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• Flow intermittence creates challenges
for ecological status assessments.

• Classifying ecologically relevant typolo-
gieswill underpin future biomonitoring.

• Methods used in perennial rivers need
evaluation before use in temporary
rivers.

• Metrics may need adaptation due to
taxon-specific sensitivity to intermit-
tence.

• Novel biomonitoring tools (e.g. DNA,
terrestrial biota) also require
development.
Abbreviations: BQE, biological quality element; COS
Intercalibration Group; IRES, intermittent rivers and eph
WFD, Water Framework Directive.
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Intermittent rivers and ephemeral streams (IRES) are common across Europe and dominate someMediterranean
river networks. In all climate zones, IRES support high biodiversity and provide ecosystem services. As dynamic
ecosystems that transition between flowing, pool, and dry states, IRES are typically poorly represented in bio-
monitoring programmes implemented to characterize EU Water Framework Directive ecological status. We re-
port the results of a survey completed by representatives from 20 European countries to identify current
challenges to IRES status assessment, examples of best practice, and priorities for future research. We identify
five major barriers to effective ecological status classification in IRES: 1. the exclusion of IRES from Water
T, European Cooperation in Science and Technology; EU, European Union; GES, good ecological status; GIG, Geographical
emeral streams; RBD, River Basin District; SMIRES, Science and Management of Intermittent Rivers and Ephemeral Streams;
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Framework Directive biomonitoring based on their small catchment size; 2. the lack of river typologies that dis-
tinguish between contrasting IRES; 3. difficulties in defining the ‘reference conditions’ that represent unimpacted
dynamic ecosystems; 4. classification of IRES ecological status based on lotic communities sampled using
methods developed for perennial rivers; and 5. a reliance on taxonomic characterization of local communities.
Despite these challenges, we recognize examples of innovative practice that can inform modification of current
biomonitoring activity to promote effective IRES status classification. Priorities for future research include recon-
ceptualization of the reference condition approach to accommodate spatiotemporal fluctuations in community
composition, andmodification of indices of ecosystem health to recognize both taxon-specific sensitivities to in-
termittence and dispersal abilities, within a landscape context.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Temporary rivers and streams, which are defined by periodic flow
cessation and often experience loss of some or all surface water (Datry
et al., 2014a; Leigh et al., 2015), are common in oceanic and continental
temperate regions (Snelder et al., 2013; Stubbington et al., 2017), and
can dominate mediterranean-climate and semi-arid river networks
(Skoulikidis et al., 2011, 2017; Tockner et al., 2009). These ecosystems
are often classified as intermittent rivers or ephemeral streams (IRES),
with intermittent rivers typically conceptualized as systems with rela-
tively long, seasonal flowing phases, compared to precipitation-driven
hydrological unpredictability in ephemeral streams. However, the inter-
mittent-ephemeral boundary is indistinct and encompasses only two of
many possible intermittence regimes, from near-perennial to episodic
flow (Cid et al., 2017; Datry et al., 2017a; Uys and O'Keeffe, 1997). De-
spite this variability, for simplicity, we use IRES, temporary, and intermit-
tence as terms encompassing all lotic ecosystems that experience flow
cessation and/or drying, and for clarity, we provide descriptive detail
in each instance where a particular type of intermittence is considered.

IRES flowing-phase communities can be diverse in multiple aquatic
groups including diatoms (Tornés and Ruhí, 2013), macrophytes
(Westwood et al., 2006), invertebrates (Bonada et al., 2007; Datry,
2012), and fish (Pires et al., 1999). Although local-scale taxonomic di-
versity typically declines with increasing intermittence (Davey and
t al., Biomonitoring of interm
otal Environ (2017), https://
Kelly, 2007; Datry et al., 2014b; Tornés and Ruhí, 2013), diversity
among sites (i.e. spatial β-diversity) can be higher in IRES compared
to perennial systems due to habitat heterogeneity (Schriever and
Lytle, 2016; Tornés and Ruhí, 2013; Westwood et al., 2006; but see
Datry et al., 2016a) and dispersal limitation, in particular in isolated
headwaters (Brown and Swan, 2010; Sarremejane et al., 2017). Equally,
taxonomic diversity among times (i.e. temporal β-diversity) can be en-
hanced in temporary compared with perennial systems due to fluctua-
tions in community composition between lotic, lentic, and terrestrial
phases (Bogan and Lytle, 2007; Corti and Datry, 2015; Ruhí et al.,
2017). These diversity contributions can result in higher regional-scale
biodiversity in networks that include temporary reaches (Katz et al.,
2012; Larned et al., 2010; Stubbington et al., 2017).

Recognition of IRES biodiversity and ecosystem service provision
across all hydrological phases (Datry et al., 2017b) coincides with
increasing anthropogenic alteration of intermittence regimes, with con-
siderable water resource pressures in regions dominated by urban and
agricultural land uses (Acuña et al., 2017; Kummu et al., 2016).
Increases in the spatiotemporal extent of intermittence reflect over-ab-
straction (Boix et al., 2010; Jaeger et al., 2014; Mainstone et al., 1999),
whereas effluent discharge, water diversions, and releases from im-
poundments can cause artificial perennialization (Hendriks et al.,
2014; Luthy et al., 2015; Morais et al., 2004). These pressures interact
within a changing climate that features more extreme events, including
ittent rivers and ephemeral streams in Europe: Current practice and
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hydrological droughts (i.e. surface water deficits; Forzieri et al., 2014;
Ledger andMilner, 2015). Anthropogenic activities typically reduce bio-
diversity by eliminating sensitive taxa, particularlywhere intermittence
increases (Benejam et al., 2010; Datry et al., 2014b; Garcia et al., 2016).

The European Union (EU) Water Framework Directive 2000/60/EC
(WFD; EC, 2000) requires EU Member States and other participating
countries to achieve at least ‘good’ ecological status (GES) or ‘good eco-
logical potential’ in all surface waters (EC, 2003a). Ecological status
(hereafter, status) is assessed through comparison of ‘biological quality
elements’ (BQEs, for example benthic invertebrate assemblages) with
‘reference conditions’, i.e. the communities indicative of undisturbed
or minimally disturbed sites. Progress towards GES has been limited
(EC, 2012; Voulvoulis et al., 2017), and one significant challenge is to in-
corporate IRES into biomonitoring programmes (Reyjol et al., 2014;
Skoulikidis et al., 2017). Other legislative drivers for biomonitoring in-
clude the EU Habitats Directive 92/43/EEC (EC, 1992), under which
IRES may fall within Special Areas of Conservation monitored to assess
the conservation status of habitats and/or species (see Section 4.1).
The EU Biodiversity Strategy also provides impetus for the monitoring
and protection of ecosystems supporting high biodiversity and robust
ecosystem service provision (EC, 2011). In addition, national status as-
sessments have identified rare IRES inhabitants including specialist spe-
cies (Macadam, 2016), providing impetus for population monitoring
and legislative protection (e.g. Službeni list RCG br. 76/06, 2006 in
Montenegro).

The EU COST Action CA15113 (Science and Management of Intermit-
tent Rivers and Ephemeral Streams; SMIRES; COST, 2015) is seeking to
translate increasing understanding of IRES into tangible tools for ecosys-
tem management. The SMIRES Working Group 4: Community Ecology
and Biomonitoring in IRES (WG4; SMIRES, 2016) is tasked with adapting
current biomonitoring methods and developing novel tools to promote
effective IRES status assessments. In this paper, we use information
gathered from WG4 members to review current practice in IRES bio-
monitoring. We identify challenges to effective status assessment and,
as a result, we establish the need to develop new, specifically designed
tools to enable status characterization in IRES across and beyond Eu-
rope. To this end, we highlight best practice in IRES status characteriza-
tion, identify opportunities for its wider adoption, and suggest priorities
for future research.

2. Ecological status assessments in European rivers: collation of
information

SMIRES WG4 comprises N90 members based in 25 ‘COST Member
Countries’ (COST, 2016), including academic researchers, and stake-
holders from national ‘competent authorities’ with responsibility for
WFD compliance. WG4 members were asked to collaborate to provide
written accounts of national biomonitoring activity. Specifically, infor-
mationwas requested about the biomonitoring conducted to assess sta-
tus in both IRES and perennial rivers, including the biotic groups used as
bioindicators (Appendix A). In addition, qualitative descriptions of per-
ceived issues surrounding, and limitations of, current IRES biomonitor-
ing were sought. This initial survey was supplemented by a second
survey focussing on national implementation of WFD stages including
“water body” designation; classification of river typologies; reference
site identification; characterization of reference conditions; use of pe-
rennial status assessment methods; and development of alternative
methods for IRES (Appendix B). Information provided in written re-
sponses to the initial and second surveys was supplemented by discus-
sion with respondents, both at WG4 meetings and via email.

Representatives from 20 countries contributed biomonitoring infor-
mation in the initial survey (Fig. 1); in addition, Romania provided lim-
ited comments. Of the 20 represented countries, 15 are EU Member
States, 13 of which had adopted all of their second WFD ‘River Basin
Management Plans’ by early 2017; the two exceptions are Greece and
the archipelago-specific ‘River Basin District’ (RBD) of the Canary
Please cite this article as: Stubbington, R., et al., Biomonitoring of interm
priorities to enhance ecological status..., Sci Total Environ (2017), https://
Islands, Spain (EC, 2016). Of the non-Member State respondents, Ice-
land is also committed to WFD implementation as part of the European
Economic Area; Switzerland has set targets comparable to those in the
WFD as part of trade agreements; and Macedonia, Montenegro, and
Serbia are being supported in implementing the WFD as candidate
countries seeking accession to the EU.Mediterranean and other temper-
ate-climate regionswere well-represented in bothWestern and Central
Europe, with Finland and Iceland representing northern latitudes. Ger-
many, Norway, and Sweden were the most significant omissions in
terms of land area, and regionally, Eastern Europewas poorly represent-
ed. All river ‘Geographical Intercalibration Groups’ (GIGs; formed to
promote status benchmarking across countries implementing the
WFD; Van de Bund, 2009) were represented, by 3 of 5 Alpine; 8 of 18
Central/Baltic; 5 of 9 Eastern Continental; 8 of 9 Mediterranean; and 2 of
5 Northern countries, respectively. Representatives from 13 countries
(Croatia, Cyprus, Czech Republic, Greece, Hungary, Macedonia, Monte-
negro, Netherlands, Serbia, Slovakia, Spain, Switzerland, UK) spanning
4 GIGs (Alpine, Central/Baltic, Eastern Continental, Mediterranean)
also responded to the second survey.

