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Abstract—This paper proposes a new method for tracking
the whole trajectory of a ballistic missile from launch to
impact on the ground. Multiple state models are applied for
the ballistic missile movement descriptions during different
phases, while the transition probabilities are modelled in a
state-dependent way. A radar sensor is applied to obtain
the missile range, azimuth angle and elevation angle mea-
surements. Based on the state models and measurements,
an interacting multiple model based particle filter method
is applied for tracking. Simulation studies show that the
proposed method outperforms the widely-applied extended
Kalman filtering based interacting multiple model for track-
ing the ballistic missile.

Index Terms—ballistic missile tracking, multiple model,
particle filtering, state dependent

I. INTRODUCTION

The ballistic missile (BM) is one of the threats from
the air in modern warfare, and it is important to intercept
it against the related attack. To intercept the BM, firstly
it needs to be tracked to obtain its position and velocity.
Various works have been done with respect to the BM
tracking. The tracking of re-entry BM is proposed in [1–
3]. Based on the re-entry state model and measurements,
Extended Interval Kalman filter [1] and sequential Monte
Carlo based approach [2] are applied for tracking the BM.
A comparison study between different filtering methods
for spiralling missile tracking during re-entry phase is
proposed in [3]. From the simulation results, it is shown
that the Rao-Blackwellized particle filter achieves the best
performance especially when large initial uncertainties
are introduced. Y. Li et al. [4] studies the problem of
estimating the BM trajectory during the boost phase. Based
on the line-of-sight measurements, an optimization based
method is applied to obtain the BM state at a reference
time from which the trajectory could be further predicted.

In reality, a BM experiences different phases from
its launch to impact and the movement characteristics
in different phases are different. To accurately track the
whole trajectory of the BM considering different move-
ment characteristics, multiple state models are needed.

Currently, the most widely used method for the multiple
model based BM tracking is the interacting multiple model
(IMM) method as in [5] and [6]. At each time instance,
the filtering results from multiple models are combined to
give the final estimation. However, there is an unrealistic
constant transition probabilities assumption for the tradi-
tional IMM. Besides, the extended Kalman filter applied
in the IMM scheme has a limitation in dealing with highly
non-linear models related to BM tracking.

In order to overcome these limitations, an interactive
multiple model particle filtering (IMMPF) algorithm as
in [7] is applied for BM tracking. This algorithm is
based on exact Bayesian inference for the state estimation.
Compared with the IMM, more realistic state dependent
model transition probabilities are considered and a par-
ticle filtering approach is applied to overcome the non-
linearities of both the state and measurement models.
The structure of this paper is as follows: Section 2 gives
detailed descriptions of the state models and measurement
model used in BM tracking. An illustration of the IMMPF
algorithm is presented in Section 3. Simulation studies are
presented in Section 4. Finally, we give the conclusions in
Section 5.

II. BM TRACKING MODELS

In this section, we introduce both the state and measure-
ment models for tracking the whole trajectory of a BM.
These models are used for the algorithm development in
Section III.

A. State models

The entire trajectory of a BM target from launch to
impact is commonly divided into three phases [8]–[9]:
boost phase, coast phase and re-entry phase. Three state
models are then applied to reflect different BM dynamics
in different phases. We consider a more realistic scenario
with unknown BM parameters exist and then model related
them together with state for each state model.
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1) Boost phase model: According to the Newton’s force
law, the following basic equations hold:

ṗ = v v̇ = a (1)

where p = [px, py, pz], v = [vx, vy, vz] and a =
[ax, ay, az] represent the position, velocity and acceler-
ation vectors representatively in the earth-centered-earth-
fixed (ECEF) coordinate system [8]. For simplicity, the
subscript representing time is omitted.

During the boost phase, the BM’s ignition is on and
it is in the lower part of the atmosphere. The BM is
affected by: the gravity force fgravity , thrust force fthrust,
aerodynamic drag force fdrag as well as additional Coriolis
force fcoriolis and Centripetal force fcentripetal introduced
by the earth’s rotation. According to the force definitions
in [9], the acceleration components along the three axes
of the ECEF coordinate system are represented in (2). As
defined in [9], uG,g and ω are constant values. ρ(·) is
defined as an exponential function with respect to the BM
altitude h. n, q and β represent the initial thrust-to-weight
ratio, normalized mass burn rate and ballistic coefficient
respectively, which are usually unknown.
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According to (1)–(2) and by applying the Wiener pro-
cess model [8] for modeling unknown ballistic parameters,
we can obtain the following nineth-order state model as:

ṗx
ṗy
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where wboost is a 9×1 vector representing the uncertainty.
2) Coast model: During the coast phase, the BM usu-

ally follows a Keplerian orbit at higher parts of or even
outside the atmosphere, with the ignitions being off. In this
case, it will not be affected by the thrust force and drag
forces and the corresponding acceleration components then

become:
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We can see that the acceleration terms do not contain any
ballistic missile parameters due to the negligible thrust and
drag forces. Without considering any BM parameters (n,
q and β), the related state model reduces to a sixth-order
one as: 
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where wcoast is a 6×1 vector representing the uncertainty.

