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The design of high efficiency, high pressure ratio, andwide flow range centrifugal impellers is a challenging task.The paper describes
the application of a multiobjective, multipoint optimization methodology to the redesign of a transonic compressor impeller for
this purpose. The aerodynamic optimization method integrates an improved nondominated sorting genetic algorithm II (NSGA-
II), blade geometry parameterization based on NURBS, a 3D RANS solver, a self-organization map (SOM) based data mining
technique, and a time series based surge detection method. The optimization results indicate a considerable improvement to the
total pressure ratio and isentropic efficiency of the compressor over the whole design speed line and by 5.3% and 1.9% at design
point, respectively. Meanwhile, surge margin and choke mass flow increase by 6.8% and 1.4%, respectively. The mechanism behind
the performance improvement is further extracted by combining the geometry changes with detailed flow analysis.

1. Introduction

The reliance on numerical methods in the aerodynamic
design process of turbomachinery components has consider-
ably increased in the last decades. Nowadays, Computational
Fluid Dynamics (CFD) codes have matured to a level where
they are capable of not only providing a substantial insight
into the three-dimensional flow field in turbomachines, but
also calculating aerodynamic performances of the machines
[1–3]. Meanwhile, higher pressure ratio demand, impeller
efficiency, and compressor map width are in severe trade-
off relations for transonic impellers [4]. Essentially, the
aerodynamic design of transonic impellers is amultiobjective
problem. It is a challenging task to design a high pressure ratio
centrifugal impeller for high efficiency and wide operating
range at the same time [5].

In order to obtain better designs and reduce design
cost, automated design optimization of centrifugal impeller
has received a widespread attention in recent years. Guo
et al. [6] conducted an automated design optimization of
a high pressure ratio centrifugal impeller by integrating

an evolution algorithm, 3D blade parameterization method,
CFD solver technique, and data mining technique. Verstraete
et al. [7] combined a genetic algorithm with an artificial
neural network (ANN) to optimize a centrifugal compres-
sor. Hyun-Su et al. [8] carried out the optimal design of
impeller for a centrifugal compressor under the influence of
flow-induced vibration using fluid-structure interaction and
response surface method (RSM). Although much progress
has beenmade in this area, the research on themultiobjective
design optimization of a blade is still insufficient especially
for very high pressure centrifugal impellers, which has to
take into account the trade-off among objective functions.
In addition, most published optimization design techniques
were performed at one single operating point, usually design
point, with the danger of serious deterioration of the perfor-
mance at off-design conditions such as poorer surge margin
and smaller swallowing capacity.

The optimization for the whole speed line is even
more challenging, especially near surge condition (certain
impellers require good efficiency near the surge and most
compressors need good surge margin), as CFD convergence
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is often not guaranteed under or near such a condition.
Demeulenaere et al. [9] performed a multipoint optimiza-
tion of a turbocharger compressor wheel. They simulated
entire compressor stage including diffuser and housing with
significantly increased computational time and effort. Their
criterion of surge improvement is higher pressure ratios
and the method is open to questions. Pini et al. [10] did a
shape optimization of a supersonic turbine cascade at off-
design conditions. These two studies propose a pseudoob-
jective function by summing up all the penalty terms and
the original performance objectives with weighting factors,
which is not strictly multiobjectives at multipoints. The
design variables are so strong and complex to affect the
performances that the more variables must be considered in
the optimization design. However, there are less analytical
expressions available to directly correlate the design variables
with the performance at present. Data mining techniques are
considered to be able to provide a possible way to extract
some useful information from the design space and make
the optimization problems in an accessible way. By detecting
the features of the data set such as parameter correlations,
data mining method can help to gain the mechanism over
the performance improvement by optimized designs. Guo et
al. [6, 11] applied SOM-based data mining to optimization
results of turbomachinery. Jeong et al. [12] conducted a
data mining for aerodynamic design space. However, limited
research on data mining in turbomachinery design means
that the process of data mining and data mining results are
still not very clear.

The purpose of this paper is to develop a multipoint and
multiobjective design optimizationmethod for high pressure
ratio impellers to achieve better aerodynamic performances
at both design and off-design conditions and with a wider
operating range. The remaining of this paper is organized
as follows: first, a time series autoregressive (AR) model is
developed to predict surge point from the CFD simulation of
a single impeller flow passage and validated by experimental
results. A self-organization map (SOM) is then carried out
on samples of CFD results to explore the relation between
objective functions and design parameters. A total of 27 key
design variables selected by the SOM are then employed in
the follow-upmultiobjective optimization. Finally, the results
from the optimization are shown and discussed, and some
conclusions and remarks are drawn.

