47.06 (7.68) 52.67 (6.08) 48.88 (4.63) 

Number of head turns 33.33 (4.84) 46.28 (6.66) 42.56 (3.22) 37.93 (4.52) 

Time perching alone 159.27 (20.96) 153.83 (17.95) 169.33 (24.99) 153.56 (21.44) 

Dependent  

variable  
Independent variable 

Individual context Group context 

df F p df F p 

Number of 

hops 
Sex 1,58 0.587 0.447 1,58 0.855 0.359 

Dosing condition 3,58 0.421 0.738 3,58 0.152 0.928 

Sex x dosing condition 3,58 0.661 0.579 3,58 1.605 0.198 

Number of 

head turns 
Sex 1,58 0.012 0.912 1,58 0.807 0.373 

Dosing condition 3,58 1.211 0.314 3,58 0.947 0.424 

Sex x dosing condition 3,58 0.251 0.860 3,58 0.343 0.794 

Time 

perching 

alone 

Sex - - - 1,58 0.172 0.680 

Dosing condition - - - 3,58 0.113 0.952 

Sex x dosing condition - - - 3,58 0.116 0.950 
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Chapter 3: Behaviour prior to exposure to an unfamiliar environment 

Prior to analysis, square root transformations were applied to the number of hops in a group 

context for the familiarity conditions model and number of hops in an individual context for 

the housing conditions model. A log10 transformation was applied to the number of turns in 

an individual context for the familiarity conditions model and the number of hops in a group 

context for the housing conditions model. Raw data split by adolescent housing condition are 

summarised in Table A.3. and the output from the models are summarised in Table A.4. 

(familiarity conditions model) and Table A.5. (housing conditions model). 

Table A.3. Behavioural measures taken prior to exposure to an unfamiliar environment in 

Chapter 3 split by adolescent condition and social context of testing. Data presented are mean 

(standard error of the mean). 

 

 

 

 

 

 

 

 

 

 

Measure 
Adolescent condition 

LN LN/C HN/LD HN/HD 

Individual context     

Number of hops  56.78 (7.67) 66.83 (10.89) 69.42 (10.16) 64.65 (10.49) 

Number of head 

turns 

36.17 (4.13) 45.39 (5.59) 38.26 (3.80) 35.50 (3.36) 

Group context     

Number of hops  139.89 (29.70) 191.22 (35.96) 136.75 (18.61) 173.35 (28.23) 

Number of head 

turns 

33.28 (6.45) 45.00 (7.53) 50.50 (4.52) 55.55 (5.38) 

Time perching alone 348.61 (34.83) 359.67 (30.32) 430.65 (55.14) 372.25 (52.14) 
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Table A.4. Output from models analysing the effects of adolescent familiarity condition in 

Chapter 3 on behavioural measures taken prior to exposure to an unfamiliar environment split 

by social context of testing. All comparisons were not significant (p > 0.05). 

 

Table A.5. Output from models analysing the effects of adolescent housing condition in 

Chapter 3 on behavioural measures taken prior to exposure to an unfamiliar environment split 

by social context of testing. All comparisons were not significant (p > 0.05). 

 

 

  

 

 

 

 