3) Reentry model: When the BM re-enters the low parts
of the atmosphere (troposphere and stratosphere), it suffers
from the drag force again, and the related acceleration
terms becomes:
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A seventh-order state model is applied to model the
position, velocity and ballistic coefficient for estimation
as: 
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where wreentry is a 7 × 1 vector representing the uncer-
tainty.

B. Measurement model

The BM could be measured by one or more radar
sensors. Normally, sensors measure the range r, azimuth
angle θ and elevation angle φ. The measurement model



equations are represented as:

r =
√

(px − pRx )2 + (py − pRy )2 + (pz − pRz )2 + nr

θ = arctan(
py − pRy
px − pRx

) + nθ

φ = arctan(
pz − pRz√

(px − pRx )2 + (py − pRy )2
) + nφ

(8)

where [pRx , p
R
y , p

R
z ] represents the radar position. nr, nθ

and nφ represent the noises of the measurement model.

III. ALGORITHM DESCRIPTION

Based on different models, the IMMPF algorithm [7] is
applied for the ballistic missile tracking. Compared with
the traditional IMM method, it considers more realistic
state-dependent transition probabilities and the particle
filtering based implementation makes it robust to the high
non-linearity of both the state and measurement models.
The IMMPF algorithm is based on the exact Bayesian
inference framework for a multiple model system, whose
overall process is divided into four steps: mode mixing,
state interaction, evolution and correction.

Mode mixing: The mode mixing is related to the
evolution of the model probability between consecutive
discrete time instances t− 1 and t. Using the law of total
probability, we have:

p(mt = s|Zt−1) =
∑
r∈M

p(mt = s,mt−1 = r|Zt−1)

=
∑
r∈M

p(mt = s|mt−1 = r,Zt−1)p(mt−1 = r|Zt−1),
(9)

where mt represents the state model index variable whose
value could be any one element in the set M =
{boost, coast,
reentry}. Zt−1 represents the measurements collection
during previous time instances. And p(mt = s|mt−1 =
r,Zt−1) can further be decomposed as:

p(mt = s|mt−1 = r,Zt−1)

=

∫
πrs(xt−1) · p(xt−1|mt−1 = r,Zt−1) dxt−1.

(10)

where xt−1 represents the BM state vector containing po-
sition, velocity and possible missile parameters. πrs(xt−1)
represents the state-dependent model transition probability
between models r and s. For the BM tracking in this
work, we apply Wu’s polynomial function [10] to model
transition probabilities with respect to the BM height
information.

State intersection: State interaction generates the
initial mode-conditioned density p(xt−1|mt = s,Zt−1).
According to the conditional probability relation and the

law of total probability, one has:

p(xt−1|mt = s,Zt−1) =

∑
r∈M

πrs(xt−1) · p(xt−1,mt−1 = r|Zt−1)

p(mt = s|Zt−1)
.

(11)

Evolution: The state evolution step is to propagate the
mode-conditioned state density from t− 1 to t. Given the
initial density is provided in (11), the mode-conditioned
prior distribution p(xt|mt = s,Zt−1) at t can be calculated
as:
p(xt|mt = s,Zt−1)

=

∫
p(xt|xt−1,mt = s,Zt−1)p(xt−1|mt = s,Zt−1) dxt−1.

(12)

Correction: Finally, the updated measurement is in-
corporated to correct the prior by following the Bayes’
rule:

p(xt,mt = s|Zt) ∝ p(zt|xt,mt = s)p(xt|mt = s,Zt−1)

· p(mt = s|Zt−1).
(13)

A. IMMPF implementation

Since there is no analytical solution for the proposed
Bayesian filter due to the nonlinearity and non-Gaussian
distribution of the multiple model system, a particle filter
is developed to implement such a filtering framework. It
starts at time t − 1 with the set of weighted particles
{xr,kt−1, µ

r,k
t−1; r ∈ M, k ∈ {1, . . . , N}} to approximate the

probability p(xt−1,mt−1 = r|Zt−1), based on which prior
mode probability in (9) is approximated as

p(mt = s|Zt−1) ≈
∑

mk−1∈M

N∑
k=1

πrs(xr,k
k−1) · µ

r,k
t−1 , Λs

t−1,

(14)
where Λs

t−1 is defined to facilitate the rest of derivation.
Secondly, the state interaction process can be imple-

mented by inserting particles into (11), such that

p(xt−1|mt = s,Zt−1)

≈
∑
r∈M

N∑
k=1

πrs(xr,k
t−1)µ

r,k
t−1δ(xt−1 − xr,k

t−1)/Λ
s
t−1.

