
COUNTING SUBWORDS AND OTHER RESULTS

RELATED TO THE GENERALISED STAR-HEIGHT
PROBLEM FOR REGULAR LANGUAGES

Thomas Bourne

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

2017

Full metadata for this item is available in
St Andrews Research Repository

at:

http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10023/12024

This item is protected by original copyright

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/132198925?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/12024

Counting Subwords and Other Results
Related to the Generalised Star-Height

Problem for Regular Languages

Thomas Bourne

This thesis is submitted in partial fulfilment for the

degree of PhD at the University of St Andrews

August 10th 2017

Declarations

Candidate’s declarations

I, Thomas Bourne, hereby certify that this thesis, which is approximately 32000

words in length, has been written by me, and that it is the record of work carried

out by me, or principally by myself in collaboration with others as acknowledged,

and that it has not been submitted in any previous application for a higher

degree.

I was admitted as a research student in September 2013 and as a candidate

for the degree of PhD Mathematics in September 2013, the higher study for

which this is a record was carried out in the University of St Andrews between

2013 and 2017.

Date: Signature of candidate:

Supervisors’ declarations

I hereby certify that the candidate has fulfilled the conditions of the Resolution

and Regulations appropriate for the degree of PhD Mathematics in the Univer-

sity of St Andrews and that the candidate is qualified to submit this thesis in

application for that degree.

Date: Signature of supervisor:

Date: Signature of supervisor:

ii

Permission for publication

In submitting this thesis to the University of St Andrews I understand that I

am giving permission for it to be made available for use in accordance with the

regulations of the University Library for the time being in force, subject to any

copyright vested in the work not being affected thereby. I also understand that

the title and the abstract will be published, and that a copy of the work may be

made and supplied to any bona fide library or research worker, that my thesis

will be electronically accessible for personal or research use unless exempt by

award of an embargo as requested below, and that the library has the right

to migrate my thesis into new electronic forms as required to ensure continued

access to the thesis. I have obtained any third-party copyright permissions that

may be required in order to allow such access and migration, or have requested

the appropriate embargo below.

PRINTED COPY: No embargo on print copy.

ELECTRONIC COPY: No embargo on electronic copy.

Date: Signature of candidate:

Date: Signature of supervisor:

Date: Signature of supervisor:

iii

Abstract

The Generalised Star-Height Problem is an open question in the field of formal

language theory that concerns a measure of complexity on the class of regular

languages; specifically, it asks whether or not there exists an algorithm to de-

termine the generalised star-height of a given regular language. Rather surpris-

ingly, it is not yet known whether there exists a regular language of generalised

star-height greater than one.

Motivated by a theorem of Thérien, we first take a combinatorial approach

to the problem and consider the languages in which every word features a fixed

contiguous subword an exact number of times. We show that these languages

are all of generalised star-height zero. Similarly, we consider the languages in

which every word features a fixed contiguous subword a prescribed number of

times modulo a fixed number and show that these languages are all of generalised

star-height at most one.

Using these combinatorial results, we initiate work on identifying the gen-

eralised star-height of the languages that are recognised by finite semigroups.

To do this, we establish the generalised star-height of languages recognised by

Rees zero-matrix semigroups over nilpotent groups of classes zero and one before

considering Rees zero-matrix semigroups over monogenic semigroups.

Finally, we explore the generalised star-height of languages recognised by

finite groups of a given order. We do this through the use of finite state automata

and ‘count arrows’ to examine semidirect products of the form A o Zr, where

A is an abelian group and Zr is the cyclic group of order r.

iv

Acknowledgements

Over the course of the past three and a half years, I have been fortunate enough

to receive a phenomenal amount of support from my family, friends and col-

leagues. I would like to take this opportunity to say that I am eternally grateful

to all of you for everything that you have done for me during my time as a

research student. Special thanks are owed to the following people:

To my supervisors, Professor Nik Ruškuc and Dr Colva Roney-Dougal, for

your guidance throughout the PhD process and for challenging me to push

myself beyond my self-perceived mathematical limits. Without your support I

doubt I would have made it to the end of this journey.

To my father Karl, my mother Chris and my sister Katie, whose uncondi-

tional love has transformed me into the person that I am today. I hope that I

have done you proud and that I continue to do so from here on out.

To Rachael, for filling me with enthusiasm on the days where I felt deflated

and for encouraging me to explain ‘what it is that I actually do’ in a way that

you understand. Also, for being on the receiving end of many of my jokes and

for listening to all of my (terrible) puns.

To my friends: Jenni, for being my gig companion and fellow gin enthusiast;

Julius, for sharing my obsession with the gym and for allowing me to make fun

of your native tongue; Alex, for pretending to like gin for fear of missing out

on social interaction; Sascha, for agreeing to be my flatmate, for relating all of

your Dad’s antics, and for shower pictures from around the world; and Amy, for

remaining my closest friend despite us living 460 miles apart.

To my office colleagues in The (Not Quite As) Ginger (As Before) Office and

next door neighbours in The Office of Doom, for providing copious amounts of

tea and cake alongside both thought-provoking discussion and mindless chatter.

To all of the swimmers at the University of St Andrews Swimming Club

and all of the coaches and swimmers at Step Rock Amateur Swimming Club,

for tolerating my grumpiness and for presenting me with so many wonderful

opportunities to remain involved in the sport that I care so passionately about.

v

Contents

Declarations ii

Abstract iv

Acknowledgements v

1 Introduction and Preliminaries 1

1.1 Set theory . 3

1.2 Semigroups, monoids and groups 6

1.3 Formal languages . 10

1.4 Generalised star-height problem 18

1.5 Finite state automata . 22

2 Counting Subwords 26

2.1 Motivation . 26

2.2 Definitions . 27

2.3 Over a unary alphabet . 29

2.4 Over a non-unary alphabet . 30

2.4.1 Counting subwords of length 1 30

2.4.2 Counting subwords of length 2 31

2.4.3 Counting subwords of length 3 36

2.5 Main result . 39

2.6 Examples . 48

2.7 Forming a variety of languages 52

3 Rees Matrix Semigroups 56

3.1 Definitions and motivation . 56

3.2 Setup . 57

3.3 Over the nilpotent group of class 0 59

3.4 Over nilpotent groups of class 1 60

vi

3.4.1 Cyclic groups . 60

3.4.2 An example . 63

3.4.3 Direct products . 69

3.4.4 Extending to abelian groups 72

3.5 Over monogenic semigroups . 72

4 Counting Arrows 76

4.1 Definitions and motivation . 76

4.2 Semidirect products . 79

4.2.1 Cyclic group of order 2 80

4.2.2 Cyclic group of order 3 83

5 Conclusions and Open Questions 88

Bibliography 92

vii

Chapter 1

Introduction and

Preliminaries

The Generalised Star-Height Problem for regular languages is a long-standing

problem in the field of formal language theory. Specifically, it asks whether

or not there exists an algorithm to determine the generalised star-height of a

given regular language. In particular, it is not yet known whether there exists

a regular language with generalised star-height greater than or equal to one. In

this thesis, we establish the generalised star-height of a wide range of regular

languages by using new and existing combinatorial and algebraic techniques.

To ensure that this thesis is self-contained, we introduce the prerequisite

mathematical knowledge required in Chapter 1. This includes all of the neces-

sary notions from set theory, semigroup theory (including relevant information

on monoids and groups), formal language theory and automata theory. We in-

troduce both the (restricted) star-height problem and the generalised star-height

problem before giving an outline of known results for both.

In Chapter 2, we take a combinatorial approach to the generalised star-height

problem and, motivated by a theorem of Thérien, consider the contiguous sub-

word ordering on the set of all words over a fixed alphabet. We define the regular

languages Count(w, k) and ModCount(w, k, n) and split into two cases, first con-

sidering words over a unary alphabet before turning our attention to words over

a non-unary alphabet. In each case, we show that the language Count(w, k)

is of generalised star-height zero while the language ModCount(w, k, n) is of

generalised star-height at most one. After this, we highlight the construction of

the regular expressions found for Count(w, k) and ModCount(w, k, n) through a

handful of examples before concluding the chapter with a discussion regarding

1

the appropriate formulation of a variety of monoid languages for the ModCount

family of languages.

In Chapter 3, we venture into the world of Rees zero-matrix semigroups and

begin a classification of the languages that are recognised by finite semigroups.

The ‘building blocks’ of finite semigroups are the finite 0-simple semigroups and

the zero semigroups and, by The Rees Theorem (Theorem 3.1), a semigroup

with zero is completely 0-simple if and only if it is isomorphic to a Rees zero-

matrix semigroup over a group with regular sandwich matrix. As such, we

investigate the languages recognised by Rees zero-matrix semigroups over the

trivial group and languages recognised by Rees zero-matrix semigroups over

finite abelian groups, concluding in each case that the generalised star-height

of these languages is at most one. To get at languages recognised by Rees

zero-matrix semigroups over finite abelian groups, we first consider languages

recognised by Rees zero-matrix semigroups over finite cyclic groups. We then

make use of properties of direct products, homomorphisms and projection maps

and appeal to the Fundamental Theorem of Finite Abelian Groups. To complete

this chapter, we take a slight detour and show that languages recognised by Rees

zero-matrix semigroups over finite monogenic semigroups are also of generalised

star-height at most one.

In Chapter 4, we examine which languages are recognised by finite groups

of a given order. This work is motivated by a theorem of Pin, Straubing and

Thérien (Theorem 4.1) which states that every language recognised by a finite

group of order less than 12 is of generalised star-height at most one. Their

proof relies on analysing semidirect products of the form AoZ2, where A is an

abelian group and Z2 is the cyclic group of order 2. This is done through the

use of ‘cyclic’ automata and counting arrows. We attempt to extend this work

to semidirect products of the form A o Z3 by adhering to their proof strategy.

Unfortunately, this ultimately fails due to an issue with unique factorisation of

words into non-overlapping subwords. Nonetheless, insight into the problem is

gained even though the result is not extended to languages recognised by finite

groups of order 12 or higher.

Finally, in Chapter 5, we present some open questions that relate to both

the work portrayed in this thesis and to that of others who have contributed to

the problem at hand.

2

1.1 Set theory

Sets, subsets and examples

A set is a collection of objects; its members are referred to as elements. In

general, we will denote sets by upper case letters and elements of sets by lower

case letters. If x is an element of a set X then we write x ∈ X; otherwise,

x /∈ X. If a set has finitely many elements then it is possible to list them, and

we do this using braces; for example,

X = {1, 2, 3, 4, 5}.

Often, we need to describe a set by stipulating a property P that its elements

must satisfy. In this case, we write

{x | x satisfies property P};

that is, the set of all x such that x satisfies property P . When a set has infinitely

many members we can describe it using a property or, in circumstances where

membership follows a clear pattern, through the use of ellipses; for example,

{. . . ,−4,−2, 0, 2, 4, . . . }

denotes the set of even integers.

A set worthy of special mention is the empty set, which is denoted by ∅. It

is the unique set containing no elements.

Throughout this thesis, we denote the set of integers {. . . ,−1, 0, 1, . . . } by

Z, the set of positive integers {1, 2, 3, . . . } by Z+ and the set of non-negative

integers {0, 1, 2, . . . } by N. We often refer to elements of N as natural numbers.

Two sets X and Y are equal if they contain precisely the same elements. A

set Y is a subset of a set X if all the elements of Y are also elements of X and

we write Y ⊆ X; otherwise, Y * X. If Y ⊆ X and X 6= Y then Y is a proper

subset of X and we write Y ⊂ X. Importantly, ∅ ⊆ X and X ⊆ X for every set

X. It should also be noted that Z+ ⊂ N ⊂ Z.

In many cases, we prove that two sets X and Y are equal by showing that

each set is a subset of the other; that is,

X = Y ⇔ X ⊆ Y and Y ⊆ X.

Operations on sets

Given two sets X and Y , we can combine and compare them in the following

ways. The intersection of X and Y is the set of all elements that belong to both

3

X and Y ; that is,

X ∩ Y = {z | z ∈ X and z ∈ Y }.

The union of X and Y is the set of all elements that belong to X or Y ; that is,

X ∪ Y = {z | z ∈ X or z ∈ Y }.

The word ‘or’ never implies exclusivity, so ‘or’ always means ‘this set, that set or

both’. The relative complement of Y with respect to X is the set of all elements

that belong to X but not Y ; that is,

X \ Y = {z | z ∈ X and z /∈ Y }.

These boolean operations satisfy a number of laws that we do not explicate here.

In this thesis, we will be interested in subsets of some fixed set U . We

refer to U as the universe and define the set Xc = U \X to be the (absolute)

complement of X. The following equalities hold for any sets X and Y :

(X ∪ Y)c = Xc ∩ Y c and (X ∩ Y)c = Xc ∪ Y c. (1.1)

Collectively, these equalities are known as de Morgan’s Laws.

Products of sets and binary relations

Given two sets X and Y , define the Cartesian product of X and Y by

X × Y = {(x, y) | x ∈ X and y ∈ Y };

that is, the set of all ordered pairs in which the first component is an element

of X and the second component is an element of Y . This construction can be

extended to any finite number of sets by repeated applications of the rule.

Given two sets X and Y , a binary relation ρ is a subset of the product X×Y ;

that is, ρ is a collection of ordered pairs (x, y) in X × Y . If (x, y) belongs to ρ

then x and y are said to be ρ-related. We often use infix notation for relations

and write x ρ y to show that x and y are ρ-related.

When X = Y , relations can satisfy certain additional properties that can

lead to further classification. A binary relation ∼ on X is:

• reflexive if x ∼ x for all x in X;

• symmetric if x ∼ y implies y ∼ x for all x and y in X;

• antisymmetric if x ∼ y and y ∼ x imply x = y for all x and y in X; and,

• transitive if x ∼ y and y ∼ z imply x ∼ z for all x, y and z in X.

4

A partial order is a binary relation that is reflexive, antisymmetric and transi-

tive, while an equivalence relation is a binary relation that is reflexive, symmetric

and transitive. The equivalence class of x is defined by

[x] = {y ∈ X | y ∼ x};

that is, the set of all y in X such that y is ∼-related to x. The equivalence

classes partition the set X; that is, X can be written as a disjoint union of its

equivalence classes.

Functions

Let X and Y be sets. A function ϕ from X to Y is a binary relation that

satisfies the following rule: for every x in X there exists precisely one y in Y

such that x ϕ y. We refer to X as the domain of ϕ, to Y as the codomain of ϕ

and write ϕ : X → Y . The set of all functions from X to Y is denoted by Y X .

Let ϕ : X → Y be a function. An element x in X is an argument of the

function and its corresponding y value in Y is the image of x under ϕ. We write

functions on the right of their arguments; that is, xϕ = y.

Let A be a subset of X. We define the image of A by

im(A) = {y ∈ Y | y = xϕ for some x ∈ A};

that is, the set of all y in Y such that y is the image of some x in A. In the case

where A = X, we refer to im(X) as the image of the function ϕ.

Now suppose that B is a subset of Y . We define the preimage of B by

Bϕ−1 = {x ∈ X | xϕ ∈ B};

that is, the set of all x in X such that the image of x under ϕ is an element of

B. It is important to note that

Bϕ−1 =
⋃
b∈B

bϕ−1;

that is, the preimage of a set B is the union of the preimages of the individual

elements of B.

A function ϕ : X → Y is injective if aϕ = bϕ implies a = b for all a and

b in X; that is, distinct elements of the domain never get mapped to the same

element of the codomain. The function ϕ is surjective if every element y in Y has

a corresponding element x in X such that xϕ = y; in other words, im(ϕ) = Y .

If a function is both injective and surjective then it is said to be bijective.

5

1.2 Semigroups, monoids and groups

Semigroups, monoids and groups

A semigroup is a set S equipped with a well-defined, associative binary operation

◦ : S × S → S; that is, x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y and z in S. When the

binary operation is clear, we denote the semigroup (S, ◦) by S alone. We also

drop the symbol denoting the binary operation and show it acting on pairs of

elements by juxtaposition; that is, we write xy instead of x ◦ y.

Let S be a semigroup. The cardinality of the underlying set, denoted by |S|,
is the order of the semigroup. If x and y in S satisfy the equality xy = yx then

x and y commute. The semigroup S is commutative if every pair of elements

commute.

If S has order at least two and there exists an element 0 in S satisfying the

equalities x0 = 0 = 0x for all x in S then 0 is a zero element of S and S is

a semigroup with zero. It follows, by definition, that if a semigroup contains a

zero element then it is unique. If S does not contain a zero element then we

can adjoin a new element 0 to S and define x0 = 0 = 0x for all x in S ∪ {0}.
The resulting semigroup is the semigroup obtained from S by adjoining a zero,

which we denote by S0.

In a similar vein, if there exists an element 1 in S satisfying the equalities

1x = x = x1 for all x in S then 1 is an identity element of S and S is a monoid

or semigroup with identity. We will usually denote a monoid by M . It follows,

by definition, that if a semigroup contains an identity element then it is unique.

If S does not contain an identity element then we can adjoin a new element 1

to S and define 1x = x = x1 for all x in S ∪ {1}. The resulting monoid is the

monoid obtained from S by adjoining an identity, which we denote by S1.

Let M be a monoid with identity 1. If for every m in M there exists n in

M such that mn = 1 = nm then M is a group and n is the inverse of m, which

we denote by m−1. The inverse of a group element is, necessarily, unique. We

will usually denote a group by G. A commutative group is said to be abelian.

If A and B are subsets of a semigroup S then

AB = {ab | a ∈ A and b ∈ B}.

Whenever A = B we write A2, noting that this refers to {a1a2 | a1, a2 ∈ A}
and not {a2 | a ∈ A}.

6

Substructures

A non-empty subset T of a semigroup S is a subsemigroup if it is closed with

respect to the multiplication on S; that is, if xy lies in T for all x and y in T .

If S is a monoid then a subsemigroup T of S is a submonoid if 1 is an element

of T . Moreover, if a subsemigroup T of S forms a group with respect to the

multiplication inherited from S then T is a subgroup of S. A semigroup in which

every subgroup is trivial is said to be aperiodic.

A non-empty subset I of a semigroup S is called a left ideal if SI ⊆ I, a

right ideal if IS ⊆ I and a (two-sided) ideal if it is both a left ideal and a right

ideal. By definition, all ideals of S are also subsemigroups but the converse does

not hold. Ideals of S include S itself and, if S contains a zero element, {0}. An

ideal I such that {0} ⊂ I ⊂ S is said to be proper.

A semigroup without zero is said to be simple if it has no proper ideals. A

semigroup S with zero is said to be 0-simple if {0} and S are its only ideals and

S2 6= {0}.

-morphisms and congruences

Let S and T be semigroups. A function ϕ : S → T is a semigroup homomorphism

if (st)ϕ = (sϕ)(tϕ) for all s and t in S. If S and T are monoids with identities

1S and 1T respectively, then ϕ is a monoid homomorphism if, in addition,

1Sϕ = 1T . If, in addition, S and T are groups then ϕ is said to be a group

homomorphism and, consequently, (s−1)ϕ = (sϕ)−1 for all s in S.

In all three cases, a monomorphism is an injective homomorphism, an epi-

morphism is a surjective homomorphism and an isomorphism is a bijective

homomorphism. If there exists an isomorphism between S and T then they are

isomorphic, and we write S ∼= T .

A semigroup T divides a semigroup S if T is a homomorphic image of a

subsemigroup of S; that is, if there exists a subsemigroup S′ of S and an epi-

morphism ϕ : S′ → T .

Let S be a semigroup. A binary relation ρ on S is said to be compatible

if s1 ρ t1 and s2 ρ t2 imply that s1s2 ρ t1t2 for all s1, s2, t1 and t2 in S. A

compatible equivalence relation is a congruence.

If ρ is a congruence on a semigroup S then the quotient semigroup is the set

S/ρ = {[s] | s ∈ S} equipped with the multiplication defined by [s][t] = [st].

7

Products of semigroups

Given two or more semigroups, it is possible to construct new semigroups in

various different ways.

If S and T are semigroups then the direct product of S and T is the set S×T
equipped with the binary operation

(s1, t1)(s2, t2) = (s1s2, t1t2),

where s1 and s2 are elements of S and t1 and t2 are elements of T . This

construction can be extended to any finite number of semigroups by repeated

applications of the rule.

Let S and T be semigroups. For clarity, we write S additively but do not

assume that it is commutative. A left action of T on S is a function

T × S → S : (t, s) 7→ ts

such that

t(s1 + s2) = ts1 + ts2

t1(t2s) = (t1t2)s

for all s, s1 and s2 in S and all t, t1 and t2 in T .

Given a left action of T on S, the semidirect product SoT is the semigroup

defined on S × T by the multiplication

(s1, t1)(s2, t2) = (s1 + t1s2, t1t2),

where s1 and s2 are elements of S and t1 and t2 are elements of T .

For any two semigroups S and T , where S is written additively but not

assumed to be commutative, the wreath product S o T is the semigroup defined

on ST × T by the multiplication

(f1, t1)(f2, t2) = (f, t1t2),

where f1 and f2 are elements of ST , t1 and t2 are elements of T and f in ST is

defined by tf = tf1 + (tt1)f2 for all t in T . Note that the wreath product S o T
is isomorphic to the semidirect product ST o T .

Examples of groups

Let G be a group and let X be a subset of G. We say that X is a generating set

for G if every element of G can be expressed as a combination of finitely many

8

elements of X and their inverses; G is said to be generated by X and we write

G = 〈X〉.
A cyclic group is a group that is generated by a single element. We denote

the finite cyclic group of order n by Zn and the infinite cyclic group by Z∞.

Every cyclic group is abelian and will often be written additively. The following

theorem highlights the importance of cyclic groups.

Theorem 1.1 (Fundamental Theorem of Abelian Groups, [10, Theorem 2.2]).

Every finite abelian group is isomorphic to a direct product of finite cyclic groups

of prime power order.

Theorem 1.1 shows that every finite abelian group can be decomposed into

a product of cyclic groups; that is, the cyclic groups are the ‘building blocks’ of

the abelian groups.

The dihedral group of order 2n, denoted by Dihn, is the group of symmetries

of a regular n-gon; for example, Dih3 is the group of symmetries of an equilateral

triangle. If ρ represents the rotation by 2π/n of the regular n-gon about its

centre and σ represents any of the reflections of the n-gon then Dihn = 〈ρ, σ〉
subject to the conditions ρn = 1, σ2 = 1 and ρσ = σρ−1.

For a group G, define the lower central series of G by

G1 = G and Gi+1 = [Gi, G],

where [H,K] denotes the subgroup of G generated by all elements of the form

h−1k−1hk, where h is in H and k is in K. The group G is said to be nilpotent

of class m if Gm 6= {1} and Gm+1 = {1}.
It follows from the definition that the trivial group {1} is the only nilpo-

tent group of class 0 and that the non-trivial abelian groups are precisely the

nilpotent groups of class 1. The smallest nilpotent group of class 2 is Dih4, the

dihedral group of order 8.

Pseudovarieties of monoids

A pseudovariety of monoids is a class of finite monoids that is closed under

the taking of submonoids, homomorphic images and finite direct products. We

denote pseudovarieties of monoids in bold font. Examples of pseudovarieties

of monoids include: Mon, which consists of all finite monoids; Grps, which

consists of all finite groups; and, AbGrps, which consists of all finite abelian

groups. We define pseudovarieties of semigroups analogously.

For any collection of semigroups C, the pseudovariety of monoids HSP(C)

generated by C is formed in the following way (see [13, Theorem 12.1.6] for more

9

detail): first, we find all finite direct products of elements of C and form P(C);

next, we find all submonoids of elements of P(C) and form SP(C); finally, we

find all homomorphic images of elements of SP(C) and form HSP(C).

