

Reducing the sensation of electrical stimulation with dry electrodes by using an array of constant current sources

SOLOMONS, Cassandra, SLOVAK, Martin, HELLER, Ben http://orcid.org/0000-0003-0805-8170 and BARKER, Anthony

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/17405/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

SOLOMONS, Cassandra, SLOVAK, Martin, HELLER, Ben and BARKER, Anthony (2018). Reducing the sensation of electrical stimulation with dry electrodes by using an array of constant current sources. Medical Engineering & Physics, 51, 91-95.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

1	Title: Reducing the sensation of electrical stimulation with dry electrodes by
2	using an array of constant current sources
3	Cassandra D Solomons ^{1,2} , Martin Slovak ¹ , Ben Heller ³ , Anthony T. Barker ¹
4	¹ Medical Physics & Clinical Engineering, Royal Hallamshire Hospital, Sheffield, S10
5	2JF, United Kingdom
6	² SENSE School, VIT University, Vellore 632014, Tamilnadu, India (Present address)
7	³ The Centre for Sports Engineering Research, Sheffield Hallam University, Sheffield,
8	United Kingdom
9	
10	Corresponding author: Dr Martin Slovak, Medical Physics & Clinical Engineering,
11	Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust,
12	Glossop Road, Sheffield, S10 2JF, United Kingdom, tel. +44 0114 27 1160, email:
13	m.slovak@sheffield.ac.uk
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

24

25 Abstract

Hydrogel electrodes are commonly used for functional and other electrical stimulation 26 applications since the hydrogel layer has been shown to considerably reduce the 27 perception of stimulation compared to dry electrodes. However, these hydrogel 28 electrodes must be changed regularly as they dry out or become contaminated with 29 skin cells and sweat products, thus losing their adhesiveness and resistive properties. 30 Dry electrodes are longer lasting but are more uncomfortable due to unequal current 31 distribution (current hogging). We hypothesize that if current through a dry electrode 32 33 is equally shared amongst an array of small sub-electrodes, current hogging and thus the sensitivity perceived due to stimulation will be reduced. We constructed an 8 x 8 34 array of millimetre sized dry electrodes that could either be activated as individual 35 36 current sources, or together as one large source. A study was performed with 13 participants to investigate the differences in sensation between the two modes of 37 operation. The results showed that 12 out of 13 participants found the new (distributed-38 constant-current) approach allowed higher stimulation for the same sensation. The 39 differences in sensation between single and multiple sources became larger with 40 41 higher intensity levels.

42

Keywords: Dry electrodes; electrical stimulation; array stimulation

43 **1. Introduction**

The application of electrical current to stimulate nerves for functional and therapeutic 44 purposes is well established [1], [2]. Electrodes play a major role in the success of 45 stimulation since the efficacy of intervention, avoidance of tissue injury and the 46 associated discomfort are all determined by the stimulation waveform and type of 47 electrode used [2]. Surface electrodes are the most commonly used electrode types 48 49 in typical functional electrical stimulation (FES) application for correction of foot drop caused by damage to the brain or spinal cord. Guiraud et al reported that implanted 50 51 FES devices for gait restoration have been restricted to experimental concepts, and have very little follow-up data [3]. The size, shape, material and placement of surface 52 electrodes determines how effectively the underlying muscles and nerves are 53 stimulated with the least amount of discomfort [4]. Good surface electrodes should be 54 comfortable during use, easy to apply, stay in place for at least a day, re- usable, cost 55 effective and reliable [5]. 56

57 In the past, carbon-rubber electrodes were commonly used. However, these require the application of electrode gel which can be messy and inconvenient. Therefore low-58 cost self-adhesive hydrogel electrodes are currently use as standard. As the resistivity 59 of the hydrogel layer increases, the stimulation-induced discomfort decreases [6]. 60 Though high resistivity hydrogel electrodes possess most of the desired properties 61 required for good electrodes, they have poor reusability. Using old, dried out and dirty 62 electrodes increases the chances of causing skin irritation, reduces self-adhesiveness 63 and increase electrode-tissue impedance. Regular replacement of these electrodes 64 increases the costs of therapy, especially when more sophisticated and costly 65 electrodes are required [8]. 66

