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Abstract

We describe G-codes, which are codes that are ideals in a group ring, where the ring

is a finite commutative Frobenius ring and G is an arbitrary finite group. We prove that

the dual of a G-code is also a G-code. We give constructions of self-dual and formally

self-dual codes in this setting and we improve the existing construction given in [13] by

showing that one of the conditions given in the theorem is unnecessary and, moreover,

it restricts the number of self-dual codes obtained by the construction. We show that

several of the standard constructions of self-dual codes are found within our general

framework. We prove that our constructed codes must have an automorphism group

that contains G as a subgroup. We also prove that a common construction technique

for producing self-dual codes cannot produce the putative [72, 36, 16] Type II code.

Additionally, we show precisely which groups can be used to construct the extremal
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Type II codes over length 24 and 48. We define quasi-G codes and give a construction

of these codes.

Key Words: Group rings; self-dual codes; codes over rings.

1 Introduction

Cyclic codes are characterized by the fact that the cyclic shift of any element in the code is

an element in the code. These codes are one of the most widely studied families of codes.

This is due, for the most part, to the fact that cyclic codes have an algebraic description as

ideals in the polynomial ring R[x]/〈xn − 1〉 where R is a Frobenius ring and n is the length

of the code. To classify cyclic codes, it is simply a matter of finding ideals in this ring via a

factorization of xn − 1 over R.

One of the key results about cyclic codes is that the dual code of a cyclic code is a cyclic

code. This result allows for the complete study of cyclic codes to be done in the canonical

algebraic setting. Cyclic codes have also been generalized in numerous ways, specifically to

constacylic and negacyclic codes where xn − 1 is replaced with xn − λ for constacylic codes

and xn + 1 for negacylic codes (that is λ = −1).

An alternate view of cyclic codes is to see them as ideals in the group ring RCn where

Cn is the cyclic group of order n. In this paper, we will study codes as ideals in an arbitrary

group ring RG. This allows for an algebraic description of these codes as well as ensuring

that the codes have a given group in their automorphism group. For very early work in this

direction, see two papers by F.J. MacWilliams, [15] and [16]. We shall refer to codes that

are ideals in the group ring RG as G-codes. We shall prove here that, like cyclic codes, the

dual of a G-code is again a G-code.

Quasi-cyclic codes are another generalization of cyclic codes. The codes have received less

attention largely because they do not have a canonical representation in an algebraic setting.

We make a generalization of this concept to quasi-G cyclic codes. We give a construction,

like that in [6] for cyclic codes, for quasi-G cyclic codes.

Self-dual codes over fields and rings are one of the most important and widely studied

families of codes. They have interesting connections to groups, designs, lattices and other

objects as well. As such, constructions of interesting self-dual codes are an important area of

study in coding theory. In [13], Hurley gave a construction of self-dual codes from elements

in a group algebra. The constructions were done generally in the group algebra F2D2k,

where D2k is the dihedral group of order 2k. In [18], McLoughlin gave a construction of the

extremal [48, 24, 12] using this construction technique. Additionally, numerous techniques

have been described using commutative Frobenius rings to construct binary self-dual and

formally self-dual codes by Yildiz, Karadeniz and others (see [9], [10], [11] for example).
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In this paper, we expand this construction to codes over finite commutative Frobenius

rings and show how to construct isodual and formally self-dual codes as well. Additionally,

we construct self-dual and formally self-dual codes over various families of rings, which,

in turn, give formally self-dual and self-dual binary codes via a Gray map. We consider

additional groups as well and expand the constructions using these groups.

1.1 Codes

The alphabet that we shall use for our codes is a finite commutative ring. It is also pos-

sible to study codes over non-commutative rings as well but we shall restrict ourselves to

commutative rings in this paper. As such, from this point on we assume that all rings are

commutative. Since the MacWilliams relations, which are fundamental in coding theory,

only hold over Frobenius rings, we restrict ourselves to finite commutative Frobenius rings.

For a description of coding theory in this setting see [5].

We begin by giving a characterization of Frobenius rings. Let R be a finite ring. We

assume that all rings contain a multiplicative identity. Let R̂ be the character module of

the ring R. Then for a finite ring R the following are equivalent.

• R is a Frobenius ring.

• As a left module, R̂ ∼= RR.

• As a right module, R̂ ∼= RR.

For commutative rings we can say that the R-module R is injective and that if R is a finite

local ring with maximal ideal m and residue field k, then a Frobenius ring has dimkAnn(m) =

1. All of the rings used as alphabets in this paper will be assumed to be finite, commutative

and Frobenius.

A code over R of length n is a subset of Rn. If the code is a submodule of Rn, then we

say that the code is a linear code. We attach to the ambient space the usual inner-product,

namely [v,w] =
∑
viwi and define the orthogonal with respect to this inner-product as

C⊥ = {v ∈ Rn | [v,w] = 0, ∀w ∈ C}.

There is a unique orthogonal code because the ring is commutative. In the non-commutative

case, there is both a left and right orthogonal. A code is said to be self-orthogonal if C ⊆ C⊥

and self-dual if C = C⊥. We say that two codes C and C ′ are equivalent if C ′ can be

formed from C by permuting the coordinates of C. In some works about codes over rings,

multiplication of a coordinate by a unit is allowed when defining equivalence, but note that

we only allow permutation of coordinates in our definition of equivalence. A code C is said

to be isodual if C and C⊥ are equivalent codes. The automorphism group of a code C,
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denoted Aut(G), consists of all permutations of the coordinates of the code that fix the

code.

Let C be a code over a ring R = {a0, a1, . . . , ar−1}. The complete weight enumerator for

the code C is defined as:

cweC(xa0 , xa1 , . . . , xar−1) =
∑
c∈C

r−1∏
i=0

xni(c)
ai

(1)

where there are ni(c) occurrences of ai in the vector c.

The Hamming weight of a vector v ∈ Rn is wtH(v) = |{i | vi 6= 0}|. The Hamming

weight enumerator is given by

WC(x, y) =
∑
c∈C

xn−wtH(c)ywtH(c) = cweC(x, y, y, . . . , y). (2)

We say that a code is formally self-dual with respect to some weight enumerator if the

code and its orthogonal have the same weight enumerator. It is possible for a code to be

formally self-dual with respect to one weight enumerator and not another. For example,

many codes are formally self-dual with respect to the Hamming weight enumerator without

being formally self-dual with respect to the complete weight enumerator. Note that a self-

dual code is also necessarily formally self-dual with respect to all weight enumerators.

Other weight enumerators are also possible, such as the symmetric weight enumerator or

the Lee weight enumerator (which will be defined later) for specific rings. Since we only allow

permutation of coordinates in our definition of equivalence, we have that if C is isodual, then

any weight enumerator for the code C (complete, Hamming, symmetric, etc.) is identical

to the weight enumerator of its orthogonal. This implies the following lemma which we will

use in our constructions.

Lemma 1.1. If C is an isodual code then it is formally self-dual with respect to any weight

enumerator.

As mentioned before, we restrict ourselves to Frobenius rings since this is the class of

rings for which MacWilliams relations exist. That is, the weight enumerator of a code over

a Frobenius ring uniquely determines the weight enumerator of its orthogonal. See [5] for

a complete description of these results. The MacWilliams relations imply that for a code

C over a Frobenius ring R we have |C||C⊥| = |R|n. This often fails for codes over non-

Frobenius rings. In that sense, it is very difficult to discuss self-dual and formally self-dual

codes over non-Frobenius rings. Moreover, this provides an easy way to prove that a ring

is not Frobenius, that is, simply find an ideal I whose annihilator does not have cardinality

|R|/|I|.
A Gray map is a distance preserving map φ from R to Ft2 for some t. We define the Lee

weight, wtL(a) of an element a ∈ R as the Hamming weight of φ(a). We then extend this to
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Rn by saying that the Lee weight of a vector is the sum of the Lee weights of the coordinates

of the vector. Then the Lee weight enumerator of a code C over R with an associated Gray

map is defined as:

LC(x, y) =
∑
c∈C

xN−wtL(c)ywtL(c), (3)

where N is the length of the binary image of the code C under the Gray map. Note that the

Lee weight enumerator of a code C is the Hamming weight enumerator of the code φ(C).

