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ORIGINAL PAPER

A doubly stochastic rainfall model with exponentially decaying
pulses

N. I. Ramesh1 • A. P. Garthwaite1 • C. Onof2

� The Author(s) 2017. This article is an open access publication

Abstract We develop a doubly stochastic point process

model with exponentially decaying pulses to describe the

statistical properties of the rainfall intensity process.

Mathematical formulation of the point process model is

described along with second-order moment characteristics

of the rainfall depth and aggregated processes. The derived

second-order properties of the accumulated rainfall at dif-

ferent aggregation levels are used in model assessment. A

data analysis using 15 years of sub-hourly rainfall data

from England is presented. Models with fixed and variable

pulse lifetime are explored. The performance of the model

is compared with that of a doubly stochastic rectangular

pulse model. The proposed model fits most of the empirical

rainfall properties well at sub-hourly, hourly and daily

aggregation levels.

Keywords Doubly stochastic � Point process � Rainfall
intensity � Exponential pulse � Accumulated rainfall

1 Introduction

Point process theory has been widely utilised to develop

stochastic models for rainfall collected at daily, hourly or

sub-hourly aggregations. Rainfall can be thought of as a

random process evolving continuously over time, which is

usually recorded as cumulative amounts over disjoint time

intervals of constant length, such as hours or days. One

way to apply point process theory to modelling rainfall is to

assume the existence of an underlying continuous-time

rainfall generating mechanism which evolves randomly

over time and whose outcome is only observed as the

integral of the continuous process over the given sampling

interval. There has been a substantial amount of work over

the years on point process models for rainfall, see for

example Onof et al. (2000) and Kaczmarska et al. (2014)

amongst others.

Amongst the literature on stochastic models for rainfall,

clustered point process models have featured heavily as

they preserve the clustering properties of the rain gener-

ating mechanism. For example, summer rainfall often

occurs in showers, i.e. heavy rainfall of short duration

whereas the winter rainfall tends to be frontal. Most clus-

ter-based models considered for this purpose are based on

either Neyman–Scott or Bartlett–Lewis cluster processes

(Cox and Isham 1980; Rodriguez-Iturbe et al. 1987),

whereby these two are equivalent up to the second-order

level (Cowpertwait 1998).

Rodriguez-Iturbe et al. (1987) developed stochastic

models with rectangular pulses for rainfall at a single site

based on Poisson and Poisson-clustered point processes.

These original models were then followed by spatial-tem-

poral extensions (e.g. Cox and Isham 1988). Focusing here

upon the purely temporal models, the following important

developments can be singled out:
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1. the parameters describing the temporal structure of a

storm were randomised so that each storm could have a

different frequency of cells arrivals, its own cell

duration and storm duration distributions (Rodriguez-

Iturbe et al. 1988) so as to improve the reproduction of

dry periods at a range of time-scales; this work was

taken further (Kaczmarska et al. 2014) to include the

cell intensity distribution parameter into the

randomisation;

2. other distributions were used for the cell intensity

(Onof and Wheater 1994), and in particular a depen-

dence between cell intensity and duration was intro-

duced (Evin and Favre 2008);

3. two cell-types were considered for each season (Cow-

pertwait 1994);

4. work on the most useful fitting statistics was carried

out (Khaliq and Cunane 1996);

5. the models were regionalised (Kim et al. 2016);

6. the models’ ability to reproduce extremes was exam-

ined/improved (Verhoest et al. 1997; Cameron et al.

2000);

7. non-stationarity was introduced to reproduce tempo-

rally evolving rainfall properties (Burton et al. 2010;

Evin and Favre 2013; Kaczmarska et al. 2015);

8. other types of pulses were considered, e.g. by adding a

jitter to a rectangular shape (Onof and Wheater 1994)

or replacing the pulse by the clustering of a sequence

of instantaneous pulses (Cowpertwait et al. 2007);

9. Bartlett-Lewis rectangular pulse models were used in a

disaggregation framework (Koutsoyiannis and Onof

2001; Kossieris et al. 2016).

Under the penultimate heading listed above, while some

work was carried out on examining different pulse shapes,

this was not published (Samuel 1999). However, this work

pointed to the usefulness of considering exponentially

decaying cell shapes, in particular when it comes to

reproducing the properties of rainfall at the fine temporal

scale.

Given the encouraging results obtained by using doubly

stochastic Poisson point processes rather than Poisson

cluster processes as the driving point process (Ramesh

et al. 2012, 2013) it follows that attaching an exponentially

decaying pulse to each point of such a process is worth

exploring, in particular if the focus is on the reproduction

of the properties of fine-scale rainfall.

The aim of this paper is to develop a class of doubly

stochastic Poisson process (DSPP) models with exponen-

tially decaying pulses to describe the probabilistic structure

of the rainfall at a single rain-gauge. The model we con-

sider here is similar in structure to those described in

Thayakaran and Ramesh (2017), Ramesh and Thayakaran

(2012) and Ramesh (1998) but is different in its form due

to exponential pulses. The proposed model is applied to a

set of sub-hourly rainfall data from Bracknell in England,

obtained from the U.K. Meteorological Office, to illustrate

its application in the modelling of temporal rainfall.

Mathematical formulation of the proposed doubly

stochastic exponential pulse model is described in

Sect. 2. Second-moment characteristics of the rainfall

intensity are studied and expressions for the aggregated

rainfall processes are derived in this section. A data

analysis, which employed two different versions of the

model, using 15 years of rainfall data from England is

presented in Sects. 3 and 4. Section 5 compares the

performance of the proposed model with that of a doubly

stochastic rectangular pulse model. A Gamma distribu-

tion for the initial pulse depth is considered in Sect. 6.

Conclusions and suggestions for further work are repor-

ted in Sect. 7.

