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Abstract

Moving towards label-free technologies is essential for many clinical and research

applications. Raman spectroscopy is a powerful tool in the field of biomedicine

for label-free cell characterisation and disease diagnosis, owing to its high chemi-

cal specificity. However, Raman scattering is a relatively weak process and can re-

quire long acquisition times, thus hampering its integration to clinical technologies.

Multimodal analysis is currently pushing the boundaries in biomedicine, obtaining

more information than would be possible using a single mode and overcoming any

limitations specific to a single technique. Digital holographic microscopy (DHM) is a

rapid and label-free quantitative phase imaging modality, providing complementary

information to Raman spectroscopy, and is thus an ideal candidate for combination

in a multimodal system.

Firstly, this thesis explores the use of wavelength modulated Raman spec-

troscopy (WMRS), for the classification of immune cell subsets. Following this a

multimodal approach, combining Raman spectroscopy and DHM, is demonstrated,

where each technique is considered individually and in combination. The comple-

mentary modalities provide a wealth of information (both chemical and morpho-

logical) for cell characterisation, which is a step towards achieving a label-free tech-

nology for the identification of human immune cells. The suitability of WMRS to

discriminate between closely related neuronal cell types is also explored.

Furthermore optical spectroscopic techniques are useful for the analysis of food

and beverages. The use of Raman and fluorescence spectroscopy to successfully dis-

criminate between various whisky and extra-virgin olive oil brands is demonstrated,

which may aid the detection of counterfeit or adulterated samples. The use of a com-

pact Raman device is utilised, demonstrating the potential for in-field analysis.

Finally, monodisperse and highly spherical nanoparticles are synthesised. A

short study demonstrates the potential for these nanoparticles to benefit the tech-

niques of surface enhanced Raman spectroscopy and optical trapping, by way of

minimising variability.
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1 Introduction

Label-free technologies, based on directly probing physical processes such as molec-

ular vibrations, are being developed to overcome some of the limitations associated

with the use of labels. This is particularly important in biomedicine where labels

can lead to misleading conclusions and introduce additional complexity. For exam-

ple, attachment of a fluorescent protein to a protein of interest may impair protein

function, or have an effect on subcellular localisation of proteins. Furthermore mod-

ification of antigen recognition sites may affect antibody-antigen mechanisms. Non-

specific binding or autofluorescence from the sample could lead to false positives

and misleading conclusions. The use of labels adds complexity to the experimental

design through consideration of tag design, for example is it membrane permeable?

what is its effect on protein function and localisation? how is the intensity affected

during cell division? or how should one account for blinking?. Cytotoxicity effects

must also be considered; aggregation of fluorescent proteins can lead to cellular tox-

icity and generation of free radicals during excitation are toxic to cells. It has also

been shown that green fluorescent protein (GFP) can induce apoptosis in cells [1–

3]. Further consideration should be given to the immune response towards fluo-

rescent proteins as key immune cell subsets will be dealt with in this thesis. An

immune response of the cytotoxic T cell (Tc) through recognition of the GFP anti-

gen has previously been reported [4]. Quantification of the Tc cell response in mice

after injecting wild-type pre-leukemia cells revealed a three-fold increase of the Tc

cell response against GFP-expressing leukemia cells, when compared to non GFP-

expressing leukemia cells [5].

Raman spectroscopy is a powerful optical spectroscopic technique that can pro-

vide specific molecular information regarding a samples chemical composition in

a label-free manner. It has been frequently used to study cells and tissues in re-

cent years [6–8]. Raman spectroscopy has many advantages which make it ideal

for studying biological samples, such as being insensitive to water molecules, ex-

tracting specific molecular and structural information without requiring staining or
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labelling, it may be combined with microscopy techniques and optical fibres mak-

ing it useful to both in-vivo and ex-vivo analysis. The main limitation of Raman

spectroscopy is its inherently weak cross-section (typically only 1 in 106 photons are

Raman scattered), limiting the speed of the technique. Reducing acquisition times

can compromise the signal to noise ratio (SNR) thus affecting reliability of results.

Chapter 2 introduces the basic theory and implementation of Raman spectroscopy.

The role of Raman spectroscopy in the field of biomedicine and the food and drinks

industry is discussed. This chapter then focusses on the issue of fluorescence sup-

pression and describes the technique of wavelength modulated Raman spectroscopy

(WMRS). A brief introduction to the principle of surface enhanced Raman spec-

troscopy (SERS) is then given. Following this, the construction of a free space Raman

spectrometer is described and the key components required are outlined. Finally, the

statistical methods used for analysis of Raman data are detailed.

Chapter 3 goes on to explore the ability of WMRS to discriminate between ma-

jor immune cell subsets in a label-free manner. Current methods for detection cells

of the immune system include cell fixation and staining to reveal cellular morphol-

ogy. Morphologically similar cells however are classically identified using fluores-

cent labels, to target specific cell surface markers. Such labels have potential to alter

cellular behaviour or even induce an immune cell response. This could introduce

uncertainty for example in drug discovery and development. This chapter demon-

strates the potential of using WMRS as a label-free haemograph, and its validity

when samples are acquired from multiple donors.

The main limitation to integration of this technology to clinical and routine lab-

use is the comparatively long acquisition times required when compared to tradi-

tional methods for cell counting or cell sorting, such as flow cytometry or fluorescence-

activated cell sorting (FACS), which are able to record 10,000 events per second. Ra-

man spectroscopy is not suggested to replace these techniques but rather be a valu-

able technology for applications where untouched cell populations are a priority.

One of the main challenges facing biomedicine, and in particular label-free tech-

nologies, is to extract large quantities of information from a sample (both in terms

of quantity and variety of information) in a short period of time, either to enable
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tracking of rapid dynamics or to ensure high throughput rates. Multimodal tech-

nologies can provide additional information than would be possible using any sin-

gle modality alone, and in this way may overcome the limitations specific to a single

technique. Complementary information can be obtained from two modalities that

probe different physical interactions, such as chemical and morphological informa-

tion, thus giving a more complete description of a sample.

Digital holographic microscopy (DHM) provides morphological information, aris-

ing from phase shifts introduced as light propagates through a cell. Morphologi-

cal information would complement the chemical information available from Raman

spectroscopy and may therefore be able to provide an improved discrimination abil-

ity between closely related immune cell subsets. Furthermore DHM is a rapid wide-

field imaging technique, and thus has potential to act as an initial fast screening,

where Raman spectroscopy can probe cells of interest for more chemically specific

information. This approach may have potential to improve the throughput rate.

Importantly DHM is also a label-free technique and is compatible with biological

samples.

Chapter 4 provides an introduction to DHM, image analysis, and the design of

the multimodal system. The system is designed so simultaneous and independent

measurements can be acquired, so measurements can be considered rapid. Each

modality is considered individually and in combination for the discrimination be-

tween key immune cell subsets.

Chapter 5 considers a different biomedical application, concerning dopaminer-

gic neuronal cells. Current methods to identify dopaminergic neurons in primary

cultures require cell fixation and staining. A label-free technology would be a signif-

icant advance for obtaining pure cultures of dopaminergic cells for further analysis

and modelling of neurological disorders. The ability of WMRS to quantitatively de-

tect dopamine and discriminate between closely related neuronal cells (SH-SY5Y cell

line in various differentiation states) is assessed.

The work discussed in chapter 6 considers applications for Raman and fluores-

cence spectroscopy in the food and drinks industry. Rapid, easy to use and portable

technologies for the detection of counterfeit food and food contamination would be

invaluable to the food and drinks industry [9, 10]. Traditional methods for sensitive
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analysis such as gas chromatography (GC), high-performance liquid chromatogra-

phy (HPLC) and gas chromatography mass spectrometry (GC-MS) are powerful

tools for determining composition and quantifying complex mixtures of chemicals,

however they are time consuming, costly, destructive to the sample, and bulky, lim-

iting their use for in-field analysis [11, 12]. Near infrared (NIR) spectroscopy is also

a well established technique to rapidly monitor the composition and quality of food

products, although it suffers from strong absorption of water limiting the spectral

resolution in aqueous samples [13]. Fluorescence spectroscopy is able to provide in-

formation regarding molecules in food and drinks products, provided they possess

the property of autofluorescence [14, 15].

The ability to discriminate between different brands of whisky and extra-virgin

olive oil is assessed in chapter 6, using a Raman and fluorescence based approach.

These two modalities provide information on both chemical composition and colour

of a sample. This technology has the potential to identify different brands of whisky

and extra-virgin olive oil which could aid the detection of counterfeit or adulterated

samples. The label-free nature makes this technique ideal for integration to in-line

procedures. Following this, a compact Raman device is utilised, demonstrating the

compatibility with in-field analysis.

Chapter 7 considers a novel method to synthesis homogeneous and ultra-smooth

gold nanoparticles and two potential applications: SERS and optical trapping. Size

and shape have a direct relevance to plasmonic and trapping properties of gold

nanoparticles. The ability for these nanoparticles to provide more reproducible mea-

surements is explored.

The final chapter is a summary of the various applications detailed in previous

studies, and a discussion on future directions that would enhance the applicability

of Raman spectroscopy in clinical and research settings.
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2 Raman spectroscopy: An overview

2.1 Introduction

Raman Spectroscopy is a molecular spectroscopic technique, based on the inelastic

vibrational scattering of light. A Raman signature can provide a ’fingerprint’ that

is unique to a material, providing specific structural and chemical information, as

well as characterising the effects of environment or stress on a sample. Raman spec-

troscopy has a variety of advantages over other vibrational spectroscopic methods

such as requiring little or no sample preparation, an insensitivity to aqueous ab-

sorption bands enabling its use with solids, liquids and gases, as well as the ability

to measure through transparent materials such as glass or quartz. All of this con-

sidered, Raman spectroscopy has found use in a wide variety of applications; to

identify and study specimens in areas such as pharmaceuticals, analysis of material

structures, the food and drinks industry, and bio-medical diagnostics [9, 16, 17].

This chapter will give a brief introduction to the theory of Raman spectroscopy

and an overview of its use in bio-medicine and the food and drinks industry. An

introduction to fluorescence suppression techniques will be provided, with partic-

ular attention paid to the method of wavelength modulated Raman spectroscopy

(WMRS). This will be followed by a brief overview of a Raman signal enhancement

technique ’surface-enhanced Raman spectroscopy’ (SERS). The instrumentation re-

quired for Raman spectroscopy will be discussed, in the context of the free space

system used for studies presented in this thesis. Finally the basic Raman processing

techniques used throughout this thesis will be addressed.

2.1.1 Brief history

A. Smekal first provided the theoretical basis of inelastic light scattering in 1923 [18].

However it was Sir C. V. Raman who pioneered the first experimental observations,

reported in 1928 [19, 20], for which he received the Nobel Prize in Physics in 1930

"for his work on the scattering of light and for the discovery of the effect named after him".

In his original experiment sunlight was focussed by a telescope and a short-focus
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lens to create a more powerful beam, this was focussed onto purified liquid sam-

ples. A second lens was used at 90◦ to collect the scattered light and a series of filters

were used to show the presence of both elastic and inelastic light scattering. Incredi-

bly Raman’s eyes served as the detector. By purifying the liquid multiple times they

were able to conclude the effect was not due to traces of fluorescence. When explain-

ing the new phenomena he described that the frequency shift was characteristic of

the molecule comprising the scattering medium, and that it did not depend on the

incident wavelength; these are the main characteristics of Raman scattering.

2.2 Basic theory of Raman spectroscopy

Light may interact with matter either via absorption, scattering, or with no interac-

tion at all. When the energy of the incident photon matches the energy gap between

the ground and excited states of a molecule it may be absorbed; for scattering events

however there is no such requirement for energy matching. Light may either scatter

elastically, when there is no change in photon energy, or inelastically, when there is

a change in the photon energy.

The classical wave interpretation of light is to consider light as electromagnetic

radiation, containing an oscillating electric field. This field may interact with a

molecule and polarise the electron cloud around the nuclei to form a short-lived

’virtual state’. Most commonly the electron cloud will relax without any nuclear

movement, releasing a photon with the same energy as the incident radiation. This

elastic form of scattering is known as Rayleigh scattering. Less frequently nuclei

movement will be induced during the interaction. As the nuclei are much heavier

than electrons this will cause an appreciable change in energy between the incident

and scattered photons. This is inelastic scattering, and is known as Raman scat-

tering. Only one in every 106-108 photons will be Raman scattered. During these

events energy can either be transferred from the molecule to the photon (known as

anti-Stokes scattering) or from the photon to the molecule (known as Stokes scatter-

ing), depending on whether the molecule is already in a vibrationally excited state or

in its ground state respectively [21, 22]. These interactions are summarised in figure

2.1.



2.2. Basic theory of Raman spectroscopy 7

En
er

gy
 

E0 +h𝜈m 

E0  

Virtual  
states 

Vibrational 
states 

h𝜈0 +h𝜈m  
h𝜈0 -h𝜈m  

h𝜈0 
h𝜈0 

h𝜈0 h𝜈0 

Rayleigh 
scattering 

Stokes  
Raman 

scattering 

Anti-Stokes 
Raman 

scattering 

FIGURE 2.1: Jablonski diagram representing the three major types of scattering;
Rayleigh elastic scattering, Stokes Raman scattering and anti-Stokes Raman scat-
tering. Consider an incident photon of frequency ν0 with energy hν0, where h is
Planck’s constant, Stokes Raman scattering occurs with excitation from the ground
vibrational state E0 to a higher energy vibrational state, resulting in a scattered
photon with a loss of one vibrational unit of energy νm. Anti-Stokes Raman scat-
tering occurs when energy is transferred to the incident photon as the molecule

goes from an excited vibrational state to the ground vibrational state.

At room temperature, most molecules will exist in their lowest vibrational level;

consequently Stokes scattering is typically more intense than anti-Stokes scattering

and therefore more commonly used. Anti-stokes scattering may however be useful

in some applications, such as avoidance of fluorescence interference (which occurs

at longer wavelengths than the incident radiation) or to measure temperature. The

difference between the intensities of Stokes and anti-Stokes scattering is dependent

on the population of molecules in the ground or excited states, which is governed

by the Maxwell-Boltzmann equation as described in equation 2.1.

Nm

N0
=
gm
g0
e

(
−(Em−E0)

kT

)
(2.1)

Where Nm is the number of molecules in the excited vibrational energy level m,

N0 is the number of molecules in the ground vibrational energy level n (in figure

2.1 these energy levels are depicted as E0 + hνm and E0 respectively). g0,m is the

degeneracy of the levels 0 and m, Em−E0 is the difference in energy between vibra-

tional levels, k is the Boltzmann’s constant, and T is the absolute temperature [21].

Nevertheless, due to the more intense Stoke’s Raman signal (typically Nm/N0 � 1)
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it is Stokes Raman scattering that will be dealt with throughout this thesis.

Light scattering is sensitive to the polarisability of the electron cloud (the mo-

bility of electrons in a bond) around a molecule. Equation 2.2 describes the linear

dependence of the dipole moment on the electric field:

µT = µ+ αε(ν ′) (2.2)

where µT is the total electronic dipole moment vector, µ is the permanent dipole

term in the absence of any field, and αε(ν ′) is the electric field induced dipole mo-

ment, which is related to the polarisation of the electronic cloud of a molecule in the

field. Specifically ε(ν ′) is the oscillating electric field, and the induced polarisation

is characterised by the polarisability term α [23]. Polarisability is a material prop-

erty dependent on the molecular structure and nature of the bonds [24]. As Raman

scattering relies on the transfer of energy to a vibrational mode it becomes clear that

the more polarisable the molecule, the more intense will be the Raman scattering.

Indeed this is the gross selection rule for Raman scattering; vibrations must cause

a change in the polarisability of the electron cloud to be Raman active. In general,

as symmetric vibrations tend to give the greatest displacement they typically give

rise to the most intense Raman scattering [21]. On the other hand if a vibration does

not greatly change the polarisability, then the intensity of the Raman band will be

low. If, for example, a molecule is highly polar, such as the 0-H bond in water, the

incident electric field cannot easily induce a change in the dipole moment, resulting

in weak Raman scattering.

The vibrational frequency of a bond is dependent on the mass of the atoms con-

nected to the bonds, the strength of the bond, and the geometry of the molecule. Any

change in energy observed via Raman scattered photons is thus characteristic to a

unique chemical bond and its type of vibration. For example, a bending vibrational

mode requires less energy than stretching modes and so occur at lower frequencies

for the same type of bond [21]. A Raman spectrum will contain peaks characteristic

of any Raman active vibrational modes present in the sample being irradiated. In

this manner it is often thought of as a chemical fingerprint.

An example of a Raman spectrum is shown in figure 2.2 of a polystyrene bead.
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The y-axis gives the intensity of detected Raman scattered photons and the x-axis

represents the Stokes Raman shift (the change in energy from the incident photons

to the energy of the detected photons), displayed in wavenumbers with units cm−1

(equation 2.3), where 1 cm−1 is equal to 30 GHz. Strictly the units should be written

as ∆ cm−1 but are often expressed as cm−1 for simplicity. The spectral resolution

of the main Raman peak at 1001 cm−1 is found to be 11 cm−1, as determined by the

full-width half-maximum (FWHM) of a Gaussian fit to the peak.
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FIGURE 2.2: Raman spectrum for a 5µm polystyrene bead. A complex Ra-
man spectrum is observed, with multiple bands corresponding to the various
Raman active modes in polystyrene. (Inset illustrates the chemical structure of

polystyrene.)

Raman shift (cm−1); ∆ω =

(
1

λexcitation
− 1

λRaman

)
x 107 (2.3)

Multiple Raman peaks can be observed such as those due to C-C vibrations

(around 800 cm−1), aromatic ring breathing mode (1001 cm−1), and C=C vibrations

(around 1600 cm−1). Interestingly, as the vibrational frequency of a molecule de-

pends on the mass of the atoms involved and the strength of the bonds, the Raman

signature corresponding to an aromatic group, such as a benzene ring, may vary

depending on the attached aliphatic group. For example, the ring breathing mode

observed at 1001 cm−1 in polystyrene, would be observed at (1004 cm−1) in toluene
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[25]. Similarly, the environment of the molecule can influence the observed Raman

spectrum. An example of this is silicon dioxide, which exists in either a crystalline

(quartz) or amorphous form (fused silica), where the disordered structure of fused

silica leads to a broadening of the spectral lines when compared to those of quartz

[26, 27]. Thus Raman spectroscopy can be a useful tool for structural analysis and

polymorph characterisation of crystalline materials [28]. Often it is much more use-

ful to consider the overall spectrum of a substance as a molecular fingerprint, as

opposed to individual peaks, for comparison with known compounds.

The region between 400 cm−1 and 1500 cm−1 is typically known as the ’finger-

print’ region and contains structural information related to the backbone of the

molecule. Single bond groups such as carbon-carbon, carbon-hydrogen, phenyl and

aromatic ring modes, as well as some oxygenated organics such as nitro- or sulpho-

can be found in this region. The region between 1500 cm−1 and 1800 cm−1 typically

contains double bonds such as C=O or C=C. Bands in the higher wavenumber re-

gion (<2400 cm−1) often overlap and would require deconvolution algorithms for

analysis. It is for this reason regions typically between 400 cm−1 and 1800 cm−1 are

most commonly used for characterisation of a sample. Raman peaks in this region

are spectrally narrow, just a few wavenumbers in width, making a Raman spec-

trum chemically very specific. This is in contrast to, for example, fluorescence spec-

troscopy which typically consists of very broad peaks.

The intensity of a Raman peak is directly proportional to the concentration of

the scattering species and can therefore be used for quantitative analysis as well

as qualitative. The intensity is also proportional to the power of the incident laser,

irradiation times, and the Raman cross-section of the sample. The number of Raman

photons scattered per second NR(s−1) is described by equation 2.4:

NR = σR∆Ω
I0

hν
SNL (2.4)

Where σR is the Raman cross section (cm2molecule−1sr−1), ∆Ω is the solid angle

(sr−1), I0 and ν represent the incident laser irradiance and frequency respectively,

S is the beam cross-section, N is the number density of the molecules in the sample

volume, and L is the interaction length of the laser in the sample [29].
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The Raman cross-section itself is inversely proportional to the wavelength of the

incident light, λ, as described in equation 2.5.

σR ∝
1

λ4
(2.5)

Therefore the power of the scattered light,Ps can be described as

Ps ∝
I0

λ4
(2.6)

The main drawback of Raman spectroscopy is that it is an inherently weak pro-

cess, with only one in every 106 - 108 photons being Raman scattered. For samples

which exhibit fluorescence, Raman scattering can often be challenging to detect, par-

ticularly in the Stokes Raman region. Techniques to overcome this obstacle and sup-

press fluorescence background will be discussed in section 2.5.

2.3 Raman spectroscopy for biomedical applications

Optical techniques are widely recognised for their ability to study biological systems

evolving from the simple light microscope used by Charles Darwin, to the complex

techniques for high resolution imaging, manipulation, and therapeutics used today.

Raman spectroscopy has proven to be a powerful optical technique in the study

of biological systems as it can provide specific biochemical information in a label-

free manner. Label-free techniques are becoming more and more important, owing

to the fact they do not require the addition of exogenous agents which may inter-

fere with biological processes. This can allow studies of live untouched cells in an

environment which more closely reflects their natural surroundings.

Raman spectroscopy works on the principle of inelastic scattering of light. In-

cident light is modulated according to any vibrational modes present in the sam-

ple and the resulting spectrum is indicative of the molecular constituents of the

sample; this can be thought of as a ’biochemical fingerprint’. The fact that Ra-

man spectroscopy is a scattering technique allows a freedom of choice concerning

the incident wavelength, independent of the absorption spectrum. For biological

studies this means the wavelength can be chosen to be in the ’therapeutic region’
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(∼ 750− 1200 nm) thereby minimising absorption, and consequently photo-damage

caused to cells or tissue during analysis. This optical window is located between the

absorption of proteins in the visible and the increasing absorption of water towards

the infrared [30, 31].

In addition to these properties Raman spectroscopy has several advantages which

make it ideal for studying biological samples. For example, water is a weak Raman

scatterer, minimising any interference to the Raman spectra due to the high water

content normally found in biological samples. Furthermore, it permits the study of

cells in their natural, aqueous environment. Raman spectroscopy is compatible with

a standard microscope ideal for biological studies, as well as fiber optic probe based

measurements which are particularly useful for in-vivo studies [6]. As a result Ra-

man spectroscopy may be used in combination with other optical modalities such as

optical trapping, optical coherence tomography (OCT), or quantitative phase imag-

ing (QPI) techniques facilitating a wealth of possible applications. Multimodality

will be explored further in chapter 4 where Raman spectroscopy is used in combina-

tion with DHM.

Perhaps the most important feature of Raman spectroscopy is that it offers high

biochemical specificity and can provide information such as DNA, RNA, lipid, or

protein content [7]. It is these features that characterise the cell or tissue under in-

vestigation; manifesting themselves as the absence or presence of certain peaks, or

by small changes in peak intensity or peak shift. For example Raman spectroscopy

has previously been used to classify cells as cancerous or normal based on changes

to the nucleus-to-cytoplasm ratio, or the lipid and protein content [32, 33]. Indeed it

is these molecular features that will distinguish the closely related immune cell types

and neuronal cells analysed in this thesis (chapters 3-5). With all things considered

one can understand the recent rise in the use of Raman spectroscopy for biological

and biomedical studies [7, 17, 34–37].

2.4 Raman spectroscopy for the food and drinks industry

Raman spectroscopy has recently been gaining popularity as an analytical tool in the

food and drinks industry. This may be due to advances in the technology but is also
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likely due to the growing public interest in food quality, production, and safety.

Raman spectroscopy has certain advantages which make it well suited to study-

ing food and drinks. It may be used to analyse substances in powder, solid, and

liquid form, without any need for the addition of solvents or sample preparation. It

is not sensitive to water content and is therefore ideal to analysing aqueous samples.

Traditionally techniques such as gas chromatography (GC), high-performance

liquid chromatography (HPLC), and gas chromatography-mass spectroscopy (GC-

MS) are used for food analysis. Although these methods are powerful for composi-

tional determination they are time consuming, solvent wasting, and require sample

preparations. Raman spectra however can take just several seconds to acquire, mak-

ing Raman spectroscopy an ideal candidate for monitoring industry processes in real

time. In addition to conventional Raman spectroscopy, techniques such as spatially

offset Raman spectroscopy (SORS) [38] and enhancement techniques such as surface

enhanced Raman spectroscopy (SERS) are being employed (see section 2.6). SORS is

finding use in analysing samples through packaging [10], which is ideal for in-field

testing, and SERS may be utilised to detect trace amounts of compounds [39].

Raman spectroscopy can be used to characterise nutritional parameters such as

energetic value, and total carbohydrates, proteins and fat [40–42], to detect contam-

ination on food surfaces [43–45], or for structural characterisation of crops [46, 47].

There have been a wealth of studies investigating free fatty acid (FFA) profiles in

both plant and animal foods [48] including quantification of FFA content in veg-

etable oils [49] and olives [50], which may aid production of high quality olive oil

[51]. With respect to beverages Raman spectroscopy has previously been employed

to determine ethanol content in tequila [52] and whisky [53], as well as to quantify

sucrose and aspartame content in soft drinks [54, 55]. Further applications can be

found in reviews [9, 16, 56].

Raman spectroscopy can be employed in a wide range of applications and is

becoming more commonly used for industry processes. In order to make Raman

spectroscopy compatible with in-line processes compact Raman systems may be de-

veloped [57]. It is expected that Raman spectroscopy will play an important role in

the in-line quality and safety control of food and beverage products in the future.

An additional concern for the food and drinks industry regards counterfeit and



14 Chapter 2. Raman spectroscopy: An overview

adulterated samples, which not only affects the market but may also pose a food

safety concern. Chapter 6 will deal with the use of Raman and fluorescence spec-

troscopy for the classification of whisky and extra-virgin olive oil samples; demon-

strating a potential to aid the detection of counterfeiting or adulteration.

2.5 Wavelength modulated Raman spectroscopy

Raman signals are often hampered by broad fluorescence signals, which can over-

shadow weaker Raman signals. Biological studies suffer in particular as they often

rely on detection from incredibly small areas, making any Raman scattered light

intrinsically weak. Such studies would therefore greatly benefit from fluorescence

suppression techniques to improve the signal to noise ratio (SNR).

Biomedical studies commonly use near-infrared (NIR) wavelengths for Raman

spectroscopy which acts to naturally suppress the fluorescence emission. The lower

energy excitation is often not sufficient to cause the excitation required for fluores-

cence. Even with filters in place to further reduce detection of fluorescence signals

this is not sufficient to completely suppress fluorescence background, which contin-

ues to be a hindrance.

Background removal algorithms have been demonstrated, which make use of

polynomial fits to subtract the background [58, 59]. This method is simple to inte-

grate along-side Raman analysis, although any errors in the fit may introduce arte-

facts. The most ideal solution, to avoid such artefacts, would be to make use of the

different physical principles between Raman and fluorescence spectroscopy.

Indeed a variety of such methods have been explored such as time-resolved Ra-

man spectroscopy (TRRS), polarisation discrimination, and frequency modulation

techniques [60].

TRRS makes use of the different lifetimes for Raman scattering and fluorescence

emission [61–63]. Raman scattering is an instantaneous effect with typical time

scales in the sub-picosecond to picosecond range [64], fluorescence however occurs

in the 10 picosecond to 100 nanosecond range [65]. Time resolved methods therefore

use pulsed laser excitation and limit the detection time to avoid collection of the flu-

orescence signal. This method can require the use of expensive components and is
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limited where the lifetimes are similar or scattering is from thick samples [66].

Polarisation discrimination takes advantage of the different polarisation proper-

ties of Raman scattering and fluorescence emission. Raman scattering in symmet-

ric vibrations is closely related to the excitation polarisation [67]. Using a polariser

chopper and a lock-in amplifier the non-polarised fluorescence can be discriminated

from the polarisation-dependent Raman signal [68, 69]. However it was reported

that different degrees of polarisation altered the relative peak intensities of different

Raman bands. Additionally this method would not be effective if the fluorescence

signal is not completely depolarised.

A further property which may be exploited is that Raman peaks are directly re-

lated to the excitation wavelength, however the fluorescence peak is insensitive to

the excitation wavelength for small variations in wavelength, following Kasha’s rule

[70]. The use of multiple excitation wavelengths can produce a varying Raman spec-

trum, which may be distinguished from the unchanging fluorescence signal. This

idea for fluorescence suppression was first conceived in the 1970’s [71, 72] and has

since been investigated in various manners such as shifted excitation Raman differ-

ence spectroscopy (SERDS) [73], subtracted shifted Raman spectroscopy [74], and

wavelength modulated Raman spectroscopy (WMRS) [75–77].

In contrast to SERDS which uses two slightly shifted excitation wavelengths

WMRS uses an excitation source which is continuously modulated. Figure 2.3 il-

lustrates these two different mechanisms. For WMRS measurements the spectra

are defined by the continuous function S(ν). Individual Raman spectra are mea-

sured N times, each with an acquisition time of ∆t, providing a total acquisition

time T = N∆t. Each individual spectrum, indexed by j is measured over a discrete

wavenumber set νi whilst the Raman excitation laser is shifted over a wavenumber

region ∆νj . Measured spectra will contain contributions from both Raman peaks

SR(νi + ∆νj) and the fluorescence part SF (νi + ∆νj), for small wavenumber shifts

(< 1 nm) this can be approximated as SF (νi). Individual Raman spectra can there-

fore be represented as

Sj(νi) = SF (νi) + SR(νi + ∆νj) (2.7)
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FIGURE 2.3: Illustration of A) continuous wavelength tuning used in WMRS and
B) the use of two distinct wavelengths in SERDS. The various acquisition param-
eters for WMRS are depicted in A where the total modulation range is the am-
plitude over which the wavelength is tuned. The sampling rate N is the number
of wavelength regions sampled during one cycle, in this case 5 individual Raman
spectra are recorded, each with an acquisition time ∆t, giving a total acquisition

time T for one WMRS measurement.

For SERDS measurements two spectra are obtained S1(νi) and S2(νi). The differ-

ence spectrum is then calculated as D(νi) = S1(νi) − S2(νi). It has previously been

demonstrated that the WMRS approach can provide a greater SNR [75, 76]. This can

be understood from two key points: firstly, the noise level is additive when subtract-

ing the two acquired spectra using the method of SERDS. Secondly, by increasing

the modulation rate there is a resulting decrease in the 1/f noise in the method of

WMRS. The disadvantage of continuously tuning the wavelength whilst acquiring

Raman signal is that the resulting Raman bands will be broadened, resulting in a

reduced spectral resolution.

Early methods of extracting the Raman signal required the use of a lock-in de-

tector, synchronised with the excitation source. It has since been demonstrated that

statistical methods may be used instead, eliminating the need for lock-in technol-

ogy. A study conducted by Mazilu et al explored the use of several mathemati-

cal approaches to analyse modulated Raman spectra including standard deviation,

Fourier filtering, or principal component analysis (PCA) algorithms [76]. It was

reported that the optimal method, providing the greatest SNR and avoiding any

distortion to the Raman signal, was PCA, which will be discussed in section 2.8.3.

The first principal component extracts the maximum variation between the set of N

spectra, which is directly associated with the differential Raman spectrum. Further-

more this method does not require any wavenumber calibration or synchronisation
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making it applicable to real-time applications. The improved SNR enables reduced

acquisition times; overall making WMRS easy to implement and a viable option for

biological studies [32, 77]. However, to be effective WMRS does require that the Ra-

man signal is greater than the background noise level, in contrast to TRRS. Practical

limitations include the readout noise which can become comparable to Raman peak

intensities when short acquisition times are used [75].

Figure 2.4 illustrates the principle of WMRS, where the Raman signal is contin-

uously shifted, corresponding to the shift in excitation wavelength. Using PCA on

the multiple shifted spectra produces a WMRS differential spectrum, where the zero

crossing points correspond to Raman peaks. Any fluorescence information will be

contained in higher order PCs which are discarded.
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FIGURE 2.4: Illustration of the acquisition of a WMRS spectrum. Five standard
Raman spectra (top) are recorded whilst continuously modulating the excitation
wavelength, producing five spectra with shifted Raman peaks. PCA is used to
analyse the spectra, producing a differential (WMRS) spectrum (bottom) where

the zero crossing points correspond to Raman peaks.

Praveen et al have previously investigated how the various acquisition parame-

ters for WMRS measurements may be optimised to achieve minimum acquisition

times [78], which is important for improving throughput rates. It was reported

that the wavelength modulation ∆λ must be greater than 0.32 nm to resolve Raman



18 Chapter 2. Raman spectroscopy: An overview

bands of biological samples and that the SNR increases with both the single and to-

tal acquisition times. It was also noted that the sampling rate did not affect the SNR

so long as three or more wavelength regions were sampled. Therefore to optimise

the acquisition parameters would be to use the maximum ∆λ, which is constrained

by the mode-hop free region of the laser and the narrow transmission band of the

Raman line-filter (typically 3 nm). The sampling rate must be sufficient to minimise

broadening of the Raman bands, where each individual acquisition time must be

long enough that the SNR is not hampered by the readout noise.

2.6 Surface-enhanced Raman spectroscopy

Studies presented in chapter 7 include the use of surface-enhanced Raman spec-

troscopy (SERS); a brief overview of the underlying principles will therefore be pro-

vided here.

Raman scattering is typically considered a weak scattering process. For example,

Raman cross-sections are typically on the order of 10−30 cm2 [79], in comparison

the absorption cross-section of fluorescent molecules are typically on the order of

10−16 cm2 [80]. This is often a limiting factor for Raman spectroscopy with respect to

detection of substances of low concentrations and impedes the potential for single

molecule studies. This is particularly true in the presence of a strong fluorescence

background. Thus a technique to provide a significant enhancement in Raman sensi-

tivity would be of great value. Furthermore, enhancing Raman signal would permit

shorter acquisition times and potentially enable greater throughput rates.

SERS is a technique that takes advantage of localised surface plasmon resonances

(LSPR), in nano-scale systems based on metals such as gold and silver, to enhance

Raman signals. Enhancements factors (EF), provided by SERS, range from 106−1016

[81–84], producing comparable signals to fluorescence spectroscopy and enabling

single molecule studies [79, 85–87]. Although the SERS effect was first observed

in 1974 by Fleischmann et al [88], it wasn’t until the discovery of single molecule

SERS, and the growing excitement around plasmonics, that SERS really experienced

a drive in its development.
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As the SERS effect was first observed experimentally many theories were pro-

posed in the early stages. The exact mechanism is still a matter of debate, however

it is now generally accepted that there are two parts to the theory: charge-transfer

(chemical) enhancement and electromagnetic enhancement. The two mechanisms

may act in concert although it is generally believed that the electromagnetic enhance-

ment plays a larger role [89]. A brief explanation of the two theories is provided here.

2.6.1 Charge transfer enhancement

Charge transfer or chemical enhancement involves the formation of a bond between

the analyte and the metal surface. Electrons from the metal surface can transfer to the

molecule and back to the metal during excitation, hence providing a larger Raman

polarisability of the molecule, that is to say αSERS > αR. Consequently, the induced

Raman dipole moment µ can be enhanced (equation 2.2) [21, 90]. For example the

thiol-group, typically used in SERS, forms a bond to metal surfaces such as gold and

silver; Saikin et al calculated the Raman cross-section of thiophenol when it binds

to silver clusters and reported an overall increase in the Raman cross-section when

compared to isolated thiophenol [91]. This is known as changing the ’static’ Raman

polarisability of the molecule. An additional mechanism that has been proposed is

that of "charge-transfer" transitions wherein the intermediate state of the scattering

process does not have to be the virtual state as described earlier (figure 2.1), but can

also be an unoccupied electronic state of the metal [90, 92]. Another enhancement

contribution may arise via a Raman band corresponding to the charge transfer of

electrons from the metal to the lowest unoccupied molecular orbital, which may act

as a resonant intermediate for Raman scattering. That is to say that enhancement

may be caused by tuning into the charge transfer band of a ’surface-molecule’ com-

plex, yielding resonant Raman scattering at a particular wavelength [93].

2.6.2 Electromagnetic enhancement

Raman scattering is proportional to the induced dipole moment which is the prod-

uct of Raman polarisability and the magnitude of the incident electromagnetic field
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(see equation 2.2). The electromagnetic enhancement arises as a consequence of ex-

citing the LSPR of a metal nanoscale surface, providing an enhancement to the local

electromagnetic field [94–96]. The LSPR effect is illustrated in figure 2.5.

A) B) 
𝐸2

𝐸0
2  

nm 

FIGURE 2.5: Taken from [96]. A) Illustration of the localised surface plasmon res-
onance effect. B) E2 contours for a silver nanoparticle of 35 nm radius in vacuum.
Local electric field maxima occur at two points along the axis going through the
centre of the sphere, oriented in the direction of the external field, due to the su-

perposition of the induced dipole and external field.

A simple description of electromagnetic SERS can be provided assuming a spher-

ical nanoparticle of radius a irradiated by wavelength λ in the long wavelength limit

(a/λ < 0.1), which leads to the assumption that the electric field around the nanopar-

ticle is uniform [96]. The resulting electric field at the surface of a small metal sphere

can be described by equation 2.8

Er = E0 cos θ + g
a3

r3
E0 cos θ (2.8)

where Er is the total electric field at a distance r from the sphere surface, θ is the

angle relative to the direction of the electric field and g is a constant related to the

dielectric constants, as described in equation 2.9

g =
ε1(νL)− ε0
ε1(νL) + 2ε0

(2.9)

where ε0 and ε1 are the dielectric constants of the environment surrounding the

sphere and of the metal nanoparticle respectively, and νL represents the frequency

of the incident laser [21].
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The magnitude of the enhancement is wavelength dependent, owing to the wave-

length dependence of the real part of ε1. The maximum enhancement therefore oc-

curs when the denominator of g approaches zero. At this frequency, the plasmon

resonance frequency, the excitation of the surface plasmon greatly increases the local

field experienced by a molecule in close proximity to the metal surface. It can be

observed from equation 2.8 that the electromagnetic enhancement decays as 1/r3.

Equation 2.10 relates the metal polarisability, α to g demonstrating that the po-

larisability of the surface electrons is enhanced at the plasmon frequency [96]. The

electrons in the analyte molecule can interact with this freely moving electron cloud

essentially enhancing the polarisation around the molecule.

α = ga3 (2.10)

A further consideration is that the scattered Raman intensity is linear with the inci-

dent field intensity |E0|2. Due to the plasmon resonance, the amplitude of the field

close to the surface |ELoc| experiences an intensity enhancement factor MLoc(νL)

with respect to incident field, as described in equation 2.11

MLoc =
E2
Loc

E2
0

(2.11)

Similarly the Raman dipole emission at νR will be affected and modified by a

radiation enhancement factor MRad(νR). Assuming the stokes shift is small the total

electromagnetic SERS EF can be approximated as |E|4 [97], according to equation

2.12

EFEM = MLoc(νL)MRad(νR) =
|ELoc|2(νL) |ELoc|2(νR)

|E0|4
≈ |ELoc|

4

|E0|4
(2.12)

The enhancement factor is often measured experimentally, in which case it can

be described by equation 2.13

EF =
ISERS/NSurf

INRS/Nvol
(2.13)

Where ISERS is the surface-enhanced Raman intensity, NSurf is the number of
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molecules bound to the enhancing metallic substrate, INRS is the normal Raman

intensity, and Nvol is the number of molecules in the excitation volume [96].

Fluorescence also experiences a surface enhancement although the intensity scales

as the square of the near-field enhancement [98]. This emphasizes that is the large

field enhancement that is important (as opposed to a large field intensity) in order

to separate Raman scattering from background fluorescence.

It is also important to consider how SERS spectra can differ from standard Ra-

man spectra. There are three key points to consider: firstly as SERS is a localised

effect only the signal from the part of the molecule close to the metal nanoparticle

(or SERS substrate) will be enhanced. Secondly, if a molecule is adsorbed on the sur-

face of the metal its symmetry may change, which may affect the Raman selection

rules. Finally, the EF is wavelength dependent causing different Raman bands to be

enhanced differently, thus distorting the relative peak intensities.

The nature of SERS enhancement is quite complex and varies according to the

choice of metal, size, and shape of the nanoparticle [95, 99, 100], or roughness of

the surface [101]. Additionally significant enhancements can be experienced at posi-

tions known as SERS hotspots [102], such as the gaps between metallic nanoparticle

aggregates [81, 95, 100, 103] or tip enhancement [104, 105].

2.7 Raman instrumentation

There are a few key components when designing a free space Raman spectrometer.

Two of the most important considerations are the excitation source and the detector.

This section will give a detailed overview of factors influencing the choice of com-

ponents. Finally, a description of the design and components used in the free space

Raman spectrometer used for studies presented in this thesis will be given.

2.7.1 Choice of excitation source

When selecting an excitation wavelength for Raman measurements there are several

considerations to made. It has been shown in equation 2.6 that scattering power is

inversely proportional to the fourth power of the incident wavelength; it may seem

natural then to choose the shortest possible wavelength and increase the Raman
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scattering intensity. However higher energies are often accompanied by greater ab-

sorption and higher levels of fluorescence. As mentioned previously in section 2.3

there is an optical window between 750 nm and 1200 nm where absorption (due to

proteins or water) is minimal. Studies presented in this thesis involve biological ma-

terials, olive oil, and whisky, which all have a high water content. Reduced photon

absorption is key to minimising photo-damage and heating to the samples. A Ra-

man excitation wavelength of 785 nm was therefore chosen. NIR wavelengths also

have the advantage of providing a natural fluorescence suppression. Furthermore,

working at a low absorption region means higher powers or longer acquisition times

can be employed, which can compensate for the reduced scattering intensity.

An additional consideration which must be made is the wavelength-dependent

sensitivity of the detector. Silicon-based detectors, for example, are most efficient

at wavelengths between 800 and 1000 nm. The efficiency is greatly diminished at

longer wavelengths as the photon energy is less than the silicon band gap. Therefore,

although working at longer wavelengths could further suppress the fluorescence, it

would compromise detection sensitivity.

Overall the choice of excitation wavelength is a compromise between scattering

power, fluorescence suppression, sample damage, and detector sensitivity. The op-

timum wavelength therefore varies depending on the specific application and the

sample being analysed, and should always be considered on a case by case basis.

Raman bands are directly affected by the linewidth of the excitation source;

the observed width of a Raman band is a convolution of the natural linewidth

of the vibrational band with the laser linewidth [106]. Hence, in order to resolve

closely spaced Raman peaks and achieve high Raman selectivity, a narrow excita-

tion linewidth (tens of MHz) is desirable. This makes the laser an ideal source of

excitation as the output is typically monochromatic (very narrow linewidth). For

WMRS applications the ability to smoothly tune the wavelength is also required.