1.2 Group Rings

We shall consider codes that are ideals inside of a group ring, where the ring is the alphabet

of the code. We continue by giving the necessary definitions for group rings. Let G be a

finite group or order n, then the group ring RG consists of
∑n

i=1 αigi, αi ∈ R, gi ∈ G.
Addition in the group ring is done by coordinate addition, namely

n∑
i=1

αigi +
n∑
i=1

βigi =
n∑
i=1

(αi + βi)gi.

The product of two elements in a group ring is given by

(
n∑
i=1

αigi)(
n∑
j=1

βjgj) =
∑
i,j

αiβjgigj.

This gives that the coefficient of gi in the product is
∑

gigj=gk
αiβj.

Group rings are defined for groups and rings of arbitrary cardinality but, in this paper,

we shall only be concerned with finite rings and finite groups since our alphabet for codes

is a finite ring and codes are defined for finite length which corresponds to the size of the

group. If R is a field then the term group algebra is usually used in this case since the

structure is an algebra as well. Throughout this paper we use eG to refer to the identity

element of any group G.

We denote the space of n by n matrices with coefficients in R by Mn(R). Note that Mn(R)

is, in general, a non-commutative ring since multiplication of matrices is not commutative.

A matrix M , where the indices are given by the elements in Zn, is said to be circulant

if Mi,j = M1,j−i (mod n), that is the matrix is formed by cycling the first row to the right. A

matrix M , where the indices are given by the elements in Zn, is said to be reverse circulant

if Mi,j = M1,j+i (mod n), that is the matrix is formed by cycling the first row to the left. It is

immediately clear from the definition that a reverse circulant matrix is symmetric, that is,

M = MT .
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2 Matrix Construction

In this section, we shall give a construction of codes in Rn from the group ring RG.

This construction was first given for codes over fields by Hurley in [13]. Let R be a fi-

nite commutative Frobenius ring and let G = {g1, g2, . . . , gn} be a group of order n. Let

v = αg1g1 + αg2g2 + · · ·+ αgngn ∈ RG. Define the matrix σ(v) ∈Mn(R) to be

σ(v) =


αg−1

1 g1
αg−1

1 g2
αg−1

1 g3
. . . αg−1

1 gn

αg−1
2 g1

αg−1
2 g2

αg−1
2 g3

. . . αg−1
2 gn

...
...

...
...

...

αg−1
n g1

αg−1
n g2

αg−1
n g3

. . . αg−1
n gn

 . (4)

The elements g−1
1 , g−1

2 , . . . , g−1
n are simply the elements of the group G in some order.

We take this as the ordering of the elements since it makes the constructions more natural.

For a given element v ∈ RG, we define the following code over the ring R:

C(v) = 〈σ(v)〉. (5)

Namely, the code is formed by taking the row space of σ(v) over the ring R. The code

C(v) is a linear code since it is the row space of a generator matrix, but it is not possible

to determine the size of the code (or the dimension if R is a field) immediately from the

matrix. In other words, the rows of the matrix σ(v) are not necessarily linearly independent,

although they may be, as we show in the following example.

Example 1. Let R be a finite commutative Frobenius ring and let G = {g1, g2, . . . , gn} be a

group. Let v1 =
∑

0gi. Then σ(v1) is the all zero matrix and C(v1) = {0}. Let v2 =
∑
αigi

with αj = 1 for some j and αi = 0 for i 6= j. Then σ(v) is permutation equivalent to In, the

n by n identity matrix, which gives that C(v2) = Rn.

We will say that two matrices are equivalent if they generate equivalent codes.

Example 2. Let v = (1+s+s2+s3)(1+t) ∈ F2M16 where M16 = 〈s, t | s8 = t2 = 1, st = ts5〉
is the modular group of order 16. Then,

σ(v) =



1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1


and σ(v) is equivalent to (

1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0
0 1 0 0 0 1 0 0 1 0 1 1 1 0 1 1
0 0 1 0 0 0 1 0 1 1 0 1 1 1 0 1
0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

)
.
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Clearly, C(v) is the [16, 5, 8] Reed-Muller code.

We shall now show that the codes we construct are actually ideals in the group ring. We

use this to get information about the automorphism group of the constructed code.

Theorem 2.1. Let R be a finite commutative Frobenius ring and G a finite group of order

n. Let v ∈ RG and let C(v) be the corresponding code in Rn. Let I(v) be the set of elements

of RG such that
∑
αigi ∈ I(v) if and only if (α1, α2, . . . , αn) ∈ C(v). Then I(v) is a left

ideal in RG.

Proof. The rows of σ(v) consist precisely of the vectors that correspond to the elements hv

in RG where h is any element of G. The sum of any two elements in I(v) corresponds exactly

to the sum of the corresponding elements in C(v) and so I(v) is closed under addition.

Let w1 =
∑
βigi ∈ RG. Then if w2 corresponds to a vector in C(v), it is of the form∑

γjhjv. Then w1w2 =
∑
βigi

∑
γihiv =

∑
βiγjgihjv which corresponds to an element in

C(v) and gives that the element is in I(v). Therefore I(v) is a left ideal of RG.

Example 3. Let v = 1 + ba + ba2 + ba3 ∈ F2D8 where 〈a, b〉 ∼= D8. Then σ(v) =
1 0 0 0 0 1 1 1
0 1 0 0 1 1 1 0
0 0 1 0 1 1 0 1
0 0 0 1 1 0 1 1
0 1 1 1 1 0 0 0
1 1 1 0 0 1 0 0
1 1 0 1 0 0 1 0
1 0 1 1 0 0 0 1

 and σ(v) is equivalent to A =

(
1 0 0 0 0 1 1 1
0 1 0 0 1 1 1 0
0 0 1 0 1 1 0 1
0 0 0 1 1 0 1 1

)
. Clearly C(v) = 〈σ(v)〉 is the

[8, 4, 4] extended Hamming code. Let v1 = 1 + ba+ ba2 + ba3 ∈ F2D8, v2 = 1 + b+ ba+ ba2 ∈
F2D8, v3 = 1 + b+ ba+ ba3 ∈ F2D8 and v4 = 1 + b+ ba2 + ba3 ∈ F2D8 where vi are the group

ring element corresponding to the rows of A. Let I(v) =
{∑4

i=1 αivi|αi ∈ F2

}
. Then I(v) is

a left ideal of F2D8 and in particular I(v) is the left principle ideal of F2D8 generated by v.

Corollary 2.2. Let R be a finite commutative Frobenius ring and G a finite group of order

n. Let v ∈ RG and let C(v) be the corresponding code in Rn. Then the automorphism group

of C(v) has a subgroup isomorphic to G.

Proof. Since I(v) is an ideal in RG we have that I(v) is held invariant by the action of the

elements of G. It follows immediately that the automorphism group of C(v) contains G as

a subgroup.

We note that our construction gives a natural generalization of cyclic codes since cyclic

codes are ideals in RCn where Cn is the cyclic group of order n. Cyclic codes are held

invariant by the cyclic shift whereas our codes are held invariant by the action of the group

G on the coordinates. Moreover, this is the strength of our construction technique. Namely,

we can construct a code whose automorphism group must contain a given group. In this

sense, when the group used is G, we can refer to a code that is an ideal in RG as G-codes,

where G is replaced by the name of the code when known. Therefore, classically we can say

cyclic codes, but we can know say dihedral codes or dicyclic codes. When something applies
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to any group we can still say G-codes. It is immediate that a code of length n can only be

a G-code for some G if it has a subgroup of its automorphism group of order n.

Example 4. Let C be the extremal [48, 24, 12] Pless symmetry code. The automorphism

group of this code is PSL(2, 47). A computation in GAP [12] shows that the only subgroup

of PSL(2, 47) of order 48 is D48. Hence the only possible construction of this code by our

technique must have G = D48. This construction is given by McLoughlin in [18]. This gives

that the Pless symmetry code is, in fact, a dihedral code.

Combining the results in [2], [3], [4], [20], [21] and [22], we have that the automorphism

group of a putative [72, 36, 16] code must have order 1,2, 3, 4, or 5. See [8] for details on the

automorphism group and a detailed description of this putative code. Since it is impossible

for a group of order 72 to satisfy these we have the following corollary.