2 DSPP exponential pulse model

2.1 Model description

Suppose that the rainfall bursts at a location occur

according to a stationary doubly stochastic Poisson process

fNðtÞg whose arrival rate is controlled by a continuous

time Markov chain on two states representing environ-

mental conditions giving rise to light (or dry) and heavy

(wet) rainfall episodes. Let k and l be the transition rates of

the Markov chain and /1;/2 be the arrival rates of bursts in

the two states. Associated with each ‘burst’ of the process

fNðtÞg is an exponential pulse of random ‘depth’ X which

decays exponentially at a rate b. The pulses terminate after

a fixed duration d. We will leave the distribution of the

initial depth X of the pulses unspecified with a mean of lX .
Therefore, the rainfall intensity, Y(t), at time t is the sum of

all the ‘active’ pulses at t. It is assumed that the pulses are

mutually independent, and also independent of the point

process fNðtÞg. Figure 1 provides a schematic description

of the pulse process. The rainfall intensity Y(t), at time t,

may be written as

YðtÞ ¼
X

ti2½t�d;t�
Xti ¼

Z d

u¼0

Xt�uðuÞdNðt � uÞ; ð1Þ

where XuðsÞ is the random depth of the pulse originating at

time u measured a time s later and N(t) counts the occur-

rences in the DSPP of pulse origins.
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2.2 Second-order properties of the intensity process

We first consider the rainfall intensity process Y(t) at time t.

Since a pulse is only active for a constant duration d, for

the model under consideration, we have

Xt�uðuÞ ¼
Xe�bu with probability 1, if u� d

0 with probability 1, if u[ d:

(

The second-order moment properties of Y(t) are related to

the properties of the point process fNðtÞg. Taking expec-

tations on both sides of (1) gives the mean of the rainfall

intensity process as

E YðtÞf g ¼
Z 1

0

E Xe�bu
� �

dNðt � uÞ

¼
Z d

0

EðXÞe�budNðt � uÞ

¼mlXð1� e�bdÞ=b

where m ¼ k/2þl/1

kþl is the mean intensity of the point pro-

cess fNðtÞg and lX is the mean depth of a single pulse at its

origin. The autocovariance of the rainfall intensity Y(t) at

lag s is given by

CYðsÞ ¼ Cov YðtÞ; Yðt þ sÞf g

¼
Z 1

0

Z 1

0

E Xt�uðuÞXtþs�vðvÞf g

Cov dNðt � uÞ; dNðt þ s� vÞf g;

where Cov dNðtÞ; dNðt þ uÞf g is the covariance density

of the point process N(t) which is given by Ramesh (1995)

Cov dNðtÞ; dNðt þ uÞf g ¼ mdðuÞ þ Ae�ðkþlÞu

where dð:Þ is the Dirac delta function and the constant A is

given by A ¼ klð/1�/2Þ2
ðkþlÞ : Substituting this in the above

expression gives the autocovariance of the rainfall intensity

process as

CYðsÞ ¼
Z 1

0

Z 1

0

E Xt�uðuÞXtþs�vðvÞf g

mdðuþ s� vÞ þ Ae�ðkþlÞðuþs�vÞ
n o

dudv

¼ mEðX2Þ
Z d

0

e�bðsþuÞdu

þ Al2X

Z d

0

Z d

0

e�bðuþvÞe�ðkþlÞðuþs�vÞdudv:

Computing this integral, after some algebra, gives us

CYðsÞ ¼
mE½X2�ð1� e�bdÞ

b

� �
e�bs

þ
Al2X 1þ e�2bd � e�ðbþkþlÞd � e�ðb�k�lÞd� �

b2 � ðkþ lÞ2
� 	

2

4

3

5e�ðkþlÞs:

ð2Þ

We can obtain the variance of the rainfall intensity process

by setting s ¼ 0 in the above expression, i.e.

Fig. 1 Schematic description of

the exponential pulse model:

a The arrival process of rainfall

bursts based on a two-state

DSPP. b The pulse process

which originates with each burst

and lasts for a fixed duration of

d
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Var YðtÞf g ¼ mE½X2�ð1� e�bdÞ
b

� �

þ
Al2X 1þ e�2bd � e�ðbþkþlÞd � e�ðb�k�lÞd� �

b2 � ðkþ lÞ2
� 	

2
4

3
5:

ð3Þ

It is worth noticing that the above expressions for the

mean, variance and autocovariance reduce to those of the

Poisson exponential pulse model when /1 ¼ /2.

2.3 Second-order properties of aggregated process

Since the interest primarily lies in studying the properties

of rainfall in aggregated form, and much of the rainfall data

is available in this form, we now derive the moment

properties of the cumulative rainfall in disjoint time

intervals of fixed length h. Let us define the cumulative

rainfall totals in disjoint intervals of length h, for i ¼
1; 2; . . .; as

Y
ðhÞ
i ¼

Z ih

ði�1Þh
YðuÞdu:

To derive the second-moment properties of this aggregated

rainfall process we shall make use of the following general

expressions from Rodriguez-Iturbe et al. (1987).