The Ti:Sapphire laser can meet these requirements. The Spectra-Physics Model

3900S is a continuous wave (CW), solid-state laser, which may be tuned over a broad

range of NIR wavelengths (between 700 and 1000 nm). It has a maximum output

power of 1 W and a narrow linewidth (̃0.5 GHz). Tuning of the output wavelength is

achieved with the use of a birefringent filter. A birefringent filter causes wavelength
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dependent polarisation changes where only one wavelength will make a complete

180◦ change and return linearly polarised. All other wavelengths will have elliptical

polarisation, causing them to suffer losses at any Brewster-angle surfaces within the

cavity. This in turn prevents them from reaching lasing threshold. Rotation of the

filter allows tuning for wavelength selection [107, 108]. The 3900S is used as the

excitation source for the free space system used for studies presented in this thesis.

The Ti:Sapphire laser is pumped by a Verdi V laser (Coherent), a diode-pumped

solid-state (DPSS) laser, operating with a maximum output power of 5 W and an

output wavelength of 532 nm. This is an ideal pump laser as 532 nm corresponds to

the maximum absorption of Ti:Sapphire.

It should also be noted that the choice of laser, and indeed excitation wavelength,

depends on the type of Raman spectroscopy to be employed. Table 2.1 compares

various different Raman spectroscopy techniques and their respective laser consid-

erations. Non-linear Raman spectroscopy techniques such as anti-Stokes Raman

spectroscopy (CARS) and stimulated Raman spectroscopy (SRS) can provide an en-

hanced signal, however the use of two ultrafast lasers makes these techniques more

costly, limiting their use to research applications.

2.7.2 Choice of detector

The role of the spectrometer is to identify the various frequency components within

the scattered light. There are two main types of spectrometers commonly used for

Raman spectroscopy; the dispersive (Czerney-Turner) and the Fourier transform

(FT) (Michelson interferometer) spectrometers. Each have their own advantages and

disadvantages making each more suitable in certain applications.

Dispersive spectrometers use a grating to spatially separate photons of different

wavelengths (see figure 2.6), while FT spectrometers measure the entire spectrum

simultaneously in the form of an interferogram. The resolution of the spectrometer

determines how well Raman bands can be resolved; for dispersive spectrometers

this is a function of the slit width, the pixel size on the detector, and the groove

spacing in the grating. Double or triple gratings may be used to enhance the reso-

lution and improve rejection of Rayleigh scattering however greater losses will be
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incurred, which can make detection of the already weak Raman signal more diffi-

cult. For FT spectrometers the resolution is determined by the scanning distance of

the moving mirror, typically a high resolution can be obtained over a wide spectral

window. However FT spectrometers are most efficient at 1064 nm and require com-

puter processing to analyse the spectra. Single grating dispersive spectrometers are

often chosen for their simplicity and smaller size [106].

Detector 
array 

Grating 

Entrance slit 

Focussing 
mirror 

Collimating 
mirror 

FIGURE 2.6: Schematic of the single grating dispersive (Czerney Turner) spectro-
graph. The incoming light is collimated by a mirror onto the grating where the
various frequency components are spatially separated. The focussing mirror fo-

cuses the dispersed beam on to a detector, typically a CCD sensor.

For the free space system used for studies presented in this thesis a single grating

spectrograph is used (Shamrock SR-303i, Andor Technology). An important con-

sideration is the groove spacing (lines/mm) of the grating which presents a com-

promise between resolution and spectral width; narrower groove spacings give an

enhanced resolution, R (see equation 2.14) but reduce the spectral window [134].

R =
Nd(sinα+ sinβ)

λ
(2.14)

Where N is the total number of grooves illuminated on the surface of the grating, d

is the groove spacing, α and β are the incident and diffraction angle of irradiation

respectively. To analyse Raman spectra in the range 600-1800 cm−1 with optimum

resolution a 400 lines/mm grating was used.

Moreover the grating is blazed at 850 nm; a blazed grating is specifically designed

to maximise optical power to a specific diffraction order. By minimising the power
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lost to the zeroth order the SNR can be improved. This is ideal for the inherently low

light measurements in Raman spectroscopy.

This spectrometer was used with a deep depletion, thermoelectrically cooled,

and back-illuminated charge-coupled device (CCD) camera (Newton 920, Andor).

A CCD is a silicon based photosensitive array, where each pixel (or bin) may both

generate and store a charge. The charge generated is directly linked to the num-

ber of photons hitting that particular pixel. The charge can continuously accumu-

late throughout the entire acquisition time, which is ideal for Raman measurements

which often require long acquisition times due to the weak scattering intensity. An

analog to digital converter (ADC) is then used to convert the charge to a digital read

out.

It is important to consider the noise level associated with any detector. As ther-

mal energy is sufficient to excite electrons and generate dark current in a CCD, it is

beneficial to work at low temperatures. It is generally regarded that for every 6-7◦

cooling there is an associated 2 times reduction in dark current generated. In the

studies presented here the CCD is cooled to -70◦ during operation. The read out

noise is typically very low for CCD cameras, making the next most important con-

sideration maximising the quantum efficiency (ability to convert photons to an elec-

tric signal). Back-illumination can improve the efficiency of a detector from about

40% (for front-illumination) to 80%. This is a consequence of the sensor surface nec-

essarily being covered in electronics, such as transistors and wiring, limiting the

number of photons which can reach the pixels. Microlenses can be used to minimise

this problem however back-illuminated sensors are commonly employed as they in-

herently increase the photoactive area available. Back illuminated sensors however

require an additional coating, some (such as the Newton CCD camera) are specially

doped to enhance sensitivity towards the red end of the spectrum, this is known as

deep depletion [106, 135].

2.7.3 Design of a free space Raman spectrometer

This section will discuss the other components required to build a free space Ra-

man spectrometer, using the free space system used for studies in this thesis as an

example.



28 Chapter 2. Raman spectroscopy: An overview

Confocal microscopy

Raman spectrometers are easily integrated around a microscope stage. This has sig-

nificant advantages, particularly for biological studies, as it provides the possibility

to look at extremely small samples. The free space Raman spectrometer described

here was designed around a confocal microscope. Confocal microscopy is com-

monly employed for biomedical studies. It works on the principal that an aperture

at the conjugate plane to the sample provides the ability to reject any out-of-focus

light (see figure 2.7 A). This can provide a more efficient collection of Raman scat-

tered light from the point of interest in a sample and aid background rejection, for

example fluorescence or out-of-plane contributions such as from microscope slides

or the surrounding medium.

The confocal volume, or the in-focus volume, within a sample is typically de-

scribed by a cylinder of radius, r0 and depth, d, as described in equations 2.15 and

2.16. r0 is given by the ratio of the physical radius of the confocal aperture, r and

the magnification of the system, M . The confocal depth however is related to the

numerical aperture, NA of the objective and the refractive index, n of the medium

between the sample and objective [29].

r0 =
r

M
(2.15)

d = r0 cot (sin−1(
NA

n
)) (2.16)

Let us consider the free space system used throughout this thesis; a 50X magni-

fication, oil immersion objective with NA of 0.9 (Nikon) is used to focus the laser

light on to the sample. Raman scattered light is collected in reflection, through the

same objective. The magnification of the system is calculated from the magnification

of the objective, the focal length of the objective (200 mm), and the focusing lens to

the confocal aperture (160 mm). A multimode fiber with 105µm core (FG105LCA,

Thorlabs) is used to collect the light, which acts as a confocal aperture. It follows

then that the radius of the confocal cylinder is 1.31µm with a depth of 1.37µm.

Without confocal microscopy the sampling volume is equal to the volume of
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sample irradiated with high power density as illustrated in figure 2.7 B. The diame-

ter and length can be approximated by equation 2.17 and 2.18.

D =
4λf

πd
(2.17)

L =
16λf2

πd2
(2.18)

Where D is the diameter of the cylinder, L is the length of the cylinder, λ is the

laser wavelength, d is the diameter of the unfocussed laser beam, and f is the focal

length of the focussing lens [21]. Therefore in the absence of confocal microscopy

the sampling volume would be approximated to have a D of 33µm and L of 4.4 mm,

which highlights the importance of confocal microscopy for rejecting background

signal, particularly when working with small samples, such as single cells.

_ _ _ _   

_ _ _ _ _ _ _ 
_ _ _ _ _ 

_ _ _ _ _  D 

L 

Raman 
sampling 
volume 

Confocal 
volume _ _ _ _ _                

_ _ _ _ _ _ _ _
 

pinhole 

Focal 
plane 

A) B) 

z-axis 

FIGURE 2.7: A) Schematic diagram illustrating the principle of confocal mi-
croscopy. By placing a confocal aperture at the conjugate plane of the sample out
of focus rays (red) are rejected and light from the focal plane (blue) is allowed to
pass. B) Illustration of the sampling volume (blue) which is modified in a confo-
cal system (red volume). Collecting scattered photons from a smaller region can

minimise the background signal.

Laser stability

A tunable Ti:Sapphire laser operating around 785 nm is employed for Raman excita-

tion, utilising a Verdi pump laser at 532 nm (as described in section 2.7.1). As Raman

measurements are based on detecting a change in wavelength laser stability is key,

to achieve this the room temperature is controlled and maintained at a constant. The

laser is operated at maximum output power for optimum performance, where any
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power adjustments are made with the use of a half wave-plate and polarising beam

splitter (PBS).

Power in the sample plane

A telescopic pair of lenses are used to expand the beam to overfill the back aperture

(BA) of the objective. This is an important step as the NA stated for an objective as-

sumes a planar wave entering the BA, however laser beams have a Gaussian profile

making overfilling necessary in order to use the full NA. The output beam diameter

from the laser is approximately 1 mm and the BA of the objective is 6 mm. The tele-

scopic lens arrangement uses two lenses of focal lengths 30 mm and 250 mm, which

gives an expansion of 8.3 times the original size, which is sufficient to overfill the

BA.

Power is lost through the microscope objective (MO) due to its transmission effi-

ciency as well as due to overfilling the BA. The loss due to overfilling can be calcu-

lated as the ratio of the total beam area, AT and the area of the BA, ABA as shown

in equation 2.19. The transmission of the MO, TMO is approximately 58%. Measur-

ing the power in the sample plane directly can be challenging; therefore the power

is measured before the MO and estimated in the sample plane using equation 2.20.

For example, when 500 mW is measured after the PBS, the power in the sample plane

can be estimated as 150 mW.

Loss due to overfilling BA =
ABA

AT
∝ r2

BA

r2
T

(2.19)

PSP = PPBS × TMO ×
r2

BA

r2
T

= PPBS × 0.58× 0.52 (2.20)

Where PSP and PPBS are the power estimated in the sample plane and measured

after the PBS respectively, and rBA/T are the radii of the BA and the incident beam

before transmission through the MO.

Filters

Raman spectroscopy requires a pure excitation signal however the laser output can

include spontaneous broadband fluorescence in addition to the laser line, not to
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mention other optical components in the beam path which may provide fluorescence

contributions. A line filter (LF) (LL01-785-12.5, Semrock) is employed to ’clean-up’

the laser line after the beam expander. The LF has a FWHM of approximately 3 nm,

which is sufficient to transmit the full range of incident wavelengths during WMRS

measurements (∆λ = 1 nm). The LF thus ensures a narrow excitation wavelength is

incident on the BA of the MO and focussed on the sample. A 3-D translational stage

is used for controlled movement of the sample. Light scattered by 180◦ is collected

through the same objective (i.e. photons are collected in reflection mode).

A razor edge filter (REF) (LPD02-785RU-25, Semrock) is placed at 45◦ which ef-

fectively reflects the laser line, rejecting the more intense Rayleigh scattering (re-

flection is around 94% at 785 nm), and transmitting the longer Raman-shifted wave-

lengths (transmission is > 93% in the range 795.2 to 1213 nm). The use of filters, as

opposed to two or three monochromators, allows more efficient collection of light,

although it can impede recording of Raman scattering very close to the Raman line.

The REF boasts a very steep transition from reflection to transmission, which permits

detection of Raman scattered light at a minimum of 164 cm−1. This is sufficient for

detecting low frequency vibrations and effectively measuring light in the fingerprint

region. The use of filters does mean there is less freedom to change the excitation

wavelength although this is not of particular concern for the studies presented in

this thesis.

A focusing lens (f = 160 mm) is used to couple the light into a multimode low-

OH optical fiber with 105µm core (FG105LCA,Thorlabs), which guides the Raman

scattered light to the spectrometer (Shamrock SR-303i, as described in section 2.7.2).

A slit width of 150µm is used which effectively collects all the light from the fiber. An

additional notch filter (NF) (NF03-785E-25, Semrock) is used before the spectrometer

to block out Rayleigh scattered light, which may saturate or damage the CCD due

to its high intensity.

Köhler illumination is used to provide white-light sample illumination. A dichroic

edge filter (Di02-R561, Semrock) is utilised in the collection path to direct this light

to a CCD camera (DFK 42AUC03, Imaging Source) for imaging. The CCD is placed

at the focal length of the f = 160 mm lens to image the sample plane. The ability
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to image is useful for checking the beam profile and to position samples at the fo-

cal point of the beam. In addition it provides the ability to monitor any damage or

activation of cells in real time.

A schematic of the free space confocal Raman spectrometer is illustrated in figure

2.8. There are other systems that would compact this, making Raman spectroscopy

more amenable to in-field testing or point-of-care analysis. One such system, the

IDRaman mini, is detailed in section 6.2 and will be used for studies presented in

chapter 6.

Wavelength tuning

Wavelength tuning is required for WMRS measurements and is obtained by rotation

of the birefringent filter. This is modulated by an external micrometer, which is

controlled digitally with the use of an actuator for smooth tuning. Start and end

positions for the micrometer can be set and the speed of rotation fixed (SMC100

controller, Newport Corporation).

A wavemeter (High Finesse ws-7) was used to calibrate the micrometer position

to the output wavelength. Figure 2.9 shows a tuning graph of the output wave-

length over a range of micrometer positions. For example, to provide a change in

wavelength of 1 nm about a centre wavelength 785 nm, the actuator was shifted be-

tween positions 13.91 mm and 13.85 mm.

For WMRS measurements the micrometer is tuned continuously in one direc-

tion for the entire acquisition period, once complete the micrometer returns to the

starting position. It is important that each WMRS measurement starts at the same

wavelength and is tuned over the same range, so as to not contribute to differences

detected in PCA. To control this and mitigate any human error between initiating

the wavelength tuning and starting the spectrum acquisition this process is fully

automated using a cursor moving software (AutoIt).
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FIGURE 2.8: A) Schematic of free space confocal Raman spectrometer (not to scale).
Abbreviations: M- mirror, L-lens (L1: f=30 mm, L2: f=250 mm, L3: f=160 mm ) LF
- line filter, EF- edge filter, NF- notch filter, HWP - half wave-plate, PBS- polar-
ising beam splitter, MO- objective, FC- fiber coupler. B) Photograph shows the
free space system and 3900S laser, which occupy a whole optical bench. A birds
eye view of the excitation path and sample plane is enlarged with the beam path

illustrated in red.
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FIGURE 2.9: Rotation of the birefringent filter for wavelength tuning is achieved
using an external micrometer. Micrometer positions are calibrated using a

wavemeter allowing selection of tuning range for WMRS measurements.

2.8 Analysis of Raman spectra

2.8.1 Cosmic ray treatment

CCD detectors are used for acquiring the Raman spectra. They are common detec-

tors in Raman spectroscopy due to their high sensitivity and low noise, however

they are vulnerable to cosmic rays which produce random spikes in Raman spectra.

Characteristically the spikes are very narrow in bandwidth and have a strong posi-

tive intensity. As they appear randomly and can distort Raman peaks it is important

to apply a cosmic ray removal algorithm. This is particularly important when em-

ploying PCA as the spike due to a cosmic ray may be picked out as an important

contribution to variation.

To treat spectra for cosmic rays the mean spectrum is found for a data set. Each

spectrum is then compared to the mean, where any points differing from the mean

by more than three standard deviations is considered a distortion due to cosmic

rays. This point is then replaced by the mean value. This method is only applied

where cosmic rays are not near a Raman peak or within the fingerprint region. In the

case where cosmic rays overlap with a Raman band the spectrum is discarded. This

method is applicable for studies presented here where large data sets are acquired
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and the average spectrum is representative, however for other applications a more

sophisticated analysis may be required [136].

2.8.2 Calibration and normalisation of spectra

The stability of the incident wavelength is crucial, as Raman measurements are

based on detecting a change in wavelength. Although the environment is controlled

there may still be some laser drift over the period of time needed to acquire a full

data set. To account for this, and improve the robustness of our measurements to

wavelength drift, calibration spectra are acquired frequently (approximately every

2 hours) from 5µm polystyrene beads. Polymer beads have strong characteristic

peaks and can be used to calibrate the wavenumber shift for subsequent spectra.

Each spectrum is calibrated according to the polymer spectrum acquired nearest in

time.

To compensate for any power fluctuations in the laser, the spectra are also nor-

malised according to the total volume under the curve.

2.8.3 Principal component analysis

The dataset is then treated using a pattern recognition algorithm, principal compo-

nent analysis (PCA). PCA is widely used in a variety of fields and is well established

for its use in Raman spectroscopy [137]. It is a statistical tool to extract useful infor-

mation from large data sets and can commonly be found in facial or vocal recogni-

tion technologies.

PCA is an orthogonal linear transformation of data to a new coordinate system in

such a way as to reduce the dimensionality of the data set such that a small number

of components (PCs) may effectively describe the variance across the data set. The

first PC accounts for the greatest variance, the second PC accounts for the second

greatest variance and so on. Suppose there are n samples, and for each m variables

are measured. For the ith sample measurements would be recorded in a vector ~xi

of length m. The mean of all m variables for n samples can be recorded as a single

vector ~µ:

~µ =
1

n
(~x1 + ...+ ~xn) (2.21)
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It is common to recentre the data such that the mean is zero, by subtracting ~µ

from each sample vector ~xi. Let there be three sample vectors each containing 4

measurements. A mean adjusted mxn matrix B can be recorded such that the ith

column is ~xi − ~µ, such that

B =



a1 − µ1 b1 − µ1 c1 − µ1

a2 − µ2 b2 − µ2 c2 − µ2

a3 − µ3 b3 − µ3 c3 − µ3

a4 − µ4 b4 − µ4 c4 − µ4


(2.22)

The covariance matrix S may then be calculated, which is essentially the variance

calculated between each dimension [138]. The i, j entry of S would be

Si,j =
1

n− 1
((aj − µj)(ai − µi) + (bj − µj)(bi − µi) + (cj − µj)(ci − µi)) (2.23)

For example the 2,1 entry of S would be calculated as

S2,1 =
1

3− 1
((a1 − µ1)(a2 − µ2) + (b1 − µ1)(b2 − µ2) + (c1 − µ1)(c2 − µ2)) (2.24)

From the covariance matrix the eigenvalues λ and respective eigenvectors ~u are

found. The eigenvector with the largest eignevalue gives the first PC, the eigenvec-

tor with the second largest eigenvalue is the second PC, and so on [139]. The sum of

all the eigenvalues is the total variance of all m variables. It is often the case that the

largest few eigenvalues of S are much greater than all the others. For example, sup-

pose m=15, the total variance is 100, and the largest eigenvalue λ1 = 90.1, λ2 = 9.2,

and the remaining λ3,...15 are all less than 0.1. The first and second PC therefore ac-

count for 99.3% of the total variation in the data. Although the data points form a

15 dimensional cloud, they cluster near a two-dimensional plane described by the

eigenvectors ~u1 and ~u2. The problem can therefore effectively be reduced from fif-

teen dimensions to two [138].

PCA is used here for processing WMRS data, where the N individual Raman

spectra, each corresponding to a different excitation wavelength, are considered a

sample and each pixel (Raman shift value) is considered a measurement (see section
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2.5). PCA is also used for feature selection when discriminating between sample

types, in which case each data point (spectrum) is considered a sample. After find-

ing the eigenvalues and eigenvectors a feature vector is formed by rearranging the

eigenvectors in descending order of their respective eigenvalues. The eigenvectors

represent the direction of the axes (or PCs) which characterise the data. The next

step is to project the data points on the new PC axes. Data points that are statisti-

cally similar to each other will occupy a similar space in PC scatter plots. The first

few PCs are selected, which contain the most useful information to describe the data

set; these make up the new coordinate system. Higher order PCs can be discarded

resulting in a reduced dimensionality of the dataset. The reduced dataset can be

used for classification using algorithms such as leave-one-out cross-validation and

nearest neighbour analysis.

2.8.4 Leave-one-out cross-validation

When discriminating between samples, the discrimination efficiency is calculated

according to the methods of leave-one-out cross-validation (LOOCV) [140, 141] and

the nearest neighbour algorithm [142]. The PCs are calculated from the training

data set, with one data point left out; in this case a spectrum corresponding to one

measurement. The left-out spectrum is then projected into the new space, which is

defined by the PCs, and characterised according to the nearest neighbour method.

This is repeated for all data points. Correct and incorrect cell classifications are then

summarised in a confusion matrix, a table where each column represents the pre-

dicted class and each row represents the actual class.

Sensitivity and specificity are used as a quantitative measure of the discrimina-

tion ability. Sensitivity is defined as the ability to correctly identify positive samples

(true positive rate) and specificity is the ability to correctly identify negative samples

(true negative rate) as described in equation 2.25 and 2.26.

Sensitivity =
True positives

True positives + False negatives
(2.25)

Specificity =
True negatives

True negatives + False positives
(2.26)
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2.8.5 Parametric student’s t-test

In addition to this analysis Raman spectra may be compared in a pairwise manner

with the use of a student’s t-test. This is a statistical method to determine if there is

a significant difference between two independent sample groups. The test statistic,

ts is calculated from the sample mean, X̄i, variance, s2
i , and size ni from the ith

sample population (i = 1, 2), as shown in equation 2.27. The probability (p-value) of

the observed ts value being under the null hypothesis is calculated by comparison

with the t-distribution, whose degree of freedom, DoF is defined by equation 2.28.

The p-value determines the likelihood of the null hypothesis being true, and thus

determines the significance of the difference between the two sample populations,

i.e. a small p-value indicates strong evidence against the null hypothesis and one

may conclude that there a significant difference between sample populations does

exist [143, 144].

ts =
(X̄1 − X̄2)√

s21
n1

+
s22
n2

(2.27)

DoF =
(
s21
n1

+
s22
n2

)2

(
s21
n1

)2/(n1 − 1) + (
s22
n2

)2/(n2 − 1)
(2.28)

In this thesis the student’s t-test is applied between the average spectra of two

types of sample (for example two cell types), in a pairwise manner, to highlight any

regions of significant difference. The significance level is set to show the most impor-

tant Raman bands that characterise the differences between the respective samples.

The student’s t-test is not used for classification or discrimination purposes, rather

just as an indicator of significant molecular differences between two samples.

2.9 Conclusions

This chapter laid the foundations for this thesis by providing an introduction to the

classical theory of Raman spectroscopy. The origins of Stokes and anti-Stokes Raman

scattering are discussed as well as the characteristics of a typical Raman spectrum.

The use of Raman spectroscopy in the field of biomedicine and the food and

drinks industry is explored, including a discussion on how Raman spectroscopy can
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be used in combination with other optical modalities for a more complete analy-

sis. Furthermore a description of the physical origins which lead to the ability to

discriminate between single cells is provided.

Fluorescence background can be a challenge for Raman studies, particularly

for biomedical applications. A brief review of commonly employed fluorescence

suppression techniques is provided, with particular focus given to the method of

WMRS. A discussion is provided on the use of PCA to analyse modulated Raman

spectra, the optimisation of WMRS acquisition parameters, and potential issues with

the technique.

The next section provided an introduction to the principle of SERS, summarising

the two main mechanisms for signal enhancement; charge transfer and electromag-

netic enhancement. Differences which may be expected between a SERS spectrum

and a standard Raman spectrum are discussed.

Further, this chapter explains the components required for a Raman spectrome-

ter, including a discussion on the choice of excitation source, spectrometers, detec-

tors (with their potential noise sources), and use of filters. Details are provided on

the design of the free space system used for studies presented in this thesis, includ-

ing a discussion on wavelength tuning for WMRS measurements. This chapter is

intended to give a general overview, with specific details of instrumentation used in

each study provided in the respective chapters.

Post-processing is an important step for analysis of Raman data. The basic steps

used for qualitative and quantitative analysis are discussed in this chapter. The in-

formation provided is intended to give a general overview of the methods used,

where specific parameters for each study will be detailed in the respective chapters.



40

3 Label-free identification of immune cell

populations using wavelength modulated

Raman spectroscopy

3.1 Introduction

Blood is an important bodily fluid, carrying out essential functions such as deliv-

ering oxygen and nutrients to cells and transporting waste away from those cells.

The cellular component of blood can be thought of in terms of three main categories;

red blood cells (erythrocytes), white blood cells (leukocytes), and platelets (thrombo-

cytes). White blood cells (WBCs) are the cells of the immune system which interact

to provide protection from infections; by responding to bacteria, viruses, fungi, and

parasites that invade the body.

There are five major types of WBCs; neutrophils, eosinophils, basophils, mono-

cytes, and lymphocytes; all derived from hematopoietic stem cells found in the bone

marrow. These cell types may be classified further in to sub-populations, for exam-

ple lymphocytes exist as T cells, B cells, or Natural Killer (NK) cells, and T cells are

further classified into T helper cells (CD4+ T cells) or cytotoxic T cells (CD8+ T cells).

The major cell populations and their development are illustrated in figures 3.1 and

3.2.

Monocyte NK cell T-cell B-cell 

Neutrophil Eosinophil Basophil 

Lymphocytes 

Granulocytes 

FIGURE 3.1: An artist’s rendering of the major white blood cell subsets [145].
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stem cell 

B cell 

Myeloid 
progenitor 

Myeloid 
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Plasmacytoid 
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cell 

Naïve  
B cell 

Memory 
B cell 

Lymphoid 
progenitor 
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T cell 

Basophils 

Eosinophils 

Macrophages 

FIGURE 3.2: A hierarchical depiction of the major cell types found in the mam-
malian immune system.

Monitoring the numbers of WBC populations in the blood can indicate the pres-

ence of infection or inflammation, detect medical conditions such as autoimmune

disease or bone marrow disorders, and monitor the body’s response to drugs or ra-

diation therapy.

3.1.1 Current methods of detection

Current methods for detecting cells of the immune system include cell fixation and

chemical staining to reveal morphology. This method destroys the cells and is lim-

ited in sensitivity as closely related cells, such as B- and T-cells, are morphologi-

cally very similar. Alternatively, magnetic bead isolation or flow cytometry using

fluorescently-labelled antibodies may be used. The use of exogenous tagging agents

provides a more specific analysis, as they target specific cell surface markers, how-

ever they can damage or alter the behaviour of the cells. The development of a label-

free method for the detection and isolation of untouched, live cells would therefore

be beneficial in both research and clinical settings.
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3.1.2 Why Raman spectroscopy?

The potential for Raman spectroscopy to provide a biochemical fingerprint has been

previously discussed in section 2.3. Perhaps the most attractive property of Raman

spectroscopy is its ability to provide specific molecular information in a label-free

manner, moreover Raman spectroscopy does not require any sample preparation.

Raman spectroscopy therefore offers a viable method to analyse live cells with min-

imal disturbance to the integrity and function of the cells.

Raman spectroscopy has previously been successful in the discrimination of cells

and tissues [146, 147] and for the study of immune cells [Smith:2010, 148]. Ramoji

et al have used Raman spectroscopy to discriminate between cells of the innate and

adaptive immune system in the form of neutrophils and lymphocytes respectively

[149]. Although this is a highly promising study and demonstrates the potential for

Raman spectroscopy to discriminate between cells of the immune system, it should

be noted that neutrophils and lymphocytes are derived from different progenitor lin-

eages; myeloid and lymphoid respectively, and as such differ significantly in their

morphology and chemical composition (see figures 3.1 and 3.2). It would be a greater

challenge and of significant interest to investigate the discrimination ability between

more closely related immune cell subsets. Ashok et al have demonstrated the use of

WMRS to discriminate between CD4+ T cells, CD8+ T cells, and NK cells, as well

as clear discrimination between dendritic cell subsets pDC and mDC from a sin-

gle donor [150]. Key issues remain with regard to the validity of this study when

samples are acquired from multiple donors and implementing accurate multivariate

analysis in such a scenario. In working towards a label-free haemograph, it is essen-

tial that it be robust with respect to different donors to be truly applicable to clinical

or research applications.

3.1.3 The role of immune cells in the body

Each cell type carries out specific functions and plays a distinct role in the immune

system. A brief outline of the cells used within our study will be discussed. Firstly,

the lymphocyte populations; T cells, B cells, and NK cells. After release from the
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bone marrow, T cells do not enter the main circulation, but undergo further differen-

tiation in the thymus, and can be distinguished from other cell types by the presence

of T cell receptors on the cell surface. They are divided into two main groups based

on their expression of CD4 and CD8 cell surface proteins [151]. CD4+ T cells (T

helper or Th cells) typically secrete small proteins, known as cytokines, which essen-

tially act as a chemical instruction to the rest of the immune system, coordinating the

immune response. These cells can further differentiate into one of several lineages;

Th1, Th2, Th3, Th9, and TH17, each usually secrete specific cytokines in response to

a variety of pathogens or stimuli [152]. CD8+ T cells (cytotoxic T cells or Tc cells) di-

rectly kill virally infected cells and tumour cells by induction of apoptotic pathways

and the release of toxic granules [153].

B cells originate in the bone marrow, undergo full differentiation and are re-

leased into the blood. They function by, upon activation, producing antibodies (im-

munoglobulins) to bind and neutralise pathogens. They can be distinguished from

other lymphocytes by their expression of B cell receptors on their cell membrane,

which enables the B cell to bind a specific antigen, which will alert the body to their

presence and initiate an immune response [154]. Activated B cells have a lifespan

of several weeks when actively secreting large amounts of antibodies, but a sub-

population may become memory B cells which reside in lymph nodes for extended

periods of time; these cells can initiate a stronger and faster response to the specific

antigen which activated their parent cell [155]. The process of immunisation/vac-

cination is indeed focussed on generating such memory B cells that can rapidly ex-

pand and generate a protective immune response if the pathogen is encountered.

When a B cell is activated (with the help of a T cell), it proliferates and differentiates

into an antibody-secreting ’effector cell’ [156].

The third lymphocyte sub-population, NK cells, are somewhat similar to CD8+

T cells in that they are anti-viral (cytotoxic) in nature [157], though often classed

as large granular lymphocytes due to their slightly larger size in comparison to T

cells. NK cells are uniquely able to recognise infected/stressed cells in the absence

of antibodies and therefore provide a fast immune response. Importantly, this also

enables them to detect harmful cells missing markers of the major histocompatibility

complex (MHC), which would not be detected by other immune cells. Similarly,
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cancer cells often down regulate MHC class I molecules, and NK cells provide a

first line of defence that can eliminate potential cancer cells early in the neogenesis

process. NK cells may be distinguished from other lymphocytes by the expression

of CD56 (in human blood) and are generally larger than B- or T- cells.

Dendritic cells (DCs) develop in the bone marrow and can be separated by cell

surface markers and function into either myeloid (mDC) or lymphoid/ plasmatcy-

toid (pDC) populations [158]. They are distributed around the body, especially at

mucosal surfaces, or tissues in contact with the external environment, and once ac-

tivated (upon detection of pathogens) will migrate to local lymph nodes. They are

antigen-presenting and in this manner act as messengers between the innate and

adaptive immune systems, initiating and controlling many immune responses [159–

162]. DCs are quite rare in the normal blood stream and pose a particular challenge

in research as they are also difficult to isolate. As a result little is understood about

their development and function making them an area of interest for immunologists.

The last cell subset that will be dealt with in this chapter are monocytes. Mono-

cytes develop in the bone marrow and circulate in the blood for only about a day

before entering the tissue to mature into macrophages. Once they have entered the

tissue, they remain as long-lived resident cells and keep the tissues clear of anti-

gens and dead cell debris via phagocytosis. Monocyte production and release from

the bone marrow is increased during an immune response. Monocytes have sev-

eral roles, one example is migration in response to inflammation signals. Excess

monocytes in the blood may therefore be indicative of conditions such as chronic

inflammation or sarcoidosis [163].

This chapter will deal with investigating the ability of WMRS to discriminate

between these immune cells sub-populations; section 3.3 will deal with discrimina-

tion between NK cells and T cell populations CD4+ and CD8+, notably using cells

derived from multiple donors to verify the robustness of this method. Section 3.4

will deal with the discrimination between pDC and mDC populations, section 3.5

will investigate the discrimination ability between further cell populations B cells,

monocytes, and CD4+ and CD8+ T lymphocytes, and finally section 3.6 will investi-

gate the potential for Raman spectroscopy to identify B cells in either the activated

or inactivated state.
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3.2 Methods

3.2.1 Cell preparation for Raman spectroscopy

This study was approved by the School of Medicine Ethics Committee, University

of St Andrews (Ethics statement is provided in appendix A). Samples were obtained

from healthy donors after obtaining informed and written consent. Participation in-

formation sheets and consent forms were also approved by the School Ethics Com-

mittee.

CD4+ T cells, CD8+ T cells, NK cells, pDCs, mDCs, B cells and monocytes were

isolated and purified. Negative depletion isolation kits were used to separate cells

in an untouched manner. This method was chosen to avoid the use of labels which

may alter the activation state of cells and change their behaviour. Full details of this

method are provided in appendix B. This section also shows the results of analy-

sis by flow cytometry and functional assay characterisation to analyse the purity of

samples.

Cells were prepared on quartz slides for analysis by Raman spectroscopy. A

thick quartz slide (25.4 mm x 25.4 mm, 1 mm thickness, SPi Supplies, UK) was used,

forming a chamber by placing a vinyl spacer of 80µm thickness on top. Live cells

were suspended in phosphate buffered saline (PBS) and 20µl was placed in the well.

A second thin quartz slide (25.4 mm x 25.4 mm, 0.15 to 0.18 mm thick) was placed on

top to form a seal. The chamber was inverted, allowing the cells to settle on the thin

slide for 30 minutes, which would prevent any movement caused by optical forces

during measurements. The sample was placed on the confocal microscope with the

thinner slide towards the objective.

It is considered an important aspect of biological studies that there is a large sam-

ple size. Biological material have an inherent variability; a larger sample size can

provide an averaging effect and produce a more accurate representation. The num-

ber of cells analysed here is therefore only constrained by practical considerations.

For example, cells remain healthy in the quartz chamber (outside of an incubator) for

approximately 2 hours, during which time approximately 60 cells can be analysed by

WMRS. This in turn depends on the concentration of cells; dendritic cells are quite

rare in the blood and can be more difficult to find, therefore fewer data are recorded
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for these cells. Additionally there is a limited lifetime for cells extracted from fresh

blood, meaning all data must be acquired within three days after isolation. It is a

combination of these factors that limit the number of cells which may practically be

analysed. Blood samples were taken from three healthy donors to make the study

more clinically relevant and to ensure the method is robust against different donors.

3.2.2 Performing Raman spectroscopy

Details of the instrumentation used for the Raman spectrometer are provided in sec-

tion 2.7.3. 150 mW power was provided to the sample plane. For WMRS measure-

ments the wavelength was tuned over a total range of ∆λ = 1 nm. Five spectra

were acquired at five equidistant wavelengths within this range where each single

spectrum was acquired for 5 s; in total an acquisition time of 25 s was required for a

WMRS point spectrum of a single cell. The method of processing WMRS data to ob-

tain a single differential spectrum is detailed in section 2.5. All Raman spectra were

normalised according to the area under the curve, to account for any fluctuations in

power before processing the WMRS data.

Cells were irradiated continuously for 5 minutes and no change was observed in

the Raman spectrum; this indicates there was no photodamage at this laser dosage

on the time scales used. Raman spectra were also collected on different days to

confirm the stability of the system.

Hoboro et al [164] have compared the use of either single point Raman spec-

tra or Raman imaging for the analysis of immune cells; it was reported that whilst

single point spectra do not acquire information from the whole cell, they are still

largely representative of the cell as a whole. There are some spectrum to spectrum

differences due to variations in position in the cell, which highlights the importance

of basing these studies on a large number of cells. Furthermore, when acquiring a

Raman image of a whole cell the acquisition time required increases dramatically

(several minutes per cell), limiting throughput of cells analysed. Reducing the spec-

tral quality can improve the throughput rate of Raman images but decreases the

signal-to-noise ratio achieved and subsequently the discrimination efficiency. This

comparison validates that the approach of acquiring single point Raman spectra is a

robust and appropriate method.
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3.2.3 Statistical analysis on Raman spectra

A detailed description of statistical analysis methods used is given in section 2.8.

Specific details pertaining to this study will be outlined in this section. Raman spec-

tra were analysed in the region of 600 cm−1 − 1800 cm−1. A parametric student’s

t-test was used to highlight regions of significant difference between the mean spec-

tra of any two cell subsets. This indicates the Raman peaks which vary most, and

hence any biochemical differences between two different cell populations. A sig-

nificance level of p< 10−7 was used. PCA was applied to the data set to reduce

the dimensionality and the first 7 PCs were selected, which accounted for the major

variance across the data set. Cluster plots were produced using the first 3 PCs to vi-

sualise trends in the data. The discrimination efficiency of this training data set was

assessed by means of LOOCV. The left-out spectrum was defined according to the

nearest neighbour algorithm. This was repeated for each spectrum and correct and

incorrect cell classifications were summarised in a confusion matrix. Sensitivities

and specificities were then calculated in a pairwise manner for each two cell subsets.

3.2.4 Daily procedure

Before acquiring Raman spectra the performance of the Raman system was assessed

and optimised. As a first step the output power of the laser was measured. If the

power had fallen from the expected power output, small adjustments to the out-

put mirror and cavity high reflector was normally sufficient to regain the optimum

power output. Secondly, the beam shape was assessed by viewing the reflection

pattern from a glass surface in the sample plane. Tuning above and below the focal

point should reveal a series of circular confocal rings expanding around a constant

centre. If the optical axis were misaligned or the beam shape had lost its circular

symmetry, realignment was achieved by ’beam walking’. As a next step Raman spec-

tra were acquired from 5µm polymer beads; the acquired spectrum will be most in-

tense when the bead occupies the confocal volume (figure 2.7), at this point the bead

should appear in focus on the CCD camera. By comparison to a reference spectrum

one can ensure optimal performance; any significant drop in the maximum signal
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intensity may be due to the collection efficiency, which can be optimised by adjust-

ing the position of the confocal pinhole. The region of the spectrometer CCD camera

on which Raman scattered light is detected can be observed. The acquisition region

was cropped to the appropriate pixels to minimise any dark noise contributions.

Once the system was optimised, cells were prepared on quartz slides as previously

described, and data collection could begin. To account for any drift in laser wave-

length throughout the day calibration spectra were acquired from polymer beads

every 2 hours, that is before and after each batch of cells (see section 2.8.2).

3.2.5 Potential problems

There are a range of potential issues that may arise and this section aims to address

how they are managed. The laser cavity is sensitive to any temperature fluctuations

in the lab which may cause thermal expansion and consequently misalignment of

mirrors. Typically this can affect the output power, beam quality, and laser noise,

and in extreme cases loss of lasing. The laboratory temperature is controlled to min-

imise these effects and regular laser maintenance can avoid the total loss of lasing.

The system also experiences a drift in wavelength over time and although spectra

are calibrated (section 2.8.2), caution must be taken to ensure the data are robust.

Data were therefore acquired from each cell type on different days and PCA was

employed to validate that no significant variations were introduced due to the Ra-

man system. Considering WMRS measurements, each wavelength shift produces a

spectrum with a different output intensity. This is due to the wavelength dependent

parameters of the laser cavity and filters used in the Raman system. Each spectrum

is normalised according to the area under the curve before further processing how-

ever if the variation is large it can affect the cosmic ray treatment and analysis by

PCA (see section 2.8). It is vital that the centre wavelength corresponds to the centre

of the transmission linewidth of the line filter, otherwise the first or last spectrum

may have a significant drop in intensity.
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3.3 Classification of T-cell populations CD4+ and CD8+, and

natural killer cells

3.3.1 Identification of T-cell subsets and NK cells using WMRS

Flow cytometry and functional characterisation revealed that CD4+ T lymphocytes

were obtained at a purity level typically up to 96%, CD8+ T lymphocytes were ob-

tained at a purity level typically up to 76%, CD56+ NK cells were obtained at a purity

level typically up to 88.7% (details of this can be found in appendix B).

WMRS spectra were recorded for 60-80 cells derived from each of three different

healthy donors. In total, spectra were collected for 180-240 cells from each of the

three lymphocyte cell subsets CD4+ T cells, CD8+ T cells and NK cells. Figure 3.3 A

illustrates the average standard Raman spectrum for each cell subset and Figure 3.3

B-D illustrate a pairwise comparison of the average WMRS spectra acquired. Raman

bands showing significant difference across two cell subsets are highlighted by grey

vertical bars, as calculated by the student’s t-test at a significance level of p< 10−7.

Based on the zero-crossing points of the WMRS spectra and on published ob-

servations [164–167] it is possible to suggest some key areas of difference between

the cell types. Major differences between Raman spectra of CD4+ and CD8+

T lymphocytes are found mainly from C-C twist in tyrosine (around 645 cm−1),

the O-P-O symmetric stretching (around 800 cm−1 and 1097 cm−1), symmetric

ring breathing mode of phenylalanine (around 1007 cm−1), amide III (around

1259 cm−1), polynucleotide chain (around 1345 cm−1), thymine/adenine/guanine

(around 1378 cm−1), CH2 deformation in lipids (around 1445 cm−1), adenine/gua-

nine (around 1585 cm−1), and amide I (around 1665 cm−1). Even more differences

were found in the Raman spectra of T cells and NK cells, such as C-C twist in pheny-

lalanine (around 621 cm−1), C-S stretching in cysteine (around 671 cm−1), adenine

ring breathing (around 725 cm−1), skeletal C-C stretch in lipids (around 1129 cm−1),

phenylalanine/tyrosine/C-N stretching (around 1209 cm−1), and adenine/amide III

(around 1304 cm−1). We can expect more regions of difference between T lympho-

cytes and NK cells, compared to the two T lymphocyte subsets CD4+ and CD8+;

as the T lymphocyte subsets share a common lineage they are expected to be most
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FIGURE 3.3: WMRS spectra of purified immune cell subsets CD4+ T cells, CD8+ T
cells and NK cells. A) Mean standard Raman spectra of CD4+, CD8+ and NK cells.
Pairwise comparison of the mean WMRS spectra of B) CD4+ and CD8+ T cells, C)
CD4+ T cells and NK cells, and D) CD8+ T cells and NK cells. Solid lines show the
average spectrum of each cell population and shaded regions show the standard
deviation. Grey vertical bars indicate regions of significant difference between two

cell subsets, as estimated by student’s t-test at a significance level of p< 10−7.

closely related and biochemically most similar. These Raman bands are summarised

in Appendix C.

