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Abstract 

Natural Language Processing (NLP) applications such as text categorization, machine translation, sentiment analysis, etc., need 

annotated corpora and lexicons to check quality and performance.  This paper describes the development of resources for 

sentiment analysis specifically for Arabic text in social media.  A distinctive feature of the corpora and lexicons developed are 

that they are determined from informal Arabic that does not conform to grammatical or spelling standards.  We refer to Arabic 

social media content of this sort as Dialectal Arabic (DA) - informal Arabic originating from and potentially mixing a range of 

different individual dialects. The paper describes the process adopted for developing corpora and sentiment lexicons for 

sentiment analysis within different social media and their resulting characteristics. The addition to providing useful NLP data sets 

for Dialectal Arabic the work also contributes to understanding the approach to developing corpora and lexicons.  
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1. Introduction 

Natural language processing applications work primarily with textual data, with objectives, such as, text 

categorization, machine translation and sentiment analysis. Their effectiveness is predicated upon the availability of 

a representative corpus for training, testing and validation. Such corpora need to embody information relevant to the 

intended language processing and also characterize - language as found "in the wild". Hence, corpora reflect the 

purpose for which they are used, for example they can be annotated with parts-of-speech (POS) tags, grammatical 
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elements (such as phrases, clauses and sentences). These can subsequently be used by various kinds of classifiers [1] 

such as Naïve Bayes (NB), decision tree (DT), Support Vector Machines (SVM), k-nearest neighbors (kNN), etc.. 

Classifiers are also designed and used for a variety of purposes, such as predicting movie sales, question answering, 

and other applications [2-10]. This also means that the corpora on which they rely on need to be domain specific. A 

corpora based on fashion reviews is likely to be inappropriate for classifying, say, movie reviews. For sentiment 

analysis classifiers aim to identify whether given posts are: positive, negative, neutral, etc.. Hence, enabling online 

product reviews to be assessed automatically.  

In terms of language "in the wild", social media presents an interesting challenge since standard spellings and 

grammar are often ignored and, to some extent, new constructs are formed. This character of social media language 

also undermines the ease of annotating a corpus. It also limits the re-use and re-purposing of existing corpora - 

unless they are based on informal language use in the required domain.  

This work focused upon the informal use of Arabic in social media as Dialectal Arabic (DA). Research related to 

building corpora is limited for the Arabic language when compared with English language. Authors in [9, 10, 11] 

attempt to partially fill this gap. However, Arabic resources become scarcer when we consider the sentiment 

classification of DA as that found in social media. 

The paper describes building corpora and lexicons of social media in DA, using Facebook as a source. Section 2 

provides a brief overview of the Arabic language and its characteristics, and currently available corpora. Section 3 

describes forming annotated corpora and sentiment lexicons. Sections 4 and 5 review and discuss the outcomes.  

2. The Arabic Language, Dialects and Corpora 

The Arabic language is one of the top six major languages of the world [9, 10, 12]. The number of native 

speakers exceeds 200 million and it is the formal language in 22 countries. There are three different forms of Arabic 

[10]: Classical Arabic; Modern Standard Arabic (MSA) and Dialectal Arabic (DA). Classical Arabic is the language 

of Qur’an, the holy book in Islam, one of the world’s major religions. MSA is the dialect used in education, books, 

television, newspapers, and in conversation among educated Arabs. DA is used to refer to the range of informal and 

local dialects. Such colloquial Arabic can be associated with geographical location, [13] provides the following 

rough groupings: Sudan and Egypt; Lebanon, Syria, Jordan, and Palestine; Gulf (Iraq, KSA, UAE, Kuwait, Qatar, 

Bahrain, and Yemen.); and, Libya, Tunisia, Algeria, and Morocco.  

Since social media provides for open, weakly moderated expressions, local dialects are used. In addition, social 

media readily spans geographic and dialectical boundaries. Hence, our work treats DA as a dialect reflecting the 

diversity of different dialects found.  

As a widely used language, Arabic has naturally been the focus of NLP. Existing research shows a number of 

different sources of Arabic corpora and techniques for deriving them. These include: mining data from databases 

[14-19], manual construction based on written text [20, 21], websites [22,23,24], as well as focusing upon social 

media posts [25,26], and spoken language [27]. Many Arabic corpora that may be used for text categorization, for 

example the publicly available Quranic corpus [28] that consists of one text file that includes syntactic and 

morphological annotation of the Quran. Al-Hayat Online Newspaper [29] and An-Nahar Online Newspaper [30] are 

two other Arabic corpora that cover different topics and whose texts are collected from online versions of the two 

newspapers. 