E Y
ðhÞ
i

n o
¼ hE YðtÞf g;

Var Y
ðhÞ
i

n o
¼ 2

Z h

0

ðh� uÞCYðuÞdu;

Cov Y
ðhÞ
i ; Y

ðhÞ
iþk

n o
¼
Z h

�h

CYðkhþ uÞðh� j u jÞdu:

For our DSPP exponential pulse model, using equations

(1), (2) and (3) and the above expressions we find that that

the mean, variance and covariance of the aggregated

rainfall process may be written as

lðhÞ ¼ E Y
ðhÞ
i

n o
¼ ð1� e�bdÞmlXh

b
ð4Þ

r2ðhÞ ¼ Var Y
ðhÞ
i

n o
¼ 2K1

h

b
� 1

b2
þ e�bh

b2


 �

þ 2K2

h

kþ l
� 1

ðkþ lÞ2
þ e�ðkþlÞh

ðkþ lÞ2

 ! ð5Þ

and for k ¼ 1; 2; . . .;

Cov Y
ðhÞ
i ; Y

ðhÞ
iþk

n o
¼ K1

1� e�bh

b


 �2

e�bðk�1Þh

þ K2

1� e�ðkþlÞ�h

kþ l


 �2

e�ðkþlÞðk�1Þh

ð6Þ

where K1 ¼ mEðX2Þð1�e�bdÞ
b and K2 ¼

Al2X 1þe�2bd�e�ðbþkþlÞd�e�ðb�k�lÞdð Þ
b2�ðkþlÞ2ð Þ :

The above expression shows that the rate of decay of the

autocorrelation function of the aggregated process is

influenced not only by the transition rates, k and l, of the
underlying Markov process but also by the decay rate b of

the pulses. One convenient form for this model is to assume

an exponential distribution for the initial pulse depth

X. Other distributions like Gamma or Pareto can also be

applied easily.

Table 1 Empirical summary statistics of Bracknell rainfall data

Month Mean (mm) Std. Dev. (mm) AC1 Coef. Var Prop. Dry Prop. Wet

10 min 1 h 10 min 1 h 10 min 1 h 10 min 1 h 10 min 1 h 10 min 1 h

Jan. 0.015 0.091 0.097 0.417 0.506 0.477 6.412 4.581 0.952 0.881 0.048 0.119

Feb. 0.012 0.071 0.076 0.344 0.589 0.600 6.434 4.839 0.961 0.899 0.039 0.101

Mar. 0.009 0.054 0.057 0.247 0.485 0.568 6.346 4.586 0.966 0.905 0.034 0.095

Apr. 0.013 0.080 0.077 0.348 0.578 0.572 5.812 4.356 0.955 0.888 0.045 0.112

May 0.010 0.062 0.148 0.650 0.700 0.218 14.169 10.401 0.973 0.925 0.027 0.075

Jun. 0.011 0.067 0.101 0.400 0.533 0.375 9.016 5.980 0.971 0.924 0.029 0.076

Jul. 0.010 0.060 0.096 0.385 0.513 0.451 9.558 6.400 0.974 0.928 0.026 0.072

Aug. 0.011 0.069 0.110 0.462 0.559 0.487 9.602 6.728 0.974 0.932 0.026 0.068

Sep. 0.015 0.088 0.130 0.507 0.573 0.390 8.877 5.785 0.962 0.895 0.038 0.105

Oct. 0.019 0.113 0.126 0.537 0.566 0.491 6.687 4.756 0.952 0.884 0.048 0.116

Nov. 0.016 0.097 0.097 0.440 0.611 0.580 5.990 4.549 0.952 0.880 0.048 0.120

Dec. 0.015 0.090 0.085 0.386 0.610 0.589 5.673 4.293 0.952 0.883 0.048 0.117
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3 Model with variable pulse duration

In this section, we start off our analysis with a model that

allows the pulse lifetime to vary, while keeping the expo-

nential distribution for initial pulse depth. One way to do

this is to take the pulse lifetime d as a random variable with

a specified distribution. Another approach is to take d as a

parameter of the model and seek to estimate it from the

data, along with other parameters. We take this second

approach in this paper. When d is taken as a parameter, the

expressions (4) to (6) for mean, variance and covariance

are still valid and we treat them as functions of one addi-

tional parameter.

Table 2 Parameter estimates

for the exponential pulse model

with variable lifetime

Units k l /1 /2 b d lx
h�1 h�1 h�1 h�1 h�1 h mmh�1

January 0.0022 0.408 0.552 48.540 25.592 1.572 2.895

February 0.0041 0.412 0.497 46.399 23.906 1.583 1.786

March 0.0042 0.387 0.521 41.029 43.674 1.686 2.471

April 0.0046 0.629 0.697 56.572 21.809 1.583 1.577

May 0.0025 2.225 0.093 54.079 6.710 1.730 2.745

June 0.0020 1.180 0.272 55.501 16.525 1.703 3.022

July 0.0030 1.125 0.245 49.232 22.230 0.278 3.547

August 0.0045 1.197 0.223 47.752 20.181 0.264 3.474

September 0.0025 0.810 0.299 45.010 21.550 0.251 4.463

October 0.0035 0.738 0.466 48.137 16.798 1.445 2.753

November 0.0024 0.319 0.589 48.775 17.538 1.414 1.797

December 0.0043 0.449 0.653 48.947 18.571 1.392 1.496

Fig. 2 Observed (red) and fitted

(blue) values of the mean

rainfall at h = 1/12 h

aggregation for the exponential

initial pulse depth model with

variable pulse duration d, along

with a simulation band (black)

from 1000 simulations
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In our application, we take the initial pulse depth Xi at

the pulse origins as independent random variables with an

exponential distribution which has mean lX . Hence,

EðXÞ ¼ lX and EðX2Þ ¼ 2l2X . Our model then has seven

parameters and we estimate them by the method of

moments approach using the observed and theoretical

values of the second-order properties of the rainfall accu-

mulations. The parameter lX can also be estimated sepa-

rately for each month using the sample mean and the

following equation, which follows from (4),

lX ¼ b̂

m̂ 1� e�b̂d
� 	

0

@

1

A�x ð7Þ

where �x is the estimated average of hourly rainfall for each

month.