2. Time Series Based Surge Detection

Surge is instability of the centrifugal compressors and is
associated with strong unsteadiness of the inlet and outlet
pressures and temperatures of the compressor. Therefore,
monitoring the time based signal by adopting a Fast Fourier
Transform analysis makes it possible to state the instant
when the compressor starts to surge and to highlight the
typical frequency peak related to surge occurrence [13–15].
However, there is no universal standard for the upper limit
of pressure pulsation amplitude in surge detection, making
it inconvenient to use. In CFD simulation, though a very
accurate CFD model will be the perfect candidate near surge
for the rise of numerical instabilities due to the large temporal

and spatial gradients related to the actual flow physics. In real
design environment, often only a single impeller flow passage
is employed in numerical simulation in order to reduce
computational time and effort. As a result, the numerical
calculation may become unstable and not convergent before
or after real surge because of the simplification made to the
real compression system in CFD model. This makes surge
detection of a new impeller design or judging the surge
margin relative to the baseline impeller difficult.

2.1. AutoregressiveModel. Here we propose a newmethod for
surge detection in CFD; it is based on autoregressive (AR)
statistical pattern recognition algorithms [16] by monitoring
model residual variances. As this paper was first written, we
found a similar approach which was employed for early surge
warning in axial compressors [17].

The slope of pressure rise is a reliable indicator of
compressor stability. If the slope is positive the compressor
will be unstable. The maximum or peak compressor pressure
ratio thus defines the stability limit. Numerical studies of axial
compressors [18, 19] showed that this criterion gives good
results in predicting compressor stall. Centrifugal compres-
sors may be able to operate into the left of the peak pressure
ratio, but compressors will be inminor surge in this condition
[20], and compressor outlet and inlet flow conditions will be
pulsating and unsteady. Just like in experimental detection of
surge, the unsteadiness of numerical simulation results could
be utilized to find the peak compressor pressure ratio and thus
help to find stability limit of a compressor.

In the surge detection, one may use the frequencies
or amplitude of the unsteady signal. These two parameters
are however dimensional so their values depend directly
on compressor size and speed, making them unsuitable as
universal thresholds in surge detection. By contrast, the time
series model methods, such as AR and ARMA, are based on
monitoring model residual variances, which is independent
of specified compressor impellers and speed.

Autoregression is a data processing technique that is
commonly used in constructing a model from time sequence
data for extracting underline trends. For a stationary time
series 𝑥𝑡 (𝑡 = 1, 2, . . . , 𝑁), autoregressive process produces
the following results:

𝑥𝑡 =
𝑞∑
𝑖=1

𝜙𝑖𝑥𝑡−𝑖 + 𝑎𝑡 𝑎𝑡 ∼ NID (0, 𝜎2𝑎) , (1)

where 𝜙𝑖 is model coefficients, 𝑎𝑡 the random component of
the model, and 𝜎2𝑎 the variance. If 𝑥𝑡 is not zero-mean, then
the process can be similarly carried out by introducing a new
time series

𝑦𝑡 = 𝑥𝑡 − 𝜇𝑥, (2)

where

𝜇𝑥 = 1𝑁
𝑁∑
𝑖=1

𝑥𝑖 (3)
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is themean of 𝑥𝑡.Themodel coefficients, 𝜙𝑖, and the variance,𝜎2𝑎 , can be calculated by the following method:

Autocovariance 𝑅𝑘 function,
𝑅𝑘 = 1𝑁 − 𝑘

𝑁∑
𝑡=𝑘+1

𝑦𝑡𝑦𝑡−𝑘 (𝑘 = 0, 1, 2, . . . , 𝑁 − 1) . (4)

Coefficients f = [𝜙1 𝜙2 ⋅ ⋅ ⋅ 𝜙𝑞]𝑇 are calculated by

f = (y𝑇y)−1 y𝑇z, (5)

where

z = [𝑦𝑞+1 𝑦𝑞+2 ⋅ ⋅ ⋅ 𝑦𝑁]𝑇 ,

y =
[[[[[[[
[

𝑦𝑞 𝑦𝑞−1 ⋅ ⋅ ⋅ 𝑦1
𝑦𝑞+1 𝑦𝑞 ⋅ ⋅ ⋅ 𝑦2... ... ...
𝑦𝑁−1 𝑦𝑁−2 ⋅ ⋅ ⋅ 𝑦𝑁−𝑞

]]]]]]]
]
. (6)

The variance is given by

𝜎2𝑎 = 1𝑁 − 𝑞
𝑁∑
𝑡=𝑞+1

(𝑦𝑡 −
𝑞∑
𝑡=1

𝜙𝑖𝑦𝑡−𝑖)
2

. (7)

By monitoring the variance of compressor unsteady signal,
one may judge whether the compressor surges or becomes
unstable.

2.2. Surge Detection Method. For the outlet boundary condi-
tion, mass flow rate condition is not appropriate as the con-
vergence of CFD cannot be guaranteed near surge condition,
resulting in premature sinusoidal waves of flow parameters.
Thus, a static pressure condition is adopted and the signal of
mass flow rate at LE is monitored. It tends to be a periodic
wave but not sinusoidal.

