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Abstract

In this thesis we explore extremal graph theory, focusing on new methods
which apply to different notions of regular graph. The first notion is d-
regularity, which means each vertex of a graph is contained in exactly d edges,
and the second notion is Szemerédi regularity, which is a strong, approximate
version of this property that relates to pseudorandomness.

We begin with a novel method for optimising observables of Gibbs distri-
butions in sparse graphs. The simplest application of the method is to the
hard-core model, concerning independent sets in d-regular graphs, where we
prove a tight upper bound on an observable known as the occupancy fraction.
We also cover applications to matchings and colourings, in each case proving
a tight bound on an observable of a Gibbs distribution and deriving an ex-
tremal result on the number of a relevant combinatorial structure in regular
graphs. The results relate to a wide range of topics including statistical
physics and Ramsey theory.

We then turn to a form of Szemerédi regularity in sparse hypergraphs, and
develop a method for embedding complexes that generalises a widely-applied
method for counting in pseudorandom graphs. We prove an inheritance
lemma which shows that the neighbourhood of a sparse, regular subgraph
of a highly pseudorandom hypergraph typically inherits regularity in a
natural way. This shows that we may embed complexes into suitable regular
hypergraphs vertex-by-vertex, in much the same way as one can prove a
counting lemma for regular graphs.

Finally, we consider the multicolour Ramsey number of paths and even
cycles. A well-known density argument shows that when the edges of a
complete graph on kn vertices are coloured with k colours, one can find a
monochromatic path on n vertices. We give an improvement to this bound by
exploiting the structure of the densest colour, and use the regularity method
to extend the result to even cycles.
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1
Introduction

Extremal combinatorics is a large area of study that is primarily concerned
with maximising the value of some parameter over a collection of objects. The
field is naturally connected to optimisation; a simple example of an extremal
problem is when one has a family of objects and a real-valued function on
the objects, and one asks for the maximum value attained by the function.
In fact the range of questions considered in extremal combinatorics is more
diverse than this example suggests, and a host of specialised techniques exist
to investigate such problems. In this thesis we consider three topics with an
extremal flavour, each of which concerns some notion of regular graph. The
rest of this chapter is organised as an introduction to the three topics.

A graph G is a pair (V,E), where V is a set of vertices and E is a set of
pairs of vertices known as edges. Graphs are fundamental discrete structures
that model connections or associations between objects. In the pioneering
work of Euler [31], a graph was used to represent bridges between islands,
and in modern science there are applications as diverse as algorithms, neural
connections, and interacting regions of physical systems. A useful generalisa-
tion which permits associations between more than two objects is that of a
hypergraph which, for example, can be useful when enumerating or studying
solutions to equations. Given some equation f(x, y, z) = 0, one may consider
a hypergraph whose vertices are the integers and where edges are triples
{x, y, z} that form a solution. For more of the basic definitions and notation
used here, see [27].

In Section 1.1 we introduce probability distributions known as Gibbs distri-
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Chapter 1. Introduction

butions on graphs and discuss a variety of relevant extremal problems. We
consider maximising and minimising the number of three kinds of substruc-
ture in d-regular graphs, which are graphs where every vertex is contained
in exactly d edges. This topic has a strong connection to statistical physics
and it is natural to state some classical extremal problems on graphs in the
language of statistical physics. This language also suggests valuable probab-
ilistic interpretations of the results. Section 1.1 serves as an introduction to
Chapters 2, 3, and 4.

In Section 1.2 we turn to Szemerédi regularity and counting, an important
pair of concepts in extremal combinatorics. Szemerédi regularity is a property
of a graph (or hypergraph) that captures a form of pseudorandomness: it
describes how closely the graph behaves to a probabilistic model in which
edges are chosen independently at random. The concept is useful primarily
because a counting lemma states that the number of small subgraphs in a
Szemerédi-regular graph is approximately equal to the expected number given
by the corresponding random model. We develop an approach to proving a
counting lemma for hypergraphs in Chapter 5, and apply a method which
relies on a counting lemma for graphs to a Ramsey problem in Chapter 6.

Section 1.3 contains a brief introduction to Ramsey theory and covers the
necessary preliminaries for Chapter 6. Essentially, Ramsey theory is the study
of structure that cannot be avoided by large systems. Ramsey-type theorems
state that every large enough example of a system contains a substructure of
some prescribed kind. Here we are interested in monochromatic subgraphs
of large complete graphs whose edges have been assigned colours.

1.1 Gibbs distributions

In Chapters 2, 3, and 4 we study examples from a family of probability
distributions known as Gibbs distributions which arise in statistical physics.
An expectation over a Gibbs distribution is known as an observable, as
observing repeated samples from the distribution allows one to approximate
such quantities, and we present a novel and general method for optimising
observables of Gibbs distributions. In Chapter 2 we focus on applications
to extremal problems on independent sets in d-regular graphs, and sketch
the general method for optimising observables. In Chapters 3 and 4 we
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Chapter 1. Introduction

apply the method to matchings and colourings respectively, proving tight
upper bounds on relevant observables and resolving several conjectures from
extremal combinatorics as a consequence.

1.1.1 The hard-core model

The precise definition of a Gibbs distribution is somewhat technical and we
leave the full definition to Chapter 2. Here we focus on an example, the
hard-core model, which concerns collections of vertices in a graph that have
no edges among them, known as independent sets.

The hard-core model arises in statistical physics as a model of a gas whose
particles have a non-negligible size (see [97]). If one constrains the particles to
occupy the vertices of a lattice, then having non-negligible size corresponds to
imposing that the set of vertices occupied by gas particles is an independent
set. Though this constraint might seem rather unnatural, models with such
assumptions still exhibit important behaviour such as phase transitions that,
roughly, are order-disorder transitions akin to the freezing transition in
liquids. Of course, the continuous analogue where particles occupy points of
Rd is also of interest, but there much less is known than in the discrete case.
The hard-core model we describe below was also rediscovered in the context
of communication networks, see for example [60].

Given a graph G and fugacity parameter λ > 0, the hard-core model on
G is a Gibbs distribution on the set I(G) of independent sets in G. Each
independent set I occurs with probability proportional to λ|I|, so that

P(I) = λ|I|

Z ind
G (λ)

,

where we write Z ind
G (λ) =

∑
I∈I(G) λ

|I| for the normalising constant which
makes this a probability distribution. Note that we consider the empty set
to be an independent set in G, and for λ = 1 we simply have the uniform
distribution on I(G). The function Z ind

G (λ) is the partition function of
the model, which also corresponds to the independence polynomial from
combinatorics.

In general, partition functions encode a wealth of information about Gibbs
distributions, and computing or bounding these functions is a major topic
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Chapter 1. Introduction

in statistical physics [5, 91, 94]. The partition function is also important
in extremal combinatorics, where we note for this example that Z ind

G (1)
counts the number of independent sets in G. The fact that many different
phenomena can be represented by independent sets in graphs means that
bounds on their number appear throughout mathematics. Here, and in
Chapter 2, we are motivated by a question of Granville on the d-regular
graphs which have the most independent sets (see [3]). We write Kd,d for the
complete bipartite graph with d vertices in each part, and when 2d divides n
we let Hd,n denote the d-regular, n-vertex graph that is the disjoint union of
n/2d copies of Kd,d, see Figure 1.1 for small examples.

(a) The complete bipartite graph K3,3 (b) Two copies of K2,2 making H2,8

Figure 1.1: Important graphs for Chapters 2–4

Kahn [57] showed that Hd,n maximises the total number of independent sets
over all d-regular, n-vertex, bipartite graphs with an argument known as the
entropy method. He then showed [58] that Kd,d maximises 1

|V (G)| logZ ind
G (λ)

for λ ≥ 1 over all d-regular bipartite graphs. Noting that

Z ind
Hd,n

(λ) = Z ind
Kd,d

(λ)n/2d ,

we see that in Kahn’s second result one can useKd,d andHd,n interchangeably.

Galvin and Tetali [44] gave a broad generalisation of Kahn’s results to
counting homomorphisms from a d-regular, bipartite G to any graph H

(where this H may contain loops). A homomorphism from G to H is a
map φ : V (G) → V (H) such that φ(u)φ(v) ∈ E(H) whenever uv ∈ E(G).
The case of H formed of two connected vertices, one with a self-loop, is
that of counting independent sets. Via a modification of H and a limiting
argument, they proved that for any λ > 0, the quantity 1

|V (G)| logZ ind
G (λ) is

maximised over d-regular bipartite graphs by Kd,d. Zhao [102] then removed
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Chapter 1. Introduction

the bipartite restriction in these results for independent sets by reducing the
general case to the bipartite case, in particular proving that Hd,n has the
greatest number of independent sets of any d-regular graph on n vertices.

Theorem 1.1 (Kahn [57, 58], Galvin and Tetali [44], Zhao [102]). For any
d-regular graph G and λ > 0, 1

|V (G)| logZ ind
G (λ) ≤ 1

2d logZ ind
Kd,d

(λ).

The method of Chapter 2 gives a strengthening of this theorem. We define
the occupancy fraction αind

G (λ) of the hard-core model on a graph G to be
the expected fraction of vertices in a random independent set I drawn from
the hard-core model on G. Then

αind
G (λ) = 1

|V (G)| E|I|

= 1
|V (G)|

∑
I∈I(G)|I|λ|I|

Z ind
G (λ)

= λ

|V (G)|
1

Z ind
G (λ)

∂

∂λ
Z ind
G (λ)

= λ

|V (G)|
∂

∂λ
logZ ind

G (λ) ,

and we note that, unlike the partition function, the occupancy fraction is
an observable of the model. In Chapter 2 we prove that Kd,d maximises
the occupancy fraction over d-regular graphs, and show how this implies
Theorem 1.1. By linearity of expectation, or simple manipulation of the
partition functions, note that αind

Hd,n
(λ) = αind

Kd,d
(λ) for any n divisible by 2d,

hence Hd,n gives a family of graphs achieving the maximum. Our methods
show (in a strong way) that these are the only optimal graphs, for more
details see [26]. In Chapter 2 we also discuss the general features of our
method for optimising observables of Gibbs distributions, which serve to unify
the techniques presented in Chapters 2–4. We also discuss other applications
to the occupancy fraction of the hard-core model, including upper and lower
bounds for graphs of given girth, and lower bounds for triangle-free graphs
and for d-regular, vertex-transitive, bipartite graphs.

1.1.2 The monomer-dimer model

The monomer-dimer model [51] on a graph G is a Gibbs distribution on
matchings in G. A matching is a set of pairwise disjoint edges in a graph,
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Chapter 1. Introduction

and in the terminology of the model we say that edges of the matching are
dimers and unmatched vertices are monomers. Matchings are related to
independent sets by the following construction. Given a graph G, we form
the line graph L of G by considering E(G) to be the vertices of L, and stating
that e, f ∈ E(G) are adjacent as vertices in L if and only if e and f share a
vertex in G. Then matchings in G correspond exactly to independent sets in
L, and the monomer-dimer model on G induces the hard-core model on L.