Corollary 2.3. The putative [72, 36, 16] code cannot be of the form C(v) for any v ∈ F2G

for any group G.

Proof. The result follows immediately from Corollary 2.2 and the previous discussion.

Note that a code whose automorphism group is trivial cannot be constructed by this

technique.

2.1 The Family of Rings Rk

In this subsection, we shall describe a family of rings which is useful in producing binary

formally self-dual codes via their associated Gray maps.

Define the ring Rk as

Rk = F2[u1, u2, . . . , uk]/〈ui2, uiuj − ujui〉. (6)

These rings are local rings of characteristic 2 with maximal ideal m = 〈u1, u2, . . . , uk〉.
This maximal ideal is also necessarily the Jacobson radical of the ring, which can be charac-

terized as the intersection of all maximal ideals. The socle, which is the sum of all minimal

ideals, for the ring Rk is Soc(Rk) = 〈u1u2 · · ·uk〉 = m⊥. We have that |Rk| = 22k . The rings

Rk were described in [9], [10], and [11].

We can describe a Gray map for Rk. We define φ1(a+ bu1) = (b, a+ b), where φ maps R

to F2
2. Then view R[u1, u2, . . . , us] as R[u1, u2, . . . , us−1][us] and define φs(a+bus) = (b, a+b).

Then the map φk is map from Rk to F2k

2 .

The following theorem appears in [11].

Theorem 2.4. Let C be a self-dual code over Rk, then φk(C) is a self-dual code in F2k

2 .

We shall give several examples where we construct self-dual codes over Rk using the

method in the paper and then use the Gray map to construct a binary self-dual code of

longer length.
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2.2 Codes, Ideals and Orthogonals

One of the fundamental results about cyclic codes is that the orthogonal of a cyclic code is

again a cyclic code. In this subsection, we generalize this results to codes that are ideals in

a group ring. That is we show that if C is a G-code for some G then its orthogonal C⊥ is

also a G-code.

Let I be an ideal in a group ring RG. Define R(C) = {w | vw = 0,∀v ∈ I}. It is

immediate that R(I) is an ideal of RG.

Let v = ag1g1 + ag2g2 + . . . agngn ∈ RG and C(v) be the corresponding code. Let

Ψ : RG→ Rn be the canonical map that sends ag1g1 +ag2g2 + . . . agngn to (ag1 , ag2 , . . . , agn).

Let I be the ideal Ψ−1(C). Let w = (w1, w2, . . . , wn) ∈ C⊥. Then

[(ag−1
j g1

, ag−1
j g2

, . . . , ag−1
j gn

), (w1, w2, . . . , wn)] = 0,∀j. (7)

This gives that
n∑
i=1

ag−1
j gi

wi = 0, ∀j. (8)

Let w = Ψ−1(w) =
∑
wgigi and define w ∈ RG to be w = bg1g1 + bg2g2 + · · · + bgngn

where

bgi = wg−1
i
. (9)

Then
n∑
i=1

ag−1
j gi

wi = 0 =⇒
n∑
i=1

ag−1
j gi

bg−1
i

= 0. (10)

Then g−1
j gig

−1
i = g−1

j , hence this is the coefficient of g−1
j in the product of w and g−1

j v. This

gives that w ∈ R(I) if and only if w ∈ C⊥.
Let φ : Rn → RG by φ(w) = w. It is clear that φ is a bijection between C⊥ and

R(Ψ−1(C)).

Theorem 2.5. Let C = C(v) be a code in RG formed from the vector v ∈ RG. Then

Ψ−1(C⊥) is an ideal of RG.

Proof. We have that Ψ(φ(C⊥)) is permutation equivalent to C⊥ and φ(C⊥) is an ideal and

so Ψ−1(C) is an ideal as well.

This is a generalization of the well known result that the dual of a cyclic code is a cyclic

code. The action induces by w is the similar to the polynomial f(x) used in cyclic codes to

generate the ideal in R[x]/〈xn − 1〉 corresponding to the dual code.

We can now generalize another important technique used in the theory of cyclic codes.

Let R be a finite commutative Frobenius ring that is isomorphic via the Chinese Remainder

Theorem to R1×R2× . . . Rs. Let CRT : R1×R2× . . . Rs → R be the map induced my the

Chinese Remainder Theorem. See [5] for a complete description of the use of this map in

coding theory.
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Theorem 2.6. Let Ci be a G-code over the ring Ri, that is Ci is an ideal in RiG. Then

CRT (C1, C2, . . . , Cs) is a G-code over R.

Proof. Let g ∈ G and vi ∈ Ci. Then gvi ∈ Ci for all i. Then if v = CRT (v1,v2, . . . ,vs)

then gv = CRT (gv1, gv2, . . . , gvs) and so gv ∈ C giving that C is an ideal in RG.

It is well known that any Frobenius ring is isomorphic to the direct product under the

Chinese Remainder Theorem of Frobenius local rings. Additionally, a principal ideal ring

isomorphic to the direct product under the Chinese Remainder Theorem of chain rings.

Therefore, to study G-codes what is really necessary is to study G-codes over local rings, of

which, chain rings are a special family.

2.3 Self-Orthogonal Codes

The following is a rephrasing, in more general terms, of Theorem 1 in [13]. Specifically, in

[13], R is assumed to be a field. The proof is identical and simply consists of showing that

addition and multiplication is preserved.

Theorem 2.7. Let R be a finite commutative Frobenius ring and let G be a group of order

n. Then the map σ : RG→Mn(R) is an injective ring homomorphism.

For an element v =
∑
αigi ∈ RG, define the element vT ∈ RG as vT =

∑
αig
−1
i . This is

sometimes known as the canonical involution for the group ring. The reason this notation

is used in this setting will be apparent by the next lemma.

The following is a straightforward generalization of a result in [13].

Lemma 2.8. Let R be a finite commutative Frobenius ring and let G be a group of order n.

For an element v ∈ RG, we have that σ(v)T = σ(vT ).

Proof. The ij-th element of σ(vT ) is α(g−1
i gj)−1 = αg−1

j gi
which is the ji-th element of σ(v).

We next give our first result about the structure of our constructed codes.

Lemma 2.9. Let R be a finite commutative Frobenius ring and let G be a group of order n.

If v = vT and v2 = 0 then Cv is a self-orthogonal code.

Proof. If v = vT then σ(v)T = σ(vT ) by Lemma 2.8. Then we have that (σ(v)σ(v))ij is the

inner-product of the i-th and j-th rows of σ(v). Since v2 = 0, by Theorem 2.7 we have that

σ(v)σ(v) = 0. This gives that any two rows of σ(v) are orthogonal and hence they generate

a self-orthogonal code.

We can now use this lemma to construct self-dual codes. For codes over fields we could

simply use the dimension of σ(v), however over an arbitrary Frobenius ring we cannot

determine the size of the generated code simply from the rank of the matrix. Therefore, we

have the following theorem.

10



Theorem 2.10. Let R be a finite commutative Frobenius ring and G be a group of order n,

with v an element in RG. If v = vT , v2 = 0 and |Cv| = |R|
n
2 then Cv is a self-dual code.

Proof. By Lemma 2.9 the code Cv is self-orthogonal and since |Cv| = |R|
n
2 we have that Cv

is self-dual.

Notice that unlike the field case we are not assuming that n is even. For example, let

R = Rk and G be the trivial group of size 1 with v = uieG where eG is the identity of the

group. Then σ(v) = (ui) and Cv is a self-dual code of length 1.

In the following example, we show the strength of this construction by constructing a

code over R1 using the alternating group on 4 letters which has an image under the associated

Gray map of the length 24 extended Golay code.