PCA was applied to the training data set of all three cell subsets, to achieve fea-

ture reduction. The first three PCs were used to produce cluster plots as shown in

figure 3.4. Each spectrum, correlating to a single cell, was projected onto the PC

space as a single data point, and distinct clusters were formed for each of the cell

subsets. This indicates WMRS is successful at determining a distinct biochemical

fingerprint for each of the CD4+, CD8+, and NK populations. It can be observed in

figure 3.4 B that there is slightly more overlap between the CD4+ and CD8+ T cell

populations compared to T cell and NK populations, again this can be expected as
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they are more closely related and would be most biochemically similar. This is in

agreement with fewer Raman bands being highlighted by the student’s t-test.

A) B) 

C) D) 

FIGURE 3.4: Cluster plots showing the first three principal components for each
cell subset CD4+, CD8+ and NK cells. Cluster plot for A) all three lymphocyte
populations CD4+, CD8+ and NK cells, B) T lymphocyte subsets CD4+ and CD8+,
C) CD4+ and NK cells, and D) CD8+ and NK cells. The axes indicate the first three

PCs and the amount of variation each accounted for respectively.

To quantify the ability of WMRS to discriminate between the three cell subsets

and achieve a measure of the efficiency of the technique, LOOCV was applied to the

training data set using the first 7 PCs, and each spectrum was classified according

to the nearest neighbour algorithm. The discrimination of T lymphocytes CD4+ and

CD8+ from NK cells yielded a specificity of 93% and 96% respectively and a sensitiv-

ity of 92% and 97% respectively. Between CD4+ and CD8+ T cells the discrimination

was lower at 68% specificity and 69% sensitivity, this again indicates that the T cell

subsets are most closely related and the most difficult to discriminate between. The

entire data set of 638 cells was used to generate a confusion matrix (table 3.1), where

correct classifications are indicated by values on the diagonal and incorrect classifi-

cations are indicated by off-diagonal values.
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Predicted CD4+ Predicted CD8+ Predicted NK

Actual CD4+ 135 84 12

Actual CD8+ 81 149 1

Actual NK 24 4 148

TABLE 3.1: Confusion matrix illustrating the efficiency of WMRS to discriminate
between three lymphocyte populations CD4+ T cells, CD8+ T cells, and NK cells.
Values on the diagonal represent those correctly identified, off-diagonal values
represent those incorrectly identified. The majority of numbers lie on the diagonal

indicating a good discrimination ability.

3.3.2 Identification using standard Raman spectroscopy

It is instructive to compare the discrimination ability of WMRS with standard Ra-

man spectroscopy. It was observed that although standard Raman spectroscopy

still achieves a high discrimination ability, for example CD4+ T cells and NK cells

yielded a specificity and sensitivity of 91% and 90% respectively, it was not as clear as

WMRS. This reinforces the benefits of recording spectra with background suppres-

sion to improve the discrimination efficiency achieved when identifying immune

cell subsets.

3.3.3 Inter-donor variability

Variability in the WMRS spectra between a single cell type derived from different

donors would severely limit the applicability of this technique in research or in clin-

ical settings. Inter-donor variability between the cell subsets was investigated by

analysing all WMRS spectra obtained from three different donors. Initially a stu-

dent’s t-test was performed at significance level of p< 10−7 to compare WMRS spec-

tra obtained from different donors for the same cell subset and no regions of signif-

icant difference were highlighted. PCA was then conducted on the training data set

and cluster plots were produced using the first three PCs (figure 3.5). No distinct

clusters were formed and the plots display significant overlap for each of the three

donors for each isolated cell type. This indicates that there are no significant differ-

ences between cells derived from different donors as the Raman signature for each

cell subset is consistent. This is reassuring, and is consistent with a previous study
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on neutrophils using standard Raman spectroscopy, in which no variation between

donors was noted [149].

A) B) C) 

FIGURE 3.5: Cluster Plots showing the first three principal components for each
cell subset CD4+, CD8+ and NK cells from three different donors. Cluster plot
for A) CD4+ T cells, B) CD8+ T cells, and C) NK cells. The axes indicate the first
three PCs and the amount of variation each accounted for respectively. Significant
overlap between different donors indicate there is no significant difference in the

spectra of a single cell type when derived from a different donor.

A comparison of the discrimination ability achieved when cells are derived from

a single donor showed that marginally higher sensitivities and specificities were

achieved for a single donor, where discrimination between T lymphocytes CD4+

and CD8+ from NK cells yielded a specificity of 97.5% and 96% respectively, and a

sensitivity of 92% and 97.5% respectively, and between CD4+ and CD8+ T cells 71%

specificity and 69% sensitivity was achieved.

3.4 Classification of dendritic cell populations

The scarcity of dendritic cells in the blood and the lack of specific markers have made

DCs a particular challenge and an area of great interest in immunological research.

For example the pathway for differentiation of the various types of DC is still not

fully understood, with a recent report identifying a novel progenitor for pDC [168].

Methods are being developed to generate DCs and proliferate DC progenitors in the

blood in order to overcome these obstacles [159], however a label-free method of

identification would be a significant advantage.

Flow cytometry and functional characterisation revealed that plasmacytoid DCs

were obtained at purity levels up to 92.1% and myeloid DCs were obtained at purity



54
Chapter 3. Label-free identification of immune cell populations using wavelength

modulated Raman spectroscopy

levels up to 77.8% (full details in appendix B).

Fewer cells were recorded for dendritic cell populations pDC and mDC, as these

are present in much lower concentrations. In total, WMRS was performed on 53

isolated pDC cells from two donors, and 123 mDC cells from three donors, in the

same manner as described for lymphocytes in section 3.3. Using all the acquired

spectra as a training data set for PCA, a cluster plot was generated using the first

three PCs (figure 3.6). The formation of distinct clusters indicates that WMRS is

successful at producing distinct signatures for the two DC subsets. Sensitivities and

specificities were calculated as 71.1% and 87.7% respectively.

FIGURE 3.6: Classification of dendritic cell subsets pDC and mDC. Left hand side
shows cluster plot achieved using first three PCs. Axes indicate amount of vari-
ance accounted for in each PC. The formation of distinct clusters illustrates the
ability of WMRS to identify pDC and mDC populations. Right hand side panels
illustrate PC loadings for the first three PCs. Peaks present in the PC loadings are

the most significant bands in the WMRS spectra contributing to discrimination.

WMRS is thus an effective technique to identify the rare dendritic cell popula-

tions and may be useful for challenges such as further distinguishing DC lineages.

3.5 Classification of B cells, monocytes and T cell popula-

tions CD4+ and CD8+

The previous sections illustrate that WMRS is effective at discriminating between

lymphocyte populations CD4+ T cells, CD8+ T cells, and NK cells, as well as the

rarer dendritic cell populations mDC and pDC. For this method to be truly appli-

cable in a research setting or clinical setting it is instructive to explore the ability of

WMRS to characterise a full library of cell populations. This section will investigate
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the ability of WMRS to identify T cell populations CD4+ and CD8+ from further cell

subsets B cells and monocytes.

Fluorescent- activated cell sorting (FACS) assays of the isolated cell populations,

from two donors, revealed purity levels of 89% and 91% for CD4+ T cells, 80% and

91% for CD8+ T cells, 100% and 100% for B cells, and 96% and 99% for monocytes.

Further details of this can be found in appendix B.

WMRS spectra were recorded for 57 CD4+ T cells, 175 CD8+ T cells, 52 B cells,

and 127 monocytes. These were derived from a single donor as the previous studies

have shown no inter-donor variability. Data were collected over three days to ensure

the stability of the system; reassuringly no variation was observed from data col-

lected on different days. Figure 3.7 A illustrates the average standard Raman spectra

recorded for each cell type, panels B-D show a pairwise comparison of WMRS spec-

tra acquired for B cells and the other three cell types CD4+, CD8+, and monocytes

respectively. Similar plots comparing CD4+ T cells and CD8+ T cells against the

other cell populations can be found in Appendix D. The grey vertical bars indicate

Raman bands of significant difference between the two cell subsets, as calculated by

student’s t-test at a significance level of p< 10−15.

Using the zero crossing points of the WMRS spectra and literature observa-

tions [164–167] it is possible to suggest biochemical differences between the cell

subsets; Raman bands highlighted by the student’s t-test between B cells and

CD4+ T cells, CD8+ T cells and monocytes may be assigned as follows: C-C

twist in tyrosine (645 cm−1) , C-S stretching in cysteine (671 cm−1), adenine ring

breathing mode (725 cm−1), O-P-O symmetric stretching (800 cm−1 and 1097 cm−1),

symmetric breathing mode of phenylalanine (1007 cm−1), skeletal C-C stretch in

lipids (1129 cm−1), phenylalanine/ tyrosine/ C-N stretching (1209 cm−1) , amide

III (1259 cm−1), adenine/ amide III (1304 cm−1), polynucleotide chain (1345 cm−1),

thymine/adenine/guanine (1378 cm−1), CH2 deformation in lipids (1455 cm−1),

adenine/guanine (1585 cm−1), and amide I (1665 cm−1). A full table of the Raman

bands of interest can be found in appendix C.

The first PC for each pairwise comparison can provide an indication of the most

important bands for characterisation. For CD8+ T cells versus B cells, the most

significant bands correlate to O-P-O symmetric stretching, polynucleotide chain,
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FIGURE 3.7: WMRS spectra of purified immune cell subsets CD4+ T cells, CD8+
T cells, B cells and monocytes. Pairwise comparison of A) CD4+, CD8+, B cells
and monocytes. Pairwise comparison between mean standard Raman spectra of
B) CD4+ T cells and B cells, C) CD8+ T cells and B cells, and D) B cells and mono-
cytes. Solid lines show the average spectrum of each cell population and shaded
regions show the standard deviation. Grey vertical bars indicate regions of sig-
nificant difference between two cell subsets, as estimated by student’s t-test at a

significance level of p< 10−15.

thymine, adenine, guanine, and amide III content. For CD4+ versus B cells there

are additional bands which correlate to the symmetric breathing mode of phenylala-

nine and amide I. The Raman bands appearing in the first PC for monocytes versus

B cells correspond to the O-P-O symmetric stretching, thymine, adenine, guanine,

adenine ring breathing mode, and CH2 deformation in lipids.
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By conducting PCA on the whole data set cluster plots were produced using the

first three PCs (figure 3.8). Distinct clusters can be observed for each cell subset

indicating there is a distinct WMRS signature for each cell type.

Monocyte 
B cell 

CD4 + 
CD8 + 

A) 

C) D) 

B) 

FIGURE 3.8: Cluster Plots showing the first three principal components for each
cell subset CD4+ T cells, CD8+ T cells, B cells and monocytes. The formation
of distinct clusters indicates that WMRS is able to successfully identify each cell

subset.

To estimate the discrimination efficiency the first seven PCs were selected, and

LOOCV was used to characterise the cells. Cell classifications are summarised in

a confusion matrix (table 3.2) where values on the diagonal represent those which

were correctly identified and off-diagonal values represent those which were incor-

rectly identified. Sensitivities and specificities were then calculated in a pairwise

manner and are summarised in table 3.3. Comparing CD4+ T cells to CD8+ T cells,

B cells, and monocytes, sensitivity and specificity values of 100% were achieved.

CD8+ T cells showed some overlap with B cells in the PC cluster plots and had a

slightly lower discrimination ability, with sensitivity and specificity values of 94.4%

and 84.8% respectively. CD8+ T cells and B cells compared to monocytes achieved

sensitivity and specificity values of 98.8% and 100% respectively, and 97.6% and
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92.9% respectively.

Predicted Predicted Predicted Predicted

CD4+ CD8+ B cell Monocyte

Actual CD4+ 57 0 0 0

Actual CD8+ 0 168 7 0

Actual B cell 0 0 39 3

Actual Monocyte 0 2 3 122

TABLE 3.2: Confusion matrix illustrating the efficiency of WMRS to discriminate
between populations CD4+ T cells, CD8+ T cells, B cells, and monocytes. Values
on the diagonal represent those correctly identified, off-diagonal values represent
those incorrectly identified. The majority of number lie on the diagonal indicating

a good discrimination ability.

Sensitivity % Specificity %

CD4+ vs CD8+ 100 100

CD4+ vs B cell 100 100

CD4+ vs monocyte 100 100

CD8+ vs B cell 94.4 84.8

CD8+ vs monocyte 98.8 100

B cell vs monocyte 97.6 92.9

TABLE 3.3: Summary of sensitivities and specificities achieved used LOOCV
statistics to estimate the discrimination ability of WMRS to identify CD4+ T cells,

CD8+ T cells, B cells and monocytes.

It is noteworthy that in figure 3.8 B cells appear to form two distinct clusters. It

is thus interesting to investigate if this difference is due to the presence of two B cell

sub-populations, such as activated or naïve B cells. This will be discussed in more

detail in the next section. It is also interesting to note that CD8+ T cells and B cells

share some overlap. Further investigations into the biochemical similarities between

these cell types would be interesting, although beyond the scope of this chapter. It

has been reported that CD8+ memory T cells are generated by the same mechanism

as memory B cells, that is to say the triggering of CD40 surface proteins [169, 170].

It may therefore be interesting in future studies to investigate if this overlap occurs

only with memory B cells and memory CD8+ T cells.
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3.6 Classification of naïve and activated B cell populations

The formation of two distinct clusters within the B cell cluster observed in figure

3.8 indicated a potential that WMRS may be able to detect B cell sub-populations.

To investigate this further this section will deal with the intentional activation of an

isolated population of B cells for comparison to non-activated B cells. The ability

to distinctly identify these two populations in the blood would be of particular im-

portance as it could be developed further as a tool for drug screening to sense B cell

activation.

Lipopolysaccharide (LPS) was used to activate the B cells through the TLR4 re-

ceptor [171, 172]. LPS is the main structural component of the cell wall of gram-

negative bacteria, which are the pathogens targeted by B cells. Toll-like receptors

(TLRs) are a family of transmembrane proteins responsible for pathogen recognition

and initiating responses. TLR4 has been shown to be the signal-transducing receptor

for LPS [173–175].

WMRS data were recorded for a total of 100 activated and 109 non-activated

B cells. Upon activation B cells may differentiate into effector cells, producing and

secreting antibodies; as a result they may undergo a dramatic morphological change.

Naïve B cells are small (about 7µm) and are mostly nuclear. Effector B cells are

larger and have a distinct clear perinuclear region of cytoplasm. Figure 3.9 A-B

illustrate typical white light microscopy images of activated and non-activated B

cells respectively. Single point Raman spectra were always recorded in the nuclear

region of each cell.

Figure 3.9 C illustrates the mean WMRS spectra for activated and non activated

B cells, with regions of significant difference highlighted by grey vertical bars, as

calculated by the student’s t-test at a significance level of p< 10−15. D-E illustrate

cluster plots using the first 3 PCs. The formation of distinct clusters indicates a good

discrimination ability for WMRS to identify these B cell subsets. LOOCV was used

to calculate the discrimination ability, which yielded sensitivity and specificity val-

ues of 94.9% and 94.5% respectively. The most important bands for discriminat-

ing between the two cell types, as indicated by the first PC loading, are found at

800 cm−1, 1097 cm−1, 1345 cm−1, 1378 cm−1, 1455 cm−1, and 1585 cm−1. These band
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FIGURE 3.9: A comparison of activated and non-activated B cells. Typical white
light microscopy images are shown of A) an activated B cell and B) a non-activated
B cell. C) Mean WMRS spectra of activated and non activated B cells where solid
lines show the average spectrum of each cell population and shaded regions show
the standard deviation. Grey vertical bars indicate regions of significant difference
between two cell subsets, as estimated by student’s t-test at a significance level of
p< 10−15. D-E illustrate cluster plots using the first 3 PCs; distinct clusters for
each cell subset indicates there are distinct WMRS signatures for activated and

non-activated B cells.

assignments are discussed in previous sections (3.3 and 3.5) and are summarised in

appendix C.

It must be noted that this study is limited in its applicability as it has recently

been reported that there may be a divergence in TLR4 levels on B cells from mice

or humans [176]. It is suggested that only mice have good TLR4 levels on B cells,

and not human B cells. The change in morphology of the B cells, as observed under

white light imaging, would suggest activation has occurred although to be a more

robust study these measurements should be repeated using an alternative method

for B cell activation.

It would be interesting to expand this study further and include data for other

cell subsets and specific immune cell subset activation in mixed cell cultures.
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3.7 Conclusions

The ability to detect distinct immune cell subsets non-disruptively and in a com-

pletely label-free manner would be of significance for both in vitro and in vivo stud-

ies of the immune system. With the increased focus on abilities to study cellular

behaviour and contents at a single cell level, the necessity of isolating and character-

ising cells that have not been altered becomes increasingly important. Commonly

used techniques such as flow cytometry relies on optical scattering, which is limited

in sensitivity for morphologically similar cells, or specific antibody labelling with

fluorescence or magnetic beads which may cause partial modification or activate the

cells.

This chapter has illustrated that WMRS can successfully identify of a number

of important immune cell subsets, including those found in abundance in the hu-

man blood stream, such as CD4+ and CD8+ T cells, NK cells, B cells, monocytes,

and the much rarer subsets mDC and pDC. It was noted that the most difficult cell

populations to distinguish between were CD4+ and CD8+ T cells, which may reflect

their closely related differentiation lineage in the thymus [177]. On the other hand

T cell subsets were distinctly different from NK cells, which normally contain lytic

granules [178].

A recent study [164] has also shown successful discrimination between T and B

lymphocytes, and between individual T- and B- cell lines. As cell lines are trans-

formed cells, often derived from tumours, not all cell lines within a general class

were alike and provided some unique Raman markers. In the study presented in

this chapter, freshly donated cells from healthy donors were used, which are of more

direct biomedical relevance. Furthermore no variation was demonstrated between

cells derived from three different donors.

This technology could find use in both a clinical and research setting, for ex-

ample a label-free haemograph for detection of infection, inflammation or disease

conditions, or for monitoring the immune response to drugs or radiation treatment.

Of particular interest is the ability to identify DC subsets which may help further

distinguish DC lineages, or to discriminate between naïve and activation states of B

cells which would be of significant interest in drug testing and vaccine development.
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In future studies it would be interesting to include other cell populations in both

activated and naïve states to enable analysis of cell-cell interactions in vivo. Com-

paring positively isolated cells to untouched populations would also help define a

full library of cells. Furthermore investigating the ability to distinguish further cell

subsets would be of interest. For example, CD4+ T cells can further differentiate

into TH1, TH2, and TH17 cells. Identifying the ratio in which these are present, in

a label-free manner, would have significant potential. TH17 cells, for example, are

associated with a number of disease conditions [179–182].

The disadvantage of Raman spectroscopy is that it takes a relatively long time to

acquire spectra from a single cell which severely limits the throughput rate. Current

acquisition times are 25 seconds per cell, where as flow cytometry may analyse up to

100,000 events per second. Techniques such as stimulated Raman spectroscopy (SRS)

have been used to achieve throughput rates of 11,000 particles per second [121–124].

This is a significant enhancement and demonstrates the potential of this technique to

achieve the required throughput rates. Combining Raman spectroscopy with other

optical modalities may also be of interest, for example using optical tweezers with

Raman spectroscopy, to isolate cells of interest from complex cultures for further

analysis, such as cytokine-specific rtPCR or full transcriptome analysis by RNA-Seq

[183, 184]. Combining Raman spectroscopy with a phase imaging modality may

also prove interesting for studies characterising both chemical and morphological

cellular profiles.
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4 Multimodal analysis of immune cell

subsets: Raman spectroscopy and digital

holographic microscopy

4.1 Introduction

The high spectral resolution and chemical specificity of Raman spectroscopy makes

it a very powerful optical method for sample analysis. However its inherent weak

scattering cross-section has made it a prime candidate for use along-side complimen-

tary optical techniques. To enhance signals the use of Raman tags [185] or nanopar-

ticles [186] may be used, however these techniques require the use of exogenous

labels. As previously discussed, there is a real drive in both research and clinical set-

tings for label-free technologies, particularly for the study of live cells where labels

may interfere with biological processes.

In the absence of exogenous contrast agents the measured signal must originate

from a direct interaction between the light and the sample. Such interactions can

occur via a variety of physical processes. The essence of multimodal analysis is to

retrieve information from additional modes, hence obtaining more information than

would be possible using any single mode alone and providing an opportunity to

overcome any limitations specific to a single technique. The development of multi-

modal systems is thus pushing the boundaries for diagnostic techniques and is one

of the main challenges facing biophotonics today. It is typically used to enhance the

amount of information recorded, either by obtaining more optical signal or observ-

ing different types of interactions, i.e. when the modes arise from different physical

light-sample interactions [187].

The main challenge facing the implementation of a label-free spectroscopic

haemograph, as discussed in chapter 3, is the long acquisition time (25 s) required

for Raman measurements. Ideally high throughput rates (10,000 cells per second)

are required to ensure a viable technology. A multimodal approach in which Raman
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spectroscopy is used along-side a faster modality could permit a fast initial screen-

ing, allowing a more specific analysis on cells of interest to be carried out by the

slow, yet chemically specific, Raman spectroscopy. Digital holographic microscopy

(DHM) is an ideal candidate as it is a fast imaging modality, limited only by camera

acquisition rates [188, 189].

An additional limitation of Raman spectroscopy is that it cannot provide any

morphological information. There would therefore be significant advantage in com-

bining Raman spectroscopy with a morphological imaging modality to obtain a

more complete description of the sample. Raman spectroscopy has been used along-

side OCT for the characterisation of tissue [190] and cancers [191, 192]. Shape and

optical thickness are useful morphological parameters for the discrimination be-

tween cells, and may be recorded with the use of quantitative phase imaging (QPI).

DHM is an interferometric imaging modality which provides quantitative informa-

tion on the phase shifts induced by a sample [193, 194].

DHM has been used previously for studying blood cells, such as the discrimina-

tion between the maturity levels of red blood cells (RBC) [195], label-free cell count-

ing [196], and determining morphological information of cells for identification and

disease diagnosis [197, 198]. Raman spectroscopy and DHM have recently been im-

plemented simultaneously by Pavillon et al for the determination of local molecular

content by Raman spectroscopy whilst simultaneously observing dynamic sample

morphology at video rates [199]. A further use was to determine the relationship

between Raman information and the quantitative phase information extracted from

a cell [187, 200]. Kang et al have also employed a combined Raman spectroscopy

and QPI system; in this case DHM is utilised as a screening tool for malaria infected

RBCs. Phase information can locate suspicious cells from a wide field of view, due

to their abnormal shape and refractive index, and Raman spectroscopy can be used

as a means of validation, confirming the presence of hemozoin [201]. In this sys-

tem a single excitation source is used eliminating the need for two laser sources but

preventing the simultaneous acquisition of phase and Raman information. RBCs

are often used in DHM studies for their simple internal structure; immune cells on

the other hand have a more complex internal structure and pose an interesting chal-

lenge for DHM. The potential for DHM to be used as a screening tool makes it an
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exciting candidate for overcoming the low throughput rates currently achieved by

Raman spectroscopy alone. DHM boasts rapid acquisition times and has proven ca-

pable of quantitatively studying cellular dynamics in real time [202]. This chapter

will present the first time this technology has been applied to the study of immune

cell populations with statistical analysis for discrimination purposes.

An overview of various multi-modal Raman spectroscopy techniques for

biomedical applications can be found in table 4.1. Further information can be found

in reviews [203] and [187], where the latter focuses on label-free multimodal mi-

croscopy methods.

In summary, DHM and Raman spectroscopy rely on complementary physical in-

teractions; Raman spectroscopy relies on the inelastic vibrational scattering from the

sample, whereas DHM relies on the linear elastic scattering of a wave front pass-

ing through a sample. The combination of these two modalities therefore provides

complimentary information and builds a more complete description of the sample.

The advantages of a label-free technology are not compromised as neither Raman

spectroscopy nor DHM require the addition of any external tags, or sample pre-

processing before measurements. Finally, the practicalities of assembling a multi-

modal system are relatively simple; DHM utilises a narrow linewidth illumination

source, implemented here with 532 nm, in contrast to Raman spectroscopy which

uses an excitation wavelength of 785 nm and has a broad emission range at longer

wavelengths. This makes it possible to isolate the two signals from each other, with

the use of appropriate filters, ensuring simultaneous measurements are possible. Im-

portantly, in contrast to Raman spectroscopy which is often hindered by its long ac-

quisition times, DHM is a fast imaging modality limited only by camera acquisition

rates (up to 20 fps in live mode). Therefore what makes this pairing of optical modal-

ities truly exciting for the application of immune cell identification, is the prospect

of high throughput measurements, paving the way for clinical use. The goal of this

technology would be to use DHM for a fast initial screening where Raman spec-

troscopy can provide more specific chemical information on cells of interest.

This chapter will provide an introduction to DHM and discuss the design of the

multimodal system. Raman spectra and DHM images are obtained simultaneously

and processed separately. The method of processing DHM images will be discussed
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Chapter 4. Multimodal analysis of immune cell subsets: Raman spectroscopy and

digital holographic microscopy

in detail. Three immune cell subsets, CD4+ T cells, B cells, and monocytes are then

classified according to Raman spectroscopy alone, DHM alone, and by a combina-

tion of the two modalities. The discrimination ability of each modality, individually

and in combination, is then determined.

4.2 Basic theory of digital holographic microscopy

4.2.1 Brief history

Dennis Gabor first discovered holography in 1947 [222], for which he was later

awarded the Nobel prize in Physics in 1971 "for his invention and development of the

holographic method". He discovered a method based on interference and coherence

to capture both phase and intensity information. This allows recording and recon-

struction of the whole 3 dimensional information, in contrast to photography which

can only record intensity. Gabor coined the term ’holography’ from the Greek words

Holos, meaning whole or entire, and gramma, meaning anything written or drawn.

Practical uses of the technique only experienced significant advancements after the

development of the laser in 1960, providing a much needed source of coherent light.

4.2.2 Basic principles of holography

Imaging an object requires both illumination of the object and detection of the scat-

tered light. The scattered light is known as an object wave ’o’ and carries information

regarding the object. This wave can be characterised by two parameters: amplitude

(brightness) and phase (shape). The object wave is considered a complex light field

and is a superposition of all the waves emerging from individual points in the object.

In photography, when this is observed, either by camera or photographic film, only

intensity information is recorded and the phase information is lost. The resulting

image is 2 dimensional.

Holography makes use of the principles of interference and coherence in order

to capture both intensity and phase information. To record phase information there-

fore a reference wave ’r’ is required. When light is transmitted through an object,

or reflected off its surface, the wave-front is modified according to its shape and op-

tical path differences. Consequently o will have a phase shift with respect to r. o
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and r are combined before detection and cause interference. The generated inter-

ference fringes are then recorded. The complete object information is contained in

the brightness and distance between the fringes [223]. An example interferogram of

5µm polymer beads is shown in figure 4.1 where displacements of the interference

fringes indicate a phase shift between o and r.

FIGURE 4.1: Recorded interference pattern of polymer beads. Displacement of the
interference fringes indicates a phase shift between o and r. Scale bar shows 5µm.

The first step in holography is the recording of the interference pattern and the

second step is the reconstruction. The recorded hologram contains both pure inten-

sity terms (zero order diffraction) and the coherent orders (+1/-1 diffraction orders)

as defined in equation 4.1.

I = |o + r|2 = |o|2 + |r|2 + o∗r + or∗ (4.1)

where * represents the complex conjugate. The first two terms are referred to as

the zero-order terms and represent the intensity patterns of the object and reference

fields. The last two terms represent the first order diffraction terms. It is the last

term, containing the object wave ’o’ that is particularly important in holography as

it corresponds to the coherent term and allows retrieval of the measured complex

field.

o and r can be defined generally as o = oeiΦ and r = reiΨ, where o and r represent

the field amplitudes, and Φ and Ψ represent the phase terms, respectively at the
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point of superposition. Substituting into equation 4.1 gives an intensity distribution

I = o2 + r2 + 2 · r · o · cos(Φ−Ψ) (4.2)

A system of interference fringes form in space, between maxima and minima values

of Imax = r2 + o2 + 2ro and Imin = r2 + o2 − 2ro [223].

When a holographic film is exposed to the interference pattern, the resulting

pattern can be thought of as a grating. The reconstruction relies on the principle

that, after development of the hologram, illumination of the grating by the reference

wave ’r’ will cause diffraction in such a way as to generate the object wave. The

reconstruction yields the light amplitude ’u’ according to equation 4.3. Let

u ∼ r · I = r(|o|2 + |r|2) + rro∗ + |r|2o = u0 + u−1 + u+1 (4.3)

The first term u0 describes the zeroth diffraction order, governing the reference

wave. The second term u−1 describes the conjugate complex object wave o∗ corre-

sponding to the −1st diffraction order. The last term u+1 is the component of most

interest; the +1st diffraction order, which is the object wave itself reconstructed with

the amplitude of the reference wave r2. The object wave can thus be completely

reconstructed, containing the complete information regarding the object. The result-

ing image is 3 dimensional [223]. An example of reconstructed DHM images of red

blood cells can be found in figure 4.2.

FIGURE 4.2: Taken from [224]. Reconstructed red blood cell (RBC) DHM images,
providing 3-D information.

For digital holographic microscopy a camera may be used in place of holographic

film. Attractive features of digital acquisition lies in the fast recording rates (up to

video frequency) and the ability to reconstruct amplitude and phase contrast images
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simultaneously. For studies presented in this thesis interferograms are recorded us-

ing a CMOS camera and phase information is retrieved using Fourier filtering as

outlined in section 4.4.4.

Mach-Zender interferometer configurations are commonly used [202, 225–229]

although common-path configurations [230–233] are sometimes preferred. One ad-

vantage of common-path interferometers is that they are less sensitive to vibrations,

or instabilities of the system (mechanical or thermal) as both paths experience the

same perturbations. However the spatial filtering required can involve non-trivial

optical alignment, such as pinhole filtering [232], or expensive components such as

spatial light modulators (SLM) [233]. A Mach-Zender configuration is used for stud-

ies in this chapter for ease of alignment and the freedom to independently tune the

object and reference waves to optimise image quality. Additionally, exposure times

are short (10 ms) preventing vibrations below KHz from influencing the measure-

ment.

4.2.3 Off-axis holography

Leith and Upatneiks demonstrated off-axis holography in 1962 [234–236], which

paved the way for practical applications of holography. The core principle behind

off-axis is holography is that by tilting the reference wave the three diffraction orders

are spatially separated [225], as illustrated in figure 4.3 A. The advantage over in-line

(Gabor) holography is that the image and conjugate image are separated and there-

fore do not interfere during reconstruction. Off-axis methods typically allow faster

acquisition as the phase information can be extracted from a single interferogram.

The distance, d between intensity maxima is given by equation 4.4, where λ is

the laser-line wavelength:

d =
λ

sin(α)
(4.4)

as illustrated in the inset of figure 4.3. As a result, a greater angle between o and

r means that the interference fringes will be much finer. By increasing the carrier

frequency the first and zero order diffraction terms will experience a greater spatial

separation on a Fourier transform. Ensuring there is no overlap between the terms
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FIGURE 4.3: A) Schematic of off-axis holography. The reference wave and object
wave interfere forming a grating pattern on the detector surface. Upon illumina-
tion with r during reconstruction the zero and first order diffraction terms will be
spatially separated due to the tilt angle α. (Modified from [223] with permission).
Inset illustrates the spatial separation between the intensity maxima. B) Schematic
illustrating the tilt angle achieved by tilting the beam splitter where the reference

and signal arms of a Mach-zender interferometer recombine.

improves the effectiveness of Fourier filtering to separate the intensity and phase

information. This will be discussed further in section 4.4.4.

In combination with microscopy DHM is a valuable tool for the study of bio-

logical samples [237]. Biological material, particularly cells, are often transparent

under white light imaging and differ only slightly from their surroundings in ab-

sorbance. The ability to record phase information is therefore crucial to obtaining

morphological information. DHM offers the advantage of obtaining three dimen-

sional information without any sectioning, such as in confocal scanning microscopy

or OCT, which necessitate longer acquisition times and limit the throughput rate.

Importantly DHM is a label-free method and does not require any sample prepara-

tion.

4.3 Design of the multimodal system

A digital holographic microscope is fairly simple to integrate around a Raman mi-

croscope. The design of a free space Raman system is described in detail in section

2.7.3 although specifications relevant to the multimodal system will be detailed here.

The components used to build a digital holographic microscope around the Raman
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microscope will also be described. A schematic of the multimodal system can be

found in figure 4.4.

4.3.1 Raman spectrometer

The multimodal system was equipped with a CW Ti-sapphire laser (Solstis), pro-

vided by Msquared Lasers Ltd, UK. The Solstis laser has an extremely narrow linewidth

(< 50 kHz) around 785 nm, which is desirable for Raman measurements as it im-

proves the spectral resolution (separation between individual Raman bands), as

previously described in section 2.7.1. Unfortunately for the studies presented here

there were some problems encountered with regards to the wavelength tuning of the

solstis; the excitation wavelength would sometimes jump in steps of up to 0.2 nm,

which in turn affected the processing of WMRS data. As a result standard Raman

spectroscopy is used (no wavelength tuning).

The beam was focussed through a 60X objective (Nikon, 0.80 NA) and focussed

onto the sample plane, providing 150 mW power to the sample. The light was col-

lected in reflection, through the same objective, and passed through a notch filter

(NF) (Semrock, NFD01-785-25X36) to reject Rayleigh scattering. A lens (f=200 mm)

focused the Raman scattered light into a low OH fiber (M25L01, Thorlabs) with a

200µm core. The fiber acts as a confocal aperture producing a confocal volume with

a base radius of 1.66µm and depth of 2.2µm in the sample plane (as calculated by

equations 2.15 and 2.16). Before entering the fiber the light was transmitted through

a second NF (Semrock, NF03-785E) which acts to further block the laser line.

The light was then coupled into a spectrograph (described in section 2.7.2). The

spectrometer has an acceptance pyramid, often described by an F-number (f/#). For

Raman spectroscopy, where the signal is often very weak, it is important to couple

as much as light as possible into the spectrometer. For this reason f/# matching

optics are used to optimally couple the light into the spectrometer. The f/# of the

spectrometer is 4 and the f/# of the fiber may be calculated according to equation

4.5. The fiber has an NA of 0.22 which gives an f/# of 2.27.

f/# =
1

2NA
(4.5)
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The ratio required to match these two f/# values is 1.76. A pair of convex lenses

with focal lengths 30 mm and 50 mm were used to provide a magnification of 1.67.

This is sufficient to provide f/# matching, however the beam from a 200µm fiber

would be expanded to 334µm. This means a substantial amount of the light would

be rejected as the slit width used at the entrance to the spectrometer is 150µm. To

overcome this an additional telescope is used between the first pair of lenses, con-

taining two cylindrical lenses to modify the aspect ratio of the beam. The lenses have

focal lengths of 8 mm and 50 mm modifying a circular beam to have an aspect ratio of

1 : 6.25, effectively reducing the beam width to 53µm. This arrangement effectively

couples the Raman scattered light to the spectrometer from the fiber.

Köhler illumination was used to provide white light illumination, allowing the

sample plane to be viewed. A dichroic edge filter (Semrock, Di02-R561) was placed

in the collection path such that the light was focussed on a complimentary metal-

oxide-semiconductor (CMOS) detector (Imaging Source, DFK 42AUC03) for real-

time imaging.

4.3.2 DHM instrumentation

A CW DPSS laser (Millennia Vs, Spectra Physics) with wavelength 532 nm was used

for DHM illumination. The emitted laser light was coupled into a single mode fiber

(P1-460B-FC-1, Thorlabs) with 40% efficiency. Misalignment of the coupling objec-

tive provided low power illumination at the sample plane ( 30µW). Light was then

coupled to a single mode optical fiber beam splitter (FC532-0B-FC, Thorlabs) with

a coupling ratio of approximately 50:50 split of power between two output ports.

Fiber collimators were used at the end of each port (F220FC-A, Thorlabs), which are

designed to collimate light of 543 nm from a single mode fiber to give a beam diam-

eter of 2 mm. One arm was used to illuminate the sample and the other was used as

a reference beam.

The illumination arm follows the same path as the white light illumination, from

above the sample. A lens of focal length f = 100 mm is placed 100 mm from the back

aperture of a long working distance objective (M Plan APO, 10X, 0.23NA, Mitutoyo,

UK), with f = 200 mm and working distance, WD = 0.35 mm, to provide collimated

light to the sample chamber. Light then passes through the sample and is collected
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by the 60X objective, sharing the same optical path as the Raman scattered light.

The edge filter directing light to the CMOS camera, has high reflection (> 99%)

at 532 nm and high transmission (> 93%) in the region 579 − 1200 nm. This acts

to separate the Raman photons from the DHM signal. The DHM signal is reflected

towards the CMOS detector, whilst the Raman scattered light is transmitted towards

the spectrograph.

The signal and reference arms are combined in a cube beam splitter (BS) at an an-

gle (off-axis holography) (see figure 4.3 B) and the interference pattern was recorded

on the CMOS detector. The tilt angle, α for the BS was determined by monitoring the

Fourier transform of the interference pattern and maximising the spatial separation

of the first and zero order components. The CMOS detector is made of 1024x960 8bit

pixels, with an acquisition rate of 25 frames per seconds (fps). Importantly, the ref-

erence arm must have approximately the same optical path length as the signal arm.

A neutral density (ND) filter was employed in the reference arm to compensate for

differences in intensity between the reference and signal beams, as significant losses

are experienced in the signal arm.

Considerations must be made for a double path interferometer, as it will be sen-

sitive to environmental differences between the signal and reference arms, such as

vibrations, air-flow, and temperature fluctuations. To minimise these effects the sys-

tem was built on a floating table in a room with controlled temperature. A perspex

box was designed to cover the system protecting it from dust and air currents.

4.4 Methods

4.4.1 Cell preparation

CD4+ T cells, B cells, and monocytes were isolated and purified using negative de-

pletion isolation kits, to obtain freshly isolated cells in an untouched manner. Full

details of this method are provided in appendix B. The purity of samples was anal-

ysed by FACS assay which is also detailed in Appendix B. The following purity

levels were achieved from two donors; 89% and 91% for CD4+ T cells, 100% and

100% for B cells, and 96% and 99% for monocytes.
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A sample chamber was formed using a thick quartz slide (25.4 mm x 25.4 mm x

1 mm thickness), an 80µm vinyl spacer, and a second thin quartz slide (25.4 mm x

25.4 mm x 0.15 mm to 0.18 mm thick) on top. The cells were suspended in PBS and

18µl was placed in the well. The sample chamber was inverted, allowing the cells to

settle on thin quartz slide for around 30 mins, to prevent movement due to optical

forces during measurements. The sample chamber was placed on the sample stage

with the thin side towards the objective.

A total of 60 CD4+ T cells, 86 B cells, and 67 monocytes from a single donor were

analysed by standard Raman spectroscopy and DHM. Sample numbers were limited

according to the number of cells which could practically be isolated and analysed in

a three day period. Previous studies (as detailed in chapter 3) indicate that there

is no inter-donor variability amongst T cell populations CD4+ and CD8+, NK cells,

and dendritic cell populations mDC and pDC. Data were collected on separate days,

PCA was employed to ensure this did not introduce any variance contributions, thus

confirming the robustness of the system. Cells were exposed to 785 nm irradiation at

150 mW power in the sample plane for 10 minutes and no changes were observed in

the Raman spectra, indicating there was no photo-damage caused to the cells. The

incident laser light at 532 nm has a power of approximately 30µW in the sample

plane. Additionally, the light is collimated before the sample plane ensuring a very

low optical intensity is incident on the sample. No obvious damage was observed

to the cells under white light imaging, and no changes were observed to the Raman

spectra.

4.4.2 Raman and DHM measurements

Details of the instrumentation used are provided in section 4.3. 785 nm excitation

wavelength was used for Raman spectroscopy with 150 mW power in the sample

plane. Single point standard Raman spectra were taken with an acquisition time of

5 s per cell.

DHM images were taken using incident light of 532 nm and approximately 30µW

in the sample plane. Images were taken with an exposure time of 10 ms. As the sig-

nal is sensitive to environmental conditions, the interference pattern intensity can

fluctuate. To compensate for this several images were taken successively and the
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image with the greatest contrast was used. There was no need to move the sam-

ple stage between Raman and DHM measurements enabling the two measurement

modalities to occur simultaneously and independently.

4.4.3 Analysis of Raman spectra

A detailed description of the statistical analysis methods used is given in section

2.8. Specific details of this study will be outlined in this section. The Raman spec-

tra were analysed in the region 900 cm−1 to 1700 cm−1 and normalised according to

the total spectral intensity. A student’s t-test was applied to highlight Raman bands

of significant difference between pairwise mean spectra. The significance level was

optimised for each set of data so as to best highlight the regions of difference. Cell

lines that are most similar to each other required a larger significance level; the stu-

dents t-test was calculated at a significance level of p< 10−8 for CD4+ T cells and

B cells (which are most closely related), p< 10−13 for CD4+ T cells and monocytes,

and p< 10−18 for B cells and monocytes (which are chemically most different from

each other).

The total data set from all the acquired Raman spectra was used to form a train-

ing data set on which PCA was conducted. Scatter plots were produced using the

first 3 PCs to visualise any trends across the data set. The first 10 PCs were selected

for quantitative analysis, where the discrimination ability was assessed by means of

LOOCV. All correct and incorrect cell classification were summarised in a confusion

matrix. Sensitivity and specificity values were calculated for pairwise comparisons

of cell subsets.