Given two pseudovarieties of monoids V and W, we denote by V o W the

pseudovariety generated by all semidirect products of a monoid of V by a monoid

of W. Similarly, we denote by V oW the pseudovariety generated by all wreath

products of a monoid of V by a monoid of W. Since S o T is isomorphic to

ST o T for any monoids S and T , we conclude the following:

Lemma 1.2 ([14, p. 709]). The pseudovarieties V o W and V oW are equal.

1.3 Formal languages

In this section, we aim to provide the reader with the necessary background

information required from within the field of formal language theory. Many

of the definitions and results that follow are standard. The interested reader

should consult [8] and [13] for further details.

Alphabets, letters and words

An alphabet is a finite, non-empty set; its elements are letters (or symbols).

From this point onwards, A will always denote an alphabet. The total number

of letters in A is denoted by |A|. Two alphabets worthy of note are the unary

alphabet {a} and the binary alphabet {0, 1}, though we will often use {a, b} for

the latter so that, in order to aid understanding, all of our letters are letters in

the everyday sense of the word.

A finite sequence of letters from A is a word (over A). Thus, formally,

(a1, a2, . . . , ar) is a word over some alphabet. For the sake of simplicity, we

write words with their letters juxtaposed instead; that is, a1a2 . . . ar. It is

possible to take a sequence of zero letters from A; the resulting word is the

empty word and we denote it by ε. The set of all words over A is denoted by

A∗ and the set of all non-empty words over A is denoted by A+. Note that A∗

is the union of A+ and the empty word.

The length of a word w, denoted by |w|, is the length of the sequence defining

w; for example, |ab| = 2 and |abbab| = 5. The empty word is the unique word

of length zero. If a is a letter from A then |w|a denotes the number of times a

appears in w; for example, |ab|a = 1 and |abbab|b = 3. Note that

|w| =
∑
a∈A
|w|a.

10

Two words v = a1a2 . . . ar and w = b1b2 . . . bs over the same alphabet A are

equal if and only if r = s and ai = bi for all 0 ≤ i ≤ r; that is, if they are of the

same length and feature exactly the same letters in exactly the same order.

Given two words v and w over the same alphabet A, we can form a new

word by adjoining the letters of w to the end of v. The resulting word is the

concatenation of v and w and is denoted by v ·w. When emphasis of the concate-

nation is not required, we drop the symbol denoting concatenation and write

the resulting word as vw. It should be noted that, in general, concatenation of

words is not commutative; that is, vw 6= wv. For example, aab · ba = aabba

whereas ba · aab = baaab. However, the order in which words are concatenated

is unimportant when working over a unary alphabet. Note that the length of

the resulting word vw after concatenation is equal to the sum of the lengths of

the individual words; that is, |vw| = |v|+ |w|.
Concatenation of words is an associative operation; that is, u(vw) = (uv)w

for all words u, v and w. The empty word plays an important role with regards

to concatenation as εw = w = wε for all words w. Because of these two facts,

the set A∗ of all words over A forms a monoid under concatenation; its identity

element is the empty word. We refer to A∗ as the free monoid generated by A.

Similarly, A+ is the free semigroup generated by A.

If w is a word then wn, where n ≥ 1, denotes the concatenation of w with

itself n times. We define w0 = ε. It follows that

wmwn = wm+n and (wm)n = wmn

hold for all natural numbers m and n.

Let u and v be elements of A∗. If w = uv then u is a prefix of w and v is a

suffix of w. The prefix u (respectively, suffix v) is proper if u 6= w (respectively,

v 6= w) and non-empty if u 6= ε (respectively, v 6= ε). Any prefix of w that is

also a suffix of w is a border. A border is proper if it is a proper prefix (and,

therefore, also a proper suffix) and non-empty if it is not the empty word.

Languages and operations on languages

Given an alphabet A, a monoid (respectively, semigroup) language is a subset

of A∗ (respectively, A+). For example, the set K = {an | n ∈ 2N} is a monoid

language over the alphabet {a} while the set L = {anbn | n ∈ Z+} is a semigroup

language over the alphabet {a, b}.
If K and L are languages over the same alphabet then so too are K∪L, K∩L,

K \ L and Lc = A∗ \ L; these operations are referred to as union, intersection,

11

relative complement and complement, respectively. Union, intersection and

complement are boolean operations.

We now define further operations that are specific to formal language theory.

The concatenation product of K and L is the language consisting of all possible

concatenations of a word from K with a word from L; that is,

KL = {vw | v ∈ K and w ∈ L}.

Example 1.3. Examples of products of languages include:

1. For every language L, L∅ = ∅ = ∅L.

2. For every language L, {ε}L = L = L{ε}.
3. If K = {a, ab} and L = {b, ba, bb} then

KL = {ab, aba, abb, abba, abbb}

and

LK = {ba, bab, baa, baab, bba, bbab}.

The third part of Example 1.3 shows that, in general, KL 6= LK. Moreover,

KL and LK need not have the same cardinality.

The next language operation that we wish to define is that of (the Kleene)

star. If L is a language then we define L0 = {ε}, Ln+1 = LnL and

L∗ =
⋃
n≥0

Li.

Example 1.4. Examples of Kleene stars of languages include:

1. ∅∗ = {ε}.
2. {ε}∗ = {ε}.
3. If L = {a3} then L∗ = {ε, a3, a6, a9, . . . }.
4. If L = {a, ab} then L∗ = {ε, a, ab, aa, aab, aba, abab, . . . }.

A related notion is that of the (Kleene) plus operation, which is defined by

L+ =
⋃
n≥1

Li.

Thus, L∗ = L+ ∪ {ε}.
If K and L are two languages of A∗ then the left quotient (or residual) of L

by K is the language K−1L defined by

K−1L = {v ∈ A∗ | ∃u ∈ K such that uv ∈ L}.

The right quotient (or residual) of L by K is defined analogously.

12

Example 1.5. Examples of left and right quotients of languages include:

1. For every language L, {ε}−1L = L = L{ε}−1.

2. For every language L containing ε, L−1{ε} = {ε} = {ε}L−1.

3. For every language L not containing ε, L−1{ε} = ∅ = {ε}L−1.

By combining the above operations in different ways, we can write down a

wide range of expressions that represent certain languages. In order to avoid

the tedious nature of writing { and } repeatedly, we will omit them and use (

and) as and when required for avoiding ambiguity. This is especially prevalent

for singleton sets; the set {w} will virtually always be written as w.

Example 1.6. Examples of languages over the alphabet A = {a, b}:

1. We can write the set of all words over A, namely A∗, as (a ∪ b)∗. Here,

brackets are included as a ∪ b∗ represents an entirely different language.

For comparison,

A∗ = (a ∪ b)∗ = {ε, a, b, aa, ab, ba, bb, aaa, . . . },

while

a ∪ b∗ = {a, ε, b, bb, bbb, . . . }.

This example reflects the convention that the star operation takes prece-

dence over the union operation.

2. The language K in which all words have prefix ab is represented by the

expression ab(a ∪ b)∗.
3. The language L in which all words have suffix ab is represented by the

expression (a ∪ b)∗ab.
4. The language in which all words have border ab, namely K ∩ L, is repre-

sented by the expression

ab(a ∪ b)∗ ∩ (a ∪ b)∗ab.

Thus, an expression representing the intersection of two languages is given

by the intersection of the two expressions representing each individual lan-

guage. The same conclusion can be drawn for each of the other operations

described above.

Hierarchy of languages

Languages form a containment hierarchy, as displayed below:

13

regular

∩
context-free

∩
context-sensitive

∩
recursive

∩
recursively enumerable

As can be seen, each class is a proper subclass of the class above it. For

example, every regular language is also context-free but there exist context-free

languages that are not regular. The archetypal example is that of the language

{anbn | n ≥ 1}, which is context-free but not regular.

If we omit the class of recursive languages, then the hierarchy is attributed

to the linguist Noam Chomsky. He first described the hierarchy in 1956 in terms

of classes of formal grammars, a topic which we do not touch upon in this thesis.

It should be noted that the vast majority of languages do not fit into this

hierarchy and, as such, the hierarchy cannot be considered as a complete clas-

sification of languages.

Regular languages via regular expressions

Within this thesis, we concern ourselves with the ‘simplest’ class of languages;

that is, the regular languages. In older literature, this class of languages is

also referred to as the class of rational languages. Depending on one’s point of

view, there are four different ways for defining the class of regular languages:

grammars, as seen in the Chomsky hierarchy; a combinatorial approach; an

algebraic approach; and, an approach via theoretical machines. In this thesis,

we opt for the second of these approaches as our definition, though the third

and fourth approaches will also be introduced and used throughout.

Given an alphabet A, we define the empty set, the empty word and each

letter in A to be a basic regular expression. We recursively define new regular

expressions in the following manner: if E and F are regular expressions then so

are

(RE1) EF (product);

(RE2) E ∪ F (union); and,

(RE3) E∗ (star).

14

Product, union and star are referred to as the regular operators, and they work

in exactly the same way as in their definitions for languages. For example,

E∗ =
⋃
n≥0

En.

The operations have an order of precedence: star, then product, then union.

In Example 1.6, the first three examples all feature regular expressions whereas

the fourth does not, as intersection is not a regular operator.

Every regular expression E represents a language, which we denote by L(E).

This leads to an important definition.

Definition 1.7. A language L is regular if there exists a regular expression E

such that L = L(E).

It is important to note that a regular language can be represented by more

than one regular expression. For example, we have seen in Example 1.6 that

the language A∗ can be represented by the regular expression (a∪b)∗. However,

A∗ can also be represented by the regular expression (a∗ ∪ b∗)∗.
Since we have also defined the intersection, relative complement and com-

plement operations, it is natural to ask what happens to the class of regular

languages under these operations. Interestingly, applying these operations to

a regular language returns a language that is also regular. Specifically, the

following is true.

Lemma 1.8 ([16, Corollary I.3.5]). The class of regular languages is closed

under complementation.

Now, since every regular language is represented by a regular expression, it

follows that we can use the complement operator in our expressions without

introducing any new languages which are not regular. As such, any expression

that uses the complement operator as well as product, union and star is referred

to as a generalised regular expression. Note that, through de Morgan’s Laws

(Equation (1.1)), we are also free to use the intersection and relative complement

operations within our generalised regular expressions.

Example 1.9. Examples of generalised regular expressions over the alphabet

A = {a, b}:

1. The expression

(a ∪ b)∗(ab ∪ ba)c

represents the language in which all words do not have suffix ab or ba;

that is, all words that end with a double letter.

15

2. The expression

a(a ∪ b)∗ \ aa(a ∪ b)∗

represents the language in which all words have prefix a but do not have

prefix aa.

3. The expression

ab(a ∪ b)∗ ∩ (a ∪ b)∗ab

(as seen in Example 1.6) represents the language in which all words have

border ab.

Recognition of a language by a monoid

By definition, a language is a subset of the free monoid generated by the set

A. Because of this, it seems natural for there to be an algebraic approach to

languages through the world of monoids. Indeed, the following definition can

be made.

Definition 1.10. A language L of A∗ is recognised by a monoid M if there

exists a monoid homomorphism ϕ : A∗ →M such that L = (Lϕ)ϕ−1.

In literature, the following alternative definition may also be found.

Definition 1.11. A language L of A∗ is recognised by a monoid M if there

exists a monoid homomorphism ϕ : A∗ → M and a subset P of M such that

L = Pϕ−1.

In either case, if there exists a monoid M such that L is recognised by M

then L is said to be recognisable.

In the following lemma, we show the above two definitions are equivalent.

Lemma 1.12. Let X and Y be sets and ϕ : X → Y be a function. For any

subset L of X, it follows that L = (Lϕ)ϕ−1 if and only if L = Pϕ−1 for some

subset P of Y .

Proof. If L = (Lϕ)ϕ−1 then L = Pϕ−1 with P = Lϕ. Conversely, note that

L is always a subset of (Lϕ)ϕ−1, since if l ∈ L then lϕ ∈ Lϕ and therefore

l ∈ {x ∈ X | xϕ ∈ Lϕ} = (Lϕ)ϕ−1. Now, if L = Pϕ−1 for some subset P of Y

then

w ∈ (Lϕ)ϕ−1 ⇒ wϕ ∈ Lϕ

⇒ wϕ = vϕ for some v ∈ L

⇒ wϕ ∈ P (since v ∈ L if and only if vϕ ∈ P)

16

⇒ w ∈ Pϕ−1 = L.

Hence (Lϕ)ϕ−1 ⊆ L and, therefore, L = (Lϕ)ϕ−1.

In this thesis, we will allow ourselves the freedom to use the definition that

is more convenient in each given situation.

The following characterisation of regular languages is, on rare occasions,

used as its ‘algebraic’ definition.

Theorem 1.13 ([8, Theorem 3.1.4]). A language is regular if and only if it is

recognised by a finite monoid.

A language may be recognised by more than one monoid, so it is natural to

ask what the ‘smallest’ monoid recognising a given language is. In this setting,

‘smallest’ refers to the cardinality of the monoid recognising the language.

Syntactic monoids

Let L be a language over an alphabet A. The syntactic congruence of L, denoted

by σL, is defined by x σL y if and only if

uxv ∈ L⇔ uyv ∈ L

for all u and v in A∗. The monoid Syn(L) = A∗/σL is the syntactic monoid of

L.

The syntactic monoid of a language is the smallest monoid recognising said

language. This is captured in the following lemma.

Lemma 1.14 ([8, Theorem 3.1.6]). Let L be a language. A monoid M recognises

L if and only if Syn(L) divides M .

More generally, we can use the fact that division of monoids is a transitive

relation (that is, if M divides N and N divides P then M divides P) to prove

the following corollary.

Corollary 1.15. Let M and N be monoids and let L be a language. If M

recognises L and M divides N then N recognises L.

Combining Theorem 1.13 and Lemma 1.14 results in the following theorem.

Theorem 1.16 ([8, Theorem 3.1.4]). A language L is regular if and only if

Syn(L) is finite.

17

Varieties of languages

A variety of monoid languages L is a family of languages LA, where A ranges

over all alphabets, such that the following conditions hold:

(VL1) for each alphabet A, the set of languages LA is a subset of P(A∗)

that is closed under the Boolean operations;

(VL2) for each alphabet A, each language L in LA and each letter a in A,

both a−1L and La−1 belong to LA; and,

(VL3) if ϕ : A∗ → B∗ is a monoid homomorphism and L belongs to LB

then Lϕ−1 belongs to LA.

We can also define a variety of semigroup languages in an analogous way by

replacing all occurrences of ∗ with +. It is important to note that the variety

of semigroup languages and the variety of monoid languages are fundamentally

different. This is due to the fact that in a variety of monoid languages, condi-

tion (VL3) allows us to ‘erase’ letters by replacing them with the empty word.

However, this is not possible when considering varieties of semigroup languages.

In the following theorem, we establish the link between pseudovarieties of

monoids and varieties of monoid languages. The result remains true when

‘monoid’ is replaced by ‘semigroup’.

Theorem 1.17 (Eilenberg’s Variety Theorem, [5, Theorem VII.3.4s]). There

exists a one-to-one correspondence between the collection of all pseudovarieties

of monoids and the collection of all varieties of monoid languages.

The connection in Eilenberg’s Variety Theorem is established in the follow-

ing way. Given a pseudovariety of monoids M, the corresponding variety of

monoid languages consists of all those languages whose syntactic monoid is in

M. Conversely, given a variety of monoid languages L, the corresponding pseu-

dovariety of monoids is generated by the syntactic monoids of those languages

in L. As an example, if we consider the trivial pseudovariety of monoids Triv

then the corresponding variety of monoid languages is

L(Triv) = {{∅, A∗} | A is an alphabet}.

1.4 Generalised star-height problem

Let A be an alphabet and let E and F be regular expressions for some languages

over A. The star-height h(E) of a regular expression is defined recursively as

follows:

18

• h(∅) = h(ε) = h(a) = 0, where a is a letter from A;

• h(EF) = h(E ∪ F) = max{h(E), h(F)}; and,

• h(E∗) = h(E) + 1.

For a regular language L, we define the star-height of L, which we denote

by h(L), to be

h(L) = min{h(E) | E is a regular expression for L};

that is, the minimum star-height of all regular expressions representing L.

Example 1.18. Let A = {a, b} be an alphabet and consider the expressions

E = (a ∪ b)∗ and F = (a∗ ∪ b∗)∗. We see that h(E) = 1 and h(F) = 2.

However, E and F both represent the language L = A∗. Since there does not

exist an expression of star-height zero representing this language, we conclude

that h(L) = 1.

The following questions were posed by Eggan in 1963.

Question 1.19 (Star-Height Problem). Can all regular languages be expressed

using regular expressions of limited star-height? If not, does there exist an al-

gorithm to determine the star-height of a given regular language?

The first of these questions was answered in the negative when Eggan [4,

Corollary 3.1] illustrated the existence of regular languages of star-height n for

all natural numbers n. Expressions for languages of star-height 1, 2 and 3 are

as follows:

E1 = a∗1

E2 = (a∗1a
∗
2a3)∗

E3 = ((a∗1a
∗
2a3)∗(a∗4a

∗
5a6)∗a7)∗.

These expressions can be defined recursively. Note that the expression En re-

quires an alphabet of size at least 2n − 1. In his concluding remarks, Eggan

questioned whether a language of star-height n could be found for all natural

numbers n in the case where A is a binary alphabet. This was answered pos-

itively by Dejean and Schützenberger [3] in 1966. The expressions are defined

recursively by

E1 = (ab)∗ and En+1 = (a . . . a︸ ︷︷ ︸
2n

·En · b . . . b︸ ︷︷ ︸
2n

·En)∗.

Thus, explicitly, the expressions are

E1 = (ab)∗

19

E2 = (aa(ab)∗bb(ab)∗)∗

E3 = (aaaa(aa(ab)∗bb(ab)∗)∗bbbb(aa(ab)∗bb(ab)∗)∗)∗

...

The second question posed in Question 1.19 was answered positively by

Hashiguchi [6, Theorem 4.2] in 1983, but the algorithm he provided was compu-

tationally impossible from a practical point of view. A more efficient algorithm

was devised by Kirsten [11] in 2005 but this algorithm is still deemed to be

practically infeasible.

By Lemma 1.8, we know that the class of regular languages is closed under

complementation. This allows us to use generalised regular expressions in order

to represent regular languages. Thus, we can extend the definition of star-height

of a regular expression to that of the generalised star-height of a generalised

regular expression by defining h(Ec) = h(E). It follows by de Morgan’s Laws

(Equation (1.1)) that

h(E ∩ F) = h((Ec ∪ F c)c)

= h(Ec ∪ F c)

= max{h(Ec), h(F c)}

= max{h(E), h(F)}

and

h(E \ F) = h(E ∩ F c) = max{h(E), h(F c)} = max{h(E), h(F)}.

We define the generalised star-height of a regular language L as in the restricted

case; that is,

h(L) = min{h(E) | E is a generalised regular expression for L}.

We can now pose the same questions as in Question 1.19:

Question 1.20 (Generalised Star-Height Problem). Does there exist an algo-

rithm to determine the generalised star-height of a regular language? In partic-

ular, does there exist a language of generalised star-height greater than one?

As implied by the phrasing of the questions above, the generalised star-height

problem is considerably more difficult to solve than the star-height problem;

remarkably, it is not yet known whether there exist languages with generalised

star-height two or greater.

To end this section, we state some known results regarding the generalised

star-height problem. This list is not exhaustive and further known results have

been stated as and when they become relevant in future sections of this thesis.

20

Lemma 1.21. For every natural number n, the set of languages of generalised

star-height at most n is closed under set difference, concatenation product and

the Boolean operations.

Proof. This follows directly from the definition of generalised star-height.

Proposition 1.22 ([15, Proposition 4.1]). For every natural number n, the set

of languages of generalised star-height at most n is closed under left and right

quotients.

One of the first and by far the most influential result concerning generalised

star-height is the following theorem.

Theorem 1.23 (Schützenberger, [17]). A regular language is of generalised

star-height zero if and only if its syntactic monoid is finite and aperiodic.

Schützenberger’s Theorem gives us an algorithm for determining whether or

not a given language is of generalised star-height zero. This is most easily done

through the use of finite state automata, which are introduced in Section 1.5.

Ideally, it would be most convenient if, given a generalised regular expression,

we had a technique for removing stars without altering the language that it

represents. In one of the most elementary cases, this can be done directly.

Lemma 1.24 ([15, Lemma 3.3]). For any alphabet A and any subset B of A,

A∗ = ∅c and B∗ = A∗ \ (A∗(A \B)A∗) = (∅c(A \B)∅c)c.

Hence,

h(A∗) = h(B∗) = 0.

Proof. Let A be an alphabet and let B be a subset of A. The first equality is

trivially true as the set of all words over A is equal to the complement of the

set of no words over A.

Consider the second equality. We see that

w ∈ B∗ ⇔ w = ε or w = b1b2 . . . br for some b1, b2, . . . , br ∈ B

⇔ w is not of the form A∗aA∗, where a ∈ A \B

⇔ w 6∈ A∗(A \B)A∗

⇔ w ∈ (A∗(A \B)A∗)c

⇔ w ∈ A∗ \ (A∗(A \B)A∗).

Since neither the expression for A∗ nor the expression for B∗ contain any stars,

we conclude that each has generalised star-height zero.

21

Though not a technique for removing stars, the Transfer Lemma ([15, Lemma

6.1]) can be used for reducing the height of a given generalised regular expres-

sion. Informally, it ‘transfers’ stars from one letter to another through the use

of a substitution. We do not record this result here as it is not required in this

thesis and only proves useful in a handful of cases.

1.5 Finite state automata

A (finite state) automaton is a quintuple A = (S,A, s0, δ, T), where

• S is a finite set of states;

• A is an input alphabet ;

• s0 in S is the initial state;

• δ : S ×A→ S is the transition function; and,

• T ⊆ S is a set of terminal states.

In order to ensure that δ is a valid function, we insist that all of our automata

are complete and deterministic, meaning that δ(s, a) is uniquely defined for all

s in S and all a in A.

We represent automata using transition diagrams, which are special types

of directed, labelled graphs. The vertices are labelled by elements of S and

there exists an arrow from the vertex s to the vertex t labelled by the letter a

whenever δ(s, a) = t. The initial state is identified by an inward-pointing arrow

and terminal states are identified by a double border.

Example 1.25. Define an automaton A = (S,A, s0, δ, T) by

• S = {0, 1};
• A = {a, b};
• s0 = 0;

• δ(0, a) = 1, δ(0, b) = 1, δ(1, a) = 0 and δ(1, b) = 0; and,

• T = {0}.

The transition diagram of A is shown in Figure 1.1.

0 1

a, b

a, b A

Figure 1.1: Transition diagram for the automaton A in Example 1.25.

22

For any given automaton, we can uniquely extend the transition function δ

to the domain S ×A∗; that is, δ : S ×A∗ → S. We define

(ETF1) δ(s, ε) = s; and,

(ETF2) δ(s, wa) = δ(δ(s, w), a).

Thus, we can now deal with input words and not just input letters.

Let A = (S,A, s0, δ, T) be an automaton. A word w over A is accepted by A
if there exists a path labelled by w beginning at the start state and ending at

some terminal state; that is, if δ(s0, w) lies in T . Otherwise, w is rejected. We

define the language recognised by A, which we denote by L(A), to be

L(A) = {w ∈ A∗ | δ(s0, w) ∈ T};

that is, the set of all words w that are accepted by A.