Example 5. We shall use the previous results to construct the binary Golay code from the

ring R1. Let v = u(b + ab + ac + bc2) + (bc + bc2) + (1 + u)(c2 + abc2) ∈ R1A4. Then, Cv
is a self-dual code of length 12 over R1. Hence φk(C) is a binary self-dual code of length

12 by Theorem 2.4. The binary code φk(C) has a generator matrix of the following form:

(
I12 A

)
where A =


1 0 1 1 0 0 1 0 1 1 0 1
1 1 1 0 0 1 1 0 1 0 1 0
1 1 1 1 1 0 0 0 0 1 1 0
1 0 1 0 1 0 0 1 1 0 1 1
1 0 0 1 1 1 1 0 0 0 1 1
1 1 0 0 1 1 0 0 1 1 0 1
1 1 0 1 0 1 1 1 0 1 0 0
0 1 1 0 1 0 1 1 1 1 0 0
0 1 0 1 1 1 0 1 1 0 1 0
0 0 1 1 1 1 0 1 0 1 0 1
0 1 1 1 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 1 1 1 1 1

. It is a simple computation to see that φk(Cv)

is the [24, 12, 8] Golay code.

Lemma 2.11. Let R be a finite commutative Frobenius ring and let G be a group of order

n. If v =
∑
αigi and w = αigih for some h ∈ G then Cv and Cw are equivalent codes.

Proof. The generator matrix for Cw is formed from the generator matrix of Cv by permuting

the columns corresponding to multiplication of the elements of G by h. Hence, the codes

are equivalent.

Example 6. Let v1 = 1+xz+yz+xyz ∈ F2(C2×C2×C2) where 〈x, y, z〉 ∼= C2×C2×C2. Now

σ(v1) is equivalent to

(
1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

)
. The code C(v1) is the the [8, 4, 4] extended Hamming

code. Next, let us consider v2 = (1 +xz+yz+xyz)y = y+xz+ z+xyz ∈ F2(C2×C2×C2).

Then σ(v2) is equivalent to

(
1 0 0 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 1 1 0
0 0 0 0 1 1 1 1

)
. Clearly C(v1) is equivalent to C(v2).

3 Binary Golay Code

The self-dual binary Golay code is one of the most interesting codes. It has interesting

connections to the Leech lattice and is an extension of the length 23 perfect Golay code. We

11



shall now consider constructions of the [24, 12, 8] binary Golay code from F2G for various

groups G.

It is well known that the automorphism group of the [24, 12, 8] code is the Mathieu group

M24. Therefore, the only possible groups that can work for our construction are

SL(2, 3), S4, D24, (C6 × C2) o C2, C3 ×D8, C2 × A4 and C2
2 ×D6.

1

Initially, it was shown in [1] that the [24, 12, 8] could be constructed from ideals in the

group algebra F2S4 where S4 is the symmetric group on 4 elements. See also [17] for similar

results. In [19], the [24, 12, 8] code was constructed from F2D24. We shall now separately

consider the remaining cases.

3.1 The Group C3 ×D8

We begin by considering the group C3 ×D8. Let v be the element

v =
4∑
i=1

[ai−1(αi + αi+4z + αi+8z
2) + bai−1(αi+12 + αi+16z + αi+20z

2)] ∈ F2(C3 ×D8)

where 〈z〉 = C3, 〈a, b〉 = D8 and αi ∈ F2. Now

σ(v) =

(
A B

B A

)

where A =

A1 A2 A3

A3 A1 A2

A2 A3 A1

, B =

B1 B2 B3

B3 B1 B2

B2 B3 B1

,

A1 = cir(α1, α2, α3, α4),

A2 = cir(α5, α6, α7, α8),

A3 = cir(α9, α10, α11, α12),

B1 = rcir(α13, α14, α15, α16),

B2 = rcir(α17, α18, α19, α20),

B3 = rcir(α21, α22, α23, α24)

and cir(α1, α2, . . . , αn), rcir(α1, α2, . . . , αn) are circulant and reverse circulant matrices re-

spectively and α1, α2, . . . , αn is the first row of the respective matrices. Clearly 〈σ(v)〉 is

self-dual if σ(v)T = σ(v). Now, σ(v)T = σ(v) if and only if a2 = a4, a5 = a9, a6 = a12,

1These groups are SmallGroup(24,i) for i ∈ {3, 6, 8, 10, 12, 13, 14} according to the GAP system [12].
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a7 = a11, a8 = a10, a17 = a21, a18 = a22, a19 = a23 and a20 = a24. Next, consider elements of

F2(C3 ×D8) of the form

{α1 + α2(a+ a3) + α3a
2 + α4(z + z2) + α5az(1 + a2z) + α6a

2z(1 + z) + α7az(a2 + z)

+
4∑
i=1

b(αi+7 + αi+11(z + z2))ai−1 |αi ∈ F2 }

and in particular the element v1 = 1+b[(â+1)+(1+a)(ẑ+1)] of this set where â =
∑3

i=0 a
i

and ẑ =
∑2

i=0 z
i. The matrix σ(v1) is equivalent to(

I A

A I

)

where

A =


0 1 1 1 1 1 0 0 1 1 0 0
1 1 1 0 1 0 0 1 1 0 0 1
1 1 0 1 0 0 1 1 0 0 1 1
1 0 1 1 0 1 1 0 0 1 1 0
1 1 0 0 0 1 1 1 1 1 0 0
1 0 0 1 1 1 1 0 1 0 0 1
0 0 1 1 1 1 0 1 0 0 1 1
0 1 1 0 1 0 1 1 0 1 1 0
1 1 0 0 1 1 0 0 0 1 1 1
1 0 0 1 1 0 0 1 1 1 1 0
0 0 1 1 0 0 1 1 1 1 0 1
0 1 1 0 0 1 1 0 1 0 1 1

 .

It is a small computation to see that C(v1) is the [24, 12, 8] code. Moreover, it can be shown

that the above set contains 128 elements that generate the [24, 12, 8] code.

3.2 The Group C2 × A4

Next we consider the group C2 × A4. Let v be the element

v =
3∑
i=1

(α4i−3 + α4i−2a+ α4i−1b+ α4iab+ α4i+9x+ α4i+10xa+ α4i+11xb+ α4i+21xab)c
i−1

∈ F2(C2 × A4)

where 〈x〉 = C2, a = (1, 2)(3, 4), b = (1, 3)(2, 4) and c = (1, 2, 3) and αi ∈ F2. Now

σ(v) =

(
A B

B A

)

where A =

A2 A2 A3

A4 A5 A6

A7 A8 A9

, B =

B2 B2 B3

B4 B5 B6

B7 B8 B9

,

A1 = bc(α1, α2, α3, α4), A2 = bc(α5, α6, α7, α8), A3 = bc(α9, α10, α11, α12),

A4 = bc(α9, α12, α10, α11), A5 = bc(α1, α4, α2, α3), A6 = bc(α5, α8, α6, α7),

A7 = bc(α5, α7, α8, α6), A8 = bc(α9, α11, α12, α10), A9 = bc(α1, α3, α4, α2),
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B1 = bc(α13, α14, α15, α16), B2 = bc(α17, α18, α19, α20), B3 = bc(α21, α22, α23, α24),

B4 = bc(α21, α24, α22, α23), B5 = bc(α13, α16, α14, α15), B6 = bc(α17, α20, α18, α19),

B7 = bc(α17, α19, α20, α18), B8 = bc(α21, α23, α24, α22) and B9 = bc(α13, α15, α16, α14)

where bc(a, b, c, d) is a matrix that takes the form

(
a b c d
b a d c
c d a b
d c b a

)
. Now, σ(v) = σ(v)T if and only

if a5 = a9, a6 = a12, a7 = a10, a8 = a11, a17 = a21, a18 = a24, a19 = a24 and a20 = a23. Next,

consider elements of F2(C2 × A4) of the form

{
1∑
i=0

xi((α8i+1 + α8i+2a+ α8i+3b+ α8i+4ab)+

(α8i+5 + α8i+6a+ α8i+7b+ α8i+8ab)(c+ c2)) |αi ∈ F2},

and in particular the element v1 = 1 + x(1 + b(1 + a)(1 + c2)) + xa(1 + b)c of this set. The

matrix σ(v1) is equivalent to (
I A

A I

)
where

A =


1 0 1 1 0 1 0 1 0 0 1 1
0 1 1 1 1 0 1 0 0 0 1 1
1 1 1 0 0 1 0 1 1 1 0 0
1 1 0 1 1 0 1 0 1 1 0 0
0 1 0 1 1 1 0 1 0 1 1 0
1 0 1 0 1 1 1 0 1 0 0 1
0 1 0 1 0 1 1 1 1 0 0 1
1 0 1 0 1 0 1 1 0 1 1 0
0 0 1 1 0 1 1 0 1 1 1 0
0 0 1 1 1 0 0 1 1 1 0 1
1 1 0 0 1 0 0 1 1 0 1 1
1 1 0 0 0 1 1 0 0 1 1 1

 .