As standard Raman data were collected (in contrast to WMRS) consideration

must be given to fluorescence suppression. The data were analysed in the region of

900 cm−1 to 1700 cm−1 which naturally has a relatively flat baseline in the raw spec-

tra, as illustrated in figure 4.5. Furthermore analysis in this spectral region would

minimise Raman contributions due to quartz. According to database values most

Raman bands associated with quartz occur in the region less than 600 cm−1, al-

though a relatively weak peak is present at 804 cm−1. Not to forget that confocal

Raman spectroscopy is employed, which offers the ability to effectively reject light



4.4. Methods 79

scattered from outside the sample plane. As the same quartz slides are used for ev-

ery measurement any contribution from quartz is not expected to show in the lower

order PCs used for discrimination. Nevertheless, to validate the data and analysis

are robust to any background contributions, a third party background subtraction

algorithm was applied [58]. The algorithm uses an asymmetric truncated quadratic

cost function of polynomial order 6, which was applied to each spectrum after nor-

malisation. Figure 4.5 demonstrates an example spectrum of each cell subset be-

fore and after background subtraction. The algorithm gave a good fit and resulted

in a flat baseline for the processed spectra. The background subtracted data was

then processed and resulted in comparable sensitivity and specificity values to data

which did not undergo any background subtraction. As background subtraction al-

gorithms can introduce artefacts the data presented in this chapter were analysed

without any background subtraction or smoothing algorithms. The comparable dis-

crimination abilities achieved from the two approaches infers that the raw data and

method of analysis, without background subtraction, is robust.
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FIGURE 4.5: A comparison of the raw spectra (left hand side) and processed spec-
tra after the background subtraction algorithm was applied (right hand side). Ex-
ample spectra are shown for CD4+ T cells (A and B), B cells (C and D) and mono-
cytes (E and F). The flat baseline in the processed spectra indicates that the algo-
rithm provides a good fit. In the region 900 cm−1 to 1700 cm−1 the raw data has a

relatively flat baseline.

4.4.4 Analysis of DHM images

The interference pattern generated by the signal and reference arm, containing both

phase and amplitude information, was recorded on a CMOS camera. An off-axis

configuration was used for spatial separation of the coherent terms in the Fourier

transform. The offset angle, α (as illustrated in figure 4.3) contributes towards the

carrier frequency, fc [238]. Following equation 4.4 fc can be described as

fc =
sin(α)

λ
(4.6)

This produces high frequency interference fringes; an example interferogram of a

monocyte cell can be seen in figure 4.6.

In the Fourier transform the zero order diffraction term can be found in the cen-

tre and the coherent terms are separated on the diagonal. The spatial separation is

related to fc which in turn is related to the tilt angle in the cube beam splitter. The
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A) B) 

FIGURE 4.6: A) White light image and B) Interference pattern of a monocyte cell,
as recorded by a CMOS camera. The cell introduces phase shifts and consequently
perturbations to the fringe pattern can be observed (within red circle). Scale bar

shows 5µm

first coherent term (+1 diffraction order) (as previously described in section 4.2.2)

can be selected (figure 4.7 B), which is then centred on a blank matrix to remove the

carrier frequency. The inverse Fourier transform retrieves the phase map with low

frequency fringes (figure 4.7 D). Note that if any Raman light is picked up by the

detector it would not interfere with the reference wave and would be filtered out at

this stage. The zero order diffraction term contains intensity information and can

also be separated. By taking the inverse Fourier transform an amplitude image can

be produced (figure 4.7 C).

The phase map at this stage is wrapped, meaning the values are constrained to

the ±π interval. Recovering the original phase values is a signal processing prob-

lem which has drawn attention since the 1970s [239] and continues to be impor-

tant in many fields. There are a variety of techniques to perform phase unwrap-

ping [240–242]. In the simplest case the algorithm searches for local inconsistencies

which correspond to 2π discontinuities. These discontinuities can be removed either

by adding 2π (when ∆φ ≤ −π) or subtracting 2π (when ∆φ > π, where φ is the

wrapped phase). The principle of phase unwrapping in 1 dimension is illustrated

in figure 4.8, where the wrapped phase is processed to generate a smooth and con-

tinuous signal. For the process to accurately retrieve the absolute phase data, which

may span many π, phase unwrapping algorithms rely on the assumption that the
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FIGURE 4.7: Illustration of steps to process a raw DHM image to produce a phase
image. Axes represent pixels on the CMOS camera. A) shows the raw DHM image
with interference fringes. B) is the Fourier transform with the zero diffraction
order in the centre and±1 diffraction orders spatially separated on the horizontal.
The +1 coherent term is selected as shown by ring of blue squares. C-D) represent
the amplitude and phase components respectively after inverse Fourier transform
of the zero and first order diffraction terms. E) is the unwrapped phase image and
F) illustrates the quadratic fit, representing the differences in wavefront curvature
between the object and reference waves. G) illustrates the resultant flat base-line
unwrapped phase map after subtraction of the quadratic fit. Contrast is poor due
to random errors around the edge. H) shows a cropped phase map of a monocyte

cell where the colour bar represents phase in radians.
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phase changes slowly enough that neighbouring points will be within one half cycle

(π radians). For the case of immune cells, phase shifts are typically small enough

that this assumption holds true. An unwrapping algorithm, as described by Ghiglia

and Pritt [243] is applied to give a continuous phase map ( in figure 4.7 E).
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FIGURE 4.8: Taken from [244] with permission. A) illustrates four phase jumps
(denoted 1-4) present in a wrapped 1-D signal. B) The unwrapped signal is a

continuous sine wave.

The object and reference waves travel along different optical paths resulting in a

difference in the curvature of the two wave-fronts. When they interfere the resulting

phase map consequently has a quadratic background relative to the difference in

wave-front curvatures. To remove this quadratic curvature a reference image, taken

when no cell was present, may be subtracted. However, this technique is not always

reliable as the two beams do not share a common path, therefore any vibrations or

temperature fluctuations can cause variations. Alternatively, a quadratic fit may be

calculated and subtracted. This can either be approximated by two 1 dimensional

lines along x and y, or calculated in 2 dimensions. The calculation of two separate

lines is much easier, however it is more sensitive to any object that may be on that

line, which would introduce errors. A Matlab function ’polyfitn’ was employed as

it can generate a quadratic model in higher dimensions. A second order quadratic

fit to the background can be seen in figure 4.7 F. Upon subtraction of the quadratic

background a flat base-line phase image is produced (figure 4.7 G). The contrast is

poor due to random values around the edge of the image. A 220x220 pixels region

of interest (ROI) was cropped around the cell giving an unwrapped phase map of

the cell.

One final consideration is to prevent the position of the cell from being a factor
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for discrimination. For that reason the images were centred; a region around the

cell was selected and the centroid of the image was calculated. The image was then

shifted such that the centroid was in the centre of a 220 x 220 matrix. This selected re-

gion additionally acted as a mask where any values outside of this area were zeroed.

This ensured that any neighbouring cells were removed from the image as well as

reducing background noise. The result is a phase map of a single cell in the centre

of a 220 x 220 matrix, as illustrated in figure 4.7 H for a monocyte cell. The Matlab

code used to process the DHM images can be found in appendixE.

For discrimination analysis it was not possible to apply PCA directly to the phase

map images as this would be computationally too intense. Two methods of charac-

terising the images were thus employed for subsequent analysis.

1. The first method was to generate a histogram which records the number of pix-

els in specific intensity value regions. The phase value is directly proportional

to the optical path difference (OPD) as described in equation 4.7. The his-

togram therefore contains information such as the maximum OPD, total OPD

(phase volume), and size of the cell (number of non-zero pixels). By creating

a histogram of each phase map each cell can be described by a new vector.

PCA was conducted on this new data set and cells were classified according to

LOOCV and the nearest neighbour algorithm.

OPD =
∆ψ × λ

2π
(4.7)

Where ∆ψ is the phase difference between the object and reference waves.

2. The second method is by texture analysis (TA). TA is a statistical method that

quantifies parameters capable of describing properties of an image such as

smoothness, contrast, or regularity. It is based on the relationship between

neighbouring pixel intensities. TA is commonly used for analysis of OCT im-

ages of tissue samples [245, 246] but has not been widely explored for char-

acterisation of DHM images. As a first step a grey level co-occurrence matrix

(GLCM) is calculated; the image is first scaled to eight grey-levels and the fre-

quency with which a pixel of grey scale intensity level i occurs adjacent to a
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pixel of intensity j is recorded. This process is illustrated in figure 4.9. Several

statistics can be derived from the GLCM which provide information about the

texture of an image. The four texture parameters used are contrast, correla-

tion, energy, and homogeneity. Contrast is a measure of the local variations in

an image, correlation measures the frequency with which a pixel pair occurs

across the image, energy is the sum of the squared elements in the GLCM, and

homogeneity measures the amount of dominant grey-tone transitions in the

image [247].
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FIGURE 4.9: Representation of the process to produce a grey level co-occurrence
matrix (GLCM). An intensity image is scaled to 8 grey level intensity values (left).
Horizontal neighbouring pixel-pair values are recorded in an 8x8 GLCM (right).

By using TA each cell may be described by a new descriptor vector of 4 values.

PCA was conducted on this new data set and cells were classified according to

LOOCV and nearest neighbour algorithms.

The GLCM may be calculated along different directions. It was investigated if

calculating the GLCM along four directions would provide more information

and improve discrimination. 16 parameters were calculated from the four tex-

ture parameters along 4 directions: 0◦, 45◦, 90◦, 135◦. PCA and LOOCV were

conducted on the new dataset, in which cells are described by a vector of 16

values.

3. Finally, the two vectors described above (histogram and TA parameters) were

combined to form a new descriptor vector, containing both OPD and TA infor-

mation. Discrimination ability was calculated according to PCA and LOOCV

statistics.
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The Matlab code used for post-processing of the phase map images is provided in

appendixE.

4.5 Classification of CD4+ T cells, B cells, and Monocytes

4.5.1 Classification of cell subsets with the use standard Raman spec-

troscopy

Standard Raman spectra were recorded for CD4+ T cells, B cells, and monocytes on

the multimodal system. The mean spectra from the three cell populations are shown

in a pairwise manner in figure 4.10 A-C. The student’s t-test was used to highlight

regions of significant difference between two cell populations thus characterising

the key molecular differences between them. The Raman bands identified as hav-

ing significant variation are represented by grey vertical bars. The Raman bands

between CD4+ T cells and B cells may be attributed to: CH2 deformation in lipids

(1455 cm−1), adenine/guanine (1585 cm−1), and amide I (1665 cm−1); between CD4+

T cells and monocytes: protein α helix and protein C-C skeletal modes (938 cm−1),

skeletal C-C stretch in lipids (1129 cm−1), and CH2 stretching, adenine and guanine

(1421 cm−1). B cells and monocytes have the most differences with additional bands

arising from amide III (1259 cm−1), and adenine/amide III (1304 cm−1) [165–167].

These band assignments are consistent with those found in WMRS analysis which

are summarised in Appendix C, and with a recent study by Hoboro et al [164] which

characterises a complete profile of Raman band assignments for T and B cell lines.

PCA analysis was conducted on the complete data set, the first three PCs are

represented spectrally in figure 4.10 D, as an indication of what the discrimination

is based on. Scatter plots were generated using the first 3 PCs (figure 4.10 E-F). Dis-

tinct clusters were formed for the three cell populations indicating there are distinct

Raman signatures for the three populations and they may be successfully identified.

Consider plot E where the PC space is defined by PC1 and PC2, the cluster corre-

sponding to monocytes is most distinct whilst there is some overlap between B cells

and T cells. This indicates that the molecular differences between monocytes and

T- or B-cells contribute most to the total variance of the data set. It is only when

PC3 is employed (plot F) that CD4+ T cell and B cell clusters become well separated.
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FIGURE 4.10: Standard Raman spectroscopy to classify CD4+ T cells, B cells, and
monocytes using the multimodal system. A-C) illustrate pairwise comparisons
between cell populations where solid lines represent the mean Raman spectrum
for each cell subset and shadowed regions represent one standard deviation. Grey
vertical bars highlight Raman bands of significant difference, as calculated by the
student’s t-test at a significance level of A) p< 10−8, B) p< 10−13, and C) p< 10−18.
D) illustrates the loadings for the first 3 PCs from the total data set of all three cell
subsets. E-F) show scatter plots using the first 3 PCs. Distinct clusters for each cell
type demonstrates the ability to successfully discriminate between populations.

The Raman bands that contribute to PC3 are around 1455 cm−1 and 1665 cm−1, as
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observed in plot D. These bands correspond well with those highlighted by the stu-

dent’s t test between CD4+ T cells and B cells (plot A). Additionally, the cluster cor-

responding to B cells is noticeably broader which indicates there may by variation

within the cell type. This correlates well with observations from section 3.5 and 3.6

and may be due to B cell subsets such as naïve or memory B cells.

The first 10 PCs were used for analysis with LOOCV, which accounts for 94.4% of

the total variance. All correct and incorrect classifications are summarised in a con-

fusion matrix (table 4.2) and pairwise sensitivities and specificities were calculated

(summarised in table 4.4). Sensitivity and specificity values of 86.8% and 98.6% re-

spectively were achieved for CD4+ T cells and B cells, 97.9% and 98.1% respectively

for CD4+ T cells and monocytes, and finally 98.6% and 98.1% respectively for B cells

and monocytes.

Predicted Predicted Predicted

CD4+ B cell Monocyte

Actual CD4+ 46 1 1

Actual B cell 7 69 1

Actual Monocyte 1 1 51

TABLE 4.2: Confusion matrix summarising the discrimination ability of Raman
spectroscopy for the classification of cell subsets CD4+ T cells, B cells, and mono-
cytes. Values on the diagonal represent those correctly identified and off-diagonal
values represent those incorrectly identified. CD4+ T cells and B cells are most
closely related and can be more difficult to discriminate, this is indicated by the

increased number of incorrect classifications.

It was observed that the B cell and T cell populations are more closely related to

each other than to monocytes. This is implied in the fewer regions of significant dif-

ference highlighted by the student’s t-test, the observation of some confusion in the

scatter plots, and in the lower sensitivity value achieved between B- and T-cell pop-

ulations. The highest discrimination efficiency was achieved between monocytes

and T- or B-cells, as monocytes generated the most distinct Raman signature (as in-

dicated by the PC contributions). This is as expected as T cells and B cells originate

from a common lymphoid progenitor lineage, whereas monocytes originate from a

common myeloid progenitor lineage, as detailed in section 3.1.
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4.5.2 Classification of cell subsets with the use of DHM

Phase maps were generated for each cell from the recorded interference pattern,

following the procedure detailed in section 4.4.4. An example phase map for each

cell type can be seen in figure 4.11 alongside its respective white light image. The

white light images illustrate that monocytes are quite distinct and are much larger

in size than T- or B-cells. T cells and B cells however pose a particular challenge as

they are very similar in terms of morphology. This is often the limiting factor for

identification by techniques such as flow cytometry, which relies on differences in

size and shape to generate different scattering profiles.
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FIGURE 4.11: Top row represents a typical white light image for each of CD4+ T
cell, B cell, and monocyte cell types. The scale bar denotes 5µm. The bottom row
shows the respective phase map for each cell. The intensity shows the phase dif-
ference between the object and reference waves, which is directly proportional to
optical path difference. Colour bar represents phase differences in units of radians.

The phase maps provide a measure of the OPD between the reference and object

waves (equation 4.7) and can therefore be considered a map of the optical thickness

across the cell. Optical thickness is related to both the absolute thickness of the cell

and its intracellular structure. The intracellular structure inherently causes varia-

tions in the refractive index through the cell. Optical path length (OPL) can there-

fore be calculated as the integral of the absolute thickness, s and refractive index, n

variations along a path, p, as shown in equation 4.8.
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OPL =

∫
p
n(s)ds (4.8)

To separate sample thickness from refractive index is non-trivial and would re-

quire a more sophisticated set-up, such as dual wavelength illumination [248, 249],

scanning of the illumination angle [250, 251], or the introduction of phase shifts [252].

For the studies presented here measurement of the optical path length is sufficient

and knowledge of the absolute cell thickness was not necessary.

For subsequent analysis the phase maps were described either in terms of a his-

togram of the pixel intensity values or by four texture parameters. First, a histogram

was generated for each phase map, representing the number of pixels within specific

intensity value ranges. A typical histogram for each of the three cell populations is

shown in figure 4.12. Information may be extracted directly from these histograms

regarding the cell size (the total number of non-zero pixels is equivalent to the 2

dimensional area), maximum OPD (largest pixel intensity value), and the phase vol-

ume (total of all pixel values). With each cell represented by a histogram vector a

training data set was formed on which PCA was conducted. It should be noted that

PCA may also be able to recognize patterns such as how evenly spread the values

are, which is indicative of the uniformity across the phase map.

Scatter plots were produced using the first 3 PCs and can be seen in figure 4.13

A-C. PC1 shows an excellent ability to identify monocytes, which are morphologi-

cally quite different from T- and B-cells. Monocytes are typically larger in size and

thicker, resulting in a larger total OPD and a higher maximum OPD value. This is

consistent with the observations from both white light images (figure 4.11) and the

histogram plots (figure 4.12). Higher order PCs are required to recognise more sub-

tle morphological differences. It is PC3 that has the ability discriminate between the

morphologically similar T cells and B cells, as observed in figure 4.13 B-C.

LOOCV statistics were applied to the full data set to quantify the discrimination

ability of using histograms to represent the DHM images. Excellent sensitivity and

specificity values were obtained and are summarised in table 4.4. Sensitivity and

specificity values of 86.8% and 98.6% respectively were achieved for CD4+ T cells
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FIGURE 4.12: A typical histogram generated from the phase map of a B cell, CD4+
T cell, and monocyte (top to bottom). The range of pixel intensity values are

recorded, which are related to the optical path lengths across a cell.

and B cells, 98.7% and 100% respectively for CD4+ T cells and monocytes, and fi-

nally 100% and 100% respectively for B cells and monocytes. The morphological

similarity of T- and B-cells is reflected in the lower sensitivity and specificity values

obtained in contrast to comparisons with the morphologically distinct monocytes,

where sensitivity and specificity values of up to 100% are achieved.

The observed phase difference between B- and T-cells may be related to differ-

ences in their intracellular composition. Previous studies have investigated morpho-

logical differences between B and T lymphocytes finding variations in the amount

of cytoplasm, stippled chromatin, and nuclear morphology; such as nuclear size,

homogeneity, nuclear folds, thickness of nuclear membrane, and presence or uni-

formity of nucleoli [253, 254]. The most distinctive features reported by Parker et

al were in the nuclear morphology, where B cells frequently have a characteristi-

cally round and regular nucleus with thick nuclear membrane, in contrast to T cells

which typically have a nucleus with deep folds and an irregular configuration, stip-

pled chromatin, and small or absent nucleoli. Additionally B cells often have an
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FIGURE 4.13: Scatter plots using the first three PCs for discrimination between
CD4+ T cells, B cells, and monocytes. The top row (A-C) illustrates the discrimina-
tion ability when analysing DHM phase maps by means of a histogram descriptor
vector. The bottom row (D-F) illustrates the discrimination ability when analysing
DHM phase maps by means of four texture parameters. When employing the his-
togram vector method compared to TA, clusters appear to be more distinct and

show less overlap between T- and B-cell populations.

abundant cytoplasm in comparison to T cells [253].

A second method of analysis was investigated, employing TA to characterise

the phase maps. The four texture parameters calculated were contrast, correlation,

energy, and homogeneity. The average values, and respective standard deviations,

for each of these parameters for each cell type are recorded in table 4.3. Contrast

and energy appear to be the most useful parameters, showing the most variation,

particularly between monocytes and B cells or CD4+ T cells.

A vector made up of these 4 parameter values was generated for each phase

map and PCA was conducted on the new training data set. Scatter plots were gen-

erated using the first 3 PCs (figure 4.13 D-F). Observing the PC loadings revealed

that contrast was the most significant parameter and contributed most to PC1, and

that energy contributed most to PC2. It can be observed in figure 4.13 D and F that

PC2 (relating to energy) plays an important role in discriminating monocytes from

B cells or T cells. The clusters correlating to B- or T-cells however show significant
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Contrast Correlation Energy Homogeneity

CD4+
average 0.0388 0.9971 0.6718 0.9853

std. dev. 0.0091 0.0006 0.0294 0.0012

B cell
average 0.0382 0.9961 0.6619 0.9828

std. dev. 0.0082 0.0015 0.0637 0.0032

Monocyte
average 0.0803 0.9963 0.4121 0.9692

std. dev. 0.0161 0.0008 0.0347 0.0043

TABLE 4.3: Average texture parameters for each cell subset. The most useful pa-
rameters for discrimination appear to be contrast and energy.

overlap and would be very difficult to successfully discriminate between.

PCA and LOOCV was applied to the whole data set and pairwise sensitivity and

specificity values were calculated, which are summarised in table 4.4. Sensitivity

and specificity values of 78% and 62.2% respectively were achieved for CD4+ T cells

and B cells, 98.5% and 97% respectively for CD4+ T cells and monocytes, and finally

100% and 100% respectively for B cells and monocytes. The lower values achieved

between CD4+ T cells and B cells is expected as they are morphologically quite sim-

ilar to each other and their respective clusters in PC space were not well defined. In

this sense analysis by TA does not show as strong a discrimination ability as when

the phase maps were characterised by histograms.

Raman DHM DHM
Spectroscopy Histogram Texture analysis
sens spec sens spec sens spec

% % % % % %

CD4+ v B cell 86.8 98.6 93.8 85.4 78.0 62.2
CD4+ v Monocytes 97.9 98.1 98.7 100 98.5 97.0
B cell v Monocytes 98.6 98.1 100 100 100 100

Average 94.4 98.3 97.5 95.1 92.2 86.4

TABLE 4.4: Summary of sensitivity and specificity values achieved for each
method of analysis. Raman spectroscopy and DHM are each capable of efficiently
discriminating between cell subsets. Phase maps were either described in terms
of a pixel intensity histogram or by four texture parameters; the use of histograms

proved to be more efficient than using texture analysis.

TA was further investigated by calculating the four texture parameters along

four directions (0◦, 45◦, 90◦, 135◦), producing a vector of 16 values for each phase
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map. However this did not show any improvement in the discrimination ability. TA

along different directions is commonly employed for analysing tissue samples where

directional features may be expected. However this is not an expected characteristic

when analysing whole cells, particularly as they are at random orientations on the

quartz slide.

Finally the two vectors (histogram and TA) were concatenated to generate a new

descriptor that contained both OPD and TA information. PCA and LOOCV were

applied to this data set and did not show any significant improvement in comparison

to analysis by the histogram vector alone. It can be concluded that a histogram of

the pixel intensity values is the most efficient method of characterising a phase map

for discrimination between the three cell subsets.

4.5.3 Combining Raman spectroscopy and DHM for discrimination of

cell subsets

DHM and Raman spectroscopy each provide information not available from the

other modality. Combining the two signatures could provide a more complete de-

scription of the cell and may improve the discrimination efficiency. It is therefore of

interest to combine the two data sets for analysis.

Multivariate analysis is commonly utilised with Raman spectra, however DHM

images are typically used for visual analysis. In previous studies combining DHM

and Raman spectroscopy the chemical information from Raman mapping is related

to the phase information from DHM to aid interpretation of cellular composition

and dynamics. Multivariate analysis however is only conducted on Raman spectra

[200, 201]. In the study presented in this chapter DHM images are described using

a histogram of their pixel values, which makes multivariate analysis based on DHM

possible. To combine the Raman and DHM information a method was employed in

which the two vectors were concatenated to provide a new multimodal descriptor

vector for each cell. This provided a new training data set, where each cell was de-

scribed by both its Raman signature and phase information. PCA was conducted

on the new dataset and LOOCV was employed to determine the discrimination effi-

ciency.
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Although the multimodal analysis was successful at identifying each cell subset,

it did not show any significant improvement when compared to treating the two

modalities independently. Sensitivity and specificity values of 81.3% and 88.3% re-

spectively were achieved for CD4+ T cells and B cells, 100% and 100% respectively

for CD4+ T cells and monocytes, and finally 98.6% and 100% respectively for B cells

and monocytes. Interestingly the discrimination ability between monocytes and B-

or T-cells was slightly improved in comparison to Raman spectroscopy alone, but

was less successful at discriminating between the more closely related B and T cells,

when compared to Raman spectroscopy alone. Therefore combining the two data

sets does not appear to offer any advantage as it does not always provide an im-

provement to the discrimination ability.

This result was surprising as it was expected that a more complete description

of the sample should improve the discrimination ability. It would be worth further

investigating the optimum way in which to combine the two data sets, for exam-

ple Ashok et al have employed multivariate analysis on OCT images and Raman

spectra by first calculating the first five PCs of each modality individually and then

combining the PCs from the two datasets for multimodal classification [192]. This

method may offer the advantage of ensuring the most valuable contributions from

each modality are accounted for. It is possible that by combining the two datasets be-

fore PCA that the more subtle morphological differences between B- and T-cells, for

example, contain less variation than noise in the Raman spectra, and would therefore

be contained in higher order PCs and rejected as a component to contribute towards

classification. This may explain why discrimination efficiency was improved be-

tween monocytes and B- or T-cells, as the morphological variations were significant

between these cell subsets, and are therefore more likely to be contained in higher

order PCs of the combined dataset.

4.6 Conclusions

The use of a multimodal system provided a means to independently and simulta-

neously acquire a Raman signature and quantitative phase information from key



96
Chapter 4. Multimodal analysis of immune cell subsets: Raman spectroscopy and

digital holographic microscopy

immune cell subsets CD4+ T cells, B cells, and monocytes. Each method was suc-

cessful at discriminating between all three cell types. Of particular interest is the

discrimination between T- and B-cells which are morphologically very similar but

perform distinct functions in the immune system.

T and B lymphocytes are generally considered morphologically indistinguish-

able due to their similar shape and size. They would normally be discriminated by

flow cytometry where forward scatter (FSC) and side scatter (SSC) is not generally

sufficient for discrimination. Typically cell surface markers such as CD3 and CD4

are used to identify T cells, and CD19 and CD20 are used to identify B cells. This

problem is represented in figure 4.14, where human blood has been analysed by flow

cytometry [255]. The first panel shows FSC v SSC which produces one population

containing both B- and T-cells. They are seen separately only after CD3 and CD19

staining, as illustrated in the second panel. The additional information provided

by holographic phase microscopy, such as information relating to the intracellular

structure as well as morphological shape, was sufficient to discriminate between B

and T cell subsets in a label-free manner and represents a significant advance in this

respect.

FIGURE 4.14: A) Flow cytometry based on FSC and SSC produces a single pop-
ulation (in purple circle) containing both B cells and T cells, which are morpho-
logically very similar. B) They can only by separated after staining for cell surface

markers CD3 and CD19 for T and B cells respectively. Image taken from [255].

Phase maps were generated from the DHM interference pattern and were anal-

ysed via two methods, that is to say either by generating a pixel intensity histogram

or by texture analysis. The most effective method for discrimination was found to

be via the generation of a histogram, in which discrimination was achieved based on

variations in cell size and phase volume, which in turn is related to the cell thickness



4.6. Conclusions 97

and intracellular structure. Although TA was successful at discriminating mono-

cytes from CD4+ T cells and B cells, it was not very effective at discriminating be-

tween the two lymphocyte cell subsets T and B cells.

The laser selected for DHM irradiance has a long coherence length. This has the

benefit of simple alignment and analysis but gives relatively low spatial coherence as

it is more susceptible to parasitic interference [256]. For the discrimination purposes

presented here this simple set-up was sufficient, however it is worth noting that

white light illumination [233, 257] or diode lasers [258] have a shorter coherence

length and can provide higher spatial resolution, which may be of interest for further

applications.

Standard Raman spectroscopy was able to successfully discriminate between the

three cell subsets based on their molecular composition. The main Raman bands

contributing to discrimination were related to the DNA profile, lipid, and protein

content of the cell. One of the main challenges facing the implementation of Raman

spectroscopy in a clinical or research setting is the long acquisition times required

(5 s per cell), which was the main motivation for combining Raman spectroscopy

with a faster modality (DHM interference images were acquired in 10 ms).

The combination of Raman spectroscopy and DHM did not provide an improved

discrimination efficiency in terms of sensitivity and specificity but has four main

benefits which are summarised below:

1. The two modalities validate one other, yielding a more robust analysis

2. Potential to simultaneously acquire both chemical and morphological infor-

mation regarding a sample

3. Analysis is completely label-free

4. DHM boasts a fast acquisition time and may be able to provide a fast initial

screening, allowing Raman spectroscopy to focus on cells of interest for a more

specific molecular analysis.

The final point is of significant interest for future applications with the potential

to provide high throughput rates. This would be a significant advance towards a

label-free technology for the identification of immune cell subsets.
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Relevant Publications

• N. McReynolds, F. G. M. Cooke, M. Chen, S. J. Powis, K. Dholakia, "Multi-

modal discrimination of immune cells using a combination of Raman spec-

troscopy and digital holographic microscopy", (2017) Sci. Rep. 7(11) p.43631

Contributions

I integrated a DHM around a Raman system and optimised for multimodal mea-

surements, with advice from M.C. I wrote the Matlab code to analyse the DHM

images. M.C. and M.M. wrote the PCA code which I modified specific to this study.

I collected and analysed the data. F.G.M.C. and S.J.P. isolated the cell subsets and

performed flow cytometric characterisation.
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5 Monitoring dopamine levels in

SH-SY5Y cells in a label-free manner

5.1 Introduction

In previous chapters Raman spectroscopy and DHM were used for label-free classi-

fication of immune cell subsets. To demonstrate a broader applicability of label-free

methods, and as part of my PhD training, it was decided to expand into the neuro-

science area. This section will introduce a key challenge with respect to modelling

Parkinson’s disease (PD), which may benefit from a label-free method to identify

dopaminergic neurons.

PD is the second most prevalent neurodegenerative disease in the world after

Alzheimer’s, with a predicted prevalence of 9 million people by 2030 [259, 260]. The

most recognisable symptoms of PD are movement related, such as resting tremor,

slow movement, and rigidity.

The basal ganglia are a group of structures found in the brain whose function is

most commonly associated with movement. The substantia nigra par compacta is a

nucleus (collection of neurons) rich in dopaminergic neurons which supplies other

compartments of the basal ganglia with dopamine, and which is critical for smooth

movements. Patients with PD characteristically have low levels of dopamine in the

basal ganglia, caused by death of dopaminergic neurons, including those from the

substantia nigra par compacta. Consequently this leads to motor control problems

[261–263].

PD is most commonly seen in adults over the age of 50. With an ageing popula-

tion there is a real impact on the economy, society, and the friends and carers of the

elderly. Understanding and managing PD is therefore an increasingly important and

challenging aspect of medical practice. The exact pathogenetic mechanisms under-

lying the selective dopaminergic cell loss in PD are still not fully understood [259],

however the interest of the scientific community in PD has grown substantially.
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5.1.1 Raman spectroscopy for the detection of dopaminergic neurons

Dopaminergic neurons are commonly used to model PD in vitro. One of the main

challenges surrounding the research is the difficulty of obtaining pure primary cul-

tures of dopaminergic neurons, that is to say those directly from the brain of a model

organism such as a PD model mouse. Currently to identify dopaminergic neurons

in primary culture it is necessary to fix and stain the cultures with antibodies to

dopaminergic biomarkers, which kills the cells [264]. A label-free technology to

identify dopaminergic cells would be a significant advance. Furthermore, working

with a mixed population leads to ambiguity over any extracted proteins, DNA, or

RNA, where it is unclear if they are from dopaminergic cells or other cells present in

the culture. The label-free nature of Raman spectroscopy, compatibility with biolog-

ical samples, and its high chemical specificity makes it an ideal candidate. The first

goal of this study is to assess the ability of Raman spectroscopy to provide a means

to establish pure cultures of dopaminergic cells in a label-free manner.

5.1.2 Quantitative analysis

Current methods to measure cellular production of dopamine involve taking a sam-

ple of the culture media for analysis of dopamine levels. For example Chiu et al, in

delineating the calcium ion (Ca2+) dependency of dopamine release, recorded the

extracellular concentration of dopamine via cyclic voltammetry [265]. Korecka et

al, in characterising retinoic acid (RA) differentiated SH-SY5Y cells, determined the

dopamine uptake of cells by liquid scintillation counting, after first lysing the cells

in NaOH [266]. For drug analysis dopamine release may also be measured by oxi-

dising dopamine to produce hydrogen peroxide (H2O2). H2O2 levels may then be

measured in the culture media by chemiluminescence [267] or by use of an oxygen

electrode [268]. Not only are these techniques invasive but it is always the extracel-

lular dopamine concentration that is measured. This does not provide information

on what is happening within the cells themselves. The ideal method would involve

a label-free analysis of intracellular dopamine levels in living cells.

Raman spectroscopy can provide a quantitative analysis as peak intensities are

directly related to the concentration of the scattering medium. The second goal of
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this study is therefore to assess the ability of Raman spectroscopy to provide a quan-

titative method of intracellular dopamine detection. There are currently no tech-

nologies to do this and this would therefore be a significant advance.

There are two main applications for quantitative analysis of dopamine levels

within cells; to monitor dopamine production in cells that make it and to measure the

ability of cells to uptake dopamine. In order to reduce symptoms of PD a method to

either increase dopamine synthesis or increase the uptake of the available dopamine

in the striatum is required. To achieve this requires a method of analysing dopamine

levels in living striatal neurons.

The most common treatment for PD is to enhance the production of dopamine

in the basal ganglia. Dopamine itself cannot pass through the protective blood-brain

barrier however Levodopa (L-DOPA), which is a precursor to dopamine neurotrans-

mitters, can. L-DOPA is administered to promote synthesis of dopamine in the

basal ganglia which can improve motor control and alleviate symptoms. There is

some contention surrounding the effectiveness of L-DOPA, where the neuroprotec-

tion versus neurotoxicity of the treatment remains unclear. An improved cell model

for dopamine regulation and drug screening in vitro, or dopaminergic cell implanta-

tion therapy in vivo is crucial to resolving the many unanswered questions regarding

the diagnosis and management of PD [261, 269, 270].

5.1.3 SH-SY5Y cells

SH-SY5Y cells are human neuroblastoma cells which are commonly used for in-vitro

models of neurodegenerative diseases [271, 272]. SH-SY5Y cells express dopaminer-

gic markers such as tyrosine hydroxylase (TH) and dopamine-β-hydroxylase [273,

274] and consequently are commonly used for the study of PD [273, 275].

Various methods to differentiate human neuroblastomas have been reported [276,

277] including protocols to successfully differentiate the SH-SY5Y cell line to viable

human neuronal cultures for modelling human disease [278, 279]. Different meth-

ods can select for specific neuron subtypes such as dopaminergic neurons [266, 275,

280]. One such method is that retinoic acid (RA) induces the expression of TH, which

indicates a dopaminergic neurotransmitter phenotype [281]. TH is the rate-limiting
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enzyme of catecholamine synthesis, from which dopamine is one of the produced

neurotransmitters [282].

In this chapter SH-SY5Y cells will be grown to three differentiation states: un-

differentiated, RA differentiated, and fully differentiated (with cells remaining in

the cell cycle eliminated). The relative dopamine production of each differentiation

state will be assessed by immunocytochemistry of TH. As a first step, the detection

limit for Raman spectroscopy to detect dopamine will be found, and compared to

physiologically relevant concentrations. Further to this the ability to discriminate

between the three differentiation states by Raman spectroscopy will be assessed.

5.2 Methods

5.2.1 Cell culture and differentiation

Passaging cells is a method used to transfer some cells from a previous culture to

fresh growth medium. Cell cultures were maintained in tissue culture grade flasks

and had the culture media (supplemented with 10% fetal calf serum (FCS)) changed

twice per week. The protocol to passage cells is provided in appendix F. Cells were

not used after passage 20.

Before plating, cells were trypsonised and a 10µl aliquot was used to count the

number of cells/ml in the suspension (full details provided in appendixF). This was

then diluted to give approximately 1 × 105 cells per ml. 2 ml was plated into 6-well

cell culture plates for subsequent growth and differentiation.

SH-SY5Y cells were grown to provide three differentiation populations for anal-

ysis; undifferentiated, RA differentiated, and fully differentiated. A detailed proto-

col for establishing these cultures is provided in appendix G. Undifferentiated cells

were plated and grown in 10% FCS and were ready (at about 70% confluence) after

48 hours. RA differentiated cells were established after a further 5 days incubation

in a 1% FCS medium with 10µM RA. Cells were cultured for a further 7 days in a

1% FCS medium with 80µM 5-fdu, a mitotic inhibitor (MI), to achieve a fully differ-

entiated population. RA encourages dopaminergic neuronal growth and the MI acts

to prevent the division of any cells that did not differentiate. The FCS concentration

was reduced while cells were differentiating as they grow slower. By reducing the
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serum concentration from 10% to 1% the SH-SY5Y cells began to develop longer pro-

jections (neurites) characteristic of a neuronal cell. A time-line of the differentiation

procedure is illustrated in figure 5.1. When cells were grown for analysis by west-

ern blot or immunocytochemistry, phenol red was added to the medium as colour

changes can be indicative of any infections (cloudy) or low nutrition (orange). How-

ever when cells were grown for analysis by Raman spectroscopy phenol red was not

used in order to minimise the fluorescence background.

Day 

0      1      2      3      4      5      6      7      8      9      10      11      12      13      14 

Plate cells 
in 10% FCS 

medium 

Add fresh 
1% FCS 

medium 
with RA 

Add fresh 
1% FCS 

medium 
with MI 

Add fresh 
1% FCS 

medium 
with MI 

Undifferentiated 
cells are ready 

RA differentiated 
cells are ready 

Fully 
differentiated 
cells are ready 

FIGURE 5.1: Time-line of the differentiation procedure. Cells were plated on day 0
in 10% FCS growth medium establishing a culture of undifferentiated cells after 48
hours. RA and serum deprivation is used to encourage differentiation of neuronal
SH-SY5Y cells over 5 days. In the final week a mitotic inhibitor is used to establish
a culture of fully differentiated SH-SY5Y cells. (FCS- fetal calf serum, RA- retinoic

acid, MI- mitotic inhibitor.)

Figure 5.2 illustrates the typical morphological appearance of undifferentiated

and fully differentiated SH-SY5Y cells. White light images were taken using a 50X

magnification MO. The undifferentiated cells are characteristically rounder with few

projections, while differentiated cells have many elongated neuritic projections.

B) A) 

FIGURE 5.2: White light images of A) undifferentiated and B) differentiated SH-
SY5Y neuronal cells illustrating typical morphological differences. Undifferenti-
ated cells are typically more rounded with few projections and differentiated cells

have extensive and long projections (highlight by arrow). Scale bars show 5µm
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5.2.2 Immunocytochemistry

Immunocytochemistry (ICC) is a technique commonly used to assess the presence of

a specific protein or antigen in cells. A specific antibody binds to an antigen enabling

it to be visualised and examined under a microscope. In this study ICC was used to

visualise the expression of TH, a dopamine precursor in cultures of SH-SY5Y cells

at the three stages of differentiation: undifferentiated, RA differentiated, and fully

differentiated.

Immunolabelling can be achieved either by direct or indirect methods. Direct

methods would involve the use of an antibody that is directly conjugated to a flu-

orescent tag. An indirect method involves the use of a primary and secondary an-

tibody; in this case the primary antibody is antigen-specific and the secondary an-

tibody is conjugated to a tag and specifically binds to the primary antibody. It can

be impractical to tag every antigen-specific antibody meaning indirect methods can

offer more flexibility, and as a result are more commonly used. Furthermore the in-

direct method has shown to be more sensitive [283] and may provide better signal

amplification, as more tags can attach per antigen [284].

As a first step, the optimum primary antibody concentration was determined

and then ICC was used to assess the proportion of labelled cells in each of the three

differentiation states from three different cell cultures. A detailed description of the

ICC protocol is provided in appendix H, a brief description will also be provided

here.

To determine the optimum primary antibody concentration 5 different concen-

trations were used on undifferentiated cells for a quick comparison. Cells were

grown on 6 coverslips in a 24 well plate for 2 days to achieve the undifferentiated

population (two slides from each of three different cultures). Cells were fixed in for-

malin and washed with PBS. Horse serum block (HSB) was added to block any non-

specific binding, and consequently reduce the background. The primary antibody

TH was added in horse serum block (HSB) in five different concentrations: 1:100,

1:250, 1:500, 1:1000, 1:2000, and a negative control with no primary antibody. This

was left at 4◦ overnight. The secondary antibody (1:200 in HSB), conjugated with

fluorescein isothiocyanate (FITC), was added the following day. DAPI, a fluorescent
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stain which binds strongly to A-T regions of DNA, was also used to visualise the nu-

clei of cells. This acts as a control by indicating the presence of cells. The coverslips

were then mounted on a microscope slide with antifade mountant. Images were ac-

quired on a Zeiss microscope (Zeiss Imager, M2) with a 63X oil objective and CCD

camera (AxioCam ICC 1). An acquisition time of 1200 ms was used for the green

(FITC) channel and 1200 ms for the blue (DAPI) channel. Images were acquired and

overlayed using ZenPro 2012 software.

Once the optimum primary antibody concentration was determined a full ICC

analysis was performed, allowing each of the three cell cultures to grow to the three

differentiation stages. Extra care must be given when transferring coverslips of dif-

ferentiated cells, as they tend to form one layer which can easily slip off the coverslip

if perturbed. Once the slides were prepared they were wrapped in tinfoil and stored

in the freezer until all samples were ready for imaging.

5.2.3 Western Blot

Western blotting, first developed in 1979 [285], is now a routine technique used for

protein analysis. In western blotting gel electrophoresis is used to separate proteins

along a gel, which are then transferred (blotted) onto a second matrix, often a nitro-

cellulose membrane. Antibodies specific to a target protein are added in a similar

fashion to ICC. Again, the indirect method involving a two step primary and sec-

ondary antibody is most commonly used [286, 287]. ICC and western blot are often

used as complimentary techniques as ICC provides spatial information and the elec-

trophoresis step of the western blot can resolve any cross-reactivity of antibodies.

Before a full western blot can be conducted there were two preparation steps: the

optimal concentration for TH antibody was first determined by dot blotting, and the

amount of protein from each sample was calculated by Bradford assay to aid equal

loading.

Dot blotting is a simplified version of a western blot, as proteins are not first sep-

arated by electrophoresis. The whole mixture is instead applied directly to the mem-

brane as a dot. A detailed procedure for western blot and dot blotting is provided in

appendix I. Briefly, for the dot blot optimisation step, SH-SY5Y cells were grown to
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an undifferentiated state. Proteins were extracted and denatured by placing in boil-

ing water. Nitrocellulose membrane was cut into small squares (to fit in a 24 well

plate) and 2.5µl of the protein sample was placed in the centre of the paper. Milk

was used to block non-specific binding and the primary TH antibody was added

in five different concentrations: 1:500, 1:1000, 1:2000, 1:5000, and 1:10000 (diluted in

the milk blocking solution). The secondary antibody, horseradish peroxidase (HRP),

was added at a concentration of 1:10000 in TBS-T (a mixture of tris-buffered saline

and Tween 20). The papers were transferred to a plastic sleeve and a chemilumines-

cent substrate reagent mix was used (Invitrogen) for chemiluminescence detection

of HRP. ChemiDoc-It2 was used as a dark environment for imaging with a cooled

CCD camera. Images were acquired using ’Vision works’ software.