Taking these issues into consideration, dry electrodes appear attractive for long-term 67 applications. However, dry electrodes may cause pain or discomfort when high 68 intensity electrical stimulation is applied. At low current intensities, stimulation evokes 69 a sensory reaction without muscle contraction; as the current intensity is increased in 70 order to evoke a muscle contraction, this sensory response increases and can cause 71 pain and skin irritation [9]. Hair follicles, sweat pores and other structures beneath the 72 73 skin form paths of low resistance for the current passing through the electrodes and thereby cause uneven current densities ("current hogging"). It is thought that the local 74 75 high current densities due to current hogging lead to the greater pain associated with surface stimulation [6]. We hypothesise that if current can be more evenly distributed 76 across the stimulated area (thus avoiding current hogging) then stimulation will be 77 more comfortable. One way to achieve this even distribution is to use a high 78 impedance hydrogel electrode [6]; However, Cooper et al. conducted a study on the 79 properties of high resistivity hydrogel samples and concluded that they became 80 contaminated with skin products and lost their desired properties if they were used for 81 several days [7], causing significant problems in long term applications. An alternative 82 approach to achieve equal distribution of the current within the electrode is to use 83 multiple constant current sources, each connected to one of an array of small, adjacent 84 mini electrodes. 85

86 2. Material and methods

87 Participants

88 Ethical approval for the study was obtained from the Sheffield Hallam University 89 Research Ethics Committee and participants were recruited from students and staff 90 within the University. After obtaining informed consent, thirteen adults, (11 male and

2 female) were recruited to the study. Participants were excluded if they had any prior
adverse responses to any form of electrical stimulation or had any skin conditions such
as eczema.

94 Equipment and Materials

A 64 channel, constant current stimulator, Shefstim, was used to provide stimulation 95 [10]. The parameters of stimulation i.e., pulse width, amplitude and frequency were 96 controlled by custom software and PC. A commercially available hydrogel electrode 97 (StimTrode 5x5cm, Axelgaard Manufacturing Ltd., USA) was used as the anode. The 98 cathode was a dry electrode array of 64 electrodes (in an 8 x 8 matrix), constructed 99 100 from stainless steel paper pins. The heads of the pins were approximately 1mm in diameter and were used as the electrodes. The pins were placed through a piece of 101 stripboard with spacing of 2.54 mm and a 5 mm thick foam backing. The pins were 102 then soldered onto another piece of stripboard via which the electrodes were 103 connected to the outputs of the stimulator. The whole electrode formed a square of 104 105 30 mm x 30 mm.

A breakout box was constructed so that each of the 64 channels could either act as individual electrodes (multiple sources) or all could be shorted to act as a single electrode (single source). This allowed the same electrode array to be placed on the same location and used to compare conventional (single source) and the novel (multiple sources) stimulation techniques, without having to remove the electrode. The participant was blinded as to the nature of stimulation, and the two stimulation types were delivered alternately.

113 Experiment design

The participants were asked to sit on a chair and rest their left arm on a table in front of them. The electrode array was placed approximately 5 cm below the elbow on the extensor aspect of the left forearm and was secured with two Velcro straps. The anode was placed on the wrist of the same arm. The experimental protocol consisted of two parts:

a) Identification of comfort threshold (CT): This was defined as the threshold at which the participant felt that the sensation was at a maximum level that would be just tolerable for long periods of stimulation. This threshold stimulation current was identified for both single and multiple sources in random order by slowly increasing the intensity of stimulation and repeated twice more for each stimulation type. The maximum current of the three measurements was taken as the comfort threshold.

b) Difference in sensation: For each participant, stimulation was applied at 25%, 50%,
75% and 100% of the largest comfort threshold current identified above, starting at the
lowest intensity. Stimulation was randomly switched between single source (type A)
and multiple sources (type B), whilst keeping intensity constant. The participant was
asked to mark the difference in perceived sensation on the visual analogue scale
provided (Figure 2). Switching between A and B was repeated until the participant was
confident about his decision.

132 Outcome measures

a) Identification of comfort threshold (CT): After the stimulation intensity was set to the appropriate level for the measurement being made, current stimulation intensity was recorded (measured by ShefStim). At the same time the delivered charge was measured as the voltage (V_c) across a1 μ F capacitor (*C*) connected in series with the

participant in the anode path using a battery operated oscilloscope (Tektronix THS 720). The delivered charge was calculated as $Q \ [\mu C] = C \ [\mu F] * V_C \ [V]$ and applied current for in one pulse as I [mA] = $\frac{Q \ [\mu C]}{1200 \ [\mu S]} * 10^3$

b) Difference in sensation: The perceived sensation was measured using the Visual
Analogue Scale (VAS). The VAS values are expressed as percentage measured on
10 cm line between 'no difference' and 'much more uncomfortable' for either A (single
source) or B (multiple sources).