3. Ecological status assessments in European rivers: results

Considering all lotic ecosystems, 18 of 20 surveyed countries have
established status assessment protocols for perennial rivers, all of
which are based on biota characterized at the community level using a
taxonomic approach; methods remain in development in Malta and
Montenegro (Table 1). Common bioindicator groups comprise the
BQEs benthic invertebrates (18 countries), phytobenthos (17), macro-
phytes (16), fish (15), and phytoplankton (6); as such, benthic inverte-
brates are the only BQE used across all surveyed countries with
established protocols. This information agrees with and can be supple-
mented by the comprehensive review of Birk et al. (2012), who report-
ed freshwater monitoring methods used in 28 European countries:
those surveyed here, with five exceptions (Iceland, Macedonia, Monte-
negro, Serbia, Switzerland) and 13 additions (Austria, Belgium,
Denmark, Estonia, Germany, Ireland, Latvia, Lithuania, Luxembourg,
Norway, Romania, Slovenia, Sweden). We direct readers to Birk et al.
(2012) for further informationonmethods used in perennial freshwater
ecosystems, and to Dallas (2013) for information specific to mediterra-
nean-climate rivers; here, we focus on IRES biomonitoring.

Of the 18 surveyed countries with established biomonitoring
programmes, 16 (and Romania) include IRES (typically larger systems
with predictable intermittence) within sampling networks, whereas
perennial rivers are prioritized in Finland and Macedonia (Table 1). In
many countries, including Croatia, Czech Republic, Iceland, Poland, Slo-
vakia, Switzerland, and the UK, respondents noted that a ‘small’ propor-
tion of biomonitoring sites were temporary; poor understanding of the
extent of IRES within river networks typically prevented quantification
this proportion in relation to IRES occurrence. However, in the Nether-
lands, the proportion has been quantified as 266 of 6460 sites (i.e. 4%)
in total and in the upper reaches, where an estimated two-thirds of
the network is temporary, these sites poorly represent IRES compared
to 1665 perennial sites. In contrast, in Hungary, an estimated 35% of
the WFD-monitored river length is temporary, which effectively repre-
sents intermittence at 291 of 923 (i.e. 31%) of monitored water bodies
(but see Section 4.1).

Temporary reaches account for amuchhigher proportion of the total
length of river networks in Mediterranean-Basin RBDs, but IRES some-
times remain underrepresented by water body-based biomonitoring
networks. For example, N80% of the network length is temporary in
the Algarve, Guadiana, and Sado and Mira RBDs of southern Portugal,
but only 40% of biomonitoring sites are within IRES. In contrast, in the
16,438 km2 Catalan RBD in north-east Spain, 64% of 248 water bodies
(and therefore biomonitoring sites) are temporary, comprising 51%
larger rivers with seasonal intermittence and 13% smaller streams
with ephemeral flow; this proportion of water bodies exceeds the
ittent rivers and ephemeral streams in Europe: Current practice and
doi.org/10.1016/j.scitotenv.2017.09.137
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Fig. 1. European countries providing information about national biomonitoring activity in river ecosystems. Abbreviations: CH, Switzerland; CY, Cyprus; CZ, Czech Republic; EL, Greece; ES,
Spain; FI, Finland; FR, France; HR, Croatia; HU,Hungary; IS, Iceland; IT, Italy;ME,Montenegro;MK, Republic ofMacedonia;MT,Malta; NL, Netherlands; PO, Poland; PT, Portugal; RS, Serbia;
SK, Slovakia; UK, United Kingdom.
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estimated 58% temporary river length, comprising 50% seasonal, inter-
mittent rivers and 8% ephemeral streams. Similarly, in Cyprus, 87% of
water bodies classified for WFD monitoring are IRES, exceeding the
85% estimated temporary river length.

Survey respondents' descriptions of issues surrounding (and limita-
tions of) current IRES biomonitoring, and their responses to the second
survey of WFD-focussed questions, are explored in Section 4.

4. Challenges to effective IRES ecological status assessment

Currently, status assessments are routinely conducted for IRES in the
Mediterranean regions in which they dominate; elsewhere in Europe,
poor recognition of their extent has left IRES excluded from or poorly
represented in biomonitoring programmes, which prevents identifica-
tion of degraded ecosystems that require restoration or management
actions. Even where biomonitoring is conducted, poor understanding
of IRES may limit its effectiveness. The ongoing challenges of status as-
sessment in IRES have recently been examined by Dallas (2013),
Reyjol et al. (2014), Cid et al. (2017), and Skoulikidis et al. (2017);
these Mediterranean-focussed reviews raise issues of wider interest,
complementing our broader consideration of IRES across European cli-
mate zones.

4.1. Legislative definitions may not recognize IRES

TheWFD aims to protect “all bodies of surface water”, but alongside
perennial streams,many IRES (and in particular ephemeral streams) are
within catchments that fall below the lowest WFD size typology (10–
100 km2), leaving them without legal recognition as “water bodies”.
Please cite this article as: Stubbington, R., et al., Biomonitoring of interm
priorities to enhance ecological status..., Sci Total Environ (2017), https://
These small systems are typically excluded from biomonitoring net-
works, or their status is classified based on contiguous perennial
reaches. For example, in Hungary, only 1031 of 9800 nationally regis-
tered watercourses have catchments N10 km2, leaving 89.5% of water-
courses (equating to 74% of the network length) beyond the remit of
WFD-related monitoring. Given the contribution that IRES headwaters
make to biodiversity, their inhabitation by rare and endemic IRES spe-
cialists (e.g. Macadam, 2016; Matono et al., 2012), and their provision
of wider ecosystem services (Datry et al., 2017b), this exclusion is at
oddswith national and EU-wide commitments to ecosystem protection
(EC, 2011), especially in regions where small IRES are numerous
(Lazaridou et al., 2016). Skoulikidis et al. (2017) and Stubbington et al.
(2017) explore this issue in relation to Mediterranean-region and oce-
anic-climate IRES, respectively.

Small IRES may fulfil other nationally determined criteria for desig-
nation as aWFDwater body. For example, some IRES in Cyprus are des-
ignated because they support native fish populations of conservation
interest. In addition, two IRES types are Habitats Directive Annex I hab-
itats: “water courses of plain to montane levels with the Ranunculion
fluitantis and Callitricho-Batrachion vegetation”, which include the
‘winterbourne’ headwaters of UK chalk IRES; and “intermittently
flowing Mediterranean rivers of the Paspalo-Agrostidion”, which occur
across six Mediterranean countries. Certain UK chalk streams are desig-
nated as water bodies regardless of size, because they fulfil a national
criterion requiring maintenance and improvement of Special Areas of
Conservation (UKTAG, 2003). In contrast, in Spain, many intermittently
flowing rivers of the Paspalo-Agrostidion remain excluded from WFD
consideration because of their small catchment size. For example, in
the Catalan RBD, 143 of 248 designated water bodies (equating to
ittent rivers and ephemeral streams in Europe: Current practice and
doi.org/10.1016/j.scitotenv.2017.09.137
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Table 1
Summary of survey responses received from 20 European countries reporting national
biomonitoring activity in rivers including intermittent rivers and ephemeral streams
(IRES).

Description of national
biomonitoring activity

n (%)
agreeing

Additional information on
exceptions

Protocols are established for
ecological status assessment
in perennial rivers

18 of 20
(90)

No established protocols in:
• Malta
• Montenegro

Biota are characterized at the
community level using a
taxonomic approach

18 of 18
(100)

No exceptions; no routine
biomonitoring:
• is at non-community levels
• uses functional approaches
• uses metabarcoding of DNA

IRES are included within
biomonitoring networks

16 of 18
(89)

IRES not included in networks in:
• Finland
• Macedonia

Intermittence is recognized in
WFD river typologies

9 of 18 (50) Recognized in:
• All 8 Mediterranean GIG coun-
tries

• Mediterranean regions of Croatia

Status assessment is only done
to characterize flowing
phases

16 of 16
(100)

No exceptions; no routine
biomonitoring:
• to characterize pool-phase status
• to characterize dry-phase status

IRES status is assessed using
protocols developed for
perennial rivers

12 of 16
(81)

IRES-specific protocols used in:
• Cyprus
• Portugal
• Spain
IRES-evaluated method used in
Greece

GIG, Geographical Intercalibration Group; RBD, River Basin District; WFD, Water Frame-
work Directive.
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1059 kmof the 3808 kmriver length, and encompassing all flowperma-
nence regimes) are also ‘Natura 2000’ protected areas and are moni-
tored, but an additional 7176 km of small systems, including 1750 km
located within the Natura 2000 network, are excluded based on their
catchment size.

