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Abstract

We present a multifaceted investigation into the relevance of word order in ma-
chine translation. We introduce two tools, DTED and DERP, each using dependency
structure to detect differences between the structures of machine-produced transla-
tions and human-produced references.

DTED applies the principle of Tree Edit Distance to calculate edit operations
required to convert one structure into another. Four variants of DTED have been
produced, differing in the importance they place on words which match between
the two sentences. DERP represents a more detailed procedure, making use of the
dependency relations between words when evaluating the disparities between paths
connecting matching nodes.

In order to empirically evaluate DTED and DERP, and as a standalone contri-
bution, we have produced WOJ-DB, a database of human judgments. Containing
scores relating to translation adequacy and more specifically to word order quality,
this is intended to support investigations into a wide range of translation phenomena.

We report an internal evaluation of the information in WOJ-DB, then use it to
evaluate variants of DTED and DERP, both to determine their relative merit and
their strength relative to third-party baselines. We present our conclusions about the
importance of structure to the tools and their relevance to word order specifically,
then propose further related avenues of research suggested or enabled by our work.
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1.1 Introduction
In this thesis, we explore the evaluation of automatically produced translations. Many
approaches exist both for producing such translations and for assessing their quality.
While most evaluation tools inspect immediately-visible syntactic features such as words,
a small number rely on grammatical structures for their processing. Additionally, most
existing tools assess the overall quality of sentences, although more recently some have
focused on specific aspects of the sentences such as their word ordering.

We introduce two tools, DTED and DERP, which combine these more novel ap-
proaches: both evaluate machine translation using grammatical structure, with a view to
assessing the quality of word ordering in particular. To judge their accuracy we have pro-
duced a bespoke dataset, WOJ-DB, which contains ‘gold standard’ human assessments
of translations’ word ordering and overall quality: these are later compared both with our
own metrics and with various third-party packages.

1.2 Thesis overview
This section will provide a high-level summary of the context, contributions, goals and
results of our investigations. It is primarily intended for those who are familiar with
the area: should the reader require a more in-depth introduction to the domain, they are
directed to Chapter 3.

Automatic assessment – The field of machine translation has experienced enormous
growth and innovation over the last few decades. One such innovation is the development
of automatic tools for the evaluation of the quality of translated sentences, which has in
many ways become key to the development process of new machine translation systems.

Order metrics – As the variety of both translation systems and evaluation metrics
widens, a demand has arisen for tools which measure more fine-grained information than
simple holistic translation quality. While a number of tools attempt to categorise errors
to give such deeper knowledge, the importance of one specific error type – word ordering
– has become clear, meriting bespoke tools for its evaluation alone.

Structural metrics – A number of such tools exist, both adaptations from other domains
and purpose-built metrics using common evaluation techniques. One technique which is
becoming more common is the use of structural features rather than purely surface-level
syntax, yet to our knowledge only one tool exists which uses this rich resource for the
evaluation of ordering.

Research questions – Our work represents an effort to rectify the general lack of such
structure-based ordering metrics. We have produced two separate metrics, DTED (Chap-
ter 4) and DERP (Chapter 5), both based on dependency parse structures. By using and
evaluating these tools, we intend to find responses to three distinct questions:

1. High performance – Can we improve on the current state of the art of word order
evaluation?

2. Relevance of structure – Does structure aid the evaluation of word order in machine
translation?
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Figure 1.1: Summary of thesis contents. Rectangles indicate significant contributions,
diamonds refer to our three research questions, while ovals provide context.

3. Relevance for order – Does dependency structure permit word order evaluation, or
does it lend itself more to holistic judgment?

DTED – The approach of DTED, the simpler of our two tools, is based on the principle
of Tree Edit Distance. Something of an adaptation of Levenshtein distances to the domain
of tree structures, these consist of a count of simple deletion, insertion and substitution
operations required to convert one tree to another.

Through DTED, we apply this principle to the comparison of parse trees generated
from a machine-produced hypothesis translation and a human-produced reference. We
produce normalised scores which can be easily compared between sentences and transla-
tion systems. Through variations in the treatment of words which match between the two
sentences (‘aligned’ words), we provide four variations on this fundamental concept.

DERP – Our second tool, DERP, is intended to leverage more information than that
used by DTED: namely the labels indicating functional relationships between words in
a dependency parse tree. It does this by comparing the paths between pairs of nodes in
one tree to pairs of aligned nodes in the other, evaluating differences using traditional
Levenshtein distances.

Enough paths contribute to the final DERP score such that every aligned node is
compared, either directly or indirectly, to every other. The exact choice of paths to in-
clude is determined through Kruskal’s algorithm for the minimum spanning tree. The
Levenshtein costs for such paths are then normalised, as before, to produce an easily
comparable score in the range [0,1].

DTED & DERP: relevance of structure – In order to unambiguously investigate the
rôle played by structure in the performance of our tools, we have produced variants of
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each which ignore all structural information, applying their algorithms on ‘flat’ sentences.
We also abstract away from the relevance of third-party tools – taggers, parsers and align-
ment generators – through the easy replacement of each of these components.

WOJ-DB – The evaluation of tools intended to measure order specifically is no easy
task. While numerous datasets, and even an annual conference, provide human judg-
ments on holistic quality which are used for metric evaluation, error-specific information
is much rarer.

We have thus generated our own dataset, WOJ-DB (Chapter 6). We have done this
through a survey, asking local people of various backgrounds to rate the overall quality
and the ordering quality of a number of translations. Participants were provided with
reference and hypothesis translations in English only, with sentences sourced from the
annual Workshop on Machine Translation.

WOJ-DB: relevance of structure – While participants were asked to rate the quality of
a large number of these sentences directly, another form of ‘translation’ was included in
the surveys. As the mistakes in real translated sentences are numerous and often interact
in complex ways, it can be difficult to isolate the relevance of specific types of inaccuracy,
even to a question as specific as word order quality. We have thus automatically permuted
correct sentences, introducing simple errors such as word swaps, to allow for a more
precise analysis and understanding.

Results – We have performed a number of analyses of the data gathered for WOJ-DB
(Section 7.2), and hope to make the information available for future researchers in the
area of word order in machine translation. More immediately, however, we have used it
to evaluate the tools we have produced: DTED and DERP (Section 7.3).

Results: high performance – In terms of their ability to predict human judgments of
word order, we have obtained encouraging results: one variant of DTED outperforms all
baselines we compare against: Kendall’s τ, BLEU and Meteor. Most other variants of
our tools perform at levels comparable with those baselines, although interestingly our
more complex tool, DERP, performs strictly less well than one.

Results: relevance of structure – When considering structure, our results are potentially
surprising. While DERP and one variant of DTED achieve – as predicted – a higher
level of accuracy when provided with structural information, the same is not true for the
three higher-performing variants of DTED. For these three tools, omission of information
relating to the syntactic structure of the sentence barely affects their success.

Results: relevance for order – The results relating to our third research question, the
relative ability of structure to aid in predicting holistic and ordering quality, are striking.
Almost all variants of both our tools score almost exactly equally highly in their ability
to predict each of the two scores provided by participants to WOJ-DB.

Conclusions – All three of these results suggest that the combination of structure and
word order evaluation is an interesting one. Through the success of our tools we have
shown it has merit, while the more mixed results we have received for our latter two
research questions demand more investigation to be fully understood.

Given these results, we encourage the translation community to consider our and
similar techniques in future metrics, and to further our own investigations through the
adaptation of our tools to other languages, datasets and more.
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2.1 Natural Language Processing

Given the pre-eminence of language in so many aspects of our everyday lives, it is per-
haps unsurprising that the computational understanding and treatment of natural language
has been actively investigated since long before the advent of electronics [Bhate and Kak,
1991]. Indeed, the question of translation from one language to another has in particular
been of practical relevance for thousands of years [Shieber, 2007].

More recently, the invention of the computer has provided hitherto unheard-of re-
sources for deepening our knowledge of language, and the field of computational Natu-
ral Language Processing (NLP) has been active since not long after computers became
available [Hays, 1962; Weaver, 1955]. Nowadays, it has several disparate yet interlinked
sub-fields.

2.1.1 Grammar formalisms

One of these subfields with the most direct effect on the level and types of processing
which can be done is that of designing grammar formalisms: ways of representing lan-
guage according to computational structures and other features.

Of these, two of the simpler options in widespread use are Regular Expressions and
Finite State Automata (FSAs) [Roche and Schabes, 1997]. Computationally equivalent
to each other, these are convenient as programming tools yet severely limited in their
ability to model the real-world complexities of language.

In practice, we often require more modeling power than these formalisms can pro-
vide. One of the most common grammar formalisms in use today, Context-Free Gram-
mars (CFGs) [Hopcroft et al., 2001], applies to words and phrases rather than the simple
characters involved in FSAs. CFGs are able to model nearly all phenomena in natural
language, representing a well-known and well-understood class of grammars [Kallmeyer,
2010]: they lend themselves to situations where complex features of language may occur
but parsing speed and grammar size are of high importance.

CFGs encode relationships between elements of a sentence in simple nestable rules,
defining each phenomenon – for example, a noun phrase – in terms of its constituent
parts: a proper noun, perhaps, or an adjective and plural noun. These example rules
could be written as [NP → NNP ] and [NP → JJ NNS ] respectively.

A number of formalisms opt to represent linguistic phenomena in ways other than
through categorisation of words or phrases. One well-known example of this is the class
of Dependency Grammars [Gaifman, 1965], which, though computationally equivalent
to CFGs [Rambow, 2010], use a very different approach. The tree structures generated
by dependency parses begin with a key verb of the sentence and recursively link this
to its direct ‘dependents’ – such as a subject or object – with connections which may be
either unlabelled or annotated with the nature of the relationship. We discuss dependency
structures further in Section 3.4.3.

Context-Free and Dependency Grammars, while powerful, are far from the most ex-
pressive formalisms we know. Tree Adjoining Grammars (TAGs) [Joshi et al., 1975]
are able to model many of the most unusual features of natural language, while Linear
Context-Free Rewriting Systems (LCFRSs) [Vijay-Shanker et al., 1988], though very
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heavyweight, demonstrate even more ability to model complex edge cases [Kallmeyer,
2013].

Other grammar formalisms may approach the question of language representation in
more ways again. While CFGs, TAGs and LCFRSs focus on relationships between words
according to their positions in sentences, Hyperedge Replacement Grammars [Chiang
et al., 2013] and Combinatorial Categorical Grammars [Steedman, 2000] are intended
to abstract away from the words themselves and instead encode more generic, semantic
features.

2.1.2 Grammar inference

While important, choosing an appropriate formalism is only the first step in language
processing: before a formalism may be used, it must be instantiated to relate to a specific
language. While in the past this has been achieved through hand-crafted rules [Klein and
Simmons, 1963], more recent advances in computational power have allowed grammars
to be stochastically ‘trained’ or ‘inferred’ from an appropriate corpus [Nadkarni et al.,
2011].

Since the inception of this statistical approach, many different methods have been
explored. These can vary widely based on the grammar formalism used [Graehl et al.,
2004; Kwiatkowski et al., 2010], but most have a number of procedures in common.

First, a large corpus of existing text is examined: this is usually made up of sentences
which are already represented as trees (a ‘treebank’), in which the words and other el-
ements may or may not be annotated with more relevant information such as parts of
speech [Nederhof and Satta, 2008; Klein and Manning, 2003b]. The features common
between different trees can be extracted and directly leveraged to produce grammars, with
the frequencies of such features then used to estimate the probabilities of their occurring
in hitherto-unseen sentences [Manning and Schütze, 1999].

While treebank-based ‘supervised’ learning is very common, it requires potentially
enormous numbers of sentences prepared in many cases by human experts. ‘Unsuper-
vised’ learning is instead based on raw sentences with little additional information [Clark,
2003; Klein and Manning, 2004], while ‘weakly supervised’ techniques attempt to use
only minimal information beyond a relatively small core of such sentences [Druck et al.,
2009]. These approaches involve relatively arbitrary initial rules being refined through
iterative procedures such as EM [Dempster et al., 1977] as applied in the Inside-Outside
algorithm [Lari and Young, 1990].

Grammars produced through supervised or unsupervised learning techniques may
be further refined using various techniques, e.g. coarse-to-fine retuning [Petrov et al.,
2006], until the resulting grammar is deemed to fit the training data as well as reasonably
possible without overfitting compromising its ability to predict unseen data. This may or
may not result in a provably optimal representation of the corpus [Nederhof and Satta,
2004].

Depending on the language being investigated, the size of the training corpus can vary
dramatically, as can the amount of information offered for each word or tree element. For
English, several corpora exist [Souter and Atwell, 1994], most of which follow the well-
known phrase-structure format [Francis, 1964]. The most popular of these is the Penn
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Treebank [Marcus et al., 1993], whose data has also been adapted for a number of more
niche projects [Hockenmaier and Steedman, 2007; Weischedel et al., 2011].

2.1.3 Parsing techniques
Once an appropriate grammar has been extracted in its entirety, it can be used to parse
individual sentences. Given the sizes of grammars which represent entire languages, even
after processing through the techniques mentioned above, this is difficult to do with both
speed and accuracy. A large amount of work has been done in attempting to increase one
or both of these properties [Nederhof and Satta, 2006; Cer et al., 2010].

While individual parsing techniques can vary hugely in their approaches, several gen-
eral trends have gained widespread popularity. One which applies to nearly all parsers is
that they be probabilistic in nature, in order to capture the inherent ambiguity common in
real-world sentences [Manning and Schütze, 1999]. They then generally fall into one of
two key categories: top-down and bottom-up.

In the former case, a top-level symbol (such as the catch-all ‘start symbol’ for a
CFG) is expanded incrementally, working to determine the appropriate children for each
node [Roark, 2001]. The latter, on the other hand, begins with bottom-level terminal and
preterminal symbols, combining them recursively until the top-level symbol is reached.

One of the most widely referenced parsing techniques is the CYK algo-
rithm [Younger, 1967], which operates on CFGs in Chomsky Normal Form
(CNF) [Sipser, 1996]. It has a straightforward yet relatively efficient bottom-up ap-
proach: after matching every terminal symbol first to nonterminals of length 1, it it-
eratively groups these nonterminals according to rules in which they occur, producing
ever-larger, ever-higher-level groups.

While bottom-up parsers are common in NLP, the top-down approach is generally
used only within deterministic contexts such as that of programming language parsing.
Partial exceptions to this exist, however, such as the Earley parser [Earley, 1970] which
contains prediction elements based on a top-down model.

One of the most common techniques in the field of programming languages is shift-
reduce parsing [Schabes, 1991], often put into practice as LR parsing [Knuth, 1965].
While these are not directly applicable to the class of natural languages due to their
ambiguity and consequent nondeterminism, they have been generalised to apply to that
more complex domain [Tomita, 1991].

The way any shift-reduce parser works is to progress through the input, token by
token, deciding at each step whether to perform a Shift action – adding the current token
to a stack and continuing – or a Reduce. This action replaces one or more tokens on the
stack with a higher-level aggregate nonterminal.

Countless other parsing procedures exist with various differences and improvements
from these and other paradigms. Many expand their applications to formalisms other
than CFGs [Chiang et al., 2013; Gómez-Rodríguez et al., 2011; Clark et al., 2002], or
provide other methods of speeding up their processing [Klein and Manning, 2003a].

It should be noted that parsers generally work on input which has been processed in
some ways, to allow certain abstractions to be made by the algorithm. One fundamental
requirement of most parsers, for example, is a ‘tokenisation’ step to separate the input
into manageable atomic units. This can be much more difficult than merely splitting
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a sentence by whitespace characters, due to edge cases related to punctuation, lack of
spaces between words in some languages, etc. [Grefenstette and Tapanainen, 1994].

Most NLP parsers also include other normalisation steps, which ensure consistency of
capitalisation, encoding and such: these features should be consistent both within the text
and with the dataset used for grammar inference [Clark, 2003]. A third type of common
preprocessing step is part-of-speech tagging [Voutilainen, 2003]: detecting from position
and other features the function of a word within a sentence.

Given the wide range of parsing approaches, requirements and datasets, it can be
daunting to decide which to use for any of the wide variety of situations where parsed
sentences are required. Furthermore, it may be simply unfeasible to produce a bespoke
parser for each and every NLP project.

Happily, a number of open-source parsers and other resources have been produced
and are freely available. These include the Stanford CoreNLP project [Manning et al.,
2014], Apache OpenNLP [The Apache Software Foundation, 2011], and the Python
Natural Language Toolkit (NLTK) [Bird, 2006]. Each of these provides a range of
tools, although other projects simply focus on addressing one aspect of the parsing pro-
cess [Nivre, 2003; Och and Ney, 2003].

2.1.4 Machine translation
While there are a large number of problem types which can be addressed through the
use of NLP techniques, our project is placed specifically within the subdomain of Ma-
chine Translation (MT). The fundamental issues of MT are in many cases inherited from
NLP [Lopez, 2008], although their priorities and practical details are often dramatically
different from those related to the more general research field [Tsujii, 1986].

As with many areas of NLP, MT has been approached in numerous ways over the
years. The earliest of these was the hand-crafting of rule-based techniques [Johnson et al.,
1985], with links between languages being defined by human experts. This approach has
achieved moderate success and has not entirely disappeared [Scott and Barreiro, 2009;
Forcada et al., 2011], although it has been largely superseded by techniques whose exact
behaviour is based on multilingual datasets similar to monolingual corpora.

In the multilingual domain, such datasets are known as ‘parallel corpora’, ‘bitexts’ or
‘Hansards’ [Brown et al., 1990]. They contain large numbers of pairs of sentences for
which each is a translation of the other, either because one was produced by a human
translator who was shown the other, or because both were the result of translators given a
‘source’ sentence in a third language. In practice, some parallel corpora include sentences
following this format in more than two languages [Koehn, 2005].

Generally, prior to publication such corpora are curated manually to ensure that the
sentences are truly related: in practice, edge cases such as a single sentence in one lan-
guage translated into two in another can cause confusion when training translation sys-
tems. Automatically detecting sentence pairings and ensuring strict (usually one-to-one)
matches is far from trivial, and is the goal of the field of sentence alignment [Brown et al.,
1991; Fung and Church, 1994].

Several multilingual parallel corpora exist and are available for use in translation sys-
tems. These include Europarl [Koehn, 2005], a collection made from transcriptions of the
proceedings of the European Parliament over the course of several years. The copyright
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freedom and abundance of multidirectional translation have made governmental records
a popular source of high-quality translations, with the JRC-Acquis corpus also based on
public data [Steinberger et al., 2006]. Other resources also exist which contain data for
just two languages [Čmejrek et al., 2004; Chen and Nie, 2000].

Among the first major attempts to make use of parallel corpora for machine transla-
tion were the IBM models [Brown et al., 1993]. These model translation as a series of
separate sub-tasks, such as word choice and ordering. Sub-tasks make use of separate
tables of parameters, each trained on a bitext using the EM algorithm. Successive models
introduce more complexity and relate the translation to the source sentence in more ways.

The IBM models have over the years been adapted and improved in a number of ways,
most notably by the Yamada-Knight system [Yamada and Knight, 2001]. This is strongly
based on the original models, but uses a parse tree as an input rather than a flat sentence,
and is able to perform much more powerful reordering, insertion and translation steps.

One notable feature of the IBM models is that they operate at the level of words:
these units can be translated, moved or otherwise manipulated independently of each
other. This provides flexibility, but also limits the systems. The introduction of phrase-
based models, which involve translating multiple words together before combining the
results into a full sentence, was thus a major innovation [Zens and Bender, 2005; Yang
and Kirchhoff, 2006]. A publically available phrase-based system, Moses, has been de-
veloped by researchers primarily based in Edinburgh [Koehn et al., 2007].

While word- and phrase-level systems are well-known, they are not the only methods
of performing translation. In recent years, for example, the use of neural networks has
achieved remarkable success [Bahdanau et al., 2015; Jean et al., 2015; Sennrich and
Haddow, 2016].

However, more common than these are systems which use statistical or ‘example-
based’ solutions in ways similar to monolingual parsing [Sumita and Iida, 1991; Somers,
1999; Koehn, 2010]. The fundamental elements required for such translation remain as
described in previous sections, beginning with a grammar formalism and training corpus
being selected or devised. Both of these can be as flexible as in the monolingual case, but
must be adapted to treat multiple languages.

While in the monolingual domain there are a multitude of different grammar types
of varying expressivity and complexity, the same is true of the multilingual case. Many
such formalisms [Nederhof and Satta, 2011; Büchse et al., 2011; Nesson et al., 2006] are
simply ‘synchronous’ forms of single-language techniques [Chiang and Knight, 2006].

In a synchronous grammar, instead of rules simply relating a phenomenon to its con-
stituent parts, a pair of such rules from each language are linked. For example, a CFG
rule [NP → JJ NNS ], indicating that a noun-phrase may be composed of an adjective
followed by a plural noun, might become [NP → JJ NNS ,NP → NNS JJ ] in an SCFG.
This would indicate that the relative orderings of the two components JJ and NNS are
swapped between the languages. Note that the process of generating a synchronous gram-
mar is closely related to the monolingual equivalent [DeNeefe and Knight, 2009].

Many of the different approaches from monolingual parsing can also be found in
the context of translation, sometimes through the use of synchronous grammars. For
example, the move from part-of-speech-based parsing to dependency structures has been
made through a variety of systems [Ding and Palmer, 2005; Galley and Manning, 2009;
Gimpel and Smith, 2011].
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2.2 Translation evaluation
While research into different methods, formalisms and styles of translation has received
significant attention for several decades now, the area of evaluation of the resulting sys-
tems is more nascent. When evaluating machine translation, two broad aspects are of-
ten considered. ‘Adequacy’ refers to the extent to which the meaning of the original
source sentence is clear within the translated hypothesis, while ‘fluency’ considers only
whether that hypothesis represents grammatically correct and idiomatic use of the target
language [Koehn, 2010, p. 218].

Both of these measures, as well as any combined measure of the overall ‘goodness’ of
a translation, are obviously highly subjective, with no guarantee that even trained judges
will agree on the appropriate score for a given sentence. Despite this, they are arguably
the only true measures of quality. Partially as a result of that argument, before the last two
decades subjective human ratings were the primary method of translation evaluation [Al-
Onaizan et al., 1999; Papineni et al., 2002].

The procedure of generating such human evaluations can be streamlined using help-
ful tools [Nießen et al., 2000], and has the undeniable advantage that the human trans-
lator’s complete understanding would be difficult to fool by any specially-engineered
techniques. However, a powerful issue with human judgments is that their generation
requires vast time investments, rendering them prohibitively impractical for frequent use
– such as that needed for the iterative development and training of a new system [Koehn,
2010, p. 222].

2.2.1 Precision & recall metrics
To address the need for some sort of efficient technique for judging translations, various
automatic systems have been designed. The goals of these are to predict the judgements
a hypothetical reasonable human would make of the quality of sentences, and indeed
the evaluation of such tools generally involves comparing the scores they provide with
similar scores provided by human evaluators.

One of the earliest, and arguably the most popular, automatic evaluation tool is the
BLEU metric [Papineni et al., 2002], which counts the phrases in the system transla-
tion which have exact matches in the reference(s). Phrases are considered in groups of
n adjacent words (‘n-grams’), from which a score is produced using a version of the
information-retrieval concept of precision [Ting, 2010].

Precision is a common technique for evaluating the success of a search query. It is
calculated as a ratio between the number of returned items which are considered ‘rele-
vant’ – in BLEU, the number of n-grams in a machine-produced hypothesis translation
which also occur in a human-produced reference – compared with the total number of
returned items (n-grams) in the hypothesis.

To avoid giving unreasonably high scores to short sentences, for which the total
number of n-grams will be low, BLEU multiplies the precision score by an exponen-
tial ‘brevity penalty’ based on the difference in lengths of the two sentences. It also
allows for multiple different lengths of n-gram to be calculated and combined, with the
best-performing variants combining results for n from 1 to 4. Finally, it also permits
multiple reference translations to be used in an attempt to allow for legitimate variations
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in phrasing. An example of BLEU being applied to a sentence pair can be found in
Section 3.5.3.

Since the emergence of BLEU, many other tools have been devised which similarly
take advantage of the concept of precision. Many couple it with its cousin recall, some-
times aggregating the two using their harmonic mean in the F-score or F-measure [van
Rijsbergen, 1979]. Recall is the ratio between the number of relevant hypothesis n-grams
to the total number of n-grams in the reference translation(s) instead of the hypothesis.
Melamed et al. [2003] investigated the use of such formulae on their own as evaluation
mechanisms.

While precision and recall are often calculated on words or groups thereof, this is
far from an absolute trend. Popović and Ney [2009] tried applying all four concepts
(precision, recall, F-score and BLEU) to part-of-speech tags produced by tagging tools,
with partial success. rgbF [Popović, 2012b] more generically allows mixed types of
word-level n-gram matches, such as part-of-speech tags or word stems (base forms).
More recently still, CHRF [Popović, 2015] applies them at the level of character n-grams.

The techniques used to determine which words ‘match’ between two sentences can
vary dramatically within recall- and precision-based metrics. Some of the criticisms of
BLEU observe that it simply compares surface forms of words: thus, ‘begin’ will match
only ‘begin’ and not ‘began’, ‘begun’, etc. This lack of linguistic knowledge works in
BLEU’s favour in some ways, as it allows the tool to be applied to translations in any
language [Chen and Kuhn, 2011], but it also imposes severe practical limits.

Such limits can be lifted in a number of ways, with words being ‘aligned’ together
using more features than just their exact syntactic form. This is explored in the active field
of word alignment [Melamed, 2000; Vilar et al., 2006a], with numerous large projects
existing whose primary purpose is to produce appropriate mappings of words between
sentences [Och and Ney, 2003; Liang et al., 2006]. Some of these are discussed in more
detail in Section 3.4.5.

Word alignment can be performed through a number of methods. These can involve
statistical observations of co-occurring words in large bitexts [Och and Ney, 2003], or
may rely on major resources such as the word-linking project WordNet [Miller, 1995].
Many bespoke systems used by individual metrics employ much simpler techniques such
as ‘stemming’ to produce generic forms of words [Lavie et al., 2004]. These techniques
are usually highly language-dependent, although it has been shown that moderate per-
formance can be achieved through entirely language-agnostic measures [Popović et al.,
2015].

One popular tool which relies on these techniques is Meteor [Banerjee and Lavie,
2005; Lavie and Agarwal, 2007], which addresses the problem of alignment through the
cascaded use of three alignment techniques. Using exact matching, word stem compar-
isons and WordNet synonyms [Miller, 1995], Meteor selects the largest possible set of
aligned words to be used for its F-measure calculation. This results in a system which is
language-dependent and heavier-duty than BLEU, yet considerably more robust. It also
includes a secondary step to account for word ordering; this is discussed in more detail
in Section 2.3.1.

Like many other metrics, Meteor allows for multiple reference translations through
the simple technique of calculating its score using each, then using the most positive
as its final result. It also allows for empirical ‘tuning’ of numerous parameters, such
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as the exact brevity penalty and the relative importance of precision and recall in the
F-measure, depending on the language being used. More detail about all aspects of its
algorithm, including an example, can be found in Section 3.5.4.

Another approach for refinement of BLEU is to apply weightings to n-grams, priori-
tising those which are considered more important – for example, less common ones – over
others. While BLEU has itself been extended in this way [Babych and Hartley, 2004], the
NIST metric [Doddington, 2002] incorporates this while also using a somewhat different
calculation when producing its brevity penalty. While NIST has not become as popular
as BLEU, it is nonetheless a common baseline when evaluating new metrics.

2.2.2 Error rate metrics
While n-gram matching has been proved to be a powerful method for evaluating machine
translation, it is far from the only possible technique. A number of others exist, including
evaluation through neural networks [Guzmán et al., 2017]; we will examine two such
alternative approaches, beginning with that of error rate calculations. Contrary to the
techniques mentioned thus far, which focus on observing the similarity between elements
in sentences, approaches centred on error rates instead phrase the question of evaluation
in terms of conversion from one sentence to another.

This is generally done through a combination of simple operations. The most well-
known technique of this form, Levenshtein distances [Levenshtein, 1965], was designed
for generic ordered and labelled sequences, though in translation these are generally
words in a sentence. It allows elements in one sequence to be deleted, inserted or substi-
tuted (renamed or replaced) to match those in another. Such operations are assigned costs
(traditionally they are equally weighted) and the minimum total edit cost is produced.

For example, the sentence the athlete jumped high can be edited to match the young
athlete leapt using a total of three operations, in one of two ways. Either young must
be inserted between the and jumped, high must be deleted, and jumped must be replaced
with leapt; or the words athlete, jumped and high could simply be replaced by young,
athlete and leapt respectively. No sequence of two or fewer operations can equate the
two sentences.

Within translation evaluation, Word Error Rate (WER) [Wagner and Fischer, 1974;
Marzal and Vidal, 1995] represents the use of traditional Levenshtein distances applied to
words, with the maximum possible number of edits used as a normalisation factor to pro-
duce a score in the range [0,1] which can be meaningfully compared between sentences.
Position-Independent Error Rate (PER) [Tillmann et al., 1997] ignores the ordering of
words by instead reflecting primarily the number of occurrences of identical words in
both hypothesis and reference.

Slightly more recently, error rate metrics have been produced which allow block
movement: shifting of groups of words together for a cost lower than that which would be
incurred using WER. Due to the inherent computational complexity of calculating such
an augmented error count, CDER [Leusch et al., 2006] relaxes an internal constraint for
the sake of a more efficient algorithm, while Translation Error Rate (TER) and Human-
targeted Translation Error Rate (HTER) [Snover et al., 2006] use a greedy algorithm to
find an approximate solution. This last includes human understanding in the judgment
process, aiming to find the minimum number of edits a human must make before the two
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sentences’ meanings are equivalent. TER has since been augmented to allow paraphrase
matching and synonymy [Snover et al., 2009].

Various other alterations have been made to the principle of using error rates for MT
evaluation. These range from the use of multiple reference translations at once [Akiba
et al., 2001], through separation of deletion and insertion errors [Popović and Ney, 2007],
to the incorporation of probabilistic finite state machines (pFSMs) to introduce nondeter-
minism; these are used to train an editing model to match human scores in the SPEDE
metric [Wang and Manning, 2012].

2.2.3 Structural evaluation
While we can evaluate sentences based simply on the words in them – or features of those
words, such as stems or parts of speech – more information can be gleaned about syntactic
relationships between words by using parsing techniques, as discussed in Section 2.1.3.

For example, dependency relations provide a wealth of information about the pur-
pose or broad role of the words they link. This is leveraged in MAXSIM [Chan et al.,
2008], where dependency labels are compared alongside WordNet synonyms to provide
an additional layer of information on which to base word alignments, before precision
and recall are applied to measure similarity.

The intermediary step of computing alignments is not, however, necessary to take ad-
vantage of structural information. Amigó et al. [2006] calculate simple overlaps between
sets of words selected using a parse tree. Their work was inspired by Liu and Gildea
[2005], who adapted the concept of n-grams to apply to sequences of words or CFG
nonterminal symbols which had been judged by a parser to be closely related, primar-
ily through headword chains (paths descending through a tree) and subtrees of varying
depths.

The approach of Liu and Gildea [2005] is built upon by Owczarzak et al.
[2007a,b], who use the labelled dependencies produced by a Lexical-Functional Gram-
mar parser [Cahill et al., 2004] to produce dependency-based n-grams: primarily
(child , label , parent) triples. Attempting to abstract away from string-based represen-
tations of language, this parsing style allows minor rephrasings to pass unnoticed; where
such detection fails, the probabilistic grammar’s n most likely (‘n-best’) parses are all
considered in an attempt to minimise noise.

Expected Dependency Pair Match [Kahn et al., 2009] represents further work in this
area, introducing a family of metrics which use limited or augmented information to
produce more biased or varied modules. These may make use of n-best parses with
varying n, or focus on different aspects of dependency relations by omitting one or more
elements from the triples which encode them. Such modules can then be combined in
various ways to provide a great degree of flexibility to the resulting metric.

More traditional evaluation features are built into the dependency-comparison ap-
proach by He [2010], which uses Meteor-like stemming and chunking to improve align-
ments and detect cohesive blocks, while also introducing extra tuning parameters and
using a more well-known open-source parser [Nivre et al., 2006] than its predecessors.
VERTa [Comelles and Atserias, 2015], a tool combining many different evaluation ap-
proaches, includes a technique of comparison of dependency triples similar to that of
both Owczarzak et al. [2007a] and He [2010].
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Structural information from parse trees can be leveraged not just on its own, but also
in the context of the original unstructured strings. SEPIA [Habash and Elkholy, 2008]
compares the ‘surface span’ – distance between words ignoring all structural information
– for pairs of words linked through dependency relations in the hypothesis and reference
translations.

Unfortunately, the process of parsing reference and hypothesis sentences is inher-
ently error-prone. The assumption that noise will be greater when processing machine-
produced translations is key to the BLEUÂTRE metric [Mehay and Brew, 2006], which
parses only the reference sentence using Combinatorial Categorical Grammar. It then
extracts the relative orders of closely related words, and calculates recall of this ordering
in the hypothesis string. Yu et al. [2014] build on this technique by including more varied
structural elements than simple headword chains.

While the structural approaches described so far all require sentences to be parsed,
the processing done on the resulting parse trees is not especially heavy-duty: this allows
algorithms to be run quickly, but necessarily limits the depth of analysis. The approach
of Padó et al. [2009] instead attempts to extract as many semantic ‘features’ from a
dependency-parsed sentence as possible – tenses, locations, important verbs, etc. – to de-
termine whether each of a pair of sentences semantically ‘entails’ the other as per Dagan
et al. [2006].

While word-level dependency parsing is a powerful and flexible technique, more
high-level representations of sentences have also been applied to evaluation. For ex-
ample, HMEANT [Lo and Wu, 2011] asks humans to annotate Propbank-style predicate-
argument relations [Kingsbury and Palmer, 2002] to indicate practical features of the
translated sentences such as time and agency, before comparing these using F-scores.
After the initial exploration to gauge the potential effectiveness of the technique, the
process was automated by Lo et al. [2012].

Another approach to encoding the structure of a sentence is the use of discourse anal-
ysis [Joty et al., 2012]. This focuses on the rhetorical elements within sentences, linked
through coherence relations such as elaboration and attribution. The number of common
subtrees within such structures have been compared by Guzmán et al. [2014] using tree
kernels [Collins and Duffy, 2001], before being combined with others in the DiscoTK
family of metrics [Joty et al., 2014].

2.2.4 Common threads
While different metrics for evaluating machine translation can have dramatically dif-
ferent approaches – matching words, counting edit operations or involving semantic
structure – a number of features are common between almost all. One of these is the
comparison of a given machine-produced hypothesis with a human reference translation.
This trend has been claimed to cause bias in human judges, impacting the quality of the
evaluation [Fomicheva and Specia, 2016], although futher research has failed to confirm
this [Ma et al., 2017]. Some techniques attempt to bypass the need for such a reference
translation [Gamon et al., 2005], with the field of reference-free Quality Assessment
gaining traction in more recent years [Specia et al., 2010].

A second commonality between the most well-known metrics is that they all provide
an overall rating: a single summary result (whether a numeric value or a grade indicator)
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dealing with the holistic ‘goodness’ of the translations. This may focus primarily on
fluency or adequacy, but generally represents some attempt to amalgamate the two.

The simplicity of a single score is very useful for a number of purposes: for example,
it is ideally suited to system training, or reporting the performance of a new translation
tool. At least one annual event, the Workshop on Machine Translation [Macháček and
Bojar, 2013] exists in part to focus on developing such techniques, and human evalu-
ation data has been generated for both that event and others with which to judge their
success [Linguistic Data Consortium, 2011]. However, useful as such holistic techniques
may be, they are ill-suited to evaluation goals outside simply training a system.

2.3 Granular metrics
Given the limitations of holistic evaluation techniques, the field of more granular, error-
specific evaluation techniques has appeared and is receiving ever-growing attention. Such
metrics, and the greater understanding they offer about the specific strengths and weak-
nesses of a particular system, can be helpful in a number of scenarios.

For example, any potential application of automatic translation may focus on one fea-
ture over others. A reference manual may be relatively unaffected by inaccurate tenses
but could potentially become unusable in the case of too-free use of synonyms or para-
phrasings, while a weather reporter might have the opposite requirements. Similarly,
knowledge of a given translation system’s weaknesses could suggest specific courses of
action to address these, either by working within the software or by coupling it with
specific pre- or post-processing components [Popović et al., 2014].

Recent work demonstrates that translation errors come in a wide variety of types [Se-
cară, 2005], and a number of taxonomies of the errors likely to be found in automatic
translation have been devised [Font Llitjós et al., 2005; Flanagan, 1994]. The most com-
monly used is that of Vilar et al. [2006b].

A number of tools have been designed, after a number of years’ initial exploration into
the area, to provide categorised data on several types of error at once [Popović and Ney,
2007, 2011; Popović and Burchardt, 2011]. These tools include Hjerson [Popović, 2011],
which uses the interactions between various error-rate tools to determine features and
thus types of errors; and Addicter [Zeman et al., 2011], which is based more directly on
alignments, augmented through part-of-speech tags and a dedicated reordering detector.
These tools have since been merged together to provide more reliable results [Berka et al.,
2012].

AMEANA [El Kholy and Habash, 2011] gives a smaller number of error categories
than Hjerson and Addicter, but aims to be more robust when dealing with morpholog-
ically rich languages. It calculates a series of features for words – such as number or
gender – then produces pairings between words in two sentences which maximise the
number of matches across these features. The differences between paired words are then
used to produce counts of fully matching, partially matching and unpaired words.

While investigation of errors across many categories is very useful for general meta-
analysis of translation systems, it can be helpful to understand specific isolated error
types in more detail than such broad tools can accomplish. When producing a tool for
such error-specific analysis, the decision of which error type to investigate is far from
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trivial. While a handful of investigations have been performed into the relative relevance
of these errors on human understanding [Lommel et al., 2014; Kirchhoff et al., 2012],
this remains at least in part an open question.

Evidence gathered so far suggests that word ordering is the most important error type
[Birch et al., 2008; Isozaki et al., 2010] if only for English-language output [Popović,
2012a], both from the point of view of readers and also in terms of post-editing ef-
fort [Popović et al., 2014].

2.3.1 Word order
Given the apparent significance of word order in the opinions of end users on the quality
of translation [Birch et al., 2008], it is perhaps unsurprising that a number of metrics have
been developed which investigate this feature specifically.

In some cases, word ordering is taken into account simply as one feature among sev-
eral. For example, Meteor includes a second step which takes into account the ordering of
those words. As discussed in more detail in Section 3.5.4, it does this by ‘chunking’ the
sentences, finding the smallest number of groups of aligned words such that each contains
words which are both adjacent and identical in both hypothesis and reference sentences.
The ratio of the chunk count to the total number of aligned words is then multiplied with
the tool’s first calculation, an F-measure, to produce a final score. A chunking technique
based on Meteor’s is also presented as the ‘fuzzy reordering score’ of Talbot et al. [2011],
where it is used as a standalone tool to improve translation generation.

As well as using ordering evaluation to contribute to a broader tool, it is possible to
combine existing techniques to isolate ordering errors. This is the approach used by Hjer-
son [Popović, 2011] and earlier in a standalone tool [Popović et al., 2006], which observe
the differences between Word Error Rate and variants of the Position-Independent Error
Rate to detect words for which only the positions have changed.

An alternative approach, that of Addicter [Zeman et al., 2011], uses weighted graphs
of sentence permutations with a view to detecting not just the overall severity of order
errors, but the specific movements of individual words. It thus categorises ordering errors
as either short-range (transposed words) or long-range.

When investigating language it is intuitively sensible to consider features of the words
in question, as the above tools have done. However, by ignoring the nature of words as
syntactic units and considering them only as elements of ordered sequences, a number
of generic statistical techniques become applicable. For example, Kendall’s τ [Kendall,
1938], designed within the field of Psychology, compares matches and differences in
any two rank-ordered sequences, and has been applied to the scenario of sentence order-
ing [Lapata, 2003] with moderate success [Lapata, 2006]. It is described in more detail
in Section 3.5.2.