Example 1.26. The automaton in Example 1.25 accepts the words

ε, aa, ab, ba, bb, aaaa, aaab, aaba, aabb, . . .

and rejects the words

a, b, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaaa,

Thus, L(A) = (aa ∪ ab ∪ ba ∪ bb)∗; that is, the set of all words of even length.

At this point, we make note of the following theorem of Kleene, which ties

together the concept of regular languages to that of finite state automata.

Theorem 1.27 (Kleene, [12]). A language is recognisable if and only if it is

regular.

Theorem 1.27 establishes a connection between the concept of regular lan-

guages and the concept of recognisable languages; indeed, it shows that they are

equivalent notions. This means that we can construct automata for languages

in order to prove that they are regular and can tackle the generalised star-height

problem via automata too.

Let L be a recognisable language. An automaton A is said to be minimal

(for L) if A recognises L and any other automaton recognising L has at least

as many states as A. It is clear from this definition that every recognisable

language has an associated minimal automaton, and this automaton is unique

up to isomorphism.

Let A = (S,A, s0, δ, T) be an automaton. For each w in A∗, define a function

τw : S → S : s 7→ δ(s, w).

23

The set of all such functions, which we denote by T (A), is called the transition

monoid of A; that is,

T (A) = {τw | w ∈ A∗}.

The identity element of T (A) is τε.

Theorem 1.28 ([13, Theorem 9.4.3]). Let L be a recognisable language. The

transition monoid of the minimal automaton for L is isomorphic to the syntactic

monoid of L.

A related notion that we will make use of in Chapter 2 is that of a transducer.

A (finite state) transducer is a sextuple A = (S,A,B, s0, δ, γ), where

• S is a finite set of states;

• A is an input alphabet ;

• B is an output alphabet ;

• s0 in S is the initial state;

• δ : S ×A→ S is the transition function; and,

• γ : S ×A→ B∗ is the output function.

In order to ensure that δ is a valid function, we insist that all of our trans-

ducers are complete and deterministic.

As with automata, we represent transducers using transition diagrams where

the label “a|w” on an arrow means “read the input letter a and output the word

w”.

Example 1.29. Define a transducer A = (S,A,B, s0, δ, γ) by

• S = {0, 1};
• A = {a, b};
• B = {a, b};
• s0 = 0;

• δ(0, a) = 1, δ(0, b) = 1, δ(1, a) = 1 and δ(1, b) = 1; and,

• γ(0, a) = b, γ(0, b) = a, γ(1, a) = a and γ(1, b) = b.

The transition diagram of A is shown in Figure 1.2.

0 1
a|b, b|a

a|a, b|b
A

Figure 1.2: Transition diagram for the automaton A in Example 1.29.

For any non-empty word w over A, this transducer replaces the first letter of

w with the other letter in A and leaves the rest of the word intact; for example,

on input aab, the transducer outputs bab.

24

For any given transducer, we can uniquely extend the domain of δ to S×A∗

in exactly the same way as we do with automata. Moreover, we can uniquely

extend the domain of γ to S ×A∗ by defining

(EOF1) γ(s, ε) = ε; and,

(EOF2) γ(s, wa) = γ(s, w)γ(δ(s, w), a).

The function σ : A∗ → B∗ realised by A is defined by wσ = γ(s0, w) and a

sequential function is a function realised by such a transducer.

25

Chapter 2

Counting Subwords

2.1 Motivation

Our motivation for counting subwords stems from a theorem of Thérien (see

Theorem 2.1 below), first proved in 1983. Thérien’s Theorem establishes a

connection between counting scattered subwords and recognition of a language

by a finite nilpotent group.

A word w = a1a2 . . . ar is a scattered subword of a word v if there exist

words v0, v1, . . . , vr over A such that v = v0a1v1a2 . . . arvr. We use the notation(
v
w

)
to denote the number of times w appears as a scattered subword of v. As

an example, the words bc, ba and aa are all scattered subwords of abaca, with(
abaca
bc

)
= 1,

(
abaca
ba

)
= 2 and

(
abaca
aa

)
= 3.

For every word w in A+, every natural number k and every integer n

greater than or equal to 2 with 0 ≤ k < n, we define the regular language

ScatModCount(w, k, n) by

ScatModCount(w, k, n) =
{
v ∈ A∗ |

(
v

w

)
≡ k (mod n)

}
;

that is, the set of words v over A such that w appears as a scattered subword

of v precisely k modulo n times.

We can now state Thérien’s Theorem:

Theorem 2.1 (Thérien, [18, Theorem 5]). A language is recognised by a finite

nilpotent group of class m if and only if it is a boolean combination of languages

of the form ScatModCount(w, k, n), where |w| ≤ m.

Despite this characterisation, there are surprisingly few results concerning

the generalised star-height of languages recognised by finite nilpotent groups.

26

This is due to the fact that determining the generalised star-height of the lan-

guages ScatModCount(w, k, n) is much harder than it first appears. The follow-

ing results summarise what is known:

Theorem 2.2 (Henneman, [7]). Every language recognised by a finite abelian

group (that is, a finite nilpotent group of class one) is of generalised star-height

at most one.

Theorem 2.3 ([15, Theorem 7.3]). Every language recognised by a finite nilpo-

tent group of class two is of generalised star-height at most one.

Very little is known about the generalised star-height of languages recognised

by finite nilpotent groups of higher class. The following result showcases what

can be established for a certain word form, and this result is used in the proof

of the partial result for nilpotent groups of class three.

Proposition 2.4 ([15, Theorem 7.4]). Let a and b be two distinct letters from

an alphabet A. The generalised star-height of ScatModCount(aibaj , k, n) is at

most one for all natural numbers i, j, k and n with n ≥ 2 and 0 ≤ k < n.

Theorem 2.5 ([15, Theorem 7.5]). Let a, b and c be letters from an alpha-

bet A. If n ≥ 2 is a square-free integer then the generalised star-height of

ScatModCount(abc, k, n) is at most one for all natural numbers k with 0 ≤ k <
n.

Occurrences of scattered subwords can be considered as a partial order on

the set of words A∗. Indeed, we can define an order ≤scat by

v ≤scat w ⇔ v is a scattered subword of w.

A second partial order that we can place on A∗ is that of occurrences of

contiguous subwords. Define the order ≤cont by

v ≤cont w ⇔ v is a contiguous subword of w.

The concept of contiguous subword is defined in Section 2.2 and forms the basis

of the remainder of this chapter.

The results found in Sections 2.3 and 2.4 have been published in [2].

2.2 Definitions

Let u,w and x be elements of A∗. If v = uwx then w is a contiguous subword

(often, factor) of v; for example, ε, a and bab are all contiguous subwords of

27

ababa. From this point on, the word ‘subword’ will always means contiguous

subword.

For every word w in A+ and every word v in A∗, we denote the number of

times that w appears as a subword of v by |v|w. When w is a letter, say w = a,

the notation |v|a coincides with its usual meaning; that is, the number of times

the letter a appears in a word v.

For every word w in A+ and every natural number k, we define the language

Count(w, k) by

Count(w, k) = {v ∈ A∗ | |v|w = k};

that is, the set of words v over A such that w appears as a subword of v

precisely k times. As such, we regard Count(w, 0) as the set of all words that

do not feature w as a subword. From this characterisation, we note that

v ∈ Count(w, 0)⇔ v ∈ A∗ \A∗wA∗ ⇔ v ∈ (A∗wA∗)
c ⇔ v ∈ (∅cw∅c)c , (2.1)

where the final equivalence follows by Lemma 1.24. Thus, for a fixed word w,

Count(w, 0) can be represented by a star-free expression and is, therefore, of

generalised star-height zero.

In order to simplify the proofs of some of the forthcoming results, we intro-

duce the language CountBorder(w, k) which is defined by

CountBorder(w, k) = wA∗ ∩ Count(w, k) ∩A∗w;

that is, the set of words v over A such that w is a prefix of v, w is a suffix of v

and w appears as a subword of v precisely k times.

In a similar manner, for every word w in A+, every natural number k and

every integer n greater than or equal to 2 with 0 ≤ k < n, we define the language

ModCount(w, k, n) by

ModCount(w, k, n) = {v ∈ A∗ | |v|w ≡ k (mod n)};

that is, the set of words v over A such that w appears as a subword of v

precisely k modulo n times. When finding expressions for ModCount(w, k, n),

our general strategy is to first count k occurrences of the subword w and then

repeat in multiples of n.

Throughout this chapter we will treat ModCount(w, 0, n) as a special case.

With slight abuse of notation, we see that

ModCount(w, 0, n) = Count(w, 0) ∪ModCount(w, n, n).

This equality is true as, on the right-hand side, the Count(w, 0) term covers all

words that contain precisely zero occurrences of w while the ModCount(w, n, n)

28

term covers all words that contain occurrences of w in positive multiples of n.

The reverse inclusion is immediate.

Notice that ModCount(w, k, n) can be defined in terms of Count(w, k); ex-

plicitly,

ModCount(w, k, n) =
⋃
m≥0

Count(w, k +mn).

At first glance, it may appear that the generalised star-height of the language

ModCount(w, k, n) is equal to the maximum star-height of Count(w, k + mn),

where m ranges over all natural numbers. However, this is not the case as

the union on the right-hand side is infinite and is, therefore, not a generalised

regular expression.

The regularity of both Count(w, k) and ModCount(w, k, n) can be estab-

lished directly by constructing finite state automata accepting the languages

and appealing to Kleene’s Theorem. Alternatively, regularity can be estab-

lished by constructing regular expressions for the languages, as is the case in

the results presented throughout this chapter.

2.3 Over a unary alphabet

Let A = {a} be a unary alphabet and consider the word w = ar, where r is

a positive integer. It is well known that a language L over A is regular if and

only if L is of the form X ∪ Y (as)∗, where X and Y are finite sets and s is a

natural number; see, for example, [16, Proposition II.2.3]. Thus, every language

over a unary alphabet is of generalised star-height at most one. However, we

want to find expressions of minimal generalised star-height for Count(ar, k) and

ModCount(ar, k, n).

We begin by finding an expression for Count(ar, k). If we consider an ar-

bitrary word as, where s is a positive integer, then, with the exception of the

final r − 1 letters, each a appearing in as is the start of an occurrence of ar. It

immediately follows that

Count(ar, k) = ar+k−1 (2.2)

for k ≥ 1, and, as an alternative to that previously established in Equation (2.1),

Count(ar, 0) = ε ∪ a ∪ · · · ∪ ar−1. (2.3)

Next, we find an expression for ModCount(ar, k, n) for non-zero values of

k. In order to do this, we first count k occurrences of the subword ar and

29

then repeat in multiples of n. Recalling the expression for Count(ar, k) in

Equation (2.2) we obtain

ModCount(ar, k, n) = ar+k−1(an)∗. (2.4)

An expression for the remaining language, namely ModCount(ar, 0, n), is ob-

tained by using similar reasoning, while keeping in mind the special nature of

Count(ar, 0) as in Equation (2.3); it yields

ModCount(ar, 0, n) = ε ∪ a ∪ · · · ∪ ar−1 ∪ ar+n−1(an)∗.

It should be noted that the expression for ModCount(ar, k, n) actually only

depends on r+k and n. Thus, different combinations of the parameters r, k and

n may lead to the same regular expression and, hence, the same language. For

example, ModCount(a3, 1, 4), ModCount(a2, 2, 4) and ModCount(a, 3, 4) are all

represented by the expression a3(a4)∗.

A combination of the above constitutes a proof for the following lemma:

Lemma 2.6. Let A = {a} be a unary alphabet. For every positive integer r,

the language Count(ar, k) is of generalised star-height zero and the language

ModCount(ar, k, n) is of generalised star-height at most one.

2.4 Over a non-unary alphabet

We now deal with the more complicated case of counting subwords over a non-

unary alphabet. Our plan of attack here is to start by exploring the languages

in which we count subwords of length one, then explore the languages in which

we count subwords of length two, and so on.

When counting subwords of length two, we notice that our arguments can

be generalised to a wider class of languages, namely those in which we count

subwords that have the empty word as their only border and those in which we

count subwords which are powers of a letter.

Counting subwords of length three is the first situation where a spanner is

thrown in the works, and it is after this stage that we generalise our methods in

order to explore the languages in which we count subwords of any fixed length.

2.4.1 Counting subwords of length 1

Counting subwords of length one equates to counting how many times a cer-

tain letter appears in a word. As such, the languages ModCount(a, k, n) and

ScatModCount(a, k, n) are equal for a fixed letter a from an alphabet A and

30

fixed k and n. Hence, counting subwords of length one is covered by the previ-

ously stated theorem of Henneman:

Theorem 2.7 (Henneman, [7]). Every language recognised by a finite abelian

group is of generalised star-height at most one.

Proof. Let L be a language recognised by a abelian group. By Theorem 2.1, L

is a boolean combination of languages of the form ModCount(a, k, n), where a

is a letter. An expression for ModCount(a, k, n) is given by

ModCount(a, k, n) = (B∗a)k((B∗a)n)∗B∗,

where B = A \ {a}. By Lemma 1.24, h(B∗) = 0. Hence, the generalised

star-height of ModCount(a, k, n) is at most one and, in turn, the generalised

star-height of L is at most one.

2.4.2 Counting subwords of length 2

Next, we consider the case where the subword w under consideration is of length

two. In this situation, every word is either of the form aa or of the form ab,

where a and b are distinct letters from an alphabet A; that is, every word of

length two is either a power of a letter or has the empty word as its maximal

border. As such, we consider these two cases in full generality, beginning with

the latter.

Suppose that w has maximal border ε, meaning that w does not overlap

itself. Once we have started to read w we can continue reading it until it

ends without worrying that another occurrence of w may have already begun.

From Equation (2.1), we know that Count(w, 0) can be represented by the star-

free expression (∅cw∅c)c. From this we can obtain an expression representing

Count(w, k) which is star-free:

Count(w, k) = (Count(w, 0) · w)k · Count(w, 0). (2.5)

As can be seen from this expression, we begin with a word from Count(w, 0),

which may be empty, and then count the k occurrences of the subword w, with

each pair of occurrences ‘padded’ by a (possibly empty) word from Count(w, 0).

We finish with a word from Count(w, 0), which, again, may be empty.

We now turn our attention to counting occurrences of w modulo n. Following

our general strategy, an expression for ModCount(w, k, n) which is of generalised

star-height one is given by

(Count(w, 0) · w)k · ((Count(w, 0) · w)n)∗ · Count(w, 0). (2.6)

31

As can be seen from this expression, we begin with a word from Count(w, 0)

and then count the first k occurrences of the subword w, with each pair of

occurrences ‘padded’ by a word from Count(w, 0). After this, we allow the

same expression to repeat in non-negative multiples of n before ending with a

final word from Count(w, 0).

A combination of the above constitutes a proof for the following lemma:

Lemma 2.8. Let A be a non-unary alphabet and let the word w over A have

ε as its only border. Every language Count(w, k) is of generalised star-height

zero and every language ModCount(w, k, n) is of generalised star-height at most

one.

We now assume that our alphabet A contains at least two letters and analyse

the case where the subword w under consideration consists of a power of a letter,

say a. Specifically, we are interested in finding generalised regular expressions

for Count(ar, k) and ModCount(ar, k, n), where r is a positive integer.

From Equation (2.1), we know that Count(ar, 0) can be represented by the

star-free expression (∅c(ar)∅c)c. In the case where k > 0, we find an expression

representing Count(ar, k) by first considering only those words where ar is a

border; that is, we consider CountBorder(ar, k). Let B = A \ {a}. We think

of B as a set of ‘buffers’ that stop us from ‘accidentally’ reading two ‘a’s in

a row. This is important as letters may appear as a component of more than

one subword and the buffers are used to mark the points where we stop reading

powers of a. We also define the subset W of A∗ by

W = B ∪ (B · Count(ar, 0) ·B),

which is the set of non-empty words that do not feature ar as a subword and

neither start nor end with a. It is useful to think of elements of W as ‘wedges’,

separating the strings that feature ar from one another. Note that the individual

components of W are all star-free expressions which implies that W is a language

of generalised star-height zero.

A general formula for CountBorder(ar, k) is given in the following lemma:

Lemma 2.9. Let A be a non-unary alphabet and let a be a letter from A. For

any positive integer r,

CountBorder(ar, k) =

k⋃
j=1

⋃
k1,k2,...,kj≥r

k1+k2+···+kj=k+(r−1)j

ak1Wak2W . . .Wakj .

Hence, CountBorder(ar, k) is of generalised star-height zero.

32

Proof. Consider an arbitrary word v in CountBorder(ar, k). Let ak1 , . . . , akj be

the maximal subwords of v that are powers of a and have length greater than or

equal to r. Note that ak1 must be a prefix of v as v starts with ar, and, likewise,

akj must be a suffix. Hence, we have a decomposition v = ak1v1a
k2v2 . . . vj−1a

kj ,

where, necessarily, v1, . . . , vj−1 belong to W . Indeed, if each vi did not belong

to the set W then it would either be the letter a or would have border a and

contain a power of a of length greater than r, both of which would contradict

the maximality of the aki subwords. Furthermore, each aki contains precisely

ki − r + 1 occurrences of ar by Equation (2.2). Since all of the occurrences of

ar appear as subwords of aki , we must have

k = |v|ar =

j∑
i=1

|aki |ar =

j∑
i=1

(ki − r + 1) = k1 + · · ·+ kj − (r − 1)j,

and so v belongs to the right-hand side.

Conversely, consider an arbitrary word v from the right-hand side. We can

factorise v as

v = ak1v1a
k2v2 . . . vj−1a

kj ,

where each vi is an element of W and each ki is greater than or equal to r with

k1 + k2 + · · ·+ kj = k+ (r− 1)j. Since each ki is greater than or equal to r, ar

is both a prefix and a suffix of v and

|v|ar = |ak1v1a
k2v2 . . . vj−1a

kj |ar

≥ |ak1 |ar + |ak2 |ar + · · ·+ |akj |ar

= (k1 − r + 1) + (k2 − r + 1) + · · ·+ (kj − r + 1)

= k1 + k2 + · · ·+ kj − (r − 1)j

= k.

Hence, v contains at least k occurrences of ar as a subword. Moreover, by the

definition of W , there can be no further occurrences of ar as a subword. We

conclude that v contains precisely k occurrences of ar as a subword and that v

is an element of CountBorder(ar, k).

Finally, we note that the right-hand side is a generalised regular expression

since both unions are finite. Since the expression is star-free, it follows that

CountBorder(ar, k) is of generalised star-height zero.

Now, we make use of the above result to prove that Count(ar, k) is of gen-

eralised star-height zero.

33

Proposition 2.10. Let A be a non-unary alphabet and let a be a letter from

A. For any positive integer r, Count(ar, k) is expressed by

(ε ∪ (Count(ar, 0) ·B)) · CountBorder(ar, k) · ((B · Count(ar, 0)) ∪ ε).

Hence, Count(ar, k) is of generalised star-height zero.

Proof. First, note that all k occurrences of ar appear in the CountBorder(ar, k)

term. In order to not introduce any further occurrences of k, this term can be

preceded by either the empty word or a word that does not contain ar as a sub-

word; that is, a word from Count(ar, 0). However, since words in Count(ar, 0)

have the potential to end with a power of a, we must utilise a ‘buffer’ from

the set B. A dual argument deals with potential suffices. Since each of the

components of the expression are star-free, Count(ar, k) must be of generalised

star-height zero.

We now turn our attention to counting occurrences of ar modulo n. Again,

we make use of our general strategy by counting the first k occurrences of

ar using the expression found above for CountBorder(ar, k) and then count-

ing occurrences of ar in multiples of n. We then add on prefixes and suffices

as appropriate (as in Proposition 2.10) in order to establish an expression for

ModCount(ar, k, n).

Having used CountBorder(ar, k) to count the first k occurrences of ar, we

note that the suffix ar−1 has the potential to be a component of a new occur-

rence of ar if the part of the word immediately following ar−1 begins with an

a. Similarly, the suffix ar−2 immediately followed by an a2 leads to another

occurrence of ar, and so on. In order to take these possibilities into account,

let Multiple(ar, n) denote the language whose words contain precisely n occur-

rences of the subword ar when left concatenated by ar−1 and also have suffix

ar:

Multiple(ar, n) = {w ∈ A∗ | |ar−1w|ar = n and w = w′ar for some w ∈ A∗}.

The significance of the assumption about the suffix ar is that every count stops

precisely when the nth occurrence of ar is met, and that this suffix ‘feeds into’

the next group of occurrences of ar.

Lemma 2.11. Let A be a non-unary alphabet and let a be a letter from A. For

any positive integer r,

Multiple(ar, n) = an ∪
n−1⋃
i=0

aiW · CountBorder(ar, n− i).

Hence, Multiple(ar, n) is of generalised star-height zero.

34

Proof. Consider an arbitrary word v in Multiple(ar, n). If v = as for some

positive integer s then

n = |ar−1v|ar = |ar−1as|ar = |ar+s−1|ar = s

by Equation (2.2), and hence v = an. Otherwise, we can decompose v as

v = ak1v1a
k2v2 . . . vj−1a

kj ,

where,

v1, . . . , vj−1 ∈W, k1 ≥ 0 and k2, . . . , kj ≥ r.

The maximal subwords of ar−1v that are powers of a of exponent greater than

or equal to r are ar−1ak1 = ar+k1−1 (provided that k1 > 0) and ak2 , . . . , akj .

Furthermore, our decomposition of v can be used to split ar−1v as ar−1v = xy,

where x = ar+k1−1v1 and y = ak2v2 . . . vj−1a
kj . Suppose that x contains i

occurrences of ar. Then

i = |ar+k1−1v1|ar = |ar+k1−1|ar = k1

by Equation (2.2). Moreover, y must contain the remaining n− i occurrences of

ar and has ar as a border. Hence, y belongs to CountBorder(ar, n− i). Thus, v

belongs to aiW · CountBorder(ar, n− i) and therefore belongs to the union on

the right-hand side.

Conversely, consider an arbitrary word v from the right-hand side. If v = an

then

|ar−1v|ar = |ar−1an|ar = |ar+n−1|ar = n,

by Equation (2.2), and ar−1v has suffix ar. Hence, v belongs to Multiple(ar, n).

Otherwise, v is of the form aiv0x, where

0 ≤ i ≤ n− 1, v0 ∈W and x ∈ CountBorder(ar, n− i).

Thus,

|ar−1v|ar = |ar−1aiv0x|ar

≥ |ar+i−1|ar + |x|ar

= i+ (n− i)

= n.

Hence, ar−1v contains at least n occurrences of ar as a subword. Moreover, by

the definition of W , there can be no further occurrences of ar as a subword.

35

Also, v has suffix ar since x belongs to CountBorder(ar, n − i). We conclude

that ar−1v contains precisely n occurrences of ar as a subword and that v is an

element of Multiple(ar, n).

Finally, we note that the right-hand side is a regular expression since the

union is finite. As the expression is star-free, it follows that Multiple(ar, n) is

of generalised star-height zero.

We now combine the results presented above in order to deal with the

language ModCount(ar, k, n). An expression representing ModCount(ar, k, n),

where k is a positive integer, is given by

(ε ∪ (Count(ar, 0) ·B)) · CountBorder(ar, k) ·

Multiple(ar, n)∗ · ((B · Count(ar, 0)) ∪ ε),

and an expression representing ModCount(ar, 0, n) is given, with slight abuse

of notation, by

Count(ar, 0) ∪ModCount(ar, n, n).

Both of these expressions are of generalised star-height one, so the language

ModCount(ar, k, n) is of generalised star-height at most one. Note that the

appended prefixes and suffices are justified in the same manner as that found

in the proof of Proposition 2.10.