In fact, the monomer-dimer model has its own rich history, arising in the
context of adsorption of oxygen on a tungsten surface [83]; oxygen molecules
consist of a pair of atoms that cover neighbouring tungsten atoms on the
surface, much like a matching edge. There are some differences between the
model here and that most relevant to this chemical problem, but not to first
order [51]. The model we discuss arises in a similar chemical context in the
work of Guggenheim [49] on mixtures of molecules on lattices.

Instead of using the same definitions as the hard-core model and having
to change focus from G to its line graph, we use the following notation for
dealing with matchings directly. The monomer-dimer model on a graph G
at fugacity λ is the distribution on matchingsM(G) in G such that

P(M) = λ|M |

Zmatch
G (λ)

,

where |M | is the number of edges in the matching M , and the partition
function or matching polynomial is

Zmatch
G (λ) =

∑
M∈M(G)

λ|M | .

The occupancy fraction of the monomer-dimer model (also known as the
dimer density) is the expected fraction of edges in a random matching M
drawn from the model,

αmatch
G (λ) = 1

|E(G)| E|M| =
λ

|E(G)|
∂

∂λ
logZmatch

G (λ) .

Using the same general method as in Chapter 2, we show in Chapter 3
that Hd,n also uniquely maximises the occupancy fraction of the monomer-
dimer model in d-regular graphs. This result is rather similar to the the
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Chapter 1. Introduction

corresponding result for the hard-core model, but despite this similarity,
the problem for matchings is somewhat harder. It seems that the entropy
method does not give a result analogous to Theorem 1.1 on the level of the
partition function, and using our method to optimise over the class of line
graphs of d-regular graphs is more challenging than optimising over d-regular
graphs.

In Chapter 3 we also discuss conjectures of Kahn [57] and Friedland, Krop,
and Markström [38] which state respectively that over d-regular, n-vertex
graphs, Hd,n maximises the number of independent sets and matchings of
every fixed size. Improving on results of Carroll, Galvin, and Tetali [14], and
of Ilinca and Kahn [52], we give upper bounds for these problems which are
larger than the conjectured values by factors polynomial in n. This proves
the asymptotic upper matching conjecture of Friedland, Krop, Lundow, and
Markström [39]. See [26] for further work on the above conjectures, where
we resolve them exactly for a wide range of parameters.

1.1.3 The Potts model

In Chapter 4 we turn to colourings of 3-regular graphs. We consider the
q-state Potts model [80] (with no external field), which is a Gibbs distribution
on colourings σ : V (G)→ [q] of the vertices of G with at most q colours. We
call these colourings q-colourings and note that we allow monochromatic
edges. If a q-colouring does not contain any monochromatic edges it is called
proper.

The Potts model is a generalisation of the Ising model which relates to
ferromagnets and other phenomena of solid-state physics, though here we
focus on a combinatorial application of the model. In particular we consider
the antiferromagnetic Potts model given by

P(σ) = e−βm(σ)

ZqG(β) ,

where β > 0 is an inverse temperature parameter, m(σ) is the number of
monochromatic edges under the colouring σ, and the partition function is

ZqG(β) =
∑

σ:V (G)→[q]
e−βm(σ) .

14



Chapter 1. Introduction

An observable of the Potts model analogous to the occupancy fraction is the
internal energy per particle U qG(β), given by

U qG(β) = 1
|V (G)| E[m(σ)]

= 1
|V (G)|

∑
σm(σ)e−βm(σ)

ZqG(β)

= − 1
|V (G)|

∂

∂β
logZqG(β) ,

where σ is a random q-colouring of G from the model. Using the method
of Chapter 2 we prove that K3,3 minimises and that K4 maximises U qG(β)
over 3-regular graphs for all q and β > 0. As a corollary we resolve the case
d = 3 of a conjecture of Galvin and Tetali [44], showing that H3,n maximises
the number of proper colourings over 3-regular, n-vertex graphs.

The work of Chapters 2, 3, and 4 is joint with Matthew Jenssen, Will Perkins,
and Barnaby Roberts, and appears in [23, 25].

1.2 Regularity and counting

In Chapter 5 (and very briefly in Chapter 6) we consider Szemerédi regularity,
which is a form of pseudorandomness. The basic structure which we consider
analogous to a random model is the regular pair. The usual definition states
that a pair of vertex sets (X,Y ) is (ε, d)-regular if for any X ′ ⊆ X with
|X ′| ≥ ε|X| and any Y ′ ⊆ Y with |Y ′| ≥ ε|Y |, we have

e(X ′, Y ′) =
(
d± ε

)
|X ′||Y ′| ,

where we note that d must be close to the density of (X,Y ), namely
e(X,Y )/|X||Y |. This ‘approximately uniform edge distribution property’ is
related to a random model in which each edge between X and Y is present
independently at random with probability d; in this model the expected
value of e(X ′, Y ′) is exactly d|X ′||Y ′|. In Chapter 5 we will prefer a different
definition of regularity because it generalises more usefully to hypergraphs,
which is to insist that the number of copies of C4 (the four-cycle also known
as K2,2, see Figure 1.1b) is close to minimal for the given density. In dense
graphs this definition is (by an easy application of the Cauchy–Schwarz
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Chapter 1. Introduction

inequality) equivalent to the one given above up to a polynomial change in ε.

A regular partition of a graph is a partition of its vertex set into parts of
similar size such that most pairs of parts induce ε-regular bipartite graphs.
The celebrated regularity lemma of Szemerédi [95] states that for any ε > 0
and r0 ∈ N there is r1 ∈ N such that every graph G admits an ε-regular
partition with between r0 and r1 parts. This is useful because it is easy to
work with a regular partition. Knowing the densities between all pairs of
parts allows us to estimate not only the number of edges but also the number
of copies of any given small graph in G; this statement is usually called the
counting lemma. In this introduction we sketch a method for proving the
counting lemma in dense graphs which forms the basis of the more general
method for sparse hypergraphs developed in Chapter 5.

Giving the simplest non-trivial example, if X, Y , and Z are disjoint vertex
sets in a graph G, each of size n, and each pair of sets induces an (ε, d)-regular
bipartite graph, where ε < d/2, then the number of triangles with one vertex
in each set is (d3 ± ξ)n3, with an error ξ polynomial in ε and εd−1. In
applications, one can generally choose ε very small compared to d, and we
will never be interested in knowing the formula more precisely.

To sketch a proof of the above assertion we use standard properties of a
regular pair. We first observe that, by regularity, for all but at most 4εn
vertices x ∈ X we have both deg(x, Y ) and deg(x, Z) in the range (d± ε)n.
We also note that any vertex is in at most n2 triangles. Another standard
consequence of regularity is that for any typical x ∈ X (that is, with deg(x, Y )
and deg(x, Z) in the range (d± ε)n), the pair

(
N(x) ∩ Y,N(x) ∩ Z

)
inherits

regularity and is
(

ε
d−ε , d

)
-regular. We now consider N(x) ∩ Y and note that

similarly, for all but at most

2ε
d−ε |N(x) ∩ Y | ≤ 2εd+ε

d−εn ≤ 6εn

vertices y ∈ N(x) ∩ Y , the vertices x and y have

(
d± ε

d−ε
)
|N(X) ∩ Z| =

(
d± ε

d−ε
)
(d± ε)n

common neighbours in Z (and so are in that many triangles); and the atypical
vertices in N(x) ∩ Y contribute at most (d+ ε)n ≤ n triangles each.

Pulling together these bounds there are at least zero and at most 4εn3 +6εn3
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triangles using an atypical x ∈ X, and using a typical x but an atypical
y ∈ Y respectively. We also have the lower bound

(1− 4ε)n ·
(
1− 2ε

d−ε
)
(d− ε)n ·

(
d− ε

d−ε
)
(d− ε)n ,

and the upper bound

n · (d+ ε)n ·
(
d+ ε

d−ε
)
(d+ ε)n ,

on the number of triangles using typical x and y. Given ε < d/2 we can
bound ε/(d− ε) ≤ 2ε/d, and hence the above sketch indeed shows that there
are (d3 ± ξ)n3 triangles with ξ polynomial in ε and ε/d.

In general (counting copies of some small graph H) one considers embedding
H into G one vertex at a time, keeping track at each step of the number
of ways to extend the next embedding. We need to do two things: argue
that most ways of continuing the embedding are ‘typical’, and that ‘atypical’
choices do not contribute much. Here ‘typical’ simply means that neighbour-
hoods (and common neighbourhoods) of embedded vertices are about the
size one would expect from the densities of the regular pairs, and we prove
that most vertices are typical using regularity; and the atypical choices do
not contribute simply because they are so few.

This sketch is not the only way to prove the counting lemma, however
the same approach is also used in a wide variety of applications to find
embeddings of large graphs into regular partitions Most notably this is
true for the blow-up lemma [63] (which has also been extended to sparse
graphs [1]). That this approach works is one of the major reasons why the
regularity lemma has been so widely used in extremal graph theory.

If, however, one works with sparse graphs, say with o(n2) edges in an n-
vertex graph, this sketch no longer works. There are versions of the regularity
lemma which are useful in sparse graphs [61, 62, 92], but one cannot follow
the above approach to count triangles using them. First, in the above sketch
neighbourhoods inherit regularity simply because they are large fractions
of the original regular pair. In sparse graphs, vertex neighbourhoods will
typically be very small fractions of a regular pair. Second, we estimated the
contribution of atypical vertices as the worst case which one would get in a
complete graph. In sparse graphs, such an error term will no longer be small.
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In general, the reason for these problems is that a counting lemma is simply
false. However, if one restricts attention to subgraphs G of a suitably well-
behaved (typical random, or pseudorandom) ambient graph Γ, where e(G)
is a large fraction of e(Γ), then both problems can be avoided. One can
estimate the contribution of atypical vertices using their contribution in
Γ, which is small; and while vertex neighbourhoods still do not necessarily
inherit regularity, typically they will do so. This statement is made precise
by an inheritance lemma (see [2, 16]). Given such, one can prove a counting
lemma in sparse graphs, and more generally do vertex-by-vertex embedding,
much as one can in dense graphs.

In Chapter 5 we develop the equivalent tool for hypergraphs. As is fairly well
known (and explained later), even when one works with dense hypergraphs,
the hypergraph regularity lemma partitions a hypergraph into sparse parts,
so that even for dense hypergraphs it is not obvious that vertex-by-vertex
embedding is possible. This is one of the main reasons why hypergraph
regularity theory has not had many applications compared to graph regularity
theory. In sparse hypergraphs, as with graphs, it is not generally possible
to perform vertex-by-vertex embedding (or indeed any embedding) but we
prove that this is possible when we are presented with a sparse hypergraph
that is a relatively dense subgraph of a well-behaved ambient hypergraph.