More recently, it and other comparison techniques have been applied to within-
sentence order comparisons. Ulam’s distance [Ulam, 1972] measures the number of
lateral movements required to change the order of a sequence to match another; while
Hamming distance [Hamming, 1950] simply measures the number of positions in two
equal-length sequences for which the symbols do not match.

Both of these, along with Kendall’s τ, are investigated by Birch et al. [2010], with the
latter two combined in the LRScore metric [Birch and Osborne, 2010]. Similarly, Isozaki
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et al. [2010] compare Kendall’s τ with Spearman’s ρ [Spearman, 1904], a measure of the
correlation (the extent to which variation in one sequence is echoed in another) between
two sequences ordered by rank alone.

While these techniques achieve sometimes impressive correlations with human judg-
ments, they nonetheless omit an important feature of natural sentences: structure. The
relevance – and, as discussed earlier, even the definition – of this factor can vary, but it
can be summarised by the intuition that just as some words may be more relevant to com-
prehension than others, so may some phrases – or relationships between words or phrases
– be more important than others. For example, order differences beyond simple transpo-
sition may be difficult to detect, while the movement of multi-word phrases may be no
more detrimental to a sentence than the movement of an individual word [Stanojević and
Sima’an, 2014b].

These questions have been investigated through the use of recursive decomposition
of sentences into permutation trees [Gildea et al., 2006], first used in the multi-technique
metric BEER [Stanojević and Sima’an, 2014a] and later used to produce a standalone
order evaluator by Stanojević and Sima’an [2014b].
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3.1 Introduction
As shown in Chapter 2, machine translation evaluation is a fast-growing, diverse field.
A wide range of techniques exist for measuring the holistic quality of a sentence (Sec-
tion 2.2), while a more modest group investigates specific error types (Section 2.3). Of
the numerous types of mistakes machine translation systems can make, word ordering
has been shown to be one of the most significant, and many metrics focus on this feature
specifically (Section 2.3.1).

When measuring the holistic quality of a sentence, several metrics have investigated
the relevance of sentence structure, for example through the use of dependency parsing
(Section 2.2.3). Of those focusing on word order, however, to our knowledge only one
form of structure – that of permutation trees [Gildea et al., 2006] – has been considered
thus far [Stanojević and Sima’an, 2014a,b].

We believe that the significance of word order errors is closely tied to sentence struc-
ture. Further, while permutation trees have been used to show this in terms of word
alignments, our intuition suggests that more syntactic elements – such as those involved
in dependency structures – may also be highly relevant. This intuition is strengthened
by the positive results reported by machine translation systems which perform reordering
using dependency structures [Liu et al., 2010; Hadiwinoto and Ng, 2017].

Consider the sentences in Table 3.1. While the mismatch in sentence pair 2 involves
a word occurring at opposite ends of the two sentences, the actual severity of that ‘error’
is clearly lower than that of sentence pair 3. In the latter case, the simple transposition of
two adjacent words significantly obscures the message being communicated.

Most currently-existing tools discussed in Chapter 2 would be unable to respond to
this disparity: indeed, most would actively assign lower error ratings to sentence pair 3.
We believe that the only way to truly take into account such cases is to account for the
syntactic structure of the sentence: the relationships between words.

3.1.1 Overview
To that end, we have chosen to base our evaluation of word ordering in machine transla-
tion on the use of one of the more popular structural tools: dependency parsing. Intro-
duced in Section 2.1.1, this is discussed further in Section 3.4.3.

In our investigation of the relevance of (dependency) structure in word order evalua-
tion, our first goal is simply to produce tools which take advantage of the former while
measuring the latter. We produce two such tools.

DTED (Chapter 4) applies the concept of error rates (Section 2.2.2) to dependency
trees, producing a normalised count of the operations required to turn the parse tree for a
machine-produced hypothesis translation into that of a human-produced reference.

Our second tool, DERP (Chapter 5), uses a novel technique with some similarity to
that of dependency label n-grams: comparison of paths. We use edit operations, calcu-
lated through Levenshtein distances, to compare the dependency relationships and sur-
face direction of paths between aligned nodes in a reference and hypothesis translation.

To evaluate both these tools, and as a standalone contribution to the machine transla-
tion community, we have produced a database of human judgments of word order quality
in translations. Named WOJ-DB (Chapter 6), this has been produced using a survey of
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Reference Hypothesis
1 The cat sat on the mat. The mat sat on the cat.
2 I spoke to him there. There I spoke to him.
3 She let it be and left. She let it and be left.
4 The keen loud dog did it. The loud keen dog did it.
5 Then was it done. It was done then.
6 Jill gave it to Bob. Bob gave it to Jill.

Table 3.1: Example word order mismatches

diverse individuals in our institution’s town. Each participant was asked to rate a number
of both ‘real’ hypothesis translations and synthetically generated permutations of refer-
ence sentences. Judgments were gathered relating both to the quality of holistic adequacy
and of the significance of word ordering within that.

In Chapter 7, we combine these three contributions, evaluating the content of WOJ-
DB then using it to judge the success of DTED and DERP. We investigate their perfor-
mance both with and without structure, in comparison with each other and with other
baseline tools discussed in Section 3.5. We also respond to the overarching goals for our
research, presented in Section 3.2.

3.2 Research questions

3.2.1 Pursuing accurate evaluation
When presenting a new metric to the community, one question is often considered
paramount: does the tool work well? First and foremost, we would like to produce a
metric which is capable of evaluating word order better than any other currently avail-
able. Thus, our first research question is:

Can we improve on the current state of the art of word order evaluation?

Note that we are interested in predicting the assessments which a human judge would
give of the word ordering of a sentence, rather than judging its overall quality as many
other tools do. It is with this in mind that we have produced WOJ-DB, a database of
judgments of this specific error type. As discussed further in Section 6.1.1, most re-
sources currently available contain only overall quality judgments, while the few which
categorise errors nonetheless fail to indicate the subjective severity of such errors. It is
precisely this aspect of impact to human comprehension which we wish to evaluate.

In evaluating any metric we produce, we wish to consider two aspects of its perfor-
mance. First and most important is the extent to which the scores it produces can predict
corresponding human judgments. This is represented by simple correlation with such
opinions. Secondly, to consider our tools truly an advance in technology such an im-
provement must be consistent irrespective of the evaluation environment. We consider
that environment to consist of the exact parser, word alignment techniques and other tools
used by, but not key to, the algorithm being investigated.
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3.2.2 Relevance of structure
Having produced structure-based tools which may or may not evaluate the quality of
word order to a high level, we must investigate the reasons for their performance. Given
the success of the wealth of tools which rely on unstructured, surface-level information
such as word n-grams or edit operations, it is important to justify the addition of the extra
step of generating structural information. Thus:

Does structure aid the evaluation of word order in machine translation?

This question remains largely unanswered in the literature, possibly as a simple result
of the novelty of tools which utilise any form of structure. While the only existing exam-
ple of structural evaluation of order reports encouraging results when compared with un-
structured statistical techniques [Stanojević and Sima’an, 2014b], the conclusions which
can be drawn from such comparisons are limited.

Simply put, the tools being compared do not work in ways which can be theoretically
compared: such comparisons do not compare like with like. In a similar manner, it is
difficult to extract clear implications from any comparison between our tools and exist-
ing metrics. Even if our tools perform to a higher level than a third-party unstructured
evaluation, it is impossible to say that it is the use of structure which has led to such an
improvement, nor that the increase would remain when compared with a different such
baseline.

To truly approach the question of the effect of structure, we thus need genuinely
comparable yet structure-free techniques. With this in mind, we have produced alternate
versions of our two tools, DTED and DERP. In these baselines, we eliminate the structure
in a manner which is transparent to the algorithm itself. The exact mechanism for this
is discussed briefly in Section 3.4.4, while its implications are discussed in DTED’s and
DERP’s respective chapters.

3.2.3 Cohesion of structure and order
While the intention behind the tools we will produce is firmly on the evaluation of word
order, no aspect of the dependency structures we use necessitates this. Indeed, depen-
dency relations between words inherently contain information unrelated to word order-
ing: for example, the dependency links within the phrase ‘dogs and bones’ are different
from those of ‘dogs enjoy bones’ despite both matching words occurring in the same
order in both phrases.

Despite this, as discussed in Section 3.1 we believe structure to be an important factor
in the evaluation of the quality of word ordering. This results in two opposing predic-
tions: first, dependency structure allows us to evaluate the word ordering of a sentence
in isolation; and second, dependency structure incorporates too many non-order-related
factors to permit such isolation. We thus investigate the interaction between these two
predictions:

Does dependency structure permit word order evaluation, or does it lend it-
self more to holistic judgment?
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To respond to this question, we will need to observe the performance of our tools
when judging the quality of word order, and compare that performance with that relating
to overall sentence quality. We thus build both questions into our survey in Chapter 6,
before reporting our results in Section 7.3.4.

3.3 Important restrictions
While our goal is to perform as comprehensive as possible an investigation into the rel-
evance of structure to machine translation, we are nonetheless practically unable to con-
sider every possible facet of that relationship. In practice, our experiments are restricted
by three factors: the language we use, the aspect of language which we use for compari-
son, and the scope of our test dataset.

3.3.1 Use of English
The first and most significant restriction to our experiments is their absolute focus on
English. As a result of working in an entirely English-speaking environment, without
straightforward access to large numbers of native speakers of any other language, we have
chosen to investigate only translation into English – although we place no restrictions
on source language. As a result, any conclusions we draw about word order will be
applicable only to English.

We believe this choice to be significant, both as a benefit and a limitation. Conve-
niently in our case, a large number of high-quality resources exist in this language, of
which some are described in Section 3.4. As such, we will be able to manipulate the text
we receive using third-party tools more easily, more flexibly, and with more confidence in
quality than would be possible using most other languages. This allows us to work with
text which has been preprocessed in any way we feel is most useful for the algorithms
we devise.

The downside to the use of only one language in our experiments is that we will be
unable to judge the scope of any conclusions we draw. It is well known that word order
is an important factor for comprehension of English, but is less so in other languages.
For example, in many morphologically rich languages the information which in English
is encoded in the ordering is instead indicated through cases or other word modifiers. To
speakers of such languages, the concept of ‘quality of ordering’ may be different from
that of native English speakers, and may be unimportant or even meaningless.

Despite this, we believe data relating only to English is far from worthless. Beyond
the obvious fact that conclusions related to English are of practical use due to the ubiq-
uity of the language across the world, we believe that the conclusions we draw will be
applicable both to other languages to greater or lesser extents, and to our understanding
of structure in a language-independent sense.

3.3.2 Adequacy over fluency
As briefly mentioned in Section 2.2, evaluation of machine translation is often split into
the two evaluation criteria of Fluency and Adequacy. The former refers to the extent to
which a sentence uses language correctly and idiomatically, as a native speaker would,
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while the latter indicates how much of the meaning of the source sentence can be under-
stood from the translation.

When producing both our evaluation metrics and the human judgments with which
we will evaluate those metrics, we have chosen to prioritise just one of these two criteria:
adequacy. The reasons for this are several, though the lack of consideration for both
factors once again limits the conclusions we can draw from our experiments.

The most significant reason for applying this limit is a practical one: we do not con-
sider that we have the resources to investigate both fluency and adequacy separately.
Doing so would arguably require separate metrics with different design decisions, dra-
matically increasing the time required to produce them and also the complexity of any
analysis. It would also add complexity to the evaluation we passed to human participants
(Chapter 6), reducing the number of sentences which could feasibly be evaluated given
the resources available.

Our second reason for choosing to measure only one of the two most popular evalua-
tion criteria is that such an omission does not directly mean that no information is avail-
able about the ignored one. This is because the two types of assessment are inter-related,
as ‘annotators have difficulty drawing any meaning from highly disfluent translations,
leading them to provide low adequacy scores. Similarly, for a translation to fully express
the meaning of a reference, it must also be fully, or near fully fluent’ [Denkowski and
Lavie, 2010]. Thus, any conclusions we draw about adequacy alone may also suggest
information about the quality of fluency in the translation set – although the strength of
such information is unknown.

The reason why we have specifically chosen adequacy over fluency is simply related
to our opinion of it as the more relevant feature. Given the arguable primary purpose of
machine translation as a method of communicating a message to individuals who do not
understand the source language, we consider that errors in adequacy are more harmful to
this goal than those of fluency. Consider sentence pair 6 in Table 3.1, in which two words
have been swapped between the two translations. While the sentence remains entirely
fluent, its meaning has been dramatically changed. We intend for our metrics to detect
and penalise such errors, reflecting their impact to adequacy rather than fluency.

3.3.3 Sentence-pair scores only
The final restriction we place on our metrics is to design them to produce scores only for
individual sentence pairs. This is a much weaker limitation than those described above,
as it does not in itself prevent us from producing meaningful evaluations which fully
address the questions we have put forward in Section 3.2. It does, however, prevent us
from following two common trends in machine translation evaluation: first, we do not
take into account multiple reference translations for a single hypothesis; and second, we
do not produce system-level scores.

A large body of research exists which suggests that evaluation using multiple refer-
ence translations can produce better results [Papineni et al., 2002; Fomicheva and Specia,
2016]. The intuition behind this is that most sentences can be translated in a variety of
ways, so comparison metrics like ours run the risk of penalising certain hypotheses sim-
ply because, for example, they prioritise different aspects of the source, even if both
approaches are valid.
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For example, consider the Polish phrase “Zakasał rękawy”, which literally translates
to “He rolled up his sleeves”. While the literal translation is a valid idiom in English,
depending on context an entirely legitimate translation could equally be “He got ready
to work” – which would however be considered by many automatic metrics to be a dra-
matically different (and thus incorrect) sentence. By providing multiple reference trans-
lations, we reduce the likelihood of such a mismatch occurring.

While sentences with multiple reference translations can provide reliability by in-
creasing the information available when scoring an individual sentence, another approach
to ensuring reasonable judgments is simply to produce scores relating to an entire system
at once.

Such scores are based on the assumption that virtually any automated algorithm will
produce an unintuitive or unreasonable score in some situations, as a simple consequence
of the enormous complexity and diversity of natural language. Further, it is natural to
assume that some sentences’ qualities will be overestimated, while others will be under-
estimated.

If the scores for all sentences translated by a given system are aggregated using a
simple technique such as the arithmetic mean, it is hoped that such inaccuracies will be
‘smoothed out’. As a result, the ‘system-level’ score is expected to be a more reliable
measure of that system’s translation quality than a measurement based on any individual
sentence.

This expectation is strongly vindicated in practice: when automatic judgments are
compared with humans’ using various techniques, system-level correlations of 0.7 or
more are commonly reported while segment-level correlations are often close to 0.3
[Lavie and Denkowski, 2009; Fishel et al., 2012b; Stanojević and Sima’an, 2014a].
While this may in part simply be due to the sparsity of data involved in many system-level
correlations, it is nevertheless a powerful trend.

An additional benefit of the use of system-level scores is their simplicity when train-
ing a system. A common procedure in machine translation is to run a metric such as
BLEU, alter the translation system in some way then run the same metric again on the
output of the updated system to determine whether the change resulted in an improve-
ment [Och, 2003]. While scores describing the entire system are easy to use in such a
situation, scores for individual sentences are not directly relevant.

Given these benefits of system-level and multiple-reference scores, why then have we
limited ourselves to simple sentence pairs? The reasons are to do with the practicalities
of our evaluation environment, or more specifically a consequence of the fact that we
are attempting to produce judgments which are not a standard of the machine translation
community. As discussed in more detail in Chapters 6 and 7, we have chosen to produce
our own judgments on word ordering specifically.

Without the resources of more major evaluation environments such as the Workshops
on Machine Translation [Bojar et al., 2014, 2015, 2016a], our database of judgments is
limited in scope, with a total of 1783 sentences scored. While adequate for our purposes
when considering sentence-level scores, the separation of such scores into individual
systems – based either on the real translation tools used or on more synthetic divisions
produced by, for example, bootstrap resampling [Stine, 1989] – would result in ‘systems’
containing too few datapoints from which to draw reliable conclusions.

Similarly, we have elected not to include multiple references in our experiments for
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two reasons. The first is due to the source of our sentences, discussed in Section 6.1.1:
the shared tasks of the Workshops on Machine Translation, while providing diverse and
plentiful translations, do not incorporate the use of multiple reference translations. The
second reason is an assumption that incorporating multiple reference translations in the
survey we used to collect our human judgments (Chapter 6) would have overly compli-
cated it from the point of view of our non-expert participants.

While the limitation to sentence-pair scores prevents our tools from being as broadly
applicable as they might otherwise be, we do not consider them to pose a severe problem.
This is primarily because such a feature would, in our view, be considered part of the
process of fine-tuning and perfecting an approach. In practice, given the significant lack
of existing structural tools in word order evaluation, our own are intended primarily as
proofs-of-concept, demonstrating the validity of their approach rather than aiming to be
the last word in the area.

Additionally, note that the above reasons for not incorporating system-level or multi-
reference scores are related to our experimental setup, not our algorithms themselves.
Indeed, should system-level scores be desired in the future, their addition is a simple
process. Various techniques have been proposed in literature, such as the logarithm-
based geometric mean of BLEU (see Section 3.5.3), but one of the most common and
simplest is a simple arithmetic mean of all sentence-level scores.

Similarly, support for multiple reference translations can be added without signifi-
cantly altering the core algorithms we present. This could be done in the same manner
as Meteor and others [Giménez and Màrquez, 2007], where “If more than one reference
translation is available, the translation is scored against each reference independently,
and the best scoring pair is used” [Lavie and Agarwal, 2007].

3.4 Tools used

In our investigation of structure in word ordering, we have produced two tools: DTED
and DERP. Both of these tools leverage the dependency structure of their input sentences
as a core part of their algorithm. However, as discussed in Section 2.1.3, producing such
structures is itself a far from trivial problem with decades of research behind it.

In order to parse any real translated sentences, they must undergo a number of pre-
processing steps. Two of these are common among all types of natural-language parsers:
tokenisation and part-of-speech tagging. A third is more specific to the area of machine
translation: given two related sentences – in our case, a machine-produced and human-
produced translation of the same source sentence – word alignments are generated to
indicate which words are equivalent to each other.

For tagging, word alignment and parsing we have chosen to apply multiple tools of
each kind. This is in order to better investigate the effects of our algorithm in isolation:
given that both DTED and DERP directly utilise the output of the parser and aligner, with
the parser relying on our part-of-speech tagger, it is straightforward to imagine that the
accuracy of all three utilities will have knock-on effects on the overall result.

Somewhat more concretely: should a given phrase be misunderstood by the parser
or aligner, leading to a parse which does not well represent the structure of the sentence
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or an overzealous or particularly sparse alignment, any comparison on that sentence is
likely to suggest highly unpredictable – and relatively meaningless – conclusions.

This knock-on inaccuracy is impossible to entirely eliminate without provably perfect
tools, but can be mitigated by providing alternatives for them. This could for example be
by combining a series of scores produced using various tool combinations to produce an
average score: such a score would to a certain extent abstract away from any one tool.

However, while such an aggregate score would be useful, we considered it more
interesting to investigate the exact extent to which our scores vary based on the utilities
used. Such variability is a reflection on the reliability of the tool, and can at least be
approximated by comparing the efficacy of scores from DTED and DERP with different
third-party tool configurations. Further discussion of such evaluation can be found in
Chapter 7.

One more reason to build DTED and DERP to support multiple ‘configurations’ is
that this avoids the need for us to rely on an individual project or package for our metrics
to work. Should a tool we use be discontinued for any reason, our own work retains its
usefulness as a replacement can be provided. Potentially more importantly, should a new
piece of software be created which produces more accurate information for our own than
any of those available when ours were designed, that tool can be integrated easily and
may result in improved performance.

We have chosen to use exactly two taggers, parsers and aligners in our experiments.
The choice to use only two is partly for practical reasons, as we did not have the resources
to incorporate even a representative subset of the wide array of tools available today.
Additionally, we believe that alternatives for each of three utilities – thus resulting in
at least six configurations for our tools – provides enough scope to observe with some
measure of confidence the variability in our tools’ performance.

3.4.1 Tokenisation

Before the parser, tagger and aligner can be run, the first step in processing our text is to
determine which atomic units are to be parsed. This is the process of tokenisation: split-
ting sentences into individual words or other separate units. Often, separations between
these can be complex or ambiguous to detect: for example, which of the following should
be split into multiple words? “light-headed” – “often-considered” – “13 452" – “13,452"
– “you know" – “y’know” – “y,know”.

While detailed context-dependent tokenisation has been shown to improve transla-
tion [Zalmout and Habash, 2017], in our project we have chosen to use only one sim-
plistic preprocessor. This is because we do not anticipate that the variations caused by
different ones will impact the fundamental results of our experiments to the same extent
as the three processes discussed above and described below.

Given this, we have in all cases applied to our input the tokeniser packaged with the
well-known Europarl project [Koehn, 2005], which aims to make available large quan-
tities of translations taken from the European Parliament proceedings. Specifically, we
have used the tokeniser included in the Europarl v6 Preprocessing Tools [Koehn and
Schroeder, 2011]. We chose this system due to its free availability and widespread use.
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3.4.2 Tagging
While tokenisation is a simple problem made complex by occasional edge cases, part-
of-speech tagging is a much more challenging problem at all levels. Again, many words
are ambiguous, with different parts of speech being applicable depending on contextual
features which can be hard to access computationally.

Various approaches have been taken in the past, with many earlier systems relying –
as with most areas of NLP – on sets of rules crafted either by human experts or automatic
processes. One of the most well-known such systems is the Brill tagger [Brill, 1992],
with error rates of under 5% reported.

However, more recently purely stochastic systems have achieved success, such as
those making use of the information-theory model of maximising entropy [Ratnaparkhi,
1996]. These stochastic tools rely on existing corpora of pre-tagged text, from which
rules are learned in a manner closely related to grammar inference (Section 2.1.2).

For our project, we have chosen two widely used and easily accessible tools, one
of which is a key part of a major ongoing academic project while the other is a sim-
pler library implementation of a traditional technique. The latter system was written
for Python’s wide-ranging NLTK toolkit [Bird, 2006], which offers several open-source
tools for part-of-speech tagging. For simplicity, we have chosen an implementation of
the technique proposed by Ratnaparkhi [1996], referred to simply as the MaxEnt parser
throughout this document [Malecha and Smith, 2010].

The second tagger we use is part of the Stanford CoreNLP project [Manning et al.,
2014], a significant academic endeavour which includes a variety of language-processing
tools. These include a standalone part-of-speech tagger which is also based on the max-
imum entropy principle [Toutanova et al., 2003], but which incorporates bespoke addi-
tions to improve the treatment of unknown words, verb form disambiguation and particle
disambiguation. We have used the implementation and models bundled with the project’s
dependency parser v3.7.0 [Klein and Manning, 2003b].

Note that a fundamental element of the process of part-of-speech tagging is the choice
of tags used. In stochastic taggers such as our maximum-entropy-based utilities, this is
extracted as part of the training process. Both of the taggers we have chosen have been
trained on, and thus use the tagset provided for, the well-respected and long-running Penn
Treebank project [Santorini, 1990].

3.4.3 Dependency structure
Once input sentences have been tokenised and those tokens assigned part-of-speech tags,
they can be parsed to produce the dependency structures we rely on. These consist of
trees in which each edge indicates a semantic link between two words. For example,
a noun may be the subject or direct object (NSUBJ or DOBJ) of a verb, and may itself
be qualified by a determiner (DET) or an adjectival modifier (AMOD). The root of a
dependency tree is an important verb in its sentence.

While a number of possible syntactic frameworks exist, as discussed in Section 2.1.1,
we have selected dependency structures for a number of simple reasons. First, like
context-free structures, dependency trees are able to represent complex linguistic phe-
nomena using relatively lightweight grammars and quick parsers. The considerations of
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size and speed are far from trivial, affecting how practicable any evaluation tool is in the
notoriously data-intensive field of translation.

A second relevant feature of dependency parsing is its goal of capturing the key se-
mantic relations between words in parsed sentences. While some other formalisms such
as CFGs attempt primarily to describe the nature of words and phrases in a sentence,
dependency structures attempt to encode the purpose thereof. We believe that this per-
spective is more closely tied with the problem of translation evaluation: two translations
should contain elements which, while not necessarily exactly matching in nature, perform
the same functions.

Our decision is in keeping with the general trend of translation evaluation, with sev-
eral existing tools relying on the technique as discussed in Section 2.2.3. However, should
another formalism be considered relevant to the techniques we employ, they could be
adapted without excessive work: nothing in our tools is inherently tied to dependency
structures.

Visual representation

A number of representations of dependency trees exist in literature, including purely tex-
tual representations [He, 2010], linear textual sentences with arcs to indicate dependen-
cies [Clark et al., 2002; Nivre, 2003], visual tree structures akin to those used for context-
free grammars [Hajič et al., 2012] or even combinations of these [Gómez-Rodríguez
et al., 2011].

In the various examples throughout this document of tree structures, we have chosen
to use the structure exemplified in Figure 3.1. A dependency label, indicating the nature
of a dependency relation, may be shown as a string of grey capital letters adjacent to a
black line between the parent and child of that link. Such parents and children may be
shown in black to indicate that they are not aligned with any word in another tree, while
such alignments – introduced in Section 3.4.5 and first shown in Chapter 4 (page 45) –
are indicated through matching colours.

A number of the examples we use are based on sentences used within our experi-
ments (Chapters 6-7). This is the case, for example, with the two examples shown in
Figure 3.1. However, occasionally we have constructed synthetic example sentences or
phrases, intended to highlight certain aspects of the tree(s) or algorithm(s) in question.

The original text from which a dependency parse tree was produced can be read
directly from such figures. This is done by considering the nodes (words) strictly from
left to right, irrespective of vertical position within the tree. For clarity, original sentences
are also shown underneath the visual tree structures in most cases.

Note that while dependency labels are included in all the parse trees we use, they
are only core to the functionality of one of our tools. DTED (Chapter 4) discards the
information they contain, and consequently all figures in its chapter omit the dependency
labels from any parse trees shown.

Projects used

To generate the parse trees we use in our experiments, we have used two well-known
tools, chosen both for their high quality and popularity in other projects and for their
opposing and thus complementary approaches to parsing. We were able to choose from
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Figure 3.1: Two sample dependency trees. Dependency labels are distinguished from
words by grey capital letters.
Sentence 1: Ms Mälkki started her career as a cellist.
Sentence 2: A few years ago textile designer Kati Reuter revitalised the historic snowball lace.

a number of high-profile dependency parsers which are available, including the Malt
parser [Nivre et al., 2006], the Stanford Parser [Klein and Manning, 2003b] and the
Berkeley parser [Petrov and Klein, 2007].

Each of these represents ongoing long-term collaborative projects, with numerous
releases over several years. Each is separated into two primary components, with the
main executable typically governing both the parsing of a given sentence and the genera-
tion of the second component: information specific to the language being parsed, usually
produced using the techniques mentioned in Section 2.1.2. Such models can either be
obtained ready for immediate use from the same sources as the parser itself, or can be
generated by the end user from a bespoke treebank.

We have chosen to use the first two tools mentioned above: the dependency parser
implemented in the MaltParser framework [Nivre et al., 2006], and that produced as part
of Stanford CoreNLP [Manning et al., 2014].

The Stanford Parser was originally built as an unlexicalized probabilistic context-free
grammar parser [Klein and Manning, 2003b], intended to demonstrate the viability of the
unlexicalized approach. This involves the parser annotating phrasal subtrees specifically
according to function words (for, to, etc.) rather than simple head nodes: those which
have been considered to best represent the nature of a subtree.

The Stanford Parser was then extended to allow conversion from the original phrase-
structure trees to dependency relations [de Marneffe et al., 2006]. This is done in two
steps: first the semantic head of any given subtree is calculated, often different from the
syntactic head produced in the original parse. Next, the types of relations between heads
and their erstwhile phrasal siblings are calculated using pattern-matching techniques.

The approach of the MaltParser is rather different from that of the Stanford project,
focusing on deterministic shift-reduce parsing rather than the more common probabilistic
approach. Unlike the Stanford system the MaltParser does not rely on a grammar per se,
instead using a series of learned mappings from parser states to appropriate actions for the
parser to take. Nonetheless, both forms of linguistic data are learned from gold-standard
treebanks, with both of the systems we use having been trained on the highly popular
Penn Treebank [Marcus et al., 1993].

We believe that these two systems represent reliable and high-quality approaches,
ensuring that the parses we use are as legitimate as possible. They are, however, different
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Figure 3.2: Original and flattened versions of a sample dependency tree

enough from each other to allow for variety in those parses inasmuch as is permitted by
the individual sentences. We are thus confident that they will, as intended, allow us to
observe the effects of different parses on our tools.

3.4.4 Flattened dependency ‘structure’
As mentioned in Section 3.2.2, in order to provide a reference case to deepen our under-
standing of the importance of structure to our tools, we run them both on parsed depen-
dency trees and on flattened versions of those trees. To produce these flattened structures,
we simply run a preprocessing step before executing the evaluation algorithm in question
as normal.

In actual fact, the flattening process does not eliminate all structure from the sen-
tences: it merely forces the trees to contain purely linear information information by
applying a uniform rule to that structure. Specifically, it forces each node to be the (only)
immediate child of its predecessor, as shown in Figure 3.2. This is done to allow a repre-
sentation as close as possible to the unprocessed, unstructured sentences while still being
in the format expected by our tools.

This process is inherently wasteful, as it requires real parse trees to be produced then
immediately discarded. This inefficiency could be resolved by producing flat parse ‘trees’
directly from string-form sentences, resulting in much quicker runtimes for our tools.

The primary reason why we have not done this is for simplicity. Note that our project
represents only an initial attempt to understand the relevance of structure to machine
translation evaluation. As such, we do not consider it critical that all elements be opti-
mised in aspects like speed of execution, which do not contribute to the feature we are
investigating – namely their ability to predict human judgments. We also do not expect
the flattened versions of our tools to perform better than the structured versions: as such,
we expect the former to be primarily of use within this project, with little need for stan-
dalone, optimised implementations for further use.

3.4.5 Word alignment
While parse trees are the primary input required by our tools, they are not the only one.
Both DTED and DERP require supplemental information on which of the words in the
input sentences correspond: the word alignments between the input sentences.
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There are two primary avenues we could explore for the extraction of such align-
ments. That taken by a number of existing metrics is to pair words according to simple
techniques such as exact or word-stem matching, as shown in Sections 3.5.3 and 3.5.4.
These can be used with little postprocessing [Papineni et al., 2002; Banerjee and Lavie,
2005], or with statistical disambiguation techniques to provide more fine-grained map-
pings in cases like repeated words [Zeman et al., 2011].

The alternative to such metric-specific methods is to apply an existing project de-
signed to deal with word alignment in a broad context. A number of these exist, includ-
ing the standalone GIZA++ [Och and Ney, 2003] and the Berkeley Aligner [Liang et al.,
2006], and that of the cdec project from Carnegie Mellon University [Dyer et al., 2010].

Such ready-made alignment tools are generally intended for the treatment of sen-
tences in different languages, as part of the machine translation pipeline. They thus use
hugely more complex techniques than the aligners built into metrics, as they cannot rely
on the words they align having any surface features in common at all.

Interlingual alignment tools generally rely on statistical methods to train language
models, not entirely dissimilarly to both parsing and part-of-speech tagging. These can
rely on Hidden Markov Models (HMMs) [Rabiner, 1989], assuming the word alignment
to be a hidden set of mappings used by the translation process [Vogel et al., 1996], which
must be estimated through probabilistic techniques such as the EM algorithm [Dempster
et al., 1977].

Other techniques for interlingual word alignment can involve heuristics, based on
matrices built from observations of co-occurrence of pairs of words [Melamed, 2000].
These methods are considerably simpler than the more generic statistical training, but
have been shown to perform somewhat less well in practice [Och and Ney, 2003].

Purpose-built interlingual alignment systems have the benefit over simpler mono-
lingual techniques that they consider all types of word matchings which occur in their
training database, rather than relying on linguistic features which may or may not ex-
ist. Consider the single-word sentences “Alright” and “Sure”: these are both legitimate
translations of the French phrase “D’accord”, yet no word-stemming technique can be
reasonably expected to equate them. This could only be done through the use of external
information, whether statistically learned or provided through external databases such as
WordNet [Miller, 1995; Banerjee and Lavie, 2005].

Given the complexities involved in the field of word alignment, both metric-internal
and standalone alignment tools impose restrictions on their mappings for the sake of
computational tractability. The majority of metrics we inspected contained a strict limi-
tation: no word in either sentence can be paired to more than one in the other [Lavie and
Agarwal, 2007; Zeman et al., 2011]. While many off-the-shelf systems impose the same
restriction [Melamed, 2000], GIZA++ and cdec’s alignment module both relax this as-
sumption somewhat, permitting words in one sentence only to be unidirectionally aligned
to multiple in the other. In our experiments, we allow hypothesis words to be aligned to
multiple reference words, but not the reverse.

Given all the above considerations, we have chosen to use two open-source off-
the-shelf systems intended for multilingual processing: cdec’s alignment module and
GIZA++. Both use Hidden Markov Models, with cdec generating an estimated best
match between parses of both input sentences [Dyer, 2010]. GIZA++ augments tradi-
tional HMM techniques with a number of word-fertility models [Brown et al., 1993], in
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its effort to incorporate a variety of proven techniques.
These two tools allow us the flexibility of limited one-to-many alignments, such as

“was” being aligned to “has been”, and the genericity of their language-independent
approaches. As mentioned earlier, their alignments could be replaced by those of other
techniques with very little effort if desired.

3.5 Baseline tools
As discussed in Section 3.2, we have a number of goals for our experiments. One of
these is to evaluate the relevance of structure to our tools, for which investigation we have
generated versions of our tools based on structured and flattened sentences. However, a
simpler and highly relevant concern is whether the tools perform to a reasonable standard
under any configuration.

To determine this, we will need to have an understanding of what a ‘reasonable’ stan-
dard is. Happily, a range of tools already exist to measure both general quality of transla-
tion (Section 2.2) and specifically word order (Section 2.3.1). Additionally, very simple
inspection of the sentences we use can give us a more direct view of their characteristics.

The simplest baseline ‘metric’ we apply is that of simply calculating the percent-
age of words which are aligned in each sentence pair. Alongside this we use Kendall’s
τ [Kendall, 1938], which has been used in a number of investigations into the quality of
word ordering in particular [Lapata, 2006; Birch et al., 2010].

Of the myriad bespoke translation-evaluation systems introduced in Chapter 2, we
have chosen two of the most popular as the baselines we will use in our investigation:
BLEU [Papineni et al., 2002] is one of the most well-known and used metrics for holistic
evaluation available; while Meteor [Banerjee and Lavie, 2005] is a popular tool which
evaluates holistic quality but contains a distinct ordering component.

Throughout this section, we will provide examples showing exactly how these tools
function in the evaluation environment. For simplicity and comparability, we will use the
same sentence pair for all of these examples: a variant of sentence pair 1 from Table 3.1,
as follows.

Hypothesis: the mat had sat on the cat
Reference: cats had sat on a mat

Note that as we attempt to be consistent with the original papers introducing the
respective tools, our terminology will slightly change when discussing each one.

3.5.1 Aligned Percentage
Our first and simplest baseline tool is an inspection of the number of pairs of aligned
words among the reference and hypothesis sentences. The fundamental assumption be-
hind this ‘metric’ is that the more similar a hypothesis sentence is to a reference, and thus
the higher quality it is, the more words are likely to be shared between the two.

This is obviously a flawed assumption: legitimate elements such as synonyms and
paraphrasings may result in falsely low scores, while matching words with incorrect fea-
tures such as ordering can cause the aligned percentage to be an overestimate of quality.
Nevertheless, we consider it to be an interesting baseline.
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Word Concordant with Discordant with
mat none cats, had, sat, on
had sat, on cats, mat
sat had, on cats, mat
on had, sat cats, mat
cat none had, sat, on, mat

Table 3.2: Edit operations calculated by Kendall’s τ on the example sentence pair

Most relevantly, both of our bespoke metrics rely to a great extent on the alignment
between words: as detailed in the chapters for DTED and DERP (Chapters 4 and 5 re-
spectively), word alignment is one of the key inputs to both metrics. Given this, we
consider it important to understand the extent to which the alignment alone can account
for any success we observe: this allows us to observe the improvement due to our algo-
rithm alone, similarly to how unstructured versions of our tools allow us to observe the
effect of structure alone.

We have run both GIZA++ and cdec (Section 3.4.5) on each sentence and returned
the total proportion of aligned words (Hali andRali in the hypothesis and reference trans-
lation respectively) relative to all words in those sentences (Hall and Rall respectively)
according to the following formula:

alipc =
Hali +Rali

Hall +Rall

(3.1)

For our example sentences, the following sets of alignments are possible. Note that
due to the necessity of training the two alignment systems we use on large corpora, and
the fact that our example sentences do not occur in those we use, we have not used
GIZA++ or cdec to produce these alignments: they are examples only. Words from the
hypothesis sentence are shown first.
Alignment 1: (cat, cats), (had, had), (sat, sat), (on, on), (mat, mat)
Alignment 2: (cat, mat), (had, had), (sat, sat), (on, on), (the, a), (mat, cats)

These alignments result in scores of 10/13 ≈ 0.769 and 12/13 ≈ 0.923 respectively.

3.5.2 Kendall’s τ
A somewhat more complex statistical technique than simply observing aligned words is
that of Kendall’s τ [Kendall, 1938]. Designed as a correlation coefficient for evaluating
ranked data, it counts pairwise comparisons between such ranks. Given two ordered
sequences, such as series of numbers, the number of concordant pairs is considered to
be the number of pairs of entries which occur in the same relative order in both sets,
while discordant pairs are the opposite. These are compared against the total number of
possible matches using a simple mathematical formula:

τ =
|pairsconcordant| − |pairsdiscordant|
|pairsconcordant|+ |pairsdiscordant|

(3.2)

The range of this formula is the same as that for many, if not all, correlation coeffi-
cients: a correlation of 1 indicates that the order of all pairs of entries match – i.e. the
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ranks are identical – while a correlation of -1 indicates that the ranks in one sequence are
the exact inverse of those in the other. Intermediate values denote more limited similarity,
with a correlation of 0 indicating that as many pairs match as do not match, suggesting
that the two sequences are entirely independent of each other.

Note that the coefficient does not in any way account for the absolute identities of, or
differences between, elements of the sequences: it merely compares their relative order-
ing. Thus, (3, 5) is concordant with (1, 2), (3, 5) and (1, 7) due to shared monotonicity,
while being discordant with any decreasing sequence such as (7, 1).

Algorithm 1 Kendall’s τ wrapper
1: procedure TAU WRAPPER(apairs)
2: ahyp ← [ hypothesis indices from apairs in ascending order ]
3: aref ← [ reference indices from apairs in ascending order ]
4: amix ← [ ]
5: for all iref in aref do . Process each index in aref in order
6: ihyp ← [ hypothesis indices which map to iref in apairs ]

. Replace reference index with hypothesis one
7: amix ← amix + ihyp . Append hypothesis index to new ‘reference’ list
8: return τ(ahyp , amix ) . Calculate Kendall’s τ on the resulting indices

While intended for generic rank comparisons, Kendall’s τ applies almost directly to
the field of translation order evaluation. It has in the past been used to evaluate other
systems’ success in ordering tasks [Lapata, 2003], and more recently has been applied
directly to the evaluation of sentences [Birch et al., 2010].

The key adaptation required when using Kendall’s τ in our field, as introduced in
Section 2.3.1, is to simplify full sentences into comparable ordered sequences. To do this,
we use a very simple bespoke technique. Once again we make use of word alignments
generated by third-party tools. These produce series of paired indices for equivalent
words, which can then be converted to comparable sequences before calculating a normal
τ value representing the order similarity of the two sentences.

