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Abstract 

In this paper, a one-step thermal evaporation approach was used for fabrication of indium 

bismuth sulphide thin films, and the synergetic effects of co-evaporation of two sources (indium 

granules and Bi2S3 powders) were investigated using different characterization techniques. X-ray 

diffraction (XRD) analysis confirmed the crystalline orthorhombic structure for the post-

annealed samples. Surface roughness and crystal size of the obtained film samples were 

increased with increasing annealing temperatures. Analysis using X-ray photoelectron 

spectroscopy showed the formation of the InBiS3 structure for the obtained films, which is also 

confirmed by the XRD results. The optical absorption coefficient value of the annealed samples 

was found to be in the order of 105 cm-1 in the visible region of the solar spectrum. The optical 

band gap energy and electrical resistivity of the fabricated samples were observed to decrease 

(from 2.2 to 1.3 eV, and from 0.3 to 0.01 -cm, respectively) with increasing annealing 

temperatures (from 200 to 350°C), indicating the suitability of the prepared InBiS3 thin films for 

solar cell applications.        
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Introduction 

Recently bismuth chalcogenide based thin films have received significant attention from both 

scientific community and industrial counterpart. These materials generally show large absorption 

coefficients, good chemical stability, and band gap energies in the range from 1.2-1.7 eV, which 

are considered very right one for photovoltaic and thermoelectric applications [1, 2]. Some of the 

bismuth chalcogenides such as Bi2S3, BiSe, CuBiS, CsBi4Te6 also show interesting nonlinear 

optical characteristics, above and beyond the second harmonic effect [3, 4]. However, the key 

reason for their such attractive structural and optoelectronic properties is the stereochemical 

activity of 6s2 lone pair electrons of the bismuth [3].  Based on this mechanism, various micro- 

and nanostructures of the bismuth-containing chalcogenides were designed, synthesized, and 

characterized in the past decades for their potential applications in photovoltaic industries [5-8]. 

A number of different techniques have been used for the synthesis of these photovoltaic 

materials, such as sputtering, evaporation, chemical vapor deposition, molecular beam epitaxy, 

etc. [9]. Among these, thermal co-evaporation techniques could result in the good quality of 

controlled composition and compositional gradient across the films. High deposition rates, low 

gas entrapment, strong adhesion and minimal damage to the substrate make thermal evaporation 

approach the most promising for device fabrication [9, 10]. For example, a three-stage co-

evaporation method was used to achieve a maximum cell efficiency of copper indium gallium 

sulphide (CIGS) up to about 20. 3 % at the laboratory level [11]. However, this technique has not 

been applied to large-scale industrial applications. Similarly, other co-evaporation techniques 

have been applied to the large module (1.2 × 0.6 m2) at Wurih Solar, Germany [12]. In literature, 

there were studies for the synthesis of CuO2 films using radical oxidation of the thermally 

evaporated high purity Cu films for solar cell applications [13, 14]. The treatment of N2 plasma 

of the CuO2 films resulted in an increased band gap from 1.69 to 2.42 eV. It was found that the 

hole density was increased from 1014 to 1015 cm-3 and the resistivity was decreased from 1879 to 

780 Ωcm after N2 plasma treatment [14].       

Indium chalcogenides including indium sulphide (InS), copper indium sulphide (CIS), and CIGS 

materials are of particular importance in the field of thin films photovoltaics [15, 16]. The 

environment-friendly characteristics and unique properties such as chemical stability and good 

transparency of the InS are suitable for photovoltaic applications. Different crystalline phases of 



InS and its wide-range intermediate band gap energies ranging from 2 to 2.75 eV [17] were 

reported and it could be used as an alternative to the toxic CdS and a suitable material for buffer 

layers and window layers for photovoltaics [16, 18].  

In the literature, the best efficiency value of the bismuth sulphide is reported to be 0.5% [19, 20]. 

A combination of InS and Bi2S3 could lead to a new compound with improved optoelectronic 

properties without having toxicity, thus is promising for usage in the solar harvesting energy 

devices for the next generation green energy. This is because the indium bismuth sulphide does 

not contain any toxic elements such as gallium or selenium, and therefore is environment-

friendly [21, 22]. Moreover, development of new complex sulfides and chalcogenide halides 

could further improve their optoelectronic and photovoltaic applications [23].  