The development of these ideas for hypergraphs is a continuation of the work
in [1, 2] which concerns inheritance lemmas and blow-up lemmas for sparse
graphs. We intend to use these methods to prove a blow-up lemma for sparse
hypergraphs, generalising the existing dense hypergraph blow-up lemma of
Keevash [59].

This work is joint with Peter Allen and Jozef Skokan.

1.3 Ramsey theory

In Chapter 6 we turn to Ramsey theory. The prototypical problem in Ramsey
theory is to find the smallest N such that every graph on at least N vertices
contains either a clique or an independent set of size t. Ramsey [82] proved
that for each t such an N exists.

It can be natural to phrase these questions in terms of edge-coloured complete
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graphs; from the description above suppose that the edges of the graph on
N vertices are coloured with one colour, and the non-edges are coloured
in another. The object we seek is then a monochromatic clique. This
formulation also suggests a generalisation to many colours, and we define the
multicolour Ramsey number Rk(G) of a graph G to be the smallest N such
whenever the edges of the complete graph KN are coloured with k colours,
one finds a monochromatic copy of G. In the case k ≥ 3 determining the
value of Rk(G) for a given graph G is often difficult; there are only a few
graphs G for which we know Rk(G) exactly and frequently one has to settle
for bounds on this quantity.

By way of introduction, we give simple upper and lower bounds on R2(Kt);
a well-known weakening of the argument of Erdős and Szekeres [30], and a
probabilistic argument of Erdős [28]. Though the methods used here differ
from the methods of Chapter 6, the upper bound is a good, easy introduction
to working with edge-coloured complete graphs, and the lower bound is an
excellent introduction to the use of probabilistic methods in graph theory.
The methods of Chapters 2 to 4 are highly probabilistic but significantly
more involved; this introductory result merely serves to prepare the reader
for probabilistic calculations.

Theorem 1.2.
t√
2e

2t/2 < R2(Kt) ≤ 4t .

Proof. For the upper bound, suppose the edges of a complete graph on
at least 4t vertices are coloured ‘red’ and ‘blue’. Let Nr(v) be the set of
vertices connected to v by a red edge, and Nb(v) be those connected by a
blue edge. Select an arbitrary vertex v1 ∈ V (G) and let V2 be the larger
of Nr(v1) and Nb(v1). Continue by picking, for i = 2, . . . , 2t− 1 any vertex
vi ∈ Vi and setting Vi+1 to be the larger of Vi ∩Nr(vi) and Vi ∩Nb(vi). By
this construction |Vi| ≥ 22t+1−i for each i = 2, . . . , 2t− 1, and the sequence
v1, . . . , v2t−1 has the property that each vi is connected to all ‘forward’ vj
with j > i by edges of the same colour. If at least t of the vi are connected
to their forward vj by red edges we have a red clique of size t, otherwise we
obtain a blue clique similarly.

For the lower bound, consider a colouring of the edges of KN where each
edge is coloured red or blue independently at random with probability 1/2.
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The expected number of monochromatic cliques of size t is 21−(t2)(N
t

)
. Set

N = t√
2e2t/2, and note that the expected expected number of monochromatic

cliques of size t is then

21−(t2)
(
N

t

)
< 21−(t2)N

t

t! ≤ 2−(t2)
(
t2(t−1)/2

e

)t (
e

t

)t
= 1 ,

where we use that t! ≥ 2
(
t
e

)t. Since the expectation is less than one, there
must exist a colouring with zero monochromatic t-cliques.

In Chapter 6 we focus on the case where G is the n-vertex path Pn, and the
case where n is even and G is the n-vertex cycle Cn. Since Pn is a subgraph
of Cn we have Rk(Pn) ≤ Rk(Cn), and it is tempting to believe that for fixed
k and even n the Ramsey numbers Rk(Pn) and Rk(Cn) are asymptotically
equal. This is due to an application of the regularity lemma and the notion
of connected matchings pioneered by Łuczak [34, 35, 73], which shows that
given a bound on Rk(Pn) and some nontrivial extra conditions (see below),
one can derive a bound on Rk(Cn). In practice it is often possible to obtain
these nontrivial conditions, and progress on problems such as these often
occurs simultaneously.

The method of Łuczak reduces the problem of finding a monochromatic Cn (or
Pn) in a k-edge-coloured complete graph to that of finding a monochromatic
component containing a sufficiently large matching in a reduced graph, which
is an almost-complete k-edge-coloured graph. Edges of the reduced graph
correspond to sufficiently dense regular pairs (with necessary additional
properties we do not elaborate on) in a regular partition of the original
graph. One uses e.g. the blow-up lemma [63] to show that for each edge
of a matching in the reduced graph, a path may be found spanning the
corresponding regular pair in the original graph. If this matching lies in a
single connected component these paths may be joined to form a cycle.

We describe an elementary technique for finding monochromatic Pn in large
k-edge-coloured complete graphs, and a modification of this technique to suit
finding connected matchings that is slightly better for large n. This result is
extended to Cn (for even n) via the regularity method.

This work is joint with Matthew Jenssen and Barnaby Roberts, and appears
in [22].
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2
Independent sets

In this chapter we prove a tight upper bound on the occupancy fraction of
the hard-core model in d-regular graphs.

Theorem 2.1. For all d-regular graphs G and all λ > 0, we have

αind
G (λ) ≤ αind

Kd,d
(λ) = λ(1 + λ)d−1

2(1 + λ)d − 1 .

The maximum is achieved only by disjoint unions of Kd,d. That is, the
quantity 1

|V (G)|
∂
∂λ logZ ind

G (λ) is uniquely maximised by Hd,n.

The assertion on the derivative of 1
|V (G)| logZ ind

G (λ) is equivalent to the result
on the occupancy fraction by a fact from Section 1.1.1,

αind
G (λ) = λ

|V (G)|
∂

∂λ
logZ ind

G (λ) .

We also have Z ind
G (0) = 1 for any graph G, so can derive Theorem 1.1 from

the above result.
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Proof of Theorem 1.1 using Theorem 2.1. Let G be a d-regular graph. Then

1
|V (G)| logZ ind

G (λ) =
∫ λ

0

αind
G (t)
t

dt

≤
∫ λ

0

αind
Kd,d

(t)
t

dt

= 1
2d logZ ind

Kd,d
(λ) .

In fact, Theorem 2.1 shows that the ratio Z ind
Kd,d

(λ)1/2d/Z ind
G (λ)1/|V (G)| is

strictly increasing in λ for any d-regular graph G that is not Hd,n.

Using a variant of the method used to establish Theorem 2.1, we also prove
a lower bound on the occupancy fraction in any d-regular, vertex-transitive,
bipartite graph G. Let Td be the infinite d-regular tree, and let αind

Td
(λ)

denote the occupancy fraction of the unique translation invariant hard-core
measure on Td at fugacity λ. One can obtain the occupancy fraction of an
infinite graph as a limit of the occupancy fractions of a sequence of finite
graphs that converges locally to the infinite graph in the sense of Benjamini
and Schramm [8], but for our purposes it suffices to note that αind

Td
(λ) is the

solution of the equation

α

λ(1− α) =
(1− 2α

1− α

)d
,

see, for example, [9].

Theorem 2.2. For any d-regular, vertex-transitive, bipartite graph G,

αind
G (λ) > αind

Td
(λ) .

The corresponding statement for the normalised log partition function (the
integrated version of Theorem 2.2) holds without the condition of vertex
transitivity [89]. Theorem 2.2 itself may not hold without vertex transitivity
(see Section 5 of [19] for a related discussion about matchings). For values of
λ up to some critical λc(Td) = (d−1)d−1

(d−2)d , known as the uniqueness threshold,
there is a unique translation-invariant hard-core measure on Td. Provided
λ ≤ λc(Td), it is straightforward to show that the bound in Theorem 2.2 is
asymptotically tight for the relevant class of graphs. Indeed, from the results
of Weitz [98] any sequence of graphs Gn that converges locally to Td has
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occupancy fraction αTd(λ) + o(1) as n→∞; so for example we can take a
sequence of bipartite Cayley graphs of large girth.

The method developed to prove Theorems 2.1 and 2.2 is easy to generalise
to other Gibbs distributions and to questions about optimising observables
over different classes of graphs. We summarise a very general form of the
method in Section 2.5, where we also give the necessary background on Gibbs
distributions.

2.1 Related work

The results of Kahn [57], Galvin and Tetali [44], and Zhao [102] (see The-
orem 1.1) culminating in the fact that 1

|V (G)| logZ ind
G (λ) is maximised over

d-regular graphs by Kd,d are based on the entropy method, a powerful tool
for the type of problems we address here. Apart from the results mentioned
above, see [41] and [81] for surveys of the method. A direct application of
the method requires the graph G to be bipartite. Zhao [103] showed that in
some, but not all applications of the method, this restriction can be removed
by using a ‘bipartite swapping trick’. An entropy-free proof of Galvin and
Tetali’s general theorem on counting homomorphisms was recently given
by Lubetzky and Zhao [72]. Our method also does not use entropy, but
in contrast to the other proofs it works directly for all d-regular graphs,
without a reduction to the bipartite case. The method deals directly with the
hard-core model instead of counting homomorphisms and seems to require
more problem-specific information than the entropy method.

The technique of writing the expected size of an independent set in two ways
(as we do here) was used by Alon [4] in proving lower bounds on the size
of an independent set in a graph in which all vertex neighbourhoods are
r-colourable. The idea of bounding the occupancy fraction instead of the
partition function comes in part from work of Perkins [79] in improving, at
low densities, the bounds on matchings of a given size in Ilinca and Kahn [52]
and independent sets of a given size in Carroll, Galvin, and Tetali [14]. We
study problems of this nature in Chapter 3. The use of linear programming
for counting graph homomorphisms appears in Kopparty and Rossman [64],
where they use a combination of entropy and linear programming to compute
a related quantity, the homomorphism domination exponent, in chordal and
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series-parallel graphs.

In statistical physics, the analogue of the occupancy fraction in a general
spin system is called the mean magnetisation; on general graphs it is #P -
hard to compute the magnetisation in the ferromagnetic Ising model, the
monomer-dimer model, and the hard-core model [91, 94].

2.2 A sketch of the method

To introduce our method, we start by proving Theorem 2.1 under the
assumption that G is triangle-free. In what follows, I will denote the random
independent set drawn according to the hard-core model with fugacity λ on
a d-regular, n-vertex graph G .

Given some independent set I, we say a vertex v is occupied if v ∈ I and
uncovered if none of its neighbours are in I: N(v) ∩ I = ∅. Let pv be the
probability v is occupied and qv be the probability v is uncovered. Note that
q is often used to represent 1− p in probabilistic settings, but here we have
a different definition. The idea of considering qv as we do here appears in
Kahn’s paper [57].

We will show that for every λ > 0 and any triangle-free G, αind
G (λ) is

maximised by Kd,d. Recall that by linearity of expectation the occupancy
fraction is the same for any number of disjoint Kd,d’s.