The simple conversion process is shown in Algorithm 1: from the pairwise mappings
provided by alignment tools (e.g. 1-1 1-2 to indicate hypothesis word 1 being aligned to
reference words 1 and 2), both sets of indices are extracted separately. Indices referring
to reference words are replaced with those of the corresponding hypothesis word(s) to en-
sure like is compared with like, though the reference words’ order is retained. Kendall’s
τ is thus applied to the hypothesis indices in the order they occur in the hypothesis tree,
and the same indices in the order their counterparts occur in the reference tree.

Note that the [-1,1] range of Kendall’s τ is not entirely in keeping with the norm for
machine translation evaluations, which range instead from 0 to 1. We do not consider
this to be a problem, as the relative ranks of two sentences can still be meaningfully
interpreted, with a lower score in all cases representing a lower level of similarity than a
score closer to 1. Fundamentally, while in many statistical domains a negative correlation
can indicate a useful effect – e.g. time to reach a destination vs. speed of transport – we
consider that in the case of relative word ordering a negative correlation is simply worse
than no correlation at all.
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Component Calculation Result
r length of reference 6
c length of candidate 7
N maximum n chosen 3

All weights wn 1/N 0.33
Precision with n = 1 (p1) 4/6 0.67
Precision with n = 2 (p2) 2/5 0.4
Precision with n = 3 (p3) 1/4 0.25

Brevity penalty (BP)
{

1 if c > r
e(1−r/c) if c ≤ r

1

BLEU BP · exp

(
N∑

n=1

wnlogpn

)
0.322

n Reference n-grams n-gram matches
1 cats / had / sat / on / a / mat had / sat / on / mat
2 cats had / had sat / sat on / on a / a mat had sat / sat on
3 cats had sat / had sat on / sat on a / on a mat had sat on
4 the cat sat on / cat sat on the / sat on the mat none

Table 3.3: Calculations performed by BLEU on the example sentence pair

Table 3.2 shows which pairings are considered correct or incorrect in our example
sentence pair. Note that each pair is listed twice, in the rows corresponding to each of
its two components. There are thus 3 matching or concordant pairs of words, and 7
mismatching or discordant ones. We can pass this information to Equation 3.2 to find a
final score for the sentence pair of 7−3

7+3
= 4

10
= 0.4.

3.5.3 BLEU

Introduced in Section 2.2.1, BLEU [Papineni et al., 2002] has been the de facto stan-
dard for the evaluation of machine translation for many years. While many metrics have
been produced which either improve on BLEU’s techniques or provide their own (Sec-
tions 2.2-2.3), it has remained popular, arguably due to its speed of execution and lan-
guage agnosticism.

In an attempt to represent real trends in language corpora, BLEU is split into com-
ponents, each calculable through simple equations. First, the modified precision is cal-
culated separately for each n-gram length. Second, an exponential brevity penalty is
calculated based on the relative lengths of the reference and candidate (hypothesis) sen-
tence.

Next, the various n-gram precisions are combined, using logarithms to capture the
non-linear decay the authors found in the number of n-grams of higher orders: while
1-grams (individual words) in a candidate translation are likely to be found somewhere
in the reference translation(s), it becomes less and less common that any longer phrases
be found in exactly the same form in both.
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Finally, the brevity penalty is combined with the n-gram precisions to produce a final
BLEU score for the given candidate. Note that while this score is intended to increase or
decrease with the quality of the sentence, it does not itself indicate any absolute quality.
Indeed, the original authors caution against any non-comparative reporting of scores, as
these can be greatly influenced by non-qualitative factors such as the number of reference
translations used [Papineni et al., 2002].

In our example, we make two significant simplifications from the general use-case
for which BLEU was designed. First, BLEU was intended to permit the use of multiple
reference translations at once, for more reliable scoring. The variations between the
standard definition of precision and the modified form that they use are related to this
possibility, and for possible duplication of words within individual sentences. We have
ignored these alterations, and use the standard definition of precision. This does not
result in any difference from scores produced by genuine BLEU, as we provide only a
single example for which all words in each sentence are unique: it merely simplifies the
equations we present.

Secondly, a common use of BLEU is to be applied to an entire corpus at once, rather
than individual sentences. This is used in the original paper as a justification for certain
inaccuracies due to variations in phrasing, and most importantly minimises an unfortu-
nate side-effect of the BLEU formula. If no n-grams match for any n included in its
calculation, the choice of combining precisions through logarithms (equivalent to the use
of a geometric mean) results in flat resulting scores of 0 [Banerjee and Lavie, 2005]. As
such, while n may be up to any value in practice, we have limited it to 3 in our example
due to the lack of matching 4-grams.

The n-grams found within our example reference sentence, and all calculations based
on them including the final BLEU score for the sentence pair, are shown in Table 3.3.

3.5.4 Meteor & Meteor (Chunking)

For our second purpose-built machine translation baseline metric, we have chosen Me-
teor [Banerjee and Lavie, 2005]. Also introduced in Section 2.2.1, Meteor has a con-
venient property which makes it especially relevant to our comparative study. It is pri-
marily intended as a holistic tool, evaluating word order quality in general by attempting
to predict a combination of human judgments of fluency and adequacy – yet contains
an isolatable component which is intended to produce a score multiplier based on word
order quality specifically.

The standalone nature of the second phase of Meteor’s pipeline means that we can
extract it and consider it an existing metric for word order, albeit not one which has
been formally published as such. We have thus modified Meteor trivially to ignore the
initial F-measure and return a score based only on the penalty produced by its chunking
component; both the off-the-shelf holistic tool and the standalone chunking component
have been used for the experiments we discuss in Chapter 7.

The exact functionality of Meteor is shown through our example sentence pair in Ta-
ble 3.4. Note that many variations on Meteor have been produced [Lavie and Agarwal,
2007; Lavie and Denkowski, 2009; Denkowski and Lavie, 2011, 2014]. In our experi-
ments we use version 1.5 [Denkowski and Lavie, 2014], which contains extensions re-
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Component Contents
‘exact’ matches (mat, mat), (had, had), (sat, sat), (on, on)
‘stem’ matches (cat, cats)

‘WN synonymy’ matches none
unigrams_matched mat / had / sat / on / cat

chunks mat / had sat on / cat
Calculation Result

s unigrams in system translation 7

r unigrams in reference translation 6

m matching unigrams 5

P m/s 0.714

R m/r 0.833

Fmean
10PR

R + 9P
0.843

Penalty 0.5 ∗
(

#chunks

#unigrams_matched

)
0.3

Score Fmean ∗ (1− Penalty) 0.590

Table 3.4: Calculations performed by Meteor on the example sentence pair

lated to paraphrase matching, parameter tuning and more. However, for simplicity in our
example we strictly represent the original version of the metric presented in 2005.

The first step is to produce unigram mappings (word alignments) according to three
separate techniques. These are indicated using the same visual convention as in Sec-
tion 3.5.1. First, all exact matches between words are detected. Next, any remaining
words are matched if they have a common stem: if they are derived from the same base
word. Lastly, if any as-yet-unpaired words are indicated to be synonyms according to the
WordNet resource [Miller, 1995], they are matched by the WN synonymy module.

From these mappings, precision (P ) and recall (R) can be calculated according to
their standard formulae. These are then combined using a harmonic Fmean weighted
strongly towards recall, as such a weighting was found to outperform more egalitarian
measures in an earlier study [Lavie et al., 2004]. Later versions of the tool treat the
relative weight of precision and recall as a parameter which is empirically tuned [Lavie
and Agarwal, 2007].

Meteor accounts for multi-word phrases through its Penalty , which is calculated ac-
cording to the minimum number of chunks into which the matched unigrams can be split.
Each chunk is composed of one or more mapped words which are adjacent in both the
system (hypothesis) translation and the reference. In our example, only one chunk longer
than a single word can be extracted from the middle of the sentence; however, this chunk
spans more than half of the sentence, producing a medium-severity penalty.

Finally, the Fmean and Penalty are combined to produce an overall Meteor score for
the sentence pair.
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4.1 Introduction
Our first foray into the creation of tools to evaluate machine translation word ordering
using dependency structure is an adaptation of a solution to a problem broader than our
domain. The comparison of tree structures is a well-known problem within Computer
Science, highly relevant to processing of documents consisting of tree-like structures
such as XML or HTML [Pawlik and Augsten, 2011]. When synchronising such docu-
ments, performing searches for similar documents, or performing a host of other such
comparison tasks it is essential to have a numerical representation of the difference be-
tween trees.

Such representations can take various forms, as explored in Section 2.2.3. Two of
the most high-level include Tree Kernels and Tree Edit Distance [Guzmán et al., 2014],
the former of which has already been used in the DiscoTK metrics [Joty et al., 2014].
We have chosen to apply the latter, due to its theoretical similarities with the common
approach of error rates as discussed in Section 2.2.2.

First introduced by [Tai, 1979], a tree edit distance is a count of the actions required to
convert one ordered tree into another. Similarly to the unstructured techniques discussed
earlier, these are: Renaming or Deleting an existing node, or Inserting a new one. These
actions are demonstrated in Figure 4.1, with an example of a real sentence in Figure 4.2.

A number of variants on this model have been proposed, many attempting to im-
prove the efficiency of the algorithm when applied in large-scale or high-throughput ar-
eas [Bille, 2005]. The algorithm we have implemented is an extension of that proposed
by Demaine et al. [2009], which is worst-case optimal, running in O(n3) time where n is
the number of words in the shorter sentence.

E

...
T1 T2 Tk

F

...
T1 T2 Tk

...
T1 T2 Tk

→ Rename E to F → → Delete node F →

← Insert node F ←← Rename F to E ←

Figure 4.1: Tree Edit Distance operations [Demaine et al., 2009]

Our tool, named DTED (Dependency-based Tree Edit Distance) and published in
2016 [McCaffery and Nederhof, 2016], applies the concept of Tree Edit Distance to the
domain of natural language. We have followed the common trend of evaluation metrics of
comparing a machine-produced ‘hypothesis’ translation with a human-produced ‘refer-
ence’ which is assumed to be correct. Both sentences are thus in the same language, and
can as a result be processed by identical tools to produce dependency structures which
are closely comparable. We have restricted our work to only apply to sentences translated
into English, for the varied reasons described in Section 3.3.1, but we do not place any
limitations on the ‘source’ language from which both translations are produced.

4.2 Implementation
We have implemented a prototype of DTED in Python. It requires five separate inputs,
representing the sentences to be compared and the tools to be used in that comparison: 1)
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wellVint

planned

aheadCerf

planned

Vint ReferenceHypothesis

aheadVint

planned
→ Insert 'Cerf' →

← Delete 'Cerf' ←

→ Rename 'well' to 'ahead' →

← Rename 'ahead' to 'well' ←

Figure 4.2: The two Tree Edit operations required to convert between an unlabelled ref-
erence and hypothesis dependency tree

a hypothesis translation file, 2) reference translation file, 3) word alignment file, 4) parser
and 5) tagger. Of these, the hypothesis and reference sentences and word alignments are
expected to be provided to our tools through files preprocessed into a convenient format,
while the parser and tagger desired are indicated through flags and called automatically
by our tools. The nature and exact format of each input has been discussed in Chapter 3,
but we will here briefly summarise the various tools we have chosen.

4.2.1 Tree and alignment generation
The information directly used by our algorithm is twofold. The first necessity is the pair
of tree structures produced by dependency parsing of the hypothesis and the reference
sentences, explained in Section 3.4.3. Note that while such structures contain semantic
dependency labels, these are not part of the tree edit distance algorithm and are ignored.
The second input is a set of pairings linking each word in each sentence to zero, one or
multiple words in the other: a word alignment, discussed in Section 3.4.5.

While our algorithm requires nothing more than this, the tools we employ to gener-
ate both pieces of information themselves require input. Specifically, they make use of
tokenised sentences (Section 3.4.1), a part-of-speech tagger (Section 3.4.2), and a pre-
trained file containing data representing relevant features of the language (Section 2.1.2).

Two parsers, aligners and taggers have been used in practice, with each using pre-
trained language-specific information, where appropriate, from the same online sources
as the tools themselves. We work only with hypothesis and reference translations in
English (Section 3.3.1), and with one reference translation per hypothesis (Section 3.3.3).

The tools we use are, as described in Chapter 3: the Europarl v6 Preprocess-
ing Tools [Koehn and Schroeder, 2011] for basic text preparation and tokenisation;
GIZA++ [Och and Ney, 2003] and cdec [Dyer et al., 2010] for alignment; NLTK’s
maximum-entropy tagger [Malecha and Smith, 2010] and that provided with the Stan-
ford Parser v3.6.0 [Klein and Manning, 2003b]; and the Stanford Parser alongside the
MaltParser v1.8 [Nivre, 2003].

4.2.2 Tree edit operations
The prime component of the DTED algorithm is the actual calculation of the edit oper-
ations required to turn one tree into the other. While numerous edit distance algorithms
exist [Pawlik and Augsten, 2011], we have implemented the one put forward by [Demaine
et al., 2009] due to its relative simplicity and worst-case optimality. In their version of the
algorithm, the ‘insert’ operation, whereby a node is created in one tree X to correspond
to a node in tree Y , is represented by a ‘delete’ of the corresponding node in tree Y .
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A

years

few

ago

revitalised

Kati

Reuter

textile

designer

lace

the historic snowball

.

Reference

A

years

few

ago

revitalised

ε

ε

ε

.
lace

the

historic snowball

Kati

Reuter

textile

designer

Reference (binarised)

→

Figure 4.3: A dependency tree as seen by DTED both before binarisation (left) and after
(right). Epsilon nodes are indicated by ε.
Reference: A few years ago textile designer Kati Reuter revitalised the historic snowball lace.

The algorithm we use applies specifically to binary input trees. Given that a huge
number of our input trees will of course not be in this format, we perform a preprocessing
step to binarise the input. This involves creating special ‘epsilon nodes’, which do not
represent words in the trees: their use is purely structural. In a recursive procedure, any
node with more than two children will have all but the first moved to become children of
a newly created epsilon node, which is itself then inserted as the original node’s second
child. This is demonstrated in Figure 4.3 on a reference translation included as part of the
sentences submitted to the Conference in Machine Translation (WMT2016) [Bojar et al.,
2016a]. While calculating tree edit operations, deletion of epsilon nodes is assigned a
cost of zero while renaming them is considered prohibitively expensive.

Some configurations of the algorithm (see Section 4.3) separate individual operations
into those applied to aligned nodes and those applied to unaligned nodes. The former are
assigned a higher priority than the latter: the algorithm strictly minimises the edit count
for aligned operations before considering unaligned ones. This separation of priorities
focuses on actions which most represent the structural information we have available.

Mechanically, this is done by one type of action being assigned a much greater cost
than the other: a single operation of one type may be assigned a cost orders of magnitude
greater than one of the other. For example, if preferred actions are assigned a cost per
action of 1000 relative to 1 for non-preferred ones, the algorithm will select a solution
involving 5 prioritised actions and 11 non-preferred ones – at a cost of 5011 – rather than
a solution of 6 prioritised actions but zero non-prioritised ones, costing 6000. The two
components – 5 and 11 or 6 and 0 in these examples – can then be trivially extracted once
the edit operations have been finalised, and are included in later calculations without the
1000-fold disparity in magnitude.

4.2.3 Normalisation
The initial result of DTED is a count of the number of modifications which must be made
to one of the two input trees in order to produce the other. This is already a useful number,
but has one significant downside in practice: it does not take into account sentence length.
This prevents it from having a clear and simple meaning, consequently preventing its use
when comparing multiple sentences. A modification count of 3, for example, could be an
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basic: all actions
weighted equally

cost-free aligned
word matches

logarithmic weighting
between aligned and
unaligned operations

only aligned-word
operations counted

b

l

c

o

priority: minimise
aligned operations

Figure 4.4: Summary of the four main flags which can be applied to DTED

excellent score for a pair of sentences each composed of 30 words, while the same score
for a pair of three-word sentences is in fact the worst possible.

To mitigate this problem, we have mathematically compared the count of edit opera-
tions with the number of words in the two sentences which could be affected. The exact
formula for this comparison varies depending on the exact configuration of the tool, as
described below. In all cases, this produces a normalised score, a decimal value between
0 and 1, which can be compared meaningfully between sentences.

4.3 Configurations
We have implemented four configurations of DTED, each taking into account in different
ways words which do or do not have aligned counterparts in the other tree. Furthermore,
each of these configurations can have an additional flag applied which represents a fur-
ther preprocessing step, flattening the input trees. The different primary behaviours, each
assigned a single-letter flag as an identifier, are described in this section, while the univer-
sally applicable flattening step is discussed in Section 4.4. Section 4.5 contains a detailed
practical example of how each configuration works relative to the others.

The four main configurations are as shown in Figure 4.4, and can be briefly sum-
marised as follows. The most basic configuration of DTED, ‘b’ (Section 4.3.1), repre-
sents as closely as possible the tree edit algorithm in its original application-independent
form: all actions are assigned equal priority. The ‘c’ flag introduces a caveat to this, with
aligned nodes being renameable to each other for zero cost. The ‘l’ flag indicates that
operations between aligned and unaligned words are given a relative weighting, while
the ‘o’ flag simply ignores all operations on unaligned words; both are discussed in Sec-
tion 4.3.2.

Each configuration has been run on two types of input. We have run each on normal
dependency trees, leveraging the full structural information available. The ‘f’ flag (Sec-
tion 4.4, continuing Section 3.4.4), refers to the algorithm being instead run on flattened
trees: those from which the structural information has been removed.

4.3.1 Traditional edit costs: ‘b’ and ‘c’ flags
The most straightforward way of executing a tree edit distance is to give equal weighting
to all operations on all nodes. This is how the algorithm traditionally works in other
fields, and how its cousins Word Error Rate and Levenshtein Distances function. This
gives us a measure of the structural similarity of the two trees: two identical trees will
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have the minimum cost, while any sub-optimally placed nodes will need to be deleted at
a cost of one action per tree.

We encounter an interesting edge case when two sentences contain exactly the same
word. While in other domains two nodes may be considered identical if they have the
same value, and thus require no edit operation, we do not consider this to be automatically
valid behaviour in our area. This is because two occurrences of the same word may arise
from different contexts: for example, an adjective may appear twice to describe two
separate nouns within a single sentence pair.

In this situation, the only free operation for each appearance of the adjective in one
sentence should arguably be with the appearance in the other sentence relating to the same
noun. Happily, we do have a means of determining which occurrences of words match
between sentences: word alignment. We are thus able to build this in, and introduce the
‘c’ flag. This allows aligned words to be matched for no cost using a special free version
of the ‘rename’ operation.

To evaluate the effectiveness of this feature, we have also run DTED without it. By
default, ‘b’-flag DTED applies a cost to any and all Rename operations, even those with
alignments or identical words. This makes ‘b’ DTED both naïve and strict, with its utility
being mainly to observe the improvement produced through the introduction of zero-cost
matches in ‘c’ DTED rather than being itself a good evaluator.

The final score for a given sentence is straightforward to calculate. To produce a score
in the range [0,1], we must divide the number of edit operations dist by the maximum
possible operation count. In our case, this will involve every single node requiring an
edit operation. For comparison with other tools and with intuition, we would prefer a
higher score to represent a higher-quality sentence. As a higher dist is indicative of a
lower-quality sentence, we invert the score by subtracting it from 1. Given nH nodes in
the hypothesis tree and nR nodes in the reference, this gives us the formula:

scoreconfig = 1− dist

nH + nR

, config ∈ {b, c} (4.1)

Note that without the ‘c’ flag, the number of edit operations has a minimum of one
per node in the larger of the two trees. This is because every single node – in either
tree – must have some operation performed on it, either to match it to another node or
to remove it. While ‘match’ operations affect two nodes at the cost of one operation,
‘delete’ actions affect just one node per operation. The fewest possible operations thus
consist of one ‘match’ operation per node in either tree, with no ‘delete’ operations being
required through mismatches in structure or length.

This thus leads to a best case where dist = nH = nR, leading to a final score from
Equation 4.1 of 0.5. Given that our evaluation (Chapter 7) is based on correlation rather
than examination of absolute score values, this difference in range is not expected to have
any inherent negative effects on the performance of ‘b’-flag DTED.

4.3.2 Prioritising aligned operations: ‘o’ and ‘l’ flags
While the most obvious and comparable way of implementing tree edit distance to ma-
chine translation is to assign all operations equal weighting, it is far from the only one.
In our area, we consider that words which are aligned between the trees can be given a
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told

JaneThey

was

informedJane

Hypothesis Reference

Figure 4.5: Sample parsed dependency trees. Matching colours indicate alignment be-
tween nodes; black nodes are unaligned.
Hypothesis: They told Jane
Reference: Jane was informed

much greater measure of confidence than their unaligned fellows. We have thus applied
a new restriction to the algorithm: that of preferring to minimise these operations at any
cost. Thus, as described in Section 4.2.2, the result of the algorithm will strictly involve
moving or deleting as few aligned nodes as possible, with operations on unaligned nodes
being considered only as long as the minimal aligned operation count is maintained.

It should be noted that we always combine this functionality with the ‘c’ flag above,
causing aligned nodes to be matched to their aligned counterparts for free. Given that our
basic assumption is that aligned nodes are more information-rich than unaligned ones,
we need to use the information they provide as completely as possible.

However, using ‘b’-flag DTED would provide no way to differentiate matching
aligned nodes together by alignment pairs or by their relative positions in their respective
trees. This to a significant extent ignores the information contained in the alignments, and
prevents a simple intuitive understanding of what the aligned operation count represents.

On the other hand, with the ‘c’ flag that meaning is clear: the operation count indicates
the minimum number of aligned nodes which could not be matched to any counterpart.
Put another way, it represents the degree to which the structures of the trees cannot be rec-
onciled: the amount of information encoded in the alignment which cannot be included
in the ‘best’ possible set of matches.

To illustrate the difference in behaviour indicated by both ‘o’ and ‘l’ flags, consider
the sentences in Figure 4.5. DTED with either the ‘b’ or ‘c’ flags activated alone would
be unable to match together the aligned word in this sentence pair. Both configurations
would produce a cost of 3, resulting from matching the three pairs They/Jane, told/was
and Jane/informed. A strict prioritisation of aligned nodes would, however, force the
two aligned words to be matched together for an aligned cost of 0, while incurring an
increased unaligned-node cost of 4 as all other nodes in both trees would need to be
deleted to allow such a match.

This strict prioritisation of operations on aligned nodes poses a new question. In the
previous configurations of DTED we considered all non-free edit operations to contribute
equally to the final score. However, our strict prioritisation of aligned operations could
often lead to very large edit counts for operations on unaligned words. Such an inflated
operation count should arguably not lead directly to the conclusion that the sentence is
significantly flawed. In fact, the majority or even the entirety of the meaningful informa-
tion in the score comes now from the aligned words. We must consider how to interpret
and normalise the resulting edit score in light of this.
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‘o’ flag: aligned operations only

The ‘o’ flag with DTED answers this question very simply, by entirely ignoring all edit
operations on unaligned nodes. The assumption behind this flag is that unaligned words
represent algorithmic noise whose relevance and quality cannot be determined using the
information available in our trees. With no information about the ‘correct’ structure
surrounding any of these nodes, or their position within such a structure, such nodes do
not contribute any meaningful information and should, for clarity, be omitted entirely.

However, this may not be the case. While we can only confidently and meaningfully
interpret operations on aligned nodes, unaligned nodes are not entirely worthless to us.
The main indication they provide is this: the more unaligned nodes which can be Matched
with a corresponding node in the other tree, as opposed to simply Deleted, the more
similar we can consider the two structures to be. This proportion is directly encoded in
the matching operation count, as Delete operations incur a cost of 1 per node affected
while Rename operations affect two nodes for the same cost and are thus proportionally
cheaper. While we cannot know if such matching is between words with similar semantic
roles, we make the assumption that sentence trees with similar structures are likely to be
semantically related. Despite being formally unsupported, we feel that this assumption
is plausible.

It is strengthened when we consider that unaligned Match operations must be com-
patible with any aligned words which do exist in the trees. Should a large number of
words be aligned, a large proportion of unaligned Match operations can be hypothesised
to represent any information which was missed by the alignment tool. On the other hand,
should many unaligned words need to be deleted, we can conjecture that the aligned
words which exist are in dramatically different contexts within their respective sentences.
In the opposite situation, when few words are aligned, the unaligned words are ever more
important. While our knowledge is weaker without the existence of unaligned nodes to
provide context, information relating to unaligned nodes is the only information we have
access to with any meaning.

‘l’ flag: logarithmic weighting

We thus calculate a weighting factor for unaligned nodes, allowing us to consider the
factors from both unaligned and aligned words. This is based on the proportion of words
which are aligned across both trees, exactly as discussed in Section 3.5.1, but in addition
to this we have applied a logarithmic element. This is because even with the above
arguments we consider aligned words to be the most important factor in determining
word order quality, so we disproportionately favour scoring relating to them as long as
such information is available.

In practice, we have assigned the logarithmic base 0.1, which results in a multiplier of
0.5 when 30.1% of words in the sentence are aligned, and 0.178 when 75% of words are
aligned. It is capped at 0.9 to ensure that aligned words are always considered in the equa-
tion. The exact base used could be further refined through empirical parameter-estimation
techniques, but for our primarily-exploratory study we did not consider the benefits of
such training to be worthwhile. Notably, given the number of sentences available for our
experiments, and the non-trivial time required to parse and score each sentence, we pre-



4.4. TREE FLATTENING: ‘F’ FLAG 47

ferred to run our tools on more sentences rather than perform many iterations on a much
smaller number.

Of course, score components relating to aligned and unaligned nodes can be com-
bined using methods other than logarithmic weighting. Initial experiments were run using
a proportional weighting system, with prop below being used in place of log in equation
4.5. However, preliminary results comparing logarithmic and proportional weighting in-
dicated that the former correlated more closely with human judgments, so for simplicity
the latter were omitted from the larger-scale experiments we conducted.

We can thus produce simple formulae to calculate the final score for DTED. With
the ‘o’ flag (equation 4.2 below), this is the number of edit operations dista required by
the algorithm on aligned nodes, ignoring those on unaligned nodes, compared with the
maximum possible number of such actions which is equal to the total number of such
nodes across both trees: aH and aR respectively. This is subtracted from 1 to produce a
score where a higher number is better, in the same manner as Equation 4.1 above.

With the ‘l’ flag enabled, we must consider in Equation 4.5 the proportion of aligned
nodes in the same manner, but also that of unaligned nodes. We thus produce a fraction
relating to the number of edit operations distna required on unaligned nodes relative to
the total number of unaligned nodes in the two trees, naH and naR respectively.

These are then added together using a weighting, log, which is calculated based on
the coefficients described above: our chosen base of 0.1 is raised to the power of the
proportion prop of nodes which are aligned across both trees (equivalent to Equation 3.1,
page 34). This mathematically cannot be less than 0.1, and is capped at 0.9 should it
exceed that value. Exceptionally, if no nodes in the tree are aligned we rely exclusively
on unaligned nodes for our score, with a forced log value of 1. Finally, the aligned and
unaligned components of the score are subtracted from 1.

scoreo = 1− dista
aH + aR

(4.2)

prop =
aH + aR
nH + nR

(4.3)

log =

{
1 if prop = 0
min(0.9, 0.1prop) if prop > 0

(4.4)

score l = 1−
(
(1− log)× dista

aH + aR
+ log × distna

naH + naR

)
(4.5)

Note that if either no word or every single word is aligned across both trees, several of
these formulae become mathematically undefined. This is circumvented by treating any
fraction across all equations for which the bottom line equals zero as if the entire fraction
had a flat value of zero. For example, if no words are aligned then the final score using
the ‘o’ flag will be 1, while the score using ‘l’ will be solely based on unaligned nodes.

4.4 Tree flattening: ‘f’ flag
Our creation of DTED has been led by a number of different fundamental priorities,
described in Section 3.1 (page 20). Key among these is that any tool we create should
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permit a general evaluation of the effect of structure on the word order evaluation process
(Section 3.2.2).

It is in the interests of fulfilling this and other goals that we have produced simpler
versions of DTED, relying on the ‘flattened’ structures produced through the transparent
preprocessing step described in Section 3.4.4. These variants are not intended to leverage
the full structural information we use normally, but instead to produce a meaningful,
structure-free baseline for comparison.

4.4.1 Merit & expectations
The process of flattening has two important sets of merits: one intrinsic and one relative.
The latter is described in more detail in Section 3.4.4: using flattened input to purely eval-
uate the effect of structure on our tools. By running identical algorithms on input which
either does or does not include genuine structure, we allow a clear and fair observation
of the effect of this feature in isolation, eliminating all intrinsic effects and assumptions
made by the algorithm itself.

The intrinsic merits of our flattened systems vary according to the system itself, and
depend on what it is in fact measuring. The flattening of the input trees represents a severe
change to DTED, altering its most fundamental assumption: that the structure of the input
trees with which it is provided inherently contains merit. Without this assumption, we are
forced to reconsider in detail the question of what information is encoded in the scores
from each configuration.

‘fb’ DTED

The basic configuration of DTED, ‘b’, is intended to provide a numericisation of the
difference between two structures. However, when the two structures are guaranteed to
both be similar, we must consider what factors remain to be taken into account. These
are twofold: the number of words in each sentence, and the alignment of those words.
The latter of these factors is only considered when the ‘c’ flag is applied, allowing the
alignment to treat aligned words differently from unaligned ones.

Unfortunately, without this flag the algorithm has extremely little to rely on: it will
simply match all nodes by position, then delete any remaining words in the longer of
the two trees. This is illustrated in Table 4.1 (page 52). Note that our normalisation
formulae (Section 4.3) rely on the lengths of the sentence, with the consequence that the
only variation which can be observed in these scores is between the number of nodes
matched – which must always equal the length of the shorter sentence – and the number
deleted. This is effectively a complex encoding of the difference in lengths between the
two sentences, leaving ‘fb’ DTED little practical merit in evaluation of real quality.

‘fc’ DTED

With the addition of the ‘c’ flag, flattened DTED is able to incorporate more meaningful
information, namely word alignment. By directly mapping aligned words between the
trees for free, the algorithm can produce an edit distance reduced by any number up to the
count of pairs of aligned nodes. In this way, it approximates the ‘metric’ of observing the
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percentage of words which are aligned in the sentence (Section 3.5.1). This is arguably a
useful measure of quality, one which is investigated empirically in Chapter 7.

However, flattened ‘c’ DTED takes into account more than just the number of words
which are aligned: it also takes into account their relative positions in the sentence. This
is relevant in situations where hypothesis and reference use (or are close to using) ex-
actly the same structure, but as with non-flattened DTED it becomes inadequate in more
complex situations.

Consider sentence pair 5 in Table 3.1, where the only arguable ‘errors’ are a mis-
match in structure. With structural information deliberately removed from the sentence
we would expect it to score highly, as a result of a high proportion of aligned nodes
which we can infer from the identical word choice. However, flattened ‘c’ involves a
certain level of structural inference based on the surface order of words, and will use this
to assign this sentence pair a low score.

Given the above two perspectives, flattened ‘c’ DTED represents a middle ground be-
tween a structure-independent evaluation technique – namely observing the proportion of
words which can be aligned – and a primitive structured one represented by the similarity
of their ordering.

‘fco’ and ‘fcl’ DTED

While most of the merit of ‘fc’ DTED comes from a relatively complex observation of
aligned nodes, the ‘o’ flag provides a more simplified inspection: it considers only those
aligned nodes which must be mapped to nodes other than their aligned partners. In a
flattened tree, this takes on a very specific meaning: counting the number of aligned
words which are in a different order relative to each other in the two trees.

This is a much more basic evaluation criterion than the structural one for which the
algorithm was designed, but nonetheless represents something potentially useful. In-
deed, counting the number of mismatches between individual words’ orders is the basis
of numerous existing systems, as discussed in Section 2.3.1. The specific addition of
‘fco’ DTED is the attempt to actively minimise the number of ‘imperfect’ operations, as
opposed to merely observing all mismatches.

In practice, this results in a similar task to that of Kendall’s τ, with that of DTED being
the simpler of the two in that any nodes considered incorrectly placed are immediately
deleted (or suboptimally matched) in up to one operation each. The impact of such errors
is thus not scaled according to the number of nodes relative to which the deleted node is
incorrectly positioned.

To illustrate this, recall the example of Kendall’s τ in Chapter 2 (Table 3.2, page 34).
In it, we can see that with just two erroneous words in the sentence being inspected,
Kendall’s τ considers them to be collectively part of 7 ‘discordant pairs’, resulting in a
correlation value under 5%. On the other hand, were a flattened version of DTED to
inspect the same sentence pair, it would be unable to do more than delete both incorrectly
positioned words, which could be considered underestimating the real severity of the two
words’ misplacement.

This simplification may not be a positive one, as this discarded information represents
the severity of the error of the affected words, thus providing additional detail which may
be relevant to humans’ judgment on order quality. We consider ‘fco’ DTED to be worthy
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Figure 4.6: Sample flattened dependency trees, using a similar visual convention to Fig-
ure 4.5
Hypothesis: One rabbit was very happy
Reference: He was one happy bunny

of investigation for this reason: by considering its ability to predict human judgments
on word order alongside that of Kendall’s τ, we can deepen our understanding of the
importance of this aspect of error severity.

The ‘l’ flag introduces a new type of information: a limited representation of the
similarities of unaligned nodes between the trees. With flattened structures, this primarily
involves comparing the quantity of such nodes similarly to ‘fb’ DTED, though the ‘o’ flag
alters this behaviour to be very specific: it inspects the spacing – measured in unaligned
nodes – between pairs of aligned words which can be optimally matched together.

In effect, the absolute priority of minimising aligned node movements produces a
series of points which cannot be altered based on considerations relating to unaligned
nodes. We can thus conceptually split the sentence into pairs of substrings, delimited
by the matched aligned nodes. Each of these is then processed according to the same
rules used by ‘fb’ DTED, with the only variation being based on the difference in their
lengths. In this way, the unaligned edit count represents an aggregate of the difference in
distribution of unaligned spaces between aligned pairings.

For example, in Figure 4.6 the algorithm will be able to match the two pairs was/was
and happy/happy, but will be unable to match One/one. This leaves three disparate sec-
tions of each sentence: before was, between was and happy and after happy. Each of
these sections must be processed separately, as the algorithm is unable to affect multiple
segments at once – e.g. matching One from the first block in the hypothesis to one in the
second in the reference – without destroying a zero-cost aligned node pairing (was/was
here) in the process.

The actual relevance of this segmentation to human evaluation of ordering is not clear,
but we can hypothesise that sentences with large quantities of paired words but very
different numbers of unrelated words between them may not be of high quality. This
factor is arguably not related directly to word ordering, but is more relevant to overall
holistic sentence quality. In any case, we feel it is worthwhile to investigate empirically,
as with ‘fo’ DTED, to observe the real-world relevance of these effects.

4.5 Example
To fully understand the operation of DTED, it may help to observe it in practice. We
have thus run each different configuration of the algorithm on a specific sentence, and
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Figure 4.7: Sample parsed dependency trees, using a similar visual convention to Fig-
ure 4.5
Hypothesis: The cellist of Mälkki began career.
Reference: Ms Mälkki started her career as a cellist.

noted both the edit operations generated and the mathematical operations done on these
to produce final scores.

The sentence we have chosen is taken from the WMT 2015 corpus [Bojar et al.,
2015], with the source in Finnish and the hypothesis translation produced by the Univer-
sity of Sheffield’s stemmed system [Smith et al., 2015].

Figure 4.7 shows dependency trees for the two sentences, with aligned words high-
lighted in matching colours. All pairs of words shared by both sentences are aligned, as
are ‘started’ and ‘began’. Given these trees, the operations DTED performs on the trees
vary significantly based on the active flags.

The operations performed by DTED when using the ‘b’ flags are indicated in Ta-
ble 4.1. Without the behaviours introduced by other flags, the algorithm matches together
what nodes it can, assuming no labels are equal, producing six Rename operations. Four
Delete operations are required on nodes which simply represent disparities in the struc-
ture of the trees, resulting in a total matching dist of 10.

When the trees are flattened through the ‘f’ flag, the operations performed by ‘b’
DTED change. In practice, the sets of nodes which are matched together are very dif-
ferent, but the overall number of modifications is only slightly altered. Specifically, as
shown also in Table 4.1, the lack of structure allows one more ‘match’ operation to be
performed, replacing two ‘delete’ operations and thus producing an overall dist of 9
instead of 10.

With the ‘c’ flag enabled, many operations become free of cost, which significantly
alters the actions selected as per Table 4.2. In taking advantage of these opportunities
to reduce cost by pairing together as many aligned nodes as possible, the algorithm is
forced to match fewer unaligned nodes together: only two are matched which are not
aligned. However, four ‘match’ operations between unaligned nodes are available at zero
cost, resulting in a cheaper overall solution (dist = 7) despite the addition of two more
‘delete’ actions compared to the ‘b’ solution. Note that the aligned nodes cellist/cellist
could not be matched together in an optimal solution.

The additional priority placed on aligned-node operations when applying the ‘o’ and
‘l’ flags does not in this case lead to any cheaper solution than that of ‘c’ DTED. However,
the operations performed on aligned nodes are now considered separately, resulting in
dista = 2 aligned nodes deleted out of aH = aR = 5 in the hypothesis and reference trees
respectively, and distna = 5 ‘rename’ and ‘delete’ operations performed on the naH = 3
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DTED with ‘b’ flag
Hypothesis Reference Cost

Matched began
The
of
Mälkki
.
career

started
Mälkki
career
her
.
as

1
1
1
1
1
1

Deleted cellist
Ms
cellist
a

1
1
1
1

DTED with ‘fb’ flags
Hypothesis Reference Cost

Matched The
cellist
of
Mälkki
began
career
.

Ms
Mälkki
started
her
career
as
a

1
1
1
1
1
1
1

Deleted cellist
.

1
1

Table 4.1: Edit operations calculated by ‘b’ DTED for original and flattened sentences
shown in Figure 4.7

DTED with ‘c’ flag
Hypothesis Reference Cost

Matched The
Mälkki
began
career
.

Ms
Mälkki
started
career
.

1
0
0
0
0

Deleted cellist
of

her
as
a
cellist

1
1
1
1
1
1

DTED with either ‘co’ or ‘cl’ flags
Hypothesis Reference Cost

Matched The
Mälkki
began
career
.

Ms
Mälkki
started
career
.

1
0
0
0
0

Deleted cellist
of

her
as
a
cellist

1000
1
1
1
1
1000

Table 4.2: Edit operations calculated by ‘c’, ‘co’ and ‘cl’ DTED for sentences shown in
Figure 4.7. Note that flattening does not in this case alter these actions.
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and naR = 5 unaligned nodes in the hypothesis and reference trees respectively.
It is interesting to note that with this sentence specifically, flattening the trees before

running the algorithm does not produce different sets of edit operations for the ‘c’, ‘co’
or ‘cl’ configurations. This is a consequence of the two trees having similarly ordered
aligned nodes irrespective of structure. Specifically, when considering the dependency
structures ‘began’/‘started’ is the root word in both examples, with ‘Mälkki’, ‘career’ and
‘.’ being within the first, second and third subtrees beneath that node in both cases while
‘cellist’ does not occur in the same subtree.

In the flattened tree, we can more simply observe that ‘Mälkki’ is before ‘be-
gan’/‘started’ in both cases, which is in turn before ‘career’ then ‘.’, with the order of
‘cellist’ lacking a similar convenient shared descriptor. Were the two trees more different
in structure (or at least the structure relating to the aligned nodes), we may have observed
more noticeable effects when flattening the trees.

