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André Treptow
Department of Computer Science

University of Tuebingen
Tuebingen, Germany

treptow@informatik.uni-tuebingen.de

Grzegorz Cielniak and Tom Duckett
AASS, Department of Technology

University of Oerebro
Oerebro, Sweden

{grzegorz.cielniak, tom.duckett}@tech.oru.se

Abstract— In this paper we present a vision-based approach
to detect, track and identify people on a mobile robot in real
time. While most vision systems for tracking people on mobile
robots use skin color information, we present an approach
using thermal images and a fast contour model together with
a Particle Filter. With this method a person can be detected
independently from current light conditions and in situations
were no skin color is visible (the person is not close or does
not face the robot). Tracking in thermal images is used as
an attention system to get an estimate of the position of a
person. Based on this estimate we use a pan-tilt camera to
zoom to the expected face region and apply a fast face tracker
in combination with face recognition to identify the person.

Index Terms— Robot vision, real-time people tracking, ther-
mal images

I. INTRODUCTION

Vision-based detection, tracking and identification of
humans on mobile robots is a challenging task. The
ability to interact with people in populated environments is
important for robots that fulfill tasks in cooperation with
humans (e.g., service robots, inspection tasks, surveillance).
Recently, systems for human-robot interaction that are able
to locate the position of a person facing the robot have been
developed. However, these approaches assume that people
are close to the robot and face toward it so that methods
based on skin color and face detection can be applied:
Wilhelm et al. [12] track regions in the image which have
skin color and combine this information with sonar data
to get an estimate of the position of a person that is close
to the robot. In a second step they use a face detector to
get the position of the face in the image. Barreto et al. [6]
describe a human-robot interface that relies purely on a
face detector in combination with face recognition based on
PCA. Similar work can be found in [7] where a detected
face region is tracked with skin color information. Lang et
al. [11] combine several cues including sonar, laser scanner,
sound localisation and color image processing.

The work presented here is part of a robotic security guard
project, where one task for the mobile robot is to identify
people in the building while patrolling. In this scenario the
robot must be able to detect a person even from larger
distances and it cannot be assumed that the person faces the
direction of the robot. Therefore skin color cannot be used as
a cue for the position of a person in the image. In this paper
we address this problem and introduce a new method to detect
and track a person in thermal images. This information is
used to get a first estimate of the position of a person relative
to the robot. While tracking a person in the thermal image, the
robot tries to get closer to identify the person. Identification
is performed using grey value images. Our experimental
platform is an ActivMedia PeopleBot mobile robot that is
equipped with several sensors including a thermal camera
and a pan-tilt camera unit (see figure 1).

Fig. 1. ActivMedia Peoplebot, thermal camera (NEC Thermal Tracer
TS7302) and pan tilt camera.
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II. METHOD

Our approach to identify people in real time on a mobile
robot is shown in figure 2. The system can be divided into 4
parts. First of all, the robots starts in the search mode where
it tries to detect a person based on the information from the
thermal camera. If a person is detected in the thermal image
the robots drives toward the person while tracking. This part
is the attention system where the robots tries to get a rough
estimate of the person’s position based on thermal images.
If the robot is close to a person we use grey value images
from the pan tilt camera to track the face. While tracking the
face, images from the face tracker are fed into the recognition
system to update an estimate of the identity of the person.

Fig. 2. Overview over the proposed system.

A. Tracking people in thermal images

The advantage of using sensor information from a thermal
camera is that a person in the thermal image has a very
distinctive profile so that the person can be clearly separated
from the background. In figure 3 one can see that in the color
image there is hardly any skin color visible if the person
is further away, even though the person faces toward the
camera. On the other hand one can easily detect the person
in the same scene shown by the thermal image. However,
apart from the work published in [3], where Cielniak and
Duckett use image segmentation based on thresholding, noise
filtering and morphological operations, there is hardly any
published work on using thermal sensor information to detect
humans on mobile robots until now. Infrared sensors have
been applied to detect pedestrians in a driving assistance
system: Bertozzi at al. [8] use a template based approach
while Nanda and Davis [4] apply different image filtering
techniques. Meis et al. [13] also filter the whole image and
classify based on the symmetry calculated for gradients. Xu

et al. [2] employ a classification method based on a support
vector machine. However, template based detection as well as
SVM classification and image filtering over the whole image
is time consuming. Xu et al. reported a frame-rate of their
system of about 5Hz and the frame rate of system proposed
in [4] lies between 3Hz and 11Hz depending on the image
resolution. To track a person in the thermal image we use a

Fig. 3. Person in color and thermal image.