The sketch relies on two key properties of the hard-core model. Firstly,
for any vertex v, given that v is uncovered, v is occupied with probability
λ/(1 + λ). Let I = {I ∈ I(G) : N(v)∩ I = ∅} be the set of independent sets
in G for which v is uncovered, and let I ′ = {I ∈ I(G) : v ∈ I} consist of
independent sets that contain v. Note that for any independent set I, v ∈ I
implies N(v)∩ I = ∅ so that I ′ ⊆ I. The property holds because each I ∈ I ′

has a corresponding I \ {v} ∈ I \ I ′, and removing v ‘costs’ weight λ. When
we consider I, the random independent set chosen according to the hard-core
model on G, we calculate

P(v ∈ I | v is uncovered) =
∑
I∈I′ λ

|I|∑
J∈I λ

|J | =
∑
I∈I′ λ

|I|∑
J∈I′(λ|J |−1 + λ|J |)

= λ

1 + λ
.

The second key property is that for any set U ⊆ V (G) of vertices, conditioned
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on the fact that every vertex in U is uncovered, the probability that no vertex
in U is occupied is 1/Z ind

F (λ), where F is the subgraph of G induced by U .
This is simply because, conditioned on U being uncovered, I ∩U may be any
independent set in U , each such J occurring with probability proportional
to λ|J |. Now Z ind

F (λ) is the normalising constant for this to be a probability
distribution, hence the event that no vertex in U is occupied occurs with
probability 1/Z ind

F (λ).

Letting α = αind
G (λ) and n = |V (G)|, we write

α = 1
n

∑
v∈G

pv

= 1
n

∑
v∈G

λ

1 + λ
qv (2.1)

= λ

1 + λ

1
n

∑
v∈G

d∑
j=0

P[j neighbours of v are uncovered](1 + λ)−j (2.2)

= λ

1 + λ
· E[(1 + λ)−Y ]

where Y is the random variable that counts the number of uncovered neigh-
bours of a uniformly chosen vertex from G, with respect to the random
independent set I. Y is an integer valued random variable bounded between
0 and d. Equation (2.1) follows by the first key property, and (2.2) follows
from the second. Conditioned on U = {u1, . . . , uj} all uncovered, where the
ui’s are neighbours of v, the probability that none are occupied is (1 + λ)−j .
This is where we use the triangle-free assumption: there are no edges in U
so the relevant partition function is (1 + λ)j .

We also have

EY = 1
n

∑
v∈G

∑
u∈N(v)

qu = d · 1 + λ

λ
α ,

since each u appears in the double sum exactly d times as G is d-regular.
This gives the identity

EY = d · E[(1 + λ)−Y ] .
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Now let

α∗ = λ

d(1 + λ) · sup
0≤Y≤d

{EY : EY = d · E[(1 + λ)−Y ]}

where the supremum is over all distributions of integer-valued random vari-
ables Y bounded between 0 and d.

For any λ and d there is a unique distribution Y supported only on 0 and
d that satisfies the constraint EY = d · E[(1 + λ)−Y ]. We claim that the
supremum is uniquely achieved by this distribution. The claim follows from
convexity, but we defer details to the proof of a more general statement
in Section 2.3. Since the distribution on Y associated to Hd,n satisfies
the constraint and is supported on 0 and d, it must maximise α. Since
disjoint unions of Kd,d’s are the only graphs whose associated distribution is
supported on 0 and d, they uniquely achieve the maximum.

To recap, the method is the following:

(i) Define a random variable Y using randomness in the hard-core model
on G and in choosing a random vertex of G. In the proof above, Y
was the number of uncovered neighbours of a random vertex.

(ii) Write α in terms of expectations of functions of Y .

(iii) Add constraints that the random variable Y must satisfy for any graph
G in our class. In the case above, the constraint was simply that
0 ≤ Y ≤ d.

(iv) Show that the unique maximiser of α over all distributions Y satisfying
the constraints is the distribution associated to the extremal graph,
and therefore α is maximised by the extremal graph over the subset of
distributions Y associated to d-regular graphs.

In Section 2.3 we give the full proof of Theorem 2.1. We prove the lower
bound, Theorem 2.2, in Section 2.4.

2.3 Proof of Theorem 2.1

Here we show that Theorem 2.1 holds for all d-regular graphs.
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For a vertex v ∈ G and an independent set I, we define the local view at v to
be the subgraph of G induced by the neighbours of v which are not adjacent
to any vertex in I \N(v). We use the convention v /∈ N(v). The vertices in
the local view may be uncovered or covered, but if they are covered it must
be from another vertex in the local view. In a triangle-free graph the local
view is always a set (possibly empty) of isolated vertices. Note that if v ∈ I,
then the local view at v is necessarily empty.

Let L be the random local view at v when we draw I according to the
hard-core model and choose vertex v uniformly at random from G. For
any graph F , let pF be the probability that L is isomorphic to F . Also let
ZF (λ) = Z ind

F (λ) be the partition function of the hard-core model on F at
fugacity λ. Then we can write α = αind

G (λ) in two ways:

α = λ

1 + λ
E
[ 1
ZL(λ)

]
(2.3)

and

α = λ

d
E
[
Z ′L(λ)
ZL(λ)

]
, (2.4)

where in both equations the expectations are over the random local view L.
Equation (2.3) holds because v itself is uncovered if and only if all vertices
in the local view at v are unoccupied. Given that the L is isomorphic
to F , the probability that all vertices in the local view are unoccupied is

1
ZF (λ) . Equation (2.4) follows by counting the expected number of occupied
neighbours of v and dividing by d: only vertices in the local view can be
occupied, and, given L, the expected number of occupied vertices in the free
neighbourhood is λZ′L(λ)

ZL(λ) .

Now let

α∗ = λ

1 + λ
· sup

{
E
[ 1
ZL(λ)

]
: d

1 + λ
· E
[ 1
ZL(λ)

]
= E

[
Z ′L(λ)
ZL(λ)

]}
(2.5)

where the supremum is over all distributions of the random local view L
supported on graphs with at most d vertices. From (2.3) and (2.4), the
distribution on L obtained from G satisfies the constraint above.

We claim that for any λ > 0, α∗ is achieved uniquely by a distribution
supported only on the empty graph and the graph consisting of d isolated
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vertices, Kd. Theorem 2.1 follows since disjoint unions of Kd,d’s are the
only graphs for which the free neighbourhood can only be the empty set or
Kd. To prove this claim we use the language of linear programming, see for
example [13]. Any maximisation problem stated as a linear program has a
corresponding dual program which is a minimisation problem, and the strong
duality theorem states that any feasible value in the dual is an upper bound
on the optimal value of the primal. Hence it suffices for us to show that
the value corresponding to Kd,d, which is trivially feasible in the primal, is
also feasible in the dual. The duality theorem then implies that the optimal
values in both the primal and the dual are given by Kd,d.

Write Ld for the set of all graphs on at most d vertices. Equation (2.5)
defines a linear program with the decision variables {pF }F∈Ld . We write the
linear program in standard form as

α∗ = max λ

2(1 + λ)
∑
F∈Ld

pF (aF + bF ) s.t.

∑
F∈Ld

pF = 1

∑
F∈Ld

pF (aF − bF ) = 0

pF ≥ 0 ∀F ∈ Ld

where aF = 1
ZF (λ) and bF = (1+λ)Z′F (λ)

dZF (λ) . We can calculate a∅ = 1, b∅ = 0,

aKd
= (1+λ)−d, bKd

= 1. The solution p∅ = 1−(1+λ)−d
2−(1+λ)−d and pKd = 1

2−(1+λ)−d

is the unique feasible solution supported only on ∅ and Kd, and gives the
objective value λ(1+λ)d−1

2(1+λ)d−1 . Our claim is that this is the unique maximum.

The dual linear program is

α∗ = min λ

2(1 + λ)Λ1 s.t.

Λ1 + Λ2(aF − bF ) ≥ aF + bF ∀F ∈ Ld

where Λ1,Λ2 are the dual variables.

Guided by the candidate solution above we set Λ1 = 2
2−(1+λ)−d , and Λ2 =

1− Λ1. With these values, the dual constraints corresponding to F = ∅,Kd

hold with equality, and the objective value is λ
2(1+λ)Λ1 = λ(1+λ)d−1

2(1+λ)d−1 . To finish
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the proof we claim that Λ1,Λ2 are feasible for the dual program; which means
showing that

Λ1 + Λ2(aF − bF ) > aF + bF

for all F ∈ Ld \ {∅,Kd}. Substituting our values of Λ1,Λ2, this inequality
reduces to

λZ ′F (λ)
ZF (λ)− 1 <

dλ(1 + λ)d−1

(1 + λ)d − 1 . (2.6)

The left-hand side of (2.6) is the expected size of a random independent set
J drawn from the hard-core model on F conditioned on J being non-empty.
The right-hand side is the same quantity for Kd.

Inequality (2.6) follows directly from the observation that, over all F ∈ Ld, the
graph Kd maximises the ratio of subsequent terms in the polynomial ZF . Let
ri =

(d
i

)
be the coefficient of λi in ZKd

(λ) and write ZF (λ) = 1 +
∑d
i=1 siλ

i.
We have (i + 1)ri+1 = (d − i)ri and (i + 1)si+1 ≤ (d − i)si by counting
independent sets of size i+ 1.

To verify (2.6) we show that for each 1 ≤ k ≤ d the coefficient tk of λk in
the polynomial (λZ ′

Kd
)(ZF − 1)− (λZ ′F )(ZKd

− 1) is non-negative. We have

tk =
k−1∑
i=1

irisk−i +
k−1∑
i=1

irk−isi

=
bk/2c∑
i=1

(k − 2i)(rk−isi − risk−i) .

Observe that term-by-term the above sum giving tk is non-negative by
comparing the ratio of successive coefficients in ZKd

and ZF . Furthermore, if
ZF 6= ZKd

then at least one tk must be positive, which completes the claim.

To see the optimiser is unique note that there is a unique distribution
supported on ∅ and Kd satisfying the primal constraints, and fixing Λ1 =
αind
Kd,d

(λ) in the dual gives a unique feasible value for Λ2, since its coefficient
aF − bF takes different signs on F = ∅, Kd. Therefore this is the unique
optimal solution in the dual, and since all other dual constraints hold with
strict inequality, any primal optimal solution must be supported on ∅ and
Kd. Disjoint unions of Kd,d’s are the only graphs whose distributions have
this support. This completes the proof of Theorem 2.1.
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2.4 Proof of Theorem 2.2

To prove Theorem 2.2 we will use the fact that occupancies of vertices on
the same side of a bipartite graph are positively correlated. Recall that we
let I be a random independent set drawn from the hard-core model, and for
a vertex v we write pv for the probability that v ∈ I.