With the hypothesis tree containing nH = 7 nodes and the reference containing
nR = 9, we can now normalise each of the calculated operation counts according to
the equations in Section 4.3, producing final scores as follows:

scoreb = 1− 10

7 + 9
≈ 0.375 (4.6)

score fb = 1− 9

7 + 9
≈ 0.438 (4.7)

scorefc = scorec = 1− 7

7 + 9
≈ 0.563 (4.8)

scorefo = scoreo = 1− 7

5 + 5
= 0.700 (4.9)

prop =
5 + 5

7 + 9
≈ 0.625 (4.10)

log = min(0.9, 0.10.625) ≈ 0.204 (4.11)

scorefl = score l ≈ 1−
(
(1− 0.204)× 2

5 + 5
+ 0.204× 5

2 + 4

)
≈ 1− (0.159 + 0.170) ≈ 0.671 (4.12)

4.6 Publication
Part of the work described in this chapter has been previously published at the First
Conference on Machine Translation in 2016 [McCaffery and Nederhof, 2016]. The paper
was submitted as a system description to the Metrics Task. Additionally, a set of 160,951
scores was contributed, to be evaluated using the same process as the rest of the systems
submitted to the Conference. We also ran a smaller-scale experiment using translations
produced during WMT 2015 [Bojar et al., 2015].

For the sake of simplicity and conformity with other submissions, we only submitted
scores from a single configuration of DTED to the main Shared Task. In the interests
of brevity, we chose the one with the fewest dependencies, namely activating only the
‘b’ flag. The experiments were thus limited in scope, unable to assess the full extent of
DTED’s functionality.
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In addition to limitations from the configuration submitted, the evaluation technique
in the Conference was not fully aligned with the goals of our tool. While DTED has
been designed to investigate the ordering of words, the judgments against which it was
compared were related to more general quality. While the exact criteria with which to
determine this quality were left up to individual judges, they can be assumed to account
for word choice, fluency and other factors which DTED is specifically intended to bypass.

The experiment we ran prior to submission, whose results were generated on WMT
2015 data and were reported in the paper, included several minor variations on DTED’s
configuration. Specifically, we ran the tool on flattened structures (Section 4.4) as well as
normal dependency trees, and calculated system-level scores (Section 3.3.3) both using
alignment-based weighting and arithmetic means. We found that the weighting had little
effect on the scores, while the flattening significantly worsened performance as predicted.
Note that the WMT 2015 data included in this experiment was in the same format as that
of WMT 2016, resulting in the same mismatch in objectives described above.

Due to the mismatch between the priorities of our tool and those of the WMT eval-
uations, we do not rely on the published results for our primary evaluation of DTED.
Instead, see Chapter 7 for a more tailored and in-depth experimental setup.

4.7 Limitations
While we believe DTED to be a highly relevant tool for investigating structure in ma-
chine translation, it is nonetheless imperfect. Its primary limitation comes in its lack of
consideration for the severity of the errors it observes.

Specifically, when observing any individual node in a tree, the algorithm can assign
one of exactly three judgments: the word is correct (a zero-cost ‘match’ operation is pos-
sible), roughly approximates to something in the opposing tree (a non-zero cost ‘match’)
or does not correspond with anything in the other tree (requiring a ‘delete’).

These three options do not provide much opportunity for nuance in DTED’s scores.
Consider again the sentences in Table 3.1 (page 21). Sentence pair 3 may be considered a
serious mistake, causing the intended meaning of the sentence to be difficult for a human
to extract, while the mismatch in order in sentence pair 2 is arguably not even an error.

While these two facts are likely to be encoded in a dependency parse of the two
sentences, in both cases DTED will detect an irreconcilable difference and assign similar
penalties. Even in the case of sentence pair 4, where the mismatch is localised to a
particular subtree, DTED will be forced to apply at least one maximum-severity ‘delete’
operation despite the impact on comprehensibility being almost nonexistent.

This lack of flexibility necessarily limits the accuracy with which DTED can encode
flaws in translation word order. This in turn makes its relevance to our central question –
that of assessing the impact of structure on evaluation – very specific. We can consider
DTED to be an assessment of the number of errors which exist in a given sentence: a
somewhat naïve broad-strokes investigation of quality.

This approach provides a limited intrinsic insight into the question of structure, along
with more comparative insight when considered along with other tools whose goal is to
investigate the severity of the mismatches detected in addition to their quantity. This is
the goal of our next project, DERP, described in Chapter 5.
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5.1 Introduction
While our first tool, DTED (Chapter 4), represents a number of subtly different ways to
measure the number of inaccuracies to do with word order in machine-produced transla-
tions, its approach to solving the problem is far from the only one possible.

DTED has a number of limitations, as described in Section 4.7: most notably these
are tied to its ability to do little more than count individual mismatches between words’
positions. In practice, we may wish to additionally quantify the severity of those mis-
matches in order to produce a more nuanced score. DTED also ignores a fundamental
feature of dependency parses, namely the labels associated with dependency links.

Our second tool, DERP (Dependency Edit Rating with Paths), represents an attempt
to account for the more detailed information we would like, through the comparison of
paths between aligned nodes in the two trees. Its processing takes into consideration
the dependency labels along those paths. Similarly to DTED, DERP is based on an
algorithm which, while well-known in its own area, has to our knowledge hitherto never
been applied to the field of machine translation evaluation. This is Kruskal’s algorithm
for the minimum spanning tree [Kruskal, 1956]. While our final algorithm is similar to
the existing one, we must nonetheless adapt this last to apply to our own domain.

Specifically, the input to DERP is broadly the same as that to DTED. Given a hy-
pothesis sentence and a reference sentence, we parse both using one of two off-the-shelf
parsers to produce dependency trees. Separate alignment tools also produce symmetric
mappings between words in the two sentences. These three pieces of information are
then passed to the algorithm, which must finally produce a measure of their similarity in
the form of a normalised score in the range [0,1].

In order to address the above shortcomings of DTED, DERP has a very specific remit:
evaluating word order through detecting not only which nodes are incorrectly positioned,
but also how severe such mistakes are. Our primary assumption is that through infor-
mation about all sentence errors which is more detailed than that used by DTED, DERP
will be able to provide more reliable and accurate indications of the quality of the word
ordering in any given sentence.

While this can be done without the use of sentence structure, our secondary hypoth-
esis is that by building in as much syntactic information as possible in the form of de-
pendency trees, we can provide more relevant information for both our tools and thus
increase their accuracy. This contributes to our overarching goal of investigating the ef-
fect of dependency structures on this area of evaluation. To this end, we have provided
two versions of DERP: one which utilises parsed dependency trees, and another which
eliminates the structural information from such a parse before its execution as described
in Section 5.10.

5.2 Motivation & definitions
To pursue our first hypothesis, namely utilising more detailed inspection of our sentences
than that of DTED, our first task is to determine which features of the trees we inspect
might contain information about the severity of any given word order mismatch. The
method we have chosen focuses on the paths between different nodes. Our central as-
sumption is that a comparison of the path between two nodes in a hypothesis tree against
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the corresponding path between two related nodes in a ‘correct’ reference tree will pro-
vide a measure of information about whether those two nodes are correctly positioned
relative to each other.

5.2.1 Dependency trees
Before we can discuss the encoding and comparison of paths, we must introduce certain
basic concepts. First and foremost among these are dependency trees, defined in more
detail in Section 3.4.3. We recall that a dependency tree consists of a series of nodes
representing words, linked together by edges whose labels indicate syntactic relations
between those words.

The nodes or vertices within these trees represent individual words, while edges refer
to the dependency relations between nodes. Three pieces of information are associated
with each edge: the two nodes it connects, and the dependency label associated with the
relation. The label encodes in a simple manner a meaningful measure of the semantic na-
ture of the relationship between the two words. We will often consider edges as members
of paths between pairs of nodes: such paths can pass through any number of adjacent
edges.

We use a variable name such as nD to refer to a node in a dependency tree D. The
set of nodes in such a dependency tree is denoted by ND. Paths between nodes are
referenced by a 2-tuple (nD,mD) indicating the nodes they connect. We do not use a
separate notation to refer to individual edges, which are simply considered to be paths of
length one.

Dependency trees are always considered in pairs, with one being referred to as D
and the other as D′. Generally, the two trees refer to a machine-produced hypothesis
translation and a human-produced reference translation assumed to be correct, though
which of these is referred to as D and which as D′ is unimportant. Despite this, purely
for consistency we refer to reference trees as D and hypothesis trees as D′ in the figures
throughout this chapter.

Pairs of dependency trees have one important link, as discussed in earlier chapters:
individual nodes may be aligned through a separate mapping. C ⊆ ND×ND′ is a relation
between nodes indicating alignment. We say nD ∈ ND and nD′ ∈ ND′ are aligned if
C(nD, nD′), with each node being a counterpart of the other, and define AD and AD′ to
refer to the sets of all aligned nodes in the two trees.

AD = {nD ∈ ND | ∃nD′ ∈ ND′ : C(nD, nD′)} (5.1)
AD′ = {nD′ ∈ ND′ | ∃nD ∈ ND : C(nD, nD′)} (5.2)

A key assumption we make, in keeping with a common trend in our field described
in Section 3.4.5, is that while any number of nodes in D′ may be aligned to a single node
in D, the inverse is not true: no node in D′ may be aligned to more than one node in D.
It is still unimportant which of the two is the hypothesis and which the reference. This
assumption of one-to-many ordinality is a simplification for the sake of clarity, and can
be partially relaxed without loss of generality as discussed in Section 5.7.

Alignment mappings permit us to relate pairs of paths in addition to pairs of nodes:
a path pair (nD,mD, nD′ ,mD′) refers to two paths (nD,mD) and (nD′ ,mD′) such that
C(nD, nD′) and C(mD,mD′).
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5.3 Paths
To evaluate in a granular manner the differences between trees, we investigate individ-
ual paths between pairs of nodes. Our key assumption is that in two trees with similar
structures, the paths between pairs of aligned nodes will have similar features.

To assess the quality of an individual path in one dependency tree relative to an equiv-
alent path in another, we apply a series of edit operations on the relevant features, calcu-
lated using the well-known technique of Levenshtein distances [Levenshtein, 1965], also
an inspiration for DTED. However, in order to calculate Levenshtein distances between
paths, we must first encode them into comparable strings.

5.3.1 Path encoding
When encoding paths into a format with which we can calculate disparities, we must
consider which features will provide meaningful information. We consider three aspects
of a path to be important for any comparison: the horizontal direction (left to right or
right to left); the vertical direction (which edges are ascending and which descending);
and the actual dependency labels of those edges.

To encode the horizontal direction of the path, introduce two direction symbols indi-
cating the relative positions of the first node n and last nodem of the path. Direction here
is defined in terms of the original sentences, such that two direction symbols are possible:

α: the word corresponding to n is to the left of that of m

β: the word corresponding to n is to the right of that of m

To account for the vertical direction of the edges in any path, we separate it into two
components. Each is an ordered sequence of dependency labels, representing the edges
respectively before and after the ‘highest’ node p: the node with least depth from the
root. Note that in the special cases when either n or m is in fact the highest node, one or
other of these components will be empty.

We can now encode individual paths in a triple containing all relevant information: its
three members refer to the string χ of labels from the ascending portion of the path (from
n to p), the direction symbol ψ alone, and the string ω of labels from the descending por-
tion of the path (from p to m). We refer to these triples as encoding(n,m) = (χ, ψ, ω).
We can for example represent the two paths between nodes the and Sherlock in the hy-
pothesis and reference sentences in Figure 5.1 as the triples (DET DOBJ, β, NSUBJ) and
(DET NSUBJ, α, DOBJ CMP) respectively.

5.3.2 Path disparity
Having encoded in strings the features of paths which we wish to consider, we must
apply our chosen comparison technique of Levenshtein distances [Levenshtein, 1965] to
produce a measure of the disparity between them. We refer to Levenshtein distances
through the function l, which takes two strings and returns a count of the operations
required to convert one to another.

In our implementation of l, we permit substitution (rename) operations in addition
to deletions and insertions, all assigned equal cost. This is to allow for words occurring
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Figure 5.1: Sample dependency trees. Matching colours indicate aligned words, while
nodes in black are unaligned. Grey capital letters indicate dependency labels.
Hypothesis: a Sherlock becomes the detective
Reference: the detective is becoming a Sherlock Holmes

in a similar position in a tree but with different labels to be matched at a reduced cost:
while all operations are equally costly in themselves, substitutions reconcile two disparate
nodes in a single operation, providing a lower cost per affected node than a combination
of deletions and insertions. We consider that trees with a similar structure but disparate
labels may have been subject to relatively minor parse errors, e.g. simple mis-tagging, or
a dramatically different set of tags being required due to the insertion of one erroneous
word.

However, we do not permit transpositions (swaps) as unit operations. This is for the
simple reason that as we are investigating word ordering, we wish to assign a maximal
penalty – namely two deletions and a substitution – for a pair of transposed labels A B

and B A: i.e. to any error which is simply a representation of mismatched ordering.
This is strengthened by the observation that transpositions in dependency labels are

rarer and less intuitively simple than those of individual words. This is a result of the
fact that the order of dependency edges is tied to the ancestry of the relevant nodes: two
swapped labels indicate that the relationships between a node and its parent, and the
same node and one of its children, have been inverted. This has no intuitively obvious
interpretation, in contrast to the relatively simple situation where two words have been
swapped. The latter case is likely to be a minor error in ordering, such as an adjective and
noun being swapped between different qualities of translation from French to English.

For any given pair of paths we make three separate calls to l, calculating the disparity
in the ascending and descending portions of the paths and between their direction sym-
bols. The results of these three calculations are added to produce an overall disparity
L.

We avoid combining the three features into a single string for each sentence to en-
sure that the direction symbol is treated entirely separately from the dependency-label
characters in the strings. Were the components to be combined for a single Levenshtein
calculation, it would be possible to simply delete the direction symbol from each string
in two operations, allowing matching of strings in counter-intuitive manners.

To illustrate this, consider a path pair whose paths in D and D′ are encoded as
(XCOMP XCOMP, α, ) and (, β,XCOMP XCOMP) respectively. Each of these paths is com-
posed of two edges with identical labels, linking a node to its grandparent in one tree and
to a grandchild in the other. Our intuition dictates that this is a significant order error,
dramatically altering the relative meaning of the words: it should thus receive as great a
penalty as possible.
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However, were we to combine all components to calculate l using the two strings
XCOMP XCOMP α and β XCOMP XCOMP, it would be possible to simply delete both
direction symbols. With the remaining symbols matching without any further operations
required, this would result in a cost of 2: much cheaper than the 5 operations required
when the paths’ components are compared individually.

In addition to the actual Levenshtein distance between paths, we introduce Lmax, the
maximum possible edit distance between two paths. We will use this when normalising
the final scores, as discussed in Section 5.8. We observe that such a distance between
any two strings involves performing one rename operation to match every symbol in the
shorter of the two strings with one in the longer, then deleting any remaining symbols in
the longer string. This results in a maximum cost for any given string pair equal to the
length of the longer of the two, and a maximum cost for any encoded path pair equal to
the sum of the three maxima for each pair of strings in the paths’ triples.

For encoding(nD,mD) = (χD, ψD, ωD) and encoding(nD′ ,mD′) = (χD′ , ψD′ , ωD′):

L((nD,mD, nD′ ,mD′)) = l(χD, χD′) + l(ψD, ψD′) + l(ωD, ωD′) (5.3)
Lmax((nD,mD, nD′ ,mD′)) =max(|χD|, |χD′ |) + 1 +max(|ωD|, |ωD′|) (5.4)

Note that L(nD,mD, nD′ ,mD′) = L(mD, nD,mD′ , nD′). This is because distances
are defined purely by differences between the paths, rather than by any absolute ordering.
Should mD and nD be transposed, the requirement that the two end nodes of a path be
aligned dictates that mD′ and nD′ must also be exchanged. Thus, both paths will be
encoded in the reverse order, without affecting the essential characteristics of the resulting
strings.

5.4 Spanning
While the concepts introduced in the previous section allow us to calculate the disparity
between the paths between any pair of nodes in each of two trees, it does not yet give us
any information about the overall quality of a tree. Recall our central assumption above:
that the comparison of paths between nodes in a hypothesis and a ‘correct’ reference tree
gives us an indication of the quality of the former’s nodes’ positioning relative to each
other. To scale this up to apply to a full tree, we consider it necessary to produce such
comparisons for all nodes across both trees. An aggregate summary of all such positions
can then be expected to represent the level of (dis)similarity between the two entire trees.

Happily, we neither wish nor need to calculate path distances between every possi-
ble pairing of nodes. While such calculations would be extremely time-consuming to
calculate, they would also have more theoretically important downsides.

Consider the case illustrated in Figure 5.1 (page 59), where the subtrees rooted at de-
tective and at Sherlock have been swapped. This arguably refers to only two order-related
mistakes – the improper positioning of two nouns – but has secondary consequences on
the two determiners the and a. Were we to consider every possible pair of nodes in our
sentence-level score, we would necessarily include both a = (a,becomes,a,becoming)
and b = (the,becomes,the,becoming). Inspection of each of these pairs would detect di-
rectionality mismatches between the positions of both determiners.
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While this is correct, in that the nodes are in fact wrongly positioned in the two trees,
the actual fault arguably lies with (and only with) the positions of their respective par-
ents, ‘Sherlock’ and ‘detective’. These more intuitively relevant errors would be detected
when inspecting the pairs c = (Sherlock,becomes,Sherlock,becoming) and d = (detec-
tive,becomes, detective,becoming) respectively.

Including the two path pairs a and b, in addition to c and d, would thus twice take into
account the errors relating to the two nouns, as a necessary consequence of the erroneous
nodes having dependents. We consider that this would be inappropriate, as in a significant
intuitive sense the determiners are in fact correctly positioned: as immediate dependents
of the appropriate noun.

Our solution to avoid this duplication is to require that as much as possible, no pair
of paths can be considered more than once in our evaluation. In the example above, the
paths described by a and b traverse the sections of the trees also covered by c and d.
Using this fact to reject a and b prevents any mismatch from being considered in more
than one path.

In order to produce a score representing as much information as possible about a
dependency tree, we must fulfill another obvious criterion: the pairs of paths we select
must, if only indirectly, relate every single aligned node in both trees to every other node
in the same tree. Failing to do so would result in the omissions of certain paths which
could contain errors, resulting in unexpectedly encouraging scores if the omitted paths
did contain errors, or discouraging ones if they did not.

5.4.1 Meta-graphs

As a result of the two constraints above – relating every pair of nodes without considering
any path more than once – we introduce the principle of a spanning tree. For this, we
must first introduce the concept of a meta-graph: an undirected weighted graph distinct
from, yet based on, one of the original dependency trees.

Before defining a meta-graph in detail, we must briefly remark that a meta-graph can
be generated from either or both of the original dependency trees. However, we will in
this section consider only one meta-graph for any given pair of dependency trees: we
show in Section 5.5 that we have no need of the meta-graph which could be created from
the opposing tree in order to accomplish the goals described above.

A meta-graph is a simplification of the concept of a dependency tree, with a number
of important differences separating the two. The first of these is that the nodes in a
meta-graph M do not include any unaligned nodes: the set of its nodes NM is thus equal
to AD, the set of aligned nodes in the dependency tree D on which it is based. The
alignment relation on these nodes remains unchanged, as does our assumption of one-to-
many alignment ordinality in one direction only. Thus, any meta-graph node nM must
have exactly one counterpart nD′ in the dependency tree D′ on which M is not based.

The edges between nodes in a meta-graph are linked to those of both related depen-
dency trees, in one specific aspect. We assign the weight |(n,m)| of each edge in a
meta-graph based on the paths in the dependency tree between the edge’s two end-point
nodes n,m ∈ NM = AD. Such weights are calculated based on the disparity between
the path in the dependency tree D on which the meta-graph is based, and the related path
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in the opposing dependency tree D′. The disparity between the paths is calculated using
Levenshtein distances, as described above.

Our assumption of alignment ordinality allows an edge case to arise with path
weights: multiple nodes n,m to be aligned to the same counterpart nD′ = mD′ . In this
case, the path (nD′ ,mD′) contains no edges, preventing us from producing any meaning-
ful Levenshtein distances. Rather than comparing (n,m) to this empty path, we assign a
flat cost of 0 to the edge.

|(nD,mD)| = L((nD,mD, nD′ ,mD′)) for C(nD, nD′), C(mD,mD′), nD′ 6= mD′

(5.5)

|(nD,mD)| = 0 for C(nD, nD′), C(mD,mD′), nD′ = mD′

(5.6)

Note that meta-graphs are inherently strongly connected. This is a consequence of
their edges being based on the nodes in a dependency tree which itself, by nature, is
connected. As such, a path must exist between every pair of nodes in the tree. From each
of these paths, a direct edge can be generated within the related meta-graph.
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Figure 5.2: Dependency trees from Figure 5.1 with the meta-graph generated from the
reference tree, using a similar visual convention to Figure 5.1. Weights for meta-graph
edges are described in Table 5.1 (page 69).

Using the formalism of a meta-graph, we can now fulfill the two criteria laid out
earlier: collecting path distances while taking into account every aligned node in a given
dependency tree with respect to every other from the same tree, and yet inspecting none
more than once. We observe that any solution to these constraints will represent a special
subgraph of the associated meta-graph: a spanning tree.

A spanning tree is a tree which connects every node in a graph: it thus provides a
path from any node to any other – thus allowing each node to be taken in the context of
every other – with its nature as a tree preventing cycles. A cycle, were one to exist, would
represent multiple ways to travel from one node to another, in turn implying the relative
positions of the two nodes being considered in more than one way: a duplication of the
inspection of the disparity between the two nodes’ positions.

5.4.2 Minimality
We have thus far determined that in order to evaluate the severity of the mismatches in po-
sition between aligned nodes in a dependency tree, we can produce spanning trees within
the meta-graph based on that dependency tree. However, many different spanning trees
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exist for any given graph: we must further decide which of these we wish to find. Our
decision is to select edges with the cheapest combined cost, thus producing a minimum
spanning tree in the meta-graph.

Our reason for this is very similar to one of our reasons for producing a spanning tree:
to prevent the repeated inspection of edges. Recall that any edge in a meta-graph is based
on a path in the base dependency tree: any set of edges in the meta-graph thus indicates
a unique set of paths within that dependency tree, with each path including a number of
dependency edges. To truly achieve our goal of avoiding repeatedly observing relations
between words, we must ensure that even in the dependency trees the collection of these
edges contains as little duplication as possible.

While in a meta-graph all edge duplication is avoided by the use of a spanning tree,
the situation is more complex when considering the dependency trees from which such
meta-graphs are generated. The complexities are the result of the existence, in depen-
dency trees, of unaligned nodes. Given these, paths may exist between different pairs of
aligned nodes which nonetheless share an edge connecting two unaligned nodes, or con-
nect one unaligned and one aligned node. This can be the case even if the paths between
aligned node pairs would not result in cycles in the associated meta-graph, as illustrated
in Figure 5.3.
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Figure 5.3: A sample sentence, using a similar visual convention to Figure 5.2, for which
dependency edges must be considered multiple times for any spanning tree in the meta-
graph
Reference: It was the light pink salmon mousse

In the example, three of the four aligned nodes – the, pink and salmon – are imme-
diate children of a single unaligned ancestor, mousse. Notice that in the meta-graph, any
spanning tree must necessarily involve at least one node being part of multiple edges,
e.g. (the,pink) and (pink,salmon) both containing the node pink. In the dependency tree,
the edge connecting such a node to the shared ancestor – (pink,mousse) here – must be
considered in multiple paths.

Note that this example represents an edge case, requiring the parent of an aligned
node to not itself be aligned, though this is far from rare. In cases when the parent of
multiple aligned nodes is itself aligned, errors between that parent and its child(ren) can
be considered separately from those between the parent and any nodes related to it via its
own parent, as discussed in Section 5.4 and illustrated here by the nodes light and pink.

Specifically, in the case of any meta-graph edge such as (light,salmon), whose depen-
dency tree path includes all edge(s) from a meta-graph edge with a shorter dependency
path such as (light,pink), will almost exclusively have a cost equal to or greater than the
shorter path. This is because any errors tied to dependency labels in the shorter path must
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necessarily also be included in the longer path due to its inclusion of the same edges: the
only difference is that the longer path will contain more edges. While these edges may
or may not increase the cost of the longer path, they cannot reduce it.

Given our goal of reducing as far as possible the repeated selection of individual
dependency graph edges, we can take advantage of this relationship between short and
long paths’ weights. Simply put, a prioritisation of low-weight edges will avoid as much
as possible any paths such as (light,salmon) which could also be represented by a series
of shorter paths. In this manner, a minimum spanning tree in the meta-graph will usually
represent the fewest possible dependency edges, while still ensuring that all aligned nodes
are connected.

Note that exceptions exist to the rule that longer paths must cost at least as much
as shorter sub-paths. Consider the example shown in Figure 5.4. With no mismatches
between labels for any pairs of edges, only direction symbols may influence weights. The
fact that a is before Holmes in both trees means that the direction symbols in both trees
match for the longer path (a,Holmes), but the unusual swap of the position of Sherlock
relative to a causes the shorter path (a,Sherlock) to require an edit operation to match
direction symbols.

As direction symbols can necessitate a maximum of one edit operation, in order for a
shorter path to be strictly more expensive than longer ones all labels must correspond for
all relevant edges. This must also occur in situations where the order of two words in the
sentence is exchanged. We consider the combination of these phenomena to be unlikely
enough that such edge cases do not invalidate the powerful merits of cost minimality.
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Hypothesis Reference

Figure 5.4: Sample dependency trees, using a similar visual convention to Figure 5.2,
containing a two-edge path with lower L cost than a one-edge sub-path
Reference: a Sherlock Holmes
Hypothesis: Sherlock a Holmes

5.5 Singularity of spanning trees
We have thus far discussed our motivations for producing minimum spanning trees, and
the mechanisms through which we generate meta-graphs and the weights of edges within
them. Before we can approach the question of producing the spanning trees themselves,
we must address the duality of our trees.

We remember that the edge weights in a meta-graph are defined in terms of pairs of
nodes which are shared between two dependency trees. Both dependency trees are thus
essential for any meta-graph, although we generate a meta-graph from the set of aligned
nodes in just one of the two. As mentioned in Section 5.4.1, the dependency tree on
which the meta-graph is based is selected through the ordinality of the alignment relation
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C between the trees. Specifically, we stipulate that no node in one dependency tree D
– the dependency tree whose node set ND is used to generate the meta-graph – can be
aligned to more than one in the other, D′.

However, it would not be meaningless to create two separate meta-graphs, one from
D and one from D′. Indeed, given our goals of considering every node in both sentences,
it would appear at first glance to be necessary to produce two such graphs in which to
generate two separate spanning trees.

In this section, we demonstrate why this assumption is incorrect and only one meta-
graph is needed. This greatly simplifies the problem we need to solve, whose discussion
is continued in Section 5.6. To justify the simplification, for this section only we assume
that two meta-graphs have been produced, based on the nodes fromD andD′ respectively
and named M and M ′, and a spanning tree is produced in each. We show that the result
is equivalent, in all respects which we consider important, to that of a single spanning
tree in the meta-graph based on D.

We rely here on the assumption of strict one-to-many alignment ordinality between
D and D′. This is done to simplify the explanation, yet in Section 5.7 we show that
this assumption is in reality unimportant and the choice of base dependency tree can be
arbitrary.

5.5.1 Mapping edge sets

We begin by observing a number of relative characteristics of the two meta-graphs. We
can consider two edges, one in each meta-graph, to be related if the nodes connected
by each are themselves aligned. More formally: for any pair of edges (nM ,mM) and
(nM ′ ,mM ′) in meta-graphs M and M ′ respectively, we consider that the edges are coun-
terparts if C(nM , nM ′), C(mM ,mM ′).

The assumption we have made about the ordinality of aligned nodes provides further
information about counterpart edges. Recall our stipulation that no node in one meta-
graph M be aligned to more than one in the other, M ′, coupled with the requirement by
the definition of meta-graphs that all nodes must be aligned to at least one in the opposing
meta-graph. Given an edge (nM ,mM) in M , we thus have two possibilities for edges in
M ′: there can be either zero edges (nM ′ ,mM ′) in M ′ if both nM and mM are aligned to
the same node in M ′, or one if they are aligned to separate nodes.

Given a set of edges TM in M , we can use this knowledge to generate a set TM ′ in M ′

of maximum size equal to that of TM . We consider that due to the shared nature of the
generation of their weights, the generation of TM ′ is a direct byproduct of the generation
of TM rather than a separate process.

Further, we consider that it would be unreasonable to produce two edge sets which
were not related through this mechanism: it would be meaningless to include any edges
in either TM or TM ′ without similarly including edges in the other such that the two
trees are related through counterpart edges. For example, to include in TM the edge
(becoming,the) in the reference meta-graph in Figure 5.2, one must also include in TM ′

the edge (becomes,the) in the hypothesis meta-graph as each edge is only meaningful in
the context of the other.
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5.5.2 Mapping minimum spanning trees
We now consider a special case of TM , such that it fulfills the criteria stated above:
representing a minimum spanning tree in M . We investigate which of these properties
transfer to TM ′ .

First, we trivially observe that the total weight of the edges in TM ′ must equal that of
TM . This is because the edge weights are defined through the alignments relation C, the
same mechanism used to generate the set TM ′ itself. Thus, all one-to-one edge mappings
must have the same weights. In the case of edges (n,m) in TM which have no counterpart
in TM ′ , the definition of the weight |(n,m)| forces the cost of such edges to be zero.

From this, we can show that the combined cost of TM and TM ′ is minimal. Given that
the weights of the two trees are equal, the total cost cannot be reduced in one tree without
reducing it in the other. However, by definition the spanning tree TM is minimal, so its
cost cannot be reduced. If there can be no reduction in cost of either tree, their combined
weight must be minimal.

Finally, we demonstrate that TM ′ must represent a connected graph in M ′. Consider
a situation which invalidates this: two nodes nM ′ ,mM ′ ∈ NM ′ are not connected by any
contiguous path in TM ′ . We observe that their aligned counterparts nM ,mM ∈ M such
that C(nM , nM ′), C(mM ,mM ′) must be connected in TM due to its nature as a spanning
tree, with PM representing the set of edges in the (unique) path between them.

For each edge (nM ,mM) in PM there are two possibilities, either of which allow us
to consider that their counterpart(s) in M ′ are connected: either those counterparts are
the same node, or they are connected by an edge which must be in TM ′ in order to allow
(nM ,mM) to itself be in TM . Note that the contiguity of edges in PM requires that all
nodes be part of exactly two edges; as these nodes transfer uniquely to the counterpart
nodes in M ′, the path in P ′M must similarly be contiguous. Thus, the set of all counter-
parts of edges in PM must connect nM ′ and mM ′ , and we have a contradiction.

With the properties of minimality and connectedness being shared between TM and
TM ′ , we can consider that the two represent the best possible solution to our problem.
Most importantly, the fact that both are connected graphs ensures that we have considered
every error relative to every other, ensuring that no potential errors are ignored. The
minimality of their combined cost, and the nature of TM as a spanning tree without cycles,
ensure that we have duplicated errors as little as reasonably possible.
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Figure 5.5: Sample meta-graphs, using a similar visual convention to Figure 5.1, with
only black edges included in possible minimum spanning trees. Weights are indicated
next to their respective edges.

Note that it is entirely possible for TM ′ to contain cycles, for the simple reason that it
can contain fewer nodes than TM . If multiple nodes in M map to single nodes in M ′, as
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we have allowed, nodes which are not directly connected inM may be directly connected
in M ′. As such nodes must be indirectly connected in M and thus also in M ′, this results
in a cycle as illustrated in the synthetic example in Figure 5.5.

This situation represents a simple choice, as the possibility of duplication in M ′ is
necessary to guarantee that all nodes in M are connected. We consider that ensuring that
all errors in M have been considered, and thus allowing duplication, is more important
than preventing duplication in M ′ at the cost of entirely ignoring node comparisons.

5.6 Producing spanning trees
Having demonstrated that by producing a minimum spanning tree in the larger of our
two graphs M we have fulfilled our goals of representing every error at a minimal cost,
we must now solve that simpler problem. We are able to utilise an existing algorithm to
generate a set of edges forming a minimum spanning tree in M .

The algorithm we have chosen is the widely used Kruskal’s algorithm, which has
been shown to always result in a minimum spanning tree when applied to fully con-
nected graphs with arbitrary positive weights [Kruskal, 1956]. It runs in O(n log(n))
time where n is the number of nodes in M [Nešetřil et al., 2001], an important factor
when calculating scores for large numbers of sentences.

5.6.1 Procedure
The (minimally) adapted version of Kruskal’s algorithm which we use in DERP is shown
in Algorithm 2, and described below.

Algorithm 2 Kruskal’s algorithm as implemented for DERP
1: procedure KRUSKAL(NM )
2: edges← {} . edges is stored as a priority queue
3: for all n ∈ NM do
4: set(n)← unique value . Initialise sets
5: for all m ∈ NM : m 6= n do . Initialise edge costs
6: edges← edges ∪ {(n,m, |(m,n)|)}
7: cost← 0 . Initialise cost
8: while more than one set exists in NM do . Terminate when connected
9: {n,m,weight} ← pop cheapest element in edges

10: if set(m) 6= set(n) then . All moves affect disparate sets
11: for all o ∈ NM : set(o) = set(m) do
12: set(o)← set(n) . Unite the two sets
13: cost← cost+ weight

14: return cost

We begin by putting every node from NM in a singleton set by itself and initialising
the global cost to 0. We also create a set edges of triples, with each element indicating
two nodes and the cost of the edge between them.



68 CHAPTER 5. DERP: DEPENDENCY ERROR RATING WITH PATHS

We arbitrarily extract a triple from edges such that the edge cost is the lowest remain-
ing in edges and its two nodes are not in the same set. We add the edge cost to the global
cost and then unify the sets of both nodes, representing the inclusion of the edge in the
appropriate spanning tree. We repeat this process until all nodes in NM are in the same
set. We then return the total cost of all selected edges.

5.6.2 Example
The weights of the edges in the meta-graph shown in Figure 5.2 are shown in Table 5.1,
which also contains one possible order in which the algorithm could select edges.

We select the reference sentence to be the one from which we generate meta-graph
M , as a result of its having multiple nodes aligned to a single hypothesis node. Three
edges in the meta-graph have weight 0. Two of these, (Sherlock,a) and (detective,the),
are simply paired with identical paths in the hypothesis tree, while one – (becoming,is) –
has a default cost of 0 due to its two nodes being aligned to a single one in the hypothesis.
These are the first three edges selected by the algorithm, their order being unimportant.

After the 0-cost edges have been selected, the cheapest remaining edges cost 2. These
are (becoming,detective) and (becoming,the), of which the algorithm first selects the
former. The latter is thus ineligible to be selected: nodes becoming and the belong already
to the same set, representing the indirect path of already-selected edges (via detective)
between the two.

The algorithm must then arbitrarily choose between (becoming,Sherlock),
(becoming,a) and (is,a), as they share edge weight 3 while (is,detective) is ineli-
gible through its nodes being already indirectly connected via becoming. Selecting
(becoming,Sherlock) unites all sets and results in the spanning tree shown in Figure 5.6,
with a total cost of 0 + 0 + 0 + 2 + 3 = 5.
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Figure 5.6: Dependency trees from Figure 5.1 with the meta-graph generated from the
reference tree, using a similar visual convention to Figure 5.1. In addition to the infor-
mation presented in Figure 5.2, the darker meta-graph edges indicate that they may be
selected by the algorithm in the order described by their labels, as per the ‘#’ column of
Table 5.1. See the same table for the costs associated with each edge.

5.7 Other alignment ordinalities
Thus far, we have relied on a central assumption stated earlier: that no node in one of
the two dependency trees may be aligned in C to more than one in the other tree. This
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nD mD (nD,mD) (nD′ ,mD′) L Lmax #
becoming is (,β ,AUX) N/A 0
becoming Sherlock (,α,DOBJ CMP) (,β ,NSUBJ) 3 3 4
becoming detective (,β ,NSUBJ) (,α,DOBJ) 2 2 3
becoming a (,α,DOBJ CMP DET) (,β ,NSUBJ DET) 3 4 -
becoming the (,β ,NSUBJ DET) (,α,DOBJ DET) 2 3 -
is Sherlock (AUX,α,DOBJ CMP) (,β ,NSUBJ) 4 4 -
is detective (AUX,β ,NSUBJ) (,α,DOBJ) 3 3 -
is a (AUX,α,DOBJ CMP DET) (,β ,NSUBJ DET) 3 3 -
is the (AUX,β ,NSUBJ DET) (,α,DOBJ DET) 4 5 -
Sherlock detective (CMP DOBJ,β ,NSUBJ) (NSUBJ,α,DOBJ) 4 4 -
Sherlock a (,β ,DET) (,β ,DET) 0 2 1
Sherlock the (CMP DOBJ,β ,NSUBJ DET) (NSUBJ,α,DOBJ DET) 4 5 -
detective a (NSUBJ,α,DOBJ CMP DET) (DOBJ,β ,NSUBJ DET) 4 5 -
detective the (,β ,DET) (,β ,DET) 0 2 2

a the
(DET CMP DOBJ,
β,NSUBJ DET)

(DET NSUBJ,
α,DOBJ DET)

4 6 -

Table 5.1: Edge weights for the meta-graph in Figure 5.2. nD,mD are reference
nodes, implying unique nD′ ,mD′ in the hypothesis. L and Lmax are applied to
(nD,mD, nD′ ,mD′). ‘#’ indicates one possible order in which these edges’ nodes’ sets
are united by DERP.

restriction, common among real-world alignment tools as discussed in Section 3.4.5,
dramatically reduces the domain of our algorithm: it permits us to simplify the problem
at hand to that of a spanning tree in a single meta-graph. While in theory it prevents a
number of legitimate alignments, in practice such alignments are rare.

The most practical consideration behind our assumption is that it matches the align-
ment tools we use: these do not themselves generate many-to-many alignments. Indeed,
the two systems we employ, GIZA++ [Och and Ney, 2003] and cdec [Dyer et al., 2010],
do not produce any more complex alignments than the strict one-to-many alignments
assumed in most of this chapter.

To investigate the limitations imposed by this assumption, we first discuss the issues
which would arise if we relaxed it, allowing many-to-one alignments in both directions or
even many-to-many alignments. These relate to the requirement that each of the relevant
sets of nodes be connected by DERP at a minimum overall cost.

To ensure that all nodes in both meta-graphs have been considered, we would need
the DERP algorithm to consider the connected status of both simultaneously. While this
is possible without modifications in the case of strictly (but bidirectional) many-to-one
alignments, it becomes quickly intractable in the case of many-to-many alignments.

5.7.1 Bidirectional one-to-many alignments
In the case of one-to-many alignments which may occur in both directions, the algorithm
still produces an optimal solution to the problem. To show this, we slightly rephrase our
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goal: we wish to determine the minimum total weight for a set of edges connecting all
nodes in each tree.

We show this by imagining a separate post-processing step to the DERP algorithm
detailed above. First, we arbitrarily select one of the two meta-graphs to be the M in
which we generate a spanning tree. The resulting tree TM must be minimal within M for
the same reasons discussed earlier.

We observe that while TM is guaranteed to connect M , the same is not true of its
counterpart TM ′ in M ′. If any node nM in M is aligned to more than one in M ′, no edge
in TM involving nM can connect more than one of those in M ′. As a result, these last can
never be connected together, preventing a spanning tree from being formed in M ′ due to
the lack of full connectedness.

We can solve this problem by further adding edges inM ′ to TM ′ , connecting disparate
sub-trees within TM ′ . Note that the proof of connectedness in Section 5.5 still holds in
all cases except groups of nodes in M ′ which are connected to single nodes in M . Such
nodes can be connected for free by adding edges in M ′ alone, through Equation 5.6.

Having augmented TM ′ with the additional edges required to connect M ′, we notice
that we have now achieved our goal by connecting all nodes in both trees. In the process,
we have not incurred any additional cost, as all extra edges we added had a cost of zero.

This means two things: first, the cost must still be minimal across both meta-graphs,
as it has not increased from a value which was already a lower limit for a simpler problem.
Second, the additional edges were not necessary in order to simply calculate the total
weight as per our goal. The total cost calculated by the original DERP algorithm is thus
equal to the minimum cost including the extra edges, meaning that the original algorithm
is itself minimal in this case.

5.7.2 Many-to-many alignments

In the more complex case where groups of words in one sentence can be aligned to
whole groups in the other, it becomes much more difficult to generate provably optimal
edge weights. This is due to the multitude of ways in which groups of aligned nodes can
be connected.