We use the proposed exponentially decaying pulse

model to analyse 15 years of sub-hourly rainfall data from

Bracknell, England for the period 1986 to 2000 collected

by the Meteorological Office. Table 1 gives the summary

statistics for the mean, standard deviation, lag 1 autocor-

relation, coefficient of variation, proportion of dry and wet

period for aggregated rainfall at h ¼ 1=6; 1 h for each

month.

The mean lðhÞ, standard deviation rðhÞ and the lag one

autocorrelation qðhÞ of the aggregated rainfall process are

used to estimate all seven parameters of the model where

qðhÞ ¼ Corr Y
ðhÞ
i ;Y

ðhÞ
iþ1

h i
:

The above properties of the rainfall at three different

aggregation levels (at h=10, 20, 60 min) are used in our

estimation. The estimates of the functions from the

empirical data, denoted by l̂ðhÞ; r̂ðhÞ and q̂ðhÞ, are cal-

culated for each month using 15 years of sub-hourly rain-

fall series accumulated at scales h ¼ 1=6; 1=3; 1 h. The

estimated values of the model parameters k̂, l̂, /̂1, /̂2, b̂, d̂
and l̂X for each month can be obtained by minimizing the

sum of squares of differences in the observed and fitted

Fig. 3 Observed (red) and fitted

(blue) values of the standard

deviation of the aggregated

rainfall at h = 1/12, 1/6, 1/3, 1/2

h for the exponential initial

pulse depth model with variable

pulse duration d, along with

simulation bands (black) from

1000 simulations
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values of the functions, as given below using standard

routines.

X

h¼1
6
;1
3
;1

l̂ðhÞ � lðhÞð Þ2þ r̂ðhÞ � rðhÞð Þ2þ q̂ðhÞ � qðhÞð Þ2
h i

:

Alternatively, Jesus and Chandler (2011) provide a useful

generalised method of moment approach, using weighted

estimation of the objective function, to estimate parame-

ters. However, since we are only using a small data set of

15 years of rainfall, we follow the method used by Cow-

pertwait et al. (2007) and employ the objective function

given below.

X

h¼1
6
;1
3
;1

1� l̂ðhÞ
lðhÞ


 �2

þ 1� lðhÞ
l̂ðhÞ


 �2

þ 1� r̂ðhÞ
rðhÞ


 �2
"

þ 1� rðhÞ
r̂ðhÞ


 �2

þ 1� q̂ðhÞ
qðhÞ


 �2

þ 1� qðhÞ
q̂ðhÞ


 �2
#
:

ð8Þ

We utilise the above objective function to estimate the

parameters of our model, where the pulse lifetime d is

allowed to vary from one month to the next. This objective

function is minimised numerically, using R routines (R

Core Team 2017) that employ function evaluations as well

as derivatives, separately for each month to obtain esti-

mates of the model parameters. To avoid difficulties in

optimisation, the approach we used was to employ an

initial search algorithm that uses the Nelder-Mead downhill

simplex method (which uses function evaluations only) to

find a good region of optimal parameter values in the

parameter space. A derivative based algorithm is then

employed to find refined estimates. The parameter esti-

mates for this model, when d is allowed to vary, are given

in Table 2 for all 12 months.

The estimates show that the mean sojourn times 1=l of

the wet state (State 2) are shorter in summer months than

those of the winter months, with an average duration that

varies from around 25 to 53 min. The rain pulse arrivals

Fig. 4 Observed (red) and fitted

(blue) values of the standard

deviation of the aggregated

rainfall at h = 1, 6, 12, 24 h for

the exponential initial pulse

depth model with variable pulse

duration d, along with

simulation bands (black) from

1000 simulations
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occur at a rate of about 40–60 per hour when the Markov

chain is in the wet state. In addition, the values of l̂X are

again larger for summer months showing higher initial

rainfall intensity for the pulses. In the light rain state, the

estimates of the pulse arrival rate /̂1 are the smallest for

summer months which contributes towards longer dry

period. The estimates b̂ are also high, in general, which

shows that the rain cells decay fast and deposit the rain

quickly. The estimates of d suggest that the average

duration of the pulse lifetime is between 1 and 2 h, except

for the summer months July, August and also September

which have shorter duration.

To assess how well our model performs, fitted values of

the theoretical properties were calculated, using the esti-

mated parameter values, at various aggregation levels and

compared with the corresponding empirical values. Simu-

lation bands were constructed based upon 1000 simulated

realisations, each of length 15 years, from the fitted model.

The simulation bands, taken as the maximum and

minimum of the 1000 values of the statistics from the

simulations, are also displayed in the figures throughout

this section. In all the plots, the red line represents the

empirical values, the blue line shows the fitted values and

the dark dashed lines show the simulation bands.

The empirical and fitted means of the aggregated rainfall

are in near perfect agreement in Fig. 2 showing that the

mean rainfall has been reproduced well by the fitted model

at h ¼ 1=12 h. The same is true at all the other higher

aggregations, as the mean was just scaled up by the values

of h, and the plots (not shown here) displayed identical

patterns. Figure 3 and 4 display the empirical and fitted

values of the standard deviation of the accumulated rainfall

at sub-hourly and higher aggregations, along with simula-

tion bands. Here again both observed and fitted curves are

in excellent agreement, at all aggregations. The simulation

bands suggest that the sampling distribution of the standard

deviation is skewed at sub-hourly aggregations. At higher

aggregations that are not used in the fitting both the

Fig. 5 Observed (red) and fitted

(blue) values of the

autocorrelation of the

aggregated rainfall at h = 1/12,

1/6, 1/3, 1/2 h for the

exponential initial pulse depth

model with variable pulse

duration d, along with

simulation bands (black) from

1000 simulations
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observed and fitted values are in near perfect agreement for

all months and fall well within the simulation band.