(15)

The density p(xt−1|mt,Zt−1) is the initial density for the
mode-matched filter. From (15), we can see it is approxi-
mated by a number of |M|×N (where |M| is the number
of models) particles, which will lead to the exponentially
increasing of particles for initial density representation. To
solve this problem, resampling is performed such that N
samples {xs,kt−1} ∼ p(xt−1|mt = s,Zt−1) are generated.

The third step is the particles’ evolution from time
t−1 to t. Resampled particle set {xs,kt−1}k=1,...,N could be
evolved to generate a new particle set {xs,kt , }k=1,...,N ∼



p(xt|mt = s,Zt−1), with the aid of the state model
corresponding to mt = s. We have to notice that the
state models in (3), (5) and (7) are represented in con-
tinuous forms. In order to evolve particles at discrete
time instances from t − 1 to t, we apply the Euler
method [11] (more complicated Runge-Kutta method [11]
could also be adopted). The generated new particle set
could be applied to approximate the predicted distribution
p(xt|mt = s,Zt−1) as:

p(xt|mt,Zt−1) ≈
1

N

N∑
k=1

δ(xt − xs,k
t ). (16)

Finally, by inserting (14) and (16) into (13), we have:

p(xt,mt|Zt) ∝
N∑

k=1

Λs
t−1

N
p(zt|xs,k

t ,mt = s)δ(xt − xs,k
t )

∝
N∑

k=1

µs,k
t δ(xt − xs,k

t ).

(17)

We can see that the distribution p(xt,mt = s|Zt) could
be approximated by a set of new particles xs,kt with
weights µs,k

t ∝ p(zt|xs,kt ,mt = s)Λs
t−1, from which the

state model probability for p(mt = s|Zt) and final state
estimation x̂t is obtained as as:

x̂t =
∑
s∈M

N∑
k=1

µs,k
t xs,kt , (18)

p(mt = s|Zt) =
N∑

k=1

µs,k
t . (19)

IV. SIMULATION STUDIES

To verify the effectiveness of the IMMPF algorithm and
its advantages over the traditional IMM algorithm ( [5]
and [7]) for the ballistic missile tracking, a simulation
study is performed. A whole BM trajectory is simulated
in the Earth-centred-Earth-fixed (ECEF) coordinate system
as in Fig.1 by three state models as mentioned in Section
2. It is simulated that the BM transits from boosting
to coasting at 66s after launching and from coasting
to reentering into the lower atmosphere region at 275s.
Key parameters of the simulated BM flight trajectory are
listed in Table I, which fall into the short range ballistic
missile trajectory parameters as described in [12]. A radar
sensor positioned at 29oN and 42oE (corresponding to
the position [3.96× 106, 4.02× 106, 3.09× 106] (meters)
in the ECEF coordinate system) is applied to measure the
range, azimuth and elevation angles of the BM.

Based on the simulated scenario, 100 Monte-Carlo
simulations are performed to compare the performance
of IMM and IMMPF (with the particle size being 5000
for each state model). Firstly, we compare the BM state

Fig. 1. Simulated BM trajectory

TABLE I
THE PARAMETERS OF THE SIMULATED BM TRAJECTORY

Flight time Range Boost time Engine-off velocity
305 (s) 292 (km) 66 (s) 1.46 (km/s)

(a) Boost model probability estimation

(b) Coast model probability estimation

(c) Re-entry model probability estimation 

Fig. 2. The comparisons on the estimations of different state
model probabilities.



model probability estimations by different methods and
the results are presented in Fig. 2. We can see that
the probability estimations of IMMPF coincide with the
ground truth much closer and the IMMPF algorithm could
better capture the BM dynamic type changes with less time
delay compared with the traditional IMM.

Next we compare the averaged root-mean-square-error
(RMSE) of two methods, for both position and velocity.
From Fig.3, we could observe that for the IMM algorithm,
large errors could be observed around instances when
model transitions occur, and this could be largely reduced
by the IMMPF algorithm which better captures the BM
dynamic model transitions as shown in Fig.2. Besides,
by applying the particle filtering based approach, the
nonlinearities of both state and measurement models are
better handled thus more accurate estimations could be
obtained within a particular phase.

(a)  Position RMSEs

(b) Velocity RMSEs

Boost Coast Reentry

Boost Coast Reentry

Fig. 3. The comparisons on RMSEs for positions and velocities

V. CONCLUSIONS

In this paper, we have proposed a new IMMPF based
method for tracking the whole trajectory of the ballis-
tic missile. Multiple models were applied for describing
ballistic missile movements during different phases, with
the state-dependent model transition probabilities being
applied. This particle filtering based method can better deal
with the non-linearities of both the state and measurement
models. The simulations showed that the IMMPF outper-
forms the traditional IMM for the estimations of both the
model probability and state vector components.
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