Dependent 

variable 
Independent variable 

Individual context Group context 

df F p df F p 

Number of 

hops 

Sex 1,28.664 1.000 0.326 1,14 0.959 0.344 

Familiarity condition 1,27.468 1.420 0.243 1,14 0.792 0.388 

Sex x familiarity 

condition 
1,30.051 0.049 0.826 1,14 0.019 0.892 

Number of 

head turns 

Sex 1,25.614 0.292 0.594 1,14.855 1.201 0.291 

Familiarity condition 1,27.233 2.779 0.107 1,15.559 0.488 0.495 

Sex x familiarity 

condition 
1,27.353 2.689 0.112 1,14.354 0.323 0.579 

Time 

perching 

alone 

Sex - - - 1,14 1.445 0.249 

Familiarity condition - - - 1,14 0.088 0.771 

Sex x familiarity 

condition 
- - - 1,14 0.623 0.443 

Dependent 

variable 
Independent variable 

Individual context Group context 

df F p df F p 

Number of 

hops 

Sex 1,50.870 0.045 0.832 1,20.586 1.845 0.189 

Housing condition 2,49.878 0.364 0.696 2,20.511 0.535 0.593 

Sex x housing condition 2,48.818 0.463 0.632 2,19.841 0.577 0.571 

Number of 

head turns 

Sex 1,50.301 0.792 0.378 1,52 0.844 0.363 

Housing condition 2,48.733 0.051 0.950 2,52 0.295 0.734 

Sex x housing condition 2,47.454 1.157 0.323 2,52 0.351 0.621 

Time 

perching 

alone 

Sex - - - 1,23 0.039 0.845 

Housing condition - - - 2,23 0.361 0.701 

Sex x housing condition - - - 2,23 0.053 0.948 
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Chapter 3: Behaviour prior to exposure to an unfamiliar object 

Number of hops in an individual context were each subject to a square root transformation prior 

to analysis in the familiarity conditions model. Number of hops in an individual context, 

number of hops in a group context, and number of head turns in an individual context were 

also square root transformed prior to analysis in the housing conditions model. Raw data was 

used when analysing all other variables. Raw data for each variable split by adolescent housing 

condition are summarised in Table A.6. and the output from the models are summarised in 

Table A.7. (familiarity conditions model) and Table A.8. (housing conditions model). 

Table A.6. Behavioural measures taken prior to exposure to an unfamiliar object in Chapter 3 

split by adolescent condition and social context of testing. Data presented are mean (standard 

error of the mean). 

 

 

 

 

 

 

 

 

 

 

 

Measure 
Adolescent condition 

LN LN/C HN/LD HN/HD 

Individual context     

Number of hops  54.06 (6.42) 62.56 (7.59) 58.37 (6.97) 59.50 (6.93) 

Number of head 

turns 

39.89 (3.57) 40.28 (4.51) 42.58 (5.10) 46.20 (7.38) 

Group context     

Number of hops  58.61 (4.82) 57.17 (5.57) 51.35 (5.52) 55.80 (4.98) 

Number of head 

turns 

34.94 (4.70) 30.78 (3.64) 29.90 (4.11) 29.90 (3.92) 

Time perching alone 238.33 (16.65) 265.00 (15.71) 254.70 (12.63) 258.65 (11.37) 
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Table A.7. Output from models analysing the effects of adolescent familiarity condition in 

Chapter 3 on behavioural measures taken prior to exposure to an unfamiliar object split by 

social context of testing. All comparisons were not significant (p > 0.05). 

 

Table A.8. Output from models analysing the effects of adolescent housing condition in 

Chapter 3 on behavioural measures taken prior to exposure to an unfamiliar object split by 

social context of testing. All comparisons were not significant (p > 0.05). 

Dependent 

variable 
Independent variable 

Individual context Group context 

df F p df F p 

Number 

of hops 

Sex 1,48.898 0.167 0.684 1,52 0.487 0.488 

Housing condition 2,47.925 0.127 0.881 2,52 0.601 0.552 

Sex x housing condition 2,45.799 0.941 0.398 2,52 0.547 0.582 

Number 

of head 

turns 

Sex 1,51 0.035 0.853 1,52 0.250 0.619 

Housing condition 2,51 0.082 0.921 2,52 0.458 0.635 

Sex x housing condition 2,51 0.118 0.889 2,52 0.387 0.681 

Time 

perching 

alone 

Sex - - - 1,23 0.017 0.897 

Housing condition - - - 2,23 0.365 0.698 

Sex x housing condition - - - 2,23 0.093 0.912 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent 