The observed and fitted values of the lag 1 autocorre-

lation of the aggregated rainfall are in excellent agreement

in Fig. 5 for sub-hourly accumulations as low as h ¼ 10

min. Although the model performs poorly for h ¼ 5 min, it

does well at other larger values of h at sub-hourly scales.

The model performs very well at h ¼ 1, in Fig. 6, but

shows slight differences between the empirical and fitted

values for larger h. Nevertheless, the differences fall well

within the simulation bands. Hence the fitted model

appears to capture the pattern of autocorrelations well, at

both lower and higher aggregations.

The model performs well for coefficient of variation at

sub-hourly aggregations showing good agreement between

the observed and fitted curves. However, both curves fall at

the edge of the simulation band as shown in the top panel

of Fig. 7 for h ¼ 1=2. This indicates that the sampling

distribution of the simulated values is highly skewed at

sub-hourly aggregations. One point to bear in mind here is

that the simulated values of the coefficient of variation

have two sources of variation, the mean and the standard

deviation, and their joint sampling distribution will cer-

tainly be one of the reasons for this behaviour. The model

fits reasonably well at larger aggregations as shown in the

other panels of Fig. 7 where the observed and fitted values

are in good agreement. The skewness of the sampling

distribution of the coefficient of variation also becomes less

prominent when h becomes large.

The empirical values of the proportion of dry periods are

displayed in Fig. 8 together with simulation bands from the

fitted model at finer aggregations. The model appears to

reproduce these reasonably well and capture their pattern

across the year quite well at h ¼ 1=12, but not at other

h values. In general, our model underestimates the pro-

portion of dry periods (and overestimates the proportion of

wet periods) at larger aggregations. This may have resulted

from the occasional arrival of light rain pulses in state 1,

Fig. 6 Observed (red) and fitted

(blue) values of the

autocorrelation of the

aggregated rainfall at h = 1, 6,

12, 24 h for the exponential

initial pulse depth model with

variable pulse duration d, along

with simulation bands (black)

from 1000 simulations
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generated by the model, which will impact more on the

proportion of dry and wet values at larger values of h. Th-

ese are, however, minor discrepancies given that these

statistics are not used in the fitting and dependent more on

the scale of measurement and affected by occasional arrival

of rain pulses in state 1.

Fig. 7 Observed (red) and fitted

(blue) values of the coefficient

of variation of the aggregated

rainfall at h = 1/2, 6, 12, 24 h for

the exponential initial pulse

depth model with variable pulse

duration d, along with

simulation bands (black) from

1000 simulations

Fig. 8 Observed (red) values of

the proportion of dry periods of

the aggregated rainfall at h =

1/12, 1/6 h for the exponential

initial pulse depth model with

variable pulse duration d, along

with simulation bands (black)

from 1000 simulations
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4 Analysis with fixed pulse duration

The estimates of the pulse duration d in the previous sec-

tion varied across months from 0.25 to 1.78 h. Neverthe-

less, the estimated values of the exponential decay

parameter b for this dataset suggest that most of the rain

cells deposit almost 95% of their rain within about 10–15

min from their origin. Hence, although dependent on the

application in hand, experimenting with a fixed duration for

the pulses is a worthwhile exercise. We explored this for

our data with d = 1, 2 h and present the results here for the

case d ¼ 1.

We shall take the pulse duration as 1 h (d ¼ 1) in this

section, as opposed to the variable pulse lifetime model

explored in the earlier section. We can use the same

objective function (8) to estimate the parameters, as before,

but the difference is that the pulse lifetime d is taken as

fixed at d ¼ 1. Therefore this model now has one fewer

parameters. The objective function is minimised, using the

Table 3 Parameter estimates for the exponential pulse model with

fixed lifetime d ¼ 1

Units k l /1 /2 b lX
hr�1 hr�1 hr�1 hr�1 hr�1 mmhr�1

January 0.0022 0.341 0.510 41.729 24.346 2.844

February 0.0028 0.333 0.514 47.362 22.087 1.746

March 0.0021 0.374 0.634 55.410 42.584 2.430

April 0.0025 0.456 0.682 56.242 19.040 1.540

May 0.0057 2.438 0.095 64.831 8.052 2.042

June 0.0050 1.699 0.309 63.296 22.635 3.072

July 0.0024 1.085 0.253 52.700 21.645 3.528

August 0.0028 1.148 0.251 56.925 19.453 3.461

September 0.0025 0.800 0.306 45.000 21.563 4.443

October 0.0036 0.790 0.481 50.754 17.294 2.752

November 0.0105 0.694 0.534 49.902 25.425 1.940

December 0.0025 0.259 0.589 41.316 16.235 1.488

Fig. 9 Observed (red) and fitted

(blue) values of the mean

rainfall at h = 1/12 h

aggregation for the exponential

initial pulse depth model, along

with a simulation band (black)

from 1000 simulations. The

pink line is for the rectangular

pulse model described in Sect. 5
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R routines used earlier, separately for each month to obtain

estimates of the model parameters. Parameter estimates for

this model are displayed in Table 3. They suggest that the

arrival rates /2 in the heavy rain state (State 2) are, in

general, higher in the summer months than those of the

winter months. In addition, the mean sojourn times 1=l of

the heavy rain state are shorter in summer months, mostly

between about 25 to 55 min. Values of l̂X are generally

larger for summer months showing higher initial rainfall

intensity for the pulses. All this falls in line with the fact

that summer rainfall often occurs in showers, i.e. heavy

intensity rainfall of short duration whereas the winter

rainfall tends to be more of a frontal type. The arrival rates

/1 in the light rain state or dry state (State 1) are also

smallest in the summer months. The estimates b̂ seem to

suggest that, in general, the rain cells decay fast and deposit

much of the rain quickly within minutes, although their

lifetime is taken to be d ¼ 1 h in this model.