In the present work, we investigated the InBiS3 compound in the form of thin films synthesized 

from indium granules and Bi2S3 powders by one-step thermal evaporation approach and explored 

its potential application for the state of the art and environment-friendly energy technologies. We 

verified that the combination of bismuth chalcogenide and indium chalcogenide could produce a 

new non-toxic absorber layer for solar cell applications. 

Experimental 

Soda-lime glasses were used as the substrates, which were cleaned with acetone/isopropanol and 

deionized water in an ultrasonic bath. Indium bismuth sulphide (IBS) thin films were fabricated 

using a one-step dual-source thermal evaporation method by co-evaporating Bi2S3 powder 

(99.99% purity) and Indium granules (99.99% purity) from tungsten crucibles connected to a 

power supply. A current of ~80 A was used to evaporate Bi2S3 and a current of ~30 A to 

evaporate indium granules in a dual source evaporator for the formation of thin films. The source 

to substrate distance was kept at 10 cm. The as-deposited thin films were annealed in a vacuum 

furnace for one hour at temperatures of 200, 250, 300 and 350°C, respectively.  

Structural properties of the annealed films were analyzed using X-ray diffractometry (XRD, D-8 

Discover diffractometer with CuKα radiation and a wavelength of 1.54Å).  Surface morphology 

of the obtained thin films was characterized using a field emission scanning electron microscope 

(FESEM, SU8020 X-MaxN Oxford). Analysis of films using X-ray photoelectron spectroscopy 

(XPS) was carried out using Kratos Axis Ultra X-ray photoelectron spectrometer with Al Kα 



radiation (1486.6 eV) source for elemental compositions and chemical bonding analysis. 

Optoelectronic properties of the obtained thin films were measured using UV-Vis spectroscopy 

(UV-3101PC). A 4-probe Keithley 2400 source meter was used to obtain the I-V characteristics 

and electrical resistance of the films. 

Results and discussion: 

Figure 1 shows XRD patterns of the as-deposited and annealed InBiS3 thin films. The as-

deposited films were found to be amorphous in nature and the film became crystallized when the 

annealing temperature was above 200°C. Two phases of InBiS3 and Bi2In4S9 were identified 

from XRD analysis when compared with JCDPS standards 00-039-0755 and 00-071-0553, 

respectively. For the sample annealed at 300-350°C, In4Bi2S9 peaks disappear, and only the 

strong peaks of InBiS3 are present as shown in Fig. 1. XRD analysis showed that the obtained 

annealed samples have the orthorhombic structure of InBiS3. The lattice parameters (a, b, c) of 

the films were calculated from the XRD patterns shown in Fig. 1 using the following equation 1 

[24]: 

Sin2 = 
𝜆2

4
[
ℎ2

𝑎2 +
𝑘2

𝑏2 +
𝑙2

𝑐2]    (1) 

The lattice parameters a = 9.927 Å, b = 3.889 Å, c = 13.222 Å were obtained from 

experimentally observed XRD peaks based on the film annealed at 350°C. 

The average crystallite sizes of the obtained InBiS3 thin films were calculated using line 

broadening analysis of the diffraction patterns [25]. The line broadening occurs due to small 

crystal sizes and microstrains generated within the films. The effects of both crystal size and 

strain can be separated using the Williamson-Hall method [25] in which β cos (θ) is plotted 

against sin (θ), where β is the full width at half maximum (FWHM) of the respective diffraction 

peak at 2θ. The results of Williamson-Hall plots of the annealed InBiS3 thin films based on the 

prominent peaks of (2 0 1), (1 0 3), (1 1 1) and (2 0 6) reflections are shown in Fig. 2. Clearly, 

these plots can be fitted into straight lines. The value of D can be calculated from the inverse of 

the intercept of the line on β cos (θ) axis which gives the ratio of the crystalline grain diameter 

(D) to the wavelength (1.54056 Å) [25]. From the slopes of the line, the micro-strain () can also 

be calculated.   



The calculated crystallite size of the samples was observed to increase (26-64 nm) with 

increasing annealing temperature (250-350°C), whereas the microstrain values were in the order 

of 10-3 and found to increase with increasing annealing temperature. The increase in crystallite 

size is a consequence of the coalescence of small crystallites and re-orientation of crystal planes 

during annealing [26, 27].  

