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One-shot Assistance Estimation from Expert Demonstrations
for a Shared Control Wheelchair System
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Abstract— An emerging research problem in the field of assis-
tive robotics is the design of methodologies that allow robots to
provide human-like assistance to the users. Especially within the
rehabilitation domain, a grand challenge is to program a robot
to mimic the operation of an occupational therapist, intervening
with the user when necessary so as to improve the therapeutic
power of the assistive robotic system. We propose a method
to estimate assistance policies from expert demonstrations to
present human-like intervention during navigation in a powered
wheelchair setup. For this purpose, we constructed a setting,
where a human offers assistance to the user over a haptic
shared control system. The robot learns from human assistance
demonstrations while the user is actively driving the wheelchair
in an unconstrained environment. We train a Gaussian process
regression model to learn assistance commands given past and
current actions of the user and the state of the environment. The
results indicate that the model can estimate human assistance
after only a single demonstration, i.e. in one-shot, so that the
robot can help the user by selecting the appropriate assistance
in a human-like fashion.

I. INTRODUCTION

A 2012 report of the European Commission predicts a
potential shortfall of around 1 million healthcare workers by
2020, indicating a 15% reduction in the total work force
when compared to the numbers in 2010 [1]. This significant
shortage of nursing professionals implies an immediate need
for developing assistive technologies capable of aiding the
increasing elderly and disabled population. This deficiency,
along with the advancements in the development of adaptive
personal robotic systems, have motivated many researchers to
turn their attention towards assistive robotic systems, which
are tailored to aid humans with physical and/or cognitive
impairments. The use of such robots has the potential to
reduce the burden involved in caring for the increasing
population of elderly and/or disabled people in frequently
under-resourced clinical settings, such as rehabilitation and
residential care centers [2].

Robotics technology is expected to have a positive impact
on the quality of life of potential users with motor im-
pairments by automating the rehabilitation process, offering
precise monitoring tools, and providing adaptive assistance
via modeling the behavior of the user. Up to now, many
physical rehabilitation robots have been built to enhance the
recovery of gait and upper extremity functions of patients
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Fig. 1: Learning-Assistance-by-Demonstration Scenario: A
remote assistant provides assistance to the user while she
drives the wheelchair. The robotic system, in turn, learns
human-like assistance through the observations of the envi-
ronment and the assistant commands.

with motor deficiencies. Conventional approaches involve
restricting the user’s motion on a desired trajectory [3] or
performing corrective actions when users deviate from the
specified trajectory [4], [5], [6] during repetitive movement
exercises. However, such solutions typically constrain the
users motion, limiting the current effectiveness for therapeu-
tic purposes [7], [8].

Since each individual has different needs and requirements
for coping with specific motor impairments, methodologies
that are able to provide personalized assistance to the users
are needed. The fundamental point underlying such method-
ologies is that assistive systems should not unconditionally
assist the user at all times, but attempt to infer the current
needs of the user, and act accordingly [9]. We suggest that an
assistive robot would be most effective if it can emulate the
operation of a human assistant, e.g. an occupational thera-
pist. Even though different studies have investigated human-
human interaction to learn from the behavioral mechanisms
utilized by humans (e.g. [10], [11], [12], [13]), there is no
fundamental approach that allows researchers to develop a
model for the robot so that it can act like a human assistant.