It is a small computation to see that C(v1) is the [24, 12, 8] code. Moreover, it can be shown

that the above set contains 384 elements that generate the [24, 12, 8] code.

3.3 The Group G = (C6 × C2) o C2

Next we consider the group G = (C6 × C2) o C2. Let v be the element

v =
4∑
i=1

(αiy
i−1 + αi+4xy

i−1 + αi+8x
2yi−1 + αi+12y

i−1z + αi+16xy
i−1z + αi+20x

2yi−1z)

∈ F2((C6 × C2) o C2)
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where (C6 × C2) o C2 = 〈x, y, z |x3 = y4 = z2 = 1, xy = yx2, xz = zx, yz = zy3〉 and

αi ∈ F2. Now,

σ(v) =



α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 α15 α16 α17 α18 α19 α20 α21 α22 α23 α24
α2 α1 α13 α10 α14 α12 α9 α18 α7 α4 α24 α6 α3 α5 α17 α22 α15 α8 α21 α23 α19 α16 α20 α11
α3 α13 α1 α14 α10 α16 α17 α23 α15 α5 α21 α22 α2 α4 α9 α6 α7 α20 α24 α18 α11 α12 α8 α19
α14 α10 α4 α1 α2 α7 α16 α24 α12 α13 α18 α15 α5 α3 α22 α17 α6 α21 α8 α11 α20 α9 α19 α23
α5 α4 α10 α2 α1 α9 α22 α11 α6 α3 α8 α17 α14 α13 α16 α15 α12 α19 α18 α24 α23 α7 α21 α20
α24 α11 α19 α17 α9 α1 α8 α4 α18 α15 α22 α2 α21 α7 α20 α3 α23 α10 α6 α5 α12 α13 α14 α16
α17 α9 α7 α19 α21 α23 α1 α6 α13 α11 α5 α18 α15 α24 α2 α8 α3 α22 α14 α12 α10 α20 α16 α4
α23 α18 α8 α6 α12 α14 α24 α1 α21 α22 α9 α10 α20 α16 α11 α4 α19 α13 α7 α2 α15 α5 α3 α17
α9 α17 α15 α11 α24 α18 α13 α22 α1 α19 α4 α23 α7 α21 α3 α20 α2 α6 α10 α16 α14 α8 α12 α5
α10 α14 α5 α13 α3 α15 α12 α21 α16 α1 α23 α7 α4 α2 α6 α9 α22 α24 α20 α19 α8 α17 α11 α18
α12 α6 α22 α18 α23 α21 α5 α9 α14 α8 α1 α19 α16 α20 α4 α11 α10 α7 α13 α17 α3 α24 α15 α2
α11 α24 α21 α15 α7 α2 α18 α10 α8 α17 α16 α1 α19 α9 α23 α13 α20 α4 α12 α14 α6 α3 α5 α22
α13 α3 α2 α5 α4 α22 α15 α20 α17 α14 α19 α16 α1 α10 α7 α12 α9 α23 α11 α8 α24 α6 α18 α21
α4 α5 α14 α3 α13 α17 α6 α19 α22 α2 α20 α9 α10 α1 α12 α7 α16 α11 α23 α21 α18 α15 α24 α8
α15 α7 α9 α21 α19 α20 α2 α12 α3 α24 α14 α8 α17 α11 α1 α18 α13 α16 α5 α6 α4 α23 α22 α10
α19 α21 α24 α7 α15 α3 α23 α14 α20 α9 α12 α13 α11 α17 α18 α1 α8 α5 α16 α10 α22 α2 α4 α6
α7 α15 α17 α24 α11 α8 α3 α16 α2 α21 α10 α20 α9 α19 α13 α23 α1 α12 α4 α22 α5 α18 α6 α14
α18 α23 α20 α22 α16 α10 α21 α13 α24 α6 α17 α14 α8 α12 α19 α5 α11 α1 α15 α3 α7 α4 α2 α9
α16 α22 α6 α23 α18 α24 α4 α17 α10 α20 α13 α11 α12 α8 α5 α19 α14 α15 α1 α9 α2 α21 α7 α3
α20 α8 α18 α12 α6 α5 α11 α2 α19 α16 α7 α4 α23 α22 α24 α10 α21 α3 α9 α1 α17 α14 α13 α15
α22 α16 α12 α20 α8 α11 α10 α15 α4 α23 α3 α24 α6 α18 α14 α21 α5 α17 α2 α7 α1 α19 α9 α13
α21 α19 α11 α9 α17 α13 α20 α5 α23 α7 α6 α3 α24 α15 α8 α2 α18 α14 α22 α4 α16 α1 α10 α12
α8 α20 α23 α16 α22 α4 α19 α3 α11 α12 α15 α5 α18 α6 α21 α14 α24 α2 α17 α13 α9 α10 α1 α7
α6 α12 α16 α8 α20 α19 α14 α7 α5 α18 α2 α21 α22 α23 α10 α24 α4 α9 α3 α15 α13 α11 α17 α1


and σ(v) = σ(v)T if and only if a4 = a14, a6 = a24, a7 = a17, a8 = a23, a11 = a12, a16 = a19

and a21 = a22. Next, consider elements of F2((C6 × C2) o C2) of the form

{
4∑
i=1

(αiy
i−1 + αi+4xy

i−1) +
2∑
i=1

(αi+8x
2yi−1 + αi+12y

i+1z) + (α11x
2y2 + α17x

2z)(1 + y)

+ α4yz + α6x
2y3z + α7xz + x2y2zα8 + α12z + α14xy

2z + α15xyz + α16xy
3z}

and in particular the element v1 = 1 + [a+ b+ b3 + (a+a2)(b2 + b3)]c of this set. The matrix

σ(v1) is equivalent to (
I A

)
where

A =


0 1 0 1 1 0 1 1 0 0 1 1
0 1 0 0 1 1 1 0 1 1 1 0
1 0 1 0 1 0 1 1 1 0 1 0
0 0 1 1 1 1 1 0 1 0 0 1
1 1 0 1 1 1 0 0 0 1 0 1
1 1 1 0 0 1 1 0 0 0 1 1
1 1 0 0 0 0 0 1 1 1 1 1
1 0 1 1 0 1 0 0 1 1 1 0
1 1 0 1 0 1 1 1 1 0 0 0
0 0 1 0 1 1 0 1 0 1 1 1
1 0 1 1 0 0 1 1 0 1 0 1
0 1 1 1 1 0 0 1 1 1 0 0

 .

It is a small computation to see that C(v1) is the [24, 12, 8] code. Moreover, it can be shown

that the above set contains 576 elements that generate the [24, 12, 8] code.

3.4 The Group SL(2, 3)

Next we consider the group SL(2, 3). Let v be the element

v =
6∑
i=1

xi−1
(
αi + α6+iy + α12+iy

2 + α18+iy
2x
)
∈ F2SL(2, 3)
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where SL(2, 3) = 〈x, y |x3 = y3 = (xy)2〉 and αi ∈ F2. Now,

σ(v) =


A1 A2 A3 A4

A5 A6 A7 A8

A9 A10 A11 A12

A13 A14 A15 A16

 ,

where A1 = circ(α1, α2, α3, α4, α5, α6), A2 = circ(α7, α8, α9, α10, α11, α12),

A3 = circ(α13, α14, α15, α16, α17, α18), A4 = circ(α19, α20, α21, α22, α23, α24),

A5 = circ(α16, α22, α8, α13, α19, α11), A6 = circ(α1, α21, α14, α4, α24, α17),

A7 = circ(α7, α20, α5, α10, α23, α2), A8 = circ(α18, α12, α6, α15, α9, α3),

A9 = circ(α10, α15, α21, α7, α18, α24), A10 = circ(α16, α6, α20, α13, α3, α23),

A11 = circ(α1, α12, α19, α4, α9, α22), A12 = circ(α2, α17, α11, α5, α14, α8),

A13 = circ(α9, α14, α20, α12, α17, α23), A14 = circ(α15, α5, α19, α18, α2, α22),

A15 = circ(α6, α11, α24, α3, α8, α21), A16 = circ(α1, α16, α10, α4, α13, α7).