The Habitats Directive provides alternative impetus to assess the
conservation status of IRES in designated sites (Fritz et al., 2017).
However, different authoritiesmay be responsible forWFD andHabitats
Directive implementation, and collaboration is needed to ensure that
IRES are not excluded from monitoring programmes. For example, the
Environment Agency of England may conduct WFD status assessments
in downstream perennial reaches of chalk streams in which the
winterbourne headwaters are also protected under the Habitats
Directive. A second public body, Natural England, has Habitats Directive
responsibility and conducts complementary monitoring that encom-
passes winterbourne reaches; their assessment of conservation status
is also informed by Environment Agency data. Habitat protection may
also be afforded by other international- to local-scale site-specific desig-
nations, but such legal protection leaves most IRES excluded frommon-
itoring activity.

4.2. Typologies that distinguish between contrasting IRES require
development

WFD status assessments are based on robust surface water typolo-
gies, and incorporation of IRES into biomonitoring programmes there-
fore requires classification of IRES types. IRES are recognized by the
WFD, which classifies a “temporary” river type that occurs in five Med-
iterranean countries (VandeBund, 2009). This classification of one tem-
porary category overlooks profound variability among IRES (Belmar et
Please cite this article as: Stubbington, R., et al., Biomonitoring of interm
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al., 2011; Cid et al., 2017), variability which is reflected by IRES commu-
nities, most strikingly between the fundamental ‘intermittent’ and
‘ephemeral’ IRES types (e.g. Argyroudi et al., 2009; Bonada et al., 2007;
Stubbington et al., 2009; but see Delgado et al., 2012). This variability
(and associated differences in boundaries between status classes) has
necessitated flexibility, rather than consistency, in the biomonitoring
methods and indices developed for and used within Mediterranean
“temporary” rivers (Fritz et al., 2017).

Accordingly, national river classifications in few Mediterranean
countries adequately represent IRES. For example, Spain has 37 classi-
fied river typologies based on natural variables including climate, geol-
ogy, geomorphology, and altitude as well as river discharge, with
several typologies including but not distinguishing between IRES and
perennial systems (BOE, 2015). Similarly, in Portugal, eight of 15 nation-
al river classifications encompass both perennial and temporary water
bodies. Exceptions include Cyprus, Greece, and Italy, where contrasting
intermittence regimes are distinguished (using variable terminology)
by the duration and predictability of flowing phases (Lazaridou et al.,
2016; Skoulikidis et al., 2017); in Cyprus, this hydrological classification
uses the ‘temporary stream regime’ tool developed by Gallart et al.
(2012). In addition, five intermittent river types have been defined in
the Mediterranean-climate Dinaric ecoregion of Croatia, spanning
small and medium catchment sizes; upland and lowland altitudinal
classes; and three sub-ecoregions with climates characterized by year-
round precipitation (NN, 2013). These exceptions highlight EU-wide in-
consistency in IRES subtype recognition, and a common failure to make
even fundamental distinctions, notably between IRES that seasonally
recede to chains of pools and those that experience unpredictable pe-
riods of complete drying (Argyroudi et al., 2009); these issues are ex-
plored by Skoulikidis et al. (2017) and have been addressed by the
MIRAGE project (CORDIS, 2015; Nikolaidis et al., 2013; see Section 5.1).

Of the 13 non-Mediterranean surveyed countries in whichWFD sta-
tus assessment methods are established, none recognize flow perma-
nence in river typologies. For example, the UK defined 18 river
typologies using WFD “System A”, i.e. using prescribed altitude, catch-
ment area, and geology categories; no hydrological parameters inform
this classification system (UKTAG, 2003). Discharge categories do, how-
ever, inform UK model predictions of community composition across,
for example, 43 benthic invertebrate assemblage end groups, but the
lowest discharge category is b0.31 m3 s−1 i.e. intermittence is not rec-
ognized (UKTAG, 2008). Other countries have used WFD “System B”
to define typologies, which allows classification to be informed by addi-
tional, optional factors including a “river discharge [flow] category”. De-
spite this, SystemB classification categoriesmay be reminiscent of those
in System A, for example Hungary used slope, catchment area, and geo-
chemistry (comparable to altitude, catchment area, and geology) along
with sediment size. In Switzerland, a non-WFD classification system is
used, but despite the inclusion of one hydrological category (average
annual discharge) along with biogeographical region, altitude, average
slope, and geology, none of 54 river typologies are IRES (OFEV, 2015).
However, national examples of good practice exist. In particular, the
temporary reaches of slow-flowing, sand-bed streams which lose sur-
face water for b10 weeks annually are classified as a type monitored
in the Netherlands, but this is in addition to WFD-related activity, be-
cause these streams are too small to be deemed “water bodies”. Roma-
nian regulatory agencies also distinguish between three intermittence
classes based on drying frequency. Similarly, to inform future improve-
ments in regulatory biomonitoring, the Czech BIODROUGHT project
(see Section 5.3) distinguishes IRES with annual drying of N1 km for
N7 days from near-perennial and perennial systems.

Classification of sufficient IRES typologies to characterize their het-
erogeneity is needed at the national scales at which regulators operate,
with international collaboration desirable from the outset to share best
practice and harmonize national typologies. Ideally, quantitative hydro-
logical metrics should be developed to inform classification of ecologi-
cally relevant IRES types, with zero-flow periods recognized as
ittent rivers and ephemeral streams in Europe: Current practice and
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primary sources of variation in community composition (Leigh and
Datry, 2017; Oueslati et al., 2015). Metrics should incorporate the tem-
poral characteristics of intermittence: the frequency, magnitude, dura-
tion, rate of change, timing, and predictability of lotic, lentic, and
terrestrial phases (Costigan et al., 2017; Leigh and Datry, 2017; Poff et
al., 1997).

Development of quantitative hydrological metrics is hampered by
poor IRES representation in gauging station networks, with few contin-
uous hydrological monitoring points located in temporary reaches
(Costigan et al., 2017; Leigh and Datry, 2017; Snelder et al., 2013), for
example, b5% of the network in Portugal; b1% in Spain and Switzerland;
and none in countries includingGreece, Hungary,Macedonia,Montene-
gro, theNetherlands, Poland, and Slovakia. Fewer still coincidewith bio-
monitoring sites, for example, of N5000 gauging stations in France, 123
are in IRES, and at two of these, biotic and hydrological data can be
linked – despite intermittence characterizing an estimated 39% of the
river network (Snelder et al., 2013). Exceptions to this poor representa-
tion include Cyprus, where hydrological monitoring encompasses pe-
rennial to episodic systems, with 80 of 104 gauging stations on rivers
with intermittent or ephemeral flow, 30 of which correspond with bio-
monitoring sites; Croatia,where ≥60 of 440 gauging stations are on IRES
and hydrological data are collected at nine of 41 IRES biomonitoring
points; and Serbia, where 218 flow gauging sites include 54 on IRES,
of which 19 are also biomonitored. Even when hydrological data are
available, the characteristics of an intermittence regime can be unclear
due to difficulties in distinguishing between lentic and dry zero-flow
states. To address this limitation of gauging station data, Cypriot author-
ities also make qualitative observations of aquatic states, following
Gallart et al. (2012).

The scarcity of hydrological data necessitates use of other intermit-
tence indicators. Aquatic communities including macroinvertebrates
can indicate intermittence, but to date, have only proved able to differ-
entiate between broad, antecedent states i.e. flowing or disconnected
pool states (Cid et al., 2016; Řezníčková et al., 2013). Other informative
qualitative methods encompass remote sensing using aerial or satellite
photography or deployed sensors (González-Ferreras and Barquín,
2017; Spence and Mengistu, 2016) and citizen science initiatives
(Datry et al., 2016b; Gallart et al., 2016; Turner and Richter, 2011),
and perennial-dominated gauging-station data may allow modelling
of IRES distribution (Snelder et al., 2013) and characterization of spatial
patterns of intermittence (Larned et al., 2011). Qualitative description of
intermittence may enable ecologically relevant classification, with
Gallart et al. (2012) defining Mediterranean ‘intermittent pool’, ‘inter-
mittent-dry’, and ‘episodic or ephemeral’ types (Nikolaidis et al.,
2013). Equally, Delgado et al. (2012) assigned 60 Mediterranean island
‘temporary streams’with overlapping intermittence regimes using non-
hydrological criteria, namely altitude, slope, and other geomorphologi-
cal and topographic discriminators. Beyond the Mediterranean region,
broad IRES types such as UK winterbourne chalk streams (Westwood et
al., 2006) and Dutch slow-flowing, sand-bed upper reaches (Van der
Molen et al., 2013) have well-characterized environmental characteris-
tics that encompass geomorphological variability, representing a
starting point for classification.

4.3. Determination of reference conditions is challenging in dynamic IRES

Only once IRES typologies are classified can undisturbed orminimal-
ly disturbed typology-specific reference sites be identified, and their
communities then characterized. Accordingly, few surveyed countries
have identified IRES-specific reference sites, withmost exceptions com-
ing from IRES-rich Mediterranean regions. Relevant research initiatives
include the GUADALMED (Sánchez-Montoya et al., 2009; see Dallas,
2013) and MIRAGE projects (Prat et al., 2014; see Section 5.1), which
evaluated reference site selection criteria, informed by WFD guidance
to use information about anthropogenic pressures to screen potential
sites (EC, 2003b). For example, Prat et al. (2014) used threshold values
Please cite this article as: Stubbington, R., et al., Biomonitoring of interm
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for 37 attributes (relating to catchment land uses, morphological alter-
ations, invasive species, and flow regime modification) to identify pres-
sures and therefore potential reference sites. Similarly, Delgado et al.
(2012) used land cover percentages and the absence of other anthropo-
genic pressures (point sources of pollution, hydromorphological alter-
ation, and significant flow regulation) to select potential IRES
reference sites in Spain's Mediterranean Balearic Islands. In addition,
predictive models built using perennial reference conditions (e.g. the
UK RIVPACS/RICT approach; UKTAG, 2008)warrant exploration to eval-
uate their applicability to IRES. These broad screening procedures re-
quire validation by expert judgement of habitat quality, as well as
supplementation by quantitative analysis of chemical variables and bi-
otic assemblages (Chaves et al., 2006; Lunde et al., 2013).