For the western blot, SH-SY5Y cells were cultured in twelve wells; each of three

SH-SY5Y cultures were grown to three differentiation stages with one spare well

each. Protein lysates were collected from each sample, at each stage of differentia-

tion, and stored in the freezer until all samples were ready for analysis. An aliquot of

the extracted protein was used to conduct a Bradford assay. This was used to deter-

mine the protein concentration of each sample and hence calculate the appropriate

loading volume, to ensure equal loadings (30µg) were used for the western blot.

The Bradford assay is based on the absorbance shift of the dye ’Brilliant Blue G’

which turns from brown to blue in the presence of proteins. Standards of bovine

serum albumin (BSA) were used with the following concentrations: 0.01, 0.1, 1, 10

and 100 µg/µl. A trendline was formed and the equation of which was used to de-

termine the protein concentration of the samples from their respective absorbances.

The full method is detailed in appendix I. Briefly, 10µl of the extracted protein and

10µl 1M sodium hydroxide (NaOH) were added to 500µl Bradford reagent (Bril-

liant Blue G dye) in a 96 well plate. NaOH acts to solubilise membrane proteins.

The protein-dye complex causes a shift in the absorption maximum of the dye from

465 to 595 nm. The amount of absorption is proportional to the protein concentra-

tion. Absorbance was read with Biokit BP 800 at 590 nm and results were exported to

Excel. Measurements were made for the five standards and for three differentiation

states of the three separate cultures of SH-SY5Y cells.
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Finally, Western blotting (full method detailed in appendix I) was conducted us-

ing the appropriate loading volumes (as calculated by Bradford’s assay) and the op-

timised primary antibody concentration (as determined by the dot blot). A standard

ladder was used for comparison against the 9 sample channels.

5.2.4 WMRS procedure

Dopamine hydrochloride (Sigma Aldrich) was dissolved in water to give a range

of molarities for analysis by Raman spectroscopy to determine the lower limit of

detection. A well was formed between two quartz slides (SPi Supplies) and a vinyl

spacer of 80µm thickness. 20µl of the dopamine solution was placed in the well for

analysis by Raman spectroscopy.

The Raman spectrometer is as described previously, in section 2.7, providing

150 mW power to the sample plane. WMRS measurements were taken with the

wavelength tuned over a total range of ∆λ = 1 nm. Five spectra were acquired at

five equidistant wavelengths within this range with each single spectrum acquired

for 5 s, giving a total acquisition time of 25 s for a WMRS differential spectrum. The

method of processing WMRS data is detailed in section 2.5 and 2.8.

5.3 TH expression in various stages of SH-SY5Y differentia-

tion

5.3.1 Immunocytochemistry of SH-SY5Y differentiation states

To optimise the TH primary antibody concentration for ICC, five different concentra-

tions were used with undifferentiated cells. Figure 5.3 shows the resulting fluores-

cence images. The optimum concentration was found to be 1 in 500. The strongest

signal can be observed from a concentration of 1 in 200, however this would be a

waste of valuable antibody.

ICC was then performed on the three differentiation stages of SH-SY5Y cells to

determine the proportion of TH labelled cells in each, using a primary antibody

concentration of 1 in 500. Figure 5.4 illustrates a typical image from each of the three

differentiation states. It can be observed that FITC staining is strongest for fully
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1:100 1:200 1:500 

1:1000 1:2000 

10 μm 10 μm 10 μm 

10 μm 10 μm 

FIGURE 5.3: TH antibody optimisation on undifferentiated cells for ICC. Concen-
tration of TH in HSB is given below their respective images. Green signal repre-
sents FITC stainingand blue signal is from nuclear staining with DAPI. The opti-

mum concentration was found to be 1:500. Scale bar shows 10µm.

differentiated cells and weakest for undifferentiated cells. This indicates that cells

successfully differentiate into dopaminergic neuronal cells. TH staining is mostly

observed in the membrane and along processes. These would therefore be ideal

locations from which to collect Raman spectra for the detection of dopamine.

10 μm 10 μm 

A) B) C) 

10 μm 

FIGURE 5.4: TH antibody staining of A) undifferentiated, B) RA differentiated,
and C) fully differentiated SH-SY5Y cells. Green signal represents FITC stain-
ingand blue signal is from nuclear staining with DAPI. Signal was brightest for
fully differentiated population and weakest for undifferentiated cells. TH appears
to be concentrated in the membrane and along processes. Scale bar shows 10µm.

5.3.2 Western blot

A dot blot was used to determine the optimum primary antibody concentration.

Figure 5.5 shows the resulting dot blot images. The brightest response was achieved
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from a primary antibody concentration of 1 in 2000, which was then used for sub-

sequent western blotting. It was observed that higher concentrations gave a very

weak response which can sometimes happen if the antibody concentration is too

high, causing it to use up all the substrate before being detected [288].

        1:500              1:1000            1:2000  1:5000           1:10000 

FIGURE 5.5: Dot blot for TH antibody concentration optimisation in preparation
for western blotting. Five concentrations are applied to proteins extracted from

undifferentiated SH-SY5Y cells. 1 in 2000 gave the optimum response.

The Bradford assay was used to determine the protein concentration in each sam-

ple. The BSA standards produced a trendline with R2 value 0.969 and could there-

fore be used to calculate the protein concentration of each sample. Table 5.1 shows

the volume required to ensure 30µg protein and the total volume in 5X buffer. A

buffer is required to ensure running of the proteins during gel electrophoresis and

equal loadings are important so as not to bias the intensity readings. The total vol-

ume that can be loaded into the channels is 24µl. The spare samples were grown to

a fully differentiated population but appear to be of lower concentration, ie require

greater volumes, therefore the spares were not used for the western blot.

Unfortunately the western blot was not successful, and did not provide a clear

protein ladder for the 9 samples. Many problems can arise during a western blot that

may result in no bands showing, which could be related to the antibody, antigen,

sample degradation, washing steps, temperature fluctuations, or contamination of

the buffer used [287].

5.4 Quantitative detection of dopamine concentration by WMRS

Dopamine hydrochloride was analysed by WMRS at various concentrations. Fig-

ure 5.6 illustrates the mean WMRS spectra acquired for a range of concentrations.
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Sample Volume for 30µg protein Total volume with
µl 5X buffer /µl

Undifferentiated
1 12.7 15.2
2 12.2 14.7
3 9.2 11.1

RA differentiated
1 15.7 18.9
2 14.0 16.8
3 12.4 14.8

Fully differentiated
1 16.7 20.1
2 20.3 24.3
3 17.1 20.6

TABLE 5.1: Protein concentrations from each sample as determined by a Bradford
assay. The middle column represents the volume of each sample containing 30µg
of protein and the final column shows the total loading volume when mixed with

5X buffer.

The main peaks observed may be assigned as follows: C-H out of plane bending

(600 cm−1), asymmetric C-C-C bending (718 cm−1), C-H(2,6) out of plane bending

(756 cm−1), C-H(2,5,6) out of plane bending (793 cm−1), C-C-H bending (953 cm−1),

C-C skeletal stretch (1030 cm−1), stretching of hydrogen bonding C-OH groups

(1160 cm−1), N-H deformation and C-C stretch (1292 cm−1), C-O stretching, C-H

deformation and N-H deformation (1357 cm−1), and C=C stretching from aromatic

rings (1448 and 1613 cm−1) [289, 290]. These peaks correspond with the chemical

structure of dopamine (illustrated in the inset of figure 5.6).

The intensity of the main Raman band at 793 cm−1 was measured, as the peak

to peak intensity, from 5 WMRS spectra for each concentration. The average inten-

sity value was plotted against dopamine concentration, where error bars represent

two standard deviations, as shown in figure 5.7. An R2 value of 0.9934 confirms a

linear relationship, indicating that WMRS may be used to quantitatively measure

dopamine concentration.

Regarding the limit of detection, noise levels were measured as the peak to peak

intensity from various spectral regions in the absence of a WMRS peak. The average

noise value was used to calculate the SNR when compared to the 793 cm−1 peak

intensity. The lowest concentration that was measured was 7 mM which had a SNR

of 6:1. However, physical concentrations of dopamine in the body are extremely
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FIGURE 5.6: WMRS measurements for various concentrations of dopamine hy-
drochloride. Mean WMRS spectra are shown by solid bands and shadowed re-
gions represent standard deviation. Zero crossing points correspond to Raman

peaks. Inset shows chemical structure of dopamine hydrochloride.
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FIGURE 5.7: Relationship between WMRS intensity for the main Raman peak at
793 cm−1. Error bars indicate two standard deviations. An R2 value of 0.9934 was
achieved indicating a linear relationship between peak intensity and dopamine
concentration. WMRS may therefore provide a quantitative analysis of dopamine

concentration. Lowest measurements were made at a concentration of 7 mM.

low; ranging between 0.01 - 1µM in the extracellular fluid for a healthy person, and

in the nanomolar range for patients with PD [291, 292].
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A method to enhance the Raman signal, such as SERS (see section 2.6), could be

employed to increase the signal from dopamine and improve the detection sensitiv-

ity. An et al have previously demonstrated the detection of dopamine by SERS spec-

troscopy, in which dopamine was immobilised on a self-assembled gold nanoparti-

cle (AuNP) substrate. They also reported antigen-dopamine captured by an antibody-

assembled gold surface for SERS detections, reporting a detection limit as low as

1 nM [293]. Furthermore, Huefner et al have employed AuNPs as intracellular probes

in SH-SY5Y cells [294]. Cellular uptake of AuNPs was achieved by incubating the

cells with citrate capped AuNPs at a concentration of 200,000 NPs per cell. The up-

take rate was dependent on incubation time and NP size. As intracellular uptake

occured via endocytosis the intracellular NPs were localised in endocytotic vesicles

such as endosomes and lysosomes. The NPs were thus used as probes to visualise

and track their movements. Functionalised NPs have previously been used to target

intracellular molecules [295, 296], however a prerequisite to intracellular targeting

is to ensure that the NPs can escape the endocytotic vesicles. Considerable efforts

are being made to escape or bypass the endosomes; a review of various passive and

active approaches can be found in [296]. An interesting future study would be to

investigate the use dopamine-targeted AuNPs for intracellular SERS detection of

dopamine levels.

5.5 Discrimination between SH-SY5Y differentiation states

A further important challenge is the identification of closely related cell types in a

label-free manner. It is instructive to explore the ability of Raman spectroscopy to

successfully discriminate between the three differentiation states; undifferentiated,

RA differentiated and fully differentiated, based solely on a Raman signature, which

is the aim of this section. This would find applications in assessing the purity of a

culture, sorting cells in different differentiation states, or to separate neuronal from

non-neuronal cells.



5.5. Discrimination between SH-SY5Y differentiation states 113

5.5.1 Substrate for cell growth and Raman spectroscopy

For ICC analysis SH-SY5Y cells were directly grown and differentiated on a micro-

scope cover slip in a 24 well plate. However glass is typically not used for Raman

measurements due to its high fluorescence background. The first challenge was to

determine a suitable substrate to grow and differentiate SH-SY5Y cells that would

not interfere with the Raman signal.

Cells were initially grown on quartz slides which have low fluorescence prop-

erties. However, it was observed that quartz is non-permissive, i.e. SH-SY5Y cells

were not able to put out processes. Figure 5.8 A-D show example white light mi-

croscopy images of the cells, which have a rounded appearance and no projections.

Caponi et al investigated the Raman spectra of SH-SY5Y cells grown on silicon

and metallic substrates, in comparison to cells adhering on organic polyaniline, par-

ticularly with respect to the adhesion of SH-SY5Y cells on various substrates, and

their respective effects on the biochemical properties, or viability, of cells. It was re-

ported that organic polyaniline not only allowed cell growth but also did not appear

to affect the Raman spectra obtained [297]. Various other extracellular matrices have

been reported for the growth and differentiation of neuronal cells; such as polylysine

[298], polyornithine [299, 300], laminin [301–303], and cell attachment matrix [304].

Polylysine and polyornithine are commonly used to encourage cell adhesion. Cell

attachment matrix or laminin permit a more rapid adhesion, which can provide a

more even distribution of neurons over the whole area, as aggregation may occur

when adhesion is slow [305]. These four coatings were applied to quartz slides to

investigate their effect on cell growth and Raman spectra.

The following steps describe the procedure for the four quartz coatings:

1. Polylysine: Coat quartz with polylysine overnight, remove polylysine and

add PBS immediately, ensuring it does not dry.

2. Polyornithine: Coat quartz with polyornithine for 4 hours (or overnight), re-

move polyornithine and wash three times in dH2O. Leave it to dry

3. Cell attachment matrix: Complete step 2 as above followed by adding a coat

of cell attachment matrix. Leave for 1 hour (up to overnight) then wash in PBS.
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Finally leave in PBS and ensure it does not dry.

4. Laminin: Complete step 2 as above followed by adding a coat of laminin.

Leave for 1 hour (up to overnight) then wash in PBS. Finally leave in PBS and

ensure it does not dry.

The coated quartz slides were covered with PBS and Raman spectra were ac-

quired from slightly above the quartz surface as an initial measure of the background

fluorescence. Each generated a large fluorescence signal although the fourth coating

(polyornithine with laminin) gave the smallest background signal and was therefore

chosen to be used for subsequent SH-SY5Y cell growth. Practically it was very diffi-

cult to work with these slides, as water tension made it difficult to remove the thin

quartz slide from the culture dish without disturbing the cells. This was particularly

problematic for differentiated cell populations, as they tend to form a film, which

can easily fall away when disturbed.

A final option was to use FluoroDishes (World Precision Instruments) which are

cell culture dishes with a flat optical-quality glass bottom (0.17 mm thick), ideal for a

reduced fluorescence background. It was found that the cells grow and differentiate

easily in these culture dishes, and although there is some fluorescence background

from the glass, overall it was a much more practical solution. Figure 5.8 E-H illus-

trate SH-SY5Y cells grown in fluorodishes which show short processes and a flatter

morphology.

A) 

G) E) H) F) 

D) C) B) 

5 μm 5 μm 5 μm 5 μm 

5 μm 5 μm 5 μm 5 μm 

FIGURE 5.8: White light images of SH-SY5Y cells grown on A-D) quartz or E-H)
FluoroDishes. Quartz is non permissive, preventing the cells from putting out pro-
cesses. Cells grown in FluoroDishes have a flatter appearance and short processes,

as expected for neuronal cells. Scale bar shows 5µm
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5.5.2 WMRS measurements

Three different batches of SH-SY5Y cells were each grown in four FluoroDishes, to

achieve the three differentiation stages (and one spare). WMRS was performed on

cells from each dish to determine the ability of Raman spectroscopy to discriminate

between the three differentiation states. In an effort to reduce the background fluo-

rescence cells were grown in a serum free medium (replaced with SR2 supplement)

and without any phenol red indicator dye. The growth medium was replaced with

PBS during Raman measurements.

5.5.3 Characterisation of SH-SY5Y differentiation states by WMRS

WMRS spectra were obtained from approximately 80 cells from each of the three

differentiation states. Raman spectra were analysed in the region of 600−1800 cm−1.

The mean WMRS spectrum for each differentiation state can be seen in figure 5.9.

A point of concern is that the baseline of the WMRS spectra is not zeroed, which

is an artefact of the high fluorescence background. Although WMRS is a useful

tool for suppressing background fluorescence, it is not completely effective in the

presence of a strong fluorescence background. In this case the Raman bands no

longer correspond to the zero crossing points and the presence of fluorescence may

affect the discrimination ability. The data was thus further analysed in two different

manners: by reducing the spectral range for analysis and by employing a third party

background subtraction algorithm.

As a first step spectral analysis was confined to the region of 1000 − 1800 cm−1,

which contains the major Raman peaks whilst having a relatively flat baseline. Data

were then further analysed by PCA and LOOCV. The first three PCs were used to

form scatter plots as seen in figure 5.10 B-E. The first 10 PCs were used to estimate the

discrimination efficiency and pairwise sensitivities and specificities were calculated,

as summarised in table 5.2.

This method of analysis is still quite limited; by reducing the spectral range there

is an accompanying loss of Raman information, which may make discrimination

more challenging. Additionally, the baseline is still not centred about the zero line,
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FIGURE 5.9: WMRS spectra for three differentiation states of SH-SY5Y cells; un-
differentiated, RA differentiated and fully differentiated. The solid line represents
the mean spectrum and shadowed regions represent the standard deviation. The
differential spectra are not centred about the zero line which can be attributed to

the high fluorescence background.

making Raman band assignments challenging. A better method of analysis may be

to utilise a third party background subtraction algorithm.

A background subtraction algorithm [58] (discussed previously in section 4.4.3)

was applied to each spectrum after normalisation. An asymmetric truncated quadratic

polynomial of order 7 gave a good fit to the fluorescence background. That is to say

upon subtraction of the polynomial fit the Raman spectra had a flat baseline (see

figure 5.11 A-B). The background corrected spectra were then used to produce a

zero-centred WMRS differential spectrum. Figure 5.11 C illustrates the mean back-

ground corrected WMRS spectra for each differentiation state. Subsequent treatment

by PCA and LOOCV gave a quantitative estimation of the discrimination ability. PC

scatter plots were produced using the first 3 PCs (figure 5.11 D-G). It was observed

that RA differentiated and undifferentiated cells formed well separated clusters, in-

dicating they may be successfully identified. Interestingly, it was more challenging

to discriminate between the fully differentiated and undifferentiated cell popula-

tions. Sensitivities and specificities were calculated and are summarised in table 5.2.

Regardless of the method of analysis RA differentiated cells formed the most

distinct cluster and some overlap was observed between the clusters representing
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FIGURE 5.10: WMRS spectra are analysed in the region of 1000−1800 cm−1 which
naturally has a flatter baseline, thereby minimising contributions from fluores-
cence. A) Mean spectra for each differentiation state, B-E) scatter plots using the
first 3 PCs. RA differentiated and undifferentiated cells produce the most distinct
clustering, with some overlap between fully differentiated and undifferentiated

populations.

undifferentiated and fully differentiated cell populations. This may be attributed to

the function of RA in a cell, which acts to strip proteins from DNA dictating which

genes to switch on or off, hence controlling the switch between proliferation and

differentiation [306]. Molecular modifications such as chromatin and DNA methy-

lation state also accompany RA exposure [307] and may contribute to producing a

more distinct Raman signature.
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FIGURE 5.11: A background subtraction algorithm was applied to further sup-
press background fluorescence. A) Single Raman spectrum before and B) after
background subtraction. The flat baseline indicates a good polynomial fit. C)
Mean background subtracted WMRS spectra for each differentiation state. The
zero-centred baseline confirms fluorescence suppression. Solid lines represent the
mean spectrum and shadowed regions represent the standard deviation. D-G)
scatter plots produced using the first 3 PCs. Clusters representing undifferenti-
ated and RA differentiated cells are well separated. Some overlap exists between

fully differentiated undifferentiated populations.

Raman peaks can be assigned based on the zero crossing points of the back-

ground corrected WMRS spectra and may be attributed to C-C skeletal modes

(930 cm−1), symmetric ring breathing modes of phenylalanine (1003 cm−1), PO2
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No background Reduced Background
correction range Corrected

sens spec sens spec sens spec
% % % % % %

Undiff V RA diff 86.1 85.1 84.8 76.8 74.7 80.6
Undiff V Fully diff 96.9 78.9 93.3 75.0 88.9 46.7
RA diff V Fully diff 95.0 71.4 93.0 54.6 89.3 63.6

TABLE 5.2: Sensitivity and specificity values achieved for the discrimination of
undifferentiated, RA differentiated, and fully differentiated SH-SY5Y cells.

symmetric stretching from DNA backbone (1095 cm−1), C-C stretch in proteins

(1125 cm−1), Amide III (1253 cm−1), CH2 twisting from lipids, proteins, DNA and

RNA (Guanine and adenine) (1305 and 1340 cm−1), CH2 bending (1450 cm−1), ring

stretching from DNA, RNA (adenine and guanine) and cytochrome c (1578 cm−1),

and C=O and amide I (1656 cm−1) [297].

The large fluorescence can predominantly be attributed to FluoroDishes. The

greatest discrimination efficiency was achieved for the raw data, in which no back-

ground correction was applied (see table 5.2). This implies that the dish to dish

variance introduced by the fluorescence background was sufficient to contribute to

the discrimination ability. Ideally discrimination would be based entirely on the

biochemical composition of the cells, making background subtraction algorithms

necessary. Furthermore the purity of the samples presents a limitation to the dis-

crimination ability as undifferentiated cells can naturally differentiate.

5.6 Mitochondrial response to irradiation

It was observed during experiments that a white intracellular organelle would some-

times move into focus during laser irradiation. These components possess a distinct

and strong Raman signal with two major peaks at 1440 cm−1 and 1659 cm−1. An

example of this intracellular component under white light microscopy and its re-

spective WMRS spectrum is illustrated in figure 5.12.

Mitochondria are dynamic intracellular organelles which play a key role of pro-

ducing energy for cells, consequently influencing metabolism, cell growth, and sur-

vival. Although they are not inherently motile, they make use of microtubule motors

such as kinesins and dyneins to move along cytoskeletal elements [308].
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FIGURE 5.12: White light images of SH-SY5Y cell A) before and B) after irradi-
ation. The white intracellular component that came into focus at the location of
laser irradiation is highlighted by a black arrow. C) WMRS spectrum of the intra-
cellular organelle; two intense peaks can be observed at 1440 cm−1 and 1659 cm−1.

Scale bar represents 5µm

MTT is a yellow tetrazolium salt which is often used as a colorimetric assay. It

is reduced in the mitochondria of metabolically active cells to yield a water insolu-

ble purple formazin crystal [309]. As a first step to understanding this behaviour,

MTT was added to the cells. After waiting 10-15 minutes for the MTT to be ab-

sorbed and undergo oxidation, it was observed to have been adsorbed by the white

organelles, changing their colour to a dark purple. Raman spectra were obtained

from the white components before addition of MTT, from MTT in the cytoplasm,

and from the resulting purple organelles. Raman spectra acquired from the purple

organelle contained peaks characteristic of both MTT and the white organelles thus

confirming MTT absorption and intimating the organelles to be mitochondria.

It is instructive to compare the movement observed due to irradiation against the

natural movements of mitochondria. The distance between MTT dyed mitochon-

dria were measured before and after laser irradiation. Measurements were made in

several positions across the cell; only one spot was irradiated allowing the other lo-

cations to act as a control. For example, two cells are shown in figure 5.13, where the
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location of laser irradiation is highlighted by a red arrow and the other positions are

indicated by green arrows. The distance between the mitochondria were measured

using image J and converted into speed (nm/s). Measurements are summarised in

table 5.3. Mitochondria at the site of irradiation appear to travel an order of magni-

tude faster when compared to other locations in the cell.

R1 G1 
G2 

G3 

R1 

G1 

G2 

A) 

D) 

B) 

C) 

5 μm 5 μm 

5 μm 5 μm 

FIGURE 5.13: White light microscopy images show SH-SY5Y cells with mitochon-
dria labelled with MTT. Mitochondria positions are compared before and after
laser irradiation for two cells in A-B and C-D respectively. Distances were mea-
sured between mitochondria at various locations across the cells. Red arrows
show the position of laser irradiation and green arrows show regions of natural
mitochondrial movement. Red circles in B and D highlight the region where mito-

chondria have moved towards the point of laser irradiation.

Cell 1 Cell 2
Position Speed nm/s Position Speed nm/s

R1 20.0 R1 21.0
G1 6.9 G1 2.9
G2 2.0 G2 3.9
G3 2.9

TABLE 5.3: Speed of mitochondrial movement at various positions across two SH-
SY5Y cells. The position of laser irradiation is indicated by ’R1’ and other control
locations are indicated by ’G#’. Mitochondria at the position of laser irradiation

move approximately an order of magnitude faster.

This is an interesting preliminary study indicating that mitochondria respond to
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laser irradiation in differentiated SH-SY5Y cells. The effect was most commonly ob-

served in fully differentiated cells suggesting there may be a relationship between

mitochondrial response and cell survival ability, or the presence of more cytoskele-

ton. Further studies on this effect are necessary to better understand the relationship.

It would also be interesting to investigate the relationship between mitochondrial

movement and varying laser intensities, wavelengths, and irradiation times. As

MTT forms heavy crystals upon reduction, which may limit mitochondrial move-

ment, a suggested improvement for future studies would be to employ a much

smaller mitochondria label, such as MITO red.

There are several reports on motor proteins transporting mitochondria along mi-

crotubules for long range movements and the actin cytoskeleton anchoring mito-

chondria for short range movements [308, 310, 311], however the motility of mito-

chondria under different light conditions is still relatively unexplored. Islam et al

have conducted a study on the movement of mitochondria in leaf mesophyll cells

under different light conditions, reporting a discernible redistribution of mitochon-

dria under red, green, or blue light illumination [312]. Light is known to be an

important environmental stimuli for plant cells, although the effect of light on mito-

chondrial dynamics in mammalian cells remains an open question.

Mitochondrial distribution is recognised to play an essential role for the viability

of neuronal cells as well as the growth of neuronal axons. It has been observed

that when an axon is actively elongating, mitochondria move preferentially away

from the nucleus (anterograde) and accumulate in the region of the active growth

cone. Mitochondria have attracted the attention of the scientific community due to

their unique metabolic functions and patterns of motility, making their transport and

distributions essential for the structure and function of the neuron [308, 311].

Perhaps more importantly, mitochondria may have possible involvement with

Alzheimers disease, Huntington’s disease, and PD [310]. It has also been reported

that defects in mitochondrial dynamics can lead to neurodegenerative diseases such

as Charcot-Marie-Tooth disease and autosomal dominant optic atrophy [313].

NIR lasers are commonly used with biological samples due to their low absorp-

tion. A variety of studies have demonstrated NIR light interacting with neuronal
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cells to promote axonal growth and nerve regeneration [314–316], which could po-

tentially aid the formation of neural circuits in-vitro, as well as nerve regeneration

in-vivo. In-vitro studies have also indicated that exposure to NIR may defend against

excitotoxicity, oxidative stress, and oxygen-glucose deprivation, conditions similar

to those experienced by neuronal cells during a stroke or neurodegeneration [317–

319]. The underlying molecular and cellular mechanisms of these neuroprotective

interactions however remain poorly understood.

The relationship between mitochondrial dynamics and disease is particularly in-

triguing. The potential ability to control mitochondrial movement with NIR light

could play a role in modelling these conditions to better understand the relation-

ship, and perhaps provide an insight into when and where during development

organisms are sensitive to mitochondrial distribution.

5.7 Conclusion

In this chapter three differentiation states of SH-SY5Y cells were obtained; undiffer-

entiated, RA differentiated, and fully differentiated. The successful differentiation

to a dopaminergic neuronal cell type was demonstrated by ICC detection of TH.

It was shown that WMRS was capable of quantitatively measuring dopamine

concentration, down to 7 mM. This is not sensitive enough for physiologically rel-

evant concentrations, which are as low as nanomolar in PD patients. The use of

dopamine targeted AuNPs could provide a SERS enhancement to improve detec-

tion sensitivity. An interesting future study would be to investigate if SERS could

enable intracellular dopamine detection. The major challenge to overcome, with re-

spect to the use of functionalised NPs as intracellular probes, is to bypass, or escape,

the endosomes during cellular uptake of the NPs.

The ability of WMRS to discriminate between the closely related differentiation

states of SH-SY5Y cells in a label-free manner was assessed. As a first step, a com-

parison was made between various growth substrates on which to grow cells and

obtain Raman spectra. Quartz slides are non permissive and prevented cells from

adhering and putting out processes. Extracellular matrices coating a quartz slide
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did permit cell growth but generated a fluorescence signal and was time consum-

ing. FluoroDishes were found to be the optimum substrate for SH-SY5Y growth and

subsequent Raman analysis. However, due to the large fluorescence background,

WMRS processing alone was not sufficient to suppress the fluorescence and a third

party background subtraction algorithm was also employed.

RA differentiated cells gave the most distinct Raman signature which may be

due to chemical and morphological modifications attributed to RA exposure. As

a result RA differentiated cells generated the most well defined cluster in the PC

scatter plot, achieving a sensitivity and specificity of 74.7% and 80.6% respectively

when compared to undifferentiated cells, and 89.3% and 63.6% respectively when

compared to fully differentiated cells. Fully differentiated cells and undifferentiated

cells were more difficult to discriminate between, achieving a sensitivity value of

88.9% and a specificity of only 46.7%.

An interesting future study may be to discriminate between the SH-SY5Y dif-

ferentiation states using a multimodal approach, such as the combined Raman and

DHM microscope. The morphological differences between undifferentiated and dif-

ferentiated populations may improve the discrimination ability without the need for

exogenous probes. This may prove useful in establishing the purity of cell cultures

or sorting neuronal from non-neuronal cells in a label-free manner.

Finally, an experimental observation showed interesting preliminary results that

mitochondria may respond to laser irradiation. By tracking mitochondrial move-

ment, speeds an order of magnitude greater were recorded at the site of irradiation.

Further studies on this effect are required to better understand the relationship.
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6 Applications for Raman and

fluorescence spectroscopy in the food and

drinks industry

6.1 Introduction

The use of optical spectroscopic methods for the analysis of food and drinks has been

garnering respect and recognition in the industry due to their non-invasive nature

and ability to rapidly characterise a wide range of chemical compounds.

The use of Raman spectroscopy for the food and drinks industry has been pre-

viously discussed in section 2.4. Raman spectroscopy offers the advantage of being

insensitive to water content making it ideal for analysing liquid samples. Addition-

ally there is no need for any specific sample preparation or the addition of chemicals

making it compatible with in-line testing procedures. Raman spectroscopy can offer

detailed chemical information with a rapid acquisition time in comparison to other

commonly used techniques such as GC-MS or HPLC.

Fluorescence spectroscopy is also a useful tool for providing information regard-

ing a samples chemical make-up and its environment. Fluorescence spectroscopy

has previously been used to characterise red wines; successfully identifying wines

according to grape type and region of origin [15]. Fluorescence spectroscopy has also

shown potential for monitoring beer during storage [14] and frying oil deteriora-

tion [320]. The disadvantage is that fluorescence spectroscopy is limited to samples

which possess fluorescence.

Standard Raman spectroscopy is capable of recording both Raman and fluores-

cence information. Although background fluorescence is often considered a nui-

sance in Raman spectroscopy, in the case of characterising food or drink samples it

may actually provide useful information and give a more complete description of

the sample. This could be used as a means for quality checking, monitoring storage

conditions, or detecting adulteration or counterfeiting of food and beverage sub-

stances.
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This chapter will deal with standard Raman spectroscopy, containing both Ra-

man and fluorescence information, for the classification of whisky and extra-virgin

olive oil samples. The detection of adulterants or counterfeited samples is impor-

tant for both the market and food safety. To investigate the compatibility of this

technology with in-field testing the performance of a compact Raman device will be

compared to that of a microfluidic chip or free space system for whisky and olive oil

analysis respectively.

6.2 Compact Raman spectroscopy device

In an effort to make Raman spectroscopy more accessible there is a drive towards

compact, portable Raman spectrometers. The IDRaman mini 2.0 (Ocean Optics)

is a powerful, compact, easy-to-use Raman system. A model was provided by

MSquared Lasers Ltd for use within these studies. Figure 6.1 shows a photograph

of the device, which has dimensions 91 mm x 71 mm x 38 mm.

FIGURE 6.1: Photograph of the IDRaman mini (Ocean Optics) with a sample vial.

A sample vial holding up to 2 ml of liquid may be inserted and a spectrum

rapidly obtained (minimum acquisition time of 10 ms). The system employs a diode

laser of wavelength 785 nm with a line width of 2 cm−1 and stability < 0.1cm−1. The

output power of the laser is 100 mW, providing 50 mW to the sample. The collection

optics have a NA of 0.5 and a working distance of 8 mm. The laser rasters in an or-

bital fashion which has the advantage of a larger effective scanning area, providing
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more efficient collection of Raman signal from an inhomogeneous sample and min-

imising any potential photodamage. A back-illuminated, deep depletion CCD array

is used to detect the collected photons. Raman scattered light may be analysed in

the region of 400 cm−1 - 2300 cm−1 and are obtained with a resolution of approx 18 -

20 cm−1.

6.3 Optical methods for the identification of whisky

6.3.1 Introduction to whisky authentication

Scottish whisky is one of the most important exports for the U.K. with sales con-

tributing around £4 billion a year to the economy [321]. The popularity and price

for genuine scotch whisky has however attracted global counterfeiting, costing the

industry close to £500 million a year. In addition to the cost to the economy, fake

whisky poses a serious health threat. Incorrectly managed distillation processes can

produce high concentrations of methanol. Methanol and other toxic substances such

as ethylene glycol (antifreeze) and isopropyl alcohol are also known to be added as

fortification to some counterfeit alcoholic products [322, 323].

A variety of methods have been explored to assist in the detection of whisky

counterfeits such as mass spectroscopy [324, 325] or infrared spectroscopy [326]. To

move away from laboratory based methods and improve the accessibility for in-

field testing there have been attempts to implement portable analytical devices. One

group reported the use of a handheld device employing UV/visible absorption spec-

troscopy for the authentication of whisky [327]. Previously developed in Dholakia’s

group was an optofluidic chip which successfully identified scotch whisky based

on a Raman and fluorescence signature [53]. The optofluidic chip offers the advan-

tage of requiring small sample volumes (20µl) and short acquisition times of just

2 s. However the sample must be carefully loaded to avoid the introduction of bub-

bles and the chip itself can take several days to manufacture and must be cleaned

between samples.

The compact Raman device (IDRaman mini, Ocean Optics) would be an ideal

candidate for in-field analysis due to its ease of use and portability. The aim of

this section is to compare the performance of the compact Raman device to that of
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the optofluidic chip for classification of various whiskies. Further to this, American

whiskeys such as bourbon, Tenessee, and rye, which are also vulnerable to counter-

feiting [328], will be analysed using the compact Raman device.

6.3.2 Methods

Microfluidic chip

The microfluidic chip is fabricated in PDMS with channels defined by soft-lithography

[53, 329]. Two multimode optical fibres with core sizes of 200µm are embedded in

the chip, acting as the excitation and collection path for Raman signals. They are

positioned at a 90◦ angle to each other to maximise the overlap of excitation and

collection areas whilst minimising the collection of Rayleigh scattered photons. A

further two channels act as the microfluidic pathway for the sample. 20µl of sample

is placed over the sample inlet using a pipette. A syringe is attached to the sample

outlet which acts to pull the sample through into the detection region. It is impor-

tant to ensure that there are no bubbles present in the system before acquiring any

Raman measurements. The optofluidic chip is shown in figure 6.2.

Fibre for 
incident laser 

beam 

Fibre for 
signal 

collection 

Sample 
inlet 

To suction 
syringe 

PDMS chip 

Region of 
signal 
collection 

FIGURE 6.2: Photograph of optofluidic chip for whisky analysis. 20µl of sample is
placed on the sample inlet and drawn into the detection region by a syringe. Two
optical fibres placed at 90◦ act as the excitation and collection channel for Raman

signal.

The sample was excited using a diode laser (Laser2000 (UK) Ltd. with maximum

power 450 mW and wavelength 785 nm) providing 200 mW power to the sample
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plane. Raman photons were collected by a second fibre and delivered to a spec-

trometer (Shamrock SR-303i, Andor Technology) employing a 400 lines/mm grat-

ing and was blazed at 850 nm. Raman photons were detected on a deep-depletion,

back-illuminated and thermoelectrically cooled CCD camera (Newton, Andor Tech-

nology). Spectra were recorded with an acquisition time of 2 s and 25 spectra were

recorded per sample. A microfluidic pump was employed to pull through small

volumes of sample between measurements.

The microfluidic chip was cleaned between different whisky samples by passing

40µl of deionised water through the chip. This rinsing was sufficient to avoid cross

contamination.

Compact Raman device

The compact Raman device is described in detail in section 6.2. 50 mW power was

provided to the sample plane. 2 ml of sample was loaded into a glass vial designed

to fit the device. 25 spectra were recorded for each sample, using the same acqui-

sition time as the microfluidic chip of 2 s. The sample vial was removed between

measurements and reinserted at a random orientation to avoid biasing due to the

shape of sample vial. The vial was thoroughly cleaned and dried before reuse with

a new sample.

Sample preparation

Seven commercially available Scotch whisky brands and their variants were used for

comparing the performance of the microfluidic chip and the compact Raman device.

These were used in three studies comparing

• five 12 year old single malts (Bowmore, Glenfiddich, The Balvenie, Highland

Park and Laphroig)

• different casks of the same brand (MaCallan Gold and Macallan fine oak) and

• various ages of the same brand (Tomintoul 10 years, 16 years, and 33 years).

To further assess the ability of the compact Raman device to classify whiskies, 25

commercially available single malt scotch whisky brands were bought and analysed.
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30 spectra were acquired for each sample with an acquisition time of 2 s. The name

and age of each whisky is detailed in appendix J.

For the classification of American whiskeys 6 commercially available whiskeys

were analysed; 4 of which were bourbons (Buffalo Trace, Evan Wiliams 2003 sin-

gle barrel, Elijah Craig, and Heaven hill), one Tennessee (Jack Daniels) and one rye

(High west).

Data processing

A detailed description of statistical analysis methods used is given in section 2.8.

Specific details of this study will be outlined in this section. Background subtraction

was applied to all spectra; for the microfluidic chip a background spectrum was

recorded from a water filled channel, which was subtracted from all subsequent

data. For the compact device 25 spectra were recorded from an empty vial at random

orientations, the average of these spectra was used as the background spectrum and

was subtracted from all subsequent data.

All spectra were then normalised, according to the area under the curve, to ac-

count for any power fluctuations in the laser. No base-lining or smoothing algo-

rithms were applied to avoid the introduction of any artefacts.

PCA was applied to reduce the dimensionality and scatter plots were produced

using the first 2 PCs. Whisky classification was determined by LOOCV and nearest

neighbour algorithms using the first 3 PCs, which accounted for the majority of the

total variance. Confusion matrices recorded the number of correct and incorrect

classifications allowing pairwise sensitivity and specificity values to be calculated

providing an estimation of the discrimination efficiency.

6.3.3 Results

Classification of whisky samples

The major peaks observed in the Raman spectra correspond to ethanol, in addition

to this there may be contributions from higher order alcohols, esters, and aldehy-

des. The wood of the cask, where whisky is matured, is responsible for extractives

such as tannin and acids. These minor components are known as congeners and are
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responsible for the distinct flavour and colour of a particular whisky. Additionally

caramel may be added to whisky to adapt its colour. The colouring of a whisky

will have an associated fluorescence signature which plays an important role for the

discrimination between brands. As standard Raman spectra are acquired, both a Ra-

man and fluorescence signature is obtained, where each provides useful information

for the discrimination between various whiskies.

As a first step five 12 year old single malt whiskies were analysed using both

the microfluidic chip and the compact Raman device. Scatter plots were produced

using the first 2 PCs as shown in figure 6.3. Distinct clusters formed for each brand

indicating an ability to successfully discriminate between the five whisky brands.

The microfluidic chip and the compact Raman device each provided a sensitivity

and specificity of 100% for all pairwise comparisons.
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FIGURE 6.3: Scatter plots illustrating the discrimination between five 12 year old
single malt Scotch whiskies using A) the microfluidic chip and B) the compact
Raman device. Each provide distinct clustering indicating successful discrimina-
tion. Whiskies 1-5 are Bowmore, Glenfiddich, The Balvenie, Highland Park and

Laphroaig.

The ability to classify the same brand of whisky according to different casks was

also investigated. Two types of Macallan, ’Gold’ and ’Fine oak’, were analysed,

which mature in a sherry cask and American oak bourbon seasoned cask respec-

tively. The difference in the cask alters the congener profile of the whisky and result

in differences between their respective colours, consequently providing different flu-

orescence signatures. The two whiskies produce distinct clusters in the PC scatter

plot as shown in figure 6.4. The microfluidic chip and the compact Raman device

each provided a sensitivity and specificity of 100%.
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FIGURE 6.4: Scatter plots illustrating the discrimination between the same brand
of whisky (MaCallan) matured in two different casks for data obtained on A) the
microfluidic chip and B) the compact Raman device; each provide distinct cluster-

ing indicating successful discrimination.

A further important factor for whisky classification is its age. The maturation

process can alter the congener profile of a whisky and often produces darker coloured

whiskies. This is due to the length of time spent in a wooden barrel; more time gives

the alcohol longer to leach pigments from the wood although this can also depend

on the age of the barrel. Three samples of the same whisky brand with different ages

(Tomintoul: 10, 16, and 33 years) were analysed. In this case the microfluidic chip

provided a better discrimination achieving sensitivities and specificities of 100% for

each pairwise comparison. This is illustrated by the three distinct clusters in the PC

scatter plot (figure 6.5 A). The compact Raman device was successful at identifying

the 10 year old whisky with sensitivity and specificity values of 100% and 100% re-

spectively against the 16 year old whisky, and 96.2% and 100% respectively against

the 33 year old whisky. However it was not able to successfully discriminate be-

tween the 16 and 33 year old whiskies achieving sensitivity and specificity values

of only 53.8% and 52.2% respectively. This is illustrated by the distinct cluster rep-

resenting the 10 year old samples and overlap between clusters representing the 16

and 33 year old whiskies in the PC scatter plot (figure 6.5 B).

25 single malt scotch whiskies (detailed in appendix J) were analysed in order

to expand the library of whiskies which may be classified by the compact Raman

device. Figure 6.6 illustrates the scatter plot produced using the first 2PCs. Dis-

tinct clusters were formed for each brand of whisky, illustrating each generates a
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FIGURE 6.5: Scatter plots illustrating the discrimination between the same brand
of whisky (Tomintoul) with three different ages for data obtained on A) the mi-
crofluidic chip and B) the compact Raman device. The microfluidic chip provides
distinct clustering indicating successful discrimination, whereas there is some con-
fusion between the 16 and 33 year old whiskies when analysed by the compact

device.

distinct fluorescence and Raman signature and may be successfully identified. Pair-

wise comparisons gave an average sensitivity and specificity of 95.9% and 95.9%

respectively.
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FIGURE 6.6: Scatter plot illustrating the ability of the compact Raman device to
discriminate between 25 different brands of single malt scotch whisky. The forma-

tion of distinct clusters indicates successful discrimination.

American whiskey is an important contributor to the U.S. economy and as such

is also vulnerable to counterfeiting. To assess the applicability of this technology for

American whiskeys, data were acquired on the compact Raman device for 6 different

brands of American whiskey including 4 bourbons, 1 Tenessee whiskey and 1 rye.
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The differences between these types of whiskey essentially comes from the grain

mash used and the ageing process. Scotch whisky must be made from malted barley,

aged in an oak cask for a minimum of three years, and must come from Scotland.