Now, σ(v) = σ(v)T if and only if α2 = α6, α3 = α5, α7 = α16, α8 = α11, α9 = α19,

α10 = α13, α12 = α22, α14 = α24, α15 = α18, α17 = α21 and α20 = α23. Next, consider

elements of F2SL(2, 3) of the form:

{α1 + α2(x+ x5) + α3(x2 + x4) + α4x
3 + α5(y + x3y2) + α6(xy + x4y) + α7(x2y + y2x)

+ α8(x3y + y2) + α9(x5y + x3y2x) + α10(xy2 + x5y2x) + α11(x2y2 + x5y2)

+ α12(x4y2 + x2y2x) + α13(xy2x+ x4y2x) |αi ∈ F2}.

It can be shown that it is not possible to construct the [24, 12, 8] from any element of

this set.

3.5 The Group C2
2 ×D6

Next we consider the group C2
2 ×D6. Let v be the element

v =
2∑
i=0

[(αi+1+αi+4z+αi+7w+αi+10zw)+b(αi+13+αi+16z+αi+19w+αi+22zw)]ai ∈ F2(C2
2×D6)

where 〈z, w〉 = C2
2 , 〈a, b〉 = D6 and αi ∈ F2. Now

σ(v) =

(
A B

B A

)
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where A =


A1 A2 A3 A4

A2 A1 A4 A3

A3 A4 A1 A2

A4 A3 A2 A1

, B =


B1 B2 B3 B4

B2 B1 B4 B3

B3 B4 B1 B2

B4 B3 B2 B1

, A1 = cir(α1, α2, α3), A2 =

cir(α4, α5, α6), A3 = cir(α7, α8, α9), A4 = cir(α10, α11, α12), B1 = rcir(α13, α14, α15), B2 =

rcir(α16, α17, α18), B3 = rcir(α19, α20, α21) and B4 = rcir(α22, α23, α24).

Now, σ(v) = σ(v)T if and only if α2 = α3, α5 = α6, α8 = α9 and α11 = α12. Next, consider

elements of F2(C2
2 ×D6) of the form

{α1 + α3z + α5w + α7zw + (a+ a2)(α2 + α4z + α6w + α8zw)

+
2∑
i=0

+bai(αi+13 + αi+16z + αi+19w + αi+22zw)}.

It can be shown that it is not possible to construct the [24, 12, 8] Golay code from any

element of this set.

We summarize these results in the following: The [24, 12, 8] Type II code can be con-

structed in F2G precisely for the following groups of order 24: S4, D24, C3 × D8, C2 × A4

and (C6 × C2) o C2.

4 The Dihedral Group

In this section, we shall describe these techniques for generating codes for the dihedral group.

Let D2k be the dihedral group of order 2k. We describe the group by D2k = 〈a, b | a2 = bk =

1, ab = b−1a〉. The ordering of the elements for the map σ is 1, b, b2, . . . , bk−1, a, ab, ab2, . . . , abk−1.

It is this group that McLoughlin used in [18] to give a construction of the binary [48, 24, 12]

extremal Type II code.

Let v =
∑
αai,bja

ibj. In this case, the matrix σ(v) is of the form:

α1 αb αb2 . . . αbk−1 αa αab αab2 . . . αabk−1

αbk−1 α1 αb . . . αbk−2 αab αab2 αab3 . . . αa
...

...
...

...
...

...
...

...
...

...

αb αb2 αb3 . . . α1 αabk−1 αa αab . . . αabk−2

αa αab αab2 . . . αabk−1 α1 αb αb2 . . . αbk−1

αab αab2 αab3 . . . αa αbk−1 α1 αb . . . αbk−2

...
...

...
...

...
...

...
...

...
...

αabk−1 αa αab . . . αabk−2 αb αb2 αb3 . . . α1


. (11)

This gives that σ(v) is of the form: (
A B

B A

)
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where A is a circulant matrix and B is a reverse circulant matrix.

We begin by proving a lemma.

Lemma 4.1. Let R be a finite commutative Frobenius ring of characteristic 2. Let C be the

code generated by a matrix M of the form(
Ik B

B Ik

)
,

where B is a symmetric k by k matrix. If the free rank of C is k then C is self-dual.

Proof. Let D = 〈(Ik|B)〉 and D′ = 〈(B|Ik)〉. The inner-product of the i-th row of (Ik|B)

and the j-th row of (B|Ik) is Bi,j + Bj,i = 0 since Bi,j = Bj,i and the characteristic is 2.

Therefore D′ = D⊥ since |D||D′| = |R|n.
The code C = 〈D,D⊥〉. If D 6= D⊥ then |C| > |D|. However, we are assuming that the

free rank of C is k. Hence C = D = D⊥. This gives that C is a self-dual code.

In [13], Hurley proves that Cv is self-dual over F2 if v ∈ F2D24, v2 = 0 and the dimension

is n
2
. We can expand this by showing the following which eliminates the need for v to satisfy

v2 = 0.

Theorem 4.2. Let R be a finite commutative Frobenius ring of characteristic 2 and let

v ∈ RDn with v =
∑
αihi where only one αa0bi is 1 and the rest are 0. If Cv has free rank

k, then Cv is a self-dual code.

Proof. Since only one α2i is 1 and the rest are 0, the generator matrix of Cv is permutation

equivalent to a matrix of the form: (
Ik B

B Ik

)
where B is a reverse circulant matrix and hence symmetric. Then, by Lemma 4.1, we have

the result.

To show the importance of the strengthening of this result, consider the element v =

1 + ab ∈ F2D2k where k is greater than 2. Then (1eD2k
+ ab)2 6= 0 but Cv is a self-dual code.

We continue with a larger example.

Example 7. Consider v ∈ F2D48 such that dim(Cv) = 24 and the minimum distance of Cv
is 10. There are 192 elements v which produce equivalent self-dual codes using the technique.

For more information about the importance of this result, see [8].

A common technique for producing self-dual codes is to generate a code with the matrix

(In
2
|A) where A is a reverse circulant matrix. Given a code C generated by this matrix

we have that C⊥ is generated by (AT |In
2
) which is equal to (A|In

2
) since A is symmetric.
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If C is a self-dual code then 〈(A|In
2
)〉 ⊆ 〈(In

2
|A)〉. This means that the code generated by(

In
2

A

A In
2

)
is the code C. Consider the first row of this matrix. Reading this as an element

v ∈ F2D2k we have that C = C(v). This gives the following.

Theorem 4.3. Let C be a binary self-dual code generated by (In
2
|A) where A is a reverse

circulant matrix then C = C(v) for some v ∈ F2D2k.

Applying Corollary 2.3, we have the following.

Corollary 4.4. The putative [72, 36, 16] Type II code cannot be produced by (In
2
|A) where

A is a reverse circulant matrix.

Proof. Corollary 2.3 gives that the [72, 36, 16] Type II code is not formed from an element

in a group algebra and so Theorem 4.3 gives the result.

This corollary eliminates a commonly used technique in the attempt to construct this

putative code. Namely, many computational approaches to this problem have been to con-

struct a reverse circulant matrix A and generate the code (In
2
|A). Of course, this technique

has not yet produced the code. This corollary give a reason why these attempts have not

been successful.

5 The Cyclic Group Cross the Dihedral Group

In this section, we shall use the group G = Cs×D2k. Let Cs = 〈h〉 and let D2k = 〈a, b | a2 =

bk = 1, ab = b−1a〉. We shall order the elements as follows:

{(1, 1), (1, b), . . . , (1, bk−1), (h, 1), (h, b), . . . , (h, bk−1), . . . , (hs−1, 1),

(hs−1, b), . . . , (hs−1, bk−1), (1, ab), . . . , (1, abk−1), (h, 1), (h, ab), . . . , (h, abk−1),

. . . , (hs−1, 1), (hs−1, ab), . . . , (hs−1, abk−1)}.

We see that if we choose v ∈ RG such that only 1 of α(hi,a0bj) is 1 and the rest are 0.