Distinguishing natural from artificial IRES during the site selection
process is crucial to inform ecological target-setting based on the natu-
ral flow regime (Reyjol et al., 2014) or an alternate desired state
(Acreman et al., 2014; Dallas, 2013), but scarcity of hydrological data
hampers such differentiation. In response, and building on Richter et
al.'s (1996) perennial-focussed ‘indicators of hydrologic alteration’, the
‘MIRAGE toolbox’ (Prat et al., 2014) and ‘Temporary Rivers Ecological
and Hydrological Status' (TREHS) software (Gallart et al., 2017) outline
a means of distinguishing natural from artificial IRES (see Section 5.1).
Guidance developed for perennial systems (EC, 2003b)may also inform
identification of reference sites and subsequent definition of reference
conditions in and beyond Mediterranean IRES.

Identifying undisturbed reference sites may be unfeasible across
much of Europe, due to widespread, long-term human influences
encompassing land use change, river regulation, and physical habitat
modification (EC, 2003b), and in IRES, the problem of reference site
identification may be compounded by difficulties in characterizing the
natural intermittence regime. Across river ecosystems, ‘best available’
sites (i.e. those representing the least disturbed conditions; Feio et al.,
2014), which may be located across international borders (Nijboer et
al., 2004),mayprovide alternatives. For example, data frompristine Pol-
ish sites were used to characterize reference conditions for Dutch com-
munities, due to the common occurrence of most indicator taxa
(Nijboer et al., 2006). However, the notion that any site remains ‘pris-
tine’ is questionable, especially due to climate change: the truly pristine
benchmark against which to compare sampled sites is shifting
(Hawkins et al., 2010), with climate-driven increases in drying exacer-
bating deviations in IRES (Datry et al., 2014a), especially in Mediterra-
nean regions (Schneider et al., 2013).

Characterization of reference conditions at validated sites is compli-
cated by IRES spatial heterogeneity, withMunné and Prat (2009, p. 659)
describing benthic invertebrate assemblages from Catalan IRES refer-
ence sites as lacking “a unique typological aggregation”. The composi-
tion of unimpacted communities partly reflects the spatial
arrangement of temporary and perennial reaches (Datry et al., 2016c),
and where intermittence varies longitudinally, corresponding variabili-
ty in community composition may complicate selection of representa-
tive sites (Westwood et al., 2006). Community composition also varies
between systems within a typology due to environmental heterogene-
ity among sites with equivalent spatial positions (Schriever and Lytle,
2016) and comparable instream habitats, reflecting the longitudinal,
lateral and vertical dimensions of the landscape context in which indi-
vidual sites are situated (Ward et al., 2002; see Section 4.5.1). Data
from multiple sites may therefore require integration to adequately
characterize assemblages (Jyrkänkallio-Mikkola et al., 2016; Passy and
Blanchet, 2007).

As well as these practical challenges, reference conditions present
conceptual difficulties in IRES: they are viewed as a single benchmark
against which other states are compared (Hawkins et al., 2010;
Stoddard et al., 2006), whereas IRES are ecosystems characterized by
spatiotemporal variability (Bonada et al., 2007; Cid et al., 2017; Datry
et al., 2016c). Increasing the spatial resolution of sampling networks
and/or the temporal resolution of sample collection may therefore be
ittent rivers and ephemeral streams in Europe: Current practice and
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necessary to characterize variability within each classified river type
(Dallas, 2013). However, even if such increased biomonitoring activity
can be resourced and seasonal variation accounted for (Munné and
Prat, 2011), description of one assemblage that characterizes
unimpacted conditionsmay still be compromised by unpredictable var-
iation in assemblage composition (Bunn and Davies, 2000; Datry et al.,
2016c). Such variability aswell as low taxa richness compared to peren-
nial systems may mean that the aquatic groups defined as WFD BQEs
(Van de Bund, 2009) are inappropriate, in particular to represent sys-
tems with ephemeral or episodic flow (e.g. Cazemier et al., 2011). De-
bate is therefore needed to either: (a) select a single state in which
status can be adequately represented using an established bioindicator
(e.g. the benthic invertebrate BQE sampled late in a flowing phase in a
predictable, near-perennial river; Sánchez-Montoya et al., 2012); (b)
select a single state in which status may be effectively characterized
by a novel bioindicator (e.g. terrestrial biota in an IRES with long, unin-
terrupted dry phases; see Section 4.4.2); or (c) integrate aquatic and
terrestrial assemblage data collected across flowing, pool, and dry
phases to provide a holistic picture of ecosystem health.

4.4. Ecological status classification is based on perennial reaches, flowing
phases, and perennial indices

4.4.1. Status classification is based on perennial reaches
Small catchment size may result in IRES status classification being

based on perennial sites within a contiguousWFD “water body”, a prac-
tice which assumes that sites with contrasting flow permanence have
comparable ecological responses to equivalent anthropogenic pres-
sures. However, contrasting environmental conditions and biotas may
render this assumption invalid, and in all situations where one status
class does not represent contiguous perennial and temporary reaches,
designation as one water body may contravene WFD guidance (EC,
2003c) and monitoring networks may require expansion. For example,
IRESmay be less impacted by non-native invasive species than perenni-
al rivers, if invaders cannot tolerate flow cessation and/or drying, or
more impacted, if invaders are highly adaptable (Larson et al., 2009;
Stoffels et al., 2017; Stromberg et al., 2007). Equally, abstraction at a
given rate may have minimal ecological impacts in perennial rivers
that decrease in depth;moderate impacts in IRES that experience longer
dry phases; and severe impacts when perennial flow shifts to a tempo-
rary regime that includes dry phases (Skoulikidis et al., 2011).

Polluting effluents can have greater impacts when discharged into
IRES. Firstly, an effluent which artificially sustains perennial flow in a
e
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natural IRES inherently causes the hydrological regime to fall below
GES (Fig. 2). In such situations, water quality is also unlikely to meet
WFD physico-chemical status targets, in particular as natural contribu-
tions to streamflow decline during dry seasons, reducing effluent dilu-
tion (Fig. 2; David et al., 2013; Morais et al., 2004). Biotic communities
will respond to fluctuations in physico-chemical water quality and hy-
drological regime (Fig. 2), but attempting to characterize status using
aquatic BQEs is inappropriate during artificial flowing phases. Instead,
novel dry-phase biomonitors require development (see Section 4.4.2).

4.4.2. Status classification is based on flowing phases
Where status assessments are conducted in IRES (i.e. in 16 surveyed

countries), all restrict biomonitoring activity to wet phases. Sampling is
timed to maximize the likelihood of capturing a predictable and stable
lotic community that has had sufficient time to establish since the last
flow resumption. Such scheduling is primarily feasible in IRES with
long, predictable flowing phases, whereas systems with short, unpre-
dictable flowing phases pose considerable challenges, because charac-
terization of an unknown stage in community succession prevents
accurate status assessment. Across IRES, if lentic conditions are encoun-
tered, samples are typically collected in suboptimal conditions, which
may lead to inaccurate status classification (Argyroudi et al., 2009;
Buffagni et al., 2009); if a channel is dry, samples are not collected.

Reliance onflowing-phase sampling views ecological quality as tem-
porally stable, but fluctuations between lotic, lentic, and terrestrial hab-
itats are accompanied by changes in biotic communities and so
potentially in responses to anthropogenic pressures. A singular focus
on lotic assemblagesmay therefore provide an incomplete characteriza-
tion of ecosystem health, in particular as lentic and dry phase durations
increase. Although acceptable in a WFD-driven context, policy drivers
including the EU Biodiversity Strategy (EC, 2011) provide impetus for
comprehensive health assessments that encompass lentic and dry
phases, to ensure that IRES habitats favour persistence of all life stages
of associated rare species, and to verify robust ecosystem service provi-
sion. For example, specialist IRES insects may be present as juveniles
during flowing phases and as dormant eggs in dry channels, with their
persistence depending on environmental conditions during both wet
and dry phases (Armitage and Bass, 2013); use of riparian zones by
adults also necessitates appropriate habitat availability beyond an IRES
channel.

Novel bioindicators may be required to supplement flowing-phase
classification if comprehensive assessments encompassing temporal
variability in status across lotic, lentic, and dry phases are pursued
           Autumn

Good Physico-chemical status

Hydrological regimeModerate

 perennial flow

w

hemical quality and hydrological regime) in relation to seasonal changes in discharge in an
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(Skoulikidis et al., 2017). Identification of effective dry-phase
biomonitors is a priority, and biotic groups including terrestrial inverte-
brate communities (Gerlach et al., 2013; Hodkinson and Jackson, 2005),
terrestrial carabid beetles (Rainio and Niemelä, 2003), aquatic inverte-
brate ‘seedbanks’ (Stubbington and Datry, 2013), dried biofilms includ-
ing diatoms (Barthès et al., 2015) and/or bacteria (Romaní et al., 2013),
and instream vegetation (Westwood et al., 2006) may have the poten-
tial to distinguish between sites of contrasting status; different biotic
groups will be needed to characterize responses to various
hydromorphological and physico-chemical pressures.