The rise of static pressure at outlet boundary is flattened
out near surge condition; a dichotomy or sectional method
is applied to the determination of the maximum outlet
static pressure near surge condition. This method will be
demonstrated in the next section with an example. The
flow chart of surge detection is presented in Figure 1. An
initial static pressure is specified at impeller outlet before
a steady calculation. If this calculation is not convergent,
the CFD simulation is switched to unsteady calculation,
and the temporal mass flow rate signal at LE is monitored.
The AR model is then applied to this time series signal to
determine whether the compressor surges at the set pressure
level and this is followed by a dichotomy method to find
a new static pressure between previous converged steady
and present unsteady pressures at the outlet. The detection
process continues until a preset minimum pressure rise is
reached, and the last steady point is regarded as the last stable
point before surge.

Table 1: SRV2AB rotor design parameters.

Shaft speed 50000 rpm
Design mass flow rate 2.55 kg/s
Impeller tip radius 112mm
Diffuser outlet radius 212.8mm
Rotor tip speed 586m/s
Rotor pressure ratio 6.2 : 1
Blade number full/splitter 13/13
LE hub radius 30mm
LE tip radius 78mm
Blade angle LE tip 26.5 deg (from tangential)
Blade angle TE 52 deg (from tangential)
Exit blade height 8.7mm
Diffuser inclination against
radial 13 deg

Tip clearance 0.5mm at inlet to 0.3mm at exit

2.3. Surge Detection of SRV2AB Impeller. This surge detection
approach is applied to a higher pressure centrifugal impeller,
SRV2AB impeller [21, 22].

The surge detection validation is carried out by the
comparison of surge line between CFD prediction and exper-
imental results of the SRV2AB impeller with vaneless diffuser,
which serves as the baseline for the subsequent optimization.
The basic design parameters of this compressor are given in
Table 1.

Amesh independence investigation was firstly conducted
by coarse, medium and fine meshes with total mesh number
of 0.3, 0.9, and 1.7 million, respectively (for one blade
channel). The mesh has a structured H-O topology and
the minimum value of 𝑦+ is less than 10. The size of the
first cell to wall is 5 × 10−6m. As shown in Figure 2, the
mediummesh seems to provide a good compromise between
accuracy and computational efficiency and hence this mesh
is used for the rest of the study (see Figure 3), wherein
the gird numbers in 𝐼, 𝐽 𝐾 direction is 73, 53, and 201,
respectively. The grid number in impeller clearance is 13.
The 3D Reynolds-averaged Navier–Stokes (RANS) equations
are applied using the commercial software of NUMECA
Fine.The Spalart-Allmaras turbulencemodel, which is highly
efficient and suitable for the 3D flow with strong pressure
gradient, moderate curvature, and separating flows such as
transonic compressor internal flow [11, 23], is adopted to take
the turbulence effects into account. The spatial discretization
used for the computation is central scheme and the time
integration scheme is an explicit four-step Runge-Kutta
algorithm.

The sketch of dichotomy to reach the highest outlet
static pressure at surge point is shown in Figure 4. For the
impellers generated in the optimization process, the outlet
static pressure near surge were first set to be 511,300 pa,
521,300 pa, 531,300 pa, and 541,300 pa according to Figure 1. A
new value of static pressure was then obtained by dichotomy
in between 531,300 pa and 541,300 pa and so on.The smallest
step of pressure rise Δ𝑝 was set to be 200 pa. This value
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Figure 1: The flow chart of surge detection method.

is large but was used to speed up the detection. In order
to compensate the effect of a relatively large value of the
minimum pressure increment, the surge point was actually
located by decreasing the last detected stable mass flow

rate value by 2.5% of the difference between the last two
mass flow rates. The corresponding pressure ratio is then
evaluated through a third-order polynomial interpolation.
In the detection, CFD steady iteration was 2000, the upper
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Figure 3: Aerodynamic computational domain and grid of SRV2AB
(single passage).
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Figure 4: The sketch of dichotomy to reach the highest static
pressure at surge point.

border of variance was set to be 𝛿 = 5%𝑎. The spatial
discretization and time integration schemes applied to the
unsteady computation are the same as above in this section.
Courant-Friedrich-Levy (CFL) number globally scales the
time-step sizes used for the time-marching scheme of the
flow solver. A higher value of the CFL number results in a
faster convergence but will lead to divergence if the stability
limit is exceeded [24]. Typical values of CFL are 1∼10 and
the maximum CFL number reached in unsteady calculations
is set to be 3. The physical time-step size is recommended
to be Δ𝑡 ≤ 1/10 ⋅ Nb/(𝑛/60) for turbomachinery, where 𝑛
denotes shaft speed (rpm), Nb is blade number [25], and here
it is 50/𝑛 s (equals 0.001 second). The CFL and physical time
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Figure 5: Time based mass flow rate signal at LE.
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step seem to provide a good trade-off between computational
stability and efficiency after trial.