144 Analysis

a) Identification of comfort threshold (CT): The Wilcoxon matched-pair signed rank test
was used for the current threshold measurements. All values are expressed as mean
values with confidence intervals unless indicated differently on the graphs.

b) Difference in sensation: The Wilcoxon signed rank test was also used to compare the differences in sensation to a hypothetical value of 0% i.e. no difference in sensation.

151 **3. Results**

The results of the comfort threshold measurements showed that 12 out of 13 participants had a higher comfort threshold for multiple current sources. The median comfort threshold for multiple sources was 14.5 mA (10.4 to 22.1, 97.75% Cl of median) in comparison to 12.4 mA (8.3 to 18.6, 97.75% Cl of median) for a single source. The Wilcoxon non-parametric test gave a highly-significant p value of 0.0017 with median difference of 2.0 mA (0.7 to 4.9 mA, 97.75% Cl of median).

The magnitude of the differences between the comfort thresholds varied across the participants (mean 19%) but was as high as 93% more current delivered for one participant (Pt #8). Only one participant (Pt #7) had a higher comfort threshold for the
single source (6% lower for the multiple source). Figure 3 shows a graphical
representation of the results obtained in this test.

Two out of the 52 VAS measurements were not collected due to an operator error. 163 These measurements were at 25% CT for Pt #2 and Pt #8. The values reported below 164 are differences in VAS values expressed in percent. Positive values indicate the extent 165 that multiple source stimulation is more comfortable than single source, whereas 166 negative values indicate the single source is more comfortable. The 25% of comfort 167 threshold (CT) measurements showed median difference of +5% (0% to +39%, 168 169 98.83% CI) and a Wilcoxon signed rank test compared the values to a hypothetical 170 value of 0 with p = 0.089, the 50% of CT measurement showed a median difference of 16% (4% to 28%, 97.75% CI, p = 0.0164), the 75% CT measurement showed a 171 median of 20% (3% to 69%, 97.75% CI, p = 0.0083) and maximum intensity showed 172 a median of 32% difference (0% to 61%, 97.75% CI, p = 0.0020). 173

The differences in sensations between single and multiple sources became larger with higher intensities levels (50%, 75% and max.) in participants Pt#1, Pt#,3, Pt#9 and Pt#13. However in some participants the differences were consistent typically in Pt#2, Pt#4, Pt#5, Pt#6 as shown on Figure 4. Participant #7 perceived the single source as more comfortable than multiple sources at lower currents, but reported the opposite at maximum CT, similarly Pt #8, at 25% CT.

180 4. Discussion

181 We hypothesised that if current is more evenly distributed across the stimulated area 182 then the stimulation will be more comfortable. The results of the study show that 183 participants were able to tolerate higher stimulation intensities with multiple sources of

stimulation. We expected multiple sources to be increasingly more comfortable than 184 single source stimulation as stimulation levels increased. Indeed this was the case 185 globally and some participants clearly showed this phenomena individually. However, 186 some participants did not perceive much difference between the two stimulation types 187 and two found multiple sources to be only more comfortable only at the highest levels. 188 An explanation for this could be due to differing perceptions of sensation for sub-189 190 maximum stimuli. It could also be that the pitch of the electrodes was not small enough to optimise the control of current hogging. Another factor that could be influential is 191 192 that there was no skin preparation, such as hydration of the skin, prior to the application of the dry electrode to the participants' forearms, and that varying degrees 193 of skin hydration explain the wide variation in comfort thresholds. It is also possible 194 that those participants with thicker hair, more sweat glands and naturally drier skin 195 could have found multiple sources to be more comfortable, although this was not 196 measured. 197

198

Although the multiple-source constant current stimulation is more comfortable than a single constant-current source, there was no attempt in this study to stimulate at functional levels, so we do not know if it is comfortable enough at the currents required for functional use. The minimum tolerable current intensity (Pt #2) was 9 mA, through an approximate 6.25 cm² contact area. As electrodes in common clinical use are often 25 cm², a larger electrode area may allow a minimum of 36 mA tolerable current, which is sufficient for most foot-drop applications.

Although the *Shefstim* stimulator is very compact for its capabilities (it measures 142mm x 50mm x 14mm and weighs 125 g including batteries), the necessity of having 64 individual constant-current sources makes it larger and more expensive than a well-

designed single-channel stimulator. An alternative, lower-cost approach would be to use resistors to impose near constant-current for each channel. For a maximum current inequality of 10%, each resistance would have to be of the order of nine times greater than the maximum skin resistance presented by a single channel, so this would require an approximately 10 times higher stimulation drive voltage to compensate for the drop across the resistors, leading to a higher power consumption. Increasing the tolerance for current inequality would lower this wasted energy.