Particle Filter and a simple elliptic model which is very fast
to calculate. Particle Filters [1] have become quite popular
in recent years for estimating the state of a system at a given
time based on current and past measurements. The probability
p(Xt|Zt) of a system being in the state Xt given a history
of measurements Zt = {z0, ..., zt} is approximated by a set
of N weighted samples:

St = {x(i)
t , π

(i)
t }, i = 1...N. (1)

Each x
(i)
t describes a possible state weighted with π

(i)
t

which is proportional to the likelihood that the system is in
this state. Particle Filtering consists of three main steps:

1) Create new sample set St+1 by resampling from the old
sample set St based on the sample weights π

(i)
t , i =

1...N
2) Predict sample states based on the dynamic model

p(x(i)
t+1|x(i)

t ), i = 1...N
3) Calculate new weights by application of the measure-

ment model: π
(i)
t+1 ∝ p(zt+1|Xt+1 = x

(i)
t+1), i = 1...N .

The estimate of the system state at time t is the weighted
mean over all sample states:

X̂t = E(St) =
N∑

i=1

π
(i)
t x

(i)
t . (2)

To increase robustness of the system to outliers, instead of
calculating the estimate from all samples we use 20% of the
samples with the highest weights. 10% of samples with the
lowest weights are reinitialised in each iteration. For each
sample we use an elliptic contour measurement model to
estimate the position of a person in the image: one ellipse de-
scribes the position of the body part and one ellipse measures



Fig. 4. The elliptic measurement model in thermal images.

the position of the head part. Therefore, we end up with a 9-
dimensional state vector: xt = (x, y, w, h, d, vx, vy, vw, vh)
where (x, y) is the mid-point of the body ellipse with a
certain width w and height h. The height of the head is cal-
culated by dividing h by a constant factor. The displacement
of the middle of the head part from the middle of the body
ellipse is described by d. We also model velocities of the
body part as (vx, vy, vw, vh). The elliptic contour model can
be seen in figure 4. To calculate the weight π

(i)
t of a sample

Fig. 5. Elliptic model divided into 7 sections.

i with state x
(i)
t we divide the ellipses into different regions

(see figure 5) and for each region j the image gradient ∆j

between pixels in the inner part and pixels in the outer part
of the ellipse is calculated. The gradient is maximal if the
ellipses fit to the contour of a person in the image data. A
fitness value f (i) for each sample i is then calculated as the
sum of all gradients multiplied with a penalty factor W to
reduce the total fitness in the case that a low or negative
gradient exists in certain region:

f (i) = W ·
m∑

j=1

∆j (3)

with

W =
m∑

j=1

wj , wj =
{

0 : if ∆j < τ
αj : otherwise

(4)

The value τ defines a gradient threshold and the weights αj

sum up to one and are chosen in a way that the shoulder

Fig. 6. Tracking with different arm positions.

parts have lower weight to minimize the measurement error
that occurs due to different arm positions (see figure 6). The
weight of each sample is calculated as the normalised fitness
over all samples and the tracker claims a detection if the
weighted mean of the fitness of the 20% of the best samples
lies above a threshold. The dynamic model that we use for
the Particle Filter is a simple random walk: we model a
movement with constant velocity plus small random changes.
Our approach to track the contour of a person in the image
is similar to the work by Isard and Blake [5] for tracking
people in a grey image. However, they use a spline model
of the head and shoulder contour which cannot be applied in
our case because in situations where the person is far away or
visible in a side view, there is no recognisable head-shoulder
contour. The elliptic contour model is able to cope with these
situations. The second advantage of using our contour model
is that it can be calculated very quickly due to the fact that we
measure only differences between pixel values on the inner
and outer part of the ellipse.
In figure 7 one can see the results of tracking a person under
different views at different distances. Starting with a frontal
view the person turns to a side view, back view and again to
a frontal position at the end.