For this purpose, this study proposes a triadic learning-
by-demonstration (LbD) methodology, in which an assistive
robot (i.e. a powered wheelchair) models its assistance
function by observing the demonstrations given by a remote
human assistant as shown in Fig. 1. LbD has been applied to
human-robot interaction for over a decade to enable robots
to imitate tasks performed by a human. In this methodology,
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the human acts as the “teacher”, and physically demonstrates
the task for the robot to generalize from [14], [15], [16].
Up to now, LbD has mostly focused on dyadic human-robot
interaction scenarios, where the human is involved in the
action only during demonstration. However, the wheelchair
training scenario considered in this paper is inherently dif-
ferent than typical LbD scenarios. In our setup, the teacher
is not the user of the wheelchair, but a remote human
assistant, who interacts with the robotic system when needed.
Additionally, since the user is continuously interacting with
the wheelchair during the demonstration phase, it is not
possible to formulate this problem as a typical LbD problem.
The triadic nature of the problem requires the robotic system
to be dynamic and responsive to different signals acquired
from both the teacher (i.e. the assistant) and the user, while
keeping track of what is going on within the environment.
Up to our knowledge, such complex scenarios, where the
demonstrations are given by a human assistant while the user
and the robot pursues interaction, has not yet been considered
except for a recent work by Soh and Demiris [9].

This paper is organized as follows: Section II presents
related work on intelligent wheelchair systems. Section III
details the hardware specifications of the haptics-enabled
wheelchair system used as a test-bed, followed by Section
IV, which explains the proposed methodology. Section V
presents the experimental protocol followed in the user trials,
and elaborates on data collection. Section VI presents a
discussion of the results, and finally, Section VII provides
conclusions and draws directions for future research.

II. BACKGROUND

Various studies have been conducted since mid-1990’s
as efforts to make powered wheelchair systems intelligent.
Even though earlier studies typically implemented collision
avoidance mechanisms for safeguarding (e.g. [17], [18], [19],
[20]), in early 2000s, researchers have started to focus their
efforts on estimating user goals and intentions using machine
learning techniques to provide personalized assistance in
powered wheelchair setups. Boy et al. proposed a mechanism
that modulates the intelligent wheelchair’s trajectory correc-
tions based on the user’s capabilities by defining specific
control mechanisms tailored to specific disabilities [21].
Carlson and Demiris defined certain actions in a particular
environment, and dynamically predicted the most probable
actions that shall be taken in near future to correct the
orientation of the wheelchair [22], [23]. Demeester et al.
used Bayesian decision theory to estimate the certainty of
users in a navigation task [24].

A challenging aspect of the intelligent wheelchair research
domain is the fact that the users of the wheelchairs are
often not able to provide correct signals to the wheelchair.
This is especially apparent for toddlers and when wheelchair
users suffer from extreme cognitive or physical difficulties.
In such cases, since the users are not capable of performing
all actions by themselves, it is not possible to construct a con-
sistent assistive model based solely on user behaviors. That
is why almost all existing wheelchair systems implement

restrictive guidance schemes for strict trajectory-following
tasks. A recent study by Soh and Demiris proposed that a
robotic wheelchair can learn from the demonstrations of an-
other person, who can present the user human guidance dur-
ing navigation by taking over the control of the wheelchair
[9], [25]. Assuming the coherence of human guidance, the
robotic wheelchair modeled the user’s actions and learned
how and when to assist the user. In the current study, we take
this idea one step further by learning the assistance policies
during triadic interaction, where the assistant does not take
over the control of the task, but shares control with the user
at all times. This way, the user is given more autonomy
in situations where (s)he comes up with navigation plans
different from those of the assistant.

III. SYSTEM OVERVIEW

This section describes the haptics-enabled wheelchair plat-
form, through which the remote human assistant presents
assistance to the user within a shared control framework.

A. Robotic Platform
In the experiments, we used the ARTY (Assistive Robotic

Transport for Youngsters) intelligent wheelchair platform,
developed at Imperial College London Personal Robotics
Laboratory. ARTY is built by modifying a pediatric pow-
ered wheelchair to equip three Hokuyo URG-04LX laser
scanners, five bump sensors, and one Phidgets IMU. The
software system is developed using the Robot Operating
System (ROS), and each sensor is managed by a separate
ROS node. ARTY has two on-board computational units,
which are responsible for processing and integrating multi-
sensory information, as well as higher-level tasks, such as
path planning and obstacle avoidance. More information on
the operation of ARTY and its hardware specifications can
be found in [26] and [27].