When compared with the parameter estimates of the

earlier model given in Table 2, there appears to be no

specific pattern in the changes realised in the estimates.

Estimates of lX show little changes and the b shows slight

changes with no noticeable pattern. Estimates of k show

some changes with an increase for the months May, June

and November and a drop in months February to April. Not

much change is observed in the estimates of l and /1. The

estimates of /2 show slight changes across the months,

with no special pattern, but gone up for May and June.

Fitted values of the theoretical properties were calcu-

lated, using the estimated parameter values, at various

aggregation levels and plotted along with their corre-

sponding empirical values. Simulation bands, based upon

1000 simulations of the process from the fitted exponential

pulse model with fixed pulse duration, are also displayed at

all aggregations. Each of the simulated realisation is of

length 15-years and the simulation bands are taken as the

maximum and minimum values of the statistics over the

Fig. 10 Observed (red) and

fitted (blue) values of the

standard deviation of the

aggregated rainfall at h = 1/12,

1/6, 1/3, 1/2 h for the

exponential initial pulse depth

model, along with simulation

bands (black) from 1000

simulations. The pink line is for

the rectangular pulse model

described in Sect. 5
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1000 simulations. In all the plots in this section, the red line

represents the empirical values, the blue line shows the

fitted values and the dark dashed lines show the simulation

bands. The pink line in Figs. 9, 10, 11, 12, 13 and 14 is for

the model described in the next section, given here for

comparison and will be discussed later in Section 5.

Figure 9 shows the empirical and fitted mean rainfall at

sub-hourly aggregation h ¼ 1=12 h. It is clear from the plot

that the mean rainfall has been reproduced perfectly by the

fitted model. The same is true at all other higher aggre-

gations, and the plots (not shown) displayed identical

pattern as the mean was just scaled up by the values of h.

Figures 10 and 11 show the empirical and fitted values

of the standard deviation of the accumulated rainfall at sub-

hourly and higher aggregations, along with simulation

bands from the fitted model. Again the observed and fitted

curves are in excellent agreement at all aggregations,

especially at those that are not used in the fitting. Both

curves appear to fall closer to the upper simulation band

consistently at sub-hourly scales. This seems to indicate

that the sampling distribution of the rainfall standard

deviation is slightly skewed at these sub-hourly aggrega-

tions. However, this skewness decreases as h increases and

the sampling distribution does not appear to be skewed at

higher aggregations.

The observed and fitted values of the lag 1 autocorre-

lation of the aggregated rainfall are displayed in Fig. 12.

The observed and fitted curves for the autocorrelation are

in very good agreement at lower aggregations, except for

h ¼ 1=12 h and perhaps for the month September at

h ¼ 1=3; 1=2. The model performs well again at h ¼ 1 h in

Fig. 13. At larger values of h, however, there appear to be

slight differences between the empirical and fitted values.

Nevertheless, the differences mostly fall inside the simu-

lation bands and also these larger values of h are not used

in the fitting. Hence the fitted model appears to capture the

pattern of autocorrelations well, at both lower and higher

aggregations.

Fig. 11 Observed (red) and

fitted (blue) values of the

standard deviation of the

aggregated rainfall at h = 1, 6,

12, 24 h for the exponential

initial pulse depth model, along

with simulation bands (black)

from 1000 simulations. The

pink line is for the rectangular

pulse model described in Sect. 5
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The model performs very well for the coefficient of

variation at small aggregations showing good agreement

between the observed and fitted curves. However, they fall

closer to the edge of the simulation bands at h ¼ 1 h as

shown in the top panel of Fig. 14. Again this shows that the

sampling distributions of the simulated values are highly

skewed at smaller aggregations. This skewness issue is

overcome at larger aggregations and the model fits rea-

sonably well as shown in the other panels of Fig. 14 where

the observed and fitted values are in good agreement with

minor differences falling within the simulation bands.

The observed values of the proportion of dry periods for

this model are displayed in the top panel of Fig. 15 toge-

ther with simulation bands from the fitted model at finer

aggregation h ¼ 1=12. The model appears to reproduce

these reasonably well and capture their pattern across the

year quite well at h ¼ 1=12. At larger values of h, our

model underestimates the proportion of dry periods. This

may have resulted from the occasional arrival of light rain

pulses in state 1, generated by the model, which will impact

more on the proportion of dry values at larger values of h.

Comparison of the results of the two models shows that

the variable pulse duration model has performed slightly

better than the fixed duration model, in general, in repro-

ducing some of the rainfall properties, such as standard

deviation and correlation at certain levels of aggregation.

The improvement, however, is not substantial and both

models appear to reproduce the rainfall characteristics

equally well for the most part.

5 Model comparison with a rectangular pulse
model

To assess how well the proposed exponentially decaying

pulse model performs, when compared with existing point

process models for rainfall, we use a doubly stochastic

rectangular pulse model (Ramesh 1998) as these two

Fig. 12 Observed (red) and

fitted (blue) values of the

autocorrelation of the

aggregated rainfall at h = 1/12,

1/6, 1/3, 1/2 h for the

exponential initial pulse depth

model, along with simulation

bands (black) from 1000

simulations. The pink line is for

the rectangular pulse model

described in Sect. 5

Stoch Environ Res Risk Assess

123



models have the same structure with regard to the cell

arrivals. The main difference in the two models comes

from the mechanism for the pulse shape and its duration.

We shall give a brief description of this model first. Sup-

pose that the rain cells fNðtÞg occur according to a sta-

tionary two-state doubly stochastic Poisson process, as

before, with parameters k; l;/1;/2. Associated with each

event of the process fNðtÞg is a rectangular pulse of ran-

dom duration L, having an exponential distribution with

parameter g, and a constant but random depth X repre-

senting rainfall intensity. Second-moment properties of the

depth process and the aggregated rainfall process are

described by Ramesh (1998). We make use of the

expressions for the mean, standard deviation and lag 1

autocorrelation of the aggregated rainfall process and their

observed values to fit this model to the same 15-years of

sub-hourly rainfall data from Bracknell.