Lemma 2.3. Let G be a bipartite graph with bipartition E ∪ O. For any
r ≥ 2, let u1, u2, . . . , ur ∈ E. Then

P[{u1, . . . , ur} ⊆ I] ≥
r∏
i=1

pui

in the hard-core model for any λ. Similarly, let U be the random set of
uncovered vertices of G. Then

P[{u1, . . . , ur} ⊆ U] ≥
r∏
i=1

qui

Moreover, the inequalities are strict when λ > 0 and at least two of the ui’s
are in the same connected component of G.

The first part of the lemma follows by induction on r from the fact that
P[u1, u2 ∈ I] > P[u1 ∈ I] · P[u2 ∈ I] when u1, u2 are in the same connected
component and in the same part of the bipartition of G. In [97] this is shown
to be a consequence of the FKG inequality; see also [36] and Corollary 1.5
of [6]. An intuitive reason for this fact (which can be turned into a rigorous
argument using Weitz’s tree [98]), is that conditioning on the event that a
vertex v is occupied forbids its neighbours from being in the independent set;
conditioning on the event that v is not occupied increases the probability
each of its neighbours are occupied, and these effects propagate through the
bipartite graph.

To prove the second part of the lemma, note that pui = λ
1+λqui , and for

u1, . . . , ur ∈ E , P[{u1, . . . , ur} ⊆ I] = ( λ
1+λ)rP[{u1, . . . , ur} ⊆ U], since there

are no edges between the ui’s. Then the desired inequality follows from the
first part of the lemma.

Proof of Theorem 2.2. Write α for αind
G (λ). By vertex transitivity, for all v,

pv = α and qv = 1+λ
λ α. Fix a vertex v and let Y be the number of uncovered
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neighbours of v. For u ∈ N(v) let Yu be the indicator random variable that
u is uncovered.

α = λ

1 + λ
E[(1 + λ)−Y ]

= λ

1 + λ
E[(1 + λ)−

∑
u∈N(v) Yu ]

= λ

1 + λ

(
α+ (1− α)E

[
(1 + λ)−

∑
u∈N(v) Yu

∣∣∣v /∈ I
])
,

hence
α

λ(1− α) = E
[
(1 + λ)−

∑
u∈N(v) Yu

∣∣∣v /∈ I
]
.

Now for u ∈ N(v), let Ỹu be the indicator that u is uncovered, conditioned
on the event {v /∈ I}. For each u, Ỹu has a Bernoulli(p) distribution, where
p = 1+λ

λ
α

1−α , and by Lemma 2.3 applied to G \ v, the Ỹu’s are positively
correlated. This gives

α

λ(1− α) = E[(1 + λ)−
∑

u∼v Ỹu ]

>
∏
u∼v

E[(1 + λ)−Ỹu ]

=
(

1− p+ p

1 + λ

)d
=
(1− 2α

1− α

)d
.

The function α
λ(1−α) is increasing in α, the function

(
1−2α
1−α

)d
is decreasing

in α, and the two functions are equal at α = αTd(λ), so we conclude that
α > αTd(λ).

2.5 A general method for Gibbs distributions

The hard-core model is an example of a Gibbs distribution, and we give
a general description of such distributions in this section. We then state
how the method detailed above can be applied in this general setting. In
Chapter 3 we show how the method can give enough structural information
to optimise over line graphs of d-regular graphs; and in Chapter 4 we apply
the method to the Potts model, a different Gibbs distribution.

For a graph G and a finite set of spins Ω, a Gibbs distribution on G is
a probability distribution on assignments of spins σ : V (G) → Ω. Given
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parameters λi and βi,j for i, j ∈ Ω, we associate to each assignment of spins
an energy of the form

H(σ) =
∑

v∈V (G)
λσ(v) +

∑
uv∈E(G)

βσ(u),σ(v) ,

and insist that each σ occurs with probability proportional to eH(σ). The
normalising constant ZG =

∑
σ e

H(σ) is called the partition function of the
model. To obtain the hard-core model from this definition is simple. Take
Ω = {0, 1} so that each σ corresponds to some subset Iσ ⊆ V (G), with
σ(v) ∈ {0, 1} indicating whether v ∈ Iσ. Then set λ0 = 0, λ1 = log λ,
β1,1 = −∞ and βi,j = 0 otherwise. Now if σ corresponds to a subset of V (G)
which contains an edge, H(σ) = −∞ which we take to mean Iσ occurs with
probability zero. Otherwise, Iσ is an independent set and H(σ) = |Iσ| log λ.

We introduce a final definition from statistical physics. Let the free energy per
particle FG be 1

|V (G)| logZG, and note that Theorem 1.1 may be interpreted
as an upper bound on the free energy per particle of the hard-core model in
d-regular graphs.

One can define observables such as the occupancy fraction by taking expect-
ations over the distribution, and the examples in this thesis correspond to
(logarithmic) derivatives of the partition function with respect to some of
the parameters λi and βi,j .

The method in this general setting now has the following form.

(i) Choose a Gibbs distribution, an observable, and a class of bounded-
degree graphs.

(ii) For fixed depth t, consider local views generated by the following two-
part experiment on any graph G from the class. Firstly, choose an
assignment of spins σ : V (G) → Ω from the Gibbs distribution, and
secondly choose a vertex v ∈ V (G) uniformly at random. Then record
the graph structure of G from v to the depth-t neighbourhood of v and
the spins that σ assigns to the boundary of this neighbourhood. See
Figure 2.1 for examples.

(iii) Express the desired observable as an expectation over the random local
view and formulate constraints on the distribution of local views that
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must hold whenever the two part experiment is carried out on a graph
from the given class.

(iv) Formulate and solve a constrained optimisation problem for the ob-
servable as a linear program.

v v

Figure 2.1: Example local views of depth t = 2 from a 3-
regular graph. All graph structure on the white vertices is
recorded. The boundary is coloured black, and we record σ
restricted to these vertices. Note that we discard any edges
within the boundary.

The proof of Theorem 2.1 follows this outline for the hard-core model, the
occupancy fraction, and d-regular graphs. We take depth t = 2 and make
a slight adjustment to the definition by considering v itself to be part of
the boundary. This is merely for convenience in the proof, and it is a
straightforward modification to express the proof with the definition of local
view given above. In the hard-core model spins correspond to membership of
the random independent set, hence given spins on the boundary (and v) we
can see which neighbours of v are covered by an occupied boundary vertex.
This yields the definition of local view exactly as in Section 2.3.

For Theorem 2.1 we only required one constraint on the distribution of the
random local view, which we obtained by writing αind

G (λ) two different ways
and equating them, see (2.3) and (2.4). Increasing the depth of local views
mean that they contain more information, which may yield more constraints
on the distribution of the local views. This comes at the cost of a larger set
of possible local views and lengthier calculations, however.

It is worth drawing attention to the key property of Gibbs distributions
that allows this method to function. In several places we use the fact
that conditioned on the spins at some boundary, the spins either side of the
boundary are independent. This important fact, known as the spatial Markov
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property, lies behind the two key properties of the hard-core model given in
Section 2.2. The derivations given there are straightforward to generalise to
any Gibbs distribution of the above form, and any sort of boundary.

2.6 Further work

In this section we briefly discuss further applications of the method to
independent sets and the hard-core model which focus on adding girth
conditions to the class of graphs considered. Firstly, in [24] we prove an
asymptotically tight lower bound on the average size of independent sets in a
triangle-free graph on n vertices with maximum degree d. As a corollary we
give a lower bound on the total number of independent sets in a triangle-free
graph with maximum degree d that is asymptotically tight in the exponent.
In both cases, tightness is exhibited by a random d-regular graph. The
lower bounds of [24] are naturally expressed in terms of the Lambert W
function, W (z). For z > 0, W (z) denotes the unique positive real satisfying
the relation W (z)eW (z) = z. It may be useful to note that for z ≥ e we have
W (z) ≥ log z − log log z.

Theorem 2.4. Let G be a triangle-free graph with maximum degree d. Then
for all λ > 0,

αind
G (λ) ≥ λ

1 + λ

W (d log(1 + λ))
d log(1 + λ) .

In particular, for λ ≥ 1/ log d we have αind
G (λ) ≥ (1 + od(1)) log d

d .

Theorem 2.5. Let G be a triangle-free graph on n vertices with maximum
degree d. Then for all λ > 0,

Z ind
G (λ) ≥ exp

([
W (d log(1 + λ))2 + 2W (d log(1 + λ))

] n
2d

)
.

In particular, taking λ = 1, we see that G has at least e(
1
2 +od(1)) log2 d

d
n

independent sets.

Theorem 2.4 implies a well-known result of Shearer [93] on the Ramsey
number R(3, k). We define R(3, k) to be the least N such that every graph
on N vertices contains either a triangle or an independent set of size k, and

34



Chapter 2. Independent sets

note the bounds(1
4 + o(1)

)
k2

log k ≤ R(3, k) ≤ (1 + o(1)) k2

log k .

The upper bound is by Shearer [93] and the lower bound by independent work
of Bohman and Keevash [11] and Fiz Pontiveros, Griffiths, and Morris [37].

To see that Theorem 2.4 directly implies the above upper bound, suppose
that G is triangle free with no independent set of size k. Then G must have
maximum degree less than k. Applying Theorem 2.4 we see the independence
number is at least (1+ok(1)) log k

k n but less than k, and so n < (1+ok(1)) k2

log k
as required. Whether the upper bound can be improved is a major open
question in Ramsey theory, see [24].

Perarnau and Perkins [78] apply the method to 3-regular graphs with girth
conditions. Here the optimising graphs are the Petersen graph P ∗, and the
Heawood graph H∗, see Figure 2.2.

(a) The Petersen graph P ∗ (b) The Heawood graph H∗

Figure 2.2: Extremal graphs from results of Perarnau and
Perkins [78]

Theorem 2.6. For any triangle-free, cubic graph G, and every 0 < λ ≤ 1,
αind
G (λ) ≥ αind

P ∗ (λ), with equality if and only if G is a disjoint union of P ∗’s.

Theorem 2.7. For any cubic graph G of girth at least 5, and every λ > 0,
αind
G (λ) ≤ αind

H∗(λ), with equality if and only if G is a disjoint union of H∗’s.

Finally, we also note that stability follows naturally from this method. That
is, when G is somehow ‘far’ from (disjoint unions of) the optimising graph in
Theorems 2.1, 2.7, 3.1, and 4.1, the occupancy we obtain that the occupancy
fraction is correspondingly ‘far’ from optimal. While the proofs presented
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here contain the relevant information, the details are discussed in [26], where
we use stability to give tight bounds on certain coefficients of the relevant
partition functions.
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3
Matchings in regular graphs

In this chapter we prove a tight upper bound on the occupancy fraction of
the monomer-dimer model in regular graphs.

Theorem 3.1. For all d-regular graphs G and all λ > 0, we have

αmatch
G (λ) ≤ αmatch

Kd,d
(λ) .