Other corpora mentioned in sentiment analysis of Arabic text focus upon: web pages [38-39], documents [36], 

movie reviews [31] and social media [14,26,32-35,43, 45, 48].Authors in [46, 47] used different sources. So much 

so, that [31] propose translating existing tagged corpora found in other languages.  Our work aims to help address 

lack of good corpora for sentiment analysis of informal Arabic with similar labels present in our corpus.   

3. Corpus and Lexicon Development 

The issues raised above motivated the development of our own corpora and sentiment lexicons for Arabic social 

media. The social media platform Facebook was chosen as a source because of its massive scale of usage - more 

than 1.4 billion users [40]. The objective of our sentiment analysis, is to support the classification posts as:  
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"negative", "positive", "dual", or "neutral". However, following a cursory assessment of social media posts, posts 

designed simply to drive web users lead to a fifth class of post, termed "spam". 

To enable comparative assessment of our approach, two corpora were developed keeping to specific and distinct 

groups: news and arts (both capped at 1000 posts). The news corpus (NC) using posts collected from Al Arabiyya 

News Facebook page [41] and the arts corpus (AC) using posts collected from The Voice Facebook page [42]. The 

development of the corpora is described below. During the same process lexicons were developed for the two 

domains. In support of sentiment analysis lexicons were developed for the words and phrases (lexemes) within posts 

that could be interpreted as key to determining its sentiment. (Despite this, the sentiment of a lexeme may differ 

from the post in which it appears, see examples, below).  

3.1. Data Collection 

Corpora are either built using crawlers or collected manually. Although crawlers have the advantage of collecting 

large numbers of posts, they do require preprocessing to remove unwanted data [9]. In addition, social media 

platforms terms and conditions can constrain how their data is used. For example, in the case of Facebook, crawlers 

are not permitted. What is more, from a research ethics perspective, it is necessary to justify that those who posted to 

a group understood that their posts were in the public domain. In the case of our research this was supported through 

providing samples of the posts, their translation, and confirming the copyright conditions upon Facebook groups’ 

posts. Subsequent use of the data collection adhered to good practice by anonymizing individual online identities 

and minimizing the risk of individuals posting being identifiable.  

The posts consist of textual data posted by users as comments on posts written by the pages’ administrators. The 

size of posts ranged from one word to a paragraph containing many sentences written in DA. Although DA includes 

different dialects, reflecting the non-localised nature of social media and its contributors, no attempt was made to 

differentiate dialects. Hence, the Facebook posts were treated as a reflection of the aggregate DA evident in social 

media. Out of interest, a later assessment of the posts indicated only 5% could be associated with a specific Arabic 

dialect. 

3.2. Preprocessing 

Posts were preprocessed based upon removing redundant content. Especially with short posts, social media users 

commonly repeat the same text more than once and duplicate others posts. Since the frequency of repeated posts 

does not influence their sentimental interpretation, repeated posts can be removed in preprocessing. In addition, 

posts were 'cleaned' by removing associated irrelevant data, such as time stamps and posted 'likes'. Both are best 

viewed as secondary data of no relevance to sentiment analysis. It is of interest to note that since the data was 

gathered Facebook has modified its "like" button to, what are termed, "Reactions" (see [44]). These include a range 

of predefined sentiment icons analogous to emoticons, yet, as with likes, they represent users’ sentimental responses 

to textual posts and do not relate to the class of the post itself.  

For the two domains following the preprocessing we found that: the 1000 arts based posts contained 12053 words 

(an average of 12 words per post), where the 1000 news based posts contained 8423 words (an average of 8 words 

per post) 

3.3. Manual Tagging 

Following pre-processing, expert native speakers tagged the collected posts. In our case four expert native Arabic 

speakers did the tagging. Their native dialect is Lebanese and they are experts in Egyptian, Syrian, and Palestenian 

dialects. Cases where a post's dialect was considered to be unfamiliar, passed to native speakers of the relevant 

dialect. 
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Fig. 1. Sample of a downloaded post in context. 

The manual tagging employed the following rules:  Posts expressing negative sentiments or feelings such as sadness, pessimism, hostility or any other negative 

feeling were classed as negative. For example: 

 لللاسف كان ذلك على حساب يسرى

("Unfortunately that was on Yusra's expense") 

 Posts expressing positive sentiments or feelings such as enthusiasm, happiness, optimism, etc., were classed as 

positive. For example: 

  مبروك مراد 

("Congratulations Murad") 

 If both positive and negative sentiments are expressed in the same post, posts were classed as dual. For example: 

 مراد أخذ اللقب عن جدارة واستحقاق وموتوا بغيظكن ياحساد  

  ("Murad deserves the title, die haters") 

 If a post is inviting users to join or “Like” a Facebook page, it is classed as spam. For example: 

ذا البيجالسلام عليكم ممكن تنشرون ه   :  

https://www.facebook.com/pages/%D9%85%D8... 