The time based mass flow rate signals at LE, monitored
at the last stable point and the first unstable point for design
speed (50000 rpm), are presented in Figure 5. It shows a
periodic but not sinusoidal wave for the first unstable point.
The autocovariance and partial autocovariance versus order
of AR model based on the time signal is given in Figure 6,
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where 𝜑22 ≈ 0 for the last stable point and 𝜑55 ≈ 0 for the first
unstable point, which indicates that the AR model is suitable
for the time based signals and their order, are 𝑞 = 1 and𝑞 = 4, respectively. As shown in Figure 7, variance of the
time based signal fluctuates periodically for the first unstable
point. The distance between two adjacent main peaks shows
the surge period (frequency), which is corresponding to the
main frequency (largest pulsation amplitude) in the Fast
Fourier Transform analysis. The variance of a stable point is
about zero, while that for an unstable point fluctuates with
large pulsation amplitude, providing a convenient approach
to detect instability.

Figure 8 compares predicted and measured surge lines
of the SRV2AB impeller with vaneless diffuser at 50,000,
40,000, and 30,000 rpm, corresponding to 100%, 80%, and
60% of design speed. Generally, the prediction matches the
experimental results quite well at all operating speeds. This
gives confidence in the surge detection method.

3. Data Mining Based on
Self-Organizing Map for Optimization
of Design Space of SRV2AB

In the turbomachinery design using CFD-based optimiza-
tion, it is important to determine a small number of key
design variables from design space to simplify design prob-
lem. The information about the design space, such as trade-
off between objective functions, the relations between design
variables and objective functions, and why performance of
the optimized designs has been improved will be useful for
this purpose by eliminating the design variables which do
not have a large influence on the objective functions, thereby
the efficiency as well as the reliability of optimization process
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Figure 8: Comparison of predicted and measured total pressure
ratio of SRV2AB impeller with vaneless diffuser.

may be greatly improved. Furthermore, it is preferable for a
designer to provide some alternative or suboptimum solu-
tions for the decision making of the final design. The process
to extract information from the design space by detecting the
features of the optimization results is called “data mining.”
This paper deals with the data mining technique based on
SOM.

3.1. Initial Design Variables and Objective Functions. In terms
of 3D parameterization of impeller geometry, refer to authors’
previous work [26]. Figure 9 shows the control points of
endwalls ((𝑍, 𝑅), two variables for one control point) and
blade camber curves (𝜃, one variable for one control point).
For the endwalls, 13 control points are applied to the hub and 8
for the shroud.The blade profile is parameterized by the root
and the tip sections of both full and splitter blades (4 sections
in total), and other camber sections are determined by linear
interpolation from root and tip sections. 8 control points are
selected for each full blade section while 5 for each splitter
blade section.

Table 2 shows variable names and corresponding num-
bers of control points. Not all the variables of control points
are active in the optimization. Table 3 shows active variable
numbers, range of variations, and constraints. In total, 45
design variables are selected for the initial design space
according to the constraints ofmechanical design of SRV2AB.

The impeller will be optimized at 50000 rpm for maxi-
mizing isentropic efficiency and total pressure ratio at design
operating condition (2.55 kg/s), while striving for smaller
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Figure 9: Control points of endwalls and blade camber curves.

surge and larger choke mass flows. The corresponding math-
ematical expression of aerodynamic optimization of SRV2AB
is as follows:

max: 𝜂is,design, 𝜀tot,design, 𝑚̇choke

min: 𝑚̇surge

s.t.: 𝑛 = 50000 rpm.
(8)

3.2. Self-Organization Map. SOM expresses the information
in a qualitative way and visualizes not only the relation
between design variables and objective functions but also
the trade-off between the objective functions. It employs a
nonlinear projection algorithm from high to low-dimensions
and a clustering technique. This projection is based on self-
organization of a low-dimensional array of neurons. In the
projection algorithm, the weights between the input vector
and the array of neurons are adjusted to represent features
of the high-dimensional data on the low-dimensional map.
Figure 10 shows the schematic map of SOM, where𝑀 is the

Table 2: Variable names and corresponding numbers of control
points.

Variable name Variable number
𝐻𝑍,𝑖 (𝑖 = 1, 2, . . . , 13) 1–13
𝐻𝑅,𝑖 (𝑖 = 1, 2, . . . , 13) 14–26
𝑆𝑍,𝑖 (𝑖 = 1, 2, . . . , 8) 27–34
𝑆𝑅,𝑖 (𝑖 = 1, 2, . . . , 8) 35–42
𝜃full,root,𝑖 (𝑖 = 1, 2, . . . , 8) 43–50
𝜃full,tip,𝑖 (𝑖 = 1, 2, . . . , 8) 51–58
𝜃splitter,root,𝑖 (𝑖 = 1, 2, . . . , 5) 59–63
𝜃splitter,tip,𝑖 (𝑖 = 1, 2, . . . , 5) 64–68

number of neurons and 𝑛 is equal to the dimension of input
vector. Each neuron is connected to adjacent neurons by a
neighborhood relation and usually forms two-dimensional
hexagonal (see Figure 10(b)) topology.