The maximum is achieved only by disjoint unions of Kd,d. That is, the
quantity 1

|E(G)|
∂
∂λ logZmatch

G (λ) is uniquely maximised by Hd,n.

As with the case of independent sets, since αmatch
G is the normalised logar-

ithmic derivative of Zmatch
G (λ), integrating the above result implies that Kd,d

(and thus also Hd,n) maximises 1
|V (G)| logZmatch

G (λ) for any λ > 0, and in
particular, with λ = 1, this shows that Hd,n has the greatest total number of
matchings of any d-regular graph on n vertices.

Theorem 3.2. Let G be a d-regular graph and λ > 0. Then

1
|V (G)| logZmatch

G (λ) ≤ 1
2d logZmatch

Kd,d
(λ) .

In Section 3.3 we use Theorem 3.2 to give new upper bounds on the number
of matchings of a given size in d-regular graphs, proving the ‘asymptotic
upper matching conjecture’ of Friedland, Krop, Lundow, and Markström [39].
The argument also gives new results for independent sets.

Let ik(G) be the number of independent sets of size k in a graph G, and
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mk(G) the number of matchings of size k. Kahn [57] conjectured that ik(G)
is maximised over d-regular, n-vertex graphs by Hd,n for all k, and Friedland,
Krop, and Markström [38] conjectured the same for mk(G). Previous bounds
towards these conjectures were given in [14, 52, 79]. Here we adapt the
method of Carroll, Galvin, and Tetali and use Theorem 3.2 to give bounds
for both problems that fall short of the conjectures by a multiplicative factor
of 2
√
n, for all d and all k. For more recent developments based on these

methods which include a proof of the above conjectures for a wide range of
parameters, see [26].

Theorem 3.3. Let 2d divide n. Then for all d-regular graphs G on n

vertices,

ik(G) ≤ 2
√
n · ik(Hd,n)

and

mk(G) ≤ 2
√
n ·mk(Hd,n) .

We prove Theorem 3.1 in Section 3.2 before giving the bounds on the number
of independent sets and matchings of a given size in Section 3.3.

3.1 Related work

Carroll, Galvin, and Tetali [14] used the entropy method to give an upper
bound of (1 + dλ)1/2 on Zmatch

G (λ)1/|V (G)|. It was previously conjectured
[38, 41] that Kd,d maximises Zmatch

G (λ)1/|V (G)| over all d-regular graphs G,
Theorem 3.2 resolves this conjecture.

In [20], Csikvári proved the ‘lower matching conjecture’ of [38] and in [19]
gave a new lower bound on the number of perfect matchings of d-regular,
vertex-transitive, bipartite graphs, in both comparing an arbitrary graph
with the infinite d-regular tree (see also the recent extension by Lelarge [69]
to irregular graphs). Proposition 2.10 in [19] states that the occupancy
fraction of the monomer-dimer model on any d-regular, vertex-transitive,
bipartite graph is at least that of the infinite d-regular tree; in Theorem 2.2 we
proved the same fact for independent sets. Csikvári’s techniques are different
to the methods used here, but similar in that he bounds the occupancy
fraction instead of directly working with the partition function. His results
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rely on an elegant interplay between the Heilmann–Lieb theorem [51] and
Benjamini–Schramm convergence of bounded-degree graphs.

3.2 Proof of Theorem 3.1

Recall that we write Zmatch
G (λ) for the partition function of the monomer-

dimer model on a graph G at fugacity λ, and let M be a matching drawn
from the model.

The proof follows the general framework of Section 2.5 (with depth t = 2) if
one translates the problem to statements about independent sets in the line
graph. Here our terminology avoids this translation.

Given some matching M , we refer to an edge as covered if an incident edge
is in M . Given the random M from the model, let e be an edge of G
chosen uniformly at random, with an arbitrary left/right orientation chosen
at random, and now define the local view (centred on e) to be the subgraph of
G containing all the incident edges to e that are not covered by edges outside
of both e and its incident edges. In terms of the more general framework,
this is equivalent to recording the spins on edges at distance 2 from e. Note
that (in contrast to the proof in Section 2.3) here we do not consider e part
of the boundary. We consider orientations of edges in terms of left and right
endpoints, hence in this chapter we use the letter C for local views, leaving
L free to mean ‘left’. Given e and a local view C centred on e, we use the
term externally uncovered neighbour to refer to an edge of C incident to e.

The possible local views C are completely defined by three parameters:
L,R,K ∈ {0, 1, . . . , d−1}, counting the number of left and right neighbouring
edges in C which do not form a triangle with e, and the number of triangles
containing e in C. An example is pictured in Figure 3.1.

We now consider probabilities according to the two-part experiment that
yields a local view; choosing M from the monomer-dimer model on a d-
regular graph at fugacity λ, and picking an edge e (and left/right orientation)
uniformly at random. Let q(i, j, k) = P[L = i, R = j,K = k], and observe
that the matching polynomial for such a local view is Zmatch

i,j,k (λ) := 1 + (i+
j + 2k)λ+ (k2 + k(i+ j − 1) + ij)λ2. For brevity we drop the superscript
and may omit λ, so that Zmatch

i,j,k (λ) = Zi,j,k(λ) = Zi,j,k.
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e

K = 1

R = 2L = 3

Figure 3.1: An example local view from the monomer-dimer
model

We can write αmatch
G (λ) as the expected fraction of edges incident to e that

are in the matching, as each edge in a d-regular graph is incident to exactly
2(d− 1) other edges:

αmatch
G (λ) = 1

|E(G)|
∑
e

∑
f∼e

P[f ∈M]
2(d− 1)

= E
[

λZ ′i,j,k(λ)
2(d− 1)(λ+ Zi,j,k(λ))

]

=
∑
i,j,k

q(i, j, k)
λZ ′i,j,k(λ)

2(d− 1)(λ+ Zi,j,k(λ)) ,

where the expectation in the second line is over the random local view
resulting from the two-part experiment described above. If we define

a(i, j, k) =
λZ ′i,j,k(λ)

2(d− 1)(λ+ Zi,j,k(λ))

for the expected fraction of occupied neighbours of e in the local view
given by i, j, k. Then the above expression can be written αmatch

G (λ) =∑
i,j,k q(i, j, k)a(i, j, k).

We now need to introduce additional constraints before optimising αmatch
G (λ)

over the q(i, j, k). We could write multiple expressions for αmatch
G (λ), equate

them, and solve the maximisation problem as we did for independent sets
in Section 2.3. Using three expressions for αmatch

G (λ) we were able to prove
Theorem 3.1 for the case d = 3, in which the optimiser is supported on only
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three values q(0, 0, 0), q(1, 1, 0), q(2, 2, 0). In general we need at least d− 1
constraints (in addition to the constraint that the q(i, j, k) sum to one) as
the distribution on local views induced by Kd,d is supported on d values.

Instead, we write, for all t, two expressions for the marginal probability that
the number of uncovered neighbours on a randomly chosen side of a random
edge is equal to t. We find the two expressions by choosing uniformly: a
random edge e, a random side left or right, and f , a random neighbouring
edge of e from the given side. We first calculate the probability that e
has t uncovered neighbours on the side containing f , then we calculate the
probability that f has t uncovered neighbours on the side containing e.

Given a local view C with L = i, R = j, and K = k, e can have 0, 1, i+k−1,
or i + k uncovered left neighbours; an edge f to the left of e can have
0, 1, i + k − 2, i + k − 1, i + k, or i + k + 1 uncovered right neighbours
(depending on whether f itself is in the local view C).

For these quantities we make the definitions

γei,j,k(t) = P[e has t uncovered left neighbours |L = i, R = j,K = k] ,

γfi,j,k(t) = P[f has t uncovered right neighbours |L = i, R = j,K = k] ,

where f is a uniformly chosen left neighbour of the uniformly random oriented
edge e.

Claim 3.4. Let βt = 1 + tλ. Then we have

γei,j,k(t) = 1
λ+ Zi,j,k

(
λ1t=0 + (iλβj+k + kλβj+k−1)1t=1

+ βj1t=i+k + kλ1t=i+k−1
) (3.1)

γfi,j,k(t) = 1
(d− 1)(λ+ Zi,j,k)

(
(iλβj+k + kλβj+k−1)1t=0

+
[
(d− 1)λ+ (d− 2)(iλβj+k + kλβj+k−1)

]
1t=1

+ (i+ k − 1)kλ1t=i+k−2

+
[
(d− i− k)kλ+ (i+ k)jλ

]
1t=i+k−1

+
[
(d− 1− i− k)jλ+ (i+ k)

]
1t=i+k

+ (d− 1− i− k)1t=i+k+1
)
.

(3.2)

Proof. To compute the functions γei,j,k(t) we consider the following disjoint
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events: (i) no left edge and no right edge from a triangle is in the matching,
(ii) e is in the matching, (iii) a left edge is in the matching, (iv) no left edge
is in the matching, but a right edge from a triangle is in the matching. These
events happen with probability βj

λ+Zi,j,k ,
λ

λ+Zi,j,k ,
iλβj+k+kλβj+k−1

λ+Zi,j,k , and kλ
λ+Zi,j,k

respectively. Under these events the number of uncovered neighbours of e is
i+ k, 0, 1, and i+ k − 1 respectively. This gives (3.1).

To compute the functions γfi,j,k(t) we refine the above events to include the
possible choices of f : f can be an edge outside the local view with probability
(d− 1− i− k)/(d− 1); an edge in the local view but not in a triangle with
probability i/(d − 1); in the local view and in a triangle with probability
k/(d− 1). If a left edge is in the matching we choose it as f with probability
1/(d− 1), and if a right edge in a triangle is in the matching we choose f
adjacent to it with probability 1/(d−1). Computing the number of uncovered
neighbours of f in each case gives (3.2).

We define a linear program with constraints imposing that the two different
ways of writing these marginal probabilities are equal. This constraint for
t = d− 1 is redundant and we omit it.

α∗ = max
∑
i,j,k

q(i, j, k)a(i, j, k) s.t.

q(i, j, k) ≥ 0 ∀ i, j, k ,∑
i,j,k

q(i, j, k) = 1 ,

∑
i,j,k

q(i, j, k)1
2
[
γfi,j,k(t) + γfj,i,k(t)− γ

e
i,j,k(t)− γej,i,k(t)

]
= 0

∀ t = 0, . . . , d− 2 .

Disjoint unions of copies ofKd,d are the only graphs that induce a distribution
q(i, j, k) supported on triples with i = j and k = 0. This gives us a candidate
solution to the linear program. To complete the proof Theorem 3.1 it suffices
to show that this distribution is the unique optimiser of the above linear
program.
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The dual program is

α∗ = min Λp s.t.

Λp − a(i, j, k) +
d−2∑
t=0

Λt
1
2
[
γfi,j,k(t) + γfj,i,k(t)− γ

e
i,j,k(t)− γej,i,k(t)

]
≥ 0 ,

so show thatKd,d is optimal, we find values for the dual variables Λ0, . . . ,Λd−2

so that the dual constraints hold with Λp = αmatch
Kd,d

(λ). To find such values, we
solve the system of equations generated by setting equality in the constraints
corresponding to i = j and k = 0 and solve for the variables Λt, with
t = 0, . . . , d− 2.