A combination of the above constitutes a proof for the following proposition:

Proposition 2.12. Let A be a non-unary alphabet and let a be a letter from

A. For every positive integer r, the language Count(ar, k) is of generalised star-

height zero and the language ModCount(ar, k, n) is of generalised star-height at

most one.

2.4.3 Counting subwords of length 3

When the subword under consideration is of length three we are presented with a

new hurdle to overcome. Up until this point, every word that we have considered

has had either the empty word as its only border or has been a power of a letter.

With words of length three, we encounter the word aba, which is neither a power

of a letter nor a word with the empty word as its only border.

The possible types for words of length three are

aaa, aab, aba, abb and abc,

36

where a, b and c are distinct letters from A. Counting occurrences of the subword

aaa is covered by Lemmas 2.6 and 2.12, while the subwords aab, abb and abc

are covered by Lemma 2.8.

With the final type, namely aba, we must be more careful as it has a as a

border, meaning that the suffix a can act as a prefix a in a new occurrence of

the subword aba. For example, the word abababa contains three occurrences

of the subword aba. Below, we resolve this case in a similar fashion to that of

Proposition 2.12 but do not provide all of the details of the proof.

Define W to be the set of words that are not b, do not have prefix ba, do not

have suffix ab, and do not contain aba as a subword; that is,

W = (b ∪ baA∗ ∪A∗ab ∪A∗abaA∗)c = (b ∪ ba∅c ∪ ∅cab ∪ ∅caba∅c)c.

Then, a general formula for CountBorder(aba, k), where k is a positive integer,

is given by

CountBorder(aba, k) =

k⋃
j=1

⋃
k1,k2,...,kj≥1

k1+k2+···+kj=k

a(ba)k1Wa(ba)k2W . . .Wa(ba)kj ,

which is star-free, and the language Count(aba, k), expressed by

(∅caba∅c ∪ ∅cab)c · CountBorder(aba, k) · (ba∅c ∪ ∅caba∅c)c,

is of generalised star-height zero.

To find an expression for ModCount(aba, k, n) we introduce the language

Multiple(aba, n) = {w ∈ A∗ | |aw|aba = n and w has suffix aba}.

A star-free expression representing Multiple(aba, n) is given by

(ba)n ∪
n−1⋃
i=1

(ba)iW · CountBorder(aba, n− i).

Putting all of this together, an expression representing ModCount(aba, k, n),

where k is greater than 0, is given by

(∅caba∅c ∪ ∅cab)c · CountBorder(aba, k) ·Multiple(aba, n)∗ · (ba∅c ∪ ∅caba∅c)c,

and an expression representing ModCount(aba, 0, n) is given, with slight abuse

of notation, by

Count(aba, 0) ∪ModCount(aba, n, n).

This establishes that the language ModCount(aba, k, n) is of generalised star-

height at most one.

Hence, we have proven the following result:

37

Proposition 2.13. Let A be an alphabet. For any word w in A+ with |w| ≤ 3,

the language Count(w, k) is of generalised star-height zero and the language

ModCount(w, k, n) is of generalised star-height at most one.

In Section 2.5, we refocus our efforts towards finding a general result that

covers counting subwords of any length over any alphabet. Before doing this, we

note that Proposition 2.13 can also be proved using existing theoretical results.

Let A and B = {b} be alphabets, and consider the languages

L = ModCount(b, k, n) = bk(bn)∗

over B and K = ModCount(w, k, n) over A. Define a function

fw : A∗ → B∗ : v 7→ b|v|w .

Consider the preimage of L under fw. We see that,

Lf−1
w = {v ∈ A∗ | vfw ∈ L}

= {v ∈ A∗ | b|v|w ∈ bk(bn)∗}

= {v ∈ A∗ | |v|w = k +mn for some m ∈ N}

= K.

Note that for all words w, the function fw is sequential. For example, a

transducer realising faba is shown in Figure 2.1. In order to improve readability,

edges labelled with c|ε, where c lies in A \ {a, b}, have been removed; all such

edges point directly to the initial state.

ε a ab
a|ε

b|ε a|ε
b|ε

a|b

b|ε

Figure 2.1: A finite state transducer realising faba.

Standard calculations, as described in Section 1.5, show that the transition

monoid of each transducer realising fw, where |w| ≤ 3, is aperiodic. Moreover,

the transition monoid of the minimal automaton recognising L is an abelian

group by Theorem 2.1. Consider the following proposition.

38

Proposition 2.14 ([5, Proposition IX.1.1]). Let f : A∗ → B∗ be a sequential

function and let L be a recognisable language over B. Then, K = Lf−1 is

a recognisable language over A and the transition monoid of the minimal au-

tomaton for K divides a wreath product of the transition monoid of the minimal

automaton for L by the transition monoid of the transducer realising f .

Hence, by Proposition 2.14, the transition monoid of K divides a wreath

product of an abelian group by an aperiodic monoid. Consider the following

proposition.

Proposition 2.15 ([15, Theorem 7.8]). Every language recognised by a monoid

of the pseudovariety AbGrps o Ap, where Ap is the pseudovariety of aperiodic

monoids, is of generalised star-height at most one.

Since the pseudovarieties AbGrps o Ap and AbGrps oAp are equal by

Lemma 1.2, we conclude that K is of generalised star-height at most one.

2.5 Main result

In this section, we work in full generality and establish generalised regular ex-

pressions of generalised star-height zero and one respectively for the languages

Count(w, k) and ModCount(w, k, n), where w is a word of any length.

Let w be a fixed word over an alphabet A. Define

B = {b ∈ A+ | w = bx and w = yb for some x, y ∈ A+},

the set of all proper, non-empty borders of w;

P = {p ∈ A+ | w = pb for some b ∈ B},

the set of prefixes of w after each border is removed as a suffix; and,

S = {s ∈ A+ | w = bs for some b ∈ B},

the set of suffices of w after each border is removed as a prefix.

The point of the set S is to keep track of additional occurrences of w as a

subword when overlapping takes place, since every occurrence of w ends with

one of its borders and this could be completed to a new occurrence of w should

it be followed by an element of S. As it stands, however, the set S grants us

no control over the number of further occurrences of w added as a subword.

To illustrate this, consider the following example. Suppose we are interested in

finding an expression for the language CountBorder(aabaabaa, k). Here,

B = {aabaa, aa, a} and S = {baa, baabaa, abaabaa}.

39

If we concatenate aabaabaa and baa then we obtain

aabaabaa · baa = aabaabaabaa,

and this contains two occurrences of aabaabaa as a subword. However, if we

concatenate aabaabaa and baabaa then we obtain

aabaabaa · baabaa = aabaabaabaabaa,

and this contains three occurrences of aabaabaa as a subword. Thus, S gives us

no control over the number of extra occurrences of aabaabaa that appear. In

order to combat this, we restrict S to the set S̄ as follows:

S̄ = {s ∈ S | @s′ ∈ S such that s = s′x for some x ∈ A+};

that is, the set of suffices of w after each border is removed as a prefix satisfying

the additional criterion that no element of S̄ has another element of S̄ as a

proper prefix. The set S̄ grants us control over counting further occurrences

of subwords, as every time an element of S̄ is concatenated on to the right of

a word with suffix w we gain exactly one extra occurrence of w as a subword.

This is encapsulated in the following lemma:

Lemma 2.16. For every natural number k, we have that wS̄k ⊆ A∗w and

|wS̄k|w = k + 1.

Proof. Use induction on the value of k. When k = 0, it follows that wS̄k = w ⊆
A∗w and |w|w = 1. When k = 1, it follows that wS̄k = wS̄. Every element s

of S̄ is a suffix of w such that w = bs for some border b in B. Since w ends

with any one of its borders, we can factorise w as w = pb for some prefix p in

P . Then

ws = (pb)s = p(bs) = pw ∈ A∗w.

Hence, wS̄ ⊆ A∗w. This argument shows that ws in wS̄ contains at least

two occurrences of w as a subword. Suppose that ws contains three or more

occurrences of w as a subword. We know that w appears as both a prefix and

a suffix of ws and that these occurrences overlap one another. Consider the

following factorisation:

ws = w1w2 . . . wi . . . wr−twr−t+1 . . . wrs1s2 . . . si−1si . . . st,

where w = w1w2 . . . wr and s = s1s2 . . . st. The prefix w and the suffix

wr−t+1 . . . wrs1 . . . st are our two known occurrences of w. Suppose that a third

occurrence of w begins at wi, where 2 ≤ i ≤ r−t. Then, wi . . . wrs1 . . . si−1 = w.

40

Let b′ = wi . . . wr and s′ = s1 . . . si−1. By construction, b′ is an element of B

and s′ is an element of S. However, s′ is a prefix of s which contradicts the fact

that s is an element of S̄. Hence, a third occurrence of w cannot be present in

ws. Therefore, |wS̄|w = 2, as required.

Assume that the statement holds for some natural number k. Now,

wS̄k+1 = (wS̄k)S̄ ⊆ (A∗w)S̄ = A∗(wS̄) ⊆ A∗(A∗w) = A∗w.

Finally, we know that any word in wS̄k contains k+ 1 occurrences of w and has

suffix w. Hence, we can factorise wS̄k+1 as uwS̄, where uw lies in wS̄k. Any

extra occurrences of w must be contained within the suffix wS̄. By the base

case, any word in wS̄ contains precisely two occurrences of w. The prefix w has

already been counted as an occurrence in wS̄k, so wS̄k+1 contains exactly one

additional occurrence of w. Hence, |wS̄k+1|w = (k + 1) + 1, as required.

We now prove a partial converse of the above result. In order to do this, we

need to introduce a new definition related to overlapping subwords.

Definition 2.17. Let w be a non-empty word over an alphabet A and let k be

a positive integer. A word v = a1a2 . . . ar is a w-chain of length k if |v|w = k

and there exist indices i1, i2, . . . , ik such that:

(CH1) 1 = i1 < i2 < · · · < ik = r − |w|+ 1;

(CH2) ij + |w| > ij+1 for all j = 1, 2, . . . , k − 1; and,

(CH3) aijaij+1 . . . aij+|w|−1 = w for all j = 1, 2, . . . , k.

As an example, every word w is a w-chain of length 1 and abababa is an

aba-chain of length 3. To see this, let x = abababa = a1a2a3a4a5a6a7. Then,

the indices i1, i2 and i3 take the values 1, 3 and 5 respectively. It is easiest to

view the word x with its aba-chain highlighted, like so:

x =
︷ ︸︸ ︷ ︷ ︸︸ ︷
a · b · a · b · a · b · a︸ ︷︷ ︸ .

Note that the word abababab is neither an abab-chain of length 2 nor an ab-chain

of length 4 as condition (CH2) is not satisfied – the occurrences of the subwords

do not overlap.

Lemma 2.18. If v is a w-chain of length k then v belongs to wS̄k−1.

Proof. Use induction on the value of k. If k = 1 then v = w ∈ wS̄0. Assume

that the statement holds for some natural number k and let v be a w-chain of

length k + 1. As such, there exist indices i1, i2, . . ., ik+1 satisfying conditions

(CH1) to (CH3).

41

Let x = a1a2 . . . aikaik+1
. . . aik+|w|−1 and let y = aik+|w| . . . ar. By con-

struction, x is a w-chain of length k and, therefore, belongs to wS̄k−1 by the

induction hypothesis. Moreover, by Lemma 2.16, x has suffix w. Thus, the

additional occurrence of w in v must occur as some suffix of x followed by y.

The only way to add exactly one new occurrence of w is for y to belong to S̄.

Hence, v = xy ∈ wS̄k−1S̄ = wS̄k.

Now suppose that we are searching for occurrences of w as a contiguous

subword of a fixed word. A w-chain of length k is maximal if it is not properly

contained in any w-chain of length greater than k. It is clear that every w-chain

is contained within a maximal w-chain. Moreover, distinct maximal w-chains

do not overlap, as if they did then they would form a w-chain of greater length,

contradicting the maximality of the original chains.

Define the set of ‘forbidden’ words F to be the set of words that do not

contain w as a subword, do not have an element of S as a prefix, do not have an

element of P as a suffix or do not create an occurrence of w when sandwiched

between two elements of B; that is,

F = A∗ \ (A∗wA∗ ∪ SA∗ ∪A∗P ∪ {x ∈ A∗ | w = b1xb2 for some b1, b2 ∈ B})

= (∅cw∅c ∪ S∅c ∪ ∅cP ∪ {x ∈ A∗ | w = b1xb2 for some b1, b2 ∈ B})c.

We will use F to separate maximal w-chains from one another in a similar

fashion to how the set W was used in Lemma 2.9. The following two results

highlight how F has no effect on the length of maximal w-chains.

Lemma 2.19. |wF |w = 1 and |Fw|w = 1.

Proof. Since w is a prefix of any word in wF , it follows that |wF |w ≥ 1. There

are two possibilities for extra occurrences of w; either w occurs wholly inside

F or w straddles wF . In the first case, we can write F as A∗wA∗, a form

which is impossible by the definition of F . In the second case, each border of

w that appears as a suffix of w has the potential to act as a prefix for another

occurrence of w; that is, wF can be factorised as xbF for some x in A∗ and b

in B. For an extra occurrence of w to appear, the form of the word from F

must be sy, where s is an element of S and y is an element of A∗. However, this

form is impossible by the definition of F . Hence, |wF |w = 1. A dual argument

proves the other equality.

Lemma 2.20. |wFw|w = 2.

Proof. Since w is both a prefix and a suffix of any word in wFw, it follows

that |wFw|w ≥ 2. By Lemma 2.19, neither wF nor Fw contain any further

42

occurrences of w. Thus, for an extra occurrence of w to appear it must begin

in the prefix w, run through F and end in the suffix w. Hence, a word in wFw

can be factorised as xb1vb2y for some x and y in A∗, b1 and b2 in B and v

in F . Then, b1vb2 = w, which is impossible by the definition of F . Hence,

|wFw|w = 2.

Lemma 2.21. Let A be an alphabet and let w be a non-empty word over A.

Every non-empty word v over A can be uniquely decomposed as

v = f0v1f1v2 . . . vjfj ,

where v1, v2, . . ., vj are the maximal w-chains in v and f0, f1, . . ., fj are words

over A that contain zero occurrences of w as a subword. Moreover,

|v|w =

j∑
i=1

|vi|w.

Proof. If v contains no occurrences of w as a subword then f0 = v and our

decomposition is complete. Otherwise, v contains at least one occurrence of w

as a subword and, therefore, contains at least one maximal w-chain. Let f0 equal

the (potentially empty) prefix of v that appears before the first occurrence of w

in v. After this, the first maximal w-chain occurs; call this v1. Now, in general,

after each maximal w-chain vi, where 1 ≤ i ≤ j−1, there is a (potentially empty)

word x containing zero occurrences of w as a subword followed by another

maximal w-chain. Let fi = x and vi+1 equal the next maximal w-chain. Once

every occurrence of w as a subword has been seen, we will have j maximal w-

chains. Finally, v has a (potentially empty) suffix that contains zero occurrences

of w as a subword; call this fj . This completes the decomposition of v into

maximal w-chains, as required.

Since every occurrence of w appears inside a maximal w-chain vi, the total

number of occurrences of w in v must equal the sum of the occurrences of w in

each vi.

We are now in the position to establish a generalised regular expression for

the language CountBorder(w, k).

Proposition 2.22. Let A be an alphabet. For any non-empty word w over A,

the language CountBorder(w, k) is represented by the generalised regular expres-

sion

k⋃
j=1

⋃
k1,k2,...,kj≥0

k1+k2+···+kj=k−j

wS̄k1FwS̄k2F . . . FwS̄kj . (2.7)

Hence, CountBorder(w, k) is of generalised star-height zero.

43

Proof. Consider an arbitrary word v in CountBorder(w, k). By Lemma 2.21, we

can decompose v as v = f0v1f1v2 . . . vjfj , where v1, v2, . . ., vj are the maximal

w-chains and f0, f1, . . ., fj are words over A that contain zero occurrences of

w as a subword. Since v has border w, it must begin and end with a maximal

w-chain. Hence, f0 = fj = ε. Suppose that each maximal w-chain vi is of

length ki + 1. Then, by Lemma 2.18, vi is a word of the form wS̄ki .

We know that each fi, where 1 ≤ i ≤ j − 1, contains zero occurrences of w.

If fi has a prefix from S then this would create a further occurrence of w, since

vi ends with w. This would contradict the maximality of the w-chain vi. Hence,

fi is not a word from the set S∅c. Similarly, if fi has a suffix from P then this

would create a further occurrence of w, since vi+1 begins with w. This would

contradict the maximality of the w-chain vi+1. Hence, fi is not a word from the

set ∅cP . Finally, if fi is a word from the set

{x ∈ A∗ | w = b1xb2 for some b1, b2 ∈ B}

then a further occurrence of w would be created that would connect two dis-

tinct maximal w-chains. This contradicts the maximality of the w-chains and,

therefore, cannot happen. Thus, each fi belongs to the set F .

Now, v is a word from the set wS̄k1FwS̄k2F . . . FwS̄kj , as required. Since

each maximal w-chain is of length at least one, each of the indices ki must

be natural numbers. Moreover, as every occurrence of w appears as part of a

maximal w-chain, we see that

k = |v|w =

j∑
i=1

|vi|w =

j∑
i=1

(ki + 1) = k1 + k2 + · · ·+ kj + j,

as required.

Conversely, let v be a word of the form given in Equation (2.7). We can

factorise v as

v = v1f1v2f2 . . . fj−1vj ,

where each vi is an element of wS̄ki and each fi is an element of F . Lemma 2.16

shows that

|v|w = |v1f1v2f2 . . . fj−1vj |w

≥ |v1|w + |v2|w + · · ·+ |vj |w

= (k1 + 1) + (k2 + 1) + · · ·+ (kj + 1)

= k1 + k2 + · · ·+ kj + j

= k.

44

Hence, v contains at least k occurrences of w as a subword. We show that v

contains no more occurrences of w as a subword. There are four possibilities for

extra occurrences of w to appear:

1. an occurrence of w straddles vifi;

2. an occurrence of w sits wholly inside fi;

3. an occurrence of w straddles fivi+1;

4. an occurrence of w straddles vifivi+1; that is, begins in vi, runs through

fi and ends in vi+1.

We show that in each of these cases there are no extra occurrences of w.

1. As vi is an element of wS̄ki , it follows by Lemma 2.16 that vi has suffix

w. Thus, if an occurrence of w straddles vifi then w must appear as a

subword of wF at least twice. However, by Lemma 2.19, |wF |w = 1.

Hence, there are no extra occurrences of w.

2. An occurrence of w cannot sit wholly inside F as the definition of F

discounts all words that contain w as a subword. Hence, there are no

extra occurrences of w.

3. If an occurrence of w straddles fivi+1 then w must appear as a subword

of Fw at least twice. However, by Lemma 2.19, |Fw|w = 1. Hence, there

are no extra occurrences of w.

4. As vi is an element of wS̄ki , it follows by Lemma 2.16 that vi has suffix

w. Thus, if an occurrence of w straddles vifivi+1 then w must appear

as a subword of wFw at least three times. However, by Lemma 2.20,

|wFw|w = 2. Hence, there are no extra occurrences of w.

We conclude that v contains precisely k occurrences of w as a subword and that

v is an element of CountBorder(w, k).

Finally, we note that Equation (2.7) is a generalised regular expression

since both unions are finite. As the expression is star-free, it follows that

CountBorder(w, k) is of generalised star-height zero.

Theorem 2.23. Let A be an alphabet. For any non-empty word w over A and

all positive integers k, the language Count(w, k) is represented by the expression

(∅cw∅c ∪ ∅cP)c · CountBorder(w, k) · (S∅c ∪ ∅cw∅c)c. (2.8)

Hence, Count(w, k) is of generalised star-height zero.

Proof. Let v be an arbitrary word from Count(w, k). Decompose v as xyz such

that the first occurrence of w is a prefix of y and the final occurrence of w is a

45

suffix of y; that is, y ∈ CountBorder(w, k). Consider x. By construction, every

occurrence of w in v appears as a subword of y, so x cannot contain any further

occurrences of w. Moreover, w is a prefix of y and, therefore, every element of

B is also a prefix of y. Thus, x must not have a suffix that would create a new

occurrence of w when followed by an element of B; that is, x may not have an

element of P as a suffix. Hence, x ∈ (∅cw∅c ∪ ∅cP)c. A dual argument shows

that z ∈ (S∅c ∪∅cw∅c)c. Hence, v can be written in the form of Equation (2.8).

Conversely, let v be a word of the form given in Equation (2.8). Decompose

v as xyz, where

x ∈ (∅cw∅c ∪ ∅cP)c, y ∈ CountBorder(w, k) and z ∈ (S∅c ∪ ∅cw∅c)c.

Since y contains precisely k occurrences of w as a subword, it follows that v

contains at least k occurrences of w. Consider the prefix x. By construction, x

contains no further occurrences of w as a subword. However, an extra occurrence

of w could appear as a suffix of x followed by a prefix of y. The only prefixes

of y that are capable of creating new occurrences of w are those that belong

to the set B. In order to create a new occurrence of w using these elements of

B, the suffix of x must belong to the set P and this is not allowed. Hence, the

prefix x introduces no new occurrences of w. A dual argument shows that the

suffix z also introduces no new occurrences of w. Hence, v contains precisely k

occurrences of w as a subword and, therefore, v ∈ Count(w, k).

Finally, we note that Equation (2.8) is a generalised regular expression. As

the expression is star-free, it follows that Count(w, k) is of generalised star-

height zero.

We now turn our attention to finding a generalised regular expression for

the language ModCount(w, k, n). In order to do this, we introduce the language

Multiple(w, n), which is defined by

Multiple(w, n) = {v ∈ A∗ | |wv|w = n+ 1 and wv has suffix w}.

We can immediately find a generalised regular expression representing the lan-

guage Multiple(w, n).

Lemma 2.24. Let A be an alphabet. For any non-empty word w over A and all

positive integers n, the language Multiple(w, n) is represented by the expression

S̄n ∪
n−1⋃
i=0

S̄iF · CountBorder(w, n− i). (2.9)

Hence, Multiple(w, n) is of generalised star-height zero.

46

Proof. Consider an arbitrary word v ∈ Multiple(w, n). By definition, |wv|w =

n + 1 and wv has suffix w. If wv is a maximal w-chain then it is, necessarily,

of length n + 1. Hence, wv is a word from the set wS̄n by Lemma 2.18 and,

therefore, v is a word from the set S̄n. Otherwise, wv is not a maximal w-chain.

Let x be the longest (potentially empty) prefix of v such that wx is a maximal

w-chain; let i + 1 be its length. As wx has prefix w, i + 1 ≥ 1 and, therefore,

i ≥ 0. Similarly, i+ 1 < n+ 1 (that is, i < n) as there are still more occurrences

of w to appear. Since these occurrences do not overlap with wx, we can write

wv = wxfy, where none of the letters of f are involved in occurrences of w.

This means that f must belong to the set F . Furthermore, the remaining n− i
occurrences of w must appear as subwords of y and y must have prefix w. Hence,

y is a word in CountBorder(w, n− i).
Conversely, let v be a word of the form given in Equation (2.9). If v ∈ S̄n

then wv ∈ wS̄n. By Lemma 2.16, wv has suffix w and |wv|w = n + 1. Hence,

v ∈ Multiple(w, n). Otherwise, v is of the form sfx, where s ∈ S̄i for some

0 ≤ i ≤ n−1, the word f ∈ F and x ∈ CountBorder(w, n− i). By Lemmas 2.19

and 2.20, all occurrences of w as a subword appear in s and x. Hence,

|wv|w = |wsfx|w = |ws|w + |x|w = (i+ 1) + (n− i) = n+ 1.