Then we get a matrix σ(v) of the form:(
Ik B

B Ik

)
,

where B is of the following form:

B =


1A hA h2A . . . hs−1A

hs−1A 1A hA . . . hs−2A
...

...
...

...
...

hA h2A h3A . . . 1A
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where hkA indicates the matrix where the i, j-th element is (hk, Ai,j) and A is a reverse

circulant matrix.

Theorem 5.1. Let R be a Frobenius ring and let v ∈ RCsD2k with v =
∑
αihi where

only 1 of α(hi,)a0bj is 1 and the rest are 0. Let R be a finite commutative Frobenius ring of

characteristic 2. If |Cv| = |R|
n
2 , then Cv is isodual and hence formally self-dual with respect

to any weight enumerator.

Proof. We have that the code C(v) is generated by (Ik|B) and then its orthogonal is gen-

erated by (BT |Ik). Then we have that B is equivalent to BT . Therefore C(v) and C(v)⊥

are equivalent and therefore, by Lemma 1.1, formally self-dual with respect to any weight

enumerator.

Note that if R is a finite field, then the condition in the previous theorem becomes that

dim(Cv) = n
2
.

Example 8. Let G be the group C3D8. There are exactly 212 = 4096 elements in F2G

with the property that α(hi,a0bj) is equal to 1 when i = j = 0 and equal to 0 otherwise. Of

these 256 have dim(Cv) = 12 and 192 of these codes are formally self-dual but not self-

dual and 64 are self-dual. Of the 192 formally self-dual codes, 80 have minimum distance

6 which is optimal for Type I codes. As an example, if v1 = 1 + a(b + b(1 + b)(bh + h2))

then Cv1 is a formally self-dual code with minimum distance 6. The remaining 112 formally

self-dual codes have have minimum distance 4 and Cv2 is an example of such a code where

v2 = 1 + a(b2 + h+ b3h+ h2 + bh2).

Example 9. Let G be the group C4D8 and consider elements of F2G with the property that

α(hi,a0bj) is equal to 1 when i = j = 0 and equal to 0 otherwise. Of these elements, there are

2048 that have dim(Cv) = 16, of these 512 are self-dual and the remaining 1536 are formally

self-dual. Let v1 = 1 + a(b̂ + h)h, v2 = 1 + a(b + b3 + h + h3 + (b2 + b̂)h2 + (1 + b̂)h3) and

v3 = 1 + a(b(1 + h) + b̂h2 + (b + b̂)h3). The code Cv1 is an example of a formally self-dual

with minimum distance 4, the code Cv2 is an example of a formally self-dual with minimum

distance 6 and the code Cv3 is an example of a formally self-dual with minimum distance

8. Of the 1536 formally self-dual codes, there are 896 with minimum distance 4, 192 with

minimum distance 6 and 448 with minimum distance 8.

Example 10. Let G be C5D8 and v = 1 + a((u + ub + ub2 + b3) + (u + b + b2 + ub3)(h +

h4) + (1 + b+ ub3)(h2 + h3)) ∈ R1C5D8. Then Cv = 〈σ(v), uσ(v)〉 is a self-dual code and its

image under φ1 is a binary self-dual [80, 40, 12] code with an automorphism group of order

160.

Example 11. Let G be the group C2D26 and consider the elements F2 with the properties

that α(hi,a0bj) is equal to 1 when i = j = 0 and equal to 0 otherwise. Of these elements, there

are six inequivalent self-dual [52, 26, 10] codes. These six elements are as follows:
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i vi ∈ F2(C2D26) |Aut(Cvi)|
1 1 + a((b8 + b10 + b11 + b12) + (b+ b2 + b3 + b4 + b5 + b6 + b8 + b9 + b11)h) 52

2 1 + a((b7 + b9 + b10 + b11) + (1 + b+ b2 + b3 + b5 + b7 + b8 + b10 + b11)h) 52

3 1 + a((b6 + b8 + b10 + b11 + b12) + (1 + b+ b2 + b3 + b5 + b7 + b8 + b11)h) 52

4 1 + a((b6 + b8 + b9 + b10 + b11 + b12) + (1 + b2 + b3 + b4 + b6 + b7 + b8)h) 52

5 1 + a((b5 + b8 + b9 + b10 + b12) + (b+ b3 + b4 + b6 + b7 + b9 + b10 + b11)h) 52

6 1 + a((b5 + b7 + b8 + b9 + b10 + b11 + b12) + (1 + b+ b2 + b3 + b7 + b11)h) 52

6 The Cyclic Case

In this section, we shall set G = Cn the cyclic group of order n. Since the inception of cyclic

codes, it has been an open question to determine which cyclic codes were self-dual. We shall

describe when this occurs.

We focus on the case when n = 2k. Let G = 〈h〉. Then let hi = hi. We then use as the

ordering of the elements of G:

(h0, h2, . . . , h2k, h1, h3, . . . , h2k−1).

That is gi = h2(i−1) for i = 1 to k and gk+j = h2(j−1)+1 for j = 1 to k.

It follows that the form of σ(v) is:

αh0 αh2 · · · αh2k αh1 αh3 · · · αh2k−1

αh2k αh0 · · · αh2k−2
αh2k−1

αh1 · · · αh2k−3

...
...

. . .
...

...
...

. . .
...

αh4 αh6 · · · αh2 αh3 αh5 · · · αh1
αh2k−1

αh1 · · · αh2k−3
αh0 αh2 · · · αh2k

αh2k−3
αh2k−1

· · · αh2k−5
αh2k αh0 · · · αh2k−2

...
...

. . .
...

...
...

. . .
...

αh1 αh3 · · · αh2k−1
αh4 αh6 · · · αh2


.

Hence σ(v) is of the form (
A B

D A

)
where A, B and D are circulant matrices.

Choose an element of v such that v =
∑
αihi where only one of α2i = 1 and the rest of

α2i are 0. Then the generating matrix is permutation equivalent to a matrix where A is Ik
and B and D are circulant matrices. Namely, we get a matrix of the form(

In
2

B

D In
2

)
.
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Theorem 6.1. Let R be a Frobenius ring of characteristic 2 and let v ∈ RCn with v =∑
αihi where only one α2i = 1 and the rest of α2i are 0. If v2k−i = vi for odd i and

|C| = |R|k then C(v) is a self-dual code.

Proof. By the construction, we have that σ(v) is of the form(
Ik B

D Ik

)
.

If v2k−i = vi for odd i then D = BT . We have that |C| = |R|k. However, the form of the

matrix gives that C contains a free code isomorphic to Rk, namely the code generated by

the matrix (Ik|B). This means that C = 〈(Ik|B)〉.
Consider the code generated by the matrix (BT |Ik). This code must be C⊥. However,

this code is contained in C(v) as well, so we have that C = C⊥.

Notice that we did not have to determine the cardinality of the code to see that the code

was self-dual.

Note that it is certainly more difficult to use this technique to construct self-dual codes

with the cyclic group. That is, we had to put more restrictions on v to obtain a self-dual

code. This is certainly to be expected since it is fairly difficult to find cyclic self-dual codes.

Moreover, note that a code over Rk constructed with this technique is cyclic, which gives

that its image under the Gray map is quasi-cyclic of index 2k.

Example 12. Let G be the cyclic group of order 10 and v = 1+uh+h5+uh9 ∈ R1C10. Then

Cv = 〈σ(v), uσ(v)〉 is cyclic self-dual code and its image under φ1 is a binary quasi-cyclic

self-dual [20, 10, 4] code of index 2.

We note that this is a standard construction of self-dual codes, namely you take a vector

v and generate a circulant matrix B from it with BBT = −Ik, with n = 2k, and generate

the code (Ik|B). Hence, we have another of the standard constructions of self-dual codes

within our general framework.

We can now use our general construction to produce isodual codes.

Theorem 6.2. Let R be a finite commutative Frobenius ring with characteristic 2. Let

v ∈ RCn with v =
∑
αihi where only one α2i = 1 and the rest of α2i are 0. If |C(v)| = |R|n2

then C(v) is a formally self-dual code with respect to any weight enumerator.