With this choice of values for the dual variables, we start by simplifying the
form of the dual constraints with a substitution coming from equality in
the (i, j, k) = (0, 0, 0) constraint. The (0, 0, 0) dual constraint has the simple
form

Λ0 − Λ1 = αmatch
Kd,d

(λ) .

Moreover, observe that from the 1t=0 and 1t=1 terms in γei,j,k(t) and γfi,j,k(t),
every dual constraint contains the term[
a(i, j, k)− λ

(λ+ Zi,j,k)

]
(Λ0 − Λ1) =

[
a(i, j, k)− λ

(λ+ Zi,j,k)

]
αmatch
Kd,d

(λ) .

With this simplification, we multiply through by 2(d − 1)(λ + Zi,j,k) and
expand a(i, j, k) terms to obtain the following form of the dual constraints:

αmatch
Kd,d

(λ)
[
λZ ′i,j,k + 2(d− 1)Zi,j,k

]
− λZ ′i,j,k

+ Λi+k−2 · (i+ k − 1)kλ

+ Λi+k−1 · [(d− i− k)kλ+ (i+ k)jλ− (d− 1)kλ]

+ Λi+k · [(d− 1− i− k)jλ+ i+ k − (d− 1)βj ]

+ Λi+k+1 · (d− 1− i− k)

+ Λj+k−2 · (j + k − 1)kλ

+ Λj+k−1 · [(d− j − k)kλ+ (j + k)iλ− (d− 1)kλ]

+ Λj+k · [(d− 1− j − k)iλ+ j + k − (d− 1)βi]

+ Λj+k+1 · (d− 1− j − k) ≥ 0 .

(3.3)
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The (i, i, 0) equality constraints now read

αmatch
Kd,d

(λ)βi
(
βi + iλ

d−1
)
− iλβi

d−1 + Λi−1
i2λ
d−1

− Λi d−1−i+i2λ
d−1 + Λi+1

d−1−i
d−1 = 0 .

(3.4)

With this we can write Λi+k+1 in terms of Λi+k and Λi+k−1, and similarly
for Λj+k+1. Substituting this into (3.3) and dividing by λ we derive the
simplified form of the dual constraints:

λ
[
(i− j)2 + 2k

]
(1− dαmatch

Kd,d
(λ))

+ Λi+k−2(i+ k − 1)k + Λi+k−1[k + (i+ k)(j − i− 2k)]

+ Λi+k(i+ k)(i+ k − j)

+ Λj+k−2(j + k − 1)k + Λj+k−1[k + (j + k)(i− j − 2k)]

+ Λj+k(j + k)(j + k − i) ≥ 0 .

(3.5)

Write L(i, j, k) for the left-hand side of this inequality.

The marginal constraint for t = d − 1 was omitted, but we nonetheless
introduce Λd−1 := 0 in order to simplify the presentation of the argument.
The (d− 1, d− 1, 0) equality constraint gives Λd−2 directly:

Λd−2 = 1
(d− 1)λ

[
λ+ (d− 1)λ2 − αmatch

Kd,d
(λ)βd−1βd

]
.

With Λd−1, Λd−2, and the recurrence relation (3.4) the dual variables are
fully determined. We do not give a closed-form expression for Λt as the
values are used in an induction below. Using Λd−1, Λd−2, and (3.4) suffices
for the proof.

We now reduce the problem of showing that the dual constraints (3.5)
corresponding to triples (i, j, k) with k > 0 or i 6= j hold with strict inequality
to showing that a particular function is increasing. We go on to prove this
fact in Claims 3.5 and 3.6.

Putting k = 0 into (3.5) gives:

L(i, j, 0)
(j − i) = λ(j − i)(1− dαmatch

Kd,d
(λ)) + iΛi−1 − iΛi − jΛj−1 + jΛj

= Fd(j)− Fd(i) ,
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where
Fd(t) := t

[
λ(1− dαmatch

Kd,d
(λ)) + Λt − Λt−1

]
. (3.6)

From (3.5) we obtain

L(i− 1, j − 1, k + 1)− L(i, j, k) = Fd(i+ k)− Fd(i+ k − 1)

+ Fd(j + k)− Fd(j + k − 1).

Therefore if Fd(t) is strictly increasing, we have L(i, j, 0) > 0 for i 6= j, and

L(i− 1, j − 1, k + 1) > L(i, j, k) > · · · > L(i+ k, j + k, 0) ≥ 0 .

We first find an explicit expression for Fd(t), where we write ZKt,t for the
matching polynomial of the graph Kt,t.

Claim 3.5. For all d ≥ 2 and 1 ≤ t ≤ d− 1,

Fd(t) = t(d− 1)
ZKd,d

d−2∑
`=t−1

(d− 1− t)!
(`+ 1− t)!λ

d−`ZK`,` . (3.7)

Proof. We will use the following two facts:

ZKd,d − β2d−1ZKd−1,d−1 + (d− 1)2λ2ZKd−2,d−2 = 0 (3.8)

αmatch
Kd,d

(λ) =
λZKd−1,d−1

ZKd,d
. (3.9)

The first is a Laguerre polynomial identity, verifiable by hand; the second is
a short calculation. The equality dual constraint (3.4) implies:

(d− 1− t)Fd(t+ 1) = (t+ 1)[tλFd(t) + (d− 1)λ− (d− 1)αmatch
Kd,d

(λ)βd+t] .

We first show that the right hand side of (3.7) satisfies the above recurrence
relation. Using (3.9) this amounts to showing that the following expression
is equal to zero for all d ≥ 2 and 1 ≤ t ≤ d− 1:

Φd(t) := (d− 1− t)!
(
d−2∑
`=t

λd−`ZK`,`
(`− t)! − t

2
d−2∑
`=t−1

λd+1−`ZK`,`
(`+ 1− t)!

)

− λ(ZKd,d − βd+tZKd−1,d−1) .

45



Chapter 3. Matchings in regular graphs

We proceed by induction on d. Note that when d = 2, Φ2(1) is easily verified
to be zero. Note that

Φd+1(t) = λ
(
(d− t)Φd(t)− ZKd+1,d+1 + β2d+1ZKd,d − d

2λ2ZKd−1,d−1

)
.

By the induction hypothesis and (3.8) the result follows. To complete the
proof of the claim it suffices to show that (3.7) holds for t = d− 1. Recalling
that

Λd−1 = 0 ,

Λd−2 = 1
d− 1 + λ−

αmatch
Kd,d

(λ)
(d− 1)λ βdβd−1 ,

substituting into (3.6), and using (3.8) and (3.9) we have

Fd(d− 1) = (d− 1)
[
λ(1− dαmatch

Kd,d
(λ))− 1

d− 1 − λ+
αmatch
Kd,d

(λ)
(d− 1)λ βdβd−1

]

=
αmatch
Kd,d

(λ)
λ

β2d−1 − 1

= 1
ZKd,d

[
β2d−1ZKd−1,d−1 − ZKd,d

]
=

(d− 1)2λ2ZKd−2,d−2

ZKd,d
,

verifying (3.7) for t = d− 1.

Using Claim 3.5 we prove the following.

Claim 3.6. Fd(t) is strictly increasing as a function of t.

Proof. To prove that Fd(t) is increasing, we show that

Rd(t) :=
ZKd,d

(d− 1) ·
Fd(t+ 1)− Fd(t)

(d− 2− t)!

= (t+ 1)
d−2∑
`=t

λd−`

(`− t)!ZK`,` − t(d− 1− t)
d−2∑
`=t−1

λd−`

(`+ 1− t)!ZK`,`

is positive for each t with 1 ≤ t ≤ d− 2. We do this by fixing t and inducting
on d from t + 2 upwards. A useful inequality will be ZKt,t > tλZKt−1,t−1

which comes from only counting matchings of Kt,t that use a specific vertex.
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Iterating this inequality we obtain

ZKt,t >
t!
`!λ

t−`ZK`,` for 0 ≤ ` ≤ t− 1 . (3.10)

For the base case of our induction, d = t + 2, we have Rd(d − 2) =
λ2[ZKd−2,d−2 − (d− 2)λZKd−3,d−3

]
which by (3.10) is positive.

For the inductive step we have

Rd+1(t) = λ

[
Rd(t) + λ

(d− 1− t)!ZKd−1,d−1 −
d−2∑
`=t−1

tλd−`

(`− t+ 1)!ZK`,`
]
,

and so it is sufficient to show

d−2∑
`=t−1

tλd−`

(`+ 1− t)!ZK`,` <
λ

(d− 1− t)!ZKd−1,d−1 . (3.11)

We use the inequality (3.10) in each term of the sum to see that the left-hand
side of (3.11) is less than

d−2∑
`=t−1

t`!λ
(`+ 1− t)!(d− 1)!ZKd−1,d−1 ,

and so

d−2∑
`=t−1

tλd−`

(`+ 1− t)!ZK`,` <
d−2∑
`=t−1

t`!λ
(`+ 1− t)!(d− 1)!ZKd−1,d−1

=
λZKd−1,d−1

(d− 1− t)! ·
d−2∑
`=t−1

t`!(d− 1− t)!
(`+ 1− t)!(d− 1)!

=
λZKd−1,d−1

(d− 1− t)! ·
(
d− 1
t

)−1

·
d−2∑
`=t−1

(
`

t− 1

)

=
λZKd−1,d−1

(d− 1− t)! ,

hence (3.11) holds as required.

This completes the proof of dual feasibility and shows our candidate solution
to the primal program is optimal. The uniqueness of the solution follows
from two facts. First, strict inequality in the dual constraints outside of
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the (i, i, 0) constraints implies, by complementary slackness (see [13]), that
the support of any optimal solution in the primal is contained in the set of
(i, i, 0) configurations. Second, the distribution induced by Kd,d is the unique
distribution satisfying the constraints with such a support. This follows
from the fact that Λi is uniquely determined by (3.4) where we have set the
(i, i, 0) dual constraints to hold with equality, which in turn shows that the
relevant d× d submatrix of the constraint matrix is full rank. This proves
Theorem 3.1.

3.3 Matchings and independent sets of given size

To prove Theorem 3.3 we start with a fact about the independence and
matching polynomials of Hd,n. In the argument we sometimes give P a
subscript corresponding to the graph on which we consider the relevant
probabilistic model.

Lemma 3.7. For all 1 ≤ k ≤ n/2, there exists a λ so that

ik(Hd,n)λk

Z ind
Hd,n

(λ)
= PHd,n [|I| = k] > 1

2
√
n
,

and a λ so that

mk(Hd,n)λk

Zmatch
Hd,n

(λ)
= PHd,n [|M| = k] > 1

2
√
n
.