variable 
Independent variable 

Individual context Group context 

df F p df F p 

Number 

of hops 

Sex 1,31.611 0.910 0.347 1,60.773 0.141 0.709 

Familiarity condition 2,25.030 0.803 0.379 1,60.773 0.047 0.830 

Sex x familiarity condition 1,31.879 0.307 0.583 1,60.773 0.123 0.727 

Number 

of head 

turns 

Sex 1,31.396 1.851 0.183 1,32 0.181 0.674 

Familiarity condition 1,28.118 0.269 0.608 1,32 0.447 0.508 

Sex x familiarity condition 1,30.428 4.154 0.060 1,32 0.006 0.937 

Time 

perching 

alone 

Sex - - - 1,14.803 0.037 0.85 

Familiarity condition - - - 1,15.425 0.639 0.436 

Sex x familiarity condition - - - 1,14.425 0.23 0.639 
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Appendix B: supplementary data tables 

 

Chapter 2 behaviour-hormone correlations 

 

Table B.1. Correlations between latency to enter the dosing box across the five adolescent trails 

with measures of corticosterone concentration taken in response to a capture and restraint 

stressor in adolescence. All correlations were not significant (p > 0.0025). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dosing box 

entry latency 

for each trial 

Basal CORT 

(ng/ml) 

10 min CORT 

(ng/ml) 

30 min CORT 

(ng/ml) 

Peak CORT 

(ng/ml) 

r p r p r p r p 

1 -0.220 0.076 0.097 0.440 0.079 0.529 0.113 0.367 

2 -0.097 0.438 0.034 0.785 0.101 0.419 0.084 0.500 

3 0.009 0.943 0.050 0.688 0.083 0.509 0.091 0.466 

4 -0.096 0.442 0.074 0.554 -0.038 0.764 0.005 0.970 

5 -0.143 0.251 0.128 0.307 -0.076 0.542 -0.056 0.568 
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Table B.2. Correlations between male corticosterone and testosterone concentrations with behavioural and neural variables in which a 

significant effect of group was found. All correlations were not significant correlations (Bonferroni corrected α = 0.0013). 
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Table B.3. Correlations between female corticosterone and estradiol concentrations with behavioural variables in which a significant effect 

of group was found. All correlations were not significant correlations (Bonferroni corrected α = 0.0013). 
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Chapter 3 behaviour-hormone correlations 

Table B.4. Correlations between corticosterone concentrations during adolescent capture and 

restraint and individual behaviour recorded during adolescent unfamiliar social interactions. 

All correlations were not significant (p > 0.003). 

Variable 

Basal CORT 

(ng/ml) 

15min CORT 

(ng/ml) 

45min CORT 

(ng/ml) 

CORT 15-

45min change 

(ng/ml) 

r p r p r p r p 

Female          

Duration perching  
0.053 0.759 0.188 0.273 -0.193 0.259 -0.092 0.595 

alone (sec) 

Number of head 

turns 
-0.074 0.784 -0.081 0.776 0.025 0.927 0.084 0.757 

Male         

Duration perching  
-0.041 0.802 -0.267 0.096 -0.038 0.817 -0.204 0.207 

alone (sec) 

Number of head 

turns 
0.085 0.722 -0.114 0.634 0.025 0.917 0.053 0.823 
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Table B.5. Correlations between male hormone variables (corticosterone concentrations during adult capture and restraint, basal estradiol 

concentration in adulthood) with female behaviour that were affected by adolescent condition in the group context unfamiliar environment 

and unfamiliar object tasks, as well as the unfamiliar conspecifics task. All correlations were not significant (p > 0.0014). 
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Table B.7. Correlations between behavioural measures recorded during the object/social novelty task. Table B.6. Correlations between female hormone variables (corticosterone concentrations during adult capture and restraint, basal estradiol 

concentration in adulthood) with female behaviour that were affected by adolescent condition in the group context unfamiliar environment 

and unfamiliar object tasks, as well as the unfamiliar conspecifics task. All correlations were not significant (p > 0.0014). 