Moreover, by construction, wv has suffix w. Hence, v ∈ Multiple(w, n).

Finally, we note that Equation (2.9) is a generalised regular expression since

the union is finite. As the expression is star-free, it follows that Multiple(w, n)

is of generalised star-height zero.

In order to find a generalised regular expression for ModCount(w, k, n), we

employ our general strategy by using CountBorder(w, k) to count the first k

occurrences of w before using Multiple(w, n) to count further occurrences of w

in multiples of n. We then append prefixes and suffices as appropriate, ensuring

that neither creates any further occurrences of w as a subword.

Theorem 2.25. Let A be an alphabet. For any non-empty word w over A, the

language ModCount(w, k, n) is represented by the expression

(∅cw∅c ∪ ∅cP)c · CountBorder(w, k) ·Multiple(w, n)∗ · (S∅c ∪ ∅cw∅c)c. (2.10)

Hence, ModCount(w, k, n) is of generalised star-height at most one.

Proof. Let v ∈ ModCount(w, k, n). Decompose v as uxy1y2 . . . ymz such that

the first occurrence of w is a prefix of x, the kth occurrence of w is a suffix of x

and the (k+in)th occurrence of w is a suffix of yi for 1 ≤ i ≤ m. By construction,

x has border w and contains precisely k occurrences of w as a subword. Hence,

47

x ∈ CountBorder(w, k). Now, each yi has suffix w and wyi contains precisely n+

1 occurrences of w as a subword. Hence, yi ∈ Multiple(w, n) and y1y2 . . . ym ∈
Multiple(w, n)∗. Finally, the prefix u cannot introduce further occurrences of

w as a subword. Thus, by the same reasoning as in the proof of Theorem 2.23,

u ∈ (∅cw∅c ∪ ∅cP)c. A dual argument shows that z ∈ (S∅c ∪ ∅cw∅c). Hence, v

can be written in the form of Equation (2.10).

Conversely, let v be a word of the form given in Equation (2.10). Decompose

v as uxy1y2 . . . ymz, where u ∈ (∅cw∅c∪∅cP)c, the word x ∈ CountBorder(w, k),

the word yi ∈ Multiple(w, n) for 1 ≤ i ≤ m and z ∈ (S∅c ∪ ∅cw∅c)c. By

definition, |x|w = k and each of x, y1, . . ., ym−1 has suffix w. Thus, each

yi, where 1 ≤ i ≤ m, contains exactly n occurrences of w as a subword and,

therefore, |xy1y2 . . . ym|w = k + mn. Now, by the same reasoning as in the

proof of Theorem 2.23, neither the prefix u nor the suffix z introduce further

occurrences of w. Hence, v contains precisely k + mn occurrences of w and,

therefore, v ∈ ModCount(w, k, n).

Finally, we note that Equation (2.10) is a generalised regular expression.

As the expression is of generalised star-height one, it follows that the language

ModCount(w, k, n) is of generalised star-height at most one.

2.6 Examples

In this section, we present a collection of examples that showcase the gen-

eralised regular expressions found above for CountBorder(w, k), Count(w, k),

Multiple(w, n) and ModCount(w, k, n).

Our first example deals with the final type of word of length three, namely

aba, as seen in Section 2.4.3.

Example 2.26. In this example, the subword w under consideration is aba. We

show all of the necessary steps required in order to produce explicit expressions

for Count(aba, 3) and ModCount(aba, 1, 3). Here,

B = {a}, P = {ab} and S = S̄ = {ba}.

Though not particularly helpful or informative with regards to generalised star-

height, we can write F explicitly in this case as

F = (∅caba∅c ∪ ba∅c ∪ ∅cab ∪ b)c

= (∅cab(a∅c ∪ ε) ∪ b(a∅c ∪ ε))c

= ((∅cab ∪ b)(a∅c ∪ ε))c

= ((ε ∪ ∅ca)b(a∅c ∪ ε))c.

48

In order to save space, we continue to write F as opposed to the explicit ex-

pression that it represents. It follows that CountBorder(aba, k) is represented

by the expression

k⋃
j=1

⋃
k1,k2,...,kj≥0

k1+k2+···+kj=k−j

aba(ba)k1F . . . Faba(ba)kj . (2.11)

Though obvious, we can use Equation (2.11) to explicitly calculate that

CountBorder(aba, 1) = aba.

In a similar fashion, we use Equation (2.11) to explicitly calculate that

CountBorder(aba, 2) = aba(ba)1 ∪ aba(ba)0Faba(ba)0

= ababa ∪ abaFaba

and

CountBorder(aba, 3)

= aba(ba)2 ∪ aba(ba)1Faba(ba)0 ∪ aba(ba)0Faba(ba)1 ∪

aba(ba)0Faba(ba)0Faba(ba)0

= abababa ∪ ababaFaba ∪ abaFababa ∪ abaFabaFaba.

Using this, we see that

Count(aba, 3)

= (∅caba∅c ∪ ∅cab)c · CountBorder(aba, 3) · (ba∅c ∪ ∅caba∅c)c

= (∅cab(a∅c ∪ ε))c · CountBorder(aba, 3) · ((ε ∪ ∅ca)ba∅c)c.

We now turn to finding an explicit expression for ModCount(aba, 1, 3). In

order to do this, we must first find an explicit expression for Multiple(aba, 3):

Multiple(aba, 3)

= S̄3 ∪
2⋃
i=0

S̄iF · CountBorder(w, 3− i)

= S̄3 ∪ S̄2F · CountBorder(aba, 1) ∪ S̄F · CountBorder(aba, 2) ∪

F · CountBorder(aba, 3)

= (ba)3 ∪ (ba)2Faba ∪ baF (ababa ∪ abaFaba) ∪ F (abaFabaFaba)

= bababa ∪ babaFaba ∪ baFababa ∪ baFabaFaba ∪ FabaFabaFaba

49

Finally,

ModCount(aba, 1, 3)

= (∅caba∅c ∪ ∅cab)c · aba ·Multiple(aba, 3)∗ · (ba∅c ∪ ∅caba∅c)c

= (∅cab(a∅c ∪ ε))c · aba ·Multiple(aba, 3)∗ · ((ε ∪ ∅ca)ba∅c)c.

Example 2.27. In this example, we work over the unary alphabet A = {a} and

recreate the results of Section 2.3. Here, the subword w under consideration is

of the form ar for some positive integer r. It follows that

B = P = S = {a, a2, . . . , ar−1} and S̄ = {a}.

We can write F explicitly as

F = (∅car∅c ∪ {a, a2, . . . , ar−1}a∗ ∪ a∗{a, a2, . . . , ar−1} ∪ {ε, a, . . . , ar−2})c

= (∅c)c

= ∅.

Now, when we substitute F = ∅ into Equation (2.7) we see that the only

contribution occurs when j = 1. This is due to the fact that w∅ = ∅ = ∅w for

all words w. Hence,

CountBorder(ar, k) =
⋃
k1≥0
k1=k−1

ar+k1 = ar+k−1.

This agrees with the expression previously established in Equation (2.2).

Using this, we see that

Count(ar, k)

= (∅car∅c ∪ ∅c{a, a2, . . . , ar−1})c · CountBorder(ar, k) ·

({a, a2, . . . , ar−1}∅c ∪ ∅car∅c)c

= (∅car∅c ∪ ∅ca)c · CountBorder(ar, k) · (a∅c ∪ ∅car∅c)c

= (a+)c · CountBorder(ar, k) · (a+)c

= ε · CountBorder(ar, k) · ε

= CountBorder(ar, k)

= ar+k−1,

where the third equality follows since we are working over a unary alphabet

and, therefore, every non-empty word has a as both a prefix and a suffix.

50

Now, when we substitute F = ∅ into Equation (2.9) we see that the only

contribution comes from the S̄n term. Hence,

Multiple(ar, n) = an ∪
n−1⋃
i=0

ai∅ar+n−i+1 = an.

Finally,

ModCount(ar, k, n) = ε · ar+k−1 · (an)∗ · ε = ar+k−1(an)∗,

which agrees with the expression previously established in Equation (2.4).

Example 2.28. In this example, the subword w under consideration has ε as

its only border and we aim to reproduce the results of Lemma 2.8. It follows

from the various definitions that

B = P = S = S̄ = ∅.

Moreover,

F = (∅cw∅c ∪ ∅∅c ∪ ∅c∅ ∪ ∅)c = (∅ ∪ ∅cw∅c)c.

Thus, in order for a word v to belong to F it must contain no occurrences of w

as a subword; that is, v is a word in Count(w, 0). Now,

CountBorder(w, k) =

k⋃
j=1

⋃
k1,k2,...,kj≥0

k1+k2+···+kj=k−j

w∅k1F . . . Fw∅kj ,

and this equals the empty set unless k1 = k2 = · · · = kj = 0, since ∅0 = ε.

Hence,

CountBorder(w, k) = w · Count(w, 0) · · · · · Count(w, 0) · w

= (w · Count(w, 0))k−1 · w.

Using this, we see that

Count(w, k) = (∅cw∅c ∪ ∅c∅)c · CountBorder(w, k) · (∅∅c ∪ ∅cw∅c)c

= Count(w, 0) · (w · Count(w, 0))k−1 · w · Count(w, 0)

= (Count(w, 0) · w)k · Count(w, 0),

which agrees with the expression previously established in Equation (2.5).

Now, when we substitute S̄ = ∅ into Equation (2.9) we see that the only

contribution comes when i = 0. Hence,

Multiple(w, n) = ∅n ∪
n−1⋃
i=0

∅i · Count(w, 0) · CountBorder(w, n− i)

51

= ∅ ∪ ε · Count(w, 0) · (w · Count(w, 0))n−1 · w

= ∅ ∪ (Count(w, 0) · w)n.

Since Multiple(w, n) is clearly non-empty, we conclude that

Multiple(w, n) = (Count(w, 0) · w)n.

Finally,

ModCount(w, k, n)

= Count(w, 0) · ((w · Count(w, 0))k−1 · w) ·

((Count(w, 0) · w)n)∗ · Count(w, 0)

= (Count(w, 0) · w)k · ((Count(w, 0) · w)n)∗ · Count(w, 0),

which agrees with the expression previously established in Equation (2.6).

2.7 Forming a variety of languages

In the case of scattered subwords, Thérien’s Theorem (Theorem 2.1) establishes

a correspondence between boolean combinations of the ScatModCount(w, k, n)

languages and finite nilpotent groups. A natural question to ask is whether a

similar correspondence can be constructed when we consider ModCount(w, k, n)

languages instead.

By Eilenberg’s Variety Theorem (Theorem 1.17), if we have a pseudovariety

of monoids then we can construct a corresponding variety of monoid languages

and vice versa. As such, we aim to construct a variety of monoid languages

based on the ModCount(w, k, n) family of languages in the hope of finding the

corresponding pseudovariety of monoids.

First, we consider the ModCount(w, k, n) languages as a family of languages

in their own right. Unfortunately, this family of languages does not form a

variety as condition (VL1) is violated, as illustrated by the following example.

Let A = {a} and consider the languages

ModCount(a, 0, 2) = {ε, a2, a4, . . . }

and

ModCount(a, 1, 2) = {a, a3, a5, . . . }.

For condition (VL1) to be true then the union of these languages also has to be

of the form ModCount(w, k, n), where w is a power of a. However,

ModCount(a, 0, 2) ∪ModCount(a, 1, 2) = A∗,

52

and A∗ cannot be written in the form ModCount(w, k, n) for any word w that

is a power of a. Hence, condition (VL1) is violated and ModCount(w, k, n)

languages do not form a variety in their own right.

To counter this violation of condition (VL1), consider instead all boolean

combinations of languages of the form ModCount(w, k, n) as a family of lan-

guages. Since this guarantees condition (VL1) to be true, we will consider

condition (VL3) in more detail.

Let A = {a, b, c} and B = {a, b} be alphabets. Define a homomorphism

ϕ : A∗ → B∗ by

aϕ = a, bϕ = b and cϕ = ε.

Let K = ModCount(a2, 0, 2) be a language over B and let

L = {w ∈ A∗ | wϕ ∈ ModCount(a2, 0, 2)} = Kϕ−1.

We aim to show that, in this situation, L cannot be written as a boolean com-

bination of ModCount(w, k, n) languages over A, which would, in turn, violate

condition (VL3).

First, we note that every boolean combination of ModCount(w, k, n) lan-

guages can be written as a union of intersections. Indeed, if we consider a single

ModCount(w, k, n) language, a union of ModCount(w, k, n) languages or an in-

tersection of ModCount(w, k, n) languages then the result is trivially true. Now,

we can write the complement of a ModCount language as

(ModCount(w, k, n))c =
⋃

j∈{0,1,...,n−1}\{k}

ModCount(w, j, n), (2.12)

which is a finite union of ModCount languages. Next, consider the complement

of a union of ModCount languages. By de Morgan’s Laws (Equation (1.1)),(⋃
i∈I

ModCount(wi, ki, ni)

)c
=
⋂
i∈I

(ModCount(wi, ki, ni))
c

for some index set I. We now replace each term in the intersection with its

corresponding union (as established in Equation (2.12)) and use the fact that

intersection distributes over union to get an expression that is a union of in-

tersections. Finally, consider the complement of an intersection of ModCount

languages. By de Morgan’s Laws (Equation (1.1)),(⋂
i∈I

ModCount(wi, ki, ni)

)c
=
⋃
i∈I

(ModCount(wi, ki, ni))
c

for some index set I. We now replace each term in the union with its cor-

responding union (as established in Equation (2.12)) to get a larger union of

53

ModCount languages. This is trivially a union of intersections. Thus, every

boolean combination of ModCount(w, k, n) languages can be written as a union

of intersections.

Suppose, for a contradiction, that L can be written as a boolean combination

of ModCount languages; that is, L can be written as a union of intersections of

ModCount languages like so:

L =
⋃
i∈I

⋂
j∈J

ModCount(wij , kij , nij),

where I and J are index sets. We denote the right-hand side of the equation by

M . Membership of M is governed by finitely many ‘counters’ cij , each of which

counts the occurrences of the subword wij modulo nij . Different configurations

of the counters lead to words being accepted or rejected as valid words in M .

Let

p = max
i∈I
j∈J

|wij |

and consider the word v = a2cp. We see that v is not a word in L since

vϕ = (a2cp)ϕ = a2

and this does not belong to K. However, va is a word in L since

(va)ϕ = (a2cpa)ϕ = a3

and this does belong to K. Thus, the counters cij are in a reject configuration

for v while for va they are in an accept configuration. Explicitly, when we

concatenate v on the right with a then each of the counters for words of the

form cla, where l = 0, 1, . . . , p− 1, is increased by one.

If we concatenate v on the right by cpbcp then this increments the counters

for all subwords of cp · cpbcp whose length is at most p. If we do this again, that

is, if we consider v ·cpbcp ·cpbcp, then exactly the same counters get incremented

by precisely the same amounts. Hence, if we concatenate v on the right by

(cpbcp)n, where

n =
∏
i∈I
j∈J

nij ,

then all of the counters return to their original configuration; that is, the con-

figuration of the counters for v.

Now, right concatenating v(cpbcp)n with a places the configuration of the

counters into the same configuration as that of va. Since va is a word in M ,

it follows that v(cpbcp)na is a word in M and, hence, a word in L. However,

54

(v(cpbcp)na)ϕ = a2bna and this does not belong to K, a contradiction. There-

fore, L cannot be written as a boolean combination of languages of the form

ModCount(w, k, n).

This violation of condition (VL3) shows that the collection of all boolean

combinations of languages of the form ModCount(w, k, n) does not form a va-

riety of monoid languages. Further evidence to support this statement comes

from studying condition (VL2) in detail, though our results on the satisfaction

of this condition are inconclusive. We consider it below.

In order to show that condition (VL2) is satisfied, we need to show that

for every boolean combination of ModCount languages the corresponding left

and right quotients by an arbitrary letter from the same alphabet is also con-

tained in the boolean combination. As such, let v be a word in the language

a−1 ModCount(w, k, n). By the definition of left quotient,

v ∈ a−1 ModCount(w, k, n)⇔ av ∈ ModCount(w, k, n).

Therefore,

v ∈

ModCount(w, k − 1, n), if av has prefix w and k > 0,

ModCount(w, n− 1, n), if av has prefix w and k = 0,

ModCount(w, k, n), if av does not have prefix w.

Thus, the left quotient a−1 ModCount(w, k, n) is a proper subset of

ModCount(w, k − 1, n) ∪ModCount(w, k, n) ∪ModCount(w, n− 1, n),

since some, but not all, words from each language in the union must appear in

the quotient. This, however, does not rule out the fact that the left quotient

a−1 ModCount(w, k, n) could be written as a boolean combination in a different

way.

Based on the above arguments, the only remaining sensible way in which

to try and form a variety from the ModCount languages is to use them as

generators. In order to do this, we must begin with the ModCount languages

and recursively take all boolean combinations, left and right quotients, and

homomorphic preimages, hoping that the recursive process terminates. If it

does then the resulting collection of languages forms the variety that we want;

otherwise, such a variety does not exist.

55

Chapter 3

Rees Matrix Semigroups

In this chapter, we change tack and use our combinatorial results from Chapter 2

to prove new results in an algebraic setting. Specifically, we show that languages

recognised by Rees zero-matrix semigroups over abelian groups and languages

recognised by Rees zero-matrix semigroups over monogenic semigroups are of

generalised star-height at most one.

3.1 Definitions and motivation

Let S be a semigroup, I and Λ be non-empty index sets and let P be a |Λ| × |I|
sandwich matrix with entries from S. The Rees matrix semigroup M [S; I,Λ;P]

is the set I × S × Λ equipped with the binary operation defined by

(i, s, λ)(j, t, µ) = (i, spλjt, µ),

where pλj denotes the entry of P in row λ and column j.

A related notion is that of a Rees zero-matrix semigroup. Let S be a semi-

group without zero and let 0 be a new symbol not in S. Let I and Λ be

non-empty index sets and let P be a |Λ|× |I| sandwich matrix with entries from

S∪{0}. The Rees zero-matrix semigroup M0[S; I,Λ;P] is the set (I×S×Λ)∪{0}
equipped with the binary operation defined by

(i, s, λ)(j, t, µ) =

(i, spλjt, µ) if pλj 6= 0,

0 if pλj = 0,

and m0 = 0 = 0m for all m in M0[S; I,Λ;P]. If every row and every column of

the matrix P contains a non-zero entry then P is regular.

Our motivation for studying languages recognised by Rees zero-matrix semi-

groups stems from the following theorem:

56

Theorem 3.1 (The Rees Theorem, [9, Theorem 3.2.3]). If S is a semigroup

with zero then it is completely 0-simple if and only if it is isomorphic to a Rees

zero-matrix semigroup over a group with regular sandwich matrix.

According to Theorem 3.1, Rees zero-matrix semigroups with finite under-

lying groups and regular matrices are precisely finite 0-simple semigroups. In

turn, these semigroups together with zero semigroups completely exhaust prin-

cipal factors of arbitrary finite semigroups. This is analogous to finite simple

groups acting as the building blocks for arbitrary finite groups.

3.2 Setup

Let M = M0[S; I,Λ;P] be a Rees zero-matrix semigroup over a finite semigroup

S, where the zero in M is denoted by 0. Let A be an alphabet and define a map

ϕ : A → M by either aϕ = 0 or aϕ = (ia, sa, λa), where a is a letter from A.

Let

A(i,s,λ) = (i, s, λ)ϕ−1 and A0 = 0ϕ−1.

Uniquely extend ϕ to a homomorphism ϕ̄ : A+ →M .

Consider the image of the word w = a1a2 . . . ar under ϕ̄:

wϕ̄ = (a1a2 . . . ar)ϕ̄ = (a1ϕ̄)(a2ϕ̄) . . . (arϕ̄) = (a1ϕ)(a2ϕ) . . . (arϕ).

If alϕ = 0 for at least one l in {1, 2, . . . , r} then wϕ̄ = 0. Otherwise, alϕ 6= 0

for all l in {1, 2, . . . , r} and

wϕ̄ = · · · = (ia1 , sa1 , λa1)(ia2 , sa2 , λa2) . . . (iar , sar , λar).

Now, if pλal ial+1
= 0 for at least one l in {1, 2, . . . , r − 1} then, again, wϕ̄ = 0.

Otherwise, pλal ial+1
6= 0 for all l in {1, 2, . . . , r − 1} and

wϕ̄ = · · · = (ia1 , sa1 · pλa1 ia2 · sa2 · pλa2 ia3 · · · · · pλar−1
iar
· sar , λar).

In order to find out which languages are recognised by Rees (zero-)matrix

semigroups, we consider the preimages of each of the elements of M in turn;

that is, we consider the preimage of the zero 0 and the preimage of an arbitrary

non-zero element m = (i, s, λ). We begin with the former case.

Proposition 3.2. The preimage of the zero of M is of generalised star-height

zero.

Proof. According to the analysis above, a word w = a1a2 . . . ar belongs to the

preimage of 0 if and only if at least one of the following holds:

57

1. al lies in A0 for at least one l in {1, 2, . . . , r}; or,

2. pλj = 0, where al lies in A(i,s1,λ) and al+1 lies in A(j,s2,µ).

It follows that

0ϕ̄−1 = A∗A0A
∗ ∪
(⋃

A∗A(i,s1,λ)A(j,s2,µ)A
∗
)
,

where the bracketed union is taken over all (i, s1, λ) and (j, s2, µ) in M \{0} with

pλj = 0. This is a star-free regular expression by Lemma 1.24 and, therefore,

0ϕ̄−1 is a language of generalised star-height zero.

We now consider the preimage of an arbitrary non-zero element m = (i, s, λ)

of M . We begin by writing mϕ̄−1 as the intersection of three preimages as

follows:

mϕ̄−1 = ({i} × S × Λ) ϕ̄−1 ∩ (I × {s} × Λ) ϕ̄−1 ∩ (I × S × {λ}) ϕ̄−1. (3.1)

Note that each of these preimages fixes one of the components of m; for example,

({i} × S × Λ)ϕ̄−1 fixes the i component and contains all words w that get

mapped to an element of M with the corresponding i component of m. Taking

the intersection of these three preimages ensures that we end up with precisely

those words that get mapped to m.

We study each of these preimages in turn, beginning with the first and last

simultaneously.

Lemma 3.3. In the decomposition given in Equation (3.1), the preimages

({i} × S × Λ) ϕ̄−1 and (I × S × {λ}) ϕ̄−1 are both regular languages of gener-

alised star-height zero.

Proof. As a consequence of the multiplication on M , the first letter of any word

w in the preimage of ({i}× S ×Λ) must belong to the set A(i,s,µ) for some s in

S and some µ in Λ. This ensures that our first component is an i. The letters

that follow have no influence on the first component and can, therefore, be any

of the letters from A. Hence,

({i} × S × Λ) ϕ̄−1 =

(⋃
s∈S,µ∈Λ

A(i,s,µ)

)
·A∗.

Similarly, the final letter of any word w in the preimage of (I × S × {λ}) must

belong to the set A(j,s,λ) for some j in I and some s in S. This ensures that

our last component is a λ. The preceding letters have no influence on the final

component and can, therefore, be any of the letters from A. Hence,

(I × S × {λ}) ϕ̄−1 = A∗ ·

(⋃
j∈I,s∈S

A(j,s,λ)

)
.

58

In each of these expressions, the union is finite and, therefore, both expressions

are regular. By Lemma 1.24, these languages both have generalised star-height

zero.

Lemma 3.3 shows us that the generalised star-height of a language recognised

by M depends entirely upon the generalised star-height of the preimage (I ×
{s} × Λ)ϕ̄−1. This is because all other potential preimages are of generalised

star-height zero.