B. Face tracking

After the robot has been able to drive close to the person
we switch to the pan-tilt camera and zoom to the expected
face region in the image based on the information from the
thermal camera. This can be done due to the fact that posi-
tions in the thermal image can be transformed to coordinates
in the grey image by applying an affine transformation (due
to the close proximity of the two sensors, see figure 1).
To detect a face we use the algorithm proposed by Viola
and Jones [10], which is considered to be one of the fastest



Fig. 7. Tracking under different views.

systems to detect objects in grey value images. With this
approach, classifiers that consist of simple grey value features
are learned offline on a given training set. Each so-called
“strong classifier” is a linear combination of a number of
“weak classifiers” which are simple threshold classifiers
based on a single grey value feature. The features can be
calculated very quickly on a so-called integral image: an
integral image II over an image I is defined as II(x, y) =∑

x′≤x,y′≤y I(x′, y′). Good features that are able to dis-
criminate between positive and negative object examples are
selected with a boosting mechanism to build the final strong
classifiers (for details see [10]).
We train a single strong classifier and instead of scanning the
classifier over the whole image at every location and every
scale to detect a face (as done in, e.g., [12] or [7]) we use
Particle Filtering again: each sample describes a possible face
located at position (x, y) and having the scale s. Therefore,
the state vector for face tracking becomes xt = (x, y, s).
To calculate the weight π

(i)
t the classifier is evaluated at the

particle’s position. Instead of using the binary output of the
classifier, we rate each sample according to the weighted
sum of all T features which are part of the strong classifier:
π

(i)
t = δ

∑T
j=1 αjhj(xt) where αj , hj are the weighted

weak classifiers (see [10]). The dynamic model is again a
movement with constant velocity plus small random changes.
The face tracker is trained to detect faces under slightly
different views and the detected region can also contain

parts of the background. Due to the fact that the Eigenface
recognition approach is sensitive to different positions of the
face center within the located face region, we scan this region
to crop out a close area that contains only facial features (see
figure 8).

Fig. 8. Face detection.

C. Face recognition

To identify the person we use a face recognition algorithm
based on the well-known Eigenface approach [9]. Face re-
gions that are extracted by the face tracker are used to update
the probability of the person’s identity. Therefore, each face
region is rescaled, normalised and projected onto the face-
space. The Euclidean distances to each face from the database
in the face space is used to calculate the probabilities for each
identity. Instead of recognising each frame independently
from the next frame (still-to-still recognition) we use each



frame to update the identity probability with a Bayesian
update rule. If the probability exceeds a certain threshold,
the robot announces the estimated identity using its speech
synthesizer. Figure 9 shows the face recognition process.

Fig. 9. Face recognition.

III. EXPERIMENTS

To test the performance of our approach we recorded test
sequences with 17 different persons. In each sequence a
person stood 4 to 5 meters from the robot in an unconstrained
indoor environment, and the robot was started facing away
from the person so that it had to turn around and search for
the person in the thermal image. While tracking the person
in the thermal image, the robot approached and used its
pan-tilt camera to extract the face region using the method
described in section II-B. After the face had been detected,
the person walked to a different position behind the robot
and the robot approached a second time, so that we recorded
each person under two different light conditions. The length
of the recorded sequences varied from 700 to 1400 frames
per person with an image resolution of 320×240 for thermal
and grey images.