The learning algorithm of SOM starts with finding the
best-matching unit (winning neuron) which is closest to the
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Figure 10: Schematic map of SOM.

Table 3: Active variable numbers, range of variations, and con-
straints in initial design space.

Active
variable
number

Range of variation

Hub
7, 8, 9, 10, 11 (−1%∼1%) (𝐻𝑍,13 − 𝐻𝑍,1)
20, 21, 22,
23, 24 (−1%∼1%) (𝐻𝑅,13 − 𝐻𝑅,1)

Shroud
29, 30, 31,
32, 33, 34 (−1%∼1%) (𝑆𝑍,13 − 𝑆𝑍,1)

37, 38, 39, 40 (−1%∼1%) (𝑆𝑅,13 − 𝑆𝑅,1)
Full root

44, 45, 46,
47, 48, 49,

50
(−3%∼3%) ⋅ (𝜃full,root,8 − 𝜃full,root,1)

Full tip
51, 52, 53,
54, 55, 56,
57, 58

(−3%∼3%) ⋅ (𝜃full,tip,8 − 𝜃full,tip,1)
Splitter
root

59, 60, 61,
62, 63 (−3%∼3%) ⋅ (𝜃splitter,root,5 − 𝜃splitter,root,1)

Splitter tip 64, 65, 66,
67, 68 (−3%∼3%) ⋅ (𝜃splitter,tip,5 − 𝜃splitter,tip,1)

Constraints. (1) Inactive variables are unchanged in the optimization. (2)
Diffuser inclination against radial equals 13 deg. (3) Shaft speed is 50000 rpm.

input vector x, and the 𝑗th winning neuron is selected as the
one having minimal distance value:

󵄩󵄩󵄩󵄩󵄩x −m𝑗
󵄩󵄩󵄩󵄩󵄩 = min 󵄩󵄩󵄩󵄩x −m𝑘

󵄩󵄩󵄩󵄩 (𝑘 = 1, . . . ,𝑀) . (9)

Once the best-matching unit is determined, the weight
vectors are adjusted not only for the best-matching unit but
also for its neighbors. As shown in Figure 11, based on the
distance, the best-matching unit and its neighboring neurons
(situated on the cross of the solid lines, the weight vectors of
neurons represent their locations) become closer to the input
vector x. The adjusted topology is represented with dashed

Best matching unit

X

Figure 11: Adjustment of the best-matching unit and its neighbors.

lines.The adjustment of weight vector near the best-matching
unit can be formulated as follows:

m𝑘 (𝑡 + 1) = m𝑘 (𝑡) + ℎ𝑗 (𝑁𝑗 (𝑡) , 𝑡) (x −m𝑘)
𝑘 = 1, 2, . . . ,𝑀, (10)

where m𝑘(𝑡) is the weight vector of the 𝑘th neuron at 𝑡
iteration. The amount of adjustment depends on the degree
of similarity between a neuron and the input, represented
by (x − m𝑘), and is scaled by the function ℎ𝑗(𝑁𝑗(𝑡), 𝑡) that
plays the role of a “learning rate.” This “learning rate” is
called the neighborhood kernel [27]. It is a function of
both time (iteration step) and the winning neuron spatial
neighborhood 𝑁𝑗(𝑡). This spatial neighborhood is a time-
dependent function that defines the set of neurons that are
topographically close to the winning neuron. The neurons in
the spatial neighborhood adjust their weights according to
the same learning rule but with amounts depending on their
position with respect to the winner.
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Figure 12: SOMs colored by objective functions of initial design space.

Repeating this learning algorithm, the weight vectors
become smooth not only locally but also globally. Thus, the
sequence of the vectors in the original space results in a
sequence of the corresponding neighboring neurons in the
two-dimensional map.

Once the high-dimensional data projected on the two-
dimensional regular grid, the map can be used for visual-
ization and data mining. The same location on each compo-
nent map corresponds to the same SOM neuron, which is
colored according to its related neutron component values.
By comparing the behavior of the color pattern in the same
region, one can analyze the correlations among parameters.
Parameters are correlated if there exist similar color patterns
in the same region of the corresponding component maps.