These second-moment properties of the aggregated

process at three different aggregation levels (at h ¼ 10; 20

min and 12 h) were used in our estimation. The estimates

of the rectangular pulse model parameters were obtained,

separately for each month, by minimizing the objective

function of the type in equation (8). The parameter esti-

mates are displayed in Table 4 and they show similar

features to the earlier model estimates. The average sojourn

times in the dry state are higher during summer months,

than those of the other months, and the sojourn times in the

wet state are in general shorter during summer months. The

pulse duration is also shorter during summer months with

the life time of about 45–55 min and about 1–1.6 h in the

winter. The depth of the rectangular pulses in summer

tends to be larger than that of the winter months, sug-

gesting heavy intensity rain for short duration in summer

months.

The fitted mean rainfall of this rectangular pulse

model at h ¼ 1=12 h aggregation is displayed in Fig. 9

along with the fitted mean from the exponential pulse

model and the empirical mean rainfall. The pink line

Fig. 13 Observed (red) and

fitted (blue) values of the

autocorrelation of the

aggregated rainfall at h = 1, 6,

12, 24 h for the exponential

initial pulse depth model, along

with simulation bands (black)

from 1000 simulations. The

pink line is for the rectangular

pulse model described in Sect. 5
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shows the fitted values of this rectangular pulse model in

all the plots in this section and the other lines of the

plots are as described earlier in Section 4. It is clear

from Fig. 9 that the mean rainfall has been reproduced

well by both models. The same is true at all other

aggregations.

Fig. 14 Observed (red) and

fitted (blue) values of the

coefficient of variation of the

aggregated rainfall at h = 1, 6,

12, 24 h for the exponential

initial pulse depth model, along

with simulation bands (black)

from 1000 simulations. The

pink line is for the rectangular

pulse model described in Sect. 5

Fig. 15 Observed (red) values

of the proportion of dry periods

of the aggregated rainfall at h =

1/12 h aggregation for the

exponential (top panel) and

rectangular (bottom panel)

initial pulse depth models, along

with simulation bands (black)

from 1000 simulations of the

two models
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Figures 10 and 11 compare the fitted values of the

standard deviation of the accumulated rainfall from the two

models at sub-hourly and higher aggregations, respectively,

along with the empirical values. Both models seem to do

equally well at h ¼ 1=2; 1 h as the observed and fitted

curves are in excellent agreement. However, the expo-

nential pulse model demonstrates a better alignment

between the observed and fitted curves at all other values of

h. The largest discrepancy between the observed and fitted

values for the rectangular pulse model is observed at sub-

hourly aggregations.

The observed and fitted values of the lag 1 autocorre-

lation of the aggregated rainfall for the two models are

compared in Figs. 12 and 13. They suggest that the rect-

angular pulse model vastly overestimates the autocorrela-

tion at sub-hourly and hourly aggregations whereas the

exponential pulse model clearly performs better at these

aggregations. At higher aggregations, however, the rect-

angular pulse model performs better and provides good

alignment with empirical values.

Figure 14 compares the observed and fitted values of the

coefficient of variation of the two models. Both models

seem to do equally well at h ¼ 1 h as the observed and

fitted curves are in excellent agreement in both cases,

although the sampling distribution of the coefficient of

variation appears to be highly skewed as discussed earlier.

However, the exponential pulse model seems to perform

well and demonstrates a better alignment between the

observed and fitted curves at all values of h at higher

aggregations. The proportion of dry periods is compared in

Fig. 15 at finer aggregation h ¼ 1=12. Both models appear

to reproduce these reasonably well and capture their pattern

across the year quite well at h ¼ 1=12.

6 Gamma distribution for initial pulse depth

To introduce greater variability in the initial depth of the

pulses, we now take the distribution of Xi at the pulse

origins as independent random variables with a Gamma

distribution. Let h be the scale parameter and a be the

shape parameter of the distribution. Our model then has

seven parameters and we estimate them by the method of

moments approach as before. The mean lðhÞ, standard

deviation rðhÞ and the lag one autocorrelation qðhÞ of the
aggregated rainfall process are used to estimate all the

seven parameters of the model. The above properties of the

aggregated process at three different aggregation levels (at

h = 10, 20, 60 min) are used in our estimation. The esti-

mates of these functions from the empirical data, denoted

by l̂ðhÞ; r̂ðhÞ and q̂ðhÞ, are calculated for each month

using 15 years of sub-hourly rainfall series accumulated at

scales h ¼ 1=6; 1=3; 1 h. The estimated values of the model

parameters k̂, l̂, /̂1, /̂2, ĥ, â and b̂ were obtained, sepa-

rately for each month, by minimizing equation (8) using

standard routines.

Although the parameter estimates of this initial Gamma

pulse model showed similar properties to those of the

exponential initial pulse model, there was not much

improvement in the reproduction of the statistical proper-

ties studied. The only improvement came from the repro-

duction of the extreme value properties of the rainfall. This

is illustrated by Fig. 16 where we compare the extreme

values of the 15 years of observed rainfall data with those

generated by the two models. The annual maxima of the

empirical data were ordered and plotted against the cor-

responding Gumbel reduced variates at each aggregation

level. One thousand copies of the rainfall series, each 15

years long, were then simulated from the two fitted models.

The annual maxima of each of the 1000 simulated series, at

each aggregation level, were extracted and ordered to make

up the interval plots against the corresponding Gumbel

reduced variates. These interval plots, generated separately

for the two models, were superimposed on the corre-

sponding Gumbel reduced variate plot of the empirical data

for comparison.