We first place a restriction on the weight generation we have discussed before, by
requiring that in the case of many-to-many matches only, edges in only one tree cannot
be assigned a weight of zero through Equation 5.6. This is because such zero-cost edges
are a response to an edge case to which no other solution is intuitively reasonable: that
of two nodes which have no distinct pair of counterpart nodes to connect to. With many-
to-many alignments, this edge case is no longer applicable so its solution is not relevant.

If we nonetheless did not impose this restriction, the problem we face would become
much simpler: a procedure similar to that in Section 5.7.1 could be applied to demonstrate
continued optimality. This would in part be to connect all nodes involved in many-to-
many alignments through zero-cost edges in their own trees. However, we consider this
behaviour to be unrepresentative of the complexity involved in the sentences.

Having thus applied the above restriction, we consider the meta-graphs shown in
Figure 5.7. Observe that any node in either meta-graph can be matched with either other
node in its own, with that edge being partnered through edge pairs with any of the three
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edges in the opposing meta-graph. This leads to multiple possible weights for each edge,
each calculated by comparing the path with that of a different pair of counterpart nodes.

This gives rise to an exponential number of possible edges for the algorithm to cal-
culate: with three nodes in each tree in the example, this gives rise to 32 = 9 possible
edge pairs for which the algorithm must calculate path disparities. While this is unlikely
in practice to make the algorithm intractable, as large phrases are likely to have smaller
sub-phrases which can be aligned together, it nonetheless adds complexity.

(walked,from):5
  (walked,away):2

gave

up on

(walked,away):0   

Meta-graph
(Reference)

walked

away from

(gave,on):5
(gave,up):0   

(gave,on):2     

Meta-graph
(Hypothesis)

Figure 5.7: Example meta-graphs with all nodes in each tree aligned to all in the other.
Missing weights cost 6 edit operations; all cheaper weights are shown.
Hypothesis: walked away from
Reference: gave up on

A much more severe problem than simple computational complexity is that DERP is
not guaranteed to produce a solution which is either minimal or connected in both trees.
We first demonstrate the latter claim.

Selecting either meta-graph as M , it may be possible to produce a spanning tree in
that meta-graph while adding only one edge multiple times to TM ′ in the opposing meta-
graph. For example, to connect the Reference meta-graph in Figure 5.7, the algorithm
would select the edge pairs (walked,away,gave,up) then (walked,away,gave,on). While
the algorithm would terminate after this, the node from would be left unconnected in the
Hypothesis.

This limitation could be mitigated by simply continuing to add edge pairs to either
TM or TM ′ until both sets represent spanning trees. However, such behaviour would
prevent the solution from being provably minimal, as we can show in the same exam-
ple. After selecting the above two edge pairs, the algorithm would continue to select
(walked,from,gave,on), resulting in a final cost of 0 + 2 + 5 = 7. However, a cheaper
solution would be to select only (walked,away,gave,up) and (walked,from,gave,on) for
cost 0 + 5 = 5.

To detect the optimal solution in this case, the algorithm would need to be dramati-
cally extended. This would likely involve incorporating nondeterminism: remembering
different alternatives for selecting edges and finally selecting one only once all have been
considered. In any case, it would significantly increase the computational complexity of
the algorithm, making it likely to be unwieldy in practical scenarios.

5.8 Aggregation & normalisation
Having produced a spanning tree in one of our meta-graphs, we can consider the integer
cost of that tree to be a score for the given sentence pair. However, such a cost is not as
versatile as we would consider necessary for an evaluation metric for machine translation,
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for one important reason: it cannot be easily compared between sentences. This is a result
of the cost being directly related to the number of edges in our spanning trees, which in
turn is a function of the number of words in the sentence. Thus, the ranges of scores
possible for sentences with different lengths can vary dramatically, with ‘high’ costs for
a short sentence being potentially trivially low for a longer one.

We address this problem through a process of normalisation, which involves dividing
the total cost produced by the algorithm by a sentence-specific normalisation quotient.
There are a number of possible methods of producing these quotients, each producing
subtly different final scores.

5.8.1 Word count

The most obvious method of producing a quotient which controls for the length of the
sentence is simply to use either the number of words itself or the number of edges in
the spanning tree. These quotients would result in a score representing the average Lev-
enshtein distance across all edges. This approach is intuitively meaningful, but has two
issues.

The more minor of these is that such scores are not in the same [0,1] range as the vast
majority of existing scores in our field. Working with unbounded positive numbers in
some cases but with real numbers strictly in the range [0,1] in others makes comparison
between tools a little more confusing. While this is mathematically unimportant, we
consider consistency with our peers to be an important consideration.

The second and more DERP-specific limitation of using sentence length as a normal-
isation quotient is that it still includes an element of structure in the final score, confusing
comparison between sentences.

Consider two sentences: S, containing sequences of unaligned nodes in the paths
between each pair of aligned nodes, and S ′, with the same numbers of aligned and un-
aligned nodes but for which all unaligned nodes are located in separate subtrees from
aligned ones. Even if similar numbers of dependency edges fail to match between the
two trees, the meta-graph based on S ′ will likely contain many edges with low but non-
zero costs while S will result in a smaller number of meta-graph edges with higher costs.
Dividing by the number of aligned nodes would result in S appearing to have a signifi-
cantly higher error than S ′, while dividing by the total number of aligned and unaligned
nodes would instead skew the result in favour of S.

This disparity can be seen in the examples in Figure 5.8. Dependency labels for
edges are omitted: we imagine, purely for simplicity, that each tree is compared to a
hypothesis tree with identical structure but entirely mis-matching labels, resulting in total
edge weights of 6 and 3 respectively for the two sentences.

In the first, using a normalisation quotient equal to the number of edges in any span-
ning tree in the associated meta-graph (always one less than the number of nodes in the
meta-graph, thus 3) would result in a final score of 6/3 = 2. While this may seem ap-
propriate, applying a similar process to the second sentence would produce a score of
3/3 = 1, a much lower value. Similarly, using the number of edges in the dependency
trees rather than the meta-graphs would result in scores of 3/6 = 0.5 and 6/6 = 1
respectively.
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Figure 5.8: Sample dependency trees, using a similar visual convention to Figure 5.1 but
with dependency labels omitted
Reference 1: The kids had been searching for eggs
Reference 2: One child was a very happy bunny

5.8.2 Worst-case paths

For the reasons outlined above, we reject the simple use of sentence length as a normali-
sation quotient. Instead, we rely on the maximum errors in each individual aligned node
pair, through Lmax (Equation 5.4). These control for all features which contribute to the
Levenshtein distance, including both sentence length and the lengths of individual paths.

Our method of using Lmax to produce a normalisation quotient is linked closely with
our method of generating spanning trees. Each time we calculate weights for an edge in
a meta-graph, we apply L (Equation 5.3) to calculate the Levenshtein distance between
the features of the associated paths in two dependency trees. For each such calculation,
weights can have any value between 0 and an Lmax based on the paths. This theoretically
allows us to normalise each edge weight separately, by dividing the real difference L by
its maximum.

In practice, normalising edge weights before the production of spanning trees would
undermine many of the assumptions we rely on. Notably, we have discussed how the
selection of a minimal tree prioritises short paths over longer ones with potentially more
errors. Longer paths, however, could receive lower normalised scores than shorter alter-
natives containing fewer errors but also fewer error-free edges.

For example, an L result of 1 for the dependency edge (a,becomes) in Figure 5.6
would make it equivalent to the shorter (Sherlock,becomes) without normalisation. How-
ever, the former’s length would cause Lmax to be 3 relative to the shorter path’s 2:
this would result in a normalised score of 1/3 relative to 1/2, causing the algorithm
to strictly prioritise it. This is the opposite of our intended behaviour, which would be
to consider the lack of error in (a,Sherlock) only once: when selecting the edge pair
(a,Sherlock,a,Sherlock) for cost 0.

Instead of applying normalisation before generating spanning trees, we thus consider
it at the end of the algorithm. Each time an edge pair is selected by DERP, its weight (L)
is added to the global final cost for the sentence. In addition, we record the maximum
possible weight (Lmax). Once a spanning tree has been completely generated, we then
divide one by the other to produce a final score. This will necessarily produce a value in
the desired range [0,1].

We also subtract this value from 1 to ensure that a higher value is better, to match our
intuition. Given a complete spanning tree with weights generated from edge pairs in the
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set T , we thus calculate a final score for DERP as follows:

score = 1−

∑
e∈T

L(e)∑
e∈T

Lmax(e)
(5.7)

5.9 Implementation
Having designed an algorithm which is intended to represent a reasonable and granular
solution to the question of evaluating the word order of machine translation sentences
through investigation of structure, we have implemented that algorithm to allow for em-
pirical investigation. Similarly to DTED (Chapter 4), we have produced a prototype
system using the Python language, built using the NLTK libraries [Bird, 2006].

As the generation of dependency trees requires both a trained dependency parser
and a tagger system which may be separate, we have used the same configurations
as for our earlier tool. Described in more detail in Section 3.4, these are: running
the Stanford Parser [Klein and Manning, 2003b] with its own internal tagger, and the
Malt Parser [Nivre, 2003] with both the tagger included in the Stanford Parser and
the maximum-entropy part-of-speech tagger bundled with NLTK [Malecha and Smith,
2010].

In addition to the tags and dependency parses produced by these tools, the alignment
relation C is a key input to DERP. We have generated this using two more external tools:
the widely-used off-the-shelf tool GIZA++ [Och and Ney, 2003], and the word alignment
component of the cdec project [Dyer et al., 2010] from Carnegie Mellon University.

To calculate Levenshtein distances between paths, we have used Python’s ‘Leven-
shtein’ package v0.12.0 [Necas and Haapala, 2014]. As that package uses characters
as atomic units rather than words, we first convert dependency labels into unique but
otherwise arbitrary characters. The same character is used for every occurrence of any
given dependency label, while two dependency labels are guaranteed to be represented
by different characters.

5.10 Flattened version: ‘f’ flag
In addition to running the main DERP algorithm described above using each combination
of the above tools, we have run an altered, simplified version on flattened trees. As
described in Sections 3.4.4 and 4.4, our goal with this version of the tool is to investigate
its accuracy and reliability when deprived of the information provided by the dependency
tree structure.

Flattened DERP is run in a manner similar to flattened versions of DTED: by provid-
ing a simple ‘f’ flag when invoking the algorithm, we instruct it to perform a preprocess-
ing step to remove the structure provided by the dependency parsing. This discards all
information offered by the parse which is not present in the original unparsed sentences:
each node is set to be the (only) child of its immediate predecessor, with all dependency
labels replaced with the uniform (and thus meaningless) label DEP.
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5.10.1 Features
While flattened DERP contains none of the structural information for which the algorithm
was designed, it nonetheless retains significant interesting features. Specifically, the paths
we inspect continue to indicate two key descriptors of the relationships between words:
distance and direction.

The distance encoded in a flattened path is extremely straightforward to understand:
any path between two nodes directly indicates the number of words between them in the
sentence; any mismatch thus indicates that the relative positions of a given pair of aligned
words are not identical, while the resulting weight also provides a simple measure of the
disparity.

In addition, directionality is encoded in two important ways. First, the direction sym-
bols α and β are unaffected by the flattening process, in that a mismatch between two
paths, with one linking a node and its ancestor and the other linking a counterpart node
and its descendant, will be encoded as rightward and leftward directions respectively and
thus immediately incur one edit operation to match. In addition, the sequences of depen-
dency labels in each path would be encoded in separate elements of the 3-tuples described
in Section 5.3.1, resulting in maximal edit operations for such edge pairs.

5.10.2 Comparison with Kendall’s τ
As discussed in Section 4.4.1, at least one flattened version of DTED can be compared
to the Kendall’s τ algorithm for counting relative mismatches; such a comparison is even
more striking in the case of DERP. Kendall’s τ, described in more detail in Section 3.5.2,
inspects the number of mismatches between nodes’ relative orders within a pair of se-
quences (e.g. two sentences). It does this by comparing every node to every other and
considering them correctly or incorrectly positioned depending on whether the nodes are
in the same relative order in both sequences.

Kendall’s τ thus performs a similar task to the direction symbols in flattened DERP:
it observes mismatches in relative order and calculates a penalty based on those mis-
matches. The algorithms significantly differ in one major respect: their method of con-
sidering the severity of any individual error without allowing one (in)correct node to
disproportionately skew the overall score.

Kendall’s τ accomplishes this by placing the errors it detects in the context of the
number of pairs of nodes whose relative positions match between the two input se-
quences. The algorithm’s final output thus indicates the proportion of node pairs whose
orders match, relative to those which do not. In this way, individual nodes’ errors may
be observed multiple times – when comparing the node to several others – while the po-
tential for a single node’s error to propagate throughout the score for an entire sentence
is mitigated.

DERP uses a different technique for placing the errors it detects in context, limiting
the impact of any individual node by ensuring that it is compared with as few others as
possible. This is the goal of the spanning tree in the relevant meta-graph. In this manner,
DERP assesses the severity of any given node’s error in a single operation, by comparing
paths to result in a limited number of edges which contribute to the final score. This
limits the impact of any given word on the overall sentence score, without omitting any
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information as the type and severity of the mismatches are encoded in the weights of such
edges.

5.10.3 Expectations
Given the above comparisons, we expect flattened DERP to perform at a similar level
to Kendall’s τ when compared with human judgments, as the two algorithms perform
similar tasks. Both are expected to predict human judgments better than the more naïve
DTED. A somewhat simplistic summary of the differences between flattened DTED,
flattened DERP and Kendall’s τ could be as follows:

DTED: While DTED is capable of observing which nodes are incorrect, it is limited to
simply applying close-to-uniform penalties to these, without taking into account
the distance by which words have been displaced.

τ: Kendall’s τ begins to take distance into consideration by considering each node in
the context of each other: severe errors with individual nodes will thus be observed
multiple times.

DERP: In addition to observing individual errors and quantifying their severity, DERP
attempts to isolate errors for individual words and consider them with as much
context as possible.

While flattened DERP has direct parallels among existing literature in the form of
Kendall’s τ, the original, non-flattened version is somewhat more unique. As such, it is
difficult to predict its performance relative to Kendall’s τ and its own flattened version.
The relative performance of these three systems will greatly inform our understanding of
the relevance of structure in machine translation.
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6.1 Introduction & motivation

We have thus far described how to evaluate the word order of machine translation using
automatic techniques. We have attempted to justify our design choices using theoretical
analysis of our algorithms, and by drawing parallels between those algorithms and exist-
ing related ones in literature. The goal of all these algorithms is to evaluate the quality of
the sentences on which they are run.

To determine the viability of the approaches we have used, we must evaluate the
correctness of the scores generated by our metrics; the normal method of doing this is to
compare them with a gold standard. In translation, the only gold standard we can accept
is that of judgments given by humans.

Any database of quality judgments on translations can inherently provide two sepa-
rate benefits. The first of these is the evaluation, through comparison against a ‘correct’
measurement, of automatic quality evaluation tools. The second is deepening our insight
into human evaluation in practice, which can guide future research in both the areas of
translation and of evaluation.

A number of quality rating databases exist already, providing a wide range of lan-
guage pairs, quality ranges and judgment types. These are detailed below, but all systems
we know of have one feature which makes them ill-adapted to our needs: they all pro-
vide overall judgments on the sentences, considering all factors together to summarise
their holistic quality. Given that our own metrics are designed to measure specifically
the quality of the word ordering, we need a more bespoke database. As such we have
performed a survey, gathering judgments of both holistic and order-specific quality from
local native English speakers.

6.1.1 Existing human judgments

Despite the shortcomings of existing evaluation criteria, we have nonetheless made use
of sentences included in such evaluation corpora as the foundation of our survey, and
we have incorporated the judgments provided in a limited manner into our evaluation
process. We considered several such corpora before ultimately selecting WMT as our
basis, as described below.

NIST judgments

The American National Institute of Standards and Technology, NIST, has compiled a set
of corpora which are intended to be used for evaluating automatic metrics for machine
translation. Available through the Linguistic Data Consortium [2011], we have obtained
73 sets of translations. These are divided into 31 sets translated from Arabic into English
and 42 sets translated from Chinese into English. The corpora range from 183 to 267
sentences per set, with a total length of 16107 sentences.

These translations are taken from a general news domain, with translations ranging
quite significantly in quality. The evaluations associated with these sentences are ade-
quacy scores, with integer values ranging from 1 to 7.
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NTCIR judgments

Provided by the Japanese group NTCIR, a number of corpora of translated sentences,
along with adequacy scores for each, are available for public use with permission [Goto
et al., 2013]. While a number of different data repositories exist, each with different
contents and goals, we have obtained the ‘PATMT’ corpora which were released in 2007,
2008 and 2009. These consist of a total of 40 sets of translations, each translated by a
different system and containing 299 sentences for those from the latter year and 100 for
those from either of the former.

These translations are from the technical domain of patents, with the quality of the
translations again varying widely. Scores are provided in the range 1 to 5, with multiple
judges providing scores on each sentence.

Terra

While the judgments mentioned thus far relate to individual sentences, some corpora
exist which provide details about the problems with individual words. The Terra cor-
pus [Fishel et al., 2012a] is one of the earliest of these to relate specifically to machine
translation errors rather than human second-language learners’. It consists of several
hundred sentences annotated with the categories of errors associated with each word, if
any.

The categories used in Terra are based on the classification system of Vilar et al.
[2006b], including missing words, incorrect word forms and, most relevantly to us, im-
proper word ordering. The level of detail included in the dataset is highly interesting for
a number of different evaluation scenarios, but is not quite appropriate for our own.

As our tools are intended to measure the sentence-level overall impact of all incor-
rectly ordered words, it is difficult to determine a truly comparable ‘correct’ score for this
based on information in Terra. While the quality of word ordering in a sentence may have
some direct relationship to the number of incorrect words, contextual factors governing
the importance of such errors make such a relationship hard to predict.

As such, we do not feel we can confidently extrapolate a general sentence-level score
based on individual annotated words. This leaves Terra’s judgments not directly compa-
rable with those of DTED or DERP, preventing it from being an appropriate dataset with
which to judge our tools.

The TaraXÜ corpus

As a result of the machine translation community’s growing interest in more granular,
error-specific analyses of machine translation (see Section 2.3), the TaraXÜ project aims
to involve human experts to a greater extent in the development of machine translation
in a broadly similar manner to Terra. Presented by Avramidis et al. [2014], it builds on
a number of smaller projects [Popović et al., 2013; Avramidis et al., 2012] to provide
sentences with a wide variety of annotated quality information.

It contains sentences ranked against each other like in many other datasets, but addi-
tionally provides descriptions of the exact errors present in the sentences. These can be
broad descriptors of the most serious issues with a sentence, which can be from 7 cate-
gories including word ordering, or word-specific errors of 8 types which do not reference
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word ordering. The dataset also includes a limited number of sentences which have been
post-edited by hand to match the meaning of a reference [Avramidis et al., 2014].

While the data presented in the TaraXÜ corpus is impressive in its scope and detail,
it does not address the exact question we are investigating: the quality of word ordering.
The binary information it contains, indicating whether order is among the most important
error in each of almost 1500 sentences, is not sufficient for our needs: similarly to Terra’s
word-level judgments, it is simply not directly comparable to the scores produced by
DTED and DERP.

WMT judgments

Since 2006 [Koehn and Monz, 2006] the Workshop on Machine Translation (WMT)
has provided evaluation mechanisms for machine translation. Specifically, scores have
been calculated for machine translations produced by novel systems submitted to the
Workshop as part of its Translation Task. These scores include automatic metrics, such
as BLEU, but also subjective overall quality as rated by human judges. These human
judges have for practical reasons primarily been the same people who submitted tools
and translations to the Workshop [Koehn and Monz, 2006], augmented by volunteers and
paid professionals.

The evaluation criteria have changed over the years, starting with simple adequacy
and fluency ratings for individual sentences [Koehn and Monz, 2006]. Over time these
have been replaced with general relative rankings indicating sentence quality [Bojar et al.,
2014, 2015, 2016a]. In each year, scores were provided across small groups of sentences
through the use of the open-source system Appraise [Federmann, 2012].

Judges in this environment were given up to five output sentences at once and asked
to rank their relative quality, allowing ties. These judgments were then processed as
pairwise translation comparisons and evaluated using a modified version of the TrueSkill
algorithm [Sakaguchi et al., 2014]. More recently, a form of direct assessment has been
introduced, with absolute judgements being assigned to sentences [Bojar et al., 2016a],
but this approach is in too provisional a phase for us to consider using its scores.

Given that the entire set of sentences submitted by all systems as part the annual
Translation Tasks has been eligible for evaluation, the set of judgments includes a vast
range of qualities, translation techniques, source and target languages. Note that while
WMT has in the past offered a number of domain-specific translation corpora, we only
use those which are taken from news sources, to ensure the sentences cover a broad range
of topics and use accessible language.

The WMT dataset also has a significant benefit for our purposes in that the sentences
provided as part of the corpus are not preprocessed in any way. While other corpora
which we have obtained provide tokenised sentences which may look incorrect or con-
fusing to lay readers, the WMT sentences are provided in the format in which they are
found – allowing them to be given out equally appropriately to uninformed judges and
machine evaluation tools.

However, they have the significant downside that they are not strictly absolute quality
measures, but instead are relative ranks. This is for a number of strong reasons [Callison-
Burch et al., 2007], but causes the ratings to be difficult to compare objectively: for
example, a sentence ranked ‘2’ could be the second-best out of five sentences represent-
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ing a range of qualities, or could simply be considered not quite as bad as three other
sentences which the judge considered to all be marginally more unintelligible than it.

Despite the inherent downside of using ranks rather than absolute scores, we have
considered that WMT judgments are the most suitable for our needs out of the available
options. With the wide range of quality and techniques used by the systems submit-
ted to the Workshops, and their abundance over the past several years, we consider the
translations produced for them make an excellent basis for scientifically varied and thus
worthwhile investigations. The number of sentences, source languages and translation
approaches involved in WMT are unmatched in the other datasets we have described.
The rank judgments, while not ideal for our purposes, provide a tentatively helpful com-
parator when evaluating any judgments we provide.

In order to provide a scoreset which is as homogeneous as possible, we have nor-
malised WMT judgments to provide scores in the range [0,1] similarly to those generated
by our and other metrics. For each rank s within a set of ranks S – that is, each sentence
in a group of up to 5 sentences considered by a single judge at one time – this is done
by applying the following calculation. Note that in recent years [Bojar et al., 2016a]
multiple hypotheses from different systems may be ranked simultaneously if their text is
identical: such sentences are grouped together through our calculations, all receiving the
same score as if there were only one s ∈ S.

scores =1− ranks − 1

|S|
(6.1)

6.1.2 Word order judgments
As mentioned above, while the above datasets are very useful for understanding general
translator goodness, and even when investigating more detailed information such as the
individual errors in a sentence, they do not provide the most relevant judgments to our
project: an indication of how severe the word ordering errors in a sentence are.

This specific evaluation criterion cannot be guaranteed to be closely matched with
holistic judgments, or word-level error types. To our knowledge, no corpus has to date
been gathered which focuses on it precisely. We have thus produced WOJ-DB, a corpus
of human judgments of the quality of the word order in the given sentences.

6.2 Overview of WOJ-DB
WOJ-DB is an attempt to provide a comprehensive database which may be used for
any project investigating the significance of word order errors in sentences. We have
taken a wide range of sentences from recent years of WMT, and have produced question-
naires from them which have been given primarily to native speakers of English. These
questionnaires contain both genuine machine translations and automatically generated
sentences designed to highlight certain aspects of translation errors. All sentences we
use have originally been taken from recent years of WMT and thus demonstrate hugely
varying qualities, translation techniques and source languages.

These questionnaires provide pairs of hypothesis (machine-produced) and reference
(human-produced) translations, and ask judges to rate each hypothesis on two standard
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five-point Likert scales [Likert, 1932]. First, they are asked for a simple adequacy rating,
describing the extent to which the correct meaning of the sentence is still clear. Second,
they are asked to quantify how much the ordering of the words in each sentence affects
that adequacy rating.

In each questionnaire, 50 sentences are included, split into four categories: machine-
translated hypothesis sentences which exist in every questionnaire; machine-translated
hypothesis sentences which are unique to the given questionnaire; and automatically gen-
erated permutations of reference translations which also exist in either one or all ques-
tionnaire(s).

The scores for all of these, along with extensive metadata about the sentences and the
judges, have been bundled into a single dataset which can be used to evaluate automatic
scores.

In designing such a database, our goal was to provide a resource which may be useful
to future researchers in the broad area of evaluation of word ordering. With this in mind,
we have attempted to make it as generic as possible, including broadly phrased questions
and a wide variety of sentences. We have also provided various methods of evaluation of
the scores themselves, to ensure any conclusions drawn from them are not dramatically
affected by systematic differences between individual judges.

6.2.1 Flexibility

In order to provide as generic and widely applicable a corpus as we could, we have
attempted to keep our dataset both simple and as extensive as possible.

We have ensured that WOJ-DB will be applicable to as wide a variety of other experi-
ments as possible by providing extensive metadata on our sentences and our participants.
While exact details can be found in Sections 6.3.2 and 6.6, broadly we have asked for ex-
tensive information on participants’ language experience along with a number of general
descriptors like age and gender. For sentences, we have stored information such as their
length, source languages and percentage of words which could be aligned using our two
alignment tools.

While the amount of metadata makes our database applicable for many different tasks,
its simplicity is first and foremost represented in the questions we ask of our judges.
We have chosen to ask judges to provide absolute quality scores, rather than compare
between different sentences, to permit the sentences to be considered in isolation in both
our own and future experiments.

While this has been shown to make scores more difficult or biased [Callison-Burch
et al., 2007], we have attempted to minimise the negative impact of the choice. As dis-
cussed by Bojar et al. [2016b], the presentation of both comparison sentences in English
rather than in a source and target language, and the judgment of sentences in isolation (i.e.
through random sentence selection) instead of in a broader context of a specific transla-
tion system, both contribute to the reduction in bias relative to ranking; both are the case
in our survey.

For each pair of sentences with which participants are presented – first a machine-
produced hypothesis translation then a human-produced reference – they are asked to
provide scores, ranging from 1 to 5, for the following two questions:
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1. How difficult would it be to grasp the meaning of the second sentence if
you were only shown the first?

2. How much does the ordering of the words on its own cloud the meaning
of the first sentence?

Each of these two questions has been designed to represent fundamental qualities of the
sentence. The first asks about adequacy, the extent to which a given translation com-
municates the sense of the source sentence (see Section 3.3.2). We assume in all cases
that the reference translations contain all pertinent information from the source, and can
thus act as surrogates. While this assumption will not always be correct, we consider that
it is a worthwhile simplification to make, as it allows judges with only one language –
English – to provide meaningful judgments on sentences coming from a wide range of
source languages.

The second question relates to the specific quality we are investigating: word order-
ing. This question is intended to be as explicit and simple as possible, with deliberately
no reference to structure or specific aspects of the ordering. We have allowed partici-
pants to decide for themselves how much any given type of error affects the sentence as
a whole.

Our decision to include an adequacy rating at all, rather than to ask only about the
ordering of the words, was considered necessary for multiple reasons. First, it allows
us to observe the performance of our tools when predicting overall quality as well as
word-order quality, in response to the research question put forward in Section 3.2.3.

The second reason for such a question is that its existence allows those scores to be
used for a much wider set of projects than if it were not included. For example, having
ratings for general features of the sentences as well as specific ones allows us to investi-
gate the relationship between the two through our research question of Section 3.2.3: by
inspecting the similarities between the two sets of judgments, we can glean information
about the impact of varying qualities – such as word order – on the broader comprehen-
sibility of the sentence.

Both questions are intended to be simply worded, directly understandable to any na-
tive English speaker. This was to allow a broad range of participants, most with little
or no linguistic experience, to contribute their opinions. The avoidance of profession-
ally trained linguistic workers is intended to make the judgments closer to natural and
uninfluenced intuition, and thus also closer to the broader opinion of the general public.

Continuing this goal, the participant pool we recruited from was as broad as feasible
given our circumstances. Situated within the small University-dominated town of St
Andrews, the vast majority of those living nearby were well-educated, while many –
especially those interested in participating in academic surveys – were British students
aged approximately 18-25. However, by advertising to the entire University body and
using word of mouth, we attempted to mitigate this limitation and recruit judges from as
wide a set of demographics as possible. For a more detailed breakdown of participant
backgrounds and recruitment techniques, see Section 6.5.

Other than through their exact wording, we have attempted to make our questions
more broadly applicable by varying the types of sentences used in the survey. We have
ensured a range of qualities and error types in two separate ways: first by taking our
sentences at random from several years of data from WMT, and second by including arti-
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ficial permutations of human-produced reference translations. More detail on the former
can be found in Section 6.1.1, while the latter is described in Section 6.2.3.

Our choice of requesting responses using Likert scales was another way to reinforce
the wide applicability of our survey. We rejected more categorical answer formats, such
as providing a descriptive word for each of the separate quality measurements, as such
specific labels could have unduly influenced participants’ choices in ways which could
not be measured: for example, depending on the participant words like ‘confusing’ and
‘unclear’, two words which were considered as labels for two points on such an explicit
scale, could have been interpreted as either very similar judgments or, equally, far apart –
depending only on the exact linguistic perspective of the untrained judges. It would thus
be very difficult to map such words onto an unlabelled absolute scale such as those of our
automatic metrics.

We also rejected more continuous scales, such as a visual line which could be marked
by the user, for similar reasons: given such a wide choice range, it would be difficult to
interpret the meaning of a specific pair of judgments: for example, would the participant
consider two judgments which differed by 10% of the length of the line to be dramatically
different, or should those judgements even be interpreted as equal? The answer to this
question would likely change for each participant, and could even be highly unclear from
the participant’s own point of view.

Another possible scoring mechanism would have been to ask participants to rank hy-
pothesis translations relative to each other, in a manner similar to WMT. However, while
this could have made our data more easily comparable to WMT data, and thus more veri-
fiable, it was considered not worth the significant sacrifices it would have entailed. First,
confronting untrained (or even trained) readers with a series of only marginally differ-
ent or difficult-to-compare sentences may have been too challenging a request, leading
to wildly varying scores between and even within participants [Denkowski and Lavie,
2010]. Second, relative ranks would have been much more difficult to interpret in the
context of the absolute scores provided by our tools DTED and DERP, and other compa-
rable tools such as BLEU and Meteor.

6.2.2 Verifiability
Our second design priority for WOJ-DB was to ensure that the data it contains are as
reliable as possible. Success in this strengthens any conclusions we, or future researchers,
may draw from it. We have thus built in a number of checks and balances into our data
collection, by which the scores themselves can be evaluated and adapted. The first and
foremost of these is that we have included extensive metadata on both participants and
sentences; as stated earlier, full details of this metadata can be found in Sections 6.3.2
and 6.6.

Verifiability was another goal relevant to the choice of including a broader
‘adequacy’-focused question within our survey. Our fundamental aim in producing WOJ-
DB is to create a trustworthy and usable database of word order judgments, however
simply providing such judgments on their own would provide little link between WOJ-
DB and more commonly available holistic score types. By asking judges to provide two
assessments of each sample, we provide this link as we – or others – may assess the
appropriateness of any individual judge’s scores by comparing those with other trusted
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scores. Unfortunately, the negative side of our choice to use data from WMT is that
the available trusted scores are not directly comparable, being ranks rather than absolute
judgments on a specific feature of the sentences. Despite this, we feel we can expect a
certain level of similarity between the two.

A second method of verifying the scores we obtained was to vary whether or not
sentences were shared between different participants’ questionnaires. While we desired
to make WOJ-DB as extensive a dataset as possible, providing as many individual judg-
ments as we could, we considered that it would be close to meaningless to simply ask
each judge to provide assessments of unique sentences, with no corroboration between
participants. Given the subjective nature of translation quality, our judges were expected
to necessarily vary on their ways of interpreting meaning and of assessing the severity of
errors. Such differences are mathematically well-understood, having the technical name
of ‘random effects’ within statistical literature [Moulton, 1986].

Assuming the presence of such random effects, we need to be able to observe the
differences between how various judges scored certain sentences. Our means of doing
this was to include the same 20 sentences in every single survey, thus making up 40%
of each questionnaire. We felt that 20 sentences per user were an adequate base from
which to mainly calculate the relevant effects, while leaving 30 unique scores per scorer
to provide the bulk of the data. We also took the opportunity to manually select which
sentences would be included in every survey in order that every participant was provided
with a range of types and severities of errors within the sentences they judged. More
detail on the shared sentences can be found in Section 6.3, while calculated random
errors are described in Section 7.2.3.

Our final means of verifying the relevance of our data was to include sentences which,
rather than being meaning-focused translations, are instead intended to simply represent
specific error types with varying degrees of severity. We have called these sentences ‘au-
tomatic permutations’, as they involve randomly permuting human-produced reference
translations according to a number of simple algorithms.

6.2.3 Automatic permutations
The goals of such permuted sentences are twofold. First, by producing sentences which
have errors whose type and severity can broadly be known in advance, we can observe
and statistically evaluate the extent to which judges do indeed detect such errors: we thus
provide a quality control for our human evaluators. Specifically, automatic permutations
are associated with a ‘degree’ descriptor. This is simply an integer indicating how many
words in the sentence have been affected, representing an approximation of the severity
of the errors it contains. Just like the WMT ranks for ‘real’ translations, this can then be
statistically compared with each judge’s scores.

It is once we decide that our judges are reliable, however, that automatic permutations
become most interesting. The algorithms by which they are generated are deliberately
simplistic, in order to allow them to be easily understood as atomic components of more
complex errors – errors which, in real translations, may be too complex to generalise
about. While a normal translation may produce an error which is classified by our judges
as relating to word order, beyond that classification a low ‘word ordering’ score tells
us little about exactly what went wrong with the sentence and why it was significant.
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However, in the case of an automatically permuted sentence, we will in such a case
know exactly what type and quantity of basic changes were made, and can thus begin to
evaluate the relevance of such changes to the judge’s overall impression.

We have for these purposes generated four types of automatic permutations, named
‘order’, ‘swap’, ‘phrase’ and ‘choice’ respectively. The permutations were generated
in all cases by taking human-produced reference translations from the existing WMT
corpus, and applying simple alterations to produce new sentences; these alterations are
described in the following section. The resulting sentences were then included in our sur-
vey alongside the machine translations, with scores gathered and analysed using identical
techniques.

Generation procedure

More specifically, the generation process was as follows. First, a temporary corpus was
created from sentences from all the years of WMT from which hypothesis sentences
were taken: 2014, 2015 and 2016. From each corpus, exactly 450 reference/hypothesis
sentence pairs were chosen at random: this was to ensure all corpora contributed equally
to the permutations, as individual contributions to WMT for the chosen years ranged
from 497 to 3000 sentences in length. More details on the corpora used can be found in
Table 6.2.

For each of the sentences chosen, each of the four permutation algorithms were ap-
plied multiple times. Each algorithm includes the current ‘degree’ as a necessary pa-
rameter, indicating how many words are to be manipulated in total. Certain degrees will
necessarily not make sense for certain sentences: for example, there may not be enough
words in a sentence to permute up to a high degree, while ‘swap’ permutations are applied
to pairs of words so necessarily cannot exist for odd-numbered degrees.

All degrees from 1 to 18 were tried for each of the four algorithms on every sentence;
after manual inspection of initial results it was decided that beyond 18 permutations the
generated sentences were devoid of any meaning from which useful conclusions could
be drawn.

Some examples of sentences generated by each of the four techniques can be found
in Table 6.1.

While our permutations all involve moving or replacing words, we have attempted
to keep punctuation relatively unchanged. While the exact procedure varies according to
permutation type, this broadly means that when a given word is replaced or moved, any
punctuation attached to it will be removed and instead applied to the word now found at
the position it used to occupy. We define ‘punctuation’ for this purpose as any sequence
consisting exclusively of following characters at the start of a word – ( ' ` " – or the
following at the end: . ? ! : , ; ) ' ` ".

Our attempts to avoid altering punctuation are intended to ensure we are genuinely
inspecting differences in words, rather than peripheral features of the sentence. Note that
we did not consider this goal important enough to devote complicated catch-all systems
for comparing punctuation, thus there are numerous edge cases where, for example, one
half of a pair of quotation marks will be overwritten by a move. This could arise if the
quotation marks were attached to a word which, while not being moved, ends in such a
position as to receive the punctuation of a moved word: in this case, the quotation marks
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Reference At the same time she’s a usurper and wants to cook him to
death, adds Bajgar.

Hypothesis But at the same time, he’s an usurper, and he wants to take care
of his husband to death, Bajgar said.

Type Degree Result
1 order 1 At the same she’s time a usurper and wants to Cook him to

death, adds Bajgar.
2 order 5 At same time and she’s a the usurper wants to Cook adds him

death Bajgar to.
3 order 15 Usurper Bajgar time to adds death to same and the at a him

she’s wants Cook.
4 swap 2 At the same time she’s a usurper and wants to death him to

Cook, adds Bajgar.
5 phrase 3 At she’s a usurper and wants to Cook the same time him to

death, adds Bajgar.
6 phrase 7 To Cook him to death at she’s a usurper the same time and

wants, adds Bajgar.
7 choice 3 Of the same husband take an usurper and wants to Cook he to

death, adds Bajgar.

Table 6.1: Example sentences produced by different automatic permutation algorithms
from a single reference

will be overwritten. While this results in somewhat stilted sentences, we consider that
the errors introduced are both rare enough and similar enough to mistakes made by real
translation systems that this is unlikely to have any significant effect on our sentences.

In addition to retaining punctuation, we have attempted to normalise the capitalisation
of words we move using a very simple truecasing technique. Given the importance of
capitalisation for proper nouns and the starts of sentences, we have simply counted the
number of times in our reference corpora each word is found with a capital first letter,
ignoring all words which begin their sentence. Then, after each permutation algorithm
is complete, output sentences have all words’ first letters set to uppercase or lowercase
depending on whether or not it occurred at least twice as often capitalised than not. Note
that in the example in Table 6.1, this has incorrectly resulted in the word ‘cook’ being
capitalised due to its frequent use as a proper noun in the reference corpora.

Flat ‘order’ permutations

Our ‘order’ permutations involve simply moving individual words to new positions
within the sentence. This permutation type represents simple, entirely chance-based or-
der distortion, with no intelligence whatsoever behind the choice of words to be moved
or positions for them to be moved to.

As described in Algorithm 3, this is done by selecting a number of words equal to the
current permutation degree, and moving one either left or right by a number of positions
equal to the degree, then moving the next word one fewer positions, and so on until the
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Algorithm 3 Sentence permutations: ‘order’
1: procedure PERMUTE WORD ORDER(sentence, degree)
2: used← {}
3: for distance from degree→ 1 do . Descending order
4: p← random position in sentence
5: while (word at p) ∈ used do
6: go to 4 . Don’t move the same word multiple times
7: w ← word at p
8: used← used ∪ {w}
9: d← either distance or -distance . Choose to move either left or right

10: Remove w from sentence
11: Insert w into sentence at position p+ d
12: if d > 0 then . If moving right, copy punctuation to
13: punctuation(word at p+ d)← punctuation(word at p+ d− 1) . new

. position from word which was there
14: punctuation(word at p+ d− 1)← ε . and remove it from the word

. which was at new position
15: else . If moving left, move
16: punctuation(word at p)← punctuation(word at p+ d) . punctuation

. from new position to old and
17: punctuation(word at p+ d)← ε . remove it from new position
18: return sentence

last word is moved only one place. We ensure that no word is selected to be moved
multiple times during this process, though in practice successive moves may in rare cases
cancel each other out.

Simple ‘swap’ permutations

The simplest permutation type is ‘swap’, whereby pairs of words have their positions
reversed in the sentence. We restrict the pairs to require both words to have the same
part of speech, as determined by an external tagger. For simplicity, we have used the
Textblob Averaged Perceptron Tagger bundled with NLTK [Bird, 2006] to determine
parts of speech. Punctuation, as mentioned earlier, remains in its original position. Simi-
larly, words can not be re-used in multiple pairings: a sentence with five words with the
NNP tag, for example, will never swap more than four of them within a single application
of the algorithm.