Bourbon on the other hand is made from a grain mixture of at least 51% corn and has

no minimum ageing period. Tennessee whiskey is essentially a bourbon but must

be matured for at least two years and come from the state of Tennessee. American

rye whiskey must be made from a grain mixture of at least 51% rye and has no

minimum ageing requirements. Jack Daniels is the Tenessee whiskey used here, it

should be noted that Jack Daniels use a unique charcoal filtering process which will

also influence the spectral signature.

Data were collected and a PC scatter plot was produced (figure 6.7). Separation

of clusters along PC1 shows some correlation to the age of the whiskey; Heaven

hill is a bourbon aged for 4 years and has the smallest PC1 value. Jack Daniels, a

Tennessee whiskey, is also aged for 4 years but has a higher PC1 value, which may

be due to the charcoal filtering process producing a darker colour (often associated

with ageing). Continuing to higher PC1 values is Buffalo Trace, a bourbon aged

between 7 and 9 years. Evan Williams and Elijah Craig are both bourbons aged for

10 and 12 years respectively and have the highest PC1 values. High West is a rye

whiskey which is also aged for 12 years, possessing a high PC1 value but separated

along PC2.

A high discrimination efficiency was achieved; Elijah Craig and Evan Williams

were the most challenging to discriminate between, achieving 100% sensitivity and

90% specificity. This confusion is also observed by some overlap between their re-

spective clusters in the PC scatter plot. This may be expected as they are quite closely

related, both are produced in the Heaven Hill distillery and have similar ages. All

other pairwise comparisons achieved 100% sensitivity and specificity.

Analysis of whisky flavour profile

Variations in the fluorescence spectra of different whiskies may be due to variations

in their respective congener profiles. As it is the congener components that con-

tribute most to the distinct flavour of a whisky, two clusters formed close to each
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FIGURE 6.7: Scatter plot illustrating the discrimination between six brands of
American whiskey. R, T, and B indicate rye, Tennessee, and bourbon whiskeys
respectively. Data were acquired on the compact Raman device and distinct clus-

ters for each brand indicate successful discrimination.

other may share similar aromatic features. It is then conceivable that scatter plots

may be able to predict the taste of a whisky.

Whisky is commonly categorised according to two key sets of variables and may

be plotted on a grid. One variable (often plotted on the horizontal) ranges from light

to rich, and the other (often plotted on the vertical) ranges from delicate to smoky.

The horizontal axis differentiates floral or soft fruits flavours (lighter) from woody

or nutty flavours (richer). The vertical axis is a measure of the whisky’s degree of

’peatiness’. When peat is used to heat and dry the malt, smoke can infuse into the

barley; whether peat is used and for how long gives the whisky varying degrees of

smokiness.

The relationship between the PCs on a scatter plot and a flavour map, where

axes correspond to taste variables, was investigated. A scatter plot of PC1 against

PC3 was qualitatively compared to a flavour map created by David Broom. As a

preliminary study six whiskies, which were also on the flavour map, were analysed

and are labelled as A-F (details in appendix J). Results show that the delicate-smoky

axis correlates with PC3, where smokier whiskies have a larger PC3 value, as seen in

figure 6.8 A-B. Additionally the light-rich tastes appear to correlate with PC1, where

lighter whiskies tend to cluster at higher PC1 values, as seen in figure 6.8 C-D.

This observed correlation indicates that clustering may be achieved according to
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the whisky’s flavour. There is therefore potential that the PC scatter plots can be a

guide to the whisky’s flavour. It would be interesting to follow up this study with a

larger sample population.

6.4 Optical methods for the identification of extra-virgin olive

oil

6.4.1 Introduction to olive oil authentication

There are other substances which would also benefit from a rapid and portable tech-

nology for authentication, one such example is olive oil. Olive oil is an important

part of the Mediterranean diet and is becoming increasingly more popular due its

known associated health benefits. It is produced from the fruit of the Olea tree using

cold press manufacturing methods that do not introduce chemicals or high tempera-

tures which may degrade the oil. Extra-virgin olive oil (EVOO) is the highest quality

of olive oil and must meet very specific standards to be classified as such. EVOO is

thus more expensive than other common edible oils such as vegetable oil. A con-

sequence of this is that EVOOs are often adulterated [330]. It was reported in 2013

that 70% of EVOOs sold are adulterated, i.e. combined with cheaper inferior oils

and sold as genuine EVOO [331]. In some Asian countries this is of significant im-

portance as it poses a real food-safety concern, particularly with regards to the use

of ’gutter oil’ which is produced from waste oil obtained from restaurants, sewers,

and even slaughterhouses [332, 333].

An additional concern for the olive oil industry is quality control; ambient con-

ditions such as temperature, light, and exposure to oxygen play an important role

in the oxidation of olive oil. Oxidation is the key contributor to rancidity and chem-

ical degradation of EVOO. The international olive council (IOC) have established

chemistry standards for the assessment of olive oil quality. Test methods include the

analysis of the free fatty acid (FFA) content, peroxide value, UV absorption at bands

K232 and K268, and testing by a sensory panel [334]. A study in 2011 at the UC Davis

Olive Center revealed that of the five top-selling imported olive oil brands sold in

California, 73% did not meet the IOC standards for EVOO [335]. Storage conditions,
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production, and transportation methods all play an important role in maintaining

the quality of EVOO. It is often during these process that EVOO degrades, even to

the extent that it would no longer qualify as EVOO by the time of purchase. Oxi-

dation is a self-catalytic process which makes the monitoring of changes in the oxi-

dation state of EVOO particularly important. Current methods for analysis require

skilled personnel and laboratory resources that are both costly and time consuming.

Moving towards an inexpensive portable device for analysis could offer the benefit

of rapid, in-field, and affordable testing without the need for extensive laboratory

training.

EVOO has become a major area of interest in the food technology industry, with

research ranging from its health benefits [336–338] to determining geographical ori-

gin [339], as well investigations into adulteration [340] and quality control [335, 341–

343]. Raman spectroscopy has previously been employed for studies regarding olive

oil quality, providing information on the FFA content [49], oxidation [342], and adul-

teration of oils [340, 344].

A further important consideration would be to identify different brands of EVOO

based on its Raman spectrum. This may aid the identification of counterfeit oils,

which is particularly important given the price differential between brands in this

market and the potential health risks of some contaminants. It is instructive to

explore whether Raman spectroscopy or another photonics based approach, such

as fluorescence spectroscopy, can lead to successful discrimination between EVOO

brands.

This section will deal with the identification of five commercially available EVOO

brands using three key approaches:

1. Standard Raman spectroscopy (giving both Raman and fluorescence informa-

tion)

2. WMRS (a solely Raman signature) and

3. Fluorescence spectroscopy alone.

Measurements are taken on both a free space Raman system and the compact

Raman device to investigate the compatibility of Raman spectroscopy with in-field

testing.
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6.4.2 Methods

Standard Raman spectroscopy

Details of the instrumentation used for the Raman spectrometer are provided in sec-

tion 2.7.3. 145 mW power was provided to the sample plane and spectra were ac-

quired over 3 s. Data were analysed in the wavenumber region 800-1800 cm−1.

The compact Raman device was described previously in section 6.2. 50 mW

power was provided to the sample plane. Spectra were recorded with an acquisi-

tion time of 500 ms in the wavenumber region 400-2300 cm−1. No baselining of the

data was performed to minimise artefacts that may otherwise be introduced.

Wavelength modulated Raman spectroscopy

The same free space system was used for WMRS measurements. The wavelength

was tuned over a total range of ∆λ = 1 nm. Five spectra were acquired at equidistant

wavelengths; each single spectrum was acquired for 3 s giving a total acquisition

time of 15 s per WMRS spectrum.

Fluorescence spectroscopy

A simple and relatively portable fluorescence spectrometer was set-up according

to figure 6.9. A blue LED of wavelength 473 nm was focussed into the centre of a

quartz cuvette and a collection lens was positioned at 90◦ to the illumination arm.

The collected signal was coupled into an optical fibre and detected by a USB mini

spectrometer (Ocean Optics). An acquisition time of 500 ms was used.

Sample preparation

Five brands of commercially available certified EVOO were purchased from the su-

permarket; Tesco’s own brand, Napolina, Felippo Berio, Olea Maxima, and Peña de

Martos. All bottles were opened at the same time, resealed, and stored in a dark

space at room temperature (298K).

A sample chamber was prepared for the free space system using two quartz

slides (SPi supplies). A well was constructed by placing a vinyl spacer of thick-

ness 80µm onto one quartz slide. 18µl of EVOO was loaded into the well and the
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L3 

FIGURE 6.9: Schematic of the fluorescence spectrometer (not to scale). A blue
LED is coupled into the sample cuvette using L1: coupling lens. Emitted light
is collected at 90◦ by L2: collection lens, and coupled into a fibre using L3: fibre

coupling lens, before being detected by a mini USB spectrometer.

second quartz slide was used to seal the chamber. The sample was placed on the

microscope stage with the thin quartz slide (0.15-0.18 mm thick) nearest the micro-

scope objective. A total of 25 spectra were recorded for each sample, moving the

slide between each measurement.

The compact Raman device is designed to hold a glass vial with illumination

from underneath. 2 ml of EVOO was loaded into the vial and sealed with a plastic

screw cap. Five different vials were used for each EVOO sample, five spectra were

taken per vial, providing a total of 25 spectra per EVOO sample. The vials were

removed and reinserted to a new position between each measurement. This process

aimed to prevent bias due to the sample vial.

The quartz cuvette used for fluorescence spectroscopy measurements was loaded

with 3 ml of EVOO and sealed with a plastic cap. The cuvette was removed and

inserted to a new position between measurements. The cuvette was thoroughly

washed and dried before a new sample was tested.

Samples were tested for any photobleaching by irradiating continuously for 10

minutes. No signs of signal degradation or burning were observed in the Raman

spectra or fluorescence peak intensity.
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Data processing

A detailed description of the statistical analysis methods used is given in section 2.8

and the method of processing WMRS data to obtain a single differential spectrum is

detailed in section 2.5. Specific details of this study will be outlined in this section.

All spectra were normalised, according to the area under the curve, to account for

any power fluctuations in the laser. A parametric student’s t-test was used with a

significance level of p< 10−10, to highlight regions of significant difference between

the mean spectra of any two EVOO brands.

PCA was applied to the full data set to reduce the dimensionality. The num-

ber of PCs used varies according to the system, in order to optimise the amount of

variability accounted for, whilst minimising the number of PCs for faster processing.

Data taken on the free space system were analysed using the first 4 PCs; for standard

Raman spectroscopy this accounted for 99.7% of the variance, and for WMRS data

this accounted for 94.1% of the variance. Data acquired on the compact device were

analysed using the first 3 PCs which accounted for 97.9% of the variance, and solely

fluorescence data were analysed using the first 4 PCs, which accounted for 77.3% of

the total variance. Figure 6.10 summarises the amount of variance accounted for in

the first 5 PCs for each system.

Scatter plots were produced using the first 3 PCs to visualise trends in the data.

The discrimination efficiency was assessed by means of LOOCV and nearest neigh-

bour algorithm. This was repeated for each spectrum and correct and incorrect

EVOO brand classifications were summarised in a confusion matrix. Sensitivities

and specificities were then calculated in a pairwise manner for each EVOO brand.

Fatty acids and methyl ester analysis

The lipids from each EVOO were analysed using fatty acids and methyl ester (FAME)

analysis by gas chromatography-mass spectroscopy (GC-MS). Lipids were extracted

and FAME analysed for the five brands of EVOO at a two week interval to under-

stand the underlying reason for changes in Raman spectra on different days.

Total lipids were extracted by the method of Bligh and Dyer [345]. Briefly, 100µl

of EVOO was added to 100µl of PBS in a glass tube. 750µl of 1:2 (v/v) chloroform:
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FIGURE 6.10: Scree plot illustrating the proportional variance accounted for the
in the first 5 PCs, for the four systems used for discrimination between EVOO
brands: fluorescence only, compact Raman device, WMRS and standard Raman
spectroscopy on the free space system. Dashed lines represent the cumulative
variance and the solid line represents the individual contributions from each PC.

methanol (CHCl3:MeOH) was added and vortexed. The sample was further agitated

for 10-15 minutes. The sample was made biphasic with the addition of 250µl of

CHCl3. This was vortexed and 250µl of water was added before vortexing again.

Finally, the sample was centrifuged at 1000 g at room temperature for 5 minutes. The

lower organic phase was transferred to a new glass vial and dried under nitrogen

until testing.

Both the organic and inorganic parts underwent Raman analysis to confirm the

changes in Raman peaks were due to changes in the lipids.

Full characterisation and quantification of the fatty acids were conducted by con-

version to the corresponding FAME followed by GC-MS analysis. Briefly, the sam-

ples were spiked with an internal standard fatty acid 17:0 (20µl of 1 mM) and dried

under nitrogen. The fatty acids from the lipids (neutral and phospholipid) were

released by base hydrolysis and converted to methyl esters by adding an ethereal

solution of diazomethane [346].

The FAME products were dissolved in 10-20µl dichloromethane and 1-2µl was

analysed by GC-MS on an Agilent Technologies GC-6890N, MS detector -5973 (Agi-

lent Technologies) with a ZB-five column (30 m x 25 mm x 25 mm, Phenomex), with a
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temperature programme of 70◦C for 10 minutes, followed by a gradient to 220◦C at

5◦C/minute and held at 220◦C for a further 15 minutes. Mass spectra were acquired

from 50-500 amu. The identity of FAMEs was determined by comparison of the re-

tention time and fragmentation pattern with a bacterial FAME standard (Supelco).

6.4.3 Results

Comparison of standard Raman spectroscopy and WMRS for the identification of

EVOO brands

Raman spectra were acquired from five commercially available EVOO brands on

the free space Raman system. Measurements were taken with both standard Ra-

man spectroscopy (no fluorescence suppression) and WMRS (with fluorescence sup-

pression). The Raman peaks observed may be assigned to the following vibra-

tional modes: ν (C-C) (870 cm−1 and 1080 cm−1), in-plane δ(=C-H) deformation in

the unconjugated cis double bond (1266 cm−1), in-phase methylene twisting motion

(1301 cm−1), δ(CH2) (1441 cm−1), ν(c=c) cis (1646 cm−1), and ν(C=O) (1747 cm−1).

These peaks are used to identify unsaturated fatty acids [347], where the major one

in EVOO is oleic acid. These peaks correspond well with those observed by Dong et

al in previous studies regarding olive oil [340].

Standard Raman spectra acquired from the five brands of EVOO are demon-

strated in figure 6.11 A, where the mean spectrum of each brand is shown. A stu-

dent’s t-test was employed to calculate regions of significant difference between two

EVOO brands at a significance level of p<10−10. It can be observed that these regions

of significant difference are due to both Raman peaks and regions of fluorescence

background. The loadings of the first two PCs are visualised spectrally in figure

6.11 B, illustrating the most important contributions towards the variance between

the data sets. It can be observed that Raman peaks around 1266 cm−1, 1301 cm−1,

1441 cm−1, and 1646 cm−1 are key contributors to the first PC, whereas the second

PC also has some fluorescence contribution in the low wavenumber region 800 -

1100 cm−1. Scatter plots were produced using the first three PCs and well defined

clusters were formed for each EVOO brand (figure 6.11 C-F), indicating they may

be successfully identified using standard Raman spectroscopy. LOOCV and nearest
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FIGURE 6.11: A) Standard Raman spectra for five brands of EVOO where solid
lines represent the mean spectrum of each sample and shadowed regions repre-
sent the standard deviation. Grey vertical bars highlight regions of significant
different between EVOO 1 and 2 at a significance level of p<10−10. B) Loadings
for PC1 (red) and PC2 (blue) indicating the Raman peaks that contribute most to
the variance. C-F) Scatter plots produced from the first 3 PCs. Each EVOO brand

forms a well defined cluster indicating they may be successfully identified.

neighbour algorithms were employed to estimate the discrimination efficiency. A

confusion matrix summarising correct and incorrect classifications can be found in

table 6.1. Sensitivity and specificity values of 100% and 100% were achieved for each

pairwise comparison of the five EVOO brands.

WMRS spectra were acquired and the resulting mean differential Raman spec-

trum for each EVOO brand can be seen in figure 6.12 A. With the fluorescence

background suppressed the student’s t-test revealed only Raman peaks as regions
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of significant difference between EVOO brands. This can also be observed in the PC

loadings, represented in figure 6.12 B, which have a flat baseline, indicating there

are no fluorescence contributions to the variance in the first two PCs. The fewer re-

gions of difference between EVOO brands consequently makes discrimination more

challenging. This is reflected in the clustering of data points in the scatter plots (fig-

ure 6.12 C-F) which produce less tightly bound clusters with respect to the standard

Raman spectroscopy data. The discrimination ability of WMRS to identify EVOO

brands was calculated by LOOCV, where correct and incorrect classifications are

summarised by the confusion matrix in table 6.1. The average pairwise sensitivity

and specificity achieved was 97.1% and 99.5% respectively.

Compact Raman device for EVOO identification

Standard Raman spectroscopy measurements were taken on a compact device to

investigate the compatibility of this technique with in-field testing. The mean spec-

trum acquired for each of the five EVOO brands are illustrated in figure 6.13 A. The

Raman peaks corresponding to oleic acid can be observed with a broad fluorescence

background. The first three PC loadings are represented spectrally in figure 6.13 B,

where the most important contributions to variance can be visualised. PC1 contains

information regarding the full Raman spectrum as well as some fluorescence con-

tribution in the region 500-800 cm−1. PC2 contains mostly fluorescence information

with some small contributions from the key Raman peaks. PC3 contains very little

useful information and indeed only accounts for 5% of the total variance across the

whole data set.

Scatter plots were produced using the first three PCs and well defined clusters

can be observed for each EVOO brand (figure 6.13 C-E), which indicates the com-

pact Raman device is capable of successfully identifying various EVOO brands. A

confusion matrix summarising correct and incorrect classifications, as determined

by LOOCV and nearest neighbour algorithms, can be found in table 6.1. An aver-

age pairwise sensitivity and specificity value of 98.4% and 99.6% respectively was

achieved.
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FIGURE 6.12: A) Differential WMRS spectra for five brands of EVOO where zero
crossing points represent Raman peaks. Solid lines represent the mean spectrum
of each sample and shadowed regions represent the standard deviation. Grey ver-
tical bars highlight regions of significant different between EVOO 1 and 2 at a
significance level of p<10−10. B) Loadings for PC1 (red) and PC2 (blue) indicating
the Raman peaks which contribute to the variance. C-F) Scatter plots representing
the first 3 PCs. Each EVOO brand forms a cluster indicating they may be suc-
cessfully identified. The clusters are not as well defined as with standard Raman

spectroscopy.

Fluorescence spectroscopy

The improved discrimination ability for standard Raman spectroscopy over WMRS

suggests that the fluorescence background, although commonly thought of as detri-

mental, actually provides useful information for the identification of various brands

of EVOO. Purely fluorescence spectroscopy measurements were taken to determine

the ability of fluorescence alone to discriminate between EVOO brands. Figure 6.14
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FIGURE 6.13: A) Standard Raman spectra for five brands of EVOO as measured
on the compact Raman device. B) Loadings for the first 3 PCs indicating the con-
tributions to the variance between EVOO brands. C-E) Scatter plots representing
the first 3 PCs. Each EVOO brand forms a well defined cluster indicating the abil-
ity of the compact device to successfully discriminate between various brands of

EVOO.

demonstrates the mean fluorescence spectrum acquired for each EVOO and the scat-

ter plots produced using the first three PCs. Each brand of EVOO forms a well de-

fined cluster, indicating successful identification of various EVOO brands is possible

using a solely fluorescence signal. Pairwise sensitivities and specificities were calcu-

lated to be 100% and 100% for each pairwise comparison of EVOO brands.

Discrimination based on fluorescence alone may be due to a range of factors in-

cluding the fruit itself, environmental factors, and production methods. The colour

of the olive oil can be attributed to various pigments relating to the ripeness of the



148
Chapter 6. Applications for Raman and fluorescence spectroscopy in the food and

drinks industry

Raman shift (cm-1) 

R
am

an
 in

te
n

si
ty

 
(a

.u
.)

 
P

C
2

 

P
C

3
 

P
C

1
 

PC3 PC2 PC1 

EVOO 5 

EVOO 4 

EVOO 3 

EVOO 2 

EVOO 1 

A) B) 

D) E) C) 

Raman shift (cm-1) 

400 600 800 1000 1200 400 600 800 1000 1200 
-5 

200 

0 

5 

X 10-3 

10 
X 104 

-1 

0 

1 

2 

3 

200 

0 

X 10-5 

5 

X 10-5 

-5 0 5 
-4 

0 

4 

-2 

2 

X 10-4 

-2 

0 

-1 

1 

X 10-4 

2 

X 10-4 X 10-4 

-4 0 4 -2 2 -2 0 2 -1 1 
-5 

R
am

an
 in

te
n

si
ty

 
(a

.u
.)

 
FIGURE 6.14: A) Raw data for fluorescence spectra obtained from five brands of
EVOO. B) Normalised data before analysis with PCA. C-E) Scatter plots represent-
ing the first 3 PCs. Each EVOO brand forms a well defined cluster indicating they

may be successfully identified by fluorescence spectroscopy alone.

fruit, the soil, and climate conditions, as well as the extraction and processing pro-

cedures used. Ripe olives, for example, have a higher carotenoid content which

produce a yellow oil, whereas green olives have a high chlorophyll content which

produce a green oil. Chlorophyll and pheophytin promote the production of oxygen

radicals in the presence of light, where oxidation is associated with a yellowing of

the oil. Vivid greens may be associated with the addition of twigs or leaves during

the grinding process [348]. Chlorophyll is also known to be responsible for strong

fluorescence signals at long wavelengths.

6.4.4 Discrimination of EVOO on different days

Discrimination between five EVOO brands was successful across all four platforms.

To have a robust technology suitable for use in the olive oil industry it is crucial

that measurements are robust over time. However, subtle shifts in Raman peak in-

tensities were observed on different days. Figure 6.15 illustrates the drift observed

over nine days. The same trend was noted for all EVOO brands although only three

are shown here for simplicity. This poses a challenge as regular retraining would

be necessary for an effective analysis over time, severely limiting the technology’s

applicability. To overcome this, it is vital to understand the reason for the drift.
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Predicted/
Actual EVOO 1 2 3 4 5

Standard Raman
Spectroscopy

1 25 0 0 0 0
2 0 25 0 0 0
3 0 0 25 0 0
4 0 0 0 25 0
5 0 0 0 0 25

WMRS

1 25 0 0 0 0
2 2 23 0 0 0
3 0 0 24 0 1
4 0 0 3 22 0
5 0 0 2 0 23

Compact device

1 24 1 0 0 0
2 2 23 0 0 0
3 0 0 25 0 0
4 0 2 0 23 0
5 0 0 0 0 25

Fluorescence

1 25 0 0 0 0
2 0 25 0 0 0
3 0 0 25 0 0
4 0 0 0 25 0
5 0 0 0 0 25

TABLE 6.1: Confusion matrices summarising the ability of four methods (standard
Raman spectroscopy on a free space system, WMRS on a free space system, stan-
dard Raman spectroscopy on a compact device, and fluorescence spectroscopy) to
identify five brands of EVOO. Each method shows a good discrimination ability
where values on the diagonal represent correct classifications. Standard Raman
spectroscopy and fluorescence spectroscopy achieved the maximum discrimina-

tion efficiency with no incorrect classifications.

Measurements were acquired every 30 minutes over an 8 hour period for 10 days

whilst simultaneously recording the ambient conditions (room temperature, humid-

ity, and pressure). No correlations were found between fluctuations in the ambient

conditions and drift in the Raman peaks. All spectra were normalised to account for

power fluctuations of the laser and the same trend was observed on both the free

space system and the compact Raman device. This indicates that the origin of the

Raman drift is likely due to a chemical change occurring in the EVOO samples, such

as oxidation.

GC-MS is regarded as the gold standard for measuring such chemical changes.

To better understand the cause of changes occurring in the Raman spectra, lipids
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FIGURE 6.15: Raman data of three EVOO brands (indicated by colours) acquired
on different days (indicated by markers). Subtle changes in Raman peak intensities

result in a continuous drift of data points on a PC scatter plot.

were extracted from each EVOO, on week 3 and week 5 after opening the bottles,

using the method of Bligh and Dyer [345]. A two week time period was chosen to

ensure any changes in EVOO due to oxidation would be observable by GC-MS. The

lipids underwent both Raman spectroscopy on the free space system and GC-MS

FAME analysis.

Raman spectra were acquired from both the organic and non-organic products

to confirm the drift was due to chemical changes in the lipids. The non-organic

part did not show any observable changes in Raman spectra and so are not shown

here. The Raman spectra obtained from lipids on week 3 and week 5 may be seen

in figure 6.16 A. Changes in the Raman peak intensities are detailed in table 6.2. The

most notable change was an increase the Raman peak at 1219 cm−1, corresponding

to C-O-C asymmetric stretching, and a decrease in the Raman peak at 1654 cm−1,

corresponding to C=C double bond, in week 5 compared to week 3. This implies the

possible formation of an epoxide across a double bond (chemical structure shown in

figure 6.18).

Figure 6.16 B-C illustrate the scatter plots using the first three PCs; a similar drift
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FIGURE 6.16: A) Standard Raman spectra obtained from lipids extracted on weeks
3 and 5. Dashed lines show the average recorded spectrum from all five EVOO
brands and shadowed regions indicate the standard deviation. Grey vertical bars
highlight regions of significant difference as calculated by the student’s t-test at a
significance level of p<10−13. Most notably week 3 shows a more intense Raman
band corresponding to C=C and week 5 shows an increase in the Raman band
corresponding to epoxide. B-C) Scatter plots using the first three PCs indicating a

distinct drift between data obtained on week 3 and week 5.

to that noted previously (see figure 6.15) can be observed, indicating the shift is

indeed due to chemical changes in the lipids.

These results correlate with those of the GC-MS FAME analysis. The total ion

traces showing relative abundances of FAMES from one EVOO brand on week 3

and week 5 can be seen in figure 6.17. Note that CX:Y(a,b) represents X total number

of carbons in the fatty acid and Y unsaturated bonds at a position along the chain

represented by a and b. The peak at 39.55 minutes, corresponding to C18:2(9,12)
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Raman shift (cm−1) Change observed Vibrational bond

670 Increased νC-C (aliphatic)

760 Increased νC-C (aliphatic)

1219 Increased C-O-C asymmetric stretching

1740 Increased νC=C

1085 Decreased νC-C

1305 Decreased In-phase methylene twisting

1280 Decreased δ=C-H deformation in cis double bond

1441 Decreased δCH

1684 Decreased c=c cis double bond

TABLE 6.2: Summary of the intensity changes in Raman peaks of lipids extracted
on week 3 to week 5.

(linoleic acid), decreases by 4.1% relative abundance in week 5 compared to week

3. The peak at 43.85 minutes however, increases by 4.2% relative abundance, which

corresponds to C18:1 epoxide species. A complete summary of relative percentage

changes can be seen in table 6.3. Although the ion trace is only shown for one EVOO

brand similar ion traces were recorded for all five EVOOs.

Relative % Week 3 Week 5

C14:0 0.1 0.1

C16:0 17.1 17.3

C16:1 0.5 0.3

Branched C18:0 5.8 5.7

C18:1 (9) 47.4 47.9

C18:1 (12) 2.6 2.5

C18:2 6.3 1.2

C20:0 0.4 0.3

C20:1 (11) 14.5 14.7

C20:1 (14) 0.1 0.1

C20:2 0.6 0.5

C18:1 (Epoxide) 0.1 4.3

TABLE 6.3: Relative abundances of total fatty acids on week 3 and week 5, as
determined by GC-MS FAME analysis.

One of two epoxides can be formed from linoleic acid when the double bond

is attacked by a lipid peroxide radical. The chemical structure for this reaction is

illustrated in figure 6.18. Linoleic acid is present in EVOO in much smaller quantities
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FIGURE 6.17: GC-MS total ion traces showing the relative abundances of FAMES
in EVOO 1 on week 3 (top) and week 5 (bottom). All FAMES were identified by
retention time and fragmentation pattern. Of significance is the reduction in C18:2
(9,12) at 39.55 minutes and the increase in C18:1 (epoxide) at 43.85 minutes from

week 3 to week 5.

             
  

FIGURE 6.18: Chemical structure describing the oxidation of linoleic acid to form
an epoxide. (From top to bottom) Linoleic acid, C18:2 (9,12) can form one of two
epoxides: 12,13-epoxy-9-octadecenoic acid or 9,10-epoxy-12-octadecenoic acid, via

the attack of a double bond by a lipid peroxide radical.
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than oleic acid but oxidises an order of magnitude faster, owing to its additional

double bond.

To overcome the effects that ageing has on the discrimination efficiency, and to

ensure a more robust identification technology, the PCs used for discrimination were

further investigated. The changes due to oxidation on different days were notable

and contributed to the first PC. The remaining PCs however account for very little

variation in the data set. The total number of PCs used for analysis was thus in-

creased to include PCs 2-7 (containing 6.2% of the total variance); this provided the

optimal discrimination efficiency.

The total data set, including Raman spectra obtained on both week 3 and week

5, for all five EVOO brands was analysed using PCs 1-7 (including oxidation infor-

mation) and PCs 2-7 (with oxidation effects suppressed). The resulting confusion

matrices can be found in table 6.4. The average pairwise sensitivity and specificity

values achieved were 99.7% and 98.7% respectively when using PCs 1-7, and 99.7%

and 99.7% respectively when using PCs 2-7.

The shift in Raman spectra caused by oxidation of the EVOO was enough to

cause some confusion between data taken on different days. By careful selection of

PCs used for analysis it was possible to minimise the effects of ageing and improve

the discrimination ability.

Predicted/
Actual EVOO 1 2 3 4 5

PCs 1-7

1 29 1 0 0 0
2 1 26 1 2 0
3 0 0 30 0 0
4 0 0 0 30 0
5 0 0 0 0 30

PCs 2-7

1 29 1 0 0 0
2 1 29 0 0 0
3 0 0 30 0 0
4 0 0 0 30 0
5 0 0 0 0 30

TABLE 6.4: Confusion matrices indicating the ability of Raman spectroscopy to identify five
EVOO brands when data are acquired on different days. Analysis is conducted using PCs
1-7 and with PCs 2-7. PC1 contains information regarding oxidation of EVOO over time
which can cause some confusion in their identification. A better discrimination efficiency

was achieved by discarding the first PC and using PCs 2-7 for analysis.
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6.4.5 Identification of EVOO using paper devices

Paper devices [349] offer various advantages as a diagnostic platform, such as porta-

bility, ease of use, low production cost, and compatibility with various optical tech-

niques. Paper devices are discussed in greater detail in section 7.4.

Paper is naturally suitable for wicking liquid samples by capillary action and

could therefore offer a convenient method for analysing small volumes of EVOO in

the field. In this study filter paper (Whatman No.1) is used to hold small volumes of

EVOO which are then analysed using the compact Raman device.

The filter paper is cut into circles with a diameter of 1 cm and pressed flat at the

bottom of the glass vial. Five background spectra were recorded from the paper,

before any EVOO was added, with an acquisition time of 5 s per spectrum. The vial

was removed and reinserted to a different position between measurements. 7µl of

EVOO was pipetted onto the paper and left to sit for 3 minutes. Twenty spectra were

recorded, each with an acquisition time of 5 s, changing the vial position between

each measurement. Three paper devices were used per EVOO brand. This was

repeated for three different EVOO brands.

The paper itself contains Raman peaks corresponding to cellulose. The position

of the vial can affect the Raman spectrum due to the random orientation of overlap-

ping fibres in the paper. The raster of the laser in the compact device can help to

average out the Raman signal. Nevertheless five background measurements were

made per device to provide an average background spectrum, as seen in figure 6.19

A. This was subtracted from each raw Raman spectrum (figure 6.19 B) to provide a

standard Raman spectrum for subsequent EVOO analysis (figure 6.19 C). The back-

ground subtracted spectra were then used to form a training data set on which PCA

was applied. Scatter plots were produced using the first 3PCs (figure 6.19 D-F).

EVOOs were classified according to LOOCV and nearest neighbour algorithms, cor-

rect and incorrect classifications were summarised in a confusion matrix (table 6.5).

An average sensitivity and specificity of 86.9% and 92.3% was achieved.

There was still some confusion between EVOO brands, indicated by the overlap

of clusters in the PC scatter plot and the incorrect classifications recorded in the

confusion matrix. This could potentially be improved with some consideration to
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FIGURE 6.19: Raman spectra were acquired of EVOO on a paper substrate by the
compact Raman device. A) Typical Raman spectrum of paper alone, B) raw Raman
spectrum of EVOO on paper, and C) background subtracted spectrum of EVOO.
D-F) Scatter plots using the first three PCs for three EVOO brands on paper, three
devices were used for each EVOO represented by different markers ’o’, ’x’ and ’∗’.

Predicted EVOO
Actual EVOO 1 2 3

1 48 10 2
2 19 41 0
3 0 5 55

TABLE 6.5: Confusion matrix summarising correct and incorrect classifications of
three EVOO brands using paper devices.
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the experimental design. For example, the laser in the IDRaman mini has a working

distance of 8 mm. Finding the optimum height at which to place the paper device

may improve the Raman efficiency and consequently improve the discrimination

ability.

Data points correlating to a specific paper device are indicated by different mark-

ers in the PC scatter plot. It can be observed that the individual paper devices can

form distinct clusters, this can be seen most clearly in figure 6.19 D for EVOO brand

3, where the markers are separated along PC2. This suggests that each paper de-

vice generates a unique Raman signature. The variations introduced by the paper

devices are not more significant than the variations between EVOO brands, as sep-

aration occurs within the cluster for a particular brand. This is likely due to the

varying degrees of curling caused by wetting the paper, and could be prevented

through an improved experimental design. An ideal solution would be to have a

device that can hold the paper flat, for example sandwiching the paper device be-

tween two glass slides or 3D printing a clamp designed to fit in the chamber of the

IDRaman mini.

6.5 Conclusion

It has been demonstrated in this chapter that classification of both Scottish and

American whiskies is possible based on their Raman and fluorescence signatures.

Discrimination was based on the ethanol content (Raman peak intensity) and the

colour of the whisky (fluorescence signal). The physical origins of these differences

arise from variations in the grain mixture used, the malting process, the cask used

for maturation, and the age of the whisky.

A high discrimination efficiency was achieved with both the optofluidic chip and

the compact Raman device using small sample volumes (20µl and 2ml respectively)

and a relatively low acquisition time (2 s). These results indicate that there a real po-

tential to integrate this technology to in-field sensing, which may aid the combating

of counterfeit whiskies.

By comparison of the PCs to two key flavour variables on a ’flavour map’, there

appear to be some correlations between PC values and the whisky’s flavour. That
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is to say PC1 correlates to light-rich tastes and PC3 corresponds to delicate-smoky

flavours. It would be interesting to expand this study to a larger sample size to

further explore the relationship.

It has also been demonstrated that it is possible to use either Raman spectroscopy

alone or fluorescence spectroscopy alone for the discrimination of five commercially

available EVOO brands. Each providing discrimination based on different physical

properties of the oil; Raman spectroscopy probes the chemical composition of the oil

and has key peaks corresponding to oleic acid, and fluorescence spectroscopy dis-

criminates between EVOOs based on variations in their colour. Standard Raman

spectroscopy combines both Raman and fluorescence information giving a more

complete description of the samples. Indeed it was observed that standard Raman

spectroscopy provided an improved discrimination efficiency over WMRS.

Standard Raman spectroscopy therefore shows potential for combating the coun-

terfeiting and adulteration of EVOO. An interesting next step would be to intention-

ally adulterate samples of EVOO to test the lowest limit of detection. It would be

of significant interest to employ spatially offset Raman spectroscopy (SORS) [126]

which would obviate the need for opening bottles, creating a truly useful technol-

ogy for in-field analysis.

The key challenge to overcome when implementing this technology is that the

effect of ageing can cause confusion for classification by PCA and would necessitate

frequent retraining, thus limiting its applicability. It has been demonstrated that

the effect of oxidation can be minimised by careful selection of the PCs used for

analysis. This is a promising approach although future studies would be required

on a larger data set, including same brand EVOOs from different years, to account

for variations in weather and soil conditions. Additionally it would be useful to

intentionally strongly oxidise samples, either through exposure to oxygen, light, or

high temperatures and thus test the limits of the ability to suppress the effects of

oxidation on EVOO classification.

It is surprising that Raman spectroscopy is sensitive to oxidation over such short

time periods. The highly sensitive nature of Raman spectroscopy may therefore be

useful for monitoring changes in the oxidation state of EVOO during production,

transportation, and storage to ensure high quality EVOO at the point of sale. The
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compact Raman device gave a high discrimination efficiency achieving an average

sensitivity and specificity of 98.4% and 99.6% respectively. This indicates a real po-

tential to bring this technology to in-field sensing and avoids the need for centralised

laboratories that require highly trained personnel. Furthermore, as neither Raman

spectroscopy nor fluorescence spectroscopy require the use of any additional chem-

icals it would be an ideal technology to integrate into in-line quality testing proce-

dures in the future.

The use of paper devices appears to be a promising candidate for a cheap, dis-

posable, and easy to use analytical substrate compatible with in-field testing and the

compact Raman device. However, further optimisations to the design of the sample

holder are required to improve the discrimination efficiency.
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7 Towards SERS and optical manipulation

with ultrasmooth gold nanoparticles

7.1 Introduction

Previous chapters have discussed that a key challenge concerning high throughput

measurements, is the long acquisition time required for collecting Raman data (25s

per WMRS spectrum). Chapter 4 explores the use of multimodal analysis to over-

come this limitation, however an alternative technique would be enhance the Raman

signal itself, thus permitting shorter acquisition times. The method of SERS can of-

fer signal enhancement, as discussed in section 2.6. SERS is currently an area of

significant interest as it is an attractive tool for sensing and detecting trace amounts

of molecules with high specificity and sensitivity. SERS may therefore also benefit

studies on detection of adulterants in food and drinks substances. However, it has

not yet been established as a routine analytical method, which is most likely due to

low substrate uniformity and poor reproducibility of SERS signal [350]. Recognising

that there are problems with regards to the reproducibility of SERS spectra is the

main motivation for studies presented in this chapter.

The main concern is the reproducibility of the intensity, as opposed to position,

of the Raman bands, as the stokes Raman shift is typically constant [350]. As gold

nanoparticles (AuNPs) are commonly used as SERS substrates, one important con-

sideration is that the electromagnetic (EM) field enhancement has a strong depen-

dence on the size and shape of the NP [99, 351, 352]. To obtain more uniform and

reproducible EFs it is crucial that NPs are synthesised in a controlled manner, such

that the particle size and shape is uniform and reproducible to a high degree. A

method to synthesise ultrasmooth gold nanoparticles (USAuNPs) with improved

monodispersity has recently been demonstrated [353], which may be able to pro-

vide more reproducible SERS scattering.

It is important to note that surface roughness can provide stronger surface-

electron-photon-coupling, leading to an improved EF [93, 101]. Therefore, although

USAuNPs may offer a more reproducible SERS signal, it will be at the cost of signal
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enhancement. Indeed in some situations it may be more desirable to have minimal

signal variation with a less enhanced SERS signal.

USAuNPs may also find use in applications such as optical trapping, which will

be discussed further in section 7.5. The shape of a NP has direct relevance to its

trapping characteristics [354–356]. Monodisperse USAuNPs could therefore provide

a means for more reproducible studies, and a better comparison between theory and

experimental observations for spherical NPs.

In this chapter USAuNPs are synthesised and characterised according to size

distribution and circularity. Following this two potential applications are explored;

SERS and optical trapping.

7.2 Nanoparticle synthesis

USAuNPs were synthesised according to a method based on a cyclic growth

and chemical etching process, as established by Lee et al [353]. In the growth

phase, mono-crystalline polyhedral shapes are formed with corners, which are

isotropically removed by the slow chemical etching processes creating smooth,

spherical AuNPs. The fabrication protocol for USAuNPs is described in full in

Appendix K. Briefly, 20 ml ethylene glycol (Sigma-Aldrich), 0.4 ml pDADMAC

(poly(diallyldimethylamonium chloride) 20% wt in H20, Sigma-Aldrich) and 0.8 ml

of 1 M phosphoric acid (Sigma-Aldrich) were added in a round-bottom flask and

stirred for 2 minutes at room temperature. 0.02 ml of 0.5 M Chloroauric acid

(HAuCl4, Sigma-Aldrich) aqueous solution was added and this was stirred for 15

minutes at room temperature. The flask temperature was then controlled at 195◦C

and continuously stirred for 30 minutes. The reaction was allowed to cool until the

flask was at room temperature and a further 0.005 ml of HAuCl4 was added. The

solution was left stirring at room temperature for 20 hours. The NPs obtained were

then purified by centrifugation and redispersion cycles. The NP solution was cen-

trifuged at 11000 rpm at 5◦C for 20 minutes. The colourless supernatant solution

was then carefully discharged to avoid collecting the precipitated NPs. The solid

obtained was suspended in fresh ethanol and sonicated for 15 minutes. The entire

purification process was repeated two further times.
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7.3 Characterisation of nanoparticles

Two batches of USAuNPs were synthesised to be around 50 nm and 100 nm in diam-

eter. Roughly 200 NPs were randomly selected from each batch and imaged using

a scanning electron microscope (SEM) (Hitachi S-4800, 30 kV), which were used for

subsequent characterisation using MATLAB. NPs of the corresponding size were

purchased from BBI solutions (BBI), which were also imaged and underwent the

same analysis. Fig. 7.1 shows a collection of SEM images comparing USAuNPs to

the commercially available BBI NPs, for particle sizes of 50 nm (A and C) and 100 nm

(B and D). The NPs were characterised in terms of their size distribution and circu-

larity. All the images were batch processed and analysed using MATLAB to compute

the major and minor axis lengths, area, eccentricity, and perimeter of each NP. The

same analysis was carried out using ImageJ for validation, which yielded the same

results.

US 50 nm US 100 nm 

BBI 50 nm BBI 100 nm 

A) 

D) C) 

B) 

FIGURE 7.1: SEM images illustrating USAuNPs of A) 50 nm and B) 100 nm, and
BBI AuNPs of C) 50 nm and D) 100 nm. USAuNPs appear more spherical with

smoother surfaces than BBI NPs. Scale bar shows 200 nm.