B. Haptic Shared Control
In our setup, the agents control the movement of the

wheelchair with haptic joysticks. As a result, they get physi-
cally coupled, so that both are able to feel the forces exerted
by one another as if they are holding the same joystick.

Each agent interacts with a Novint Technologies Falcon
haptic controller with up to 9 N continuous force feedback
capability and 400 dpi position resolution. The user’s haptic
controller is attached to ARTY and connected to one of the
computational units on it, whereas the assistant’s controller
is connected to a remote PC that communicates with ARTY
over the network. The wheelchair is controlled by moving
the haptic controller on a horizontal plane, where the for-
ward/backward movements are used for controlling the speed
and leftward/rightward movements are used for rotation.

The operations of the user and the assistant are combined
to calculate a joint command that is sent to the wheelchair in
order to move it. The shared control scheme is based on the
haptic negotiation model as described in [28].1 Fig. 2 depicts

1ROS package that implements haptic negotiation for two Novint Falcon
devices is accessible through the software section of the Personal Robotics
Laboratory page: http://imperial.ac.uk/PersonalRobotics

http://imperial.ac.uk/PersonalRobotics
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the modified haptic negotiation model that enables shared
control on the wheelchair. The user and the assistant interact
with the wheelchair by moving the haptic controllers, the
positions of which are mapped to haptic interaction points
HIP1 and HIP2 in the virtual world, where HIP1 denotes
the user’s haptic interaction point and HIP2 denotes that of
the assistant. The operations of the agents are merged by
introducing a negotiated interface point (NIP) that is directly
connected to the HIPs through virtual spring-damper systems
with zero rest lengths. In order to get the wheelchair to stop
whenever the haptic joysticks are idle, NIP is also attracted
towards the origin through a spring-damper system. Finally,
the position of NIP is converted to a velocity command that
is directly fed back to the wheelchair.

Assistant

HIP1 HIPNIP

(0,0)

Kp,no Kd,no

Kp,hn

Kd,hn Kd,hn

Kp,hn

Wheelchair

User

Fig. 2: Modified haptic negotiation model for controlling the
movement of ARTY. xi and ẋi (i ∈ {HIP1,HIP2,NIP}) re-
spectively denote the positions and velocities of HIP1, HIP2,
and NIP; Kp and Kd values stand respectively for propor-
tional and derivative gains: Kp,hn = Kp,no = 15.0 kg/s2,
Kd,hn = 0.25 kg/s, and Kd,no = 0.2 kg/s.

This model allows the user and the assistant to interact
bidirectionally, being aware of one another’s actions through
the forces they feel via haptic devices. However, note that the
humans feel each other’s movements only indirectly through
the NIP. In practice, the agents are fed back with very small
forces as long as their movements agree. On the other hand,
any disagreement between agents exposes itself immediately
in terms of opposing forces fed back through the devices.
This information is particularly important for the assistant
so that (s)he can offer more effective guidance by getting
aware of the actions of the user.

IV. APPROACH

In general terms, we are interested in making an inference
about the relationship between observation inputs, which
consist of the environmental information and the user’s
control commands, and real-valued targets, which can replace
the assistance signals as presented by a human. Regression
presents a solution to this problem by learning the conditional
distribution of the targets given the inputs [29]. In this study,
we utilized a Gaussian process (GP) method for regression.
GP is a powerful non-parametric Bayesian technique that
describes data distributions over functions. It works very well
with time-series, automatically handles temporal dependen-
cies between input signals, provides probabilistic predictions,
and presents a well-formulated Bayesian approach to model
selection.