4.4.3. Status classification is based on perennial indices
In total, 13 of 16 surveyed countries that characterize IRES flowing-

phase status do so using indices developed exclusively for perennial
systems (Table 1; Table 2 footnote, plus France and Greece), which as-
sumes the suitability of these approaches for IRES. Although sometimes
evaluated and found to be appropriate (e.g. Prat et al., 2014; Table 2; see
Section 5.1), the accuracy with which perennial indices characterize
IRES flowing-phase status varies (Argyroudi et al., 2009; Morais et al.,
2004; Munné and Prat, 2011). For example, Munné and Prat (2011)
noted interannual variability in perennial index values calculated to
characterize benthic invertebrate communities at temporary reference
sites in north-east Spain, reflecting taxonomic differences between
high- and low-discharge years. Equally, a perennial macrophyte index
(evaluated as appropriate in other Mediterranean countries) is consid-
ered unsuitable in IRES in Cyprus due to taxonomic differences in com-
munity composition (Papastergiadou and Manolaki, 2012); in contrast,
standard benthic invertebrate and phytobenthos indices are effective in
Cypriot rivers with seasonal intermittent flow, but not in unpredictable
ephemeral streams (Buffagni et al., 2012; Montesantou et al., 2008). In
response to evaluation of perennial metrics as inappropriate for IRES,
three Mediterranean survey respondent countries (Cyprus, Portugal,
and Spain) have developed indices for status classification specifically
for IRES, as explored in Section 5. In addition, Greece has developed
‘HESY-2’, an index evaluated as suitable for the assessment of benthic
invertebrate assemblages in both temporary and perennial national
river types (Lazaridou et al., 2016).

Spatial and temporal characteristics of IRES flow regimes interact to
influence the suitability of perennial indices for flowing-phase status as-
sessments (Fig. 3). Spatially, as distance from a temporary reach to up-
stream and/or downstream perennial recolonist sources increases,
differences between temporary and perennial lotic communities be-
come more pronounced (Datry, 2012; Pavićević and Pešić, 2012) and
Table 2
Evaluation of biotic indices developed for perennial rivers to determine their suitability for inter
being tested by or are in use by WFD competent authorities are listed. Indices have not been e

WFD GIG Country Index Biotic grou

Eastern Continental Croatia IBMWP, SIHR MIV
IPS Diatoms

Mediterraneanc Cyprus STAR_ICMi MIV
IPS Diatoms
IBMR Macrophy

Greece HESY-2 MIV
Portugal IPtIS, IPtIN MIV

IPS Diatoms
Spain – Catalan RBD IBMWP MIV

IPS Diatoms
Northern; Central/Baltic France I2M2 MIV

a No indices have been evaluated as suitable for IRESwith short, unpredictable (i.e. ephemera
b I.e. Croatia, Czech Republic, Hungary, Iceland, Italy, the Netherlands (using an adapted spe
c Spain is also in the Central/Baltic GIG but examples are relevant only to the Mediterranean
Abbreviations: HESY-2, Hellenic Evaluation System-2; I2M2, French macroinvertebrate mult

IBMWP, Iberian Biological MonitoringWorking Party; IMMi-L, Iberian MediterraneanMultimet
Index; IPtIN, Invertebrate Index for northern Portugal; IPtIS, Invertebrate Index for southern P
District; SIHR, Croatian index; STAR_ICMi, Standardization of River Classifications Intercalibratio
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perennial index suitability may decline (Fig. 3, b–d). The spatial ar-
rangement of temporary reaches in relation to perennial reaches also
influences IRES community composition; for example, upstream peren-
nial reaches promote recolonization by drifting aquatic taxa (Fritz and
Dodds, 2004; Fig. 3, a,f). Time is a crucial modifier of the resultant com-
positional differences between perennial and temporary communities:
as flowing phase duration increases, differences decline then disappear,
as taxa with varying dispersal abilities form a recovering assemblage
originating from catchment-wide recolonist sources (Datry et al.,
2014b; Leigh et al., 2016). Therefore, as spatial isolation increases, the
period in which perennial metrics are suitable for IRES status assess-
ments may decrease (Fig. 3, a–d). Sampled assemblages should there-
fore be explored in a landscape context and informed by taxon-
specific dispersal abilities (see Section 4.5.1).

Broad-scale ecohydrological analyses of macroinvertebrate biomon-
itoring data have identified drying events as a primary determinant of
community composition in IRES, with taxon-specific responses to inter-
mittence reflecting trait variation (Leigh and Datry, 2017). Biotic sensi-
tivity to anthropogenic stressors and to flow intermittence often covary
(Hughes et al., 2009), meaning that a taxon's absence from IRES may
reflect either deviation from GES or an antecedent flow-cessation or
drying event. For example, many mayfly and stonefly juveniles are
sensitive to both environmental degradation (Paisley et al., 2014) and
intermittence (Boulton and Lake, 2008; Chadd et al., 2017; see Section
5.3). As a result, indices developed to assess the status of perennial riv-
ers may perform poorly in IRES, and require adaptation to recognize the
influence of taxon-specific sensitivities to flow cessation and drying on
the occurrence and abundance of individual taxa.With short-termdevi-
ation from GES permissible under theWFD if deterioration reflects nat-
ural events such as hydrological drought, such adapted indices are
needed to prevent inaccurate claims that the absence of intermit-
tence-sensitive taxa indicate a legislative breach.

4.5. All biomonitoring is restricted to community-level, taxonomic
characterization

4.5.1. Metacommunity dynamics require recognition
Biomonitoring reported by all 20 survey respondents uses a taxo-

nomic approach to characterize biota at a local community level in all
water bodies, including both temporary and perennial systems. This in-
dicates EU-wide collection, analysis, and interpretation of biomonitor-
ing data according to the ‘species sorting’ perspective, which assumes
that taxa differ in their responses to environmental variation, and that
mittent rivers characterized by long, seasonalflowing phasesa. Only ‘replacements’ that are
valuated in other surveyed countries in which IRES biomonitoring is conductedb.

p Suitable? Replacement Source

Yes Mihaljević et al. (2011)
No TDI Mihaljević et al. (2011)
Yes Buffagni et al. (2012)
Yes Montesantou et al. (2008)

tes No MMI Papastergiadou and Manolaki (2012)
Yes Lazaridou et al. (2016)
Yes INAG (2009)
Yes EC (2012), in Skoulikidis et al. (2017)
No IMMi-T;

IMMi-L
Munné and Prat (2011)

Yes Burfeid et al. (2017)
No Required Pelte et al. (2012, 2014)

l or episodic)flowingphases; caveats to use in IRESwith seasonal intermittencemay apply.
cies list), Poland, Serbia, Slovakia, Switzerland, and the UK.
GIG.

imetric index (Mondy et al., 2012); IBMR, L'Indice Biologique Macrophytique en Rivière;
ric Index (IMMi) – qualitative; IMMi-T, IMMi – quantitative; IPS, Specific Polluosensitivity
ortugal; MIV, macroinvertebrates; MMI, Multimetric Macrophyte Index; RBD, River Basin
n Common Metric index; TDI, Trophic Diatom Index.
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Fig. 3. Plan view of a hypothetical river network, indicating spatial and temporal influences on the suitability of a perennial biotic index for use at temporary sites. Size of symbols a to h is
proportional to index ‘suitability’, where suitability is based on similarity in community composition between perennial and temporary sites during periods of peak diversity. Fill of partial
circles indicates the period of continuous flow needed before the index becomes suitable: in intermittent reaches with seasonal, predictable flow cessation and drying, site d and sites a, c
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meaning that the perennial index is unsuitable and requires modification to recognize taxon-specific intermittence sensitivities. Perennial indices are unlikely to be suitable at sites g
and h within an annual cycle, since ephemeral reaches experience flowing phases that are unpredictable and often short.
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local abiotic conditions are the primary determinants of community
composition (Leibold et al., 2004). However, local communities con-
nected by dispersal form metacommunities structured by the wider
processes that influence dispersal (Heino, 2013; Sarremejane et al.,
2017). Ignoringmetacommunity dynamicsmay impede accurate status
classification; for example, due to dispersal limitation, sites isolated by
distance or by natural landscape features may support fewer taxa (a,
Fig. 4) than sites of equivalent status that are longitudinally, laterally,
and vertically connected to many recolonist sources (b, Fig. 4). A
metacommunity perspective is particularly important in IRES, where
transitions between flowing, pool, and dry phases necessitate repeated
recolonization from instream, riparian, and more distant refuges
(Cañedo-Argüelles et al., 2015; Datry et al., 2016c).

Taxon-specific dispersal abilities require consideration within a
landscape framework that recognizes the spatial arrangement of tem-
porary reaches (Fig. 4): (1) longitudinally, in particular the occurrence
of and distance to connected perennial upstream and downstream
Headwater site

(b)(a)

Mid-reach site

Fig. 4. Longitudinal, lateral, and vertical dimensions of the landscape influence lotic community
temporary river sites of equivalent status. Two possible scenarios are shown: plan view of (a)
surface waters, a low drainage density, and fine-sediment-clogged (light brown) or absent (d
(b) a catchment with dense riparian vegetation, no natural barriers, abundant lentic surface
status may be overestimated in the mid-reaches. 1Symbol size is proportional to richness; d
increases (temporal changes not shown).
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refuges (Larned et al., 2011); (2) laterally, including the availability of
terrestrial habitat to support aerial adult insects (Stubbington et al.,
2016) and the distance to other recolonist sources (White et al.,
2017); and (3) vertically, including the quality of subsurface sediments
as a refuge for recolonists, potentially including saturated hyporheic
sediments (Stubbington, 2012; Vander Vorste et al., 2016a) and/or dry-
ing sediments that support an invertebrate ‘seedbank’ (Stubbington and
Datry, 2013). This landscape influence requires interpretation of sam-
pled assemblages in a context of temporal variability: local communities
will achieve peak diversity more quickly after a hydrological transition
(i.e. pool formation, drying, or flow resumption) where distance to
recolonist sources is lower.