7.3.1 Size distribution

Particle size was measured as the major-axis length. The measured length of US-

AuNPs gave an average diameter of 62.5 nm±5.4 nm (2σ) and 103.6 nm±8.6 nm (2σ),

where σ denotes a standard deviation. BBI NPs were characterised in the same
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manner and yielded an average diameter of 60.1 nm ± 6.6 nm (2σ) and 129.7 nm ±

13.1 nm (2σ), respectively. The size distribution was comparable between USAuNPs

and BBI NPs, with σ ≤ 10%. Table 7.1 and figure 7.2 summarise these results.

7.3.2 Circularity

Feret’s diameter, also known as the caliper length, measures the distance between

any two parallel boundaries of an object. Circularity, C is defined as the ratio be-

tween the area expected from the maximum Feret’s Diameter, Fd of the object and

the actual measured area, A of the object. These parameters were measured by Mat-

lab and subsequently used to determine circularity, according to equation 7.1

C =
4A

π F 2
d

. (7.1)

Thus circularity can have a value between one and zero, where one represents a

perfect circle and zero represents a line segment.

Circularity was found to be greater for USAuNPs with 0.94± 0.03 (2σ) for 50 nm

and 0.97± 0.01 (2σ) for 100 nm, compared to 0.86± 0.08 (2σ) and 0.90± 0.12 (2σ) for

the corresponding size of BBI NPs. This implies that BBI NPs deviate from perfect

circularity (C = 1) more than twice that of USAuNPs, which is comparable to that

found by Lee et al [353]. Importantly, the monodispersity of circularity, measured

as σ, is much improved for USAuNPs, which have almost three times narrower cir-

cularity distribution than that of BBI NPs for 50 nm, and twelve times narrower for

100 nm NPs respectively. These results are summarised in table 7.1 and figure 7.2.

US BBI US BBI

(50 nm) (100 nm)

Ave diameter (nm) 62.5 60.1 103.6 129.7

σ (nm) 5.4 6.6 8.6 13.1

Circularity 0.94� 0.86 0.97 � 0.90

σ 0.03� 0.08 0.01 � 0.12

TABLE 7.1: Physical properties of AuNPs: particle size and circularity of US-
AuNPs and BBI NPs.
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FIGURE 7.2: Physical properties of AuNPs. Comparison between US and BBI NPs
of sizes A) 50 nm and B) 100 nm. Data points represent the average value from
approximately 200 NPs and error bars represent 2σ. USAuNPs have a greater
circularity with a narrower σ compared to BBI NPs. US and BBI NPs have a similar

σ in particle diameter.

7.4 Paper based SERS substrates

This section will address the use of AuNP treated paper as a substrate for SERS

studies.

Paper analytical devices are a modern diagnostic platform offering advantages

such as portability, ease of use and fabrication, fast response time, low cost, and

compatibility with various optical techniques. They offer a potential solution to the

ever increasing demand for inexpensive and easy to use point-of-care analytical de-

vices; such technology could aid early disease diagnosis, and find use in monitoring

chronic diseases, environmental monitoring, and food quality control.

Introduced by Whitesides et al in 2007 [349] paper devices are in their early de-

velopmental stages and offer many exciting possibilities. Patterning the paper with

wax printing can produce hydrophilic channels and define detection zones [357].

The use of different detection reagents in multiple test-beds allows simultaneous

analysis of various analytes, such as simultaneous detection of glucose, lactic acid,

and uric acid [358] or measuring protein and glucose levels [349, 359]. Colorimet-

ric assays enable qualitative detection where the unaided eye serves as a detector, as

well as quantitative analysis by light transmission, where point-of-care devices, such

as hand-held colorimeters [360], scanners [361], or mobile phones [362] can serve as
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the detector.

Although these devices show promise to truly realise lab-on-a-chip (as opposed

to chip in a lab) there are a number of limitations, such as poor accuracy and sensi-

tivity [363, 364]. To overcome these challenges, paper based devices have been inte-

grated with other optical techniques such as fluorescence, providing a more specific

analysis for enzyme biomarkers [365], WMRS, with which quantitative detection of

pharamaceuticals at nanomolar concentrations have been reported [366], and SERS

[367–371]. Paper based devices treated with AuNPs have enabled SERS detection of

trace amounts of narcotics, such as heroin and cocaine, with detection limits as low

as 9ng and 15ng respectively [367], where the flexible nature of paper allowed it to

act as a swab. AuNP treated paper may also be functionalised for antibody-antigen

detection for biomedical applications [369]. Furthermore, only small sample vol-

umes are required, as demonstrated by detection of Rhodamine 6G dye for samples

as low as 10 femtomoles of analyte in 1µl sample volume [368].

The performance of AuNP paper as a SERS substrate was assessed by Ngo et al

[370] in comparison to other substrates such as a silcon wafer and hydrophobised

paper. It was reported that after dipping filter paper in a AuNP solution for 24

hours most of the AuNPs where retained in the bulk of the paper. The surface and

z-distribution of AuNPs essentially produced a 3-dimensional multilayer structure,

which proved crucial for amplifying the SERS signal through inter and intralayer

plasmon coupling, effectively creating more "hot spots" and providing an amplified

SERS signal in comparison to the other substrates. A second method of loading the

AuNPs was used to better understand NP distribution on the various substrates; a

1µl droplet of AuNP solution was dropped on paper and silicon. Due to the wicking

nature of paper allowing diffusion and rapid drying of water, and the intertwined

structure of cellulose fibres "freezing" the adsorption state of the AuNPs, a uniform

distribution of AuNPs was observed. In comparison, the nonporous and smooth

nature of silicon wafer caused slower evapouration of water, allowing the AuNP

suspension to concentrate around the edge of the droplet, essentially forming a "cof-

fee ring" distribution. Similar to the silicon, hydrophobised paper took a longer time

to dry and formed a smaller ring, as well as higher levels of NP aggregation. It was

therefore concluded that the AuNPs adsorbed more uniformly on paper giving an
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improved reproducibility of the SERS signal. It is for these reasons that paper was

chosen as the substrate to explore the SERS performance of USAuNPs.

7.4.1 Methods

Paper device production

Whatman no 1 chromatography paper was chosen as it has a well defined, homoge-

neous structure and is pure (98% α-cellulose), thereby minimising the interference

from process components such as polymers or coatings. It is also relatively inexpen-

sive, costing less than 1p per device.

Paper devices were designed in Microsoft PowerPoint and bulk printed onto the

filter paper using a solid wax printer (Xerox ColourQube 8570 DN). Upon heating at

150◦C on a hot plate for 2 minutes, the wax dispersed through the paper creating a

hydrophobic barrier around a circular test-bed of 5mm diameter. The devices were

cut such that a single spot was on each device, with a small border that could be

used for taping to a microscope coverslip. The devices were allowed to cool prior to

use. The process is outlined in figure 7.3.

wax 

1. Design pattern 

2. Print pattern on 
paper with wax 3. Heat at 150˚C 

Wax barrier 
(sideview) 

4. Cut to single 
spots 

FIGURE 7.3: Devices can be designed using Microscoft PowerPoint, in this case
small circles. The devices were then printed on an A4 sheet of Whatman no.1 filter
paper using a solid wax printer. The paper was heated to 150◦C for 2 minutes to
distribute the wax through the paper, creating a wax barrier. The devices were

then cut to single spots for further use.

Procedure to load NPs on paper

AuNPs were loaded onto the paper in three manners: 1 by soaking the paper in

AuNP solution for 24 hours, 2 pipetting a 1µl drop of AuNP solution on the paper,

or 3 pipetting five 1µl drops of AuNP solution on the paper (allowing the paper to
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dry between droplets). The devices were allowed to completely dry before further

use. A comparison of drying in the oven at 46◦C for 2 hours or in vaccuum for 2

hours showed no difference to the SERS performance. Devices were therefore dried

in the oven for convenience. SEM images were acquired from paper devices, pre-

pared in each of the three manners, to assess the dependence of the NP distribution

on the surface of the paper to the loading procedure.

Sample preparation

4-Mercaptobenzoic acid (MBA) was chosen as a test analyte due to its ability to ad-

sorb on the surface of AuNPs [372]. MBA solutions were made in 100 nM and 10 nM

concentrations. A 1µl drop of MBA solution was added to the AuNP treated pa-

per and left to dry for 20 minutes at room temperature. For use with a microscope

stage the paper edges were taped to a microscope coverslide. This had the added

advantage of reducing any curling of the paper that can happen when wet.

Raman spectroscopy set-up

The Raman system has been described previously in section 2.7 and the specifica-

tions to this study are detailed here. The paper structure consists of intertwining

fibres that can cause the background signal to vary from spot to spot. A low NA

objective was therefore used (20X Nikon, 0.5 NA) as a larger field of view can pro-

vide an averaging effect, minimising such variations. The laser power at the sample

plane was reduced to 40 mW to prevent burning of the paper. As SERS signal is fre-

quency dependent, standard Raman spectra (as opposed to WMRS) were acquired.

An acquisition time of 4 seconds per spectrum was used. An air objective was used

and the microscope slide was positioned such that the paper device was towards the

objective, so as to avoid unnecessary reflections from the glass surface.

Three standard Raman spectra were acquired from each of three different loca-

tions on 5 paper devices per MBA concentration.
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7.4.2 Results

NP distribution

SEM images were acquired from AuNP paper devices following the three loading

procedures. It was observed that soaking the paper in AuNP solution for 24 hours

does not provide a uniform distribution; the NPs were focused around air pockets in

the paper and were more likely to form aggregates. One 1µl drop of AuNP solution

did not contain enough NPs and therefore resulted in a sparse distribution, however

with five 1µl drops there was a much more uniform distribution. SEM images for

methods 1 and 3 can be seen in figure 7.4. These results indicate that the process

of rapidly drying the water (as with small volume drops) helps to provide a more

even coverage and prevents the NPs from clustering in air pockets (as with method

1 ). This is comparable to the observations made by Ngo et al [370].

A) B) 

NPs clustering 
in one area 

FIGURE 7.4: SEM images of NP distribution on paper following the loading pro-
cedure of A) soaking in AuNP solution for 24 hours or B) adding five 1µl drops
of AuNP solution. The method of applying droplets provides a more uniform

distribution of NPs.

SERS detection of MBA

Standard Raman spectra were acquired from MBA in the solid state, revealing key

peaks at 814 cm−1, 1103 cm−1, 1191 cm−1, 1297 cm−1, and 1599 cm−1, which can be

seen in figure 7.5 A. The cellulose fibres in paper also have characteristic standard

Raman peaks at 1105 cm−1, 1343 cm−1, and 1386 cm−1 (as shown in figure 7.5 B). A

1µl drop of 100 nM MBA was added to USAuNP treated paper, where devices had

been prepared in each of the three different loading methods. Methods 1 and 2
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did not reveal any MBA SERS signal, as illustrated in figure 7.5 C-D, where only

cellulose Raman peaks were recorded. The final method 3 was successful, and two

intense SERS peaks were observed at 1084 cm−1 and 1591 cm−1 (figure 7.5 E), which

correspond with the literature [372–374]. The peaks may be assigned as CH in-plane

bending and CC stretching respectively.
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FIGURE 7.5: A) Standard Raman spectra of MBA in the solid state and of B) cellu-
lose fibres in paper. 100 nM MBA was loaded onto AuNP treated paper prepared
in three manners where C-E) show typical spectra obtained from devices prepared
in manners 1 - 3 respectively. C-D) 1 - 2 were not successful and show only
Raman scattering from cellulose. E) Illustrates SERS signal from MBA, with two

key peaks at 1084 cm−1 and 1591 cm−1.

In comparison to the AuNP distribution, as observed in figure 7.4, it can be ex-

pected SERS active regions are sparse across devices prepared by methods 1 and

2 . The more uniform distribution of AuNPs following five 1µl drops of AuNP
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solution, effectively provided more SERS hotspots, enabling a SERS signal to be

recorded from MBA.

Reproducibility of SERS signal

Three spectra were acquired from three different locations on each of five devices for

two different concentrations of MBA solution, 100 nM and 10 nM. The average SERS

spectrum and standard deviation for each concentration is illustrated in figure 7.6.

The signal from one specific location was constant and repeatable over time, how-

ever spot to spot variations were significant, even on a single device. This resulted in

a large standard deviation, represented by the shadowed region, around the mean

spectrum.

Observations of the paper devices under white light show dark regions, often at

the crossing point of cellulose fibres, that correspond to SERS active regions. It is

reasonable then to conclude that these are areas of AuNP clusters. It was observed

that stronger SERS signal intensities were recorded at darker regions of the paper.

To demonstrate this point figure 7.6 B-C illustrate two spectra obtained from two

locations on the same device, loaded with 10 nM MBA. When the darker region was

probed (C), a greater SERS signal was recorded. This can be interpreted as varying

numbers of NPs in a region, or the spacing between them, results in a varying SERS

signal.

Spot to spot variations highlight the need for a more uniform distribution and

controlled spacing between NPs. Only once this is addressed can the influence of

NP shape and size variation be assessed. An obvious first step would be to optimise

the NP loading process by using a solution with greater NP concentration or by

loading more AuNP solution droplets on the paper. It would be expected that more

droplets could provide a better coverage and an averaging effect.

Another important consideration is in controlling the spacing between NP ag-

gregates, which can strongly influence the EM field distribution, and consequently

the SERS intensity. Several chemistry solutions to this problem are being developed,

such as planet-satellite assemblies, which can precisely control interparticle gaps

[375], or the use of linker molecules to function as precise rigid spacers [376–378].
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FIGURE 7.6: A) Solid lines represent mean spectra of 10 nM and 100 nM MBA
across locations of five different paper devices. The standard deviation is illus-
trated by the shaded region. It can be seen that spot to spot intensity variations
are more significant than intensity difference of MBA concentration. B-C) Spec-
tra of 10 nM MBA were acquired from two different positions on the same AuNP
treated paper device. Areas of more densely packed NPs appear darker under
white light microscopy and provide a larger SERS enhancement. Consequently

there are spot to spot variations illustrated by B) less NPs and C) more NPs.

After optimisation of the loading procedure, achieving a more uniform particle

distribution and spacing, it would then be interesting to assess the reproducibility of

SERS signals when utilising USAuNPs compared to commercially available AuNPs.

However, there are some additional considerations when comparing USAuNPs to

BBI NPs. For example, they are synthesised in a different manner and consequently

each have different coatings; BBI are citrate coated, while the USAuNPs have a poly-

mer coating. This will affect how the test analyte adsorbs to the NP surface, not

to forget the minimum possible gap size between NP aggregates [379]. Further-

more, BBI NPs are negatively charged whereas the USAuNPs are positively charged,

which may affect how they are distributed about the negatively charged paper.

It should be noted that there are other factors at play that can affect the repro-

ducibility of a SERS signal. As SERS is a near-field effect the EM field distribution
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plays an important role on the SERS intensity reproducibility. Only several regions

of large enhancement (hot-spots) exist around a NP cluster [380]. The position that

the molecule is attached on the metal surface, in relation to the EM field distribution,

can therefore influence the reproducibility of SERS signal, or whether it can produce

a SERS signal at all [381]. Furthermore, the number of molecules adsorbed on the

metallic surface in the detection region, or its orientation to the metallic surface, can

also make it challenging to achieve high uniformity and reproducibility [350, 382].

7.5 Introduction to optical trapping

Lasers are also useful tools for optical manipulation of mesoscopic particles. One

particular type of optical manipulation is known as optical tweezers for optical trap-

ping. Optical trapping was first realised by A. Ashkin in the early 1970s when he

demonstrated that the forces of radiation pressure from a focussed laser beam could

displace and levitate small transparent micrometer sized particles [383]. He later

developed a stable 3-dimensional trap based on counter-propagating laser beams

[384], followed by a single-beam gradient force optical trap [385, 386].

Optical trapping has found a range of applications in both physics and biology,

such as trapping and cooling of atoms [387], manipulation of DNA or live bacteria

[388], the application and measurement of picoNewton level forces, and measure-

ment of displacements in the nanometer range [389]. Beads are commonly used as

handles to probe molecular motors [390] and the elasticity of cells or DNA [391,

392]. Optical tweezers may also be combined with other techniques such as Raman

spectroscopy [393] or cell sorting [394].

The principal of optical trapping is based on radiation pressure forces in a tightly

focussed laser beam. As light rays are refracted through a transparent particle there

is a resulting change in momentum of the light. Consequently, to conserve the mo-

mentum of the whole system (according to Newton’s third law), the momentum of

the particle must also change. Traditionally the resulting optical force is considered

in two components: a scattering force, in the direction of the incident light beam,

and a gradient force, in the direction of the intensity gradient of the beam.
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In the case of trapping a small sphere (with radius much smaller than the wave-

length of the trapping laser) the optical forces can be calculated by treating the par-

ticle as a point dipole [30]. In this approximation the scattering and gradient forces

can be considered separately. The scattering force is due to absorption and reradia-

tion of the light and may be calculated according to equation 7.2

Fscat =
I0σn2

c
(7.2)

where Io is the intensity of the incident light, σ is the scattering cross-section of the

sphere, n2 is the index of refraction of the medium, and c is the speed of light in

vacuum. Upon substitution of the scattering cross-section [30, 395] we get

Fscat =
I0n2

c

128π5r6

3λ4

(
m2 − 1

m2 − 2

)2

(7.3)

wherem is the ratio of the index of refraction of the particle to the index of refraction

of the medium (n1/n2).

When r � λ the external field induces positive and negative charges on the

opposite poles of the sphere. This induces a polarisation of the sphere and a resulting

gradient force, as described in equation 7.4

Fgrad =
2πα

cn2
m

∆Io (7.4)

where α is the polarisability of the sphere given by

α = n2
mr

3m
2 − 1

m2 + 2
(7.5)

The gradient force is proportional to the optical intensity gradient at the focus as

well as the polarisability of the sphere.

An equilibrium point exists, from which any displacement of the particle results

in a restoring force towards that point. The optical trap essentially acts as a Hookean

spring, with a characteristic trap stiffness dependant on the light intensity. These

forces can be used to form a stable 3-dimensional optical trap, as illustrated in figure

7.7.
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FIGURE 7.7: Ray description of the A) gradient forces and B) scattering forces ex-
perienced in an optical trap. Intensity of light rays is represented by line thickness,
refracted ray lines are shown in red, forces on the particle in green, and net forces
in orange. A) When light rays are refracted by the particle, the photons experience
a change in momentum. This is balanced by an equal but opposite force on the
bead, the net force is in the direction of the intensity gradient and slightly down
the z-axis. B) A stable trap requires focused light, producing a 3-dimensional in-
tensity gradient. In this case refraction results in a net force on the particle towards
the focus. Any displacement of the particle away from the focus causes an imbal-

ance of optical forces, returning it to the equilibrium position.

Polystyrene or silica beads are used in the majority of optical trapping studies as

they are highly refractile and may therefore be strongly trapped [396]. As a stable

3-dimensional trap necessitates that the gradient force must overcome the scattering

and absorption forces, metallic objects have generally been considered a poor candi-

date due to the relatively large associated scattering and absorption forces. Dielectric

NPs, however, are generally more challenging to trap (in comparison to larger par-

ticles) as the scattering force scales with r6 and the gradient force scales with the

particle volume (Fgrad ∝ r3) (equations 7.3 - 7.5). Consequently, optical trapping of

NPs becomes governed by the gradient forces in the system, which must be suffi-

cient to overcome Brownian motion.

The gradient force can be enhanced by choosing a material with a large polaris-

ability (equation 7.4), which occurs at certain frequencies for metallic spheres. The
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polarisability of metallic NPs is strongly wavelength-dependent due to the prop-

erty of surface plasmon resonance (the collective oscillations of free electrons excited

with light). As a result optical forces can be significantly enhanced for metallic NPs

at certain wavelengths and enable the, otherwise impossible, trapping of small NPs

[355, 397–399]. It should also be noted that the absorption is also enhanced, which

can come at the price of heating and partially cancel out the effects of an enhanced

gradient force. Svoboda and Block first demonstrated that AuNPs in the Rayleigh

regime (r � λ) may be stably trapped. Due to the much greater polarisability of

gold, trapping forces achieved were 7 times greater for AuNPs when compared to

latex particles of a similar size [400]. The use of smaller sized particles is impor-

tant for the study of biological systems, in order to minimise any interference with

natural dynamics and functions.

Gold possesses several physical and chemical properties which make it an attrac-

tive material for biological applications, for example the inert nature of gold makes it

non-toxic to cells, and AuNPs may be easily functionalised by anchoring thiol link-

ers in their monolayers. AuNPs may therefore be utilised in both therapeutic and

diagnostic applications and have their surface chemically modified to enable cellular

uptake [296, 401]. Other studies include making use of the high absorption coeffi-

cient to use AuNPs as a local heat source [402, 403]. Additionally, a range of studies

exploring fundamental physics have been conducted such as optical binding [404],

trapping in air or vacuum [405], and ultrafast spinning using circularly polarised

light [406].

The morphology of AuNPs is an important consideration. Surface plasmon res-

onances are sensitive to the particle’s shape and can therefore tune its optical prop-

erties [407, 408]. It has also been demonstrated that the shape of a NP has direct

relevance to its trapping characteristics and particle orientation [354–356]. Experi-

mental trapping and theory have experienced some divergence for large NPs when

sphericity is assumed; theoretical calculations predict that AuNPs with d > 170 nm

should not be able to be trapped, although experimental observations demonstrate

trapping of NPs with diameters up to 254 nm [354, 355, 409, 410]. Non-spherical

AuNPs add another element of complexity as they tend to orient with respect to the
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trapping beam propagation and polarisation. Brzobohaty et al propose a coupled-

dipole model which begins to explain the complex behaviour and orientation [354].

Commercially available NPs are virtually always used in trapping studies al-

though they inherently have subtle non-uniformity in shape. More homogeneous

NPs, such as the USAuNPs, may provide a means for more reproducible studies, and

provide a better comparison between theoretical models and experimental trapping

observations for spherical NPs. The use of these USAuNPs in optical trapping stud-

ies is therefore of significant interest and has led to this preliminary study, where

the optical trapping properties of USAuNPs are explored in liquid. Data are also

recorded for the commercially available BBI NPs for comparison.

7.6 Optical trapping of ultrasmooth gold nanoparticles

7.6.1 Experimental set-up

An optical trapping set-up was implemented around an inverted microscope (Nikon,

TE2000) with a high NA microscope objective (Nikon E Plan 100×, NA=1.25 in

oil). A linearly polarised beam of 1070 nm (IPG Laser GmbH, YLM-5-1070-LP, CW,

5 W maximum power) was expanded to overfill the BA of the objective, to obtain

a diffraction limited focal spot at the trapping plane. To avoid significant laser-

induced heating of AuNPs, the optical power used for trapping is maintained as

low as 21.8 mW at the trap, where a modest surface temperature increase of 5.8◦C

was estimated [403]. The power in the trapping plane can be difficult to directly

measure, and was therefore approximated according to the power measured at the

BA (58.8 mW), the transmission of the objective at 1070 nm (58%), and the truncation

of the beam at the BA (≈ 64%).

AuNP samples were prepared in heavy water (deuterium oxide, D2O) to min-

imise laser-induced heating of the surrounding medium by the absorption of the

trapping laser at 1070 nm. 20µl of the colloidal suspension was placed in a chamber,

created using a circular vinyl sticker spacer of 10 mm diameter and 100µm thickness,

and enclosed with type-1 glass coverslips. AuNPs were trapped at an axial distance

of 4− 5µm above the glass substrate to avoid any proximity effects. Care was taken

to ensure no second particle was trapped whilst taking measurements.
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A fast framing CMOS camera (Mikrotron MC1362) was used to acquire images

of back-scattered light from a trapped AuNP at a frame rate of 1100 fps for 2.7 s,

recording 3000 frames in total. Approximately 75 measurements were carried out

for each batch of AuNPs, which were subsequently used to analyse the trap stiffness

based on the equipartition theorem.
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FIGURE 7.8: Schematic of optical trapping system (not to scale). HWP- half-wave
plate, PBS- polarising beam splitter, M-mirror, QWP- quarter wave plate, DM-
dichroic mirror, MO- microscope objective, L- lens. Note that white light was only

used for beam correction and was turned off during recordings.

7.6.2 Video-based position sensing

The position measurement for the trapped AuNPs was determined along the x and y

axes for each frame using a centre-of-mass (COM) tracking algorithm. The key steps

are depicted in figure 7.9. The first step was to subtract the background; videos were

recorded when no NP was trapped as a measure of the background. These were

recorded frequently to account for any laser drift or change in stage height. For each

background video an average frame was calculated, which was then subtracted from

each individual frame of subsequent trapping videos (figure 7.9 B). To further reduce

the noise a Gaussian filter was applied. The Fourier transform was taken (figure 7.9

C) and a Gaussian fit, G was modelled as G= e(−x
2+y2

σ
), where σ is related to the peak

width. The σ value was chosen such that the central frequencies were kept and the

noisy region was rejected (figure 7.9 D). The product of the Fourier transform and the

Gaussian fit was then inverse Fourier transformed, to produce smoother scattering
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rings with reduced background noise (figure 7.9 E). To check the Gaussian fit was

optimised, the Fourier transform was multiplied by (1-G), this enabled visualisation

of the rejected components (figure 7.9 F). Ideally this would not contain any useful

information (from scattering rings) and only display random noise. The optimum

Gaussian filter was found when σ = 500. The COM was then calculated along x and

y, and displayed as a marker over the original image to monitor the NP position in

each frame (figure 7.9 G).
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FIGURE 7.9: A) Raw frame of trapping video where rings represent light scatter-
ing, B) background subtracted frame. C) Fourier transform of B, and D) Gaussian
filter. E) Product of Fourier transform and Gaussian filter was inverse Fourier
transformed to produce smoother rings. F) Visualise rejected components to en-
sure Gaussian filter has not rejected important frequencies. G) COM is calculated
along X and Y of the processed frame (E) and visualised by a marker on the origi-

nal frame, to monitor COM position.

7.6.3 Trap stiffness calculation by equipartition theorem

A position distribution histogram of the 3000 COM data points was built for each

video, which was then used to evaluate the position variance. Equipartition theorem

was then applied to determine the trap stiffness according to equation 7.6

κ = kBT/σ
2
com (7.6)

where κ is the trap stiffness, kB is the Boltzmann constant, T the temperature and

σ2
com denotes the variance of the particle position distribution [411].
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25 AuNPs were trapped for each of USAuNPs and BBI NPs, for NP sizes of 50 nm

and 100 nm. Three videos were recorded for each trapped NP, giving a total of 75

trap stiffness measurements for each sample. The laser was blocked for 45 s between

trapping instances, which was sufficient to allow the NP to leave the trap due to

diffusion. Total intensity was monitored to ensure a second particle did not enter

the trap during measurements.

7.6.4 Results

Fig. 7.10 shows the trap stiffness along the x and y axes, κx and κy respectively, of

USAuNPs and BBI NPs for particle sizes of 50 nm and 100 nm.

FIGURE 7.10: Comparison of trap stiffness measurements between US and BBI
NPs, where κx and κy represent the trap stiffness along the x and y axes respec-
tively. The more spherical USAuNPs exhibit a weaker trap stiffness than BBI NPs.

Data points represent the average trap stiffness and error bars show 2σ.

Despite the differences in the experimental conditions, the average stiffness val-

ues obtained for BBI NPs are comparable (within one order of magnitude) to those

reported in the literature [354, 355].

Notably trap stiffness was found to be much weaker for USAuNPs compared to

BBI NPs. For USAuNPs of 50 nm, for example, κx = 2.9 ± 3.6 pN/µm/W (2σ), com-

pared to κx = 25.7±28.3 pN/µm/W (2σ) for BBI. This can imply that the morphology

of an AuNP strongly affects the trapping forces [354]. Importantly, the variation of

κ measured as its standard deviation, σ is three to eight times smaller for USAuNPs
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compared to that of BBI NPs of the corresponding size (see figure 7.10 and table 7.2

for summary).

US BBI US BBI

(50 nm) (100 nm)

κx (pN/µm/W) 2.9� 25.7 5.9 < 10.1

σ 3.6� 28.3 6.0 ≈ 5.3

κy (pN/µm/W) 3.3� 12.1 5.1� 18.9

σ 4.9 < 10.5 6.7 < 15.0

TABLE 7.2: Trap stiffness of USAuNPs and BBI nanoparticles of 50 nm and 100 nm
in diameter.

Although a limited particle size range and number of AuNPs were considered, a

qualitative agreement was observed with the experimental observations by Hansen

et al and Brzobohatý et al, that stiffness is dependent on the particle size and is

weaker for smaller AuNPs [354, 355]. However, non-spherical AuNPs can exhibit

complex trapping behaviour because they typically orient with respect to the di-

rection of the trapping beam propagation and polarisation, which can cause addi-

tional stiffness to the trap. Indeed for a large non-spherical AuNP (d > 170 nm)

the coupled-dipole theory confirms the longitudinal trapping, which in contrast

does not occur for spherical AuNPs. Our observation that USAuNPs exhibit much

weaker trap stiffness compared to that of commercial AuNPs further validates the

theory (see table 7.2). Supporting this there have been demonstrations [410] that

the excitation of plasmonic resonances can enhance the optical trapping force expe-

rienced by non-spherical NPs, even enabling 3-dimensional trapping of plasmonic

NPs with a low NA microscope objective [356, 407, 408].

Importantly, the variation of stiffness, σ is typically smaller for USAuNPs due

to the monodispersity in circularity compared to BBI NPs (see table 7.1). This may

enable more reproducible force measurements, and a reliable means to compare the-

oretical predictions and experimental observations for trapping of spherical NPs.

Further, for a spherical AuNP the lateral stiffness and its variation, σ along the x

and y axes are expected to be comparable, as there is no preferential particle orien-

tation, which is indeed the case for USAuNPs. On the other hand, BBI NPs exhibit

a much higher trap stiffness with a larger σ on one axis compared to the other. This



7.7. Conclusions 181

further suggests that non-spherical AuNPs tend to align with the direction of polar-

isation of light and hence experience a different trapping force along that axis [354].

It should be noted that the lateral stiffness along these axes is also dependent on

the trapping light field, which is often asymmetric due to a high NA microscope

objective.

As discussed by Seol et al, laser-induced heating of trapped AuNPs can affect

the trap stiffness measurement, as the equipartition theorem does not account for

temperature increase with an accompanying decrease in viscosity of the surround-

ing water. To avoid such a problem a relatively low trapping power of 21.8 mW

was used at the sample plane, causing a modest temperature increase of 5.8◦C [403].

Thus the hydrodynamic effect on trap stiffness due to non-uniform viscosity around

the trapped particle is minimised at this temperature. However, it would be intrigu-

ing to investigate how an USAuNP changes its light absorption, and consequently

its hydrodynamic behaviour, compared to non-spherical AuNPs [412, 413]. To en-

sure measurements are robust to heating, it would be of benefit to check for agree-

ment between trap stiffness values obtained by equipartition and power spectrum

methods.

7.7 Conclusions

USAuNPs of 50 nm and 100 nm diameter were synthesised and characterised. They

demonstrated a much improved circularity of 0.97 ± 0.01 (2σ), in comparison to

0.90± 0.12 (2σ) for conventional AuNPs.

A preliminary study of loading the NPs on paper devices demonstrated that it

was possible to obtain a SERS signal for MBA. However, spot to spot variations

were caused by a non-uniform distribution of NPs across the paper. The next steps

would be to optimise the NP loading procedure, so as to obtain a more even NP

distribution, and to control the spacing between NP aggregates. Generating a more

reproducible SERS substrate is crucial for the integration of this powerful technique

to a wide range of applications. The uniform USAuNPs may offer the ability to

minimise SERS signal variations caused by inhomogeneities in NP size and shape.
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Further to this, the first optical manipulation of USAuNPs was demonstrated,

yielding a lower trap stiffness with a smaller standard deviation than that of con-

ventional AuNPs. This observation supports the theoretical predictions and high-

lights the sensitivity of the optical trapping parameters of AuNPs to their morphol-

ogy. The use of USAuNPs should allow a better comparison between theory and

experiment where future studies would include investigating the effects of heating

by comparison to power spectrum methods, trapping in air or vacuum, or rotation

with circularly polarised light.
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8 Conclusion and future outlook

8.1 Summary of the thesis

The work presented in this thesis focuses on Raman spectroscopy for applications in

biomedicine and the food and drinks industry. The high chemical specificity of this

technique alongside its non-invasive, label-free nature makes it an ideal candidate

for use in these fields. The main limitation of Raman spectroscopy is its inherently

weak Raman scattering, which either limits the SNR or necessitates long acquisition

times. Various techniques to overcome this limitation were explored such as WMRS,

SERS, or combination with a complementary optical technique for multimodal anal-

ysis, such as Raman spectroscopy with DHM or fluorescence spectroscopy.

Chapter 2 introduces the basics of Raman spectroscopy and its relevance in the

fields of biomedicine and the food and drinks industry. A discussion is provided

on methods for fluorescence suppression, with particular focus on the method of

WMRS. The basic principle of SERS is discussed, followed by a detailed description

of the construction of a free space Raman spectrometer. Finally, an overview of the

post processing methods used throughout the thesis is provided.

Chapter 3 explored the use of WMRS to discriminate between key immune cell

subsets. Monitoring the numbers of immune cell populations can indicate the pres-

ence of infection or inflammation, and monitor the body’s response to drugs or ther-

apy. It was demonstrated that WMRS may be used to discriminate between the

closely related immune cell types CD8+ T cells, CD4+ T cells, NK cells, B cells,

monocytes, and dendritic cell subsets mDC and pDC, with a high discrimination

efficiency. Importantly, no inter-donor variability was observed, which is a step to-

wards a label-free haemograph which would find use in both a clinical and research

environment.

The main limitation for such a technology is the relatively long acquisition time

required. Chapter 4 therefore deals with the combination of Raman spectroscopy

with DHM, a fast imaging modality. Construction of the multimodal system was

outlined, and simultaneous acquisition of Raman spectra and DHM phase images
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was demonstrated; obtaining both chemical and morphological information on im-

mune cell subsets: B cells, CD4+ T cells, and monocytes. Each modality was consid-

ered individually and in combination, where each was capable of providing a high

discrimination ability. The two modalities may therefore be used as a means of val-

idation against each other and to provide complementary information regarding a

sample. Importantly, the rapid acquisition rates of DHM offers potential for high

throughput screening, making the technology more clinically applicable.

Following this, chapter 5 expanded to demonstrate the applicability of label-free

methods in neuroscience. Obtaining pure cultures of dopaminergic primary neu-

ronal cells, in a label-free manner, would be a significant advance for modelling PD.

WMRS was successfully able to quantitatively detect dopamine, however the limit

of detection was not sensitive enough for physiologically relevant concentrations.

SH-SY5Y cells may be differentiated into dopaminergic neuronal cells and are com-

monly used to study PD. The feasibility of using WMRS to discriminate between

various differentiation states of SH-SY5Y cells was assessed. It was observed that

RA differentiated cells had a distinct signature, although specificity was poor be-

tween undifferentiated and fully differentiated cells.

The food and drinks industry also benefits from the development of label-free

technology, particularly when considering in-field analysis. One of the key chal-

lenges facing the whisky and the olive oil industry is the counterfeiting or adulter-

ation of samples. Although background fluorescence is usually detrimental to Ra-

man spectroscopy, studies presented in chapter 6 demonstrate that it also contains

useful information regarding a sample. The combined Raman and fluorescence sig-

nal was successfully employed to identify various whisky and EVOO brands. The

performance of a compact Raman device was compared to that of a free space sys-

tem, and also demonstrated a high discrimination ability, indicating its potential for

use in the field. A key challenge addressed was that oxidation of EVOO can cause

confusion for classification by PCA. It was demonstrated that effects of ageing can

be minimised by careful selection of the PCs used for analysis. Furthermore, it was

demonstrated that paper offers potential as a cheap, disposable substrate for sample

analysis and is compatible with the compact Raman device.

SERS is a promising enhancement technique with potential for trace analysis,
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however it is limited in applicability due to its poor reproducibility. Size and shape

of NPs have a large influence on their plasmonic properties; it is considered in chap-

ter 7 that more uniform NPs may provide a more reproducible enhancement fac-

tor. Monodisperse, ultrasmooth AuNPs were synthesised and characterised, reveal-

ing high circularity with a comparable size distribution to commercially available

AuNPs. USAuNPs were loaded on paper devices for use as a SERS substrate. Sig-

nificant spot to spot variations were observed in the SERS signal, which is likely due

to varying number of NPs in different detection regions across the device. Another

potential application for USAuNPs, optical trapping, was considered. USAuNPs

demonstrated a lower trap stiffness, and a smaller variation in trap stiffness, in com-

parison to conventional AuNPs. These results correlate well with the theoretical

predictions, and demonstrates the sensitive relationship between optical trapping

parameters and particle morphology.

8.2 Future outlook

The following sections will discuss new directions each of these works can take in

the future.

8.2.1 Label-free haemograph

Chapter 3 demonstrated the use of WMRS to discriminate between closely related

immune cell subsets. Current methods to indentify WBCs to a high degree of speci-

ficity requires the use of fluorescence tags functionalised for specific cell surface

markers. Such labels pose the risk of changing the cell behaviour, making label-free

technologies more attractive. The next step in the development of this technology

would be to include further cell subsets, for example CD4+ T cells can further dif-

ferentiate into TH17 cells, which play a role in inflammatory diseases. The potential

to identify cells in an activated or naïve state was highlighted in chapter 3 by dis-

crimination between activated and naïve B cells. However a follow up study using

other B cell activators would be beneficial to confirm the results. It would be in-

teresting to take this study further and include other cell populations in activated
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and naïve states, which would find use in the study of cell-cell interactions and the

body’s response to drugs.

8.2.2 Multimodal system for cell classification

Chapter 4 demonstrated the combination of Raman spectroscopy and DHM to ob-

tain both chemical and morphological information, which can be used for the dis-

crimination of immune cell subsets. To make this technique clinically applicable it is

necessary to achieve high throughput rates. The next step would therefore be to use

the multimodal system such that DHM can provide a fast initial screening, allowing

Raman spectroscopy to probe cells of interest. A first step may be to make use of the

large field of view of DHM with real-time analysis. A further possibility would be

to integrate this technology with a microfluidics based system for cell sorting. Fur-

thermore, the additional morphological information could aid the discrimination

between cells in an activated or naïve state, as they typically differ morphologically.

It was demonstrated in chapter 5 that discrimination between undifferentiated

and fully differentiated SH-SY5Y cells was challenging, as they are chemically very

similar, however, they appear different in their morphology. RA differentiated cells

demonstrated a distinct Raman signature, although were morphologically indistin-

guishable from fully differentiated cells. This indicates that a multimodal analysis

may aid the discrimination ability between all three cell types, which would be a

step towards a label-free method to obtain pure neuronal cell cultures.

8.2.3 Intracellular dopamine detection

Detecting intracellular dopamine concentrations would be a significant step forward

in understanding PD and the body’s response to treatment. The work presented in

chapter 5 demonstrated that WMRS was able to quantitatively measure dopamine

down to millimolar concentrations. However, the detection of physiologically rel-

evant concentrations would require signal enhancement of approximately 103 for a

healthy person, or 106 for a PD patient. A future goal would therefore be to utilise

dopamine-targeted AuNPs as intracellular probes, for SERS detection of intracellu-

lar dopamine levels.
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8.2.4 Whisky flavour profile

Whiskies are currently classified according to their flavour by a small panel of ex-

perts, with no scientific validation. It was demonstrated in chapter 6 that Raman and

fluorescence spectroscopy, accompanied by PCA analysis, has potential for classify-

ing the flavour profile from a sample of whisky. This proof of principle experiment

would benefit from further studies using a larger sample size.

8.2.5 EVOO classification

It was demonstrated in chapter 6 that Raman and fluorescence spectroscopy can

successfully identify various brands of EVOO. An interesting next step for this tech-

nology would be to employ SORS, which would obviate the need to open bottles,

thus becoming truly applicable to in-field analysis and counterfeit detection. It was

also demonstrated that by careful selection of the PCs the effect of oxidation can be

minimised. It would be useful to expand this study to include strongly oxidised

samples, by exposure to heat, light, or oxygen. Additionally it would be useful to

investigate the robustness of the technology to identify EVOOs of the same brand

from different years.

8.2.6 Improving accessibility of Raman spectroscopy

The use of paper devices, demonstrated in chapter 6 and 7, offer potential as a

portable, cheap, and easy to use substrate. Chapter 6 demonstrated the use of paper

devices in the compact Raman device for the identification of EVOOs. Future steps

would be to optimise the sample holder, which may improve the signal collection

and solve the reproducibility issues, which are likely due curling of the paper. For

example, a custom sample holder to keep the devices flat and at the focal plane of

the incident laser. There is a wide range of potential applications for such devices

in the food and drinks industry and also for biomedicine. By treating paper devices

with AuNPs, as seen in chapter 7, the Raman signal can be enhanced; offering po-

tential for trace analysis. Furthermore the AuNPs may be easily functionalised for

the detection of specific biochemical markers.
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Paper devices could also be used as colorimetric indicators. A prototype of a

portable and inexpensive detection device "lab-in-a-pipe" was produced using 3-

D printed components, a wifi enabled camera, and a diode laser, as demonstrated

in figure 8.1. With the addition of appropriate filters, such a device can easily be

modified to be compatible with fluorescence detection. Lab in a pipe could be used

in potential future applications with paper microfluidic devices, and would be ideal

for in-field analysis.

5V battery 

404nm diode 
and heat sink Wi-fi enabled 

camera 

Sample in holder, slides into 
base along rails 

13cm 10cm 

FIGURE 8.1: A prototype "lab-in-a-pipe" apparatus for portable analysis of paper
devices.

8.2.7 Ultrasmooth gold nanoparticles

SERS detection typically suffers from poor reproducibility, which may be due to

the sensitive relationship between plasmonic behaviour and particle size and shape.

Chapter 7 demonstrated the synthesis of monodisperse, ultrasmooth AuNPs and

investigated their potential to provide a more reproducible SERS signal. However,

other important contributing factors such as the gap size between NP clusters, and

the number of NPs in a region, can affect the SERS signal. This preliminary study

would benefit from loading more NPs on the paper to provide a more uniform NP

distribution. It would also be of great interest to employ USAuNP assemblies to

provide controlled NP spacing.



8.3. Conclusion 189

USAuNPs may provide a better comparison between theory and experimental

observation concerning the optical trapping of spherical AuNPs. A preliminary

study in chapter 7 explored their optical trapping properties in liquid. It would

be interesting to further expand this study to include analysis by power spectrum

method, to account for any heating effects, and to probe their optical trapping prop-

erties in air and vacuum, or with circularly polarised light.