In the scope of this study, we used a squared exponential
covariance function, which can model short and medium
term irregularities in input space [29]. An initial length-
scale hyperparameter corresponding to 10 seconds is used
to initialize the model. We believe this is a reasonable
assumption since the length-scale of the process denotes the
minimum distance you need to move along a particular axis
in input space for the function values to be automatically
uncorrelated. The final length-scale hyperparameter was op-
timized using maximum likelihood estimation during model
selection. Due to the high-dimensional input space in our
task, we turned on automatic relevance determination (ARD)
while training the model. ARD allows the model to identify
the directions in the input space that exhibit high relevance
so as to select different length-scales for different directions.

V. EXPERIMENT AND DATA COLLECTION

In order to demonstrate the system’s capability of learning
from demonstrations in triadic interaction, experimental data
were collected from the operation of a single subject work-
ing with a human assistant. The human assistant (i.e. the
demonstrator) was considered to be an expert in driving the
wheelchair remotely using the haptic interface. On the other
hand, the subject, despite having experience in driving the
wheelchair, had no prior acquaintance with the haptic joy-
stick. During the experiment, the demonstrator monitored the
operation of the wheelchair by observing its motion through
rviz 3D visualization tool for ROS. She was provided with
a frontal camera view of the environment, as well as laser
scan data readings matching the map of the environment. The
subject was asked to perform 12 laps (i.e. trials) in a cluttered
lab area, where each lap involved visiting three checkpoints
in sequence as shown in Fig. 3. Each lap was around 20
meters and on average took 45 seconds to complete.

During the trials, the demonstrator presented assistance
whenever she saw fit, e.g. to steer the wheelchair from
obstacles or to increase the pace of the task. The first trial was
considered to be a practice trial, which aims at familiarizing

1.6 m

6.1 m

9.0 m

Start

Checkpoint

Checkpoint

User

Assistant

Fig. 3: The experimental task: A single trial involves going
in sequence in between three checkpoints in the lab space.
Black areas on the map denote obstacles. The assistant sits
at one corner of the lab, monitors the operation of the user
through a computer screen, and offers assistance.
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Fig. 4: Assistance command estimations for three representative trials. The model successfully estimates the assistance,
following the trends in the ground truth data for assistant’s commands.

the user with the triadic operation. Hence, the data collected
during this trial were discarded from further analysis. The
second trial was used as the one-shot demonstration session,
the data from which were used to train the regression model.
Remaining 10 trials were used as estimation trials, which
allowed assessing the accuracy of the proposed model.

Sensor data were collected at 20 Hz to record the following
environmental and user-related observations:

• Joint velocity command that moves ARTY,
• Laser scan readings in 15 directions,
• Minimum distance to an obstacle calculated using the

laser scan readings,
• Velocity commands sent to ARTY by the user

to estimate target assistance commands:
• Velocity commands sent to ARTY by the assistant.
Note that the model learns the dynamics of the assis-

tance behavior without any prior knowledge of the environ-
ment. Since the input variables involve only environment-
independent information, there is no need to build initial
knowledge about the task space, such as building a map of
the environment prior to the learning process.

VI. RESULTS AND DISCUSSION

Using the observations collected during the initial demon-
stration trial, we train a GP model for regression. This
model is then used to estimate the assistance signals offered
by the human in response to varying user commands and
environmental context in the upcoming trials.

Figure 4 illustrates estimation profiles acquired using the
proposed model for three representative trials. Evidently,
model-based estimations follow trends similar to ground
truth human assistance in both linear and rotational velocity
commands, hence is able to mimic the operation of the
human assistant.

Figure 5 presents the root mean squared error (RMSE)
values between the assistance estimations and the actual
assistance given by the human over all estimation trials
for linear and rotational velocity commands. RMSE scores
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Fig. 5: RMSE scores showing the normalized estimation
error over all trials.

tend to stay low, illustrating good and consistent estimation
performance over the course of the experiment.