3.3. SOM-Based Data Mining for Choosing Design Space. The
SOM was carried out by an in-house code on initial design
space to select key design parameters in the design space
for further optimization. 100 impellers generated in random
were simulated, in which 49 parameters (4 objectives and
45 active design variables) were analyzed. All the employed
parameters are normalized (variance is normalized to one).
25 SOM neutrons were used in component map. Figure 12

presents SOMs colored by 4 objective functions, showing a
nonlinear relation; no region exists with good performance
for all the objectives. This means that it is difficult to improve
all the objectives without any compromise. A trade-off needs
to make among the 4 objectives. For example, the clusters in
bottom right-hand corner are a better choice for total pressure
ratio 𝜀tot,design, surge mass flow 𝑚̇surge, and choke mass
flow 𝑚̇choke, but bad in isentropic efficiency 𝜂is,design. SOMs
colored by 𝜂is,design and 𝑚̇choke show an inverse distribution
of colors, so they are in a severe trade-off relation. One
physical example is a high trim impeller which has a large
choke flow but tends to have low peak efficiency. Another
potential conflict of objectives involves 𝑚̇surge and 𝜂is,design.
SOM colored by 𝜀tot,design on the other hand shows diagonal
behavior.

Figure 13 shows SOMs for some active design variables in
the initial design space. Variable 33 (Figure 13(c)) represents𝑆𝑍,7 and controls the exit blade height of impeller. Larger
value of variable 33 means smaller blade tip width and vice
versa (refer to Figure 9). The cluster with small values of
variable 33 is located in the bottom right-hand corner and
brings good performance of 𝜀tot,design, 𝑚̇surge, and 𝑚̇choke
but deteriorates 𝜂is,design. The largest value of variable 33
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Figure 13: SOMs colored by active design variables of initial design space.
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situates on middle left and benefits 𝜂is,design and 𝑚̇surge, while
penalizing 𝜀tot,design and 𝑚̇choke. Figure 13(f), combined with
Figure 12, shows the influence of variable 52 or 𝜃full,tip,2 which
is the wrap angle of full blade at tip section. Figure 13(e)
(variable 44, 𝜃full,root,2) indicates the influence of the wrap
angle of full blade at root section. It shows an approximate
inverse distribution of color pattern with 𝑚̇surge, indicating a
positive correlation between increasing value of variable 44
and decreasing 𝑚̇surge. Variable 58 (Figure 13(g)) represents𝜃full,tip,8 which governs the back sweep of full blade at tip sec-
tion (large value of variable 58 represents large sweepback).
SOMs colored by variable 58 and 𝜂is,design show similar color
patterns, implying an approximate linear relation between the
two. Both smaller and larger values of variable 58 (located in
bottom right-hand and upper left-hand corner, resp.) bring
good performance of 𝜀tot,design; this is due to smaller sweep-
back tending to increase the tangential component of absolute
velocity to raise total pressure while larger sweepback tries
to achieve the same by improving efficiency. Figure 13(h)
(variable 68, 𝜃splitter,tip,5) shows the similar effects. Variable
21 (Figure 13(a)), variable 22 (Figure 13(b)), and variable 40
(Figure 13(d)) show severe nonlinear relations with the four
objective functions, while variable 22 and variable 40 are
more sensitive as the ranges of legends in Figures 13(b) and
13(d) are small. Thus, variable 22 and variable 40 are kept
while variable 21 is ignored in the final design space.

Based on data mining results, one may derive the follow-
ing conclusions. (1) Total pressure ratio, isentropic efficiency,
surge mass flow, and choke mass flow are in severe trade-off
relations and compromises are needed in optimization. (2)
The performance of high pressure ratio impellers is sensitive
to the tip and root sections parameters located near the
leading edge of full blade, especially for surge margin. The
parameters located near the trailing edge of full and splitter
blades also have large effects on the performance. The ranges
of the control points of these parameters in optimization
need careful planning. (3) Some insensitive variables may
be ignored in the design space to simplify the optimization
and to improve the efficiency as well as the robustness of
optimization.

Table 4 shows the active variables and their ranges in the
final design space that were used in the optimization. The
number of active variables reduces from 45 to 27. Figure 14
presents active variables of endwalls and blade camber curves
in final design space, in which the arrows indicate themoving
directions of the active variable in the optimization.

4. Aerodynamic Optimization of SRV2AB

4.1. Optimization Method. A multipoint and multiobjective
design optimization method based on an improved NSGA-
II genetic algorithm [26], the time series surge detection,
and data mining technique discussed earlier is applied to
the optimization of SRV2AB impeller at design shaft speed
(50000 rpm). The four objectives are higher efficiency, pres-
sure ratio, larger choke flow, and smaller surge flow. A Pareto-
based ranking was adopted for the 4 objectives.

The flow chart of this multipoint and multiobjective
design optimization method is shown in Figure 15. The

Table 4: Active variable numbers and range of variations in final
design space.