 

Figure 3 shows the SEM images of surface morphologies of InBiS3 thin films. The as-grown film 

has relatively smooth surface features as shown in Fig. 3 (a). As the annealing temperature is 

increased, the surface becomes rougher due to the coarsening of the microstructure and crystal 

growth. When the annealing temperature is above 250°C, in some areas, there are some larger 

particles which might be due to the preferred growth of some grains as shown in Figs. 3 (c) to 3 

(e).  

 

The results of chemical states for the InBiS3 thin film (350°C annealed) obtained from XPS are 

shown in Fig. 4, indicating the existence of a key element of Bi, In and S. The peak of C1s was 

used as the reference to correct the peak shift due to charging effects. 

 

   

The high-resolution core level spectra of the identified three elements are shown in Figs. 5 (a) to 

5 (c). The magnified core level spectrum of the bismuth reveals a 4f doublet state as shown in 

Fig. 5 (a). The peaks observed at 157.0 and 162.3 eV are related to Bi2S3. The binding energies 

of 157.0 eV and 162.3 eV are for the Bi 4f7/2 and 4f5/2 with a peak separation of 5.3 eV, and the 

component peaks at 163.3 and 158.0 eV are associated with Bi-O or Bi-O-S due to surface 

adsorption with a peak separation of 5.3 eV. The Bi-O peak is very small. The other component 

peaks are matched with the peak values of In doped Bi2S3 in the database, and their intensities 

are relatively low, indicating their small quantities in the sample [28, 29].  Fig. 5 (b) displays the 

high-resolution spectra of In 3d5/2 and 3d3/2 doublet states. The main 3d peaks were observed at 

binding energies of 443.5 and 451.0 eV with a peak separation of 7.8 eV, while the component 



peaks at 444.2 and 451.9 eV correspond to In 3d5/2 and In 3d3/2, respectively [30]. The peaks 

observed at 443.5 and 451.0 eV are associated with In-S, while the other component peaks at 

444.2 and 451.9 are corresponding to Bi doped In-S from the database, which causes the shifts in 

the energies of these peaks. The S 2p core level spectra with peak positions at 162.3, 162.9 and 

163.4 eV are shown in Fig. 5 (c). The binding energies for S 2p are with the energy range 

between 160 and 164 eV associated with S in sulphide phases [31-33]. The ratio of the peak 

integrations for the In (3p), Bi (4f) and S (2s) is in the ratio 1:1:3 indicating the formation of 

InBiS3. These results agree with that of the XRD pattern of the synthesized thin film annealed at 

350 °C. 

 

 Fig. 6 shows the corresponding absorption coefficient versus wavelength for as-deposited and 

annealed InBiS3 thin films. When an electron is excited from the valence band to the conduction 

band at a lower wavelength, it leads to the absorption which is referred to a band-to-band 

transition between ionized donor and conduction band.  

 

From the plot in Fig. 6, the absorption coefficient values of the obtained thin films increase with 

increasing annealing temperature, and this is more sensitive to crystal distribution on the outer 

layer of the thin film. The increase in the concentration of free carriers on the spectral 

dependency of absorbance results in an increase in the absorption of the films (Fig. 6) with a 

maximum value of ~ 2.5×104 cm-1, which is comparable to the reported absorption coefficient for 

the established absorber material such as CdTe [34, 35]. The increase in the grain size and 

improvement in crystallinity after post-annealing have shifted the absorption edge towards the 

longer wavelength, presumably due to improved physical properties (e.g., density and fewer 

grain boundaries) of the thin films as a result of crystallization [36]. The fundamental absorbance 

spectra for the InBiS3 thin films show that the absorption coefficient increases with increase in 

the annealing temperature [37].  

The band gap was calculated from absorbance spectra using equation 2 [38]. 

(αhν) = A(hν-Eg)
n      (2) 



in which α is the absorption coefficient, hν is the energy of the photon, Eg is band gap while A is 

a constant. The plots as shown in Fig. 7 reveal that with increasing annealing temperature the 

band gap energy is decreased and the values are found to be in the range of 1.3 and 2.2 eV [39].  