Proof. If |C(v)| = |R|n2 then C is generated by the matrix (Ik|B) where B is a circulant

matrix. Then its orthogonal is of the form (BT |Ik). Since B is a circulant code, then by

permuting the rows and columns of B we can form BT . This gives that C(v)⊥ is equivalent

to C(V ) and hence isodual and therefore formally self-dual code with respect to any weight

enumerator.
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Example 13. Let G be the cyclic group of order 6 and v = 1+u2h+(1+u1+u1u2)h3+u1h
5 ∈

R2C6. Then Cv = 〈σ(v), u1σ(v), u1u2σ(v)〉 is a cyclic formally self-dual code and its image

under φ2 is a binary quasi-cyclic self-dual [24, 12, 6] code of index 4.

Example 14. Let G be the cyclic group of order 10. The following elements of R2C10

generate four inequivalent binary self-dual [40, 20, 8] codes:

i vi ∈ R2C10 |Aut(Cvi)|
1 1 + u1(h+ h9) + u2(h3 + h7) + h5 216 · 33 · 52

2 1 + u1(h+ h9) + u2(h3 + h7) + (u1u2 + 1)h5 214 · 3 · 5
4 1 + u1(h+ h9) + u2(h3 + h7) + (u2 + 1)h5 214 · 3 · 5
5 1 + u1(h+ h9) + u2(h3 + h7) + (u1 + u1 + 1)h5 216 · 33 · 52

7 Quasi-G Codes

In this section, we make a generalization of the notion of a quasi-cyclic group. In general,

quasi-cyclic groups are more difficult to handle that cyclic codes because they do not have a

canonical representation in an algebraic setting the way that cyclic codes do. In [6], a ring

was developed with a Gray map that could be used to describe certain families of quasi-

cyclic groups. That same ring can be used in this setting to construct quasi-G codes which

we shall describe below. Self-dual codes over these rings were studied in [7].

Let G be a finite group of order n and R a finite Frobenius commutative ring. Let D be

a code in Rsn where the coordinates can be partitioned into n sets of size s where each set

is assigned an element of G. If the code D is held invariant by the action of multiplying the

coordinate set marker by every element of G then the code D is called a quasi-group code

of index s.

We now describe a family of rings to construct quasi-G codes.

Let p1, p2, . . . , pt be prime numbers with t ≥ 0 and pi 6= pj if i 6= j. Define ∆ to be

∆ = pk11 p
k2
2 · · · pktt , for some ki ≥ 1, i = 1, . . . , t.

The ring is defined as follows:

Rq,∆ = Fq[up1,1, . . . , up1,k1 , up2,1 . . . , up2,k2 , . . . , upt,kt ]/〈u
pi
pi,j

= 0〉,

where the indeterminates {upi,j}(1≤i≤t,1≤j≤ki) commute.

Let i ∈ {1, · · · , t}, j ∈ {1, · · · , ki}. Take the set of exponents Ji = {0, 1, . . . , pi − 1} for

the indeterminant upi,j. For αi ∈ Jkii denote uαi,1
pi,1
· · ·uαi,ki

pi,ki
by uαi

i . For a monomial uα1
1 · · ·uαt

t

in Rq,∆ write uα, where α = (α1, . . . , αt) ∈ Jk11 × · · · × Jktt .

Let J = Jk11 × · · · × Jktt . Any element c in Rq,∆ can be written as

c =
∑
α∈J

cαu
α =

∑
α∈J

cαu
α1,1
p1,1
· · ·uα1,k1

p1,k1
· · ·uαt,1

pt,1 · · ·u
αt,kt
pt,kt

, (12)
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with cα ∈ Fq.
It is immediate that Rq,∆ is a commutative ring with |Rq,∆| = qp

k1
1 p

k2
2 ···p

kt
t = q∆.

Next we define a Gray map on this ring. We will consider the elements in Rq,∆ as q-ary

vectors of ∆ coordinates. Order the elements of A∆ lexicographically and use this ordering

to label the coordinate positions of F∆
q . Define the Gray map Ψ∆ : A∆ → F∆

q as follows:

Ψ∆(a)b =

{
1 if b̂ ⊆ {â ∪ 1},
0 otherwise,

where Ψ∆(a)b indicates the coordinate of Ψ∆(a) corresponding to the position of the element

b ∈ A∆ with the defined ordering.

It follows that Ψ∆(a)b is 1 if each indeterminate upi,j in the monomial b with non-zero

exponent is also in the monomial a with the same exponent. In other words, it is 1 when b̂

is a subset of â. In order to consider all the subsets of â, we also add the empty subset that

is given when b = 1; that is we compare b̂ to â ∪ 1.

Finally, we extend Ψ∆ linearly for all elements of Rq,∆. Then Ψ∆ is a Gray map from

Rq,∆ to F∆
q . Note that the ring Rk is R2,2k in this setting.

Theorem 7.1. Let C be a code in Rq,∆
n for a finite group G, that is C is a G-code. Then

Ψ∆(C) is a quasi-G code of length n∆ of index ∆ in F∆n
q .

Proof. Let v ∈ C. If g is an element of the group G then g acts on the set of ∆ coordinates

corresponding to the element vi ∈ Rq,∆, that is on Ψ∆(vi) and sends them to the coordinates

corresponding to Ψ∆(gvi). Therefore, the image is a quasi-G group of index ∆.

An identical proof gives the following.

Theorem 7.2. Let C be a quasi-G code of length n and of index k over Rq,∆ for a finite

group G, that is C is a G-code. Then Ψ∆(C) is a quasi-G code of length n∆ of index k∆ in

F∆n
q .

Example 15. In Example 5, it is shown that if v = u(b + ab + ac + bc2) + (bc + bc2) +

(1 + u)(c2 + abc2) ∈ R1A4, then, Cv is a self-dual code of length 12 over R1. This gives that

φ1(C) is the length 24 binary Golay code. It follows then that the binary [24, 12, 8] Golay

code is a quasi-Alternating group of order 4 code with index 2.

Example 16. In Example 10, it is shown that if v = 1 + a((u + ub + ub2 + b3) + (u + b +

b2 + ub3)(h+ h4) + (1 + b+ ub3)(h2 + h3)) ∈ R1C5D8, then Cv = 〈σ(v), uσ(v)〉 is the binary

[80.40, 12] self-dual code under φ1. Therefore this code is a quasi-C5D8 code of index 2.

Example 17. In Example 14, it is shown that inequivalent binary self-dual [40, 20, 8] codes

are constructed from R2C10. It follows that these four codes are quasi-cyclic code of index 4.
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8 Conclusion

In this paper, we have considered a very broad generalization of the notion of cyclic codes

by examining codes that are ideals in a group ring, calling these codes G-codes. Similar

theorems to the standard results on cyclic codes have been attained. For instance, we have

shown that the dual of G-code is again a G-code. This natural algebraic setting allows for

canonical constructions of families of codes and for ensuring that the automorphism group

of a code contains a given group. We used the Chinese Remainder Theorem to construct

G-codes over arbitrary rings from G-codes over local rings.

Based on some previously known constructions for group algebras, we have given general-

ized constructions of self-dual codes in this setting for codes over a Frobenius ring. We have

given the form of the generator matrix for codes in this construction for various groups. We

have shown precisely which groups will give the binary Golay self-dual code in this setting,

namely the Golay code is a G-code for the following groups: S4, D24, C3×D8, C2×A4 and

(C6 × C2) o C2.

The ring family of rings Rk has also been used to construct interesting binary self-dual

codes via the canonical Gray map. This allows for a construction of longer self-dual and

formally self-dual binary codes.

The notion of quasi-cyclic codes has also been generalized and we have used the family

of rings Rq,∆ to produce families of quasi-G codes over a finite Frobenius ring. We have

given several examples of binary quasi-G codes for various groups.

The fundamental open question is to determine which codes are G-codes for a finite

group G. That is, given an arbitrary code over a ring R, for which groups G can C be seen

as an ideal in RG. Since even the case when G is the cyclic group (cyclic codes) remains a

large area of research, it seems that there is a great deal of work to be done in this area.

More computationally, it should be determined which self-dual codes (especially optimal

self-dual codes) can be constructed via the methods described in this paper. Within this

framework, these computational techniques can be extended to numerous families of rings

and numerous groups.
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