216

The experimental electrode array used in this study is too bulky and inconvenient to use clinically. A smaller, flexible design integrated into an elasticated garment to holdit in place on the skin would be required for this to be a clinically usable approach.

Further work should compare comfort levels between stimulation through multiple sources and a single source using a hydrogel electrode. This will give us a clear picture of whether the hydrogel electrode could be replaced with an array of dry electrodes. Additional work should also investigate the tolerable level of current mismatch between channels.

Although stimulation with multiple sources was shown to be more comfortable, it is clear that there is a large difference in response between participants. Further work should seek to identify the reasons for these differences, e.g., it is possible that participants with thicker hair and drier skin found multiple current sources more comfortable than participants with less hair and more hydrated skin. Understanding these parameters may help to improve the technique further.

231 **5. Conclusions**

232

233	The	purpose of this study was to see whether the sensation associated with the use	
234	of dry electrodes could be reduced. Stimulation through multiple sources showed		
235	improved comfort levels compared to single source stimulation in most subjects		
236	sugg	jesting that it may avoid current hogging.	
237	Conflict of interest: None		
238	Funding: Internal departmental – Sheffield Teaching Hospital NHS Foundation Trust,		
239	Sheffield, UK		
240 241	Ethical approval: Ethical Approval obtained from Sheffield Hallam University by Dr Ben Heller in October 2013		
242			
243	References		
244	[1]	P. H. Peckham and J. S. Knutson, "Functional Electrical Stimulation for	
245		Neuromuscular Applications," Annu. Rev. Biomed. Eng., vol. 7, no. 1, pp. 327-	
246		360, 2005.	
247 248	[2]	L. R. Sheffler and J. Chae, "Neuromuscular electrical stimulation in neurorehabilitation," <i>Muscle Nerve</i> , vol. 35, no. 5, pp. 562–590, 2007.	
	[0]	D. Outerradio O ante M. Demonster de condo C. Estheli «Incolemente d	
249	[3]	D. Guiraud, C. Azevedo Coste, M. Benoussaad, and C. Fattai, Implanted	
250		functional electrical stimulation: case report of a paraplegic patient with complete	
251		SCI after 9 years," J. Neuroeng. Rehabil., vol. 11, no. 1, p. 15, 2014.	
252	[4]	T. Keller and A. Kuhn, "Electrodes for transcutaneous (surface) electrical	
253		stimulation," <i>J. Autom. Control</i> , vol. 18, no. 2, pp. 35–45, 2008.	
254	[5]	T. Bajd and M. Munih, "Basic functional electrical stimulation (FES) of	

- extremities: An engineer's view," *Technol. Heal. Care*, vol. 18, no. 4–5, pp. 361–
 369, 2010.
- [6] N. Sha, L. P. J. Kenney, B. W. Heller, A. T. Barker, D. Howard, and W. Wang,
 "The effect of the impedance of a thin hydrogel electrode on sensation during
 functional electrical stimulation," *Med. Eng. Phys.*, vol. 30, no. 6, pp. 739–746,
 2008.
- [7] G. Cooper, A. T. Barker, B. W. Heller, T. Good, L. P. J. Kenney, and D. Howard,
 "The use of hydrogel as an electrode-skin interface for electrode array FES applications.," *Med. Eng. Phys.*, vol. 33, no. 8, pp. 967–972, Oct. 2011.
- [8] L. P. Kenney *et al.*, "A review of the design and clinical evaluation of the
 ShefStim array-based functional electrical stimulation system," *Med. Eng. Phys.*,
 vol. 38, no. 11, 2016.
- J. R. de Kroon, M. J. Ijzerman, J. Chae, G. J. Lankhorst, and G. Zilvold, "Relation
 between stimulation characteristics and clinical outcome in studies using
 electrical stimulation to improve motor control of the upper extremity in stroke.," *J. Rehabil. Med.*, vol. 37, no. 2, pp. 65–74, 2005.
- [10] B. W. Heller *et al.*, "Automated setup of functional electrical stimulation for drop
 foot using a novel 64 channel prototype stimulator and electrode array: results
 from a gait-lab based study.," *Med. Eng. Phys.*, vol. 35, no. 1, pp. 74–81, Jan.
 2013.