4.5.2. Functional approaches may complement taxonomic community
characterization

Taxon-specific responses to environmental changes make taxono-
my-based indices of environmental degradation spatially and temporally
Flow permanence

Perennial Temporary

Riparian vegetation

Sparse Dense

Landscape features

Natural barrier Lentic water 

Hyporheic sediments

Saturated Accessible

Absent Inaccessible

Taxa richness of:

Weak dispersers1

Strong dispersers1

Landscape effect on status estimation

Overestimated

Underestimated

Accurate

taxa richness, which can result in overestimation or underestimation of ecological status at
a catchment with sparse riparian vegetation, natural barriers (e.g. waterfalls), few lentic
ark grey) hyporheic sediments; here, status may be underestimated in the headwaters;
waters, a high drainage density, and saturated, accessible hyporheic sediments; here,

ifferences between weak and strong dispersers will decrease as flowing phase duration
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variable, which can impede accurate status assessment (Bady et al.,
2005). Functional approaches can complement taxonomic community
characterization by exploring the biological and ecological traits pos-
sessed by a sampled assemblage. Despite limitations of biological trait
databases (Wilkes et al., 2017), measures of functional diversity can
be reliable indicators of human impacts in perennial rivers (Charvet et
al., 2000; Dolédec et al., 1999), and Bruno et al. (2016) found functional
redundancy (i.e. the number of taxa performing a comparable ecosys-
tem function) of woody riparian vegetation lining seasonal Mediterra-
nean intermittent rivers to be a sensitive indicator of anthropogenic
alteration that remained stable among sites of equivalent status. In
Hungarian rivers, metric screening during development of new macro-
invertebrate-basedmultimetric indices identified a combination of eco-
logical traits and taxonomic descriptors as the most effective
discriminator among status classes (Várbíró et al., 2011, 2015).

Traits of aquatic biota can also complement taxonomic descriptors to
indicate intermittence regimes, distinguishing among perennial, inter-
mittent, and ephemeral systems (Bonada et al., 2007; Giam et al.,
2017), between flowing and pool conditions (Cid et al., 2016), and iden-
tifying antecedent dry phases (Pařil et al., 2015). By acting as a proxy for
hydrological data in IRES, functional characterization of aquatic commu-
nities can inform description of IRES reference conditions (Cid et al.,
2016). However, differences among functional assemblages from sites
with contrasting flow regimes can be obscured by high variability with-
in a regime (Leigh et al., 2016) and by high functional redundancy
(Vander Vorste et al., 2016b), and as for taxonomic assemblages, com-
positional differences among temporary and perennial sites decline
then disappear as flowing phase duration increases (see Section 4.4.3;
Vander Vorste et al., 2016b).

Where development of new IRES-specific status assessment
methods is required, functional approaches warrant consideration
alongside taxonomic approaches, their potential to distinguish between
sites exposed to different natural and anthropogenic stressors having
been demonstrated in IRES for aquatic biota including macroinverte-
brates (Bonada et al., 2007; Cid et al., 2016; Mondy et al., 2016; Suárez
et al., 2017) and biofilms (including bacteria, algae, and diatoms;
Acuña et al., 2015; Amalfitano et al., 2008; Romaní et al., 2013). Func-
tional aspects of terrestrial biota remain poorly characterized in dry
channels (but see Corti and Datry, 2014; McCluney and Sabo, 2012)
but evidence from other habitats indicates their potential, with the
functional traits of riparian arthropod assemblages demonstrated as
sensitive to habitat conditions including flooding regime (Lambeets et
al., 2009).

4.5.3. Molecular approachesmay provide an integrated picture of IRES eco-
logical health

Molecular characterization of sampled assemblages may also have
advantages overmorphology-based taxonomic approaches,with genet-
ic tools receiving increasing attention by academic researchers (Leese et
al., 2016) and regulatory agencies (Vasselon et al., 2017). DNA se-
quences act as species-level ‘barcodes’ (Hebert et al., 2003), and
metabarcoding allows automated identification of the species in bulk
samples that comprise assemblages of whole organisms, or from de-
graded environmental DNA in water or sediment samples (Baird and
Hajibabaei, 2012; Elbrecht et al., 2017; Taberlet et al., 2012).
Metabarcoding and other molecular approaches overcome the taxo-
nomic limitations of standard biomonitoring in which reliance on mor-
phology can achieve too coarse an identification level to characterize
responses to environmental drivers (Cardoso et al., 2011; Macher et
al., 2016; Pešić et al., 2017). For example, identification of Chironomidae
(Diptera) to family andDeleatidium (Ephemeroptera) to genus prevents
quantification of their biodiversity contributions and obscures species-
level responses to environmental variability (Cañedo-Argüelles et al.,
2016; Macher et al., 2016; Stubbington et al., 2016). Species-level iden-
tification makes DNA-based tools particularly promising for application
to such taxonomically demanding IRES biota, especially in regulatory
Please cite this article as: Stubbington, R., et al., Biomonitoring of interm
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biomonitoring programmes where financial constraints promote up-
take of cost-effective solutions (Elbrecht et al., 2017). Through its inte-
gration of freshwater and terrestrial data from multiple sites,
metabarcoding may prove particularly appropriate for catchment-
scale characterization of IRES biodiversity (Deiner et al., 2016).

Although metabarcoding is time-effective in its concurrent identifi-
cation of most common taxa, it may fail to identify rare species (i.e.
those occurring at low abundance, which may also be of conservation
interest), even in bulk samples (Hajibabaei et al., 2011). Molecular ap-
proaches may therefore complement but should not replace traditional
biomonitoring activity (Hajibabaei et al., 2016). Other molecular tools
with potential to characterize biotic responses to status variability in-
clude transcriptomics, proteomics, and metabolomics (Colin et al.,
2016). In particular, transcriptomics (i.e. characterization of gene ex-
pression using RNA transcripts) may complement taxonomic biomoni-
toring by determining themetabolic activity (and therefore, potentially,
the physiological health) of IRES communities – as well as presenting
novel opportunities to explore ecological quality using the expression
of genes responsible for important ecosystem processes (Poretsky et
al., 2005; von Schiller et al., 2017).

5. Best practice in IRES ecological status assessment

Despite the described challenges of IRES status characterization,
innovative examples of recent work to improve practice exist, nota-
bly in Mediterranean countries where IRES dominate lotic networks
and are consequently central to routine biomonitoring. The wider
applicability of this best practice requires exploration across regions
with different climates and therefore, potentially, contrasting IRES
typologies.

5.1. The MIRAGE and LIFE+ TRivers projects: defining a sampling time
window

Within the Mediterranean Basin, advances have been made to im-
prove biomonitoring of intermittent rivers with long seasonal flowing
phases, through adaptation of methods developed for perennial rivers.
The Mediterranean Intermittent River ManAGEment project (MIRAGE;
CORDIS, 2015) developed an integrated ‘toolbox’ to improve IRES bio-
monitoring, with classification of the hydrological regime (including
identification of artificial IRES) emphasized as a pre-requisite for effec-
tive status assessment (Gallart et al., 2016; Prat et al., 2014). The MI-
RAGE project tested macroinvertebrate-based methods developed for
perennial rivers in IRES, demonstrating their suitability for some IRES,
if flowing phases are long-lasting and sampling is conducted long
enough after flow resumption for aquatic diversity to peak
(García-Roger et al., 2011; Prat et al., 2014);Mazor et al. (2014) reached
comparable conclusions in Californian mediterranean-climate IRES.
Equally, Burfeid et al. (2017) determined that status can be assessed
in IRES using indices developed for perennial-river diatom assemblages,
but only duringflowing phases (Table 2); once flowbetween connected
pools ceases, index performance declines considerably.

To implement MIRAGE recommendations, the LIFE+ TRivers project
(TRivers, 2014) has developed TREHS software, which uses quantitative
gauging station data and qualitative information from interviews, aerial
photographs, and site visits to characterize temporary flow regimes, in-
cluding anthropogenic alteration of natural regimes and differentiation
of natural and artificial IRES (Gallart et al., 2017). The resultant flow re-
gime classification can inform selection of the most appropriate time
window for collection of lotic biomonitoring samples and also identifies
systems in which perennial sampling protocols are inappropriate.
TREHS is currently (in 2016–17) being tested by the Catalan (http://
aca-web.gencat.cat/aca) and Júcar River Basin (http://www.chj.es)
Water Agencies in Spain, and this evaluation will inform improvements
in hydrological regime classification, environmental objective setting,
and status assessments in Mediterranean IRES and more widely.
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5.2. Development of new biotic indices for intermittent Mediterranean
rivers

Evaluation of biotic indices designed for perennial rivers as unsuit-
able for IRES has provided impetus for index adaptation and for the
development of new approaches, most commonly for lotic macroinver-
tebrate communities in seasonally intermittent rivers. For example, the
IRES-specific multimetric indices IMMi-T and IMMi-L outperform the
standard perennial-river IBMWP metric in their detection of environ-
ment impacts in Spanish IRES (Munné and Prat, 2009;
Sánchez-Montoya et al., 2010; also see Dallas, 2013), leading to their in-
corporation into regulatory biomonitoring in the Catalan region
(Munné et al., 2016). Similarly, García et al. (2014) developed the
multimetric INVMIB index for Balearic Island IRES and demonstrated
its ability to distinguish between status classes usingmacroinvertebrate
assemblage data; this index has been adopted by regulators. Finally,
Morais et al. (2004) and Pinto et al. (2004) established that, compared
to perennial metrics, a specifically designed multimetric macroinverte-
brate-community index was more sensitive to organic pollution and
more robust to seasonal variability in siliceous catchments of IRES-dom-
inated southern Portugal, contributing to the subsequent development
of official indices (Table 2).