Active
variable
number

Range of variation

Hub 9, 10 (−1%∼1%) (𝐻𝑍,13 − 𝐻𝑍,1)
20, 22, 23 (−1%∼1%) (𝐻𝑅,13 − 𝐻𝑅,1)

Shroud 31, 32, 33 (−1%∼1%) (𝑆𝑍,13 − 𝑆𝑍,1)
39, 40 (−1%∼1%) (𝑆𝑅,13 − 𝑆𝑅,1)

Full root 44, 45, 46,
48, 50 (−3%∼3%) ⋅ (𝜃full,root,8 − 𝜃full,root,1)

Full tip 52, 53, 54,
55, 58 (−3%∼3%) ⋅ (𝜃full,tip,8 − 𝜃full,tip,1)

Splitter
root 59, 61, 63 (−3%∼3%) ⋅ (𝜃splitter,root,5 − 𝜃splitter,root,1)
Splitter tip 64, 65, 67,

68 (−3%∼3%) ⋅ (𝜃splitter,tip,5 − 𝜃splitter,tip,1)
Constraints. (1) Same as in Table 3.

Table 5: Settings of the genetic algorithm & CFD.

Population size 30
Maximum iteration number 20
Crossover probability 𝑃𝑐1 0.9
Crossover probability 𝑃𝑐2 0.3
Mutation probability 𝑃𝑚1 0.2
Mutation probability 𝑃𝑚2 0.05
Convergence criterion of CFD 10−5

right-hand part of the chart presents the core optimization
algorithm based on the genetic algorithm. The grid gen-
eration and CFD solution were automatically carried out
using Autogrid and FineTurbo fromNUMECA by templates,
respectively. The prediction of total pressure ratio and isen-
tropic efficiency at design operating conditionwas conducted
by imposing designmass flow (2.55 kg/s) boundary condition
at vaneless diffuser outlet. Chokemass flow rate was obtained
by specifying a low outlet static pressure of 151,300 pa. The
determination of surge mass flow is carried out by the surge
detection method introduced earlier. The initial design space
is presented in Table 3, and the final design space in Table 4.
Table 5 shows some essential parameters in the genetic
algorithm. Parallel computing technique was applied to the
optimization process. It included parallel CFD tool and the
multithreaded genetic algorithm in which the parallel CFD
code runs.The optimization was carried out on a workstation
with 48-core Xeon(R) E5-2670 processor, and the CPU
utilization was about 86 percent. The total computational
time required to run the optimization was about 1400 hours.
After the optimization, the optimum geometry is selected
from Pareto-optimal front solutions of the last iteration with
the smallest surge mass flow.

4.2. Results and Discussions. The overall performances of
baseline impeller and optimal impeller are presented in
Table 6. It shows an improvement of both total pressure ratio
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Figure 14: Active variables of endwalls and blade camber curves in final design space.

(by 5.3%) and isentropic efficiency (by 1.9%). Meanwhile,
surge margin shows a considerable improvement by 6.8%
while choke mass flow rises by 1.4% as well.The whole design
speed line at 50000 rpm shows improvements for all the 4
objectives.

Figure 16 compares the performances of the optimal
impeller with the baselines at three speeds of 50000 rpm,
40000 rpm, and 30000 rpm. At all speeds, compressor surge
is improved. Combined with a higher choke flow at the
highest speed, this makes the new design particularly suitable
for turbocharger application where a wide flow range is
required and choke flow at low pressure ratios is relatively

Table 6:The overall performances of baseline and optimal impellers
at 50000 rpm.

Parameters Baseline Optimal Improvement
𝜀tot,design 5.7 6.0 5.3%
𝜂is,design (%) 80.0 81.5 1.9%
𝑚̇surge (kg/s) 2.37 2.21 6.8%
𝑚̇choke (kg/s) 2.87 2.91 1.4%

unimportant. Compressor peak efficiency and peak pressure
ratio both increase at the off-design speeds.
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Figure 17: Comparison of geometry between baseline and optimal impeller.

These results demonstrate the power of this multipoint
andmultiobjective optimizationmethod.A single-point opti-
mization is less likely to get similar results. Note that thismul-
tipoint and multiobjective optimization is only conducted at
design shaft speed (50000 rpm), and it could further improve
off-design performance if the same technique is applied to
both design and off-design speeds. This will significantly
increase computational time and resources (about 3 times of
this study). A trade-off is needed between the effort and the
gains.

Figure 17 compares the geometry of the baseline and
the optimal impeller. Figure 17(a) shows that the meridional

passage (variable 22) is reduced after the inducer throat in
the optimal impeller. This explains why the choke flow of
the impeller is reduced at the two lower speeds but not at
the highest speed. At the low pressure ratios, exducer passage
area also plays a rule in impeller choking while inducer throat
alone dictates the impeller choke flow at high speeds. Figures
17(b) and 17(c) show the profile or camber changes of the full
and splitter blades at root and tip sections. At the leading edge
of the full blade (variables 44 and 52), both sections display
a larger blade angle and higher blade turning, contributing
to a higher efficiency and a smaller inducer area that is
unfavourable for surge. The reduction of full blade throat is
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Figure 18: Entropy distributions at streamwise sections and streamlines.

compensated by a more open splitter (variables 59 and 64).
The compressor stability is improved by the reduced impeller
tip width (variable 33) and a smaller diffuser gap.