A. Tracking in thermal images

To get ground truth information about the position of a per-
son in the thermal images we used a semi-automatic method
to segment the sequences: the result from a segmentation
based on a flood-fill algorithm was corrected by hand to
extract the exact region in the thermal image containing a
person.
In the Particle Filter we used a total of 300 particles, and the
weighted mean of the best 20% of all particles of the tracker
was compared to the ground truth data for all test sequences.
If a person was detected in a frame and the person was visible
in the ground truth segmentation, we calculated a detection
accuracy dacc as follows:

dacc =
2 · noverlap

ndetected + nreal
, (5)

where noverlap is the number of overlapping pixels between
the box around the true person position and the detected
position. ndetected is the number of pixels in the box, which

the tracker returns and nreal is the number of pixels in
the rectangle around the true person position. Based on the
detection accuracy we calculated the following values on each
test sequence to evaluate the performance of the tracker:

• False positive rate FPR = NF

NN
with NF =number of

frames where a person was detected but not visible
in ground truth, NN =total number of frames where no
person was visible.

• Detection rate DR = ND

NP
with ND= number of frames

where person was detected and visible in ground truth,
NP =total number of frames where a person was visible.

• Classification rate CR: percentage of all frames which
where correctly classified (dacc > 0.6 or no person in
ground truth and no person detected).

Figure 10 shows the results of the evaluation. As one can see,
CR was in the range from 81% to 95% with a mean over all
test sequences of 88.9%. False detections mainly occurred if
a person was very close to the robot so that large parts of the
image are covered or no head was visible. False detections
in this case did not influence the performance of the whole
system, due to the fact that in situations where the person is
close to the robot, we do not use the information that comes
from the thermal image, but rely on the results of the face
tracker.
Based on the fact that the tracker claimed a detection only
if the weighted mean of the fitness of 20% of the best
samples lied above a certain threshold, in some frames the
person was not detected. However, those “missed” single
frames did not interfere with the tracking process. Using 300
samples we are able to achieve a mean tracking frame-rate of
80Hz on an AthlonXP 1600 processor which leaves enough
computational resources for other high-level tasks such as
planning, navigation, face recognition etc.

B. Face detection and recognition

The face classifier was trained offline using 4846 images of
faces and 7474 non-faces. The final strong classifier consists
of 150 features. To test the recognition ability of the system
we collected a face database consisting of 8 faces per person
that where extracted by the face tracker in the second part
of the 17 sequences. The first part had been used as test
sequences. We used 500 particles to track the face and in
all sequences the face region was successfully detected and
tracked. Due to the fact that Particle Filtering is a stochastic
process face tracking and recognition experiments had been
repeated 5 times on every test sequence. In 41% of all test
iterations the face could not be recognized correctly which
is mainly due to two problems with using the Eigenface
approach:

• Different light conditions: Some images in the training
set had strong light from one side.
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Fig. 10. Tracking result on thermal data.

• Recognition rate depends on the viewing angle and very
accurate located and cropped face region.

However, the main focus in this paper lies on detection and
tracking in the thermal image so that the improvement of the
recognition step by e.g. using a larger database which covers
more different light conditions is left for future research.

IV. CONCLUSION AND FUTURE WORK

In this paper we presented a purely vision based approach
to track and identify people based on the information from
thermal and grey value images. The main contribution of
this paper is the application of a thermal camera together
with a novel contour measurement model to detect and track
people that are further away from the robot and cannot be
detected by skin color. Special attention is payed to the real-
time ability of this approach. Face detection and recognition
is used to identify a person that is close to the robot.
In this case we propose the usage of Particle Filtering in
combination with a fast face classifier to accumulate evidence
about the identity over time, instead of scanning each image
independently from the previous one.
Until now, the tracker will always lock onto a single person
(the person that has highest measurement probability in the
thermal image) but we are currently extending our approach
to multiple persons using multiple clusters of particles. To
improve and evaluate the person identification part, more
experiments with a larger database and different face recogni-
tion approaches have to be done. Another direction for future
research would be to select actions based on the information
provided by our system. For example, if the robot is in front
of a person but there is no face visible, it could learn a
suitable sensing strategy to get a better look at the face.
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