("Greetings, can you spread this page") 

 If none of the above apply, a post is classed neutral.  
 مراد شو شعورك ان ربحت احلى صوت وشو شعورك ان خسرت ؟

("Murad how would you feel if you win or lose the competition?") 

Inter Annotator Agreement (IAA) was 97% which represents the percentage of posts classified similarly by all 

annotators. However, to strengthen the validity of the manual classification, only posts where all four annotators 

agreed were used. Hence, the IAA for the resulting corpora is 100%.  

The resulting classes for the two domains (1000 posts in each) is shown in table 1. There is very little to 

differentiate the two domains, the greatest difference being in the dual and neutral classifications - that news (NC) 

has 6% more dual posts and the arts (AC) has 8% more neutral posts.  This is slightly surprising since one might 

expect sentiment profile to differ between factual content and entertainment content. 

4. Lexicon Development 

مبروك
جميل

 عندك احلى صوووووووووووووت       مبروك مراد

احلى صفحة على الفايسبوك انضم الآن

 
جميلة جميل

 
صوووووووووووووت

صوت

جميل
جممممممميل جميييييييل
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 
negative

 لللاسف كان ذلك على حساب يسرى

 
positive
  مبروك مراد

 dual
 مراد أخذ اللقب عن جدارة واستحقاق وموتوا بغيظكن ياحساد

 spam
ذا البيجالسلام عليكم ممكن تنشرون ه   

 neutral
 مراد شو شعورك ان ربحت احلى صوت وشو شعورك ان خسرت ؟

l 

 

 

 

t 

Table 1. Frequency of posts of each class. 

 

 

 

 

 

 

 

4. Lexicon Development 

Conventionally, a lexicon provides a set of text strings (lexemes) for a specific domain that can be used to 

classify posts. A lexeme can be as small as one word or as long as sentence.  The human taggers extracted the words 

and phrases from each post that they judged to be potentially influential upon its classification as positive, negative 

or spam. These were added as lexemes to a lexicon. Lexemes were extracted from the posts regardless of the posts 

actual classification. For instance, even if a post was classified as spam, it may still contain a positive phrase, the 

phrase would be recorded as a positive lexeme. For example, the following posts provide the positive lexemes مبروك 

("congratulations") and جميل ("beauty") and 

 

   عندك احلى صوووووووووووووت       مبروك مراد

 ("Congratulations Murad")    ("You have the most beautiful voice") 

 

And, the following post contains the positive lexeme referring to beauty, despite being spam.  

 الآن انضم ,الفايسبوك على صفحة احلى
(The most attractive /lovely page on FB, join now) 

 

Lexemes were then modified by factoring and extracting repeats, to improve recall: 

   Factoring. This involves identifying new lexemes by removing suffixes and prefixes of existing lexemes. If the 

lexeme was جميلة (beautiful, used for females), the lexeme added to the set was جميل (beautiful, used for 

males). This also results in lexemes that are closer to word roots, and thus improves recall.  Extracting repeats. What is more within social media and DA it was found that many lexemes involved regular 

informal departures from standard spelling. Consider the posts mentioned earlier, the word صوووووووووووووت 

(voice) is a wrong spelling variant of the word صوت, and clearly related variants include any number of repeated 

letters. Regular expressions have the ability to disregard repeated letters and thus were added as replacements for 

numerous individual lexemes. For example, if the lexeme جميل (beautiful) was converted to a regular 

expression, then this expression can detect all spelling variants such as جميييييييل  , جممممممميل and many 

more. (Hence, contrary to convention, “lexeme” in this research refers to the set of text phrases characterized by 

the regular expression.) 

 

As far as we are aware this use of regular expression based patterns to capture repeats within lexemes is unique to 

this research, and provides a mechanism for helping to manage the informal character DA and social media content, 

when conducting sentiment analysis. Validating this approach the lexicons with regular expression patterns, and the 

lexicons without regular expression patterns where compared - applying them to an unseen corpus of 1000 posts. 

The lexicons with the patterns were found to have a 2% performance improvement.  

With a view to validating the lexicons they were applied to the corpora and were shown to perform between 73% 

and 96%. The numbers of extracted lexemes show that social media posts constitute a good source to build an 

sentiment lexicon: out of the 2817 extracted lexemes, 2509 were unique yielding in ~11% redundancy rate. 