The backsweep angles (variables 50 and 63) are slightly
reduced in the optimal impeller at its hub for both full
blade and splitter blade, and this increases impeller work
and pressure ratios. Because the same angle is not reduced at
the shroud, the reduction at the hub decreases the diffusion
imbalance between the shroud and the hub, resulting in
more uniform impeller outflow.This compensates the higher
diffuser inlet velocity caused by the reduced hub backsweep
angle.

It is concluded that the design variables’ optimization for
a better performance corresponds to the analysis in SOM. It
proves that SOM analysis is effective in extracting the key
design variables and their effects, and the proposed optimiza-
tion method was able to find a proper trade-off between all
the objectives.

The flow field at design operating condition is analyzed.
Figure 18 presents the comparison of entropy distributions at
different streamwise sections and streamlines of tip leakage
between the baseline and optimal impeller. In section I, a
large high entropy region is found at midspan near suction
side (circled in red) of the baseline impeller, and the corre-
sponding area in the optimal impeller is considerably smaller.
This is due to the weaker and detached LE shockwavemoving
back toward LE; see Figure 19.While the higher blade turning
of the new impeller at LE area strengthens the tip leakage flow
and thus higher loss is found in the tip region at Section I, the
loss stops at Section III.

From Figure 19 it can be seen that impeller exit flow is
now more uniform circumferentially between the two flow
channels.

Figure 20 presents the spanwise performance of the
impeller 10mm downstream from the impeller exit. It shows
that both the total pressure ratio and the isentropic efficiency
have increased in the regions ranging from the hub to 80%
span but reduced near the shroud.

5. Conclusions and Remarks

Amultipoint andmultiobjective design optimization strategy
of centrifugal impeller is proposed by integrating a genetic
algorithm, 3D geometry parameterization, CFD tools, time
series based surge detection method, and SOMs based data
mining technique. This approach was successfully applied to
high pressure ratio centrifugal impeller SRV2AB for higher
total pressure ratio and better efficiency at design operating
condition and smaller surge mass flow and larger choke mass
flow at design speed. The main conclusions are drawn as
follows:

(1) A time series based surge detectionmethod was intro-
duced. It uses autoregression to detect compressor instability
and is independent of the impeller geometry, shaft speed, and
boundary condition.This method was successfully applied to
SRV2AB impeller surge prediction.

(2) By SOM-based data mining on initial design space,
trade-off relations between objective functions and correla-
tions among design variables and objective functions were
visualized and analyzed. The key design variables were then
identified and kept in the final design space.

(3) The optimization improves the overall performance
of the impeller at whole design speed line and widens the
compressor flow range. At off-design speeds and compressor
efficiency, surge margin is also enhanced. The mechanism
behind the performance improvement is further explained by
combining geometry changes with detailed flow analysis.

The surge detection method still needs to be checked
by experiment and by more applications. It is currently
computational intensive. It essentially detects surge by the
macroscopic time based signal instead of local flow features
such as the development of stall cells, which may be more
efficient. The method needs further refinement.

Another future work concerns with the method of
selecting the data for data mining. Results of data mining
techniques may depend on the used data. For the consistency
of information obtained from data mining, a robust data
selection method is necessary.
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Figure 19: Relative Mach number contour at 60% and 95% spans.

Nomenclature

AR: Autoregressive processes
ARMA: Autoregressive moving average

processes𝑎: Amplitude of time based signal𝑎𝑡: White noise series
deg: Degree
GA: Genetic algorithm
LE: Leading edge
MA: Moving average processes𝑚̇: Mass flow rate

𝑚̇choke: Choke mass flow
m𝑖: Weight vector𝑚̇surge: Surge mass flow (last stable mass flow near

surge condition)
NID: Normally and independently distributed𝑛: Shaft speed (rpm)𝑃: Probability𝑃𝑐1: Upper border of crossover probability𝑃𝑐2: Lower border of crossover probability𝑃𝑚1: Upper border of mutation probability𝑃𝑚2: Lower border of mutation probability𝑝: Pressure
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Figure 20: Spanwise performance 10mm downstream of impeller.

𝑞: Order of AR model𝑅: Radial coordination (mm)𝑅𝑘: Autocovariance function
SOM: Self-organization map
TE: Trailing edge𝑥𝑡: Original time series signal𝑦𝑡: Zero-mean time series𝑍: Axial coordination (mm).

Greek Symbols

𝛿: Upper border of variance in AR model𝜀: Total pressure ratio𝜂: Isentropic efficiency𝜃: Azimuthal angle (rad)𝜇𝑥: Mean value𝜌𝑘: Autocorrelation function𝜎2: Variance𝜙𝑖: Coefficients of AR model𝜑𝑘𝑘: Partial autocovariance function.
Subscripts

𝑐: Crossover
choke: Choke condition
design: Design condition
full: Full blade
is: Isentropic𝑚: Mutation
root: Root section
splitter: Splitter blade
surge: Surge condition

tot: Total conditions
tip: Tip section.
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