In Cyprus, theMultimetric Macrophyte Index (MMI) was developed
to assess water quality in intermittent rivers, after Papastergiadou and
Manolaki (2012) showed no response of a standard, perennial index
to the pressure gradient characterized for the Mediterranean “tempo-
rary” river type (Van de Bund, 2009; Table 2); testing is underway to en-
sure national reliability of this index.

5.3. Recognizing and characterizing responses to intermittence

Beyond theMediterraneanBasin, research initiatives examining var-
iation in IRES biota have focussed on responses to intermittence, rather
than to ecological quality, in oceanic-climate temperate regions. For ex-
ample, the Czech Republic BIODROUGHT project (Polášek, 2013a) used
taxonomic and functional analyses to develop a suite of 370 macroin-
vertebrate indicator taxa (primarily species) that can be used to calcu-
late the probability that a stream (sampled to represent peak lotic
diversity) has experienced no drying, a b 7 day drying event, or a longer
dry period in the preceding year (Polášek, 2013b; Pařil et al., 2015).
Quantifying such initiatives, a system developed in the Netherlands
has determined the sensitivity of 2236 invertebrate species to drying
(Verberk et al., 2012). ‘Affinity scores’ from 0 (none) to 10 (very high)
are assigned to species according to their associationwith one perennial
class and each of four intermittence classes (that describe IRESwith typ-
ical annual dry periods of b6 weeks to N5 months); for example,
Gammarus pulex (Amphipoda) scores 8 in the perennial class, 2 in the
b6 weeks intermittence class, and 0 in other classes. A comparable
Dutch system that assigns scores based on species-specific affinities
for lotic and lentic habitats (Verberk et al., 2012) can characterize inver-
tebrate community responses to flow cessation.

A complementary index has been developed to describe macroin-
vertebrate community responses to hydrological drought distur-
bances in near-perennial UK IRES (Chadd et al., 2017). Building on
work in Australia (Boulton and Lake, 2008), 92 families/genera
have been assigned to six habitat types based on their occurrence
(but not abundance) and scored to reflect their sensitivity to loss of
this habitat: 1. flow reduction (scores 10, 9); 2. loss of lateral connectiv-
ity (8, 7); 3. flow cessation (6, 5); 4. disconnected pool formation (4, 3);
5. disconnected pool contraction (2, 1); and 6. complete surface drying
(0). The resultant Drought Effect of Habitat Loss on Invertebrates
(DEHLI) index is calculated as the average score per taxon (Chadd et
al., 2017).

National assignment of taxon-specific scores indicating sensitivity to
flow cessation and drying has considerable potential to enhance IRES bio-
monitoring, and development of these national initiatives at the EU level
Please cite this article as: Stubbington, R., et al., Biomonitoring of interm
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is a priority of SMIRES WG4 (SMIRES, 2016). Firstly, the presence and/or
abundance of scored taxa could be integratedwithin an index indicating a
site's natural drying or flow cessation regime to inform classification of
river typologies. Scores could then inform expectations of community
composition during reference condition characterization and subsequent
status assessments, including identification of deviations from GES
caused by anthropogenic alteration of natural flow regimes. In addition,
interpretation of environmental degradation indices in light of intermit-
tence sensitivity scores may demonstrate that a short-term status deteri-
oration does not constitute a legislative breach, for example in near-
perennial rivers during drought disturbances.

Community-level approaches are complemented by recent explora-
tion of specific taxa as potential status indicators, in particular, mites
(Acari, which are recognized as perennial-river bioindicators;
Goldschmidt, 2016) in Mediterranean regions of the Balkan Peninsula.
Firstly, the ratio of Oribatida (Acari) to Ostracoda (Crustacea) can be
used to differentiate perennial from temporary streams (Pešić, unpub-
lished). Secondly, the ‘PTHfam’ index (informed by Plecoptera, Trichop-
tera, and Hydrachnidia [Acari] families; Miccoli et al., 2013) may be a
sensitive status indicator in IRES compared to other taxa combinations
(Pozojević and Pešić, unpublished). Research is ongoing to evaluate
and test the PTHfam index, prior to potential recommendation for
wider use.

Community-level and taxon-specific intermittence sensitivity scor-
ing can be informed by research initiatives compiling IRES biodiversity
information. Notably, the Intermittent River Biodiversity Synthesis
(IRBAS) project (www.irbas.cesab.org/irbas) has created an interna-
tional, open-access database of hydrological and biological data, primar-
ily reporting aquatic invertebrate assemblages sampled from IRES
during flowing phases (Leigh et al., 2017). The database currently com-
prises N2500 samples from European and other countries, and is ex-
pected to grow considerably due to input from ongoing initiatives
including the SMIRES consortium (COST, 2015).

6. Conclusions: priorities to address the challenges to IRES ecological
status assessment

A fundamental first step to enable establishment of IRES
biomonitoring programmes is to map IRES occurrence across
Europe (1, Fig. 5; 1, Table 3; SMIRES, 2016). Next, typologies
that represent IRES natural heterogeneity (in particular, their
contrasting intermittence regimes) and that recognize anthropo-
genic hydrologic alterations (in particular, discrimination of
natural and artificial IRES) need classification; exclusion of
typologies with small catchments is unlikely to be justifiable (2,
Fig. 5; 2–3, Table 3). Ideally, classification should be informed by
quantitative, long-term hydrological data that encompass natural
inter-annual variability (Dallas, 2013), although qualitative,
expert description of intermittence regimes may provide an
informative preliminary classification (2, Fig. 5; 3, Table 3).

Following typology classification, reference sites require identifica-
tion and validation during field visits to candidate sites identified by
pressure-based screening (3a, Fig. 5; 4, Table 3; EC, 2003b). Characteri-
zation of reference site communities for each typology is the next step
towards status assessment, although the benchmark definition of the
reference condition approach may require adaptation to provide a
more flexible view of unimpacted IRES (4, Fig. 5; 6, Table 3) and to en-
compass lentic and dry as well as flowing phases (5a, Table 3). To char-
acterize reference conditions (and lower status class boundaries)
effectively, status assessments methods require development, starting
with evaluation of those used in perennial rivers (3b, Fig. 5; 5b, Table
3).Where these methods need adaptation or replacement, the accuracy
ofmodified or novel approacheswill be enhanced by recognizing taxon-
specific intermittence sensitivities and dispersal abilities (5, Fig. 5; 5c,
Table 3). Mediterranean regions have spearheaded adaptation of indi-
ces, and new, IRES-specific methods (e.g. García et al., 2014; Munné
ittent rivers and ephemeral streams in Europe: Current practice and
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and Prat, 2009; 5b, Table 3) warrant evaluation to establish their poten-
tial forwider adoption, or to informflexible development of comparable
tools elsewhere.

In interpreting sampled assemblages, regulators should recognize a
site's spatiotemporal context: its hydrological history, and the availabil-
ity of recolonists from the wider metacommunity (Fig. 4; 5, Fig. 5; 5c,
Table 3). Beyond the taxonomic classification of site-specific communi-
ties, integration of structural and functional aspects of multiple biotic
groups could promote sensitive characterization of ecological responses
to interacting anthropogenic stressors (Hughes et al., 2009; 5d, Table 3).
In addition, molecular approaches including DNA metabarcoding and
transcriptomics could transform biomonitoring by integrating taxo-
nomic, functional, and phylogenetic diversity information (Yu et al.,
2012) from the lotic, lentic, and terrestrial assemblages (Deiner et al.,
2016; 5d, Table 3) that collectively respond to interacting anthropogen-
ic pressures. Newly developed methods – potentially spanning charac-
terization of dry-phase biota and quantification of ecological
processes, using traditional and molecular approaches (von Schiller et
al., 2017) – will require rigorous testing and validation to inform
Please cite this article as: Stubbington, R., et al., Biomonitoring of interm
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implementation of standardized protocols by regulatory agencies, and
these protocolsmust be efficient, to facilitate uptake.Where novel biotic
groups that fall outside of WFD BQEs prove informative, debate will be
needed to justify their use (Jeppesen et al., 2011).

Collaboration is key to transforming IRES status assessment: be-
tween academics and river managers, to promote implementation
of research recommendations; between countries, to disseminate
best practice and enact new practices in a way that balances stan-
dardization with flexibility; between aquatic and terrestrial ecolo-
gists, to develop suites of bioindicators that represent both wet and
dry phases; and between ecologists and geneticists (including
DNAqua-Net COST Action members; Leese et al., 2016), to promote
incorporation of IRES into emerging metabarcoding approaches
from an early stage. The goal of these collaborations is to explicitly
recognize the extent and value of IRES; to develop effective status as-
sessment methods for use in biomonitoring schemes that adequately
represent IRES and their diverse communities; and ultimately, to
promote protection of IRES as they become an increasingly common
landscape feature.
ittent rivers and ephemeral streams in Europe: Current practice and
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Table 3
The current state of biomonitoring in intermittent rivers and ephemeral streams (IRES) across Europe, including challenges limiting progress; highlights to date (i.e. best practice exam-
ples); overarching priority actions; and steps towards achieving these actions. Numbered points reflect a logical sequence of priority actions,with scope for concurrent progress to bemade
towardsmultiple actions; in particular, characterization of reference conditions and development of status assessmentmethods are complementary activities. Numbered citations are pro-
vided separately for each row.

Current state Highlights to date Priority actions Steps towards action completion Sources

1 Mapping of IRES
distribution hampered by
poor representation in
gauging station networks,
in particular for small,
headwater IRES.

Citizen scientists mapped N4000
km of flow states in France1;
these data have been explored by
the IRBAS project2, leading to a
national citizen science network3.

Locate and map distribution of
European IRES.

Develop a citizen science
network to supplement
hydrological monitoring data4

and support Europe-wide
mapping.

1Datry et al. (2016c); 2Leigh et al.
(2017); 3ONEMA (2017); 4SMIRES
(2016).