In general, it is difficult to find a regular expression that represents the

preimage of the set (I × {s} × Λ). As such, we steadily work through cases

where the underlying group is of an increasing nilpotency class.

3.3 Over the nilpotent group of class 0

In the simplest case, S is a nilpotent group of class 0; that is, S is the trivial

group {1}. Since we have already established the preimage of 0 in Proposi-

tion 3.2, it remains to establish the preimage of (I × {1} × Λ) under ϕ̄.

Consider an arbitrary word w = a1a2 . . . ar in (I × {1} × Λ)ϕ̄−1. Using the

notation established before Proposition 3.2, we know that pλal ial+1
6= 0 for all

l in {1, 2, . . . , r − 1}, and, therefore, pλal ial+1
= 1 for all l in {1, 2, . . . , r − 1}.

Thus, w belongs to the preimage of (I × {1} × Λ) if and only if one of the

following holds:

1. w = a, where a lies in A(i,1,λ) for some i in I and λ in Λ; or,

2. pλal ial+1
= 1 for all l in {1, 2, . . . , r − 1}.

For the second option, it is tempting to write the expression⋃
r≥2

⋃
pλlil+1

=1

l∈{1,2,...,r−1}

A(i1,1,λ1)A(i2,1,λ2) . . . A(ir,1,λr),

but this is not regular as the first union is infinite. Instead, we note that a

condition equivalent to the second above is that w cannot contain two consec-

utive letters whose corresponding matrix entry is 0. Thus, it follows that an

expression for (I × {1} × Λ)ϕ̄−1 is given by

⋃
(i,1,λ)∈T\{0}

A(i,1,λ) ∪

 ⋃
(i,1,λ),(j,1,µ)∈T\0

pλj=0

A∗A(i,1,λ)A(j,1,µ)A
∗

c

.

This is a star-free regular expression by Lemma 1.24. Thus, (I × {1} × Λ)ϕ̄−1

is a language of generalised star-height zero.

59

At this point, we note that a Rees zero-matrix semigroup over the trivial

group with matrix entries in {0, 1} is isomorphic to a rectangular 0-band, which

is defined as follows: let I and Λ be non-empty index sets and let P be a

regular matrix with entries from the set {0, 1}. Define a multiplication on the

set (I × Λ) ∪ {0} by

(i, λ)(j, µ) =

(i, µ) if pλj = 1,

0 if pλj = 0,

and s0 = 0 = 0s for all s in (I,Λ) ∪ {0}. The isomorphism

η : (I × {1} × Λ) ∪ {0} → (I × Λ) ∪ {0}

is given by

(i, 1, λ)η = (i, λ) and 0η = 0.

Thus, we have the following proposition:

Proposition 3.4. Every regular language recognised by a rectangular 0-band is

of generalised star-height zero.

Proof. Every language recognised by a rectangular 0-band can be expressed as

a finite union of preimages of elements in the semigroup. Since each individual

preimage is of generalised star-height zero and taking finite unions does not

increase generalised star-height, the result follows.

3.4 Over nilpotent groups of class 1

3.4.1 Cyclic groups

In this section, we explore the languages recognised by Rees zero-matrix semi-

groups over cyclic groups. We denote the cyclic group or order n, where n

is a positive integer, by Zn = {0, 1, . . . , n − 1} and write the group operation

additively.

In order to aid understanding, we make slight changes to the notation es-

tablished in Section 3.2. Here, we let M denote the Rees zero-matrix semigroup

M0[Zn; I,Λ;P] and consider the preimage of m = (i, g, λ), where g is element

of Zn. The index sets I and Λ and the sandwich matrix P remain as in the

previous set-up. To avoid confusion, we will denote the additive identity 0 in

Zn by 0 and the zero of the Rees zero-matrix semigroup by 0.

At this point, we alert the reader to Section 3.4.2, where an extensive worked

example aims to clarify the ideas found in the proof of the following proposition.

60

Proposition 3.5. For a non-zero element m = (i, g, λ) in M , its preimage,

mϕ̄−1, is of generalised star-height at most one.

Proof. Consider an arbitrary word w = a1a2 . . . ar in (I × {g} × Λ) ϕ̄−1. Con-

tinuing to use the notation introduced before Proposition 3.2, we know that

pλal ial+1
6= 0 for l = 1, 2, . . . , r − 1, and

ga1 + pλa1 ia2 + ga2 + pλa2 ia3 + · · ·+ pλar−1
iar

+ gar ≡ g (mod n).

We split the above sum into two, as

ga1 + ga2 + · · ·+ gar︸ ︷︷ ︸
≡g1 (mod n)

+ pλa1 ia2 + pλa2 ia3 + · · ·+ pλar−1
iar︸ ︷︷ ︸

≡g2 (mod n)

≡ g (mod n),

and examine them separately. The first sum corresponds to the contributions

from ‘group’ summands, while the second is the contributions from ‘matrix’

summands.

For the group contribution, we consider the congruence given by

ga1 + ga2 + · · ·+ gar ≡ g1 (mod n).

Grouping together summands corresponding to the same letter, we see that the

above congruence is equivalent to∑
a∈A

ga|w|a ≡ g1 (mod n),

which, in turn, is equivalent to∑
a∈A

ga(|w|a (mod n)) ≡ g1 (mod n).

The point here is that while |w|a can take infinitely many values, the same is

not true for |w|a (mod n). More formally, let U be the following set of tuples

indexed by A with entries from the set {0, 1, . . . , n− 1}:

U =

{
(ka)a∈A |

∑
a∈A

gaka ≡ g1 (mod n)

}
.

For any fixed tuple (ka)a∈A in U , every word w such that |w|a ≡ ka (mod n),

where a lies in A, will have group contribution equal to g1 mod n. The set of

all such words is obtained by forming the finite intersection of the languages

ModCount(a, ka, n) for a in A. Taking the finite union over all tuples in U

results in the expression

GrpContrib(g1, n) =
⋃

(ka)∈U

⋂
a∈A

ModCount(a, ka, n),

61

which is of generalised star-height at most one, since ModCount(a, ka, n) is of

generalised star-height at most one by Proposition 2.6 and Lemma 2.8.

In a similar fashion, we consider the contributions made by ‘matrix’ sum-

mands; that is, we consider the congruence given by

pλa1 ia2 + pλa2 ia3 + · · ·+ pλar−1
iar
≡ g2 (mod n).

Counting the contribution of each matrix entry separately, we see that the above

congruence is equivalent to∑
ab∈A2

pλaib |w|ab ≡ g2 (mod n),

which, in turn, is equivalent to∑
ab∈A2

pλaib(|w|ab (mod n)) ≡ g2 (mod n).

Consider the following finite family V of tuples indexed by A2 with entries from

the set {0, 1, . . . , n− 1}:

V =

{
(kab)ab∈A2 |

∑
ab∈A2

pλaibkab ≡ g2 (mod n)

}
.

For a fixed tuple in V , the set of all words w satisfying |w|ab ≡ kab (mod n),

where ab lies in A2, is obtained by taking the finite intersection of the languages

ModCount(ab, kab, n). Taking the union over all tuples in V yields

MatContrib(g2, n) =
⋃

(kab)∈V

⋂
ab∈A2

ModCount(ab, kab, n),

which is of generalised star-height at most one, since ModCount(ab, kab, n) is of

generalised star-height at most one by the results of Section 2.4.2.

Combining the ‘group’ contribution and the ‘matrix’ contribution appropri-

ately leads to

(I × {g} × Λ) ϕ̄−1 =
⋃

(g1,g2)∈Z2
n

g1+g2≡g (mod n)

(GrpContrib(g1, n) ∩MatContrib(g2, n)),

(3.2)

and completes the proof.

An immediate consequence of the above proposition is the following theorem:

Theorem 3.6. A regular language recognised by a Rees zero-matrix semigroup

over a cyclic group is of generalised star-height at most one.

62

Proof. Every language recognised by a Rees zero-matrix semigroup over a cyclic

group can be expressed as a finite union of preimages of elements in the semi-

group. Since each individual preimage is of generalised star-height at most one

and taking finite unions does not increase generalised star-height, the result

follows.

3.4.2 An example

We clarify some of the ideas developed in the previous section by working

through an extensive example.

Example 3.7. Let M = M [Z3; I,Λ;P] be a Rees matrix semigroup, where

I = Λ = {1, 2} and

P =

(
0 1

1 2

)
.

Let A = {a, b, c, d} and define a map ϕ : A→M by

aϕ = (1, 0, 1), bϕ = (1, 1, 2), cϕ = (2, 1, 1) and dϕ = (2, 2, 2).

Extend ϕ to a homomorphism ϕ̄ : A+ →M . Let us consider each of the relevant

preimages. By Equation (3.2),

(I × {0} × Λ)ϕ̄−1 = (GrpContrib(0, 3) ∩MatContrib(0, 3)) ∪

(GrpContrib(1, 3) ∩MatContrib(2, 3)) ∪

(GrpContrib(2, 3) ∩MatContrib(1, 3)),

while

(I × {1} × Λ)ϕ̄−1 = (GrpContrib(0, 3) ∩MatContrib(1, 3)) ∪

(GrpContrib(1, 3) ∩MatContrib(0, 3)) ∪

(GrpContrib(2, 3) ∩MatContrib(2, 3))

and

(I × {2} × Λ)ϕ̄−1 = (GrpContrib(0, 3) ∩MatContrib(2, 3)) ∪

(GrpContrib(1, 3) ∩MatContrib(1, 3)) ∪

(GrpContrib(2, 3) ∩MatContrib(0, 3)).

Thus, in order to find an explicit expression for each of the preimages

(I × {0} × Λ)ϕ̄−1, (I × {1} × Λ)ϕ̄−1 and (I × {2} × Λ)ϕ̄−1,

63

we need to establish expressions for

GrpContrib(0, 3), GrpContrib(1, 3), GrpContrib(2, 3),

MatContrib(0, 3), MatContrib(1, 3) and MatContrib(2, 3).

We first concentrate on the group contributions. In order to contribute g1

(mod 3) from the group elements, we must have that

ga|w|a + gb|w|b + gc|w|c + gd|w|d

≡ 0|w|a + 1|w|b + 1|w|c + 2|w|d

≡ |w|b + |w|c + 2|w|d

≡ g1 (mod 3).

From this we notice that the number of ‘a’s in a word has no effect on the group

contribution while the number of ‘b’s, ‘c’s and ‘d’s does. For ease of notation,

we denote the number of occurrences of each letter modulo n by a four-tuple

(ka, kb, kc, kd), as in the proof of Proposition 3.5.

Listed below are all 81 possible four-tuples (ka, kb, kc, kd) together with the

group contribution that they are responsible for:

(0, 0, 0, 0), (1, 0, 0, 0), (2, 0, 0, 0)→ 0 + 0 + 2(0) ≡ 0 (mod 3)

(0, 0, 0, 1), (1, 0, 0, 1), (2, 0, 0, 1)→ 0 + 0 + 2(1) ≡ 2 (mod 3)

(0, 0, 0, 2), (1, 0, 0, 2), (2, 0, 0, 2)→ 0 + 0 + 2(2) ≡ 1 (mod 3)

(0, 0, 1, 0), (1, 0, 1, 0), (2, 0, 1, 0)→ 0 + 1 + 2(0) ≡ 1 (mod 3)

(0, 0, 1, 1), (1, 0, 1, 1), (2, 0, 1, 1)→ 0 + 1 + 2(1) ≡ 0 (mod 3)

(0, 0, 1, 2), (1, 0, 1, 2), (2, 0, 1, 2)→ 0 + 1 + 2(2) ≡ 2 (mod 3)

(0, 0, 2, 0), (1, 0, 2, 0), (2, 0, 2, 0)→ 0 + 2 + 2(0) ≡ 2 (mod 3)

(0, 0, 2, 1), (1, 0, 2, 1), (2, 0, 2, 1)→ 0 + 2 + 2(1) ≡ 1 (mod 3)

(0, 0, 2, 2), (1, 0, 2, 2), (2, 0, 2, 2)→ 0 + 2 + 2(2) ≡ 0 (mod 3)

(0, 1, 0, 0), (1, 1, 0, 0), (2, 1, 0, 0)→ 1 + 0 + 2(0) ≡ 1 (mod 3)

(0, 1, 0, 1), (1, 1, 0, 1), (2, 1, 0, 1)→ 1 + 0 + 2(1) ≡ 0 (mod 3)

(0, 1, 0, 2), (1, 1, 0, 2), (2, 1, 0, 2)→ 1 + 0 + 2(2) ≡ 2 (mod 3)

(0, 1, 1, 0), (1, 1, 1, 0), (2, 1, 1, 0)→ 1 + 1 + 2(0) ≡ 2 (mod 3)

(0, 1, 1, 1), (1, 1, 1, 1), (2, 1, 1, 1)→ 1 + 1 + 2(1) ≡ 1 (mod 3)

(0, 1, 1, 2), (1, 1, 1, 2), (2, 1, 1, 2)→ 1 + 1 + 2(2) ≡ 0 (mod 3)

(0, 1, 2, 0), (1, 1, 2, 0), (2, 1, 2, 0)→ 1 + 2 + 2(0) ≡ 0 (mod 3)

(0, 1, 2, 1), (1, 1, 2, 1), (2, 1, 2, 1)→ 1 + 2 + 2(1) ≡ 2 (mod 3)

64

(0, 1, 2, 2), (1, 1, 2, 2), (2, 1, 2, 2)→ 1 + 2 + 2(2) ≡ 1 (mod 3)

(0, 2, 0, 0), (1, 2, 0, 0), (2, 2, 0, 0)→ 2 + 0 + 2(0) ≡ 2 (mod 3)

(0, 2, 0, 1), (1, 2, 0, 1), (2, 2, 0, 1)→ 2 + 0 + 2(1) ≡ 1 (mod 3)

(0, 2, 0, 2), (1, 2, 0, 2), (2, 2, 0, 2)→ 2 + 0 + 2(2) ≡ 0 (mod 3)

(0, 2, 1, 0), (1, 2, 1, 0), (2, 2, 1, 0)→ 2 + 1 + 2(0) ≡ 0 (mod 3)

(0, 2, 1, 1), (1, 2, 1, 1), (2, 2, 1, 1)→ 2 + 1 + 2(1) ≡ 2 (mod 3)

(0, 2, 1, 2), (1, 2, 1, 2), (2, 2, 1, 2)→ 2 + 1 + 2(2) ≡ 1 (mod 3)

(0, 2, 2, 0), (1, 2, 2, 0), (2, 2, 2, 0)→ 2 + 2 + 2(0) ≡ 1 (mod 3)

(0, 2, 2, 1), (1, 2, 2, 1), (2, 2, 2, 1)→ 2 + 2 + 2(1) ≡ 0 (mod 3)

(0, 2, 2, 2), (1, 2, 2, 2), (2, 2, 2, 2)→ 2 + 2 + 2(2) ≡ 2 (mod 3)

As in the proof of Proposition 3.5, we gather these tuples into sets U

corresponding to the group contribution that they are responsible for. For

GrpContrib(0, 3),

U = {(0, 0, 0, 0), (1, 0, 0, 0), (2, 0, 0, 0), (0, 0, 1, 1), (1, 0, 1, 1), (2, 0, 1, 1),

(0, 0, 2, 2), (1, 0, 2, 2), (2, 0, 2, 2), (0, 1, 0, 1), (1, 1, 0, 1), (2, 1, 0, 1),

(0, 1, 1, 2), (1, 1, 1, 2), (2, 1, 1, 2), (0, 1, 2, 0), (1, 1, 2, 0), (2, 1, 2, 0),

(0, 2, 0, 2), (1, 2, 0, 2), (2, 2, 0, 2), (0, 2, 1, 0), (1, 2, 1, 0), (2, 2, 1, 0),

(0, 2, 2, 1), (1, 2, 2, 1), (2, 2, 2, 1)}.

Similarly, for GrpContrib(1, 3),

U = {(0, 0, 0, 2), (1, 0, 0, 2), (2, 0, 0, 2), (0, 0, 1, 0), (1, 0, 1, 0), (2, 0, 1, 0),

(0, 0, 2, 1), (1, 0, 2, 1), (2, 0, 2, 1), (0, 1, 0, 0), (1, 1, 0, 0), (2, 1, 0, 0),

(0, 1, 1, 1), (1, 1, 1, 1), (2, 1, 1, 1), (0, 1, 2, 2), (1, 1, 2, 2), (2, 1, 2, 2),

(0, 2, 0, 1), (1, 2, 0, 1), (2, 2, 0, 1), (0, 2, 1, 2), (1, 2, 1, 2), (2, 2, 1, 2),

(0, 2, 2, 0), (1, 2, 2, 0), (2, 2, 2, 0)}

while for GrpContrib(2, 3),

U = {(0, 0, 0, 1), (1, 0, 0, 1), (2, 0, 0, 1), (0, 0, 1, 2), (1, 0, 1, 2), (2, 0, 1, 2),

(0, 0, 2, 0), (1, 0, 2, 0), (2, 0, 2, 0), (0, 1, 0, 2), (1, 1, 0, 2), (2, 1, 0, 2),

(0, 1, 1, 0), (1, 1, 1, 0), (2, 1, 1, 0), (0, 1, 2, 1), (1, 1, 2, 1), (2, 1, 2, 1),

(0, 2, 0, 0), (1, 2, 0, 0), (2, 2, 0, 0), (0, 2, 1, 1), (1, 2, 1, 1), (2, 2, 1, 1),

(0, 2, 2, 2), (1, 2, 2, 2), (2, 2, 2, 2)}.

65

At this point, we consider a concrete example to verify that our working

is correct. Consider the word aaacd over A. Then, |w|a = 3 ≡ 0 (mod 3),

|w|b = 0, |w|c = 1 and |w|d = 1. Thus, the corresponding four-tuple is (0, 0, 1, 1),

which means that this word has group contribution equal to 0 (mod 3). We can

check this directly using our map ϕ̄:

(aaacd)ϕ̄ = (aϕ̄)(aϕ̄)(aϕ̄)(cϕ̄)(dϕ̄)

= (aϕ)(aϕ)(aϕ)(cϕ)(dϕ)

= (1, 0, 1)(1, 0, 1)(1, 0, 1)(2, 1, 1)(2, 2, 2)

= (1, 0 + p11 + 0 + p11 + 0 + p12 + 1 + p12 + 2, 2)

= (1, 0 + 2(p11 + p12), 2).

In this case, our two approaches lead us to the same answer, providing evidence

that our method is correct.

We have now established everything that is required to provide explicit ex-

pressions for each of the GrpContrib languages. Below, we write down the ex-

pression for GrpContrib(0, 3) in detail in terms of ModCount languages, where

ModCount has been abbreviated to MC due to space constraints:

GrpContrib(0, 3)

=
⋃

(ka)∈U

⋂
a∈A

MC(a, ka, n)

=
⋃

(ka)∈U

MC(a, ka, 3) ∩MC(b, kb, 3) ∩MC(c, kc, 3) ∩MC(d, kd, 3)

= (MC(a, 0, 3) ∩MC(b, 0, 3) ∩MC(c, 0, 3) ∩MC(d, 0, 3)) ∪

(MC(a, 1, 3) ∩MC(b, 0, 3) ∩MC(c, 0, 3) ∩MC(d, 0, 3)) ∪

(MC(a, 2, 3) ∩MC(b, 0, 3) ∩MC(c, 0, 3) ∩MC(d, 0, 3)) ∪

(MC(a, 0, 3) ∩MC(b, 0, 3) ∩MC(c, 1, 3) ∩MC(d, 1, 3)) ∪

(MC(a, 1, 3) ∩MC(b, 0, 3) ∩MC(c, 1, 3) ∩MC(d, 1, 3)) ∪

(MC(a, 2, 3) ∩MC(b, 0, 3) ∩MC(c, 1, 3) ∩MC(d, 1, 3)) ∪

(MC(a, 0, 3) ∩MC(b, 0, 3) ∩MC(c, 2, 3) ∩MC(d, 2, 3)) ∪

(MC(a, 1, 3) ∩MC(b, 0, 3) ∩MC(c, 2, 3) ∩MC(d, 2, 3)) ∪

(MC(a, 2, 3) ∩MC(b, 0, 3) ∩MC(c, 2, 3) ∩MC(d, 2, 3)) ∪

(MC(a, 0, 3) ∩MC(b, 1, 3) ∩MC(c, 0, 3) ∩MC(d, 1, 3)) ∪

(MC(a, 1, 3) ∩MC(b, 1, 3) ∩MC(c, 0, 3) ∩MC(d, 1, 3)) ∪

(MC(a, 2, 3) ∩MC(b, 1, 3) ∩MC(c, 0, 3) ∩MC(d, 1, 3)) ∪

(MC(a, 0, 3) ∩MC(b, 1, 3) ∩MC(c, 1, 3) ∩MC(d, 2, 3)) ∪

66

(MC(a, 1, 3) ∩MC(b, 1, 3) ∩MC(c, 1, 3) ∩MC(d, 2, 3)) ∪

(MC(a, 2, 3) ∩MC(b, 1, 3) ∩MC(c, 1, 3) ∩MC(d, 2, 3)) ∪

(MC(a, 0, 3) ∩MC(b, 1, 3) ∩MC(c, 2, 3) ∩MC(d, 0, 3)) ∪

(MC(a, 1, 3) ∩MC(b, 1, 3) ∩MC(c, 2, 3) ∩MC(d, 0, 3)) ∪

(MC(a, 2, 3) ∩MC(b, 1, 3) ∩MC(c, 2, 3) ∩MC(d, 0, 3)) ∪

(MC(a, 0, 3) ∩MC(b, 2, 3) ∩MC(c, 0, 3) ∩MC(d, 2, 3)) ∪

(MC(a, 1, 3) ∩MC(b, 2, 3) ∩MC(c, 0, 3) ∩MC(d, 2, 3)) ∪

(MC(a, 2, 3) ∩MC(b, 2, 3) ∩MC(c, 0, 3) ∩MC(d, 2, 3)) ∪

(MC(a, 0, 3) ∩MC(b, 2, 3) ∩MC(c, 1, 3) ∩MC(d, 0, 3)) ∪

(MC(a, 1, 3) ∩MC(b, 2, 3) ∩MC(c, 1, 3) ∩MC(d, 0, 3)) ∪

(MC(a, 2, 3) ∩MC(b, 2, 3) ∩MC(c, 1, 3) ∩MC(d, 0, 3)) ∪

(MC(a, 0, 3) ∩MC(b, 2, 3) ∩MC(c, 2, 3) ∩MC(d, 1, 3)) ∪

(MC(a, 1, 3) ∩MC(b, 2, 3) ∩MC(c, 2, 3) ∩MC(d, 1, 3)) ∪

(MC(a, 2, 3) ∩MC(b, 2, 3) ∩MC(c, 2, 3) ∩MC(d, 1, 3)).

Explicit expressions for GrpContrib(1, 3) and GrpContrib(2, 3) can also be writ-

ten down at this point, but we do not do this here.

We now turn our attention to the contributions made by the matrix entries.

In order to contribute g2 (mod 3) from the matrix entries, we must have that

pλaia |w|aa + pλaib |w|ab + pλaic |w|ac + · · ·+ pλdic |w|dc + pλdid |w|dd

= p11|w|aa + p11|w|ab + p12|w|ac + · · ·+ p22|w|dc + p22|w|dd

= p11(|w|aa + |w|ab + |w|ca + |w|cb) + p12(|w|ac + |w|ad + |w|cc + |w|cd) +

p21(|w|ba + |w|bb + |w|da + |w|db) + p22(|w|bc + |w|bd + |w|dc + |w|dd)

= 0(|w|aa + |w|ab + |w|ca + |w|cb) + 1(|w|ac + |w|ad + |w|cc + |w|cd) +

1(|w|ba + |w|bb + |w|da + |w|db) + 2(|w|bc + |w|bd + |w|dc + |w|dd)

= |w|ac + |w|ad + |w|ba + |w|bb + |w|cc + |w|cd +

|w|da + |w|db + 2(|w|bc + |w|bd + |w|dc + |w|dd)

≡ g2 (mod 3).