The goal of ‘swap’ permutations is to highlight the simple confusion of two words
during translation. For example, should the subject and object of a sentence be swapped,
a reader may have great difficulty in understanding the original meaning, while swapping
two adjectives for a single word may have a much lesser effect. These permutations are
an attempt to generalise to any part of speech to determine whether there is an overall
trend for how much this kind of inaccuracy impairs the sentence’s communicative power.
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Algorithm 4 Sentence permutations: ‘phrase’
1: procedure PERMUTE PHRASE ORDER(sentence, degree)
2: parse← dependency parse of sentence . In practice these variables are only
3: subtrees← all subtrees in parse . calculated once and cached between calls
4: bounds← positions of all leftmost nodes in subtrees, plus length(sentence)
5: subtrees← {s ∈ subtrees | s is projective (contiguous), |s| ≤ 9}
6: choose any Sall ∈ subtrees such that no sets overlap and

∑
s∈Sall

|s| = degree
7: . Choose degree nodes to move
8: for s ∈ S in descending order of |s| do
9: pold ← position in sentence of leftmost word in s

10: pnew ← random position in bounds excluding those within any s′ ∈ S
. Find the phrase if it’s moved due to prior iterations

11: Copy |s| nodes from position pold in sentence to position pnew

12: Remove |s| nodes from sentence at pold

. Note that pold may have moved if pnew is to its left
13: if pnew > pold then . If moving right,
14: punctuation(word at pnew − 1)← punctuation(word at pnew − |s| − 1)

. move punctuation from last position in s to last word in s
15: punctuation(word at pold ← punctuation(word at pnew − |s|)

. and from first word in s to word where s was
16: punctuation(word at pnew − |s|)← ε

. Punctuation is removed from the words it has been copied from
17: punctuation(word at pnew − |s| − 1)← ε
18: else . If moving left, copy punctuation from the rightmost
19: punctuation(word at pold)← punctuation(word at pnew + |s| − 1)

. word in s to the word which is now at s’s old position, and
20: punctuation(word at pnew + |s| − 1)← ε . remove it from the end of s
21: return sentence

Structured ‘phrase’ permutations

The most complex of our permutations are ‘phrase’ permutations. These are an attempt
to take advantage of the same structural knowledge which both DTED and DERP use, to
produce slightly more meaningful word movements than our other, simpler algorithms.
Described further in Algorithm 4, we detect groups of words within sentences by pars-
ing them into dependency trees and extracting contiguous subtrees of limited sizes from
these. We also note down the edges of these subtrees – the transition points between any
subtree and its neighbour – to store a set of ‘phrase boundary’ positions. We use the Malt
parser with the MaxEnt Treebank part-of-speech tagger for this process.

From this set of component subtrees, for each permutation we select at random a sub-
set containing a number of distinct words which total the current iteration’s permutation
degree. For each of these subsets, all component words are then moved as a single unit to
one of the predetermined phrase boundaries; this is to ensure that all phrases still make as
much sense as possible within the sentence by ensuring they remain as intact as possible,
rather than having component words separated by other, moved phrases.

Our motivation for producing ‘phrase’ permutations is to investigate the importance
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of cohesive phrases within our permuted sentences. This is primarily interesting when
the scores given for ‘phrase’ permutations are considered in the context of those for
simpler ‘order’ or ‘swap’ outputs: we hypothesise that more words can be moved within
phrasal chunks – that is, within relatively semantically coherent units – than can be moved
individually while nonetheless retaining the comprehensibility of a sentence.

Word replacements: ‘choice’ permutations

Our final permutation type is not in fact related to word order at all: ‘choice’ refers to
replacing words with related ones to assess the relevance of specific word choice. Despite
this, we use the term ‘permutation’ for consistency. The intention behind the inclusion of
‘choice’ permutations is to observe the behaviour of tools when word order is not in fact
a relevant factor: we expect that order-focused tools tools such as our own will perform
relatively poorly at predicting the quality of errors related only to word choice, while
those designed for more holistic contexts should by contrast perform normally.

‘choice’ is the only permutation type which requires a machine-translated hypothesis
in addition to a human-produced reference translation. As described in Algorithm 5, it
involves randomly choosing a number of words equal to the current iteration’s degree,
and replacing each with similarly randomly chosen words from the hypothesis transla-
tion. Such replacements must have the same part of speech as the word to be replaced, to
ensure a degree of relevance to the position in the sentence. Also, to ensure that resulting
sentences are different from those of simple word movements, no candidate may already
exist within the original or partially-permuted reference translation.

This procedure can have two effects: it may replace a word with a synonym or other
word chosen by the automatic translator to fulfill the same purpose, or it may replace it
with an unrelated word from elsewhere in the sentence. We consider that both outcomes
are interesting.

Our goal in including this permutation type is primarily to verify our participants’
responses, in addition to providing data about choice-based errors for future researchers.
We expect scores to indicate a low to non-existent level of order-related incorrectness for
these permutations, with anything else strongly suggesting negligence on the part of our
judges.

6.3 Survey structure

6.3.1 Medium
In gathering human judgments for WOJ-DB, we needed to decide what format of ques-
tionnaire to provide to participants. The two primary alternatives were to use an online
survey system or an offline paper-based one. While both media have powerful advan-
tages, we ultimately chose the latter for several reasons.

Before describing these, we note that online survey systems such as Amazon Me-
chanical Turk [Amazon, 2005] are able to boast diverse user bases [Paolacci et al., 2010]
and low costs [Quinn and Bederson, 2011], allowing a large number of high-quality judg-
ments to be gathered with a minimum of effort once a project has been set up.
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Algorithm 5 Sentence permutations: ‘choice’
1: procedure PERMUTE WORD CHOICE(reference, hypothesis , degree)
2: output ← reference
3: repeat
4: w ← random word in output
5: w′ ← random word in hypothesis
6: if w′ has a different part of speech from w . Match parts of speech,
7: or w′ ∈ reference or w′ ∈ output then . and don’t re-use words
8: go to 4 or 5, or exit . Go to 5 if only this w′ is invalid, 4 if no valid w′

. exists for w, or exit (producing nothing) if no w exists with a valid w′.
9: punctuation(w′)← punctuation(w) . Transfer punctuation from

. reference word to hypothesis word
10: Replace w with w′ in output . Replace reference word with hypothesis word
11: until degree words have been replaced
12: return output

Conversely, the benefits of a paper system include a much greater understanding of
the backgrounds of the judges we would recruit, more of an accountability trail should
any information prove faulty for whatever reason, and a much simpler process of produc-
ing and distributing questionnaires along with payments.

This last reason of simplicity was primarily why we selected a paper survey for our
pilot study (Section 6.4). As described in that section, our pilot provided evidence that
the numbers of participants we would require for our main survey would be within that
permitted by our financial resources, in addition to being low enough that local partici-
pants would still provide reasonable levels of demographic diversity. We thus chose to
conduct our main survey in paper form, by recruiting individuals locally as described in
Section 6.5.

When recruited, for ethical reasons participants were provided with a number of doc-
uments in addition to the main survey. First was a briefing sheet, containing essential
information about the study while being nonspecific enough to avoid introducing bias.
This is reproduced in Appendix A, pages 162-163. They were also asked to sign a Partic-
ipant Consent form, agreeing for the information to be used in various ways as shown in
Appendix A on pages 164-165. After this they were presented with the main survey, on
completion of which they were given a further Debriefing information sheet, providing
a little more information about the goals of the study and reproduced in Appendix A on
page 166.

These information and consent sheets were written using traditional word proces-
sors, but to generate the main questionnaires we used an automatic system named
SDAPS [Berg, 2015] upon a LATEX base. The combination of these tools provided a num-
ber of useful features. First, unlike more interface-focused word processors, LATEX’s com-
pilation procedure allows source files to be generated automatically using shell scripts.
These files would thus be consistently and elegantly formatted to seamlessly provide a fi-
nal document without any user input being required. These benefits were important when
generating dozens of surveys – both for saving time and, more importantly, for ensuring
consistency across surveys by eliminating per-survey human error.
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While LATEX on its own does not provide extensive functionality specifically designed
for surveys, SDAPS provides various tools which allowed professional-level formatting
with a minimum of effort. Thus, the formatting for Likert scales, separate sections and
user instructions were all dealt with by its interface.

It was once the surveys were generated that SDAPS became most relevant. One of
its core features includes scanning of completed PDFs, using barcodes and formatting
to extract as much information as possible for processing. This allowed the hundreds of
individual scores to be gathered automatically and put in a format which could be easily
passed to post-processing tools, again eliminating a significant source of human error. Of
course, text fields such as participants’ ages could not be processed by this tool, and were
manually typed according to bespoke scripts after scores had been gathered.

In terms of contents, the survey consisted of two parts: an overview sheet identical
for all participants, and the main bulk of the questionnaire with varying sentences. These
were presented as a single document. The overview sheet contained questions about
participants’ backgrounds and motivations, along with a single sample sentence with
two-line explanations of the questions the participants were to be asked. This page may
be seen in Appendix A, page 167.

6.3.2 Participant information
The background information we required from participants was primarily to include any
information possible about their level of experience with English and other languages.
We also endeavoured to avoid any questions which would allow participants to be iden-
tified: beyond their name and signature on the Participant Consent Form (Appendix A,
pages 164-165), participation was entirely anonymous.

The simplest questions were not directly related to language, but simply focused on
the demographics to which the given participant belonged. We did not expect differ-
ences in responses to these questions to have any statistically significant bearing on score
trends, but considered such variation possible enough that the data was nonetheless worth
collecting in order to verify our expectation. The demographic factors we asked about
were as follows: the participant’s age in years; their gender; and the nationality they felt
best represented them.

We also asked for participants’ education level, hypothesising that those with higher-
level degrees might approach language with more precision than those without. Another
area more likely to have significant effects on participants’ response trends was whether
or not they had disabilities such as dyslexia; we asked them to list any which they felt
might impact their reading.

For specific linguistic knowledge, the most important question was their level of ex-
perience of English. We asked this in two ways: first, asking whether English was their
first language; and second, asking them to evaluate their fluency in it along with others.
The former question was primarily intended for non-native speakers, asking how long
they considered they had been speaking English fluently to gain a limited understanding
of their investment in the language.

The second question, about participants’ general fluency level in any languages, was
intended primarily to explore secondary languages. Participants were asked to include
their self-rated fluency level along with any qualifications they had achieved in them.
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English was explicitly included in this question primarily to suggest those with advanced
qualifications in English, such as University degrees, to indicate this. While we do not in
our statistical analysis inspect the qualifications each participant has in any language, the
information was considered valuable context for future researchers using the database.

Finally, to provide a less objective measure of participants’ attitude to language, and
thus potentially one which would better indicate their strength of opinion, we asked how
much they noticed grammar and sentence structure in everyday life. For this question,
they were given a five-point Likert scale ranging from "It doesn’t affect me at all" to
"Correct use of language is important". This was included both for future researchers, in
case attitude is especially relevant to other projects, and simply to permit tests within our
own of whether such subjective factors might contribute to their response styles.

6.3.3 Sample sentence
The sample sentence, included immediately after the Participant Information questions
on the survey’s cover sheet, was included in order to familiarise users with the format
of the rest of the survey, and to provide them with an explicit opportunity to decide for
themselves the extent to which different errors affect the overall quality of the sentence.

The sentence itself was neither generated by translation systems nor by automatic
permutation, but was written manually. This was with a view to including several types
of relatively clear errors in a situation where the correct meaning was nonetheless not
wholly lost. Participants were explicitly told that their answers to that sample question
would not be used for research purposes, and as such all results found in Section 7 omit
this sentence.

While we considered that at least one sentence by which participants could calibrate
their own assessments of various errors’ significance was important, it would have been
possible to include several of these. This would have provided a chance to homogenise
scoring to a certain extent across judges, had such sentences included several edge cases:
sentences with only ordering errors, sentences with many trivial errors which nonetheless
clearly retained their meaning, and so on.

However, given that our primary use for such sentences was simply to provide an
opportunity for participants to change their minds or ask questions, something achieved
by a single sentence, we chose to include just one. This allowed us to keep the survey
length shorter so as not to overload our participants with over 51 sentence pairs, while
also not compromising the number of usable datapoints by having a greater proportion
of our sentences be such samples.

6.3.4 Sentence selection
After the cover sheet, participants were presented with 50 pairs of hypothesis and ref-
erence sentences, each with the two questions shown in Section 6.2.1. These sentences
were accompanied with the name of the language from which the sentences were trans-
lated, but no further context.

Exactly half of these sentences were taken from real hypothesis translations submitted
to WMT, as described in Section 6.1.1. These were taken entirely at random from the pool
of all sentences which had been used as a basis for automatic permutations as described
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Year No. corpora Min. length Max. length Total length Permutations
2014 35 789 1339 35011 74186
2015 53 497 909 37626 45588
2016 56 1999 3000 160951 93176
Total 144 497 3000 233588 212950

Table 6.2: The sizes of various WMT corpora included in the survey. Each corpus rep-
resents all sentences submitted to WMT by a given system, e.g. Edinburgh’s Russian-
English phrase-based system at WMT 2014 [Durrani et al., 2014]. The ‘length’ of a
corpus is the number of sets of source, reference and hypothesis sentences it contains.

in Section 6.2.3 and Table 6.2: thus, 450 sentences from each corpus within the WMT
corpora for 2014, 2015 and 2016. No restrictions were placed on the number of sentences
within a given survey which could come from a specific year, translation system or source
language.

The other half of the survey was composed of automatic permutations, including
at least four produced by each algorithm with the remaining such sentences being of
randomly selected types. The permutations were all based on ‘real’ hypothesis sentences
which existed in the same survey, with one or two permutations being included for each
of several such hypotheses. Thus, for the majority of permuted sentences a given judge is
presented with, they will elsewhere in the survey also be presented with another permuted
sentence of the same type but with a different degree, and also with a genuine machine
translation associated with that reference.

Within both the permuted sentences and genuine hypothesis sentences, we have en-
sured that a significant minority of those included in each survey are included in every
other survey too: specifically, 40% of each group, making 40% of each complete survey.
Referred to as ‘shared’ sentences, these were preselected both to ensure that each survey
included a range of qualities and error types, and to permit statistical comparisons of
different judges’ scoring trends, as described in Sections 6.2.1 and 6.2.2.

The exact ratios of sentences which, for any given survey, are taken from each differ-
ent pool are shown in Table 6.3.

6.3.5 Feature distribution

While the above procedure for selecting sentences contains a number of restrictions in-
tended to result in equitable distributions of hypothesis sentences and automatic permu-
tations, it nonetheless relies on a significant level of random selection. We must thus
inspect the distribution of key features of the sentences included in the survey. We con-
sider that these features to be fourfold: sentence type (i.e. machine-translated hypothesis
or automatic permutation), sentence length, sentence quality and source language.

Of these factors, sentence type may be the simplest to inspect. The numbers of each
type of sentence must, as described above, be equal in each questionnaire. We further
required that this evenness should apply also to both the sets of sentences which are
unique within each survey and those which are shared among all surveys.
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No. of sentences Sentence type Permutation type Same hypothesis Shared
10 hypotheses 3

2 permutations order 3 3

2 permutations swap 3 3

2 permutations phrase 3 3

2 permutations choice 3 3

2 permutations random 7 3

15 hypotheses 7

2 permutations order 3 7

2 permutations swap 3 7

2 permutations phrase 3 7

2 permutations choice 3 7

7 permutations random 7 7

Table 6.3: Breakdown of sentences in each questionnaire. All groups marked as having
the same hypothesis contain two permutations based on the same sentence, with different
base hypotheses for each row in the table. ‘Shared’ sentence pairs are the same across all
questionnaires.

We investigate the distribution of sentence type together with that of sentence quality.
Two measures of this were available to us during the generation of WOJ-DB, while two
additional sets of scores were of course obtained during the survey.

The measures available while creating WOJ-DB were dependent on the type of sen-
tence. The majority of sentences extracted from WMT had ranking information, repre-
senting their adequacy as judged by volunteers at the conferences, with each sentence
measured relative to a small group of up to four others as described in Section 6.1.1.
29.1% of unique sentences did not have any WMT rank assigned by judges, an unfor-
tunate unnecessary consequence of the random selection of sentences. Recall that we
converted this rank, when available, into an absolute score using the somewhat simplistic
process described in Equation 6.1.

While the quality of hypothesis sentences from WMT are ranked according to the
ranks at the workshops, no human assessments of automatic permutations existed be-
fore running our survey. We have thus used the permutation degree (Section 6.2.3), the
number of words altered by the permutation algorithm. We normalise this in a similar
manner to WMT hypotheses, according to the maximum permutation of any sentence in
the entire database sents:

scoreperm = 1− degree(perm)− 1

max(degree(p ∈ sents))− 1
∀perm ∈ sents (6.2)

The two measures of sentence quality produced during the survey were that of holis-
tic and order-focused adequacy, as per Sections 6.2.1 and 3.3.2. While in the survey
participants were provided only with labels for the extreme ends of the scoring scale, as
described in Section 6.2, their five possible scores have for our purposes been converted
into numerical values in a similar manner to the above. Thus, for example a score of 0.25
indicates a participant having selected the second box from the left (worst) for a given
question.
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Figure 6.1: Quality distribution between questionnaires, based on sentence type, WMT
rank, permutation degree or survey scores; and within questionnaires by position and
sentence type

Figure 6.1 contains information about how each of these quality judgments varied
across different questionnaires and different positions within each questionnaire. The
left-hand graph indicates where in any survey sentences of a given quality are found: we
can see that sentence quality is broadly evenly distributed throughout the questionnaires,
as we would expect from the random distribution mechanism we used when generating
them.

The right-hand graph in Figure 6.1 shows the variation in quality between different
questionnaires. The mean value for each type of quality has been calculated for each
survey and plotted. For true uniformity we would expect mean values of 0.5 in all cases;
in practice we see distributions very similar to this for all four score types.

Through Figure 6.2, we can inspect the distribution of another essential feature of our
sentences: their length. Both graphs indicate the distributions of lengths: in the left-hand
one we can observe the lengths of source, reference and hypothesis sentences throughout
the survey. We can see a very approximate normal distribution of lengths, with a mean
of just under 20 words for all three sentence types.

In the right-hand graph we can see that these lengths vary in a tight linear relation-
ship, with a Pearson’s correlation coefficient of 0.95 between reference and hypothesis
sentences as indicated by the red regression line: participants were very rarely faced with
pairs of sentences with dramatically different lengths from each other.

Finally, Figure 6.3 shows the distribution of source languages for sentence pairs
across all surveys. While sentences translated from German and Hindi are the most
common, and Turkish by far the least prevalent, the differences are not vast: even Ger-
man and Hindi are only approximately twice as common as the second-least-common
language, Romanian.

We thus consider that participants were presented with sentences translated from an
appropriate range of source languages, providing variety in our translations and avoiding
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Figure 6.3: Source languages for sentences in WOJ-DB

potential pitfalls which might have arisen if all sentences were translated from the same
source. This allows results based on such sentences to be used in as broad a range of
linguistic contexts as possible, as per our design goal of Flexibility.

6.4 Pilot study

6.4.1 Execution
Prior to producing the real survey for WOJ-DB, we ran a pilot study. This small-scale
experiment had several purposes: to obtain feedback about any aspects of the survey
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which could be considered unintuitive; to gain an approximate view of how long the
completion of any given survey would take; and to provide an estimate of how many
surveys would need to be completed in order to achieve statistical significance with our
results.

Our pilot study was performed on paper, for the reasons described above: we wished
to test whether restricting to a small group would create unacceptable limitations in avail-
able participants, which could have forced us to go online despite our reservations. Our
participant pool for the pilot study was five individuals, approached personally within
the University of St Andrews. No financial incentive was offered to any of the pilot
participants, and no individual took part in both the pilot and the main study.

The sentences used in the pilot study were almost the same as those included in the
main study, with a few changes within the automatically permuted sentences. While
ratios and generation techniques remained as described earlier for almost all sentences,
‘phrase’ permutations were not present; instead, a separate type of permutation named
‘both’ was used. The algorithm for this was very simple: for any given sentence and
degree, first the algorithm for ‘choice’ permutations was run, then that for ‘order’ permu-
tations on the result.

Figure 6.4 shows basic information about the demographics into which the pilot par-
ticipants fell.

6.4.2 Results & resultant changes
Feedback from the pilot was limited in quantity but varied. A comment was made that
simply providing the gender options ‘Male’, ‘Female’ and ‘Prefer not to say’ was poten-
tially discriminatory to those who identified in a less binary way. A number of comments
were made on individual sentences, but broadly the format of the questionnaire was re-
ceived positively.

In the pilot study, the ‘correct’ human-produced translations were shown first, fol-
lowed by the relevant machine-generated sentence. Participants commented that this
precluded a genuine attempt to guess at the meaning of the hypothesis sentence before
discovering its true meaning, and suggested that being aware of the intended meaning
before reading the less reliable sentence could have produced a significant bias towards
assuming the latter was more meaningful than it would have appeared on its own. In
response to this comment, the order of the two sentences was inverted.

Since the pilot study, we also introduced ‘phrase’ permutations and discontinued
‘both’ permutations. The former was created because within the pilot study we felt that
the existing permutation techniques did not use any of the information and intelligence
of which we tried to take advantage within our tools DTED and DERP, and as such the
insights they could provide on different error types was not adequate for our purposes.

We removed ‘both’ permutations for two reasons. First, it was not considered that
they represented any genuinely novel feature within sentence quality which could not be
better understood by inspecting the judgments on either ‘choice’ or ‘order’ permutations.
Second, with only 25 permuted sentences of any kind within each survey, we wished to
minimise the number of different categories they needed to be split into.

In pursuit of an estimate of how many surveys would need to be run in our final study
if we were to attain statistical significance with our results, we have calculated statistical
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Figure 6.4: Basic demographic details about pilot survey participants

power based on our pilot study using the technique described by Chow et al. [2008,
p. 71]. While our intention (Chapter 7) is to inspect correlations calculated using the
scores gathered in WOJ-DB, for our statistical power calculations we have modelled a
simpler case: simply calculating pairwise differences in means between scoresets through
a two-tailed one-way Analysis of Variance or ANOVA test.

In our calculations, we have compared the results to each of our two survey questions
with scores for each variant of DTED and DERP. Most (82.5%) of the results of these
calculations suggested that scores for fewer than 100 sentences would be sufficient to
attain statistical significance, while 5% indicated that 1000 would be enough and 12.5%
expected dramatically more than 1000 datapoints to be necessary.

Our conclusions, based on these calculations, were that while the 100 datapoints con-
tained within a mere two surveys could potentially be adequate for our needs, our exper-
iments – and any others which might in the future be run on our dataset – would benefit
from as many datapoints as reasonably possible. We thus recruited 30 paid participants
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and another 6 voluntary ones, considering this to represent an appropriately large base
without requiring unreasonable financial investment.

6.5 Participation
Once our survey was designed, prepared and piloted, it thus needed to be given to as wide
a participant pool as possible. There were a number of ways through which we recruited
participants, who ultimately came from a range of different demographic groups.

6.5.1 Recruitment
University Memos

Our primary method of advertising the study was by ‘Wednesday Memos’, a system
provided by the University of St Andrews whereby individuals are each provided with
a weekly list of announcements. These lists are prepared separately for undergraduate
students, postgraduate students and staff, but with no more personalisation than that. In
order to attract as wide a range of individuals as possible, we requested that our adver-
tisement be sent to all three groups.

Our intention with such a broad advertisement was to give as little information as
possible, to minimise self-selection biases, while ensuring participants knew all relevant
practical details. Nonetheless we felt it necessary to include at least a general domain
area, as not doing so would be unorthodox for such memos and might, as such, put off a
number of readers. We mentioned the financial incentive available in order to provide an
obvious reason to participate other than the subject matter.

The three memos were identically worded (and included a minor accidental punctua-
tion error), as follows:

Participants wanted: native English speakers for language survey
Are you a native English speaker? Would you like a £5 Amazon voucher?
Participants are needed for a one-hour study on automatically produced
translations within the School of Computer Science North Haugh). For more
information contact Martin McCaffery at mm689@st-andrews.ac.uk. (Ethi-
cal approval: CS12370)

When interested parties got in touch by email, they were informed that the study
would likely take somewhat less than an hour, but were given little more information
beyond that which was needed to organise a time to meet in person. They then arrived
and were given the various information sheets and the survey; after completion of all
of these, no further communication was made. Note that the vast majority of partici-
pants took significantly less than the stated hour to complete the survey, with most taking
approximately 30-40 minutes.

Using the Memos system, we were technically able to reach the entire body of ap-
proximately 10,660 students [Higher Education Statistics Agency, 2016] and 2,485 staff
members [University of St Andrews, 2015] (approximated using data published for the
academic year 2014/15). In practice, many may not have received or read the memos for
a variety of reasons, but we have no means of estimating the number of such cases. Of
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Group Advertised to Responded Participated
University members (via Memos) 13145 (approx.) 29 18

St Andrews Quaker Meeting 30 6 5
University of St Andrews Jujitsu Club 6 6 5

Other individuals 8 8 8

Table 6.4: Breakdown of the various groups of whom members participated in the survey

those who did read the memos, 29 individuals expressed an interest, of whom 18 actually
participated in the survey.

Word of Mouth

In addition to the University’s Memos system, a number of participants were recruited
by simple word of mouth. This was in order both to increase the quantity of judges
and judgments we received, and to broaden the scope of our participants beyond those
University members who were likely to read the memos they received. Only one group
was truly unrelated to the University, while the personal interaction with the others was
in addition to, rather than instead of, them.

Several groups were approached, fitting into three broad categories. First, the St
Andrews Quaker Meeting is a religious group, unrelated to the University and primarily
composed of individuals aged over 30. Next, the University Jujitsu Club is a martial arts
group affiliated to the University. Very few members of the former group would have
received the University memos, while all of the latter group would have done. Finally, a
small number of individuals were approached personally about their participation; these
were all members of the University. The numbers within each group can be found in
Table 6.4.

6.5.2 Demographics
While the original memos publicised to the entire University restricted participants to
being native English speakers, no other communication forms made this restriction. This
was because while we expected the majority of our participants to be found within the
University, and thus wanted to restrict that pool to those who would have the most reliable
insights into the English language, we nonetheless wished to have a number of judges for
whom English was not their native language for the sake of flexibility, as described in
Section 6.2.1. In the end, we had two participants for whom English was not their native
language, with participant IDs of 17 and 38.

Similarly, while no explicit restrictions were made on the grounds of disability, we
had only a single judge who declared any form of disability which might have affected
their reading ability; this participant, with ID 32, has dyslexia.

Our participants ranged in age from 18 to 74, with the vast majority being at the
younger end of this range. The vast majority considered themselves simply British,
while a handful considered themselves specifically Scottish. We had five more female
participants than males. Details on all three of these aspects can be found in Figure 6.5.
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Similarly to participants’ ages, their education levels ranged quite significantly,
though the vast majority had completed either no formal qualifications beyond school
level or had a college diploma. Irrespective of education level, however, all participants
indicated that they paid at least a moderate level of attention to grammatical accuracy in
everyday life. This latter fact suggests a not-insignificant bias, despite our attempts to
avoid such, for individuals to take part in our survey only if they were actively interested
in language. Both these distributions can be seen in Figure 6.6.
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Figure 6.6: Education level and grammatical focus of participants

The numbers of languages other than English which were spoken by participants var-
ied quite dramatically. The distribution of total numbers of languages spoken by partici-
pants can be found in Figure 6.7, alongside an aggregation of the cross-linguistic fluency
level of participants. To represent the latter, we have combined the number of languages
spoken by individual participants with the degree of fluency they have in each. In this
way, a participant speaking native English, fluent French and a few words of German
would be assigned 7, 4 and 1 ‘points’ respectively for each, giving them a combined total
of 12 points.

6.6 Processing & interpretation
Full details of the scores submitted, the variations between these scores based on factors
to do with individual judges or sentences, and the relationships between the scores and
those of automatic metrics – our own, DTED and DERP, plus several other existing tools
– can be found in Chapter 7.
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7.1 Introduction
In previous chapters, we have discussed the two tools we have produced and the dataset
which we have created. DTED (Chapter 4) and DERP (Chapter 5) are intended to rep-
resent different, novel approaches to the evaluation of the effect of order in machine
translation, while WOJ-DB (Chapter 6) was designed to contain true human-produced
assessments of that effect.

Our task now is to evaluate the success of each of these projects, in the context both of
each other and of other tools with similar intentions designed by the Machine Translation
community. Given the overarching questions proposed in Section 3.2 and the tools we
have produced, we attempt to respond to the following:

1. Is WOJ-DB a relevant source of human judgments?

2. Can DTED predict human judgments on word order better than comparable tools?

3. Can DERP predict human judgments on word order better than comparable tools?

4. Is DERP better than DTED at predicting human judgments on word order?

5. Does the inclusion of structure in either DTED or DERP result in a significant
increase in their ability to predict human judgments?

6. Can all our tools predict human judgments on order at least as well as human
judgments of overall adequacy?

To this end, we perform two broad types of analyses. First (Section 7.2) we use
the data within WOJ-DB, along with various external datasets such as sentence ranking
data submitted to WMT, to evaluate their relevance as a repository of accurate human
judgments. This corresponds to question 1 above.

Our second analysis (Section 7.3) is of our two tools, DTED and DERP, inspecting
features related to questions 2 to 6. Using the information gathered in WOJ-DB, we
assess the efficacy of DTED and DERP, along with third-party tools such as BLEU and
Meteor.

Within these analyses, we attempt to respond to each of the primary research ques-
tions described in Section 3.2. Questions 2 and 3 relate to Section 3.2.1; question 5 is
based on Section 3.2.2; and question 6 is analogous to Section 3.2.3.

Having investigated the empirical features of each of our projects, we return in Sec-
tion 7.4 to the questions above. We assess the relevance and meaning of the features we
have inspected, and attempt to place our work once again within the broader academic
context.

7.1.1 General hypotheses
In order to scientifically investigate the questions we have put forward, we must produce
falsifiable hypotheses. We begin by presenting our three primary investigative goals –
the accurate evaluation of word ordering, the relevance of structure in doing so, and
the relationship between order evaluation and holistic evaluation – as three key pairs of
hypotheses.
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HEVAL
A At least one of the tools we have produced can predict human judgments on word

order adequacy to a greater degree of reliability than all community-produced or
statistical alternatives we compare them with

HEVAL
0 No tool we have produced can can predict human judgments on word order ade-

quacy to a greater degree of reliability than all community-produced or statistical
alternatives we compare them with

HSTRUC
A At least one variant of DTED or DERP is more accurate at predicting human judg-

ments on word order adequacy when including dependency structures than when
such information is omitted

HSTRUC
0 No variant of DTED or DERP is more accurate at predicting human judgments

when including dependency structures than when such information is omitted

HORD
A At least one variant of DTED or DERP is at least as accurate at predicting human

judgments on holistic adequacy as on word order adequacy specifically

HORD
0 No variant of DTED or DERP is at least as accurate at predicting human judgments

on holistic adequacy as on word order adequacy specifically

In order for the above hypotheses to be unambiguous, we must formally define our
comparison techniques between tools. When performing our evaluations, we consider
that a tool T has a ‘greater degree of reliability’ than some other T ′ if every available
configuration of third-party tools (e.g. dependency parser or alignment generator) used
by T results in a better match with human judgments than any such configuration of T ′.
Similarly, T is ‘at least as accurate’ as T ′ if the two sets of judgments overlap: if the
highest score for each is greater than the lowest score for the other.

We must also specify the exact dataset we will use to respond to each of the above
hypotheses. Firstly, we consider all judgments provided by every participant to WOJ-
DB. As explained in Section 7.3.5, although we have gathered information from judges
belonging to diverse demographics, we consider conclusions based on all available scores
to be the most reliable and the most relevant.

Secondly, we base our conclusions exclusively on human judgments gathered specif-
ically for WOJ-DB: no investigation is made of those submitted to WMT or any other
venue discussed in Section 6.1.1.

Finally, we apply each hypothesis separately to machine-translated hypothesis sen-
tences and to those generated through automatic permutations as per Section 6.2.3. This
is due to the inherent linguistic and structural differences between the former and each
type of the latter, which prevent them from being used interchangeably. We discuss the
performance of all tools relative to automatic permutations in Section 7.3.3 before dis-
cussing conclusions relating to them in Section 7.4.2.

7.1.2 Specific hypotheses
While HEVAL, HSTRUC and HORD represent the most important and general aspects of
the experiments we perform, we do not consider that responses to them alone will truly
provide a thorough understanding of the phenomena we are investigating. To respond to
this, we present a number of more specific hypotheses, as follows.
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HEVAL
DTEDA

One or more variants of DTED have a higher correlation with WOJ-DB judgments
on word order adequacy than that of every other investigated tool excluding DERP

HEVAL
DTED0

No variant of DTED has a higher correlation with WOJ-DB judgments on word
order adequacy than that of every other investigated tool excluding DERP

HEVAL
DERPA

One or both variants of DERP have a higher correlation with WOJ-DB judgments
on word order adequacy than that of every other investigated tool excluding DTED

HEVAL
DERP0

Neither variant of DERP has a higher correlation with WOJ-DB judgments on word
order adequacy than that of every other investigated tool excluding DTED

HEVAL
DDA

One or both variants of DERP have a higher correlation with WOJ-DB judgments
on word order adequacy than that of every variant of DTED

HEVAL
DD0

Neither variant of DERP has a higher correlation with WOJ-DB judgments on word
order adequacy than that of every variant of DTED

HEVAL
CONF A

Correlation between human judgments on word order adequacy and variants of
DTED and DERP is affected by no more than 0.122 by the choice of configuration
used.

HEVAL
CONF0

Correlation between human judgments on word order adequacy and variants of
DTED and DERP is affected by at least 0.122 by the choice of configuration used.

HSTRUC
ALLA

All un-flattened variants of either DTED or DERP have a higher correlation with
human judgments on word order adequacy than their corresponding flattened vari-
ant

HSTRUC
ALL0

Not all un-flattened variants of either DTED or DERP have a higher correlation
with human judgments on word order adequacy than their corresponding flattened
variant

HORD
ALLA

Every variant of DTED and DERP is at least as accurate at predicting human judg-
ments on holistic adequacy as on word order adequacy specifically

HORD
ALL0

Not all variants of DTED and DERP is at least as accurate at predicting human
judgments on holistic adequacy as on word order adequacy specifically

We have split HEVAL into two, with HEVAL
DTED and HEVAL

DERP separately querying the
success of our two tools. Further, as DERP is intended to provide more detail and thus
a more thorough evaluation process than DTED (see Sections 4.7 and 5.1), HEVAL

DD asks
whether this deeper analysis results in higher performance in practice.

Additionally, while we rely on third-party systems such as parsers and aligners in
our tool, we expect their impact on the functionality of our tools to be slight. While
the dependency parse and alignment relation are key information we use, we anticipate
that any legitimate parse, as produced by any publishable-quality parser, will result in
approximately the same evaluation of our sentences – as encoded in HEVAL

CONF .
We have chosen the threshold of 0.122 for hypothesis pair HEVAL

CONF as a function of
our dataset: a standard deviation. To provide as meaningful a cutoff as possible we have
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calculated that of all correlations related to variants of DTED and DERP, with the excep-
tion that we have omitted flattened data due to their more limited use of configurations
and greater variability. Note that throughout this chapter, we use ‘configuration’ to refer
to the set of these third-party tools used by DTED or DERP, as opposed to a ‘variant’
which refers to the set of flags applied to any execution.

WhileHSTRUC provides a simple measure of whether structure is at all relevant to the
evaluation techniques we have designed, our assumption is that it is in fact a key feature.
Rather than just producing an improvement in a single variant of either DTED or DERP,
we would thus expect it to produce dramatically improved results in all variants of both
tools. The expectation of widespread improvement is encoded in hypothesis HSTRUC

ALL . In
a very similar way, HORD

ALL broadens the assumption put forward in HORD .

7.1.3 Secondary investigations
In addition to our primary investigations, summarised by the hypotheses presented above,
a number of features of our experiments may be of interest when considering broader
aspects of language and evaluation than those codified thus far.

The first of these is how much human judgments are consistent across different judge
demographics. While not integral to our questions of automatic evaluation of transla-
tions, an investigation into the effect of age, education level, languages spoken and other
factors could further our understanding of the factors affecting human perception of both
ordering specifically and adequacy in general.

Our main priority when responding to the above question is, however, ensuring that
the data we have gathered is as consistent as possible despite such factors. As such, in
Section 7.2.3 we discuss a method for controlling for participant variation. We then break
down the information we have gathered by the three factors mentioned above. We briefly
discuss the relevance of this breakdown to our own conclusions in Section 7.3.5, and
report the data itself in Appendix B, pages 180 to 185.

The other investigation permitted by our data yet not directly integral to our primary
hypotheses is related to automatic permutations. As described in Section 6.2.3, such sen-
tences exist first to allow us to verify that our human judgments follow expected trends,
and second to observe the performance of our tools when faced with more homogeneous,
predictable error types than those existing in real translations.

As mentioned earlier, we combine these two investigations in Section 7.3.3 and dis-
cuss the implications of our observations in Section 7.4.2. Note that as automatic per-
mutations are a somewhat unknown quantity in our experiments, we do not propose any
formal hypotheses relating to them. We instead simply observe the consistency of per-
formance of different tools when applied to them, with a view to providing a dataset and
set of preliminary conclusions which may be of benefit to future researchers.

7.2 Evaluating WOJ-DB
Before we can claim WOJ-DB to be a worthwhile and relevant corpus of human judg-
ments, and consequently use it to evaluate our automatic evaluation tools, we must assess
whether it meets the standards we would require of any generic corpus of judgments.
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These should fit with its goal of being flexible to a wide range of uses as per Section 6.2.1,
allowing it to be incorporated to both our and others’ future research projects.

It is important to note that we do not discuss the results or content of the pilot study
(Section 6.4) in this chapter. Visual descriptions of that experiment can be found in
Appendix A, pages 160 and 161.

We consider two aspects of WOJ-DB to be most relevant to this assessment. First,
its internal characteristics of sentence quality, language, length and so on must be varied,
relevant and evenly distributed. These aspects of the survey were discussed earlier, in
Section 6.3.5.

Second, the human judgments we received should as much as reasonably possible re-
spect the conflicting priorities of internal consistency and demographic variation, while
containing judgments which are reliable yet remain representative of a non-expert reader
audience. These elements are more related to our participants’ responses than the sur-
vey’s composition.

We use all participants’ responses to investigate broad characteristics of WOJ-DB
in Section 7.2.1, adjusting for individual variations as discussed in Section 7.2.3, while
specific subsets of participants are discussed in Section 7.3.5. We also investigate the
extent to which the scores we have gathered correlate with quality judgments from other
sources, in Section 7.2.2.
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Figure 7.1: Distribution across participants of different score levels

7.2.1 Broad response trends
While the controllable aspects of the survey – sentence quality, length and other features
– are investigated in Section 6.3.5, the most relevant feature of the survey is of course the
participants’ responses.

Figure 7.1 shows how participants varied in their responses to the two questions they
were asked about each sentence. It contains two graphs indicating the distributions of
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Figure 7.2: Similarity between holistic and order-focused adequacy scores in WOJ-DB

each of the five possible numericised scores for these questions. Note that not every par-
ticipant responded to every question. Two participants simply omitted single questions,
while in one case an entire page was skipped.

We can see in the graphs that all participants used every score available. Addition-
ally, though some participants disproportionately used or avoided specific scores, in most
cases the scores were relatively evenly distributed. The primary exception to this was that
the word order of sentences was particularly often described as perfect, with a maximum
score of 1.

We do not consider this deviation surprising because of the ways in which sentences
were chosen. The random selection process for WMT-sourced hypothesis sentences, for
example, allows for the inclusion of many sentences for which order simply happens not
to have been a problem. As for permuted sentences, the ‘choice’ algorithm is guaranteed
to retain the base translation’s correct word ordering, suggesting that for around 25% of
permuted sentences the order score should be perfect.