8.3 Conclusion

The applications presented in this thesis highlight the potential for Raman spec-

troscopy in the field of biomedicine. The importance of a multimodal approach, to

overcome limitations imposed by a single modality is also demonstrated. Impor-

tantly, the studies demonstrated here pave the way for the development of a label-

free haemograph, a powerful tool for both researchers and clinicians. The broader

applicability of label-free methods was demonstrated with studies in the fields of

neuroscience and the food and drinks industry. The potential for Raman and fluo-

rescence spectroscopy to identify different brands of whisky or EVOO may aid the

detection of counterfeiting or adulteration. Furthermore, the integration of Raman

spectroscopy to in-field analysis was addressed through the use of a compact Raman

device or by utilising paper devices as a cheap and easy-to-use substrate.
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A Ethics Statement

FIGURE A.1: Ethics approval to work with immune cells under the supervision of
Dr Simon Powis and Prof Kishan Dholakia
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B Immune cell purification and

characterisation methods

All samples were acquired after obtaining written and informed consent. The study

was approved by the School of Medicine Ethics Committee, University of St. An-

drews: Project MD6324 - Investigation of immune cell behaviour. Participant con-

sent forms and information sheets were also approved by the School Ethics Com-

mittee.

B.1 Cell purifications for CD4+ and CD8+ T cells, NK cells,

plasmacytoid and myeloid dendritic cells, B cells, and

monocytes

10-30 ml blood was collected into heparin Vacutainer tubes from healthy donors.

Peripheral blood mononuclear cells (PBMC) were separated on Histopaque (Sigma,

Poole UK) and washed in PBS/0.1% bovine serum albumin (BSA) (Sigma) or PBS/0.5%

fetal calf serum (FCS) (Life Technologies, Paisley, UK). Cells were isolated using

Dynabeads (Life Technologies) untouched human CD4 T cell kit (depleting antibod-

ies comprising anti-CD8, CD14, CD16a, CD16b, CD19, CD36, CD123, and CD235a),

Dynabeads untouched human CD8 T cell kit (depleting antibodies CD4, CD14, CD16a,

CD16b, CD19, CD36, CD123, and CD235a) and Dynabeads untouched human NK

cell kit (depleting antibodies CD3, CD14, CD36, HLA class II CD123, and CD235a).

Dendritic cells were isolated using Meltenyi Biotec (Bisley, UK) MACS plasmacy-

toid dendritic cell isolation kit II, and MAC myeloid dendritic cell isolation kit (de-

pleting antibodies not specified in DC isolation kits). B cells were isolated using

Dynabeads untouched human B cell kit (depleting antibodies comprising anti-CD2,

CD14, CD16, CD36, CD43, and CD235a), and monocytes using Dynabeads untouched

human monocytes isolation kits (depleting antibodies comprising anti-CD3, CD7,

CD16, CD19, CD56, CDw123, and CD235a). The method by which the dynabeads

isolation kit works is depicted in figure B.1.
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Incubate PBMC with 
dynabeads and 

specific depleting 
antibodies 

Apply magnet 
for separation 

Transfer 
supernatant with 
untouched cells 

to new container 

Negatively isolated 
untouched 

cells of interest 

Discard positively 
isolated cells 

FIGURE B.1: Graphical depiction showing method of cell purification using neg-
atively depleting Dynabeads isolation kits for an untouched isolated cell popula-

tion.

B.2 Characterisation by flow cytometry and functional assays

B.2.1 Flow cytometry methods

Cells were blocked in 50% PFN buffer (PBS and 2% FCS) and 50% human plasma,

then stained with PE-anti human CD4, PE-anti human CD8, PE-anti human CD56,

APC-anti human CD303 and APC-anti human CD1c. B cells and monocytes were

blocked in PFN buffer with 20% human serum. B cells were stained with FITC-CD3

or FITC CD19, and monocytes with FITC-CD3 or FITC-CD14 (ebiosciences, Hatfield,

UK). Flow cytometry was performed using a Guava 8HT (Millipore, UK) running

Guavasoft 2.5.

B.2.2 Functional assays

IL-2 Assay: 80,000 CD4+ T cells were incubated with or without 0.5µl Human T-

Activator CD3/CD28 Dynabeads (Life Technologies) and left at 37 ◦C in a 5% CO2

incubator overnight. The supernatant was then assayed using a Human IL-2 ELISA

Kit (Life technologies).
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IFN-γ ELISPOT Assay: IFN-γ was assayed using Human IFN-γ alkaline phosphatase

conjugated ELISPOT kit (MABTECH, Nacka Strand, Sweden). 200,000 PBMC and

untouched CD8+ T cells were incubated with 10µg/ml of the HLA-A11 restricted

Epstein-Barr virus (EBV) peptide AVFDRKSDAK at 37 ◦C in a 5% CO2 incubator for

48 hours.

CD107a Degranulation Assay: 100,000 NK cells were incubated with or without

10,000 major histocompatibility complex (MHC) class I deficient 721.221 cells for

6 hours at 37 ◦C in a 5% CO2 incubator. After the first hour 2µl of FITC conjugated

CD107a (ebioscience) was added to samples. Samples were blocked, washed and

analysed by flow cytometry as above.

B.2.3 Characterisation of CD4+ and CD8+ T cells, NK cells, and dendritic

cell subsets pDC and mDC

The isolated cells were analysed for purity by flow cytometry and tested for bio-

logical activity corresponding with their phenotype. CD4+ T lymphocytes were ob-

tained at a purity level typically up to 96% (figureB.2 A), and secreted high levels of

the cytokine IL-2 in response to incubation with beads coupled with anti-CD3 and

-CD28 antibodies (figureB.2 B). CD8+ T lymphocytes were obtained at a purity level

typically up to 76% (figureB.2 C). When stimulated with the EBV peptide AVFDRKS-

DAK using cells from an individual known to express HLA-A11, which binds this

peptide, IFN-γ secretion was induced from PBMC and in increased amounts from

purified CD8+ cells (figureB.2 D). CD56+ NK cells were obtained at a purity level

typically up to 88.7% , and displayed a typical CD56 low phenotype (figureB.2 E).

NK cells are sensitive to the lack of MHC class I molecules on target cells, and upon

incubation with the HLA class I deficient. 221 cell line, an increased expression of

CD107a from 1% to 17% was observed, indicating redistribution of CD107a to the

cell surface during degranulation leading to target cell lysis (figureB.2 F). CD303+

plasmacytoid (also known as lymphoid) DC were obtained at purity levels up to

92.1% (figureB.2 G) and CD1c+ myeloid DC were obtained at purity levels up to

77.8% (figureB.2 H). Light microscopy images representative of the purified cell pop-

ulations are also shown, revealing the CD4+ and CD8+ T lymphocytes to be small
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A) B) 

C) D) 

E) F) 

G) H) 

FIGURE B.2: Flow cytometric and functional characterisation of purified cell sub-
sets. A) CD4 staining of isolated CD4+ T cells. B) IL-2 ELISA of CD4+ T cells
stimulated with or without anti-CD3/CD28 beads. C) CD8 staining of isolated
CD8+ T cells. D) IFNγ ELISPOT assay of PBMC and purified CD8+ T cells incu-
bated with and without EBV derived peptide AVFDRKSDAK. E) CD56 staining of
isolated NK cells. F) NK cell degranulation assay—CD107a staining of NK cells
incubated without (left panel) or with (right panel) MHC class I deficient. 221 cells
at a 10:1 effector to target ratio. G) CD303 staining of isolated pDC. H) CD1c stain-
ing of isolated mDC. The x-axis in each flow cytometry plot indicates fluorescent
intensity. The left hand peak in each flow cytometry plot indicates control staining
with an irrelevant antibody. Representative white light microscopy images of each
of the purified cell populations used in Raman spectroscopy experiments are also

shown.
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lymphocytes around 7µm in size (figureB.2 A and C), the NK cells to be larger at

around 9µm (figureB.2 E), typical of their historical classification as large granular

lymphocytes. pDC and mDC are also shown to be around 9µm in size (figureB.2 G

and H).

B.2.4 Characterisation of CD4+ and CD8+ T cells, B cells, and monocytes

The isolated cells were analysed for purity by fluorescence activated cell sorting

(FACS) assay. Cells were obtained from two donors and the following purity lev-

els were achieved: 89% and 91% for CD4+ T lymphocytes (figureB.3 A), 80% and

91% for CD8+ T lymphocytes (figureB.3 B), 100% and 100% for B cells (figureB.3 C),

and 96% and 99% for monocytes (figureB.3 D). Data is shown for one donor only,

although both gave essentially identical curves.

A) B) 

C) D) 

FIGURE B.3: Facs analysis of A) CD4 + T cells, B) CD8 + T cells, C) B cells, and
D) monocytes from two donors revealing purity levels of 89% and 91% for CD4+
T cells, 80% and 91% for CD8+ T cells, 100% and 100% for B cells, and 96% and
99% for monocytes. The x-axis in each FACS plot indicates fluorescent intensity.
The left hand peak in each FACS plot indicates the negative control (staining with
an irrelevant antibody) and the right hand peak is the staining of the relevant

antibody.
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C Raman band assignments for immune

cell populations

WMRS
peak posi-
tion (cm−1)

DNA/ RNA Proteins Lipids

621 C-C twist in phenylala-
nine

645 C-C twist in tyrosine

671 C-S stretching in cys-
teine

725 adenine ring breathing

800 O-P-O symmetric
stretching

938 C-C skeletal modes

1007 symmetric ring breath-
ing mode of phenylala-
nine

1097 O-P-O symmetric
stretching nucleic acids

1129 C-C stretch

1209 phenylalanine, tyro-
sine, C-N stretching

1259 Amide III

1304 adenine, cytosine adenine/amide III

1345 polynucleotide chain

1378 thymine, adenine, gua-
nine

1455 CH2, CH3 stretching CH2 deformation

1585 adenine, guanine

1665 amide I α-helix, β-turn C=C stretching

TABLE C.1: Assignment of bands in Raman spectra of immune cell populations
discussed in chapter 3.
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D WMRS spectra for immune cell

subsets: a pairwise comparison

D.1 Pairwise comparisons of WMRS spectra for CD4+ T cells

against CD8+ T cells, B cells, and monocytes
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FIGURE D.1: WMRS spectra of purified immune cell subsets CD4+ T cells, CD8+
T cells , B cells, and monocytes. A) Mean standard Raman spectra of CD4+, CD8+,
B cells and monocytes. Mean WMRS spectra of B) CD4+ and CD8+ T cells, C)
CD4+ T cells and B cells, and D) CD4+ T cells and monocytes. Solid lines show the
average spectrum of each cell population and shaded regions show the standard
deviation. Grey vertical bars indicate regions of significant difference between two

cell subsets, as estimated by student’s t-test at a significance level of p< 10−15.
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D.2 Pairwise comparisons of WMRS spectra for CD8+ T cells

against CD4+ T cells, B cells, and monocytes
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FIGURE D.2: WMRS spectra of purified immune cell subsets CD4+ T cells, CD8+
T cells , B cells, and monocytes. A) Mean standard Raman spectra of CD4+, CD8+,
B cells and monocytes. Mean WMRS spectra of B) CD4+ and CD8+ T cells, C)
CD8+ T cells and B cells, and D) CD8+ T cells and monocytes. Solid lines show the
average spectrum of each cell population and shaded regions show the standard
deviation. Grey vertical bars indicate regions of significant difference between two

cell subsets, as estimated by student’s t-test at a significance level of p< 10−15.
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E Matlab code for DHM analysis

E.1 Proccess raw DHM image to produce a phase map

1 %Analyze f r i n g e p a t t e r n s using FFT method .

2

3 f i l e = ’ ’ ; \% i n s e r t path address to DHM image

4

5 fg = imread ( f i l e , ’bmp ’ ) ;

6 f r g = fg ( : , : , 1 ) ;

7 snap = f r g ;

8 snap = double ( f r g ) ;

9

10 %%

11 fsnap= f f t s h i f t ( f f t 2 ( snap ) ) ;

12 f i g u r e ( 6 7 ) ;

13 subplot ( 2 3 1 ) ; imagesc ( snap ) ; a x i s image ; t i t l e ( ’ o r i g n a l f r i n g e

pat tern ’ ) ;

14 i f ~ e x i s t ( ’newmask ’ )

15 newmask= f a l s e ;

16 subplot ( 2 3 2 ) ; imagesc ( log ( abs ( fsnap ) ) ) ; t i t l e ( ’ zeroth order ’ )

17 h= i m e l l i p s e ( gca )

18 p o s i t i o n 0 = wait ( h ) ;

19 ma0=createMask ( h ) ;

20 subplot ( 2 3 2 ) ; imagesc ( log ( abs ( fsnap ) ) ) ; t i t l e ( ’ f i r s t order ’ )

21 h= i m e l l i p s e ( gca )

22 p o s i t i o n 1 = wait ( h ) ;

23 ma1=createMask ( h ) ;

24 e l s e

25 subplot ( 2 3 2 ) ; imagesc ( log ( abs ( fsnap ) ) ) ; t i t l e ( ’ f f t 2 ’ )

26 h=impoly ( gca , p o s i t i o n 0 ) ;
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27 h=impoly ( gca , p o s i t i o n 1 ) ;

28 end

29 m0=ma0 . ∗ abs ( fsnap ) ;

30 [ va p0t ]=max(m0 ( : ) ) ;

31 [ y0 x0 ]= ind2sub ( s i z e (m0) , p0t ) ;

32 m1=ma1 . ∗ abs ( fsnap ) ;

33 [ va p1t ]=max(m1 ( : ) ) ;

34 [ y1 x1 ]= ind2sub ( s i z e (m1) , p1t ) ;

35

36 %% c e n t r e the f i r s t order

37 % to remove the c a r r i e r phase before IFFT

38

39 matrix = ma1 .∗ fsnap ;

40 centrey= c e i l ( length ( matrix ( : , 1 ) ) /2) ;

41 centrex= c e i l ( length ( matrix ( 1 , : ) ) /2) ;

42 while y1~= centrey

43 matrix= c i r c s h i f t ( matrix , [ 1 , 0 ] ) ;

44 [ va p1t ]=max( matrix ( : ) ) ;

45 [ y1 x1 ]= ind2sub ( s i z e ( matrix ) , p1t ) ;

46 end

47 while x1~= centrex

48 matrix= c i r c s h i f t ( matrix , [ 0 , 1 ] ) ;

49 [ va p1t ]=max( matrix ( : ) ) ;

50 [ y1 x1 ]= ind2sub ( s i z e ( matrix ) , p1t ) ;

51 end

52 %% do i f f t on frequency s h i f t e d f i r s t order

53 fmfsnap1= i f f t 2 ( i f f t s h i f t ( matrix ) ) ;

54 %p l o t amplitude and phase components

55 asnap=abs ( fmfsnap1 ) ;

56 asnap=asnap/max( asnap ( : ) ) ;
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57 subplot ( 2 3 3 ) ; imagesc ( abs ( fmfsnap1 ) ) ; a x i s image ; t i t l e ( ’

amplitude ’ ) ;

58 subplot ( 2 3 4 ) ; imagesc ( angle ( fmfsnap1 ) ) ; a x i s image ; t i t l e ( ’

phase ’ ) ;

59 subplot ( 2 3 5 ) ; imagesc ( unwrap ( angle ( fmfsnap1 ) ) ) ; a x i s image ;

t i t l e ( ’ unwraping phase ’ ) ;

60 %%

61 IM = fmfsnap1 ;

62 IM_mask=ones ( s i z e (IM) ) ; %Mask ( i f a p p l i c a b l e )

63 IM_mag=abs (IM) ; %Magnitude image

64 IM_phase=angle (IM) ;

65 max_box_radius =4;

66

67 res idue_charge=PhaseResidues ( IM_phase , IM_mask ) ;

%Ca l c u l a te phase res idues

68 branch_cuts=BranchCuts ( residue_charge , max_box_radius ,

IM_mask ) ; %Place branch cuts

69 [ IM_unwrapped , rowref , c o l r e f ]= F l o o d F i l l ( IM_phase ,

branch_cuts , IM_mask ) ; %Flood f i l l phase unwrapping

70 tempmin=min ( min ( IM_unwrapped ) ) ; %This b i t i s j u s t

done to c r e a t e a pleas ing display when a mask i s used

71 temp=(IM_unwrapped==0) ;

72 temp_IM=IM_unwrapped ;

73 temp_IM ( temp ) =tempmin ;

74 %%

75 %temp_IM i s unwrapped phase .

76 %need to f i t quadrat ic to background and s u b t r a c t

77

78 f i g u r e ( 6 8 ) ;

79 imagesc ( temp_IM )

80
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81 %f i r s t f ind c e n t r e to approximate x0 and y0

82 h=imrect ( gca ) %use r e c t a n g l e to allow cropping

83 p o s i t i o n 5 = wait ( h ) ;

84 ma5=createMask ( h ) ;

85

86 t_IMcrop=imcrop ( temp_IM , p o s i t i o n 5 ) ;

87 [ minVal , POSIT]=min2 ( abs ( t_IMcrop ) ) ;

88 f i t X 0 = p o s i t i o n 5 ( 1 ) +POSIT ( 1 ) ;

89 f i t Y 0 = p o s i t i o n 5 ( 2 ) +POSIT ( 2 ) ;

90

91 %def ine x , y , and z using meshgrid ,

92 %use p o l y f i t n to f ind quadrat ic f i t a , x ^2 , b , y^2

93 [ xx , yy]= meshgrid ( [ 1 : s i z e ( temp_IM , 2 ) ]− f i t X 0 , [ 1 : s i z e ( temp_IM

, 1 ) ]− f i t Y 0 ) ;

94

95 z=temp_IM ( : , : , 1 ) ;

96

97 %%

98 %use p o l y f i t n

99 p= p o l y f i t n ( [ xx ( : ) , yy ( : ) ] , z ( : ) , 2 ) ;

100 eqn=polyn2sym ( p ) ;

101 zz=polyvaln ( p , [ xx ( : ) , yy ( : ) ] ) ;

102 zz=reshape ( zz , s i z e ( xx ) ) ;

103 f i g u r e ( 6 9 ) , imagesc ( temp_IM−zz )

104 f ina l IM= temp_IM−zz ;

105 %%

106 %crop image around c e l l

107 %want same image s i z e f o r a l l c e l l s to use in PCA

108 imshow ( f inal IM ) ;

109 h = imrect ( gca , [50 50 220 2 2 0 ] ) ; % c r e a t e r e c t a n g l e on the

image
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110 message = s p r i n t f ( ’ Drag , s e t p o s i t i o n of the r e c t a n g l e

cropping box and double c l i c k on the r e c t a n g l e box ’ ) ;

111 uiwait ( msgbox ( message ) ) ;

112 p o s i t i o n = wait ( h ) ; % get p o s i t i o n

113 I_crop = imcrop ( f inalIM , p o s i t i o n ) ; % crop image

114 %message = s p r i n t f ( ’ Image has been cropped ’ ) ;

115 %msgbox ( message ) ;

116 f i g u r e ( 6 0 ) ; imagesc ( I_crop ) ;

E.2 Histogram or TA on phase map

1 %%PCA f o r DHM phase images from . f i g f i l e s

2 %Naomi McReynolds 19/05/16

3

4

5 c l e a r a l l

6 dirname= ’ ’ ; % i n s e r t path to f o l d e r

7 d=d i r ( dirname ) ;

8

9 nd=length ( d ) −2; c e l l = [ ] ; data0 = [ ] ;

10 o f f s e t s = [0 1 ; −1 1;−1 0;−1 −1];

11 f o r t =1:nd

12 f i lename=d ( t +2) . name ;

13 imgpath= s t r c a t ( dirname , f i lename ) ;

14 open ( imgpath ) ;

15 A=get ( gca ) ;

16 B=get (A. Children ) ;

17 img=B . CData ;

18 c l o s e ( gcf ) ;

19 %glcm=graycomatrix ( img , ’ o f f s e t ’ , o f f s e t s ) ; %use f o r TA

in d i f f e r e n t d i r e c t i o n s

20 glcm=graycomatrix ( img ) ;
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21 s t a t s =graycoprops ( glcm ) ; %f o r TA

22

23 %histogram f o r p i x e l values

24 area=nnz ( img ) ; %a l l non−zero elements within e l l i p s e

count as 1

25 TotOPD=sum( img ( : ) ) ;

26 maxOPD=max( img ( : ) ) ;

27 xlo =0;

28 xhigh = 6 . 5 ;

29 X=xlo : ( xhigh−xlo ) /64: xhigh ; %s e t x a x i s between 0 and

6 . 5 ( max OPD f o r macro )

30 h= h i s t ( img ( : ) ,X) ;

31 %s e l e c t parameters to analyse on 1 : a l l , 2 : TA, 3 :

histogram

32

33 %params=horzcat ( s t a t s . Contrast , s t a t s . Corre la t ion , s t a t s .

Energy , s t a t s . Homogeneity , area , TotOPD , maxOPD, h ) ;

34 %params=horzcat ( h , s t a t s . Contrast , s t a t s . Corre la t ion , s t a t s .

Energy , s t a t s . Homogeneity ) ;

35 params=horzcat ( area , TotOPD , maxOPD, h ) ;

36 data0 ( : , t ) =params ;

37

38 end

39 %%

40 % PCA using s e l e c t e d parameters

41 %83 B c e l l ; 46 CD4 ; 66 Macro ; ( t o t a l 195)

42

43 c e l l 1 =repmat ( 1 , 1 , 8 3 ) ; %b c e l l

44 c e l l 3 =repmat ( 3 , 1 , 6 6 ) ; %macro

45 c e l l 2 =repmat ( 2 , 1 , 4 6 ) ; %cd4

46 c e l l s =horzcat ( c e l l 1 , c e l l 2 , c e l l 3 ) ;
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47

48 data=data0 ’ ;

49 nd= s i z e ( data , 2 ) ;

50 %%

51 c o l =colormap ( l i n e s ( 3 ) ) ;

52

53 mdat=mean( data , 2 ) ;

54 vdat=data−repmat ( mdat , 1 , nd ) ;

55

56 mat=vdat ’∗ vdat ;

57 [ vec , val ]= e i g s ( mat , nd ) ;

58 %pr=vdat ’∗ vdat∗vec ;

59 %%

60 f i g u r e ( )

61 pc1=vdat∗vec ( : , 1 ) ;

62 pc2=vdat∗vec ( : , 2 ) ;

63 pc3=vdat∗vec ( : , 3 ) ;

64 subplot ( 1 4 1 ) ; p l o t ( 1 : s i z e ( vdat , 1 ) , vdat∗vec ( : , 1 ) , ’ r ’ , 1 : s i z e (

vdat , 1 ) , vdat∗vec ( : , 2 ) , ’ g ’ , 1 : s i z e ( vdat , 1 ) , vdat∗vec ( : , 3 ) , ’ b ’

) ;

65 colormap ( c o l )

66 l a b e l s = { ’PC1 ’ , ’PC2 ’ , ’PC3 ’ } ;

67 l c o l o r b a r ( l a b e l s , ’ fontweight ’ , ’ bold ’ ) ;

68 %subplot ( 2 3 1 ) ; imagesc ( pc1 ) ; t i t l e ’ f i r s t p r i n c i p a l component

’

69 %subplot ( 2 3 2 ) ; imagesc ( pc2 ) ; t i t l e ’2nd p r i n c i p a l component ’

70 %subplot ( 2 3 3 ) ; imagesc ( pc3 ) ; t i t l e ’3 rd p r i n c i p a l component ’

71

72 %%

73

74 f o r t =1: length ( c e l l s )
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75 subplot ( 1 , 4 , 2 ) ; p l o t ( pc1 ( t , 1 ) , pc2 ( t , 1 ) , ’ ∗ ’ , ’ c o l o r ’ , c o l (

c e l l s ( t ) , : ) ) ; hold on

76 %t i t l e ’1 s t and 2nd PCs ’ ;

77 x l a b e l ( ’PC1 ’ , ’ f o n t s i z e ’ , 1 4 ) ; y l a b e l ( ’PC2 ’ , ’ f o n t s i z e ’ , 1 4 ) ;

78 subplot ( 1 , 4 , 3 ) ; p l o t ( pc1 ( t , 1 ) , pc3 ( t , 1 ) , ’ ∗ ’ , ’ c o l o r ’ , c o l (

c e l l s ( t ) , : ) ) ; hold on

79 x l a b e l ( ’PC1 ’ , ’ f o n t s i z e ’ , 1 4 ) ; y l a b e l ( ’PC3 ’ , ’ f o n t s i z e ’ , 1 4 ) ;

80 %t i t l e ’1 s t and 3rd PCs ’ ;

81 subplot ( 1 , 4 , 4 ) ; p l o t ( pc2 ( t , 1 ) , pc3 ( t , 1 ) , ’ ∗ ’ , ’ c o l o r ’ , c o l (

c e l l s ( t ) , : ) ) ; hold on

82 x l a b e l ( ’PC2 ’ , ’ f o n t s i z e ’ , 1 4 ) ; y l a b e l ( ’PC3 ’ , ’ f o n t s i z e ’ , 1 4 ) ;

83 %t i t l e ’2nd and 3rd PCs ’ ;

84 end

85 colormap ( c o l )

86 l a b e l s = { ’ B c e l l ’ , ’CD4 ’ , ’ Monocyte ’ } ;

87 l c o l o r b a r ( l a b e l s , ’ fontweight ’ , ’ bold ’ ) ;

88 %%

89 cc=zeros ( length ( c e l l s ) , 3 ) ;

90 f o r i =1: length ( c e l l s )

91 i f c e l l s ( i ) ==1

92 cc ( i , 1 ) = 1 ;

93 e l s e i f c e l l s ( i ) ==2

94 cc ( i , 2 ) =1;

95 e l s e i f c e l l s ( i ) ==3

96 cc ( i , 3 ) =1;

97 end

98 i = i +1;

99 end

100

101 %% s p e c i f i c i t y and s e n s i t i v i t y

102 spec0=data ’ ;
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103

104 cb = 0 ;

105 f o r m = 1 : 3 %3 i s how many c e l l types we have

106 cb = cb+cc ( : ,m) ∗2^(m−1) ;

107 end

108 cases=union ( cb , cb ) ;

109 ncases=length ( cases ) ;

110 xval = [ ] ;

111 cm=zeros ( ncases , ncases ) ;

112 [ vv , dd]= e ig ( mat ) ;

113 dd = diag ( ro t90 ( dd , 2 ) ) ;

114 dd ( dd<0) =0;

115 %%

116 nd=3;

117 perc = sum ( ( dd ( 1 : nd ) /sum( dd ) ) ) ;

118 disp ( [ ’ F i r s t ’ num2str ( nd ) ’ PCs used corresponds to ’

num2str ( perc ∗100 ,3 ) ’%’ ] ) ;

119 %%

120

121 f o r j j =1 : s i z e ( spec0 , 2 )

122 spec=spec0 ;

123 unknown=spec ( : , j j ) ;

124 spec ( : , j j ) = [ ] ;

125 m=0∗mean( spec ’ ) ; %%%% mean of the imput s p e c t r a

126 y=spec ’−ones ( s i z e ( spec ’ , 1 ) , 1 ) ∗m; % normalise by

s u b t r a c t i n g mean

127 yun=unknown’−ones ( s i z e (unknown ’ , 1 ) , 1 ) ∗m; % normalise by

s u b t r a c t i n g mean

128 co=cov ( y ) ; % f ind covar iance matrix

129 [ vc , dc ]= e i g s ( co , nd ) ; % f ind e i ge n v ec t or s ( v ) and

eigenvalues ( d ) of covar iance matrix
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130 pc=y∗vc ; % normalised data p r o j e c t e d onto eigenspace

131 pcun=yun∗vc ;

132 ch=dsearchn ( pc , pcun ) ;

133 f s =cb ( j j ) ; %r e a l l y

134 f s ch=cb ( ch ) ; %d i a g n o s t i c

135 cm( f ind ( cases== f s ) , f ind ( cases==fsch ) ) =cm( f ind ( cases== f s ) ,

f ind ( cases==fsch ) ) +1;

136 [ f s f sch ] ;

137 end

138 S e n s i t i v i t y =(cm( 2 , 2 ) /(cm( 2 , 2 ) +cm( 3 , 2 ) ) ) ;

139 S p e c i f i c i t y =(cm( 3 , 3 ) /(cm( 2 , 3 ) +cm( 3 , 3 ) ) ) ;

140 disp ( [ ’ S e n s i t i v i t y : ’ num2str ( S e n s i t i v i t y ) ] ) ;

141 disp ( [ ’ S p e c i f i c i t y : ’ num2str ( S p e c i f i c i t y ) ] ) ;

142 %

143 % cm : confusion matrix ;

144 cm
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F Protocol to split and count SH-SY5Y

cells

F.1 Passage cells

This section will detail the technique to split SH-SY5Y cells which is done twice a

week.

1. Check under a microscope that the cells are confluent (≈ 80% coverage)

2. Pour off the culture medium

3. Add 2 − 5 ml PBS (warmed to 37 ◦ in a water bath) to wash off remaining

medium

4. Gently swirl PBS on bottom of flask and pour off the PBS

5. Add 0.5 ml trypsin

6. Place the flask back in the incubator for 5 minutes

7. Check that the cells have become free-floating (may need to tap flask to en-

courage cells to detach)

8. Add 4.5 ml of warmed medium to give a total volume of 5 ml. Gently pass up

and down the pipette to mix solution.

9. Take off 3 ml

10. Replace with 3 ml medium and gently mix

11. Return the flask to the incubator

F.2 Cell counting

Before plating cells an aliquot is used to count the number of cells per ml. The ideal

concentration for plating is 1× 105 cells/ml.

1. After cells have been trypsonised take a 10µl aliquot and transfer to an eppen-

dorf tube
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2. Add 10µl of trypan blue and leave for a couple of minutes. Trypan blue will

selectively colour the membrane of dead cells.

3. Clean glass hemocytometer and coverslip with ethanol. Moisten the coverslip

and affix it to the hemocytometer.

4. Using a pipette gently fill the chamber of the hemocytometer with the 20µl

solution

5. Place the hemocytometer on a microscope with a 10X objective

6. The hemocytometer has four grids of 4×4 squares. Consider each individually.

Count and record the number of live cells in one 16 square grid.

7. Move the hemocytometer to the next 16 square grid and repeat until all corners

have been counted.

8. Find the average cell count over the four corners

9. Multiply by 2 to correct for the 2 times dilution by trypan blue.

10. Multiply by 104

11. The final value is the number of cells/ml in the original cell suspension
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G Method to differentiate SH-SY5Y cells

Three differentiation stages of SH-SY5Y cells were analysed: undifferentiated, mixed

differentiation population, and fully differentiated. This appendix will detail the

method followed to grow the cells into each differentiation stage.

The incubator is kept at 37 ◦, 5% CO2.

G.1 Grow undifferentiated SH-SY5Y cells

1. Dilute the cells at a density of 1 × 105 cells/ml in 10% fetal calf serum (FCS)

medium.

2. Plate 2 ml in each plate or dish

3. Return the plated cells to the incubator

4. After 48 hours undifferentiated SH-SY5Y cells should have reached confluence

and are ready for analysis.

5. If they have not reached confluence do not start experiments early. Half of the

medium may be replaced with fresh 10% FCS medium. (Using a pipette to

carefully remove 1 ml medium, without touching the dish.)

G.2 Differentiation with retinoic acid

1. Grow the cells as above, until 70% confluence.

2. Carefully remove the culture medium

3. Replace the medium with 2 ml 1% FCS medium containing 10µM retinoic acid

(RA) (pre-warmed in a water bath)

4. Return the plates to the incubator

5. Replace half of the medium with fresh 1% FCS medium containing 10µM RA

every 48 hours

6. After 5 days a culture of RA differentiated SH-SY5Y cells will be established.



212 Appendix G. Method to differentiate SH-SY5Y cells

G.3 Differentiation with retinoic acid and mitotic inhibitor

1. Grow the cells as above until RA differentiated

2. Remove the culture medium

3. Replace the medium with 2 ml 1% FCS medium containing 80µM 5-fdu, a mi-

totic inhibitor.

4. Leave the cells in the incubator for 1 week, replacing the medium twice.

5. A culture of fully differentiated cells will be established.
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H Immunocytochemistry protocol

1. Fix the cells in neurtral buffered formalin for 15-20 minutes

2. Wash three times with PBS for 5 minutes each

3. Incubate in 10% horse serum block (HSB) for 30 minutes

4. Add the primary antibody diluted in HSB

5. Leave at 4◦ overnight

6. Wash three times in PBS with TWEEN for 5 minutes each

7. Add flourescin congjugated (FITC) secondary antibody (goat-antimouse) in

HSB (1:200)

8. Leave at room temperature in the dark (cover in tin foil) for 2 hours

(The plate is now always kept in the dark)

9. Wash three times in PBS for 5 minutes each

10. Add DAPI at 1:10000 in PBS and leave for 15 minutes

11. Wash three times in PBS for 5 minutes each

12. Mount the cover-slip onto a microscope slide using antifade mountant and seal

with nail varnish
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I Western blot and preparation techniques

I.1 Protein extraction

1. Take plate from incubator and carefully remove all medium. Take care not to

touch the bottom of the plate with the pipette tip

2. Add 500µl of TBS-T (tris-buffered saline and 1% Triton X-100) and 5µl protease

inhibitor. TBS is a salt solution that soluble proteins dissolve in, Triton X-100 is

a detergent that will lyse cell and organelle walls.

3. Use a cell scraper to dislodge all cells from the dish

4. Use pipette to rinse solution over the bottom of dish to collect all cells

5. Transfer cells to an eppendorf. Run sample up and down pipette until no ob-

vious solids remain

6. Centrifuge sample for 10 minutes at 13000 rpm

7. Separate the supernatent from the pellet and put into a labelled tube. Soluble

protein will be in the supernatant.

8. Keep an aliquot of the supernatant separate to perform Bradford assay

9. Freeze the pellet and the supernatant

I.2 Bradford Assay

1. Place 10µl of protein sample and 10µl NaOH in a fresh tube

2. Add 500µl Bradford reagent (Brilliant Blue G)

3. Leave for 5 minutes

4. Read absorbance at 590 nm

Standard solutions are made for calculating absolute concentration:

1. Prepare stock solution of 100µg/µl BSA

2. Dilute 1:10 to give a range of concentrations (100µg/µl, 10µg/µl, 1µg/µl, 0.1µg/µl,

0.01µg/µl)



I.3. Western blot 215

3. Carry out the Bradford assay for each concentration

4. Produce a standard curve

5. From the graph determine the protein concentration of each SH-SY5Y sample.

I.3 Western blot

Prepare gel

1. Boil sample for 10 minutes on a heated water stirrer to denature proteins

2. Gels are kept at 4◦. Remove gel from the packet and wash with dH2O. (Use

squeezy bottle to pour water over the wells and tap to get rid of any bubbles)

3. Assemble gels into gel rig such that the wells face inwards.

4. Fill the inner chamber with running buffer and 1/3 outside chamber with run-

ning buffer

5. Load the first well with the protein ladder (marker)

6. Load the other wells with 30µg/µl of protein. A maximum of 24µl can be

loaded.

Use a separate tip for each well to avoid cross contamination. Tip is held just

above the well and sample slowly sinks in. Care is to be taken not to load too

quickly as the sample may then flow into other wells.

Run gel

1. Put lid on gel tank (Cleaver Scientific Ltd) and set voltage to 150 V for 40 min-

utes

2. Check the gel is running. Lighter proteins get pulled further through the gel.

(40 minutes as ideal as if not left long enough bands are not well separated, if

left too long small proteins are missed)

3. The blue marker should be near the foot of the gel at the end. After 40 minutes

switch off the power pack.

Set up blot
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1. Soak 5 sponges (machine can run two Western blots) in 10% Tris glycine buffer

and methanol. Only need three sponges to run one gel

2. Cut four rectangles of blotting (chromatography) paper per gel, make as long

as proteins and as wide as the ladder

3. Soak with the sponges

4. Cut one nitrocellulose membrane per gel and soak with sponges and blotting

paper

5. Take two plates of the blotting chamber and lay flat side down

6. Place two sponges in the blotting chamber and roll them flat to remove any

bubbles. (Bubbles can prevent transfer of proteins to the membrane)

7. Layer two sheets of blotting paper and roll flat

8. Add nitrocellulose membrane and roll flat

9. Cut the gel open and soak in the buffer for a few seconds

10. Lay the gel on the transfer membrane with the ladder on the left hand side and

proteins on the bottom

11. Layer with two more blotting papers and roll flat

12. Add a sponge and roll flat

13. Fill the inner chamber with the transfer buffer and 1/2 of the outer chamber

14. Close plates together

Run blot

1. Set voltage to 30 V and current to 200 mA

2. Run for 90 minutes

Check protein transfer

1. Disassemble the blot and take the two membranes

2. Place the membrane in a square dish

3. Pour on Ponceau S, a stain to reveal if protein ran through. Rock the dish

gently until red protein bands are visible on the membrane. Check all the wells

worked.
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4. Pour off the Ponceau S

5. Wash the membrane quickly in TBS three times

6. Wash the membrane in TBS on the rocker for 5 minutes and repeat until the

red has completely washed out.

7. If transfer didn’t work no need to continue

Block

1. Make up blocking solution: 1 g powdered milk per 20 ml TBST (need 20 ml per

gel or 10 ml for dot blot). Stir with magnetic stirrer

2. Pour TBS off the membrane

3. Pour milk over the membrane

4. Leave on rocker for 15 minutes at room temperature

Primary antibody

1. The primary antibody α-tubulin is diluted 1:2000 in 20 ml milk blocking solu-

tion

2. Pour off the blocking solution from the membrane

3. Add primary antibody solution and leave on a rocker overnight in a cold room

(4◦)

Secondary antibody

1. Wash the membrane three times in TBS-T for 5 minutes each, on the rocker

2. Add the secondary antibody solution, HRP conjugated at 1:10000 in TBS-T

3. Leave on a rocker for 2 hours at room temperature

Detection of bands

1. Wash the membrane three times in TBS-T for 5 minutes each, on the rocker

2. Dab off any excess liquid

3. Mix together 150µl each of HRP chemiluminescence substrate reagent kit

4. Pour onto the membrane and swirl to cover the whole area. Ensure there are

no bubbles as these will appear as a bright spot
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5. Take membrane to ChemiDoc-It for imaging

6. image with Vision Works software

I.4 Dot blot

1. Cut nitrocellulose membrane in small squares

2. Denature the protein sample by placing in boiling water for 10 minutes

3. Put 2.5µl of sample in the centre of the paper

4. Let dry for 30-60 minutes, until completely dry

5. Cover membrane in milk blocking solution for 30 minutes on rocker to block

any non-specific binding

6. Pour off the milk

7. Add 1 ml of the primary antibody at various concentrations (1:500, 1:1000,

1:2000, 1:5000, 1:10000) in milk blocking solution

8. Leave overnight on a rocker in a cold room (4◦)

9. Pour off the primary antibody

10. Wash three times in TBS-T for 5 mins each on the rocker

11. Add 1:10000 secondary antibody conjugated with HRP, diluted in TBS-T

12. Leave at room temperature on the rocker for 2 hours

13. Pour off the secondary antibody

14. Wash the membrane three times in TBS-T for 5 minutes each, on the rocker

15. Transfer papers to a plastic sleeve and dab off any excess liquid

16. cover papers in HRP chemiluminescent substrate reagent mixture. Ensure

there are no bubbles

17. Membrane is ready to image in ChemiDoc-It with Vision Works software
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J Scotch whisky details- name and age

J.0.1 25 Scotch whiskies (as seen in figure 6.6)

Number Whisky Number Whisky

1 Glenfiddich- 12 year old 14 Bowmore- 12 year old

2 Glenlivet- 12 year old 15 Highland Park- 12 year old

3 Glenmorangie original- 10
year old

16 Auchentoshan- 10 year old

4 Aberlour- 10 year old 17 Glenfiddich Solera- 15 year
old

5 Bunnahabhain- 12 year old 18 Old Pulteney- 12 year old

6 Dalwhinnie- 15 year old 19 Ardbeg- 10 year old

7 Jura- 10 year old 20 Macallan Fine Oak- 10 year
old

8 Talisker- 10 year old 21 Springbank- 10 year old

9 Glenlivet- 18 year old 22 Cragganmore- 12 year old

10 Glenkinchie- 12 year old 23 Caol Ila- 12 year old

11 The singleton of Dufftown-
12 year old

24 Oban- 14 year old

12 Laphroag- 12 year old 25 Clynelish- 14 year old

13 Balvenie Double Wood- 12
year old

TABLE J.1: Name and age of the 25 whiskies used for classification by Raman and
fluorescence spectroscopy.

J.0.2 Scotch whiskies used to build a flavour map (section 6.3.3)

Key Whisky

A Glenfiddich- 12 year old

B Bowmore- 12 year old

C Laphroig- 10 year old

D Glenfiddich Solera- 15 year old

E Ardbeg- 10 year old

F Old Pulteney- 12 year old

TABLE J.2: Name and age of the whiskies used to build a Raman based flavour
map.
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K Protocol for synthesis of ultrasmooth

gold nanoparticles

1. Prepare 1M Phosphoric acid by adding 0.137 ml Conc acid (85% wt) and 1.863 ml

H2O

2. Add

• 20 ml ethylene glycol*

• 0.04 ml pDADMAC (poly(diallyldimethylamonium chloride), average Mw400,000-

500,000, 20% wt in H2O

• 0.8 ml 1M Phosphoric acid

to a clean 50 ml single-neck round bottom flask with a stirrer bar.

3. Stir at room temperature for approximately 2 minutes

4. Add 0.02 ml of 0.5M Chlorauric acid solution (9.29 mg HAuCl4 • 3H2O and

0.047 ml H2O) via pipette

5. Stir at room temperature for 15 minutes

6. Fit a condenser to the flask and place on a heating block. Heat to 195◦C and

maintain at that temperature for 30 minutes. The reaction will undergo the

following transitions:

• yellow to colourless after approximately 1 minute heating

• colourless to purple after a further 5 minutes heating

• purple to orange after a further 10 minutes heating

as shown in figure K.1.

7. Allow reaction mixture to cool to room temperature and add a further 0.005 ml

Chlorauric acid solution

8. Leave stirring at room temperature for 20 hours

9. Pour reaction mixture into a 50 ml falcon tube and centrifuge at 10, 000 rpm at

4◦C for 30 minutes
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10. Remove supernatant and re-suspend NPs in approximately 20 ml ethanol

11. Repeat the purification process a further two times with centrifugation at 4000 rpm.

*The size of particles produced can vary depending on the viscosity of the so-

lution. The ethylene glycol may be wet, in which case distillation can be employed

to vaporise some of the water content, providing a more viscous solution to achieve

larger nanoparticles.

FIGURE K.1: Colour change transitions observed during heating; from yellow to
colourless (after 1 minute), to purple (a further 5 minutes), and finally to orange (a

further 10 minutes).
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