From this we notice that the number of occurrences of aa, ab, ca and cb as a

contiguous subword has no effect on the matrix contribution while the number

of occurrences of all other subwords of length two does. According to the proof

of Proposition 3.5, we should denote the number of occurrences of each subword

of length two modulo 3 by a 16-tuple, like so:

(kaa, kab, kac, kad, kba, kbb, kbc, kbd, kca, kcb, kcc, kcd, kda, kdb, kdc, kdd)

67

Unlike in the group contribution case, it is infeasible to list all 316 = 43046721

tuples. Therefore, we will consider a small handful of words to check that our

method does, in fact, work as anticipated.

First, we consider the word aaacd over A, as seen in the group contribution

case. Here, |w|aa = 2, |w|ac = 1, |w|cd = 1 and all other subwords of length two

do not occur. Thus, the corresponding 16-tuple is

(2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),

which means that this word has matrix contribution equal to

1 + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 2(0 + 0 + 0 + 0) ≡ 2 (mod 3).

We can check this directly using our map ϕ̄:

(aaacd)ϕ̄ = · · · = (1, 0 + 2(p11 + p12), 2) = (1, 0 + 2(0 + 1), 2) = (1, 0 + 2, 2).

In both cases, we see that the matrix contribution is 2. Combined with the

group contribution of 0, we see that the word aaacd lies in the preimage of

(I × {2} × Λ); specifically, it lies in (1, 2, 2)ϕ̄−1.

Now consider the word abacddcaba over A. Here,

|w|aa = 0, |w|ab = 2, |w|ac = 1, |w|ad = 0,

|w|ba = 2, |w|bb = 0, |w|bc = 0, |w|bd = 0,

|w|ca = 1, |w|cb = 0, |w|cc = 0, |w|cd = 1,

|w|da = 0, |w|db = 0, |w|dc = 1, and |w|dd = 1.

Thus, the corresponding 16-tuple is

(0, 2, 1, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1),

which means that this word has matrix contribution equal to

1 + 0 + 2 + 0 + 0 + 1 + 0 + 0 + 2(0 + 0 + 1 + 1) = 8 ≡ 2 (mod 3).

We can check this directly using our map ϕ̄:

(abacddcaba)ϕ̄ = (aϕ̄)(bϕ̄)(aϕ̄) . . . (bϕ̄)(aϕ̄)

= (aϕ)(bϕ)(aϕ) . . . (bϕ)(aϕ)

= (1, 0, 1)(1, 1, 2)(1, 0, 1) . . . (1, 1, 2)(1, 0, 1)

= (1, 0 + p11 + 1 + p21 + 0 + · · ·+ 1 + p21 + 0, 1)

= (1, 2 + (3p11 + 2p12 + 2p21 + 2p22), 1)

= (1, 2 + 8, 1)

68

= (1, 2 + 2, 1).

In both cases, we see that the matrix contribution is 2. Combined with the

group contribution of 2 (as established in the latter calculation), we see that

the word abacddcaba lies in the preimage of (I ×{1}×Λ); specifically, it lies in

(1, 1, 1)ϕ̄−1.

3.4.3 Direct products

In order to extend Theorem 3.6 to Rees zero-matrix semigroups over abelian

groups, we make use of properties of homomorphisms and projection maps and

appeal to the Fundamental Theorem of Finite Abelian Groups, as stated in

Theorem 1.1.

We begin with some general theory concerning Rees zero-matrix semigroups

over direct products of semigroups. Consider a Rees zero-matrix semigroup

M0[S × T ; I,Λ;R], with R = (rλi), where rλi = (pλi, qλi) lies in S × T or

rλi = 0S×T , the zero element. Define two further Rees matrix semigroups

M0[S; I,Λ;P] and M0[T ; I,Λ;Q], with zeros 0S and 0T respectively, and ma-

trices P and Q defined by P = (pλi) and Q = (qλi), where we take pλi = 0S

and qλi = 0T whenever rλi = 0S×T .

Define the natural projections

πS : M0[S × T ; I,Λ;R]→M0[S; I,Λ;P], and

πT : M0[S × T ; I,Λ;R]→M0[T ; I,Λ;Q]

by

(i, (s, t), λ)πS = (i, s, λ), (0S×T)πS = 0S ,

(i, (s, t), λ)πT = (i, t, λ), and (0S×T)πT = 0T .

Note that these projections are homomorphisms. Indeed, let (i1, (s1, t1), λ1) and

(i2, (s2, t2), λ2) be non-zero elements of M0[S × T ; I,Λ;R]. Then

((i1, (s1, t1), λ1)(i2, (s2, t2), λ2))πS

= (i1, (s1, t1)rλ1i2(s2, t2), λ2)πS

= (i1, (s1, t1)(pλ1i2 , qλ1i2)(s2, t2), λ2)πS

= (i1, (s1pλ1i2s2, t1qλ1i2t2), λ2)πS

= (i1, s1pλ1i2s2, λ2)

and

((i1, (s1, t1), λ1)πS)((i2, (s2, t2), λ2)πS)

69

= (i1, s1, λ1)(i2, s2, λ2)

= (i1, s1pλ1i2s2, λ2).

Hence, πS is a homomorphism. A similar argument shows that πT is also a

homomorphism.

Now suppose that we are given an alphabet A and a map ϕ : A →
M0[S × T ; I,Λ;R], which extends uniquely to a homomorphism ϕ̄ : A+ →
M0[S × T ; I,Λ;R]. Then the compositions ϕ̄πS and ϕ̄πT are homomorphisms

from A+ to M0[S; I,Λ;P] and M0[T ; I,Λ;Q] respectively. The entire setup is

summarised in Figure 3.1.

A A+

M0[S × T ; I,Λ;R]

M0[S; I,Λ;P] M0[T ; I,Λ;Q]

ι

ϕ ϕ̄

πS πT

Figure 3.1: Commutative diagram for the setup in Section 3.4.3.

In the following lemma we relate the preimage of a non-zero element in

M0[S × T ; I,Λ;R] to the preimages of non-zero elements in M0[S; I,Λ;P] and

M0[T ; I,Λ;Q]. Similarly, we relate the preimage of 0S×T to the preimages of

0S and 0T .

Lemma 3.8. For any (i, (s, t), λ) in M0[S × T ; I,Λ;R],

(i, (s, t), λ) ϕ̄−1 = (i, s, λ)(ϕ̄πS)−1 ∩ (i, t, λ)(ϕ̄πT)−1.

Similarly,

0S×T ϕ̄
−1 = 0S(ϕ̄πS)−1 ∩ 0T (ϕ̄πT)−1.

Proof. First, consider the former equality and suppose that w is an element of

(i, (s, t), λ) ϕ̄−1; that is, wϕ̄ = (i, (s, t), λ). Then

w(ϕ̄πS) = (wϕ̄)πS = (i, (s, t), λ)πS = (i, s, λ),

and

w(ϕ̄πT) = (wϕ̄)πT = (i, (s, t), λ)πT = (i, t, λ).

Hence, w lies in (i, s, λ)(ϕ̄πS)−1 and w lies in (i, t, λ)(ϕ̄πT)−1, and, therefore, w

must lie in their intersection.

Conversely, suppose that

w ∈ (i, s, λ)(ϕ̄πS)−1 ∩ (i, t, λ)(ϕ̄πT)−1,

70

so that

w(ϕ̄πS) = (i, s, λ) and w(ϕ̄πT) = (i, t, λ).

Note that wϕ̄ 6= 0S×T , since wϕ̄ lies in the preimage of (i, s, λ) under πS whereas

0S×T lies in the preimage of 0S under πS . Thus, wϕ̄ = (iw, (sw, tw), λw) for some

iw ∈ I, (sw, tw) ∈ S × T and λw ∈ Λ.

Now,

(i, s, λ) = (wϕ̄)πS = (iw, (sw, tw), λw)πS = (iw, sw, λw)

and, similarly,

(i, t, λ) = (wϕ̄)πT = (iw, (sw, tw), λw)πT = (iw, tw, λw).

Hence,

iw = i, sw = s, tw = t and λw = λ.

Therefore,

wϕ̄ = (iw, (sw, tw), λw) = (i, (s, t), λ)

and w is an element of (i, (s, t), λ)ϕ̄−1.

Now consider the second equality and let w be an element of 0S×T ϕ̄
−1; that

is, wϕ̄ = 0S×T . Then

w(ϕ̄πS) = (wϕ̄)πS = 0S×TπS = 0S

and

w(ϕ̄πT) = (wϕ̄)πT = 0S×TπT = 0T .

Hence, w lies in 0S(ϕ̄πS)−1 and w lies in 0T (ϕ̄πT)−1, and, therefore, w must lie

in their intersection.

Conversely, suppose that

w ∈ 0S(ϕ̄πS)−1 ∩ 0T (ϕ̄πT)−1,

so that

(wϕ̄)πS = w(ϕ̄πS) = 0S and (wϕ̄)πT = w(ϕ̄πT) = 0T .

Now, wϕ̄ lies in 0Sπ
−1
S = {0S×T }. Hence, wϕ̄ = 0S×T and w is an element of

0S×T ϕ̄
−1.

We can now prove the following:

71

Theorem 3.9. Let S and T be finite semigroups. If languages recognised by

finite Rees zero-matrix semigroups over S or T all have generalised star-height at

most h, then all the languages recognised by finite Rees zero-matrix semigroups

over the direct product S × T also have generalised star-height at most h.

Proof. Lemma 3.8 allows us to express the preimage of an element in the Rees

zero-matrix semigroup over the direct product as the intersection of two preim-

ages of elements in Rees zero-matrix semigroups over the factors. Since the

preimage of any subset is a finite union of preimages of elements, the result

follows.

3.4.4 Extending to abelian groups

By combining the above results we can now extend Theorem 3.6 to Rees zero-

matrix semigroups over abelian groups.

Theorem 3.10. A regular language recognised by a Rees zero-matrix semigroup

over an abelian group is of generalised star-height at most one.

Proof. Invoking the Fundamental Theorem of Finite Abelian Groups (Theo-

rem 1.1) and applying Theorem 3.9 a finite number of times to Rees zero-matrix

semigroups over cyclic groups yields the result.

Theorem 3.10 can also be deduced from existing theoretical results when

attention is restricted to the basic Rees matrix construction (without zero).

Indeed, let M be a Rees matrix semigroup over an abelian group G. Consider

the following proposition.

Proposition 3.11 ([5, Proposition XI.3.1]). Let M be a Rees matrix semigroup

over a semigroup S. Then, M divides a wreath product of S by an aperiodic

monoid.

It follows, by Corollary 1.15, that if a language is recognised by M then it

is also recognised by an element of AbGrps oAp. Since the pseudovarieties

AbGrps oAp and AbGrps o Ap are equal by Lemma 1.2 and every language

recognised by a monoid of the pseudovariety AbGrps o Ap is of generalised

star-height at most one (Proposition 2.15), it follows that every language recog-

nised by M is of generalised star-height at most one.

3.5 Over monogenic semigroups

Let S be a finite monogenic semigroup with index l and period q; that is,

S = 〈1〉 = {1, 2, . . . , l, l + 1, . . . , l + q − 1},

72

where l and q are chosen minimally such that l + q = l. The subset

K = {l, l + 1, . . . , l + q − 1}

of S forms a cyclic group of order q. Due to this connection between monogenic

semigroups and cyclic groups, we should be able to analyse the generalised star-

height of Rees zero-matrix semigroups over monogenic semigroups in a similar

way to that of Rees zero-matrix semigroups over cyclic groups in Section 3.4.1.

Since we have already established the preimage of 0 in Proposition 3.2, it

remains to establish the preimage of (I ×{s}×Λ) under ϕ̄−1. We split into the

following two cases:

(Case 1) 1 ≤ s < l; and,

(Case 2) l ≤ s ≤ l + q − 1.

In Case 1, we mirror the proof of Proposition 3.5 noting that we are only

interested in exact counting as opposed to modular counting. As such, we

consider an arbitrary word w = a1a2 . . . ar in (I × {s} × Λ)ϕ̄−1. Continuing to

use the notation introduced before Proposition 3.2, we know that pλajij+1
6= 0

for j = 1, 2, . . . , r − 1, and

sa1 + pλa1 ia2 + sa2 + pλa2 ia3 + · · ·+ pλar−1
iar

+ sar = s.

We split the above sum into two, as

sa1 + sa2 + · · ·+ sar︸ ︷︷ ︸
=s1

+ pλa1 ia2 + pλa2 ia3 + · · ·+ pλar−1
iar︸ ︷︷ ︸

=s2

= s,

and examine them separately. The first sum corresponds to the contributions

from ‘group’ summands, while the second is the contributions from ‘matrix’

summands. Notice that the value of s1 is always at least 1 since every saj is at

least 1. For s2, the same is true except when r = 1 as in this case there is no

contribution from matrix elements. In this case, s2 = 0.

For the group contribution, we consider the equation

s1 = sa1 + sa2 + · · ·+ sar =
∑
a∈A

sa|w|a.

Let U be the following set of tuples indexed by A containing entries from the

set {0, 1, 2, . . . , l − 1}:

U =

{
(ka)a∈A |

∑
a∈A

saka = s1

}
.

73

As in the proof of Proposition 3.5, it follows that

GrpContrib(s1) =
⋃

(ka)∈U

⋂
a∈A

Count(a, ka).

Similarly, for the matrix contribution, we consider the equation

s2 = pλa1 ia2 + pλa2 ia3 + · · ·+ pλar−1
iar

=
∑
ab∈A2

pλaib |w|ab.

Let V be the following set of tuples indexed by A2 containing entries from the

set {0, 1, 2, . . . , l − 1}:

V =

{
(kab)ab∈A2 |

∑
ab∈A2

pλaibkab = s2

}
.

As in the proof of Proposition 3.5, it follows that

MatContrib(s2) =
⋃

(kab)∈V

⋂
ab∈A2

Count(ab, kab).

Combining the ‘group’ contribution and the ‘matrix’ contribution appropri-

ately leads to a regular expression for (I × {s} × Λ)ϕ̄−1, given by⋃
i∈I,λ∈Λ

A(i,s,λ) ∪
⋃

(s1,s2)∈{1,2,...,s−1}2
s1+s2=s

(GrpContrib(s1) ∩MatContrib(s2)).

The first union corresponds to all of the letters of A that have s as their group

contribution. This is required as a separate term as these letters have no matrix

contribution. It follows that the preimage (I × {s} × Λ)ϕ̄−1 is of generalised

star-height zero whenever s is less than l.

Now, we consider Case 2. Again, consider an arbitrary word w = a1a2 . . . ar

in (I × {s} × Λ)ϕ̄−1 where, in this situation, s is greater than or equal to l.

Continuing to use the notation introduced before Proposition 3.2, we know that

pλajij+1
6= 0 for j = 1, 2, . . . , r − 1, and, therefore,

sa1 + pλa1 ia2 + sa2 + pλa2 ia3 + · · ·+ pλar−1
iar

+ sar ≥ l.

As such, w does not belong to any of the preimages of a semigroup element less

than l; that is, w belongs to the set

X = A∗ \
l−1⋃
j=1

(I × {j} × Λ)ϕ̄−1

From Case 1, each of the preimages (I × {j} × Λ)ϕ̄−1, where 1 ≤ j ≤ l − 1, is

of generalised star-height zero. Since the union is finite, it follows that X is a

regular language of generalised star-height zero.

74

Now, since

l ≤ s ≤ l + q − 1,

it follows that

0 ≤ s− l ≤ q − 1.

Thus, s− l is an element of the cyclic group Zq. Therefore, we consider

sa1 + pλa1 ia2 + sa2 + pλa2 ia3 + · · ·+ pλar−1
iar

+ sar ≡ (s− l) (mod q).

We can now apply the proof of Proposition 3.5 directly. Intersecting the

resulting expression with the language X ensures that we capture only those

words whose contribution has passed the threshold for entering the cyclic group;

namely, the index l. It follows that the preimage (I×{s}×Λ)ϕ̄−1 is of generalised

star-height at most one whenever l ≤ s ≤ l + q − 1.

The following theorem is a near-immediate consequence of our foregoing

results:

Theorem 3.12. A regular language recognised by a Rees zero-matrix semigroup

over a finite monogenic semigroup is of generalised star-height at most one.

Proof. Every language recognised by a Rees zero-matrix semigroup over a finite

monogenic semigroup can be expressed as a finite union of preimages of elements

in the semigroup. Since each individual preimage is of generalised star-height

at most one and taking finite unions does not increase generalised star-height,

the result follows.

75

Chapter 4

Counting Arrows

4.1 Definitions and motivation

In this chapter, we turn our attention to languages recognised by finite groups

of a given order. By Theorem 2.2, we conclude that every language recognised

by a finite group of order p or p2, where p is a prime number, is of generalised

star-height at most one, since groups of these orders are abelian. This proves

a substantial amount of the following theorem, which acts as our motivation in

this chapter.

Theorem 4.1 ([15, Corollary 7.7]). Every language recognised by a finite group

of order less than 12 is of generalised star-height at most one.

In Table 4.1, we list all finite groups of order less than 12 alongside the

result used to prove that a language recognised by that group is of generalised

star-height at most one. We see that only 4 of the 19 groups are not abelian;

namely, Dih3, Dih4, Q8 and Dih5. Now, Dih4 and Q8 are both nilpotent of class

2, so languages recognised by both of these groups are of generalised star-height

at most one by Theorem 2.3.

It remains for us to determine the generalised star-height of the languages

recognised by the two dihedral groups Dih3 and Dih5. The group Dih3 can

be decomposed as the semidirect product Z3 o Z2 and, similarly, Dih5 can be

decomposed as the semidirect product Z5 o Z2. Both of these decompositions

are semidirect products of an abelian group by the cyclic group Z2. Thus, if we

can establish that languages recognised by groups of the form AoZ2, where A is

an abelian group, are of generalised star-height at most one then this completes

the proof of Theorem 4.1. This result was proved by Pin, Straubing and Thérien

[15] in the setting of pseudovarieties. Their proof, which makes use of automata,

76

Order Group Reason

1 {1} abelian

2 Z2 abelian

3 Z3 abelian

4
Z4 abelian

Z2 × Z2 abelian

5 Z5 abelian

6
Z6 = Z3 × Z2 abelian

Dih3 —

7 Z7 abelian

8

Z8 abelian

Z4 × Z2 abelian

Z2 × Z2 × Z2 abelian

Dih4 nilpotent of class 2

Q8 nilpotent of class 2

9
Z9 abelian

Z3 × Z3 abelian

10
Z10 = Z5 × Z2 abelian

Dih5 —

11 Z11 abelian

Table 4.1: Groups of order less than 12.

is outlined in Section 4.2.1.

At this point, an obvious question to ask is whether languages recognised

by finite groups of the form A o Zr, where A is an abelian group and r is a

positive integer greater than 2, are of generalised star-height at most one. In

Section 4.2.2, we explore the case where r = 3 by replicating the steps of the

proof given for Z2 in [15]. Unfortunately, this approach does not lead us to the

required conclusion but does yield some interesting insights into the problem.

In the upcoming sections, we will make use of star-free injective substitutions

and inverse alphabetic homomorphisms, both of which are defined below.

A substitution is a function σ : A∗ → P(B∗) such that εσ = {ε} and

(vw)σ = (vσ)(wσ) for all v and w in A∗. The substitution σ is injective if

vσ ∩ wσ 6= ∅ implies that v = w for all v and w in A∗ and star-free if for every

star-free language L, the language Lσ is also star-free.

Proposition 4.2 ([15, Theorem 4.6]). For every natural number n, the class of

languages of generalised star-height at most n is closed under star-free injective

77

substitutions.

A homomorphism ϕ : A∗ → B∗ is alphabetic if for all a in A, the image

of a under ϕ is either a letter of B or the empty word. For example, the

homomorphism ϕ : {a, b}∗ → {a}∗ defined by aϕ = a and bϕ = ε is alphabetic.

Proposition 4.3 ([15, Corollary 4.7]). For every natural number n, the class of

languages of generalised star-height at most n is closed under inverse alphabetic

morphisms.

Let A = (S,A, s0, δ, T) be an automaton. Every word w = a1a2 . . . ar in A∗

defines a unique path

p(w) = (s0, a1)(s1, a2) . . . (sr−1, ar)

through A, where we assume that δ(si, ai+1) = si+1 for 0 ≤ i ≤ r − 1. Let

|p(w)|(s,a) denote the number of times that the arrow (s, a) appears in the path

p(w) and define the language ModCount(A, (s, a), k, n) by

ModCount(A, (s, a), k, n) = {w ∈ A∗ | |p(w)|(s,a) ≡ k (mod n)};

that is, the set of words w over A such that in the unique path through A
defined by w, the arrow (s, a) is traversed precisely k modulo n times.

An automaton is transitive if for all states s1 and s2 in S there exists a word

w in A∗ such that δ(s1, w) = s2.

Proposition 4.4 ([15, Proposition 6.3]). Let A = (S,A, s0, δ, T) be a transitive

automaton. Then, for every state s in S, every letter a in A, and all inte-

gers k and n satisfying 0 ≤ k < n, the generalised star-height of the language

ModCount(A, (s, a), k, n) is equal to the generalised star-height of the language

ModCount(A, (s, a), 0, n).

Informally, this result states that in transitive automata, counting an arrow

k modulo n times is equivalent to counting an arrow 0 modulo n times.

Proposition 4.5 ([15, Proposition 6.4]). Let A = (S,A, s0, δ, T) be a transitive

automaton such that for all w in A∗, if δ(s, w) = s for some state s in S then

δ(s, w) = s for every state s in S. Then, for every state s in S, every letter

a in A and every integer n ≥ 2, the generalised star-height of the language

ModCount(A, (s, a), 0, n) is equal to the generalised star-height of the language

ModCount(A, (s0, a), 0, n).

Informally, this result states that in transitive automata, if, for all words w

in A∗, the word w induces the identity on any one state implies that w induces

the identity on all states, then counting the arrow (s, a) a multiple of n times

is equivalent to counting the arrow (s0, a) a multiple of n times.

78

4.2 Semidirect products

Let p be a prime number and let r be a positive integer. Define an automa-

ton A = (S,A, s0, δ, T), where S = (Zp)r, the start state s0 is the r-tuple

(0, 0, . . . , 0), the set of terminal states T = ∅ and for each a in A there exists an

r-tuple ta in S such that δ(s, a) = s + ta for all s in S. Such an automaton is

said to be cyclic.

Example 4.6. We define a cyclic automaton where p = r = 2 and A =

{a, b, c, d}. In this situation, S = (Z2)2 and s0 = (0, 0). Define

ta = td = (0, 0), tb = (0, 1) and tc = (1, 0).

The transition diagram of our automaton is shown in Figure 4.1.

(0, 0) (0, 1)

(1, 0) (1, 1)

a, d

b

c

a, d

b

c

a, d

b

c

a, d

b

c

Figure 4.1: Transition diagram for the automaton described in Example 4.6.

Lemma 4.7. Let A = (S,A, s0, δ, T) be a cyclic automaton, where S = (Zp)r.
If A is not transitive then there exists a cyclic automaton B = (S,A∪B, s0, δ, T)

such that the generalised star-height of the language ModCount(A, (s, a), k, n)

is at most the generalised star-height of the language ModCount(B, (s, a), k, n)

for every letter a in A, every state s in S and all integers k and n satisfying

0 ≤ k < n.