The relationship between optical energy band gaps (Fig. 8) of the films and annealing 

temperature can be obtained by data fitting and the equation is listed in Equation 3. Clearly the 

values of the optical band-gaps decrease with the increase of the annealing temperatures, similar 

to that reported by Larbi et al. about the tin antimony sulfide films [40].  

Eg=1.936-6.212T-4.875T2      (3) 

Figs. 9 and 10 show the optical transmittance (T) and reflectance (R) spectra of the fabricated 

InBiS3 thin films, in the wavelength range from 300 to 1800 nm. The strong absorption region, 

i.e., the visible and near infrared region has almost no interference effect for samples annealed at 

250°C and above. As-deposited and 200°C annealed samples have almost no absorbance as 

shown in Fig 10. However, when the annealing temperature is above 200°C, an absorption hump 

appears in the spectrum for the film annealed at 250°C but it does not exist in the samples for 300 

and 350°C annealed samples. It is also obvious that in the transparent region, the combined 

values of reflection and transmission are almost equal to 1, an indication of no scattering effect 

[41]. The transmittance spectra as shown in Fig. 10 reveal a decreasing trend with the increasing 

annealing temperature which may be attributed to the increase of grain size and coarsening of 

crystal features due to grain growth. 

 

The measured I-V curves for the as-deposited and post annealed InBiS3 thin films are shown in 

Fig 11. Clearly, a linear relationship between current and voltage for the as deposited and 

annealed films can be obtained. The increase in the current is a consequence of the increment in 

the grain size and improvement in the crystallinity with the annealing temperature because the 

increase in the annealing temperature will reduce the percentage of the grain boundaries in the 

film and also increases the charge density, both of which lead to an increase in the electrical 

conductivity of the films [42, 43].  

 



The resistivity (Fig. 12) of the samples was calculated by multiplying the thickness of the film 

(0.5 μm) with the resistance values of the films, which were calculated from I-V curves (Fig. 11). 

The decrease in resistivity of the films with the increase of annealing temperature is another 

indication of the improved structural and electrical characteristics of the films. 

Conclusions 

In summary, we have investigated thin films of the non-toxic elemental composition prepared by 

co-evaporating indium granules and Bi2S3 powders in a vacuum thermal evaporation system. 

From the XRD and XPS analysis, we found that the thin films annealed at 350°C have an 

orthorhombic phase of the InBiS3 structure. Our analysis showed that with increasing annealing 

temperature, the grain size of the obtained films was increased, whereas the band gap value was 

decreased, with a value of 1.3 eV for the film annealed at 350°C. Besides its lower values of the 

reflectance and transmittance, and higher value of the absorption in the visible and near-infrared 

regions, the I-V characteristics of the thin films revealed its semiconducting nature, showing its 

advantages for photovoltaics. Hence, our results showed that the InBiS3 can be used as an 

alternate material for an absorber layer in thin film solar cells.     
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Fig 1: XRD analysis of InBiS3 as deposited and annealed thin films. 



 

 

Fig 2: Plots of β cos (θ) against sin (θ) (W-H) for the obtained InBiS3 thin films annealed at (a) 

250°C (b) 300°C and (c) 350°C 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: SEM images of InBiS3 thin films (a) as-deposited (b) 200°C annealed (c) 250°C annealed 

(d) 300°C annealed (e) 350°C annealed sample 

 

 

 

 



 

Fig. 4: XPS survey spectra of InBiS3 thin film annealed at 350°C in vacuum. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

   



 

Fig 5: High-resolution spectra of (a) Bi 4f core level (b) In 3d core-level and (c) S 2p core level 

of InBiS3 thin film annealed at 350⁰C in a vacuum. 

 

 

Fig 6: Absorption coefficient of the as-deposited and annealed InBiS3 samples. 



 

Fig 7: Band gap measurements from absorption spectra for the as-deposited and annealed 

samples. 

 

Fig 8: Band gap values as a function of annealing temperature. 



 

Fig 9: Reflectance spectra of the as-deposited and annealed InBiS3 thin film samples. 

 

Fig 10: Transmittance spectra of the as-deposited and annealed InBiS3 thin films. 

 



 

Fig 11: The transverse current–voltage characteristics of as-deposited and annealed 

InBiS3 thin films. 

 

Fig 12: Variation of resistivity with annealing temperature. 

 