Figure 16 shows the results of the exponential and

Gamma initial pulse depth models for h ¼ 1=12; 1; 24 h.

The red solid line shows the ordered empirical annual

maximum values and the interval plots show the variability

of the simulated ordered maxima from the two fitted

models. The circles in the interval plots show the mean of

the 1000 simulated ordered maxima corresponding to that

plotting position. At h ¼ 1=12 h aggregation level, both

models consistently underestimate the extremes. When h ¼
1 h there was evidence of underestimation at the upper end

of the reduced variates. Despite this, there was

Table 4 Parameter estimates for the Rectangular pulse model

Units k l /1 /2 g lX
hr�1 hr�1 hr�1 hr�1 hr�1 mmhr�1

January 0.0118 0.309 0.0072 6.953 0.731 0.261

February 0.0114 0.489 0.0226 8.880 0.832 0.268

March 0.0101 0.320 0.0411 10.981 0.936 0.138

April 0.0084 0.333 0.0543 12.457 0.874 0.191

May 0.0073 1.137 0.0036 13.135 1.350 1.042

June 0.0070 0.383 0.0354 13.662 1.421 0.350

July 0.0074 0.368 0.0070 13.916 1.352 0.300

August 0.0085 0.589 0.0046 12.441 1.108 0.439

September 0.0091 0.326 0.0047 9.129 0.914 0.352

October 0.0104 0.230 0.0060 9.037 0.916 0.283

November 0.0115 0.412 0.0297 7.216 0.805 0.353

December 0.0123 0.306 0.0092 6.861 0.637 0.214
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Fig. 16 Ordered annual maxima of the aggregated rainfall at h =

1/12, 1, 24 h, plotted against the reduced Gumbel variates. Empirical

annual maximum values are shown by a red solid line. Interval plots

based on annual maxima of 1000 simulations from Exponential (blue)

and Gamma (black) initial pulse depth models are also shown. The

circles in the interval plots are the mean of the 1000 simulated

maxima. Plotting positions of the interval plots for the Gamma model

are moved to the right by a small distance to aid comparison. The

return periods are specified at the foot of the plot above the x-axis
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notable improvement resulting in good agreement at h ¼
24 h aggregation, as all of the empirical values fell within

the range of the simulated values. The interval plots sug-

gest that the Gamma initial pulse model demonstrates clear

improvement, over the exponential initial pulse model, as

the discrepancy between the observed and simulated

extremes becomes smaller at both h ¼ 1=12 and h ¼ 1 h

aggregations. Gamma initial pulse model also tends to do

better at daily aggregation level.

Therefore, the proposed models, although underesti-

mating the extremes at sub-hourly aggregations, appear to

capture the extremes well at daily aggregations. In addi-

tion, the Gamma initial pulse model shows a clear

improvement, over the exponential initial pulse model, in

reproducing extremes. The estimation of extreme values at

sub-hourly scales is a common problem for most stochastic

models for rainfall, and our results concur with the findings

of previous published studies, see for example Cowpert-

wait et al. (2007) or Verhoest et al. (1997).

7 Conclusions and potential future improvement

We developed a class of doubly stochastic point process

models with exponentially decaying pulses to describe the

statistical properties of the rainfall intensity process. Sec-

ond-order moment characteristics of the rainfall intensity

and aggregated rainfall processes are studied. The data

analysis, using sub-hourly rainfall data from England,

showed that the proposed models fit most of the empirical

rainfall properties well at various aggregation levels.

Models with fixed duration for the pulse lifetime as well as

variable pulse lifetime were used in the analysis which

revealed that the latter provides little improvement.

A Gamma distribution for the initial pulse depth showed no

improvement in reproducing the second-moment proper-

ties. However, it showed notable improvement in repro-

ducing extremes.

The performance of the proposed model, in terms of

reproducing statistical properties of the aggregated rainfall,

was compared with that of a doubly stochastic rectangular

pulse model that had the same underlying structure for cell

arrivals. Both models performed equally well in repro-

ducing the mean rainfall. The proposed exponential pulse

model seemed to do better at sub-hourly aggregations for

most of the other properties considered and even at higher

aggregations for some of them. The only instance where

the rectangular pulse model seemed to do better was the lag

1 autocorrelation at higher aggregations.

In terms of weakness, the proposed models found it

difficult to reproduce the coefficient of variation at lower

aggregation levels, although the observed and fitted values

were in good agreement. A closer look at the simulated

values of the statistics from the fitted model indicates that

this may be due to the skewed nature of the sampling

distribution of the simulated values of the coefficient of

variation. Another drawback is the underestimation of

extremes at hourly and sub-hourly aggregations. There is,

however, scope to expand this model in different ways

which is discussed below.

One possibility for future work would be to generalise

the distribution of the initial pulse depth to consider two

different distributions for the two states. This might

introduce more variability in the pulse process. Another

possibility would be to consider other distributions for the

initial pulse depth, such as Pareto for example. Alterna-

tively, to make substantial structural changes to the cell

arrival process, one could explore the possibility of

employing a three state Markov chain for the underlying

process.

Although the proposed model has produced good results

in reproducing fine-scale rainfall properties, at present the

model only deals with point rainfall at a single site.

Therefore, another direction of research would be to

explore the extension of this model to a multi-site frame-

work to model rainfall data from multiple stations in a

catchment area.

In terms of model calibration, it would be useful to

explore the recent developments in the parameter estima-

tion process, such as that of Jesus and Chandler (2011), for

our models and also the use of ‘‘momfit’’ software

(Chandler et al. 2010) which will allow us to quantify

parameter uncertainty. These improvement will form part

of our future work in this area.
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