2 IRES with catchments b10
km2 are too small to be
defined as WFD “water
bodies” that require status
assessment1;
resources often restrict
biomonitoring to “water
bodies”.

Non-WFD biomonitoring done by
national agencies e.g. in
slow-flowing sand-bed Dutch
IRES2.

National criteria define some
small IRES as WFD water bodies
e.g. in the UK3.

Expand biomonitoring
networks to encompass small
streams including IRES,
motivated by non-WFD drivers
e.g.4.

Identify national priorities to
start expansion of biomonitoring
networks.

1EC (2000); 2Van der Molen et al.
(2013); 3UKTAG (2003); 4EC
(2011).

3 National IRES typologies
are non-existent or fail to
reflect IRES dynamism and
heterogeneity.

Hydrological data to inform
development of IRES
typologies are scarce.

Five WFD typologies
distinguished in Croatia1.

Official distinction of contrasting
IRES in Cyprus, Greece, and Italy2–3.

Classification of reach-scale
Mediterranean IRES flow
regimes4–6.

Classify national typologies,
including distinction between
IRES with flowing phases that
contrast in their predictability
and duration.

Build on qualitative IRES
descriptions in local use.

Evaluate ability of new tools to
inform typology classification
more widely, including
differentiation of natural and
artificial IRES4–7.

1NN (2013); 2Skoulikidis et al.
(2017); 3Lazaridou et al. (2016);
4Gallart et al. (2012); 5Prat et al.
(2014); 6Gallart et al. (2017);
7Polášek (2013a).

4 Reference sites identified in
few countries.

Absence of unimpacted
sites in some countries.

Pressure criteria to screen sites
developed for perennial rivers1

and for Mediterranean IRES2–4.

MIRAGE toolbox4 and TREHS
software5 identify natural IRES.

Expert judgement used to
identify reference sites for 3
Croatian WFD typologies6.

Screen and validate reference
sites for each classified
typology (see point 3), using
sufficient sites to represent
spatial variability7.

Explore wider use of pressure
criteria used to screen
Mediterranean IRES and
perennial rivers.

Validate screened sites using
expert judgement of field
conditions.

1Wallin et al. (2003);
2Sánchez-Montoya et al. (2009);
3Delgado et al. (2012); 4Prat et al.
(2014); 5Gallart et al. (2017); 6NN
(2013); 7Munné and Prat (2009).

5 If assessed, IRES status is
classified:

(a) during only wet,
typically flowing, phases,
whereas dry phases are
excluded

Initial exploration of dry-phase
communities1.

Characterization of pool-phase
communities2.

Characterize variability in
status among phases.

Develop tools to assess status
during each phase.

Define a time window in which
each tool is effective.

Evaluate potential of dry-phase
biotas to indicate status.

Evaluate ability of DNA-based
tools to integrate
catchment-wide biotic
information from all phases3.

1Corti and Datry (2015); 2Cid et al.
(2016); 3Deiner et al. (2016).

(b) using (often
unevaluated) perennial
methods

Perennial methods validated for
assessment of flowing phases in
IRES with long, predictable
flowing phases1–2.

New IRES-specific indices
developed for flowing phases3–6

when perennial methods have
been deemed unsuitable7.

Evaluate suitability of perennial
methods for flowing phase
assessments across Europe.

Adapt or replace unsuitable
methods, recognizing
covarying biotic responses to
degradation and intermittence.

Develop new tools for IRES with
short/unpredictable flowing
phases.

Assign taxon-specific
intermittence sensitivity
scores8–9 to inform expectations
of community composition in
IRES with different flow
permanence regimes.

1Prat et al. (2014); 2Morais et al.
(2004); 3Munné and Prat (2011);
4Papastergiadou and Manolaki
(2012); 5Sánchez-Montoya et al.
(2010); 6García et al. (2014);
7Munné et al. (2016); 8Verberk et al.
(2012); 9Chadd et al., 2017.

(c) using only
community-level methods

Recognition that biomonitoring
across freshwaters should
incorporate metacommunity
dynamics1–3.

Interpret communities in a
landscape context that
recognizes the spatial
arrangement of perennial and
temporary reaches and wider
recolonist sources.

Assign taxon-specific dispersal
weightings, to inform
expectations of community
composition in IRES in different
landscape contexts.

1Heino (2013); 2Datry et al.
(2016c); 3Ruhí et al. (2017).

(d) using only taxonomic
methods.

Trait-based communities more
stable than taxonomic
communities within status
classes1 (but see2–3).

Explore functional approaches
(trait-based and ecosystem
services4) to status assessment.

Explore the potential of
molecular approaches e.g. DNA
metabarcoding and
transcriptomics to overcome
taxonomic limitations of
traditional biomonitoring5.

1Bruno et al. (2016); 2Leigh et al.
(2016); 3Vander Vorste et al.
(2016b); 4von Schiller et al. (2017);
5Leese et al. (2016).

6 Reference conditions
characterized in few
countries.

Diatom4 and invertebrate5

assemblages characterized in
Mediterranean IRES with long,
predictable flowing phases.

Develop conceptual
alternatives to defining a single
benchmark in dynamic
ecosystems.

Recognize influence of
metacommunity dynamics and
landscape context on reference
conditions.

1Bunn and Davies (2000); 2Datry et
al. (2016c); 3Ruhí et al. (2017);
4Delgado et al. (2012); 5Munné and
Prat (2009); 6NN (2013).
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Table 3 (continued)

Current state Highlights to date Priority actions Steps towards action completion Sources

Single benchmark concept
inappropriate for dynamic
ecosystems with
unpredictable taxonomic
communities1–3.

‘Best’ and ‘worst’ values
calculated for macrophytes,
macroinvertebrates, and
phytobenthos in Croatia6.

Characterize reference
conditions and class boundaries
for each typology, informed by
development of status
classification methods.

WFD, Water Framework Directive (EC, 2000).
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AppendixA. Initial survey used to request information about nation-
al biomonitoring activity from Working Group 4 members in the
COST Action CA15113 Science andManagement of Intermittent Riv-
ers and Ephemeral Streams

SECTION 1 – RESPONDENT DETAILS
Your name:
Other Action participants involved in preparing this document:
Non-Action participants involved in preparing this document:
Country you represent:

SECTION 2 – BIOINDICATORSANDBIOMONITORING PROTOCOLS IN
YOUR COUNTRY

*Numbers reflect the order of tasks listed in CA15113 Memorandum of
Understanding.

WG4 task 1*: “List the different bioindicators and protocols used in the
participating countries to assess the ecological status of rivers, including
IRES when relevant”
2.1 State the biotic groups used as bioindicators/biomonitors (in-

cluding those used in perennial systems).
2.2 For each group listed in (2.1), describe the protocols used,

and/or provide links to online descriptions, and/or provide
protocols as attachments.

WG4 task 3*: “identify issues and limitations [of current bioindicators
and biomonitoring protocols]”.
Please cite this article as: Stubbington, R., et al., Biomonitoring of interm
priorities to enhance ecological status..., Sci Total Environ (2017), https://
2.3 Briefly note any issues and limitations for further discussion at
WG meetings (optional section, leave blank if you have no
comments at this stage).

SECTION 3 – RESEARCH ACTIVITY* INVOLVING YOUR COUNTRY
*Including MSc, PhD, post-doc and other projects or activities, and in-

cluding collaborations with other countries

3.1 Give details of any research activity relating to WG4 activities
currently being conducted.
[Hyperlink to online shared spreadsheet]

3.2 Give details of any planned future research activity relating to
WG4 activities.
[Hyperlink to online shared spreadsheet]

Appendix B. Second survey used to request further information
about national biomonitoring activity fromWorking Group 4mem-
bers in the COST Action CA15113 Science and Management of Inter-
mittent Rivers and Ephemeral Streams

In your country:

1. Have WFD typologies been developed that distinguish between dif-
ferent types of IRES? If “yes”, provide details of classification
criteria/each IRES type. If “no”, state any descriptions that are in com-
mon use (e.g. in the UK, ‘winterbourne chalk streams/rivers’).

2. Are river typologies (including perennial typologies) classified using
WFD System A or B (see WFD Annex II, Sections 1.1 and 1.2.1)? If
System B is used, which “optional factors” are used in addition to
the obligatory factors?

3. Have reference sites been identified for IRES typologies? If so, pro-
vide details of the site identification process (e.g. pressure criteria
for site screening, modelling, expert judgement).

4. Have reference conditions (and boundaries between ecological sta-
tus classes) been described for IRES typologies? If so, give details of
classification criteria (e.g. quality elements considered).

5. Are any flow gauging stations located on IRES? If so, how many are
on IRES and of these, how many match biomonitoring sites? What
% of the gauging station network is located on IRES - and how does
this relate to the % of the river network that is intermittent?

6. Are river flows (or pool/dry states) characterized by regulatory agen-
cies using any method other than hydrological monitoring at gaug-
ing stations (e.g. citizen science initiatives, models)?
7. If perennial methods are used to assess IRES ecological status, has
their suitability been evaluated? If so, state the methods/metrics
tested and the results of the evaluation (suitable/not suitable).

[Responses used to inform Table 1]

8. If specificmethods/indices have been developed for IRES (or IRs; e.g.
because perennial methods were evaluated and found to be unsuit-
able), provide details.
ittent rivers and ephemeral streams in Europe: Current practice and
doi.org/10.1016/j.scitotenv.2017.09.137
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[Responses used to inform Table 1]

9. Are any non-taxonomic (e.g. DNA metabarcoding, trait-based) ap-
proaches used to assess the ecological status of any rivers (including
perennial rivers)?

10. Do any IRES that are too small to be designated asWFDwater bod-
ies based on catchment size fulfil other criteria for designation as a
WFD water body?
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