Proof. The distribution of the size of a random independent set I drawn
from the hard-core model on Hd,n is log-concave; that is,

PHd,n [|I| = j]2 > PHd,n [|I| = j + 1] · PHd,n [|I| = j − 1]

for all 1 < j < n/2. This follows from two facts: the size distribution
of the hard-core model on Kd,d is log-concave, and the convolution of two
log-concave distributions is again log-concave. The first fact is simply the
calculation (

d

j

)2

>

(
d

j − 1

)(
d

j + 1

)
.

Now choose λ so that PHd,n [|I| = k] = PHd,n [|I| = k + 1]. Log-concavity then
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implies that PHd,n [|I| = k] is maximal. Some explicit computations for the
variance for a single Kd,d give that the variance of |I| is at most n/8; then
via Chebyshev’s inequality, with probability at least 2/3 the size of I is one
of at most 4

3
√
n values, and thus the largest probability of a single size is

greater than 1
2
√
n
.

The proof for mk(Hd,n) is the same: the variance of the size of a random
matching is also at most n/8 (see [56]), and log-concavity of the size distri-
bution on Kd,d is verified via the inequality

(
d

j

)4

j!2 >
(

d

j − 1

)2

(j − 1)!
(

d

j + 1

)2

(j + 1)!

Proof of Theorem 3.3. Assume for sake of contradiction that mk(G) > 2
√
n ·

mk(Hd,n). Choose λ according to Lemma 3.7. We have:

Zmatch
G (λ) ≥ mk(G)λk > 2

√
n ·mk(Hd,n)λk > Zmatch

Hd,n
(λ) ,

but this contradicts Theorem 3.1. The case of independent sets is identical.

The above proof is essentially the same as the proofs in Carroll, Galvin, and
Tetali [14] with the small observation that λ can be chosen so that k is the
most likely size of a matching (or independent set) drawn from Hd,n. The
factor 2

√
n in both cases can surely be improved by using some regularity of

the independent set and matchings sequence of a general d-regular graph;
we leave this for future work.

As a consequence, we prove the asymptotic upper matching conjecture of
Friedland, Krop, Lundow, and Markström [39]. Fix d and consider an infinite
sequence of d-regular graphs Gd = G1, G2, . . . such that Gn has n vertices.
For any ρ ∈ [0, 1/2], the ρ-monomer entropy is defined to be

hGd(ρ) = sup
(kn)

lim sup
n→∞

logmkn(Gn)
n

,

where the supremum is taken over all integer sequences (kn) with kn/n→ ρ.
Let hd(ρ) = limn→∞

logmbρnc(Hd,n)
n , where the limit is take over the sequence

of integers divisible by 2d. Then the conjecture states that for all Gd and all
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ρ ∈ [0, 1/2], we have hGd(ρ) ≤ hd(ρ).

To prove this, first assume ρ > 0 since for ρ = 0 the result is trivially true.
Assume for the sake of contradiction that lim sup logmkn (Gn)

n > hd(ρ) + ε for
some ε > 0. Take N0 large enough that for all n1 ≥ N0, divisible by 2d,
logmbρn1c(Hd,n1 )

n1
< hd(ρ) + ε/2. Now take some n ≥ N0 with logmkn (Gn)

n >

hd(ρ) + ε, and let n1 = 2d · dn/2de. Choose λ so that mbρn1c(Hd,n1) >
1

2√n1
MHd,n1

(λ). Note that since ρ > 0, this λ is bounded away from 0 as
n1 →∞. Then we have

logZmatch
Gn

(λ)
n

≥ logmkn(Gn)λkn
n

>
kn
n

log λ+ hd(ρ) + ε

= ρ log λ+ hd(ρ) + ε+ o(1) as n→∞

and
logZmatch

Kd,d
(λ)

2d =
logMHd,n1

(λ)
n1

<
log

(
2√n1 ·mbρn1c(Hd,n1)λbρn1c

)
n1

<
log(2√n1)

n1
+ bρn1c

n1
log λ+ hd(ρ) + ε/2

= ρ log λ+ hd(ρ) + ε/2 + o(1) ,

but this contradicts Theorem 3.1. With the same proof, the analogous
statement for independent set entropy holds.

3.4 Remarks

Theorem 2.1 and Theorem 3.1 show that Kd,d maximises the occupancy
fraction of the hard-core model and the monomer-dimer model respectively.
In both cases cases our results are neither implied by nor imply conjectures
that the numbers of independent sets [57] and matchings [38] of each given
size are maximised by disjoint unions of Kd,d’s; while we improve the known
bounds in both cases, these conjectures remain open. Here we give even
stronger conjectures:

Conjecture 3.8. Let G be a d-regular, n-vertex graph, where 2d divides n.
Then for all k, the ratio ik(G)

ik−1(G) is maximised by Hd,n.

Conjecture 3.9. Let G be a d-regular, n-vertex graph, where 2d divides n.
Then for all k, the ratio mk(G)

mk−1(G) is maximised by Hd,n.
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Conjecture 3.8 also appeared in a draft of [79], and we discuss both conjectures
in more detail in [26]. These conjectures are stronger than Theorems 2.1
and 3.1 and imply the conjectures of [57] and [38]. The relation to the work
here is that Conjecture 3.8 can be stated as follows: the expected number of
neighbours of uniformly random independent set of size k is minimised by
Hd,n; and the analogous form of Conjecture 3.9 is similar. Theorems 2.1 and
3.1 show that such a statement is true when the random independent set
or matching is chosen according to the hard-core model or monomer-dimer
model instead of uniformly over those of a given size.
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4
The Potts model

As an example of a Gibbs distribution, the Potts model is a probabilistic
model of interacting spins on a graph. Here we use the term colour instead
of spin to highlight a connection to extremal combinatorics which we cover
in Section 4.1. An assignment of spins in the Potts model, which is simply a
function σ : V (G)→ [q], corresponds to a colouring of the vertices of a graph
with at most q colours. The model is parametrised by an inverse temperature
parameter β, and to obtain the Potts model from the general setup of
Section 2.5, we take λi = 0 and βi,i = −β for all i, and βi,j = 0 whenever
i 6= j. Recall that we let m(σ) denote the number of monochromatic edges
of G under σ. Then the energy of a colouring σ is simply H(σ) = −βm(σ),
and we see that the Potts model is indeed a Gibbs distribution.

The model is antiferromagnetic if β > 0 and ferromagnetic if β < 0. For
general statistical physics terminology, we refer the reader to Chapter 2
of [75], for example. The Potts model generalises the Ising model [53], which
is the special case q = 2. See [100] for a survey of the Potts model.

The Potts partition function also plays an important role in graph theory as
it is an evaluation of the Tutte polynomial (see [99]), which contains many
properties of the graph in question. When β is positive, the model prefers
colourings with fewer monochromatic edges, and the effect is intensified
as β increases. When β is negative (the ferromagnetic Potts model), the
distribution is biased towards colourings with more monochromatic edges.

The negative of the logarithmic derivative of ZqG(β) with respect to β gives
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Chapter 4. The Potts model

the expected number of monochromatic edges, or the internal energy of the
model. If we scale by the number of vertices, this gives the internal energy
per particle, U qG(β). We recall from Section 1.1 that when σ is a random
q-colouring of G chosen from the model,

U qG(β) = 1
|V (G)| E[m(σ)]

= 1
|V (G)|

∑
σm(σ)e−βm(σ)

ZqG(β)

= − 1
|V (G)|

∂

∂β
logZqG(β) .

When β = 0 there are no interactions in the model, and ZqG(0) = q|V (G)| for
all G. Starting from here, we can integrate the internal energy per particle
to obtain the scaled logarithm of the partition function, or the free energy
per particle,

F qG(β) = 1
|V (G)| logZqG(β) = log q −

∫ β

0
U qG(t) dt . (4.1)

In this chapter we derive tight upper and lower bounds on U qG(β) for cubic
(3-regular) graphs in the anti-ferromagnetic (β > 0) regime. From (4.1) these
bounds immediately imply corresponding tight bounds on the free energy
per particle of the Ising and Potts models, and hence the respective partition
functions. We determine, for every q, the maximum and minimum of both
the internal energy and the free energy per particle as well as the family of
graphs that achieve these bounds.

Theorem 4.1. For any cubic graph G, any q ≥ 2, and any β > 0,

U qK3,3
(β) ≤ U qG(β) ≤ U qK4

(β) .

Furthermore, the respective equalities hold if and only if G is a union of
K3,3’s or a union of K4’s. As a corollary via (4.1), we have

F qK4
(β) ≤ F qG(β) ≤ F qK3,3

(β) .

We conjecture that these bounds extend to higher regularity d and note that
the case d = 2 is simply a calculation, see Section 4.4.
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Conjecture 4.2. For any d-regular graph G, any q ≥ 2, and any β > 0,

U qKd,d(β) ≤ U qG(β) ≤ U qKd+1
(β) ,

and in particular,
F qKd+1

(β) ≤ F qG(β) ≤ F qKd,d(β) .

If we restrict ourselves to bipartite regular graphs, then Galvin (building on
[44, 57]) proved that the maximiser of the free energy per particle is Kd,d.

Theorem 4.3 (Galvin [43]). For any d-regular bipartite graph G, any β and
any q ≥ 2, F qG(β) ≤ F qKd,d(β).

Such a bound was known without the bipartite restriction in one case
previously: in the anti-ferromagnetic Ising model. An extension of Galvin’s
result by Zhao [103] using the ‘bipartite swapping trick’ gives the following.

Theorem 4.4 (Zhao [103]). For any d-regular graph G, β > 0, and q = 2
(the Ising model), F qG(β) ≤ F qKd,d(β).

Zhao’s method does not work for q ≥ 3, and in the ferromagnetic phase
Galvin’s result cannot be extended to all G; Kd,d is not the maximiser. The
clique Kd+1 has a higher free energy for any d when β < 0. It is natural to
conjecture that Kd+1 is in fact extremal in this case, and also that Galvin’s
result can be extended to triangle-free graphs.

Conjecture 4.5. For any d-regular G, any q ≥ 2, and any β < 0,

U qG(β) ≤ U qKd+1
(β) ,

and in particular,

F qG(β) ≤ F qKd+1
(β) .

Moreover, if in addition G is triangle-free, then for any β,

U qG(β) ≤ U qKd,d(β) ,

and in particular,

F qG(β) ≤ F qKd,d(β) .

The main work in this chapter is a proof of Theorem 4.1. The proof follows the
same method as given in Chapters 2 and 3, outlined in general in Section 2.5.
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We consider the following experiment. Fix q, β, and a d-regular graph
G. Choose a vertex v uniformly from V (G) and independently sample a
colouring σ : V (G) → [q] from the Potts model. Now for each neighbour
u of v, record the number of its ‘external’ neighbours (neighbours outside
v ∪ N(v)) receiving each colour; and record any edges within N(v). This
is the sampling of a local view of depth 2 as described in Section 2.5, see
Figure