Although the corpus is relatively small, the numbers show that on average; at least one new lexeme can be extracted 

Paper Arts (AC) News (NC) Total 

Negative 224 230 454 

Positive 233 236 469 

Dual 151 161 312 

Spam 197 193 390 

Neutral 195 180 375 
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from each post. As for the upper threshold to this, a much bigger corpus needs to be annotated to see at which 

number of posts, or corpus size, will no new lexemes appear.  

Table 2. Frequency of extracted lexemes. 

 

 

 

 

 

 

 

A related question is whether the two lexicons reflect commonality within DA (independent of the domains). The 

lexicon commonality between domains is ~8% for Negative, ~14% for Positive and ~10% for spam. This suggests 

again either that the lexicons are far from comprehensive or that the two domains represent sentiment and opinions 

in very different ways. Further analysis using bigger corpora is needed to address these questions. 

One other noteworthy domain difference is the lexicons' characterization of spam. Specifically, the spam 

frequency for news is less than half of that for the arts. Considering that the results are largely uniform, this appears 

significant. It suggests that spam is more easily characterized in the arts corpus than in the news corpus. 

Other lexicons do exist for Arabic [48, 49], yet ours differ from them in two aspects: (1) source: our lexicon was 

constructed using data from social media, and (2) introduction of new label, the “spam”. 

5. Lexicon and Corpora Characteristics 

To assess the reliability of extracted patterns, we checked the extent to which lexicon characterizations matched 

those given in the corpora (see table 3). As we described earlier there are legitimate cases where characterization 

and classification do not match. However, the extent of the match indicates how easily DA can be classified based 

on simple patterns. 

Table 3. Lexicon corpora consistency 

 

 

 

 

 

 

The 100% match for Spam shows the ease with which it can be identified. By contrast, the lower percentages for 

positive and negative can be attributed to language characteristics. Further similar analysis is to be conducted 

accommodating the classification inter-relations, such as the fact that 'Dual' was assessed on based on the presence 

of mixed sentiments (i.e. positive and negative). 

The lexicon based identification of Spam was analyzed further, since spam posts may also include strong 

sentiments. Such cases were examined and it was found that spam patterns have greater dominance when compared 

other patterns in a post. This has implications for social media analysis of this sort and whether spam-like posts 

should be treated as categorically different. 

The correlation between dialects and the class of lexicon or post was not examined because: the collection of 

posts did not consider the dialect, and therefore the dialects distribution is not balanced, and; the majority of posts 

used phrasing common to all dialects. Future work aims to conduct dialect specific analysis. 

6. Conclusion 

The Arabic language is a major world language, with informal forms of it used extensively on social media. This 

paper has provided an account of work developing corpora from Arabic Facebook posts [50]. While other corpora 

 Arts News Total 

Negative 743 678 1421 

Positive 684 573 1257 

Spam 96 43 139 

Total 1523 1294 2817 

 SA consistency with AC SN consistency with NC 

Negative 86% 90% 

Positive 96% 96% 

Spam 100% 100% 

وووووووووتصوووو

References 
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6. Conclusion 

s 

 

exist for text domain classification [14,26,32-35,43], support for sentimental analysis is limited. In addition to 

support sentiment analysis, the paper described how lexicons were constructed. The performance of the classifier 

was determined upon comparing its results against the annotation done by the human taggers. Details of 

implementation will appear in future publications. Although our work is focused on Facebook, the same process can 

be adopted when dealing with other social media, such as tweets (textual data posted on Twitter) and comments on 

Instagram, MySpace, Linkedin, etc.. Our analysis here, suggests that despite differing domains one might expect to 

find comparable results. A future research question is whether the resulting profile of DA on Facebook is similar in 

other platforms. For example, Twitter may differ due to its shorter post length and the resulting impact upon 

language used. As a simple example, Twitter users may be less inclined to emphasis through repetition such as can 

be seen in " وووووووووتصوووو ". By contrast, LinkedIn appears to be based on longer professional posts closer to 

MSA. Clearly, any research based on adopting the approach described here will be subject to any social media's 

specific terms and conditions. 

As a general account of corpora and lexicon construction for informal language, the phases of processing 

described here could be applied to other languages. Future research plans to examine whether similar processing is 

useful for sentiment analysis in other languages and whether analogous profiles are informative. 

The other general finding of note is the distinctive nature of 'Spam' and what implications that has for sentiment 

analysis. One extreme would be treat the spam classification as a basis for excluding a post (as with, say, spam 

emails), whereas the alternative view would be accept that spam-like posts can express sentiments worthy of 

inclusion. Exploring this question in the future might require more careful consideration of how spam is classed and 

assessed along with the characteristics of social media use. 
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