Proof. Suppose that A is not transitive. Define a new cyclic automaton B =

(S,A ∪B, s0, δ, T), where B = {b1, b2, . . . , br} is a set of letters not in A and

δ((z1, z2, . . . , zr), bi) = (z1, z2, . . . , zi−1, zi + 1, zi+1, zi+2, . . . , zr)

for 1 ≤ i ≤ r. The automaton B is transitive as each bi induces a cycle through p

different states and each state appears in at least two distinct cycles. Moreover,

ModCount(A, (s, a), k, n) = (ModCount(B, (s, a), k, n) ∩A∗)ϕ−1,

79

where ϕ : A∗ → (A ∪ B)∗ is the natural alphabetic homomorphism defined

by wϕ = w for all w in A∗. Now, A∗ is a star-free subset of (A ∪ B)∗ by

Lemma 1.24 and, since we are closed under inverse alphabetic homomorphisms

by Proposition 4.3, the result follows.

Lemma 4.7 tells us that we need only consider transitive cyclic automata

from this point onwards. Thus, in all of our upcoming results, we can assume

that k = 0 and s = s0 by Propositions 4.4 and 4.5.

The following result, for which the proof is omitted, shows that counting a

loop in a cyclic automaton results in a language of generalised star-height at

most one.

Proposition 4.8 ([15, Proposition 6.8]). Let A = (S,A, s0, δ, T) be a cyclic

automaton and let a in A induce the identity on S. For all integers k and n ≥ 2

with 0 ≤ k < n and for every state s in S, the generalised star-height of the

language ModCount(A, (s, a), k, n) is at most one.

4.2.1 Cyclic group of order 2

In one specific situation, we can improve the result of Proposition 4.8.

Proposition 4.9 ([15, Proposition 6.10]). Let A = (S,A, s0, δ, T) be a cyclic

automaton, where S = (Z2)r. For all integers k and n ≥ 2 with 0 ≤ k < n,

every letter a in A and every state s in S, the generalised star-height of the

language ModCount(A, (s, a), k, n) is at most one.

We dedicate the rest of this section to the proof of Proposition 4.9 and a

second result that will complete the proof of Theorem 4.1.

By an argument similar to that in the omitted proof of Proposition 4.8, we

can assume that r = 1, so that S = {0, 1}. Fix a letter a in A and partition A

into three subsets as follows: {a}; C, the set of all letters inducing the identity

on S; and, B = A\({a}∪C). The transition diagram of A is shown in Figure 4.2.

0 1C

a,B

C

a,B A

Figure 4.2: Transition diagram for the automaton A in Proposition 4.9.

80

Let ϕ : A∗ → {a, b}∗ be the alphabetic homomorphism defined by

aϕ = a and xϕ =

b, if x ∈ B,

ε, if x ∈ C,

where x is any element of A \ {a}. Let A′ = (S, {a, b}, 0, γ, T) be the cyclic

automaton defined by the transitions

γ(0, a) = 1, γ(1, a) = 0, γ(0, b) = 1 and γ(1, b) = 0.

The transition diagram of A′ is shown in Figure 4.3.

0 1

a, b

a, b A′

Figure 4.3: Transition diagram for the automaton A′ in Proposition 4.9.

Let p(w) (respectively, p′(w)) be the path defined by a word w in A (respec-

tively, A′). Then, for every w in A∗,

|p(w)|(0,a) = |p′(wϕ)|(0,a).

Hence,

ModCount(A, (0, a), k, n) = (ModCount(A′, (0, a), k, n))ϕ−1.

Since, by Proposition 4.3, the class of languages of generalised star-height at

most n is closed under inverse alphabetic morphisms, it suffices to show that

the generalised star-height of the language ModCount(A′, (0, a), k, n) is at most

one.

Let L = ModCount(A′, (0, a), k, n) and

X = {w ∈ {a, b}∗ | γ(0, w) = 0},

and consider the set K = L ∩X; that is, the set of words w in L such that the

path in A′ traversed by w begins and ends at state 0. We claim that we can

write L as a right quotient of K; specifically,

L = K{ε, b}−1.

To see this, let w be a word in L and let γ(0, w) = s. If s = 0 then w lies

in K = Kε−1. Otherwise, s = 1 and γ(0, wb) = γ(1, b) = 0 and |p′(wb)|(0,a) =

|p′(w)|(0,a). Hence, wb lies in K and w lies in Kb−1.

81

Conversely, let w be a word from K{ε, b}−1. Then, either w lies in K or wb

lies in K. In the first case, it follows from the definition of K that w lies in L.

In the second case, γ(0, wb) = 0 which implies that γ(0, w) = 1. It follows that

|p′(wb)|(0,a) = |p′(w)|(0,a) and, therefore, w lies in L, proving the claim.

Since, by Proposition 1.22, the class of languages of generalised star-height

at most n is closed under right quotients, it suffices to show that the generalised

star-height of K is at most one.

From the transition diagram of A′, we see that if we start at state 0 and

read either an a or a b then we end up in state 1. From state 1, we have no

choice but to return to state 0 by reading either an a or a b. Thus,

X = ((a ∪ b)2)∗ = (aa ∪ ab ∪ ba ∪ bb)∗.

Using this, we find that a näıve expression for K is given by

((ba ∪ bb)∗(aa ∪ ab))k(((ba ∪ bb)∗(aa ∪ ab))n)∗(ba ∪ bb)∗. (4.1)

In this form, the expression has generalised star-height two. However, if we

could write (ba ∪ bb)∗ as a star-free expression then the generalised star-height

of the expression given in (4.1) would reduce to one. Unfortunately, (ba ∪ bb)∗

does not have an equivalent star-free expression. This can be established by

finding the minimal automaton for (ba∪ bb)∗, calculating its transition monoid,

noting that it is finite and aperiodic and appealing to Schützenberger’s Theorem

(Theorem 1.23).

However, we can think about K in a different way. Indeed, we notice that

every word in X can be uniquely factorised into consecutive subwords of length

two. For example, the word

w = aababbab = aa · ba · bb · ab. (4.2)

With slight abuse of notation, for w in X, we denote by |w|x the number of

occurrences of x in the unique factorisation of w as a product of words of length

two. For example, in Equation (4.2), we see that

|w|aa = |w|ab = |w|ba = |w|bb = 1.

It follows that

K = {w ∈ X | |w|aa + |w|ab ≡ k (mod n)}

= {w ∈ X | 2|w|aa + 2|w|ab ≡ 2k (mod 2n)}.

At this point, we notice that

2|w|aa + |w|ab + |w|ba = |w|a

82

for every word w in X and, therefore, we can write K as

K = {w ∈ X | |w|a + |w|ab − |w|ba ≡ 2k (mod 2n)}

by replacing the 2|w|aa term with its equivalent expression.

We can now decompose K into a boolean combination of languages of the

form

{w ∈ X∗ | |w|a ≡ m (mod 2n)}

and languages of the form

{w ∈ X∗ | |w|ab − |w|ba ≡ m (mod 2n)}.

Languages of the first type are recognised by a finite abelian group by Theo-

rem 2.2 and are of generalised star-height at most one. Though not shown here,

languages of the second type are dealt with via a star-free injective substitution

and are of generalised star-height at most one. Taking a boolean combination

of these languages does not increase the generalised star-height and, therefore,

K is of generalised star-height at most one. Thus, ModCount(A, (s, a), k, n) is

of generalised star-height at most one, which concludes the proof of Proposi-

tion 4.9.

Proposition 4.9 is the main component in the proof of the following theorem:

Theorem 4.10 ([15, Theorem 7.6]). Every language recognised by a monoid of

the pseudovariety AbGrps o Z2 is of generalised star-height at most one.

It follows from Theorem 4.10 that languages recognised by Dih3 = Z3 o Z2

and Dih5 = Z5oZ2 are all of generalised star-height at most one. This completes

the proof of Theorem 4.1.

4.2.2 Cyclic group of order 3

When trying to determine the generalised star-height of languages recognised

by a finite group of a given order, Theorem 4.1 implies that the first hurdle

we need to overcome is those languages recognised by groups of order 12. In

Table 4.2, we list the groups of orders 12, 13, 14 and 15, noting that all but two

of these groups have already been resolved.

The two remaining groups, namely A4 and Dic3, can be decomposed as

semidirect products of an abelian group with a cyclic group. In the first case,

the cyclic group is Z3 while in the second case the cyclic group is Z4. At this

point, we make the following conjecture.

Conjecture 4.11. Every language recognised by a monoid of the pseudovariety

AbGrps o Z3 is of generalised star-height at most one.

83

Order Group Reason

12

Z12 = Z4 × Z3 abelian

Z6 × Z2 abelian

Dih6 = Z6 o Z2 Theorem 4.10

A4 = (Z2 × Z2) o Z3 —

Dic3 = Z3 o Z4 —

13 Z13 abelian

14
Z14 = Z7 × Z2 abelian

Dih7 = Z7 o Z2 Theorem 4.10

15 Z15 = Z5 × Z3 abelian

Table 4.2: Groups of order 12, 13, 14 and 15.

In order to prove this conjecture, it suffices to prove the following result.

Conjecture 4.12. Let A = (S,A, s0, δ, T) be a cyclic automaton, where S =

(Z3)r. For all integers k and n ≥ 2 with 0 ≤ k < n, every letter a in A and every

state s in S, the generalised star-height of the language ModCount(A, (s, a), k, n)

is at most one.

If Conjecture 4.12 is true then we can prove Conjecture 4.11 in exactly

the same way that Proposition 4.9 proves Theorem 4.10. Unfortunately, we

cannot prove Conjecture 4.12 using the same proof ideas that were used in

Proposition 4.9. We use the remainder of this section to explain why this method

of proof fails when we replace the state set S = (Z2)r with (Z3)r.

By a similar argument to that in the omitted proof of Proposition 4.8, we

can assume that r = 1, so that S = {0, 1, 2}. Fix a letter a in A and partition A

into four subsets as follows: {a}; D, the set of all letters inducing the identity

on S; C, the set of letters inducing the permutation (0 2 1) on S; and, B =

A \ ({a} ∪ C ∪D). The transition diagram of A is shown in Figure 4.4.

Let ϕ : A∗ → {a, b, c}∗ be the alphabetic homomorphism defined by

aϕ = a and xϕ =

b, if x ∈ B,

c, if x ∈ C,

ε if x ∈ D,

where x is any element of A \ {a}. Let A′ = (S, {a, b, c}, 0, γ, T) be the cyclic

84

0

2

1D

C

a,B

D

a,B

C

D
C

a,B

A

Figure 4.4: Transition diagram for the automaton A in Conjecture 4.12.

automaton defined by the transitions

γ(0, a) = 1, γ(1, a) = 2, γ(2, a) = 0,

γ(0, b) = 1, γ(1, b) = 2, γ(2, b) = 0,

γ(0, c) = 2, γ(1, c) = 0, and γ(2, c) = 1.

The transition diagram of A′ is shown in Figure 4.5.

0

2

1

c

a, b

a, b

c

c

a, b

A′

Figure 4.5: Transition diagram for the automaton A′ in Conjecture 4.12.

Let p(w) (respectively, p′(w)) be the path defined by a word w in A (respec-

tively, A′). Then, for every w in A∗,

|p(w)|(0,a) = |p′(wϕ)|(0,a).

Hence,

ModCount(A, (0, a), k, n) = (ModCount(A′, (0, a), k, n))ϕ−1.

Since, by Proposition 4.3, the class of languages of generalised star-height at

most n is closed under inverse alphabetic morphisms, it suffices to show that

the generalised star-height of the language ModCount(A′, (0, a), k, n) is at most

one.

85

Let L = ModCount(A′, (0, a), k, n) and

X = {w ∈ {a, b, c}∗ | γ(0, w) = 0},

and consider the set K = L ∩X; that is, the set of words w in L such that the

path in A′ traversed by w begins and ends at state 0. We claim that we can

write L as a right quotient of K; specifically,

L = K{ε, b, c}−1.

To see this, let w be a word in L and let γ(0, w) = s. If s = 0 then w lies in

K = Kε−1. If s = 1 then γ(0, wc) = γ(1, c) = 0 and |p′(wc)|(0,a) = |p′(w)|(0,a).

Hence, wc lies in K and w lies in Kc−1. Otherwise, s = 2 and γ(0, wb) =

γ(2, b) = 0 and |p′(wb)|(0,a) = |p′(w)|(0,a). Hence, wb lies in K and w lies in

Kb−1.

Conversely, let w be a word from K{ε, b, c}−1. Then, either w lies in K, wb

lies in K or wc lies in K. In the first case, it follows from the definition of K

that w lies in L. In the second case, γ(0, wb) = 0 which implies that γ(0, w) = 2.

It follows that |p′(w)|(0,a) = |p′(wb)|(0,a) and, therefore, w lies in L. Finally, if

wc lies in K then γ(0, wc) = 0, which implies that γ(0, w) = 1. It follows that

|p′(w)|(0,a) = |p′(wc)|(0,a) and, therefore, w lies in L. This completes the proof

of the claim.

Since, by Proposition 1.22, the class of languages of generalised star-height

at most n is closed under right quotients, it suffices to show that the generalised

star-height of K is at most one.

From the transition diagram of A′, we see that if we start at state 0 and

read an a or a b then we travel to state 1. From here, we can alternate between

states 1 and 2 by reading either an a or a b followed by a c. This always brings

us back to state 1. In order to return to state 0 from state 1, we can either read

a c or read an a or a b to travel to state 2 before reading either an a or a b to

travel to state 0. This can be summed up by the following expressions:

E = a((a ∪ b)c)∗((a ∪ b)2 ∪ c) and F = b((a ∪ b)c)∗((a ∪ b)2 ∪ c).

Alternatively, we can start at state 0 and read the letter c. This moves us

to state 2. From here, we can alternate between states 2 and 1 by reading a c

followed by either an a or a b. This always brings us back to state 2. In order to

return to state 0 from state 2 we can either read an a or a b or read a c to travel

to state 1 before reading another c to travel to state 0. This can be summed up

by the following expression:

G = c(c(a ∪ b))∗(a ∪ b ∪ c2).

86

It follows that X = (E∪F ∪G)∗. Using this, we find that a näıve expression

for K is given by

((F ∪G)∗E)k(((F ∪G)∗E)n)∗(F ∪G)∗. (4.3)

In this form, the expression has generalised star-height three, since E, F and G

all contain one star. However, ((a ∪ b)c)∗ and (c(a ∪ b))∗ both have equivalent

star-free expressions by Schützenberger’s Theorem (Theorem 1.23) and, there-

fore, E, F and G are languages of generalised star-height zero. This means that

the expression given in (4.3) is actually of generalised star-height two. Unfortu-

nately, (F ∪ G)∗ does not have an equivalent star-free expression (established,

again, through the use of Schützenberger’s Theorem) and therefore we cannot

reduce the generalised star-height of the expression given in (4.3) any further.

It is at this point that following the strategy employed in the proof of Propo-

sition 4.9 fails. In this situtation, we cannot uniquely factorise the words in X

into consecutive subwords of a fixed length and cannot, therefore, write K as

a boolean combination of subword counting languages. This is because each of

the individual components in the union that make up X are infinite languages

as opposed to finite languages, as previously seen. As such, Conjecture 4.12

remains open.

Attempting to employ the same proof strategy when the state set S is (Z4)r

would be futile as reducing the problem to r = 1 relies on the primality of the

modulus p. Thus, determining the generalised star-height of languages recog-

nised by groups of the form Ao Z3 and Ao Z4 remains an open problem.

87

Chapter 5

Conclusions and Open

Questions

In this final chapter, we present a number of open questions that have been

raised by the work in this thesis alongside questions raised by the existing results

concerning the Generalised Star-Height Problem.

In Chapter 2, we saw Thérien’s Theorem (Theorem 2.1) which establishes a

link between languages recognised by finite nilpotent groups of a given class and

languages of the form ScatModCount(w, k, n). By Eilienberg’s Variety Theorem

(Theorem 1.17), we know that there exists a one-to-one correspondence between

the collection of all pseudovarieties of monoids and the collection of all varieties

of monoid languages. Even though we established in Section 2.7 that languages

of the form ModCount(w, k, n) do not form a variety of monoid languages, they

might generate one. Thus, it is natural to ask the following question:

Question 5.1. Is a variety of monoid languages generated by languages of

the form ModCount(w, k, n) and, if so, what is it? In other words, is there a

corresponding Thérien-like theorem for contiguous subwords; that is, is there a

corresponding statement of Theorem 2.1 for contiguous subwords?

Our original motivation for counting subwords stemmed from the scattered

subword ordering that can be placed on the set of all words over a given alphabet.

Most known results concerning subword counting relate to this ordering, as

we saw in Section 2.1. Theorem 2.5 shows that establishing the generalised

star-height of the languages recognised by nilpotent groups of class three is

incomplete. Moreover, Theorem 2.4 is the only known result that contributes

towards establishing the generalised star-height of the languages recognised by

88

nilpotent groups of class four or higher. Thus, we are interested in finding

answers to the following questions:

Question 5.2. What is the generalised star-height of a language of the form

ScatModCount(abc, k, n), where a, b and c are letters from an alphabet and n

is not a square-free integer.

Question 5.3. What is the generalised star-height of a language of the form

ScatModCount(w, k, n), where |w| ≥ 4?

Answering these two questions would allow us to establish the generalised

star-height of any language recognised by a finite nilpotent group due to the

connection found in Thérien’s Theorem (Theorem 2.1).

The scattered subword ordering and the contiguous subword ordering are

just two examples of orders that can be placed on the set of all words over a

given alphabet. An example of another ordering that we can place on the set

of all words over a given alphabet is the embedding order [1, Definition 3.1],

which is defined as follows: v is an embedded subword of w if and only if w can

be created from v by inserting new occurrences of letters into v after they have

first appeared in v. For example, ab is a embedded subword of aba but is not an

embedded subword of bab. For every subword ordering we can define notions of

Count(w, k) and ModCount(w, k, n), which leads to the following question:

Question 5.4. If we equip the set of all words over an alphabet with a different

subword ordering then what is the generalised star-height of the corresponding

Count(w, k) and ModCount(w, k, n) languages?

In Chapter 3, we began a classification of the languages that are recognised

by finite semigroups. In order to do this, we appealed to The Rees Theorem

(Theorem 3.1) and studied languages recognised by Rees zero-matrix semigroups

over certain finite groups. In particular, we established that the generalised star-

height of the languages recognised by Rees zero-matrix semigroups over finite

nilpotent groups of classes zero and one is at most one. Thus, it is natural to

ask the following question:

Question 5.5. Which languages are recognised by Rees zero-matrix semigroups

over finite nilpotent groups of class two? What is the generalised star-height of

each of these languages?

Given the amount of work required to answer the equivalent question when

class two is replaced by class one, it would not be amiss to expect this question

to have a difficult and lengthy proof. As such, we may wish to restrict ourselves

89

to a specific example of a nilpotent group of class two in the first instance.

Hence, we pose the following question:

Question 5.6. Which languages are recognised by Rees zero-matrix semigroups

over the dihedral group Dih4? What is the generalised star-height of each of

these languages?

To finish Chapter 3, we determined the generalised star-height of the lan-

guages recognised by Rees zero-matrix semigroups over monogenic semigroups.

Using the results of Section 3.4.3, we can extend this result to direct products

of monogenic semigroups. Now, monogenic semigroups are a subclass of com-

mutative semigroups but, unfortunately, unlike in the case of groups, direct

products of finite monogenic semigroups do not exhaust all finite commutative

semigroups. We raise the following question:

Question 5.7. Which languages are recognised by Rees zero-matrix semigroups

over commutative semigroups? What is the generalised star-height of each of

these languages?

In Chapter 4, we considered which languages are recognised by finite groups

of a given order. This work was motivated by Theorem 4.1 which states that

every language recognised by a finite group of order less than 12 is of generalised

star-height at most one. The proof of this result relies on semidirect products

of the form A o Z2, where A is an aperiodic monoid, and on cyclic automata.

When trying to extend this to semidirect products of the form AoZ3, the proof

strategy breaks down. This means that the following question remains open:

Question 5.8. Which languages are recognised by a monoid from the pseudova-

riety AbGrps oZr, where r is an integer greater than or equal to 3, and what

is the generalised star-height of each of these languages?

The first major step towards classifying the languages recognised by finite

groups is to complete the case for groups of order 12. From existing results,

three of the five groups have been dealt with and the generalised star-height of

the languages that they recognise has been established. It remains to answer

the following question:

Question 5.9. Which languages are recognised by the finite groups A4 and

Dic3? What is the generalised star-height of each of these languages?

Providing an answer to this question would then allow us to state the gen-

eralised star-height of every language recognised by a group of order up to and

including 15.

90

Perhaps the most pertinent question in need of an answer is that of the

Generalised Star-Height Problem itself; that is,

Question 5.10 (Generalised Star-Height Problem). Does there exist an algo-

rithm to determine the generalised star-height of a regular language. In partic-

ular, does there exist a language of generalised star-height greater than one?

When we consider all of the known results and all of the languages introduced

in this thesis, we see that the generalised star-height is at most one in every case.

As such, the Generalised Star-Height Problem still awaits a solution.

91

Bibliography

[1] E. Aichinger, P. Mayr, and R. McKenzie. On the number of finite algebraic

structures. Journal of the European Mathematical Society, 16:1673–1686,

2014.

[2] T. Bourne and N. Ruškuc. On the star-height of subword counting lan-

guages and their relationship to Rees zero-matrix semigroups. Theoretical

Computer Science, 653:87–96, 2016.

[3] F. Dejean and M. P. Schützenberger. On a question of Eggan. Information

and Control, 9:23–25, 1966.

[4] L. C. Eggan. Transition graphs and the star-height of regular events. Michi-

gan Mathematical Journal, 10:385–397, 1963.

[5] S. Eilenberg. Automata, Lanaguages, and Machines. Academic Press,

Vol.B, 1976.

[6] K. Hashiguchi. Representation theorems on regular languages. J. Comput.

System Sci., 27:101–115, 1983.

[7] W. H. Henneman. Algebraic theory of automata. PhD thesis, MIT, 1971.

[8] J. M. Howie. Automata and Languages. Oxford University Press, 1991.

[9] J. M. Howie. Fundamentals of Semigroup Theory. Oxford University Press,

1995.

[10] T. W. Hungerford. Algebra. Springer-Verlag, 1974.

[11] D. Kirsten. Distance desert automata and the star height problem. RAIRO

- Theoretical Informatics and Applications, 39:455–509, 2005.

[12] S. C. Kleene. Representation of events in nerve nets and finite automata.

In C. E. Shannon and J. McCarthy, editors, Automata studies, pages 3–42.

Princeton University Press, 1956.

92

[13] M. V. Lawson. Finite Automata. Chapman & Hall/CRC, 2004.

[14] J. E. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, edi-

tors, Handbook on Formal Languages Vol.1: Word, Language, Grammar,

chapter 10, pages 679–746. Springer-Verlag, 1997.

[15] J. E. Pin, H. Straubing, and D. Thérien. Some results on the generalized

star-height problem. Information and Computation, 101:291–250, 1992.

[16] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press,

2009.

[17] M. P. Schützenberger. On finite monoids having only trivial subgroups.

Information and Control, 8:190–194, 1965.

[18] D. Thérien. Subword counting and nilpotent groups. In L. J. Cummings,

editor, Combinatorics on Words: Progress and Perspectives, pages 297–305.

Academic Press, 1983.

93