Figure 6 plots the paths followed by the wheelchair
through all trials. Overlaying density plots mark the locations
on the paths, where assistance was offered by the human
demonstrator or was estimated. Figure 6a plots the assistance
density for the initial demonstration session. Figures 6b and
6c plot the paths over the estimation trials (i.e. trials 3
to 12), and respectively present the ground truth assistance
densities as demonstrated by the human and the assistance
densities of the estimations. Upon closer inspection, it can
be seen that the paths traversed by the wheelchair and the
assistance offered by the human differs drastically from trial
to trial. Additionally, the nature of the assistance does not
strictly depend on the absolute location of the wheelchair
on the map. For instance, even though strong assistance was
offered in the middle of the path around coordinate (1.5,
0.5) during demonstration, some trials do not involve any
such intervention in that region (e.g. trials 3, 5 or 12). The
GP model successfully captures this varying nature of the
assistance so that the robotic wheelchair can learn to help
the user in a similar fashion to the human assistant.

VII. CONCLUSIONS AND FUTURE WORK

This work is a first step in programming a robot that learns
in one shot how and when to help a wheelchair user by
observing assistance demonstrations offered by a human. We



Proceedings of the 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Kobe, Japan, Aug 31 - Sep 4, 2015

(a) Assistance density as demonstrated by the human in the demonstration trial

(b) Ground truth assistance densities as demonstrated by the human in the estimation trials

(c) Estimated assistance densities

Fig. 6: The paths taken through the trials with overlaying density plots that illustrate the whereabouts of the assistance offered
by the human assistant. Darker red areas indicate higher amounts of assistance. a) Assistance density in the demonstration
trial. This data were used to train the GP regression model. b) Ground truth assistance densities as offered by the human
assistant. c) Estimated assistance densities.

train a GP regression model to learn the distribution that best
describes the assistance function used by the human assistant.
The model is able to learn the target function in one-shot,
using data collected in a single demonstration session. A
close inspection on estimation commands shows some low
amplitude noise in signals in comparison to the ground truth
assistance data. However, this noise might not bear any prac-
tical importance since many powered wheelchairs already
come with “tremor damping”, frequently with programmable
joystick response sensitivity [30]. These signals can also be
filtered in real time for smoother operation if they prove to
be detectable by the users.

It is important to note that our approach is suitable for on-
line assistance prediction. Even though training a GP model
is computationally very costly (with complexity O(N3),

where N is the size of the training set), the ability to learn
in one-shot allows us to learn a model without considerable
overhead due to the use of few training instances. Further-
more, the model created after the first trial can be considered
as an initial model, and it is possible to train a new model on
a parallel thread without pausing the operation whenever new
assistance demonstrations are available. Within the scope
of this paper, we have only demonstrated the estimation
accuracy of the model. We are currently in the progress of
implementing a predictive assistive mechanism for triadic
interaction, where the wheelchair will autonomously respond
to user’s commands during ongoing action. An immediate fu-
ture work will demonstrate the use of the proposed technique
for online assistance prediction.

Our results indicate not only that the model can be used to
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estimate assistance signals that resemble human demonstra-
tions, but also that the proposed technique can successfully
generalize to different situations. The assistance can be
estimated with high accuracy even when human assistance
is presented in radically different moments. However, due
to task selection, the generalization capability of the model
can not be demonstrated fully. As a next step, we are going
to investigate the model’s ability to generalize to different
situations by testing it in a trajectory that is completely
different than that used in training.

This study reveals that the decisions of a human when
offering assistance can be captured through the observation
of only the user’s behavior and the environmental context.
However, this decision process is also strongly influenced by
the characters and emotional states of the individuals partic-
ipating in the task as well as their levels of task knowledge
and expertise. For instance, the assistant in this experiment
was inclined to offer a high level of assistance throughout
the trials. However, it is possible that a different assistant
would have gone for less intervention, in which case the
system would have learned to be passive more often. Hence,
any assistive system needs to be trained to accommodate
such personal characteristics and should exploit individual
decision processes of the actors. Our method presents a
personalized user-modeling solution. Its capability to provide
personalized assistance will be investigated in a follow-up
study, where we will compare between policies learned for
different user-assistant pairings.
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