Using Figure 7.2 we investigate how the two types of participants’ scores varied rela-
tive to each other. The X axis indicates the scores provided, by all participants and for all
sentences, for the first, broad question, while the Y axis shows the same for the second,
order-specific question. The size of the points indicates how many times the given scores
were both given for the same sentence: thus, the largest circle in the top right-hand cor-
ner indicates that 323 sentences were assigned both a perfect holistic score and a perfect
order-focused score, compared with 168 sentences which received the lowest scores for
both features as represented by the bottom left-hand circle.

The primary indication given by this graph is that the two score types had similar
trends. Indeed, the Pearson correlation coefficient between the two is a moderate-to-high
0.605 when considering hypothesis translations only, or 0.699 when applied to automat-
ically permuted sentences. Thus, a given value for one score can be used as a somewhat
reliable predictor of the value for the other score, though far from universally. Note that
there were noticeably more sentences with very low overall score which were considered



112 CHAPTER 7. RESULTS & ANALYSIS

to be unaffected by incorrect word order (39 in total) than the mere 6 sentences where
the word order was extremely muddled but the overall sentence was completely clear.

7.2.2 Correlations
While the scores produced by participants are important in their own right, they gain
relevance when compared to scores produced by other techniques. In pursuit of our
goal that WOJ-DB be verifiable (Section 6.2.2), through such comparisons we can gain
a limited understanding first of whether the judgments it contains are reasonable: i.e.
whether they conform to simplistic automatic evaluations. We can then compare the
scores in WOJ-DB to those of our own tools, DTED and DERP, to evaluate the success
of these last.

We begin by establishing a number of baseline methods for evaluating sentence qual-
ity. These fall into two categories: bespoke machine translation evaluation tools, and
more generic statistical or human observations.

Recall that in Section 3.5 we described a number of such statistical techniques. We
have calculated the percentage of aligned words, and Kendall’s τ correlation coefficient
between those alignments, for each pair of sentences in WOJ-DB.

In addition, we have calculated scores for two popular metrics: BLEU [Papineni et al.,
2002] and Meteor [Lavie and Agarwal, 2007]. See Section 2.2.1 for information on how
these tools work. Given their open-source nature we have been able to run them on every
sentence in WOJ-DB: both WMT hypotheses and automatic permutations. We have also
run the ‘chunking’ component of Meteor (Section 3.5.4) in isolation and reported its
correlations as ‘Meteor (chnk)’, allowing comparison between the scores of the off-the-
shelf tool and its word-order-related sub-tool.

We have compared all of these scores, in addition to the normalised WMT ranks
and permutation degrees, to the judgments provided by participants in WOJ-DB. For
all such comparisons we have used Spearman rank correlation coefficient (Spearman’s
ρ) [Spearman, 1904], a common technique for measuring shared variation. It ranges
from 1, indicating perfect agreement between the two score types, to -1 for a pair of
score sets whose orders are exactly opposite.

Unlike the marginally more common Pearson’s correlation coefficient [Koehn, 2010,
p. 230], Spearman’s ρ considers only scores’ relative ranks and not their absolute values.
This allows it to be unaffected by differences in the distributions of scores produced by
different tools: should one tool be broadly linear but another cluster a high proportion of
its scores towards a particularly low value, for example, the Pearson correlation between
the two scores will be diminished relative to Spearman’s ρ for the same dataset. As we
are primarily interested simply in how useful a translation is relative to others, rather
than in the exact distributions of scores produced by our highly heterogeneous scoring
techniques, we consider such variation unhelpful.

If the reader is interested in the ranges of absolute scores produced by DTED and
DERP, these can be found in Appendix B, pages 172 and 173.

Figure 7.3 shows the correlation coefficients between each tool and the two types
of judgment collected in WOJ-DB, with comparisons against order-focused adequacy
shown on the left and more holistic adequacy on the right. Third-party tools are shown
in green, while all others are in purple. Note that both the percentage of aligned words
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Figure 7.3: Correlations between scores in WOJ-DB and those calculated by automatic
metrics and produced as part of WMT. Colours are summarised in Table 7.2 (page 117).

and our use of Kendall’s τ are dependent on the tool used to align the sentences. We have
produced separate scores using each of the two aligners used with DTED and DERP:
these are reported separately in the graph, overlaying a bar whose height in all cases
indicates the highest obtained correlation for the given technique.

To ensure that the conclusions we draw are reliable, we have also run statistical sig-
nificance tests for the correlations. The results of these are indicated in the graph: for
any correlations which are significant at the 0.05 level (here, all of them) an asterisk
(*) is shown above the appropriate bar. If multiple configurations are used, this indi-
cates significance for all correlations reported. Note that while correlations are based on
scores adjusted according to participants’ random effects, as described in Section 7.2.3,
significance tests have been run on the unadjusted data for increased rigour.

We can see from the graphs that scores in WOJ-DB generally match those of our
comparison tools with a medium level of correlation [Koehn, 2010, p. 230]. Off-the-
shelf Meteor conforms to our expectations by correlating better with holistic judgments
than those focused on word order, while its chunking component performs infinitesimally
better than the main tool on order-focused scores instead.

While correlations in the vicinity of 0.3 are far from strong, they are within a range
which is reasonable given our domain [Lavie and Denkowski, 2009; Fishel et al., 2012b;
Stanojević and Sima’an, 2014a]. Correlations of this order are a necessary consequence
of our decision to focus on sentence-level scores rather than system-level ones, as dis-
cussed in Section 3.3.3.

While the statistical strength of the conclusion is rather limited, based on these cor-
relations we consider that WOJ-DB has broadly succeeded at its goal of containing rea-
sonable judgments on two fundamental aspects of machine translation.
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7.2.3 Participant variation

In pursuit of our goal of verifiability (Section 6.2.2), we have designed each question-
naire in WOJ-DB such that a portion of the sentences included occur also in every other
survey (see Section 6.3.4 for more information). In this manner, we can compare the
results of different surveys to account for the variation inherently associated with human
participants.

This variation is caused by the simple fact that not all people approach the questions
of sentence quality in the same way. Coupled with this, not all may understand our five-
point system for scoring a sentence. Some may score most sentences highly except for a
few with particularly low quality, while others may do the opposite.

To evaluate these trends, we have produced a linear regression relation [Galton, 1886]
between each score type and the two sets of scores provided for all participants. We have
then extracted the random effects [Laird and Ware, 1982] from these relations, repre-
senting for each tool how much all scores were affected by other factors. Of these, we
selected only the random effects associated with the participant’s unique identifier, and
adjusted all scores by the appropriate value from this list for that participant.

In this manner, we have attempted to control for the variation between participants
which exists in our dataset. To evaluate whether this procedure made any significant
changes to the scores, we have run a two-tailed Student’s t-test [Student, 1908] between
the original and adjusted scores. With a p-value of 0.118, the differences were not signif-
icant at the 95% level. This indicates simply that while the scores were affected by the
adjustment, the changes were limited and the adjusted scores are still comparable with
the originals.

To further investigate the success of our technique, we have plotted the correlations
with baseline statistics for both the adjusted dataset (Figure 7.3) and the original scores
(Figure 7.4).

While the difference in correlations observed is minimal, it is nonetheless consistent
and positive. All the baseline tools discussed in Section 7.2.2 observed either small im-
provements or no change between the two techniques. As a result of this, we consider that
the adjusted scores represent true word order marginally better than the original scores,
and have used them when calculating all other correlations discussed in this chapter. Cor-
relations based on the original, unadjusted scores can be found in Appendix B, pages 174
to 177.

7.3 Evaluation of metrics using WOJ-DB

While it is important to investigate whether the scores contained in WOJ-DB are consis-
tent and able to correlate to a reasonable extent with simple statistical tools, this is not
the primary use for the database. Although we consider it important for its data to be
applicable to other research projects, it is principally for the evaluation of structure in
machine translation that it was created.
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Figure 7.4: Correlations between scores in WOJ-DB and those calculated by automatic
metrics and produced as part of WMT, without adjustment for random effects. Colours
are summarised in Table 7.2 (page 117).

7.3.1 Third-party tools
Before inspecting the correlations between our own tools and the judgments contained
in WOJ-DB, we have one further set of baselines to consider. We consider the scores
submitted by various tools to all relevant WMT evaluation tasks: that is, those from 2014
to 2016 inclusive. We have produced correlations between the scores submitted to WMT
and those produced for WOJ-DB relating to word ordering, for the varying numbers of
sentences included for each tool in both evaluation sets. We omitted scores for any tools
for which fewer than 15 scores existed in both WMT and WOJ-DB.

These correlations are shown in Figure 7.5. Tools whose scores were retrieved di-
rectly from WMT are indicated in blue, while tools which we have run on every sentence
in WOJ-DB are considered in green as before, for comparison. Table 7.1 repeats this
information while also indicating how many scores for each tool related to sentences
included in both WOJ-DB and the relevant year(s) of WMT.

Most of these tools achieve virtually negligible correlations. However, due to the lack
of statistical significance for most tools we believe this to be a result of the limited data
available. With relatively small datasets for each tool, the impact of random variations
may be important to the point where data are unreliable. This supposition is supported
by the fact that all six tools whose correlations are statistically significant at the 95%
level, and from which vastly more scores were available, perform dramatically better
than almost all others.

It should also be highlighted that tools submitted to WMT were not designed for the
exact situation in which they are here being evaluated. Specifically, while we are investi-
gating the quality of word ordering in terms of adequacy, most tools were simply intended
to measure relative general quality, as interpreted for example by judges at WMT.
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Figure 7.5: Correlations between WOJ-DB human judgments on word order adequacy
and external scoring systems submitted to WMT. Colours are summarised in Table 7.2
(page 117).

There are three exceptional tools among those submitted to WMT which perform
to levels comparable to those of BLEU and Meteor. These are BEER [Stanojević and
Sima’an, 2014a], AMBER [Chen and Kuhn, 2011] and DiscoTK [Joty et al., 2014]. Of
these, BEER has the most datapoints of any of the tools we are discussing, covering 63%
of sentences in WOJ-DB, while the best-performing variants of DiscoTK have the fewest
at just 5%.

It is interesting to note the range of approaches between these three tools. Specifically,
AMBER represents an updated yet traditional approach, focusing on precision with a
length-related penalty similar to BLEU. By contrast, DiscoTK represents a foray into the
use of discourse structure and tree kernel comparison, a much more recent technique.
BEER combines the two, with components based on structure through permutation trees,
alongside more traditional n-gram comparisons.

We consider that all three of these results represent encouraging trends for the tools
in question, albeit trends which cannot be fully understood without more scores being
available for both them and their competitors. We leave a fuller investigation of third-
party tools within WOJ-DB as future work.
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Tool Count % Corr. p-value
apac 138 25.3 0.007 0.992
BEER 342 62.6 0.324 0.000*
BEER_Treepel 204 37.4 -0.025 0.721
BS 204 37.4 -0.012 0.870
chrF 204 37.4 0.043 0.900
chrF3 204 37.4 0.039 0.811
DCUcomb.seg 138 25.3 0.066 0.274
DCU_seg 138 25.3 0.055 0.365
DiscoTK.light 26 4.8 0.332 0.131
DiscoTK.light.kool 26 4.8 0.348 0.334
DiscoTK.party 26 4.8 0.340 0.386
DiscoTK.party.tuned 49 9.0 -0.098 0.504
DPMF 204 37.4 0.076 0.368
DPMFcomb 204 37.4 0.060 0.530
dreem 204 37.4 0.008 0.917
LeBLEU.default 204 37.4 0.046 0.579
LeBLEU.optimized 204 37.4 0.058 0.571
meteor_wsd 204 37.4 0.068 0.500
nrc_amber 138 25.3 0.196 0.001*
nrc_bleu 138 25.3 -0.084 0.167
ratatouille 204 37.4 0.074 0.503
UoW.LSTM 204 37.4 0.018 0.837
upc.ipa 138 25.3 0.096 0.117
upc.stout 138 25.3 -0.025 0.627
upf.cobalt 204 37.4 0.011 0.777
VERTa.70Adeq30Flu 204 37.4 -0.006 0.672
VERTa.EQ 342 62.6 -0.026 0.561
VERTa.W 342 62.6 0.001 0.994

Table 7.1: The number of scores for each metric extracted directly from WMT [Bojar
et al., 2014, 2015, 2016a], along with the proportion (%) of unique hypothesis sentences
in WOJ-DB which were scored by each metric. Corr. and p-value refer to the correlations
reported in Figure 7.5; * indicates significance at the 95% confidence level.

Colour Description
Red Variants of DERP

Yellow Variants of DTED
Green Third-party metrics with scores for all sentences

Blue Third-party metrics with scores for some sentences
Purple Other evaluation methods

Grey (*) All correlations significant at 95% level

Table 7.2: Meanings of the various colours used within correlation graphs in this chapter
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7.3.2 DTED & DERP
Having established the baselines both of statistical techniques such as Kendall’s τ and
of various tools submitted to WMT, we can now meaningfully inspect the scores of our
own tools. To that end, we have produced Figure 7.6, showing correlations with WOJ-
DB order-specific scores for each experiment performed using both DTED and DERP in
addition to the off-the-shelf tools we include for comparison.

Experiments are split by three features: flag configuration (Sections 4.3 and 5.10),
third-party tool setup (Sections 3.4, 4.2.1 and 5.9) and type of sentence being investigated
(WMT score or permutation). Each of these is indicated in the relevant graphs, while a
summary can be found in Table 7.3. Note that flattened versions of our tools do not rely
on either a tagger or the parser, ‘b’ DTED ignores information from alignments and ‘fc’
makes no use of the information provided by any of these three tools.
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Figure 7.6: Correlations between WOJ-DB human judgments on word order adequacy
and variants of DTED and DERP. Colours are summarised in Table 7.2 (page 117).

While all meaningful combinations of DTED flags and both variants of DERP have
been evaluated separately, we have limited the number of combinations of third-party
tools. This is primarily because those tools are not the main subject of our investiga-
tion: we simply wish to ensure that none of the three utilities necessary for the tools’
functioning significantly affect their scores. We have thus produced variations on a sin-
gle ‘default’ configuration – the Malt parser using the Stanford parser’s internal tags and
alignments from GIZA++ – and ensured that exactly one alternative configuration exists
as a comparison group for each component.

We can observe a number of trends from the information in these graphs, each dis-
cussed in more detail in Section 7.4. First, if arguably least important: we can confirm
that the choice of third-party tools does not dramatically affect the efficacy of either
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Configurations
DTED & DERP

Parser Tagger Aligner
Malt Stanford GIZA++
Malt NLTK MaxEnt GIZA++
Malt Stanford cdec
Stanford Stanford GIZA++

×

Variants
DTED DERP

Flags Section Flags Section
b 4.3.1 none 5.6.1
c 4.3.1 f 5.10
co 4.3.2
cl 4.3.2
fb 4.4.1
fc 4.4.1
fco 4.4.1
fcl 4.4.1

Table 7.3: All executed configurations and variants of both DTED and DERP. Note that
flattened versions (with flag ‘f’) do not make use of either parser or tagger.

DTED or DERP. While in the case of flattened DERP the alignment system results in a
variation in correlation of 0.114, for structured versions of both tools the variation due to
third-party configuration is no higher than 0.105.

The most encouraging trend we can see in the data for both tools is that they perform,
for the most part, noticeably better than the off-the-shelf baselines they are compared to.
With just a single exception in the case of ‘b’ (and fb’) DTED, almost all variants of
both tools achieve a correlation higher than BLEU, the highest-scoring off-the-shelf tool
run on the entire dataset, ranging from 0.004 below BLEU to 0.161 (48.8%) above it.
When considering all other scores included in WOJ-DB, the highest-performing was in
fact Kendall’s τ, though the highest-scoring of our tools (‘c’ DTED) still exceeded this
by up to 0.094 (23.7%).

With the wider range of flags in DTED than DERP, we can observe some interesting
variations when different sets of flags are applied to the former. The most noticeable of
these is the dramatically poor performance of ‘b’ and fb’ DTED relative to the others. We
do not find this surprising, as these are the variants with the least information available to
them: as discussed in Sections 4.3.1 and 4.4.1, the former provides only a very simplistic
measure of similarity between trees, while the latter is unable to measure anything beyond
sentence length.

More intriguing are the lower correlations associated with ‘o’ and ‘l’ DTED, and
their flattened counterparts, relative to the simpler ‘c’ DTED. This trend is clear across
all configurations of third-party tools, and even between flattened and structured versions
of DTED. It strongly suggests that the behaviour introduced in these versions – that is,
a strict prioritisation in the matching of structures relating only to aligned nodes – is
counterproductive to the attempt to predict human judgments.

The most notably surprising message contained within DTED’s correlations is to do
with the performance of flattened versions relative to their structured cousins. While the
flattened tools do not strictly fare better than the structured ones, in almost all cases they
perform to a closely comparable level. The only exception to this is ‘b’ (and ‘fb’) DTED,
which as discussed earlier is the least interesting variant for our purposes.

The trends shown by variants of DTED are noticeably different from the performance
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of DERP. Notably unlike DTED, the correlations for the flattened version of DERP are
noticeably lower than those for the structured default version. While the reduction is
only slight in the case of the higher-correlation flattened version using GIZA++, even in
that case it is 0.0097 (2.7%) lower than the lowest-correlating configuration of structured
DERP.

The other noticeable difference between correlations for DTED and for DERP is that
contrary to our expectation, DERP is unable to outperform any variant of DTED with
more complexity than the basic ‘b’ flag. While structured DERP still correlates more
highly than BLEU, the performance of its highest-correlating configuration is still 0.079
(16%) lower than the highest correlation relating to DTED.

7.3.3 Automatic permutations
One more important aspect of WOJ-DB, which both requires its own evaluation and per-
mits insights into the working of other tools, is its automatic permutations. Thus far we
have omitted such sentences, considering only machine translated hypothesis sentences
when producing the correlations we have presented.

Correlations related to automatic permutations are shown in Figure 7.7. The same
colour scheme, summarised in Table 7.2, is used to differentiate the various types of
tools, of which we include all those available.

We see a number of differences between these graphs and those related to WMT hy-
pothesis. We will discuss the observable trends and their possible reasons in this section,
before examining their more general implications in Section 7.4.2.

Prime among these observations is that the variation in correlation between different
tools is somewhat diminished: third-party tools such as BLEU and Kendall’s τ perform
for the most part on a par with our own, or even exceed the correlations of DTED and
DERP.

‘order’, ‘swap’ and ‘choice’ permutations

In the case of ‘order’ and ‘swap’ permutations, the trends within our own tools are largely
unchanged. In keeping with judgments for hypothesis translations, the flattened version
of DERP is noticeably less reliable in predicting human judgments than its structured
counterpart. The flattened versions of DTED can, on the other hand, be seen to compare
closely with the structured versions, with the exception of ‘b’ and ‘fb’ DTED.

In the case of ‘order’ permutations, ‘fb’ DTED has little information available to it
with which to make a judgment. As no words are inserted or deleted, yet as described in
Section 4.4.1 all score variations arise from disparities in sentence length, the only vari-
ation between sentences when excluding alignments and dependency structure is caused
by rare and (usually) unimportant alterations of punctuation performed by the generation
algorithms. In most cases, when words are moved any punctuation associated with them
is also moved, but it is not rare for certain characters to be overwritten, resulting in a
different number of tokens being parsed and leading to the length disparity detectable by
‘fb’ DTED. Such differences occur in 58% of permuted sentences.

In the case of ‘swap’ permutations, variations in sentence length are due to even
rarer edge cases than those of ‘order’ permutations. No punctuation is overwritten while
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Figure 7.7: Correlations between WOJ-DB human judgments on word order adequacy
and other techniques across automatically permuted sentences in WOJ-DB. Colours are
summarised in Table 7.2 (page 117).
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generating these, resulting in just three datapoints contributing to the negative – though
not significant – correlation we see. These are again the result of special interactions
between punctuation and tokenisers, e.g. in one sentence where “No.” and “lot” in a
reference are swapped to “lot.” and “No”: in the former case, “No.” is treated as one
token due to rules of English grammar, while in the latter case “lot.” is separated into two
separate tokens. These three datapoints result in a negative trend in the data.

Similar edge cases result in the correlations shown for ‘phrase’ and ‘choice’ permuta-
tions, for which respectively 13% and 6.8% of permuted sentences varied from the usual
score of 0.5 for this variant of DTED.

In the case of ‘choice’ permutations, we see similar trends to ‘order’ and ‘swap’
permutations with one main exception: almost all correlations are simply reduced, to
levels below even those calculated on hypothesis translations. For our own tools this is
not surprising, as the intention behind them was exclusively to measure word ordering
rather than choice of words.

However, for other tools – both third-party machine translation evaluators and other
statistical techniques – the dip in performance is more surprising. We believe that this is
a result simply of the reliance of such tools on simplifications from exact word choice.

For example, Meteor relies on stemming to match words together, thus ignoring the
occasional word replaced during ‘choice’ permutation which retains the same stem as
an original word. This may not accurately reflect the confusion for humans which the
change may cause. Similarly, Kendall’s τ relies exclusively on alignment, which in turn
may in many cases use only a word’s tag, rather than a specific word form, to determine
its aligned partner(s).

‘phrase’ permutations

The final permutation type, ‘phrase’, results in more deviation than the other three from
the trends we have thus far discussed. To begin with, it appears that the prediction power
of the three off-the-shelf machine translation tools was entirely negligible. While the
correlation is not significant at the 95% level, we do not in any case consider this entirely
surprising.

Both BLEU’s focus on n-grams, and Meteor’s examination on adjacent chunks of
words, can be ‘gamed’ by such permutations. The movement of an entire phrase at once
results in the words belonging to that phrase retaining their relative positions to each
other: thus, the only n-grams or chunks which are affected by a phrase movement are
those at the boundary between the phrase and its larger context. The small number of
n-grams which are disrupted by such phrase movements is thus unlikely to give rise to
a real measure of how severe the movement of a phrase is, yet given the exact matches
between words in each pair of sentence it is virtually the only feature which can vary the
scores produced by either BLEU or Meteor.

We note that the ‘degree’ of ‘phrase’ permutations correlates to a similarly negligible
extent with human judgments. In this case, we believe the reason to be simple: the
‘degree’ refers specifically to the number of words moved, while in practice the quality
of the sentence relies on entirely other factors. Specifically, the impact on order quality of
a phrase’s movement is related mostly to the choice of phrase moved and the destination
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of that phrase. Neither of these factors are controlled for during generation, and thus
neither are captured in the ‘degree’.

As for our own tools, we can see that in all cases involving structure, the choice of
tool used to generate that structure dramatically affected the ability of both DTED and
DERP to predict sentence quality of ‘phrase’ permutations. We hypothesise that as the
choices of moved phrases and target locations are made randomly, sentences permuted
through this technique can have ambiguous or confusing structures. Given that such
complexities do not necessarily have anything to do with the real-world complexities of
English grammar, there is no guarantee that any parser or tagger will be able to extract a
meaningful interpretation from the sentences.

Given this, different such tools will be more or less able to produce parses which
happen to allow DTED and DERP to produce a score which a human would consider
reasonable. Effectively, the unusual nature of the sentences results in a great deal of noise
in the parsing process. This is reflected in the lack of statistical significance for variants
involving structure. Having said that, when trees are flattened such noise is eliminated,
resulting in a more straightforward task for our tools and hence a better correlation with
human judgments.

7.3.4 Holistic scores
We have thus far discussed the implications of the correlations between various score
types and the human judgments we have gathered on word order quality. However, in
addition to such judgments, during the survey we also asked a second question. Dis-
cussed in Section 6.2.1 and intended to aid our response to the key question presented
in Section 3.2.3, this second question related to the overall adequacy of the sentences in
question.
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Figure 7.8: Correlations between WOJ-DB human judgments on both order-focused and
holistic adequacy and variants of DTED and DERP. Colours are summarised in Table 7.2
(page 117).
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Figure 7.8 shows the correlations between responses to this more holistic question and
all variants and configurations of DTED and DERP, while also repeating the information
shown in Figure 7.6. We observe two primary differences between the two graphs: the
comparison tools shown in green perform to a marginally higher level when compared to
holistic judgments; and ours perform slightly less well.

The reduction in the efficacy of our tools is not absolute, in that for only two variants
(‘fb’ and ‘fc’ DTED) the highest correlations with holistic human judgments are lower
than the lowest correlations with order-focused scores: 0.081 to 0.095 and 0.398 to 0.407
respectively. Both of these variants use flattened trees. We discuss the implications of
this in Section 7.4.

While it may be interesting to investigate the relative success at predicting adequacy
of other tools than DTED and DERP with and without a focus on word ordering, we
consider that only those indicated in Figure 7.8 are truly relevant to our experiments. This
is because limited data is available for tools not included, weakening any conclusions we
could draw. Comparative performance of all available tools are presented in Appendix B,
pages 178-179.

7.3.5 Participant variation

While the correlations shown and discussed thus far include scores from all participants,
it is possible that not all such data is relevant. Before using WOJ-DB to evaluate other
tools, such as DTED and DERP, we must briefly discuss the variability in scores between
participants.

Recall from Section 6.5.2 that we recruited participants with a range of ages, gen-
ders, education levels and linguistic backgrounds. In addition, a single participant was
dyslexic. While the effects of these factors may be controlled for by per-participant ran-
dom variables as discussed in Section 7.2.3, it may be interesting to inspect in detail the
differences between demographic groups.

To this end, we have produced a number of reports similar to Figures 7.3 and 7.7,
showing the correlations with human judgments of most tools when considering only
scores produced by participants belonging to specific demographics.

While these graphs contain interesting information about different aspects of our par-
ticipants, they are not considered key to our investigation. This is for two reasons. First,
the act of extracting subsets of datapoints from those available to us must necessarily
reduce the reliability of our conclusions. With for example just 25% of our participants
having ages over 30, any conclusions drawn on that or any subset will be more subject to
random chance and thus weaker than those based on the dataset as a whole.

The second reason why we do not place a high importance on correlations based on
participant subsets is to do with our goals: quite simply our experiment was not intended
to investigate these variations in detail. Results based on them can thus provide at most
peripheral information for our conclusions.

Note that while the differences between graphs may not be integral to our own inves-
tigations, it is important to observe whether they nonetheless indicate the same trends we
have observed on the entire participant pool. While some variation is inevitable, espe-
cially with demographics to which only a small number of participants belong, we would
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expect the trends we have observed throughout Section 7.3 to broadly hold true for all
subgroups.

Happily, we believe that such trends can indeed be observed across all participant
subsets we have investigated. In all cases DERP was able to better predict human judg-
ments when provided with dependency structures, while the same was conspicuously not
the case with DTED. In most cases, the same tools whose scores have been extracted
from WMT perform the highest. In addition, the approximate strength of the strongest
correlations remains broadly constant.

Given the general agreement in trends between the correlations presented thus far
and those relating to different participant subsets, and the statistical limitations of any
investigation using subsets of the data available to us, we do not present the graphs in this
chapter. Should the reader be interested, they are directed to Appendix B, pages 180 to
185.

7.4 Discussion
Having investigated the appropriateness of WOJ-DB, the relevance of our tools’ scores
to both it and third-party evaluation techniques, and the effects of constraining sentence
variations or participant demographics, we must relate these separate threads to our key
hypotheses and thesis questions.

We first discuss the scientific hypotheses from Section 7.1.1 in Section 7.4.1, before
considering the broader answers we can draw from these to the questions outlined in
Section 3.2.

7.4.1 Responses to hypotheses
For each hypothesis presented in Section 7.1, Table 7.4 indicates whether the null hy-
pothesis has or has not been rejected for the experimental data we have collected.

We can see that of the first three major hypotheses presented in Section 7.1.1, H0 has
been rejected in each case. This is encouraging, suggesting that the overall thrust of our
work was successful.

According to HEVAL, we have succeeded in producing a tool which performs better
when predicting human judgments of word order than any of the others we have used for
comparison. This is a notable achievement, although it has limitations. First, between
both our tools only one variant, ‘c’ DTED, was able to surpass the simpler Kendall’s τ
baseline across every single configuration of third-party tools.

An additional caveat to the success reported by HEVAL is our limited number of tools
used for comparisons. As suggested in Section 7.3.1, the sparse data available for tools
submitted to WMT may have impacted the correlations reported for those tools. As such,
only three existing tools were used for comparison: BLEU, Meteor and the chunking
component of Meteor. To truly consider our work an improvement on the state of the art,
we would need to compare it with more recent and varied third-party tools.

Despite these limitations, we consider the success of ‘c’ DTED an important marker
of progress in the evaluation of word order in machine translation. Given how well-
respected both BLEU and Meteor are, matching human judgments reliably better than
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Hyp. Result Description of result

HEVAL H0 rejected Some variant of DTED & DERP (‘c’ DTED) outper-
forms all third-party/statistical techniques in WOJ-DB

HSTRUC H0 rejected Some variants of structured DTED & DERP (DERP and
‘b’ DTED) outperform equivalent flattened variant

HORD H0 rejected Order correlations overlap with or are better than holistic
judgments for some (every) variant of DTED & DERP

HEVAL
DTED H0 rejected Some (‘c’) DTED outperforms all third-party/statistical

techniques in WOJ-DB

HEVAL
DERP H0 not rejected Neither DERP outperforms all third-party/statistical

techniques in WOJ-DB

HEVAL
DD H0 not rejected Neither DERP outperforms all DTED – in fact, all con-

figurations of ‘c’ DTED outperform DERP

HEVAL
CONF H0 rejected Configuration can affect correlations by up to 0.114 (flat-

tened) or 0.105 (structured), i.e. no more than 0.122

HSTRUC
ALL H0 not rejected Not all structured DTED, DERP outperform flattened

equivalents: 2/5 variants’ ranges do not overlap

HORD
ALL H0 rejected All DTED, DERP predict order quality at least as well

as holistic adequacy

Table 7.4: Summary of hypotheses from Sections 7.1.1 and 7.1.2.

them across sentences judged by individuals from very varying demographics is a non-
trivial achievement. Should others in the machine translation community agree, future
work should be for us to package our tools in an easily accessible manner for publication.

Our second primary hypothesis pair, HSTRUC , relates to the merit of the inclusion of
structure through dependency parses rather than relying on flattened ‘trees’. While we
do observe the effect we expected – a marked increase in the performance of both DTED
and ‘b’ DTED when structure is included – it is the cases where this is not the case which
are arguably more interesting.

As observed for HSTRUC
ALL , the performance of ‘c’, ‘o’ and ‘l’ DTED is com-

parable whether or not the tool has structural information available: that is, the
highest-correlating configuration of the flattened variant performs better than the lowest-
correlating configuration of the structured variant. We consider two alternative interpre-
tations for this observation: first, structural information does not help these evaluation
techniques (as queried in Section 3.2.2); and second, the noise introduced by flawed
parses approximately outweighs any benefit provided by that structure. We discuss these
alternatives further in Section 7.4.3.

The third and final of our primary hypotheses,HORD , is to do with the relative success
of our tools at predicting order-focused and holistic quality. Our results provide a clearer
response to this hypothesis than to the previous two: our tools perform equally well at
predicting holistic judgments as those related specifically to word order. Only ‘fb’ and
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‘fc’ DTED differ noticeably in performance when predicting the two quality types, with
both of those variants performing better at holistic judgments. This is reflected in the
rejection of our secondary, stronger HORD

ALL0
.

We now discuss the specific, secondary hypotheses presented in Section 7.1.2. Two
of these, HEVAL

DTED and HEVAL
DERP , simply relate separately to the success of each of our two

tools. As mentioned above, only one variant of our tools – ‘c’ DTED, manages to perform
better across all configurations of third-party tools – although at least one configuration
results in higher scores than any third-party system for seven of the ten variants of both
DTED and DERP. While not as clear-cut as the success of ‘c’ DTED, this is nonetheless
a positive result.

The non-rejection of HDD0 represents a significant deviation from our expectations.
As DERP was designed to take the strengths of DTED and build upon them (Sections 4.7,
5.1 and 7.1.2), the fact that DTED has actively performed to a higher level than its more
complex cousin challenges our assumption that the detail it provides, in the form of
inspection of relative paths, is helpful in evaluating ordering quality.

We believe that the reason for this is related to the surprising success of flattened ver-
sions of DTED. Discussed in more detail in Section 7.4.3, we posit that noise introduced
by parsing low-quality sentences results in dramatically inaccurate dependency labels.
While DTED ignores such labels and is able to make use of the broad structure of a
tree, DERP’s use of dependency labels forces it to overestimate all label-related errors to
unpredictable extents.

This possibility is unfortunately not verifiable using the data available to us, which
includes no way of measuring the noise or inaccuracy introduced by different factors.
However, such information could be gathered in future studies, either by controlling or
eliminating parsing noise (see Section 7.4.3), or by modifying DERP to minimise its re-
liance on dependency labels. For example, it could theoretically be altered to ignore all
dependency labels and thus use only path lengths and relative directions in its calcula-
tions, bringing its functionality closer to that of Kendall’s τ.

Finally, HEVAL
CONF represents an investigation of the effect of configuration on our tools’

performances. We hypothesised that the variation of parser, tagger and aligner would
impact the effectiveness of neither DTED nor DERP by more than the standard deviation
of all calculated correlations related to structured versions of those tools, and in practice
saw variations within this bound. From this we can state that the choice of third-party
tools is not a critical component of our tools.

Further than the requirements of our hypothesis, we can observe that even the highest
variation between different tools, 0.114 in the case of flattened DERP, is just 27.6% of
the highest correlation for that tool. Additionally, the variation caused by configuration
was below the 0.1 threshold for seven of the ten possible variants of DTED and DERP.
Contrasted with the disparity of 0.396 between the highest- and lowest-performing vari-
ants of DTED, we conclude that the effect of configuration on DTED and DERP is truly
limited.

7.4.2 Automatic permutations
In addition to the hypotheses put forward in Sections 7.1.1 and 7.1.2, we have conducted a
secondary investigation into the performance of automatic permutations. As discussed in
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Section 7.3.3 we observe two trends from this investigation: heightened scores for almost
all tools relative to machine-translated hypotheses; and lower disparities in performance
between our tools and various third-party and statistical baselines than when considering
machine-translated hypotheses.

We can ascribe both of these trends to the simplistic nature of our permutations. They
were designed with the intention of representing consistent and predictable errors within
sentences (Section 6.2.3). This very simplicity, a significant departure from the norms
of natural language processing, allows us to draw more specific conclusions about the
sentences than would be possible on more varied yet realistic translations.

Such simplicity and consistency, while diverging somewhat from the reality of ma-
chine translation, makes the problem of evaluation much more straightforward. A uni-
versally recognised difficulty in NLP is the sheer range of phenomena encountered in
practice; this renders the task of capturing all possibilities using a simple computational
algorithm close to impossible. However, when errors to be detected are themselves in-
troduced by such an algorithm, it is to be expected that automatic tools perform to a
(relatively) high level.

It is interesting to observe that while this trend seems strong in the case of two per-
mutations, ‘order’ and ‘swap’, it is much weaker when we consider ‘choice’ and ‘phrase’
permutations. We believe the relative lack of success of evaluation of the latter type to
be a result of its generation algorithm being more complex than the others’. The move-
ment of entire phrases, without consideration for the meaning of such movement, treads
an unfortunate middle ground between the simplicity of ‘order’ and ‘swap’ permutations
and the complex yet meaningful variability of real sentences.

As for ‘choice’ permutations, the relatively low correlations reported for all tools
have less of a clear interpretation. Most fundamentally, a lower performance is expected
for tools designed to evaluate word order, as ‘choice’ permutations were not intended to
contain any such errors.

This leads us to the primary goals of automatic permutations (Section 6.2.3). First,
the heightened success of all tools on the simplest permutation types leads us to suggest
that our participants’ scores did indeed reflect the quality of the word order. While not
a strong conclusion, this allows us to place more weight on others drawn from the same
information.

The second goal of the generation of automatic permutations was to provide insight
into the evaluation techniques we have run on them. As discussed above, we believe we
have a greater insight into the workings and priorities of machine translation evaluation
systems. Our investigation is not exhaustive, however, and the reader is invited to draw
their own additional conclusions if desired.

7.4.3 Relevance of structure to order evaluation
Thus far, we have responded to two of our central research questions. We have shown in
Section 7.4.1 that one variant of DTED outperforms all baselines we used for comparison,
but that only two tools were able to predict word-order judgments strictly better than they
were able to predict holistic judgments. However, our investigation of structure merits
greater investigation, as a result both of its significance in our metrics’ design stages and
of its surprising lack of significance in our empirical work.
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Reference Hypothesis
1 He cried for help to fight the bear off. He bear while the resistance of the help

for the noise.
2 The visiting team’s only goal was

scored by Memphis Depay.
The guests the only goal on the account
of Memphis DEPA.

3 The cat sat on the mat. The mat sat on the cat.

Table 7.5: Example word order mismatches

With a view to responding to our structure-related research question (Section 3.2.2),
we have investigated the relevance of structure to the prediction of human opinions on the
quality of adequacy in word order using two separate techniques. Represented by DTED
and DERP, these represent a low-detail approach and a high-detail one. We have com-
pared them with Kendall’s τ, among other tools: an algorithm which ignores syntactic
structure but otherwise evaluates in a very broadly similar manner to the other two tools.

The results of the investigations of these three tools, when compared together, lead
us to a tentative conclusion: structure does not, in the cases of DTED and DERP, reliably
lead to an improvement in the accuracy of predictions of word order quality. When mean-
ingful syntactic structure is eliminated from the input provided to our tools, performance
degrades dramatically in just two of five cases. In addition, in only one of five cases does
a tool of ours noticeably outperform Kendall’s τ when structure is included, a superiority
which is retained when that tool (‘c’ DTED) is flattened.

We believe the lack of significant benefits afforded in our experiments by structured
input to be a result of several factors. First, introducing structure necessarily also in-
troduces noise to a sentence. This is because the question of parsing a sentence into an
appropriate dependency structure is far from easy, and the tools we employ are not able
to do so perfectly. This is at least in part due to the sheer complexities of the problem
in question: as discussed by many others (see Chapter 2), natural languages have myriad
edge cases, ambiguities, contextual variations and other complexities.

In addition to the inherent difficulties posed by the task of parsing, we believe that
our tools may be inaccurate for an important other reason: their training datasets. In
order to produce a dependency parser one must first train a model of the language be-
ing parsed, and for a number of reasons (see Section 3.4.3) we have used off-the-shelf
systems. These are trained on English sentences which are intended to represent proper
use of the language. For this reason, we expect them to perform well on proper English
sentences, such as the human-produced reference sentences in WOJ-DB.

However, when faced with the many and varied flaws in machine-produced hypothe-
sis sentences, such language models are likely to misfire. Partly this is unavoidable: even
a human expert, faced with particularly low-quality translations such as hypothesis 1 in
Table 7.5, may be unable to produce a meaningful structural description because there is
simply none to find. Even in more reasonable cases such as hypothesis 2 in Table 7.5,
tools trained on correct examples of English may produce an incorrect parse – here, for
example, interpreting ‘goal’ as the principal verb rather than a dependent noun.

It is important to consider that while the parsers we used have been trained on proper
sentences, this need not necessarily be the case. We have chosen the parsers and gram-
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mars which we have used for two reasons, described in Section 3.4.3: for convenience,
and for their high quality. While these reasons are compelling, they are not absolute: in
future, a parser could be trained on incorrect machine translations with parse trees written
by human experts, potentially vastly reducing the noise in our parses.

A cheaper, if far less reliable, alternative to training a parser on a treebank of flawed
sentences, it could be possible to integrate the relatively common concept of n-best
parses. This relates to the methods by which parsers produce their trees, which in many
cases is probabilistic. As mentioned in Section 2.2.3, this results in many alternative
parses, each with an associated probability. In theory these could be extracted, as has
been done with tools such as those of Owczarzak et al. [2007a,b], and either DTED or
DERP run on many alternate parses: the highest of the resulting scores would then be
assumed to best represent the sentence’s true quality.

Short of producing such a specially-trained parser or extending our algorithms to
support n-best parses, it would be possible to gain understanding of the effects of noise
by measuring the quality of the parses which have been used in our experiments. Were we
to be able to quantify their correctness, we could perform various comparative analyses
to measure the relevance of that factor to the correlations we observe.

An analysis of parse quality would resolve the greatest problem with our identification
of noise as the reason for our structured tools’ relatively low success, namely that there
is little evidence to unambiguously support it. However, generation of such analysis
highlights the main problem with any truly reliable machine translation evaluation: it
would need to be performed by human experts, requiring vastly more resources than
were available for our project or may be available to many others.

Even if this were done, however – if we were able to guarantee that a given depen-
dency parse was correct, minimising the negative effects of its use – it is still possible that
its positive effects may be inconsequential. For example, while we believe it likely that
a parser will correctly interpret sentences 3 in Table 7.5, the additional information pro-
vided by such a parse is unlikely to contain any insights into the sentence which would
permit any structure-based algorithm from producing a more appropriate score than a
structure-free tool like Kendall’s τ.

Despite the various reasons to discount structure as a useful aid when evaluating
translations, we do not believe our investigation is conclusive in that regard. Recall that
while DTED performed almost equally well with and without structure, the same is not
true of DERP, which achieved a markedly higher correlation with human judgments when
provided with structure. While its more complex processing may have suffered more
from negative factors such as low parse quality, causing worse results than DTED even
with this greater information, we believe that higher quality inputs, coupled with DERP’s
detailed analysis, could lead to potentially dramatic improvements in performance.

Between the various reasons to expect noise in our parses, in addition to the occa-
sionally negligible improvement permitted by even a correct parse, in retrospect we do
not consider it surprising that structure affords only minor benefits in our experiments.
However, given the limitations of our experiment – notably using parsers trained on cor-
rect sentences only – we consider that the benefit we observe, while small, is nonetheless
important. We have observed empirically that structure can help in the evaluation of ma-
chine translation and we believe that that the full potential benefit, far from being limited
to the effects observed in our experiments, could be vastly greater.
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8.1 Existing work
In the field of machine translation, a number of approaches have been taken to evaluating
the quality of produced translations, and in turn to evaluating those evaluation measures.
A large number of these rely on variations on n-gram comparison using precision and re-
call, with metrics adding stemming, weighting, synonymy, probabilities and many other
features.

Such n-grams can be extracted not from words alone, but from structural represen-
tations of sentences. A number of forms of dependency and other parsing produce tree
structures, of which features such as relation labels can be compared with precision and
recall, among other techniques.

Other evaluation approaches involve counting the number of changes which must be
made to a translation to match a human equivalent. Again, a number of variations on this
principle have been put forward, with differing ways of determining word matches and
various approaches to the consideration of word ordering, such as low-cost block shifting
operations.

This last evaluation element, the judgment of word order quality specifically, has
recently gained focus as a discrete question. This is primarily in the context of other
error types, with several projects attempting to provide granular overviews of the types
and frequencies of errors across bodies of translated text. Word ordering, highlighted
by several studies as one of the most detrimental error types in a number of ways, has
received some attention through tools intended to judge it in isolation.

In order to judge the effectiveness of evaluation tools, they are compared with a gold
standard: human quality judgments. These can take many forms, of which the most
common is relative ranking of small groups of translations produced by different systems.
Others involve absolute judgments of adequacy and/or fluency: the extent to which a
given translation represents either the meaning of the original sentence or appropriate
use of the target language.

In the wake of more granular automatic error analyses, the importance human evalua-
tion of specific error types has begun to be recognised, with at least one dataset generated
as part of the TaraXÜ project. However, this corpus does not include information detailed
enough to provide in-depth analysis of metrics intended to measure individual error types
including ordering.

8.2 Project overview

8.2.1 Research questions
This project is based on two assumptions: first, that the field of machine translation can
benefit from a deeper automatically-generated yet accurate analysis of the quality of word
ordering in existing systems; and second, that the structural information built into some
non-granular metrics can help that evaluation.

To investigate these assumptions, we have asked three separate research questions
(Section 3.2). The first such question we ask is whether by using structure we can produce
state-of-the-art evaluation for word ordering. Secondly, we ask if the structure specifi-
cally contributes to the success (if any) of those evaluations. Finally, we query how
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relevant structure is to the evaluation of order in particular, compared with more holistic
judgments.

8.2.2 Tools produced
In order to respond to these three questions, we have first produced two tools, each in-
tended to evaluate word order quality in machine translation by taking advantage of struc-
tural information.

DTED – The first of these, DTED (Chapter 4), adapts the technique of Tree Edit Dis-
tance to the domain of translation evaluation. A Tree Edit Distance is the minimal count
of atomic deletion, insertion and substitution operations on nodes required to convert one
tree structure – a dependency parse – into another (Section 4.2.2). DTED’s edit count is
normalised to allow meaningful comparison between sentences.

Tree Edit Distance is intuitively related to the more commonly used technique of
Levenshtein distances, making DTED a close cousin of various existing error-rate metrics
such as Word Error Rate (Section 2.2.2). We consider DTED to be a direct combination
of two existing techniques: dependency structure and error rate calculations.

The variations on DTED which we have produced (Section 4.3) represent different
approaches to a key input: the alignments of words between sentences. With no clearly
superior way of taking this feature into account, we have produced four separate versions
of DTED which make greater or lesser use of it.

The simplest version, referred to as ‘b’ DTED and submitted to WMT 2016, consid-
ers nodes to be equal under no circumstances: all nodes must incur at least a substitution
operation. This version performs the least well, contrary to ‘c’ DTED which uses ex-
ternally produced alignment information to match related nodes at no cost, and which
achieves the highest performance of all four variants.

The other two primary variants of DTED place a heavier emphasis on aligned words,
by strictly prioritising any operations which affect such words. In the case of ‘o’ DTED,
only these operations are considered when calculating a final score: any operations re-
lating to unaligned nodes are ignored entirely. In ‘l’ DTED, such unaligned operations
are assigned a weighting logarithmically proportional to the number of words in the sen-
tences which are aligned. These variants of DTED perform well, but not quite to the level
of ‘c’ DTED.

In order to observe the effect of structure in isolation, each variant of DTED has
been run both on normal dependency structures and on ‘flattened’ structures in which the
syntactic information has been replaced by purely linear relations between words (Sec-
tions 3.4.4, 4.4). To our surprise, this elimination of the information for which the tool
was designed barely degrades its performance, with the correlations of only one variant,
‘b’ DTED, being strictly superior to those of its flattened equivalent (Section 7.3.2).

While DTED performs well, it has two major theoretical limitations: that it has little
ability to judge the severity of any given error, and that it does not make any use of the
labels indicating the nature of dependency links within the structures it is given.

DERP – Our second tool, DERP (Chapter 5), addresses these concerns by making active
use of much more of the information contained within a dependency tree. Rather than
considering operations on nodes alone, DERP compares the paths between nodes which
are aligned between the two trees.
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This is done through the calculation of Levenshtein distances on triples encoding
three features of such paths (Section 5.3): the dependency labels they contain, their broad
direction (right to left or left to right), and whether each edge is ascending or descending.
As we have mentioned, Levenshtein distances and variants thereof are commonly used for
machine translation evaluation, but they are generally applied to words – or, at the most
complex level, to parts of speech and other annotations – rather than relations between
those words.

These distances are combined to determine the minimum total edit distance such that
every node is either directly or indirectly compared with every other (Section 5.6). This is
done by calculating a minimum spanning tree in a meta-graph produced from the aligned
nodes of one tree alone (Section 5.4). Distances are then normalised, as with DTED, to
provide a score which can be reasonably compared between arbitrary sentences.

While the technique used by DERP to compare paths is usually associated with
structure-free work, the observation of variations between the structural representations
of words is related to the PEF-score of Stanojević and Sima’an [2014b]. However, while
DERP calculates such disparity through differences in paths between nodes, PEF-score
is calculated by summarising the disparity of an entire sentence at once. This is done
by processing the various possible permutation trees [Gildea et al., 2006] representing
the difference in order of the various words, a purely mathematical process involving no
syntactic or semantic information.

Interestingly, despite the increased depth of its analysis relative to DTED, DERP
actually significantly underperforms at predicting human judgments of word order (Sec-
tion 7.3.2). More in keeping with our expectations, the flattening of its input trees to
minimise the structural information they contain does result in a noticeable drop in per-
formance, suggesting that DERP makes positive use of that information.

8.2.3 Resources provided

WOJ-DB – The evaluation of metrics which themselves evaluate specific features of
translation is not a trivial task. Given the lack of major resources providing scaled judg-
ments on the quality of word order, we have produced our own: WOJ-DB (Chapter 6).

Our dataset was produced through a survey of diverse residents of our university
town (Sections 6.3.1, 6.5), with sentence pairs generated from one of two sources. Half
of the hypothesis sentences we use were generated by the diverse systems submitted to
the Workshop on Machine Translation (Section 6.1.1), while the rest are randomly gen-
erated, through deliberately simplistic ‘permutations’, from WMT reference sentences in
a manner not dissimilar to that of Kirchhoff et al. [2012].

Such automatic permutations represent a standalone contribution in our work, as dis-
cussed in Section 6.2.3. Split into four types, they represent varying numbers of pre-
dictable, simple changes to sentences, allowing us or others to inspect in isolation the
effects of different facets of word ordering problems. Each reference sentence we chose
was permuted from as little to as much as possible, with the sentence’s degree indicating
the number of individual words affected.

The four permutation types are as follows. In ‘order’ permutations, degree words
are moved an ever greater distance from their starting position. In ‘swap’ permutations,
degree/2 pairs of words whose parts of speech match have their positions inverted. In
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‘phrase’ permutations, a random number of multi-word phrases containing a total of
degree words are moved to a random phrase boundary elsewhere in the sentence. Finally,
‘choice’ permutations replace degree words in the base reference sentence by others with
the same part of speech in a machine-produced hypothesis.

While permuted sentences are important on their own, the primary contribution of
WOJ-DB is that of the judgments it contains. Participants were asked to rate each of 50
sentences according to two features: first, the overall adequacy (transference of meaning)
of the hypothesis sentence; and second, the relevance of word ordering to that assessment
(Section 6.2.1). Judgments were given on a 5-point Likert scale, with judgments gathered
on 1783 sentence pairs overall.

We have analysed the contents of WOJ-DB in various ways (Section 7.2) to ensure
that the judgments it contains follow expected trends, and that its composition does not
allow any obvious bias. We are thus confident that it can be used for a wide variety of
further projects as discussed in Section 8.4.

8.3 Conclusions
By conducting investigations through WOJ-DB to address the three research questions
we introduced in Section 3.2, we have been able to evaluate DTED and DERP. The
results of these investigations have been discussed in some detail in Section 7.4 and are
summarised in Table 7.4. They lead us to a number of broad conclusions relating to the
relevance of structure in evaluation both of word ordering, and of machine translation
more generally.

8.3.1 Pursuing accurate evaluation
Our first goal was encompassed in the following question:

Can we improve on the current state of the art of word order evaluation?

We believe we can answer this question in the affirmative, as one variant of DTED per-
forms better than all the baselines we used, irrespective of the choice of third-party tools
(‘configuration’) it relied on. This is a highly encouraging result, albeit one which is
subject to an important caveat.

This caveat is that the baselines against which our tools were compared were chosen
as representatives of different approaches, rather than because they themselves repre-
sented the cutting edge in order evaluation specifically. Thus, while the success of our
tools in outperforming BLEU and Meteor is far from being uninteresting, a comparison
against other tools may reveal limits to our tools’ superiority. It should be noted that
Kendall’s τ, the only one of our baselines explicitly designed and used for order evalu-
ation [Birch and Osborne, 2010; Isozaki et al., 2010], was also the highest-performing
competitor in our experiments.

Caveats aside, we consider the success of our tools at predicting human judgments to
be a vindication of our techniques: an indication that DTED especially and, to a lesser
extent, DERP can be a meaningful automatic descriptor of the quality of word ordering.
They suggest that both node edit distances and more complex path differences may well
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be worthwhile components if built into future metrics: whether or not our metrics strictly
outperform all existing metrics, the techniques they encompass can indeed push forward
the state of the art.

8.3.2 Relevance of structure
Our second investigation was into the true relevance of the key component of our algo-
rithms:

Does structure aid the evaluation of word order in machine translation?

Our results were not entirely in keeping with our expectations, as several variants of
DTED performed almost equally well when deprived of genuine structural information.
Our experiments thus suggest that tree edit distance and simple Word Error Rate are
approximately comparable in their prediction of word order quality: the grouping of
words by relation affects evaluation neither positively nor negatively.

This is an intriguing result in itself, as a complete lack of effect is arguably more
surprising even than structure damaging predictive ability. We believe our results to be
a result of two conflicting factors: first, correct structural information improving the
automatic assessments; and second, incorrect structure caused by flawed parses having
the opposite effect. Such flawed parses are in some senses an inevitable consequence of
the imperfections in machine-produced hypotheses, though it may be possible to address
this through training grammars on such hypotheses.

While DTED was unable, for the most part, to improve its performance through the
use of structural information, the same was not true with DERP. In the case of this more
complex algorithm, the removal of structure resulted in at least an 8.8% reduction in cor-
relation with human judgments. We consider this to indicate that while DTED makes
little enough use of structural information to avoid being significantly affected by im-
perfections at the parsing level, DERP’s use of such information is more intelligent and
in-depth: while its performance is more damaged by negative factors, the information
which is reliable is nonetheless put to good use.

The improvement in performance of our tools when provided with structural informa-
tion – mild in the case of simpler DTED, but more marked in the case of more complex
DERP – leads us to the conclusion that structure is indeed helpful to them. Negative fac-
tors, which may be related to the quality of hypothesis-sentence parses or other aspects
of dependency parsing, appear to limit the ability of our tools to extract exclusively use-
ful conclusions from that structure, but rather than discounting its utility, we believe this
merely calls for further work in the area.

8.3.3 Cohesion of structure and order
Our third research question pertains not to structure, but to the feature of language we are
investigating through it:

Does dependency structure permit word order evaluation, or does it lend it-
self more to holistic judgment?
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Our response to this question is somewhat obfuscated by a simple observation already
presented in literature: word order is a powerful predictor of overall sentence quality in
English, with ordering problems confusing overall meaning to the extent that overall clar-
ity is difficult without at least mostly correct ordering. Given this, it is perhaps unsurpris-
ing that our tools performed in most cases approximately equally well when predicting
holistic adequacy compared with word ordering specifically.

The exceptions to this trend were the two highest-performing variants of DTED,
which observed a very limited drop in performance when considered in the more gen-
eral context of adequacy, both with and without the structural information being removed
from its input through flattening. We believe that this drop, while not as marked as we
may have expected, mildly suggests the effect we expected: that DTED focuses more on
order than holistic predictions.

It is relevant to note that while our tools observed no difference or a small decrease in
performance when predicting holistic adequacy, the results of our baselines were much
more dramatic. Kendall’s τ, designed exclusively to measure order quality, performed
35.5% better at predicting such judgments than their more general alternatives; while
Meteor, designed for holistic judgments, correlated with holistic assessments 55.9% bet-
ter than with those of order.

Our response to the research question is thus a tentative one: we believe that structure
is far from useless in the evaluation of word ordering, though our results suggest that
other factors are assessed alongside this. We can assume these factors to be the syntactic
ones, such as word choice and form, which play a major role when producing parse trees.
Thus, our approaches represent interesting middle grounds between the evaluation of
specific and general quality assessments.

8.4 Future work
While each element of our investigations has produced results which are interesting in
their own right, they are necessarily incomplete. As discussed in Section 3.3, we have
imposed a number of practical limitations to our project due simply to the limited re-
sources available. Further to these, the conclusions we have drawn have raised further
questions themselves.

Semi-automation – Arguably the most central question to our investigation of structure
is to do with the true potential applicability of this feature. While we believe that the
clear success of DTED, and the more limited success of DERP, show that dependency
structure comparison is a worthwhile item in the machine translation evaluation toolbelt,
its true utility is unplumbed. We recommend the development of an equivalent metric
relying in part on human input: for example, DERP run on human-generated reference
and hypothesis dependency trees.

This approach has already been taken with semi-automatic tools such as
HTER [Snover et al., 2006] and HMEANT [Lo and Wu, 2011]. The experimental re-
sults of such tools were reported as a way of gauging the relevance of the appropriate
techniques, which were additionally packaged in a fully automated form as TER and
MEANT respectively.
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Tailored training – While human involvement in generating parse trees would provide
the immediate and generic benefit of a greater understanding of the potential help of
structure, it might also permit a more long-lasting and specific benefit: the development
of more appropriately trained parsers.

As discussed in Section 2.1.3, producing a parser which can be applied to a specific
language generally requires a large number of sentences in that language. For our experi-
ments, we have used tools trained on correct English (Section 3.4.3), although in practice
half the sentences we encounter are potentially flawed machine translations.

Thus, were a treebank to be produced containing human-parsed machine-produced
dependency structures, such a resource could be used to train future dependency parsers,
which in turn could be used by tools similar to ours. The presumably more accurate
resulting parse trees could be expected to result in higher-accuracy evaluations.

Single-tree comparisons – While flawed hypothesis sentences are likely to lead to even
more flawed hypothesis parses without closely tailored training data, an alternative ap-
proach to structural evaluation is to avoid hypothesis parsing and generate structures for
the reference sentence only. This is the approach taken by the BLEUÂTRE [Mehay and
Brew, 2006] and RED [Yu et al., 2014] metrics (see Section 2.2.3), which extract word
n-grams from a reference tree before running traditional comparison techniques relating
to precision and recall.

An adaptation of this approach to DERP could involve comparisons of dependency
path lengths between two aligned reference words to the flat word-based distances be-
tween matching hypothesis words. Alternatively, errors could be measured by calculating
the pathwise moves or swaps which would be required in a reference tree for its nodes to
be in the same order as the matching words in a hypothesis sentence. Projectivity could
be imposed as an additional constraint to prevent trivial solutions.

Given the necessarily asymmetric and limited information available to any algorithm
relying on a single dependency tree, the relevance of any such approach would be far
from guaranteed. However, we believe that such approaches could lead to a ‘best of both
worlds’ solution to the evaluation problems we have investigated, making use of helpful
structural information while omitting anything unhelpful.

Tool publications – While various adaptations could be made to our tools to improve
their performance, they nonetheless already represent both novel and largely successful
approaches to the question of order evaluation. As such, it may be of benefit to the
machine translation community to make up to three separate tools publically available
for download.

We believe that implementations of both DTED and DERP can be of direct use when
training translation systems. The surprising success of flattened ‘c’ DTED, coupled with
the obvious possible execution-speed gains possible by omitting its parsing phase, sug-
gests that it may be at least as helpful as its structured counterparts.

Restriction removal – Given the general success of our tools, and the range of questions
raised by their performance, we feel that it would be worthwhile to continue our investi-
gations through the removal of the restrictions we imposed in Section 3.3. These were the
focus on translations into English only, the investigation of adequacy over fluency, and
the calculation of scores for sentence pairs only rather than whole systems or hypotheses
with multiple references.



8.4. FUTURE WORK 139

Each of these limitations was imposed for purely practical reasons, and could poten-
tially be lifted without excessive amounts of extra work. Given the lack of language-
specific features in our algorithms, and our deliberate avoidance of reliance on a sin-
gle configuration of third-party tools, the tools we have produced could be adapted to
other languages by simply providing suitable non-English training corpora, or indeed
pre-trained parsers, taggers and alignment generators.

The generation of system-level and multi-reference scores has already been discussed
in Section 3.3: these could be done by simple arithmetic averaging in the former case,
and selecting the highest pairwise score out of several in the latter.

The evaluation of fluency would be a more nebulous change, as nothing in our tools
precludes them from fluency evaluation in their current form. Instead of altering the
tools themselves, we suggest an extension to WOJ-DB – another survey – with questions
relating to grammatical correctness rather than transfer of meaning.

WOJ-DB applications – Just as our tools could be improved yet already represent
worthwhile forays into evaluation using structure, so WOJ-DB, while limited to ade-
quacy, can be a powerful resource. We have already shown its utility when applied to
the evaluation of our tools, but have only scratched the surface of the knowledge it can
provide on other tools.

The most notable other metrics whose evaluation would be helpful to consider would
be those which judge order specifically, as introduced in Section 2.3.1. Evaluations of all
such tools would provide interesting comparisons to our own tools, allowing more broad
evaluation than the few prominent baselines we have included.

We would primarily recommend the more detailed evaluation of the tools whose
WMT data performed relatively well already. Notable among these are the multi-
approach and recently highly lauded BEER metric [Stanojević and Sima’an, 2014a],
which includes the standalone order component proposed by Stanojević and Sima’an
[2014b]. Results relating to the DiscoTK metric [Joty et al., 2014], though not sta-
tistically significant in our experiments, are also encouraging to the point that further
investigation is warranted.

The uses of WOJ-DB are not inherently limited to metric evaluation. We believe the
two types of human judgments we have gathered can be used to gain a deeper under-
standing of the relevance of order to overall quality, perhaps through deeper analysis of
the sentences we have included. Of these, Section 7.4.2 represents only an initial look
into the implications of our automatic permutations: the precise information they con-
tain about error types could yield numerous insights if compared between many different
tools, compared with different qualities or types of translated sentences, or investigated
in the context of individual participants’ backgrounds.

While such further investigations into WOJ-DB, DTED and DERP were not con-
sidered essential to our own research questions, they nonetheless have the potential to
deepen our understanding of error behaviour and impact, the relevance of structure to
evaluation of both granular and general scores, and the specific improvements needed for
individual translation tools.





BIBLIOGRAPHY

Akiba, Y., Imamura, K., and Sumita, E. (2001). Using multiple edit distances to auto-
matically rank machine translation output. In Proceedings of the MT Summit VIII.

Al-Onaizan, Y., Curin, J., Jahr, M., Knight, K., Lafferty, J. D., Melamed, D., Och, F. J.,
Purdy, D., Smith, N. A., and Yarowsky, D. (1999). Statistical machine translation.
Technical report, Final Report, JHU Summer Workshop.

Amazon (2005). Amazon Mechanical Turk. https://www.mturk.com/. Last accessed on
15 March 2017.

Amigó, E., Giménez, J., Gonzalo, J., and Màrquez, L. (2006). MT Evaluation: Human-
like vs. Human Acceptable. In Proceedings of the International Conference on
Computational Linguistics and the Association for Computational Linguistics, pages
17–24, Sydney. Association for Computational Linguistics.

Avramidis, E., Burchardt, A., Federmann, C., Popović, M., Tscherwinka, C., and Vilar,
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Popović, M. and Burchardt, A. (2011). From Human to Automatic Error Classification
for Machine Translation Output. In Proceedings of the 15th International Conference
of the European Association for Machine Translation, pages 265–272, Leuven, Bel-
gium.
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Popović, M. and Ney, H. (2007). Word Error Rates: Decomposition over PoS Classes and
Applications for Error Analysis. In Proceedings of the Second Workshop on Statistical
Machine Translation, pages 48–55, Prague, Czech Republic. Association for Compu-
tational Linguistics.
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AAPPENDIX A

WOJ-DB

Pilot study

Pages 160 and 161 contain demographic information about participants to the pilot study
we ran for WOJ-DB (Section 6.4). Figure A.1 contains information about score distri-
butions and ranges across all five questionnaires, similarly to Figure 6.1 (page 96) for
the main survey. Figure A.2 presents the lengths of the sentences included in the pilot
study. As with the main survey (Figure 6.2, page 97) participants were rarely shown
sentence pairs for which the hypothesis and reference differed dramatically in length.
Figure A.3 summarises information about our pilot participants’ education levels and in-
terest in grammar, just as Figure 6.6 does for the main study. Finally, Figure A.4 indicates
the languages spoken by pilot study participants, presented in the same manner as Figure
6.7 (page 104).

Participant information sheets

Pages 162 to 166 reproduce information given to participants of WOJ-DB during their
participation. The information sheet, provided on arrival and providing limited back-
ground information on the survey, is on pages 162-163. Pages 164-165 show the consent
form each participant was required to sign before participating. After completing the
survey, participants were provided with the debriefing sheet shown on page 166. Page
167 shows the first page of the survey, requesting personal information about the par-
ticipant as discussed in Section 6.3.2 and providing them with a sample sentence as per
Section 6.3.2.

Shared sentences

While questionnaires in WOJ-DB contained mostly unique sentence pairs, 20 questions
out of 50 were the same for all participants, as described in Section 6.3.4. Half of these
sentences were real hypothesis/reference pairs produced for WMT, while the other half
were automatic permutations of those reference sentences. The WMT hypotheses and
references, along with brief descriptors of the important factors leading to their selection,
are shown in the tables on pages 168 and 169.
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Participant Information Sheet

Project Title 
Human Judgements of Word Order in Machine Translation

What is the study about?

We invite you to participate in a research project about the effect word ordering can have on humans'
impressions of the quality of machineproduced translations.

This study is being conducted as part of my, Martin McCaffery's PhD Thesis in the School of Computer
Science.

Do I have to take part?

This study is entirely voluntary, and you are free to withdraw at any time. This sheet has been written to
help you decide if you would like to take part.

What would I be required to do?

The study will run for one hour. During this hour you will be provided with a number of sentences, all in
English, which have been produced by automatic translation systems from various other languages. For
each sentence, you will also be given a 'correct' translation produced by a human, and will be asked to rate
the similarities between the two. For simplicity, you will not have the original sentence, though the original
language will be identified alongside the sentence.
You will receive 50 sentences in total, and will have an hour to do as many as you are able. You are free to
withdraw your participation at any point in the study without providing a reason.

Will my participation be Anonymous and Confidential?

Only   the   researcher(s)   and   supervisor(s)  will   have  access   to   the   full   data  which  will  be   kept   strictly
confidential. However, after removing any information which could identify you, we would like to publish
the anonymised responses from this survey, to be used for future scholarly purposes. This will allow us to
produce a reliable resource for researchers who want to further investigate this area.

Storage and Destruction of Data Collected

The full data we collect will be accessible by the researcher(s) and supervisor(s) involved in this study only,
unless explicit consent for wider access is given by means of the consent form. The full data will be stored
for a period of at most 2 years before being destroyed, in an anonymised format on a computer within the
School of Computer Science. If you give consent, we will also compile the scores you provide, along with
your age, nationality and native language, into a resource which will be given out on request to future
researchers.
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What will happen to the results of the research study?

The ratings you provide will be statistically compared with automaticallygenerated ratings on word order
quality. This will be used to assess the quality of the automatic judgements, with the human ones assumed to
be correct.

The results will be finalised during 2017 and written up as part of the researcher's PhD Thesis. They may
also be published in paper format.

Reward 

You will be given a £5 Amazon voucher for your participation in this survey.

Are there any potential risks to taking part?

There are no known risks associated with participation in this study.

Questions

You will have the opportunity to ask any questions in relation to this project before completing a Consent
Form.

Consent and Approval

This   research  proposal  has  been scrutinised  and been granted  Ethical  Approval   through  the  University
ethical approval process.

What should I do if I have concerns about this study?

A full outline of the procedures governed by the University Teaching and Research Ethical Committee is
available at http://www.standrews.ac.uk/utrec/guidelinespolicies/complaints/

Contact Details

Researcher: Martin McCaffery
Contact Details: mm689@standrews.ac.uk
Supervisor: MarkJan Nederhof
Contact Details:         mn31@standrews.ac.uk
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Participant Consent Form
Coded Data

Project Tit le
Human Judgements of Word Order in Machine Translation

Researcher(s)  Name(s)
Martin McCaffery
mm689@st-andrews.ac.uk

Supervisors Names
Mark-Jan Nederhof
mn31@st-andrews.ac.uk

The University of St Andrews attaches high priority to the ethical conduct of research.  We therefore ask you to
consider the following points before signing this form. Your signature confirms that you are happy to participate
in the study.

What is Coded Data?
The term ‘Coded Data’ refers to when data collected by the researcher is identifiable as belonging to a particular 
participant but is kept with personal identifiers removed.   The researcher(s) retain a ‘key’ to the coded data 
which allows individual participants to be re-connected with their data at a later date.   The un-coded data is kept
confidential to the researcher(s) (and Supervisors).   If consent it given to archive data (see consent section of 
form) the participant may be contacted in the future by the original researcher(s) or other researcher(s). 

Consent
The purpose of this form is to ensure that you are willing to take part in this study and to let you understand what
it entails.   Signing this form does not commit you to anything you do not wish to do and you are free to withdraw
at any stage.

Material gathered during this research will be coded, with the full information kept confidentially and securely
within  the School  of  Computer  Science by the  researcher,  with  only  the researcher  and supervisor  having
access.

The coded information, after any features which could be used to identify you have been removed, will then be
made publicly available as a resource for future researchers.

Please answer each statement concerning the collection and use of the research data.

I have read and understood the information sheet.  Yes  No

I have been given the opportunity to ask questions about the study.  Yes  No

I have had my questions answered satisfactorily.  Yes  No

I understand that  I  can withdraw from the study  at  any  time without  having  to  give  an
explanation.

 Yes  No

I understand that my data will  be confidential and that it will  contain identifiable personal
data but will be stored with personal identifiers removed by the researcher and that only the
researcher/supervisor will be able to decode this information as and when necessary.

 Yes  No

I agree to my anonymised data (in line with conditions outlined above) being kept by the
researcher and being archived and used for further research projects / by other bona fide
researchers.  Yes  No

I have been made fully aware of the potential risks associated with this research and am
satisfied with the information provided.

 Yes  No

I agree to take part in the study.  Yes  No
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Participation in this research is completely voluntary and your consent is required before you can
participate in this research.   If you decide at a later date that data should be destroyed we will
honour your request in writing.

Name in Block Capitals

Signature

Date
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Participant Debriefing Form

Project Title
Human Judgements of Word Order in Machine Translation

Researcher(s) Name(s)
Martin McCaffery
mm689@st-andrews.ac.uk

Supervisor’s Name
Mark-Jan Nederhof
mn31@st-andrews.ac.uk

Nature of Project

This postgraduate research project was conducted to investigate how humans perceive word order variations
in  automatic  translations.  With  the  judgements  you have  provided,  we intend  to  evaluate  a  number  of
automatic quality assessment tools  to see how well they can predict scores given by humans. This will  give
us insights into how humans interpret translations, and also give us a reliable measure of confidence in the
quality of translations produced now and in the future. An anonymized version of the data we collected,
including all the information you enter on the survey but without your name or contact details, will also be
made available upon request to other researchers for further investigation in this field, provided this was
consented to within the consent form.

Storage of Data

As outlined in the Participant Information Sheet your personal data will now be retained securely within
Computer Science until an anonymised version of the data is published, within the coming two years. The
anonymised data, including nationalities and scores, may then be used for future scholarly purposes without
further contact or permission if you have given permission on the Consent Form.   If you no longer wish for
your  data  to  be  used  in  this  manner  you are  free  to  withdraw your  consent  by  contacting  any  of  the
researchers and or Supervisor.

What should I do if I have concerns about this study?

A full outline of the procedures governed by the University Teaching and Research Ethical Committee are
outline on their website - http://www.st-andrews.ac.uk/utrec/guidelinespolicies/complaints/

Contact Details

Researcher: Martin McCaffery
Contact Details: mm689@st-andrews.ac.uk

Supervisor: Mark-Jan Nederhof
Contact Details: mn31@st-andrews.ac.uk
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Martin McCaffery
Word Ordering in Machine Translation

This questionnaire is automatically read by a computer program. Please use a pen when filling in your answers.

Select an answer: . Cancel an answer, to change it: .

1 About You

1.1 Is English your first language? If not, how long would you say you have been speaking it fluently?

. Yes No

1.2 Please indicate the languages you speak (including English), along with your fluency level and any qualifi-
cations you have achieved in each.

1.3 What gender best describes you?

. Male . Female . Other . Prefer
not to say

1.4 What nationality do you feel best represents you?

1.5 What is the highest level of education you have completed?

. School or none . College diploma . Undergraduate . Masters degree . Ph.D. or higher

1.6 Do you have any disabilities which could impact your reading, e.g. dyslexia? 1.8 How old are you?

. No Yes (please specify)

1.7 To what extent would you say that you notice grammar and sentence structure in everyday life?

It doesn’t affect me at all . . . . . Correct use of language is important

2 Sample Sentence

Machine-produced translation:
The man saw the dog for doctor, as ill over day.

Human-produced translation:
The man went to see the vet about his dog, which had been ill for days.

2.1 How difficult would it be to grasp the meaning of the second sentence if you were only shown the first?
There are numerous mistakes in the sentence, which could make its meaning hard to grasp. Does the correct
meaning, shown in the second sentence, still clearly exist? If not, is it impossible to work it out?

Very difficult . . . . . Very easy

2.2 How much does the ordering of the words on its own cloud the meaning of the first sentence?
The only ordering mistake is swapping ‘dog’ and ‘vet/doctor’ - but this mistake could be very confusing.
Consider how many words have been moved and how significantly this obscures the meaning of the sentence.

Enormously . . . . . Not at all

...
1

..
1468745056 0001
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Sentence ID, Hypothesis, Reference Details
wmt14_rbmt1.0.fr-en #905
The program will more focus on the “problems of the real world”,
in particular financial mathematics.
The syllabus will place a greater focus on “real world problems,”
including financial mathematics.

Source: French
Length: short
Quality: high
Order: slight

wmt16.pjatk.4520.cs-en #1555
No offense, but we don’t know, “admitted supporter Tripoli Goian.
No hard feelings, but I’ve never heard of Lafata, admits Tripolis
mainstay Goian.

Source: Czech
Length: short
Quality: medium
Order: prime

wmt16.online-g.0.de-en #1654
Criticism of the city boss exerts on the distribution of refugees
within the country.
The town chief is criticising the allocation of refugees within the
federal states.

Source: German
Length: short
Quality: medium
Order: prime

wmt16.pjatk.4520.cs-en #877
Replace the Czech Latecoere for Brazilian or European manufac-
turer is either impossible or very difficult.
Replacing the Czech branch of Latecoere would be very compli-
cated, if not impossible, for the Brazilian or European producer.

Source: Czech
Length: medium
Quality: medium
Order: slight

wmt14_iitb-ranked-ppl.3173.hi-en #392
American health statistics , the average American male in the 21st
century , which is 7 inches , 39 .
The waist of the average 21st-century American male is 39.7
inches, according to U.S. health statistics.

Source: Hindi
Length: medium
Quality: medium
Order: equal

wmt14_iitb-ranked-ppl.3173.hi-en #674
Wednesday , investigators reviewed surveillance video released by
the South Georgia authorities all the way .
A southern Georgia judge on Wednesday ordered authorities to
release all surveillance video that investigators reviewed.

Source: Hindi
Length: medium
Quality: low
Order: equal

Table A.1: Broad descriptions of the sentences shared across every survey (first line in
table 6.3), continued in Table A.2.
Sentence IDs indicate the WMT year, translation system and sentence pair number within
the corpus translated by that system. The ‘Order’ column indicates the relevance of the
ordering of the words in the hypothesis sentence to any confusion of its meaning, relative
to other factors such as word choice or omission.
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Sentence ID, Hypothesis, Reference Details
wmt14_uedin-wmt14.3422.hi-en #399
The hope to those days is difficult to remember - to remember
the one away as they are, have lost a bitter memory of the op-
portunities.
It’s hard to remember those days of optimism – they seem a
distant memory, a sad reminder of opportunities gone by.

Source: Hindi
Length: medium
Quality: low
Order: equal

wmt16.online-f.0.de-en #218
With all building projects in the urban district Cologne is always
consulted the museum as specialized office for archaeological
ground monument conservation.
The museum, as the department for archaeological monument
conservation, is always consulted when construction projects
are carried out in the city district of Cologne.

Source: German
Length: long
Quality: low
Order: prime

wmt16.online-f.0.de-en #2506
Malmö, which struck Celtic in a play-off, in order to reach this
stage, began with Anpiff with nine national players on the field
and was deeply in the centre zone lined up with a five-man de-
fense and two a heavy opponent.
Malmo, who beat Celtic in a play-off to reach this stage, lined
up with nine full internationals on the field at kick-off and, with
a five-man defence and two deep in midfield, were stuffy oppo-
nents.

Source: German
Length: long
Quality: low
Order: slight

wmt16.jhu-pbmt.4284.ro-en #853
Striker in Swansea, Michu, associated with Celtic in the trans-
fers, suggested that it could withdraw from the contract with
Swans.
Swansea striker Michu, linked with Celtic during the transfer
window, has dropped hints that he could retire when his con-
tract with the Swans is up.

Source: Romanian
Length: long
Quality: high
Order: prime

Table A.2: Continuation of Table A.1
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RESULTS

Score ranges

On pages 172 and 173, the ranges of scores produced by each variant of DTED and
DERP are presented. As discussed in Section 7.2.1 the absolute scores do not affect our
conclusions, which through Spearman’s ρ are based instead on simple pairwise compar-
isons within the data, however the absolute scores may be of interest when comparing
our tools to others using other methods.

Unadjusted scores

On pages 174 to 177, we present correlations based on scores unadjusted for random
effects as per Section 7.2.3. These thus represent Spearman’s ρ values between the judg-
ments provided for WOJ-DB, converted to numerical form as described in Section 6.3.5
but otherwise unaltered.

Holistic scores

Pages 178 and 179 contain graphs similar to those in Chapter 7 but relating to human
judgments on holistic adequacy rather than word ordering specifically. These are dis-
cussed in more detail in Section 7.3.4.

Participant subsets

Similar graphs appear on pages 180 to 185. These graphs show correlations generated on
the subsets of WOJ-DB judgments produced by participants belonging to different demo-
graphics, as discussed in Section 7.3.5. We present graphs for participants belonging to
different age brackets, linguistic experience and education level. The number of people
belonging to any given subgroup is indicated on the relevant graphs.
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Figure B.1: Score distributions for variants of DTED
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Figure B.2: Score distributions for variants of DERP
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Figure B.3: Correlations between order-focused human judgments and other evaluations across all hypothesis translations in WOJ-DB,
without prior adjustment for participants’ random effects. Colours are summarised in Table 7.2 (page 117).
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Figure B.4: Correlations between order-focused human judgments and other techniques
across each type of automatically permuted sentences in WOJ-DB, without prior adjust-
ment for participants’ random effects. Colours are summarised in Table 7.2 (page 117).
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Figure B.5: Correlations between holistic human judgments and other evaluations across all hypothesis translations in WOJ-DB, without
prior adjustment for participants’ random effects. Colours are summarised in Table 7.2 (page 117).
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Figure B.6: Correlations between holistic human judgments and other techniques across
each type of automatically permuted sentences in WOJ-DB, without prior adjustment for
participants’ random effects. Colours are summarised in Table 7.2 (page 117).
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Figure B.7: Correlations between holistic human judgments and other evaluations across all hypothesis translations in WOJ-DB. Colours are
summarised in Table 7.2 (page 117).
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Figure B.8: Correlations between holistic human judgments and other techniques across
each type of automatically permuted sentences in WOJ-DB. Colours are summarised in
Table 7.2 (page 117).
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Figure B.9: Correlations between human judgments from WOJ-DB and other techniques for participants aged below 30. Colours are
summarised in Table 7.2 (page 117).
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Figure B.10: Correlations between human judgments from WOJ-DB and other techniques for participants aged at least 30. Colours are
summarised in Table 7.2 (page 117).
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Figure B.11: Correlations between human judgments from WOJ-DB and other techniques for participants with fewer than 11 language points
according to the system described in Section 6.5.2. Colours are summarised in Table 7.2 (page 117).
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Figure B.12: Correlations between human judgments from WOJ-DB and other techniques for participants with at least 11 language points
according to the system described in Section 6.5.2. Colours are summarised in Table 7.2 (page 117).
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Figure B.13: Correlations between human judgments from WOJ-DB and other techniques for participants whose highest level of education
was at most an undergraduate degree. Colours are summarised in Table 7.2 (page 117).
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Figure B.14: Correlations between human judgments from WOJ-DB and other techniques for participants whose highest level of education
was at least a Masters degree. Colours are summarised in Table 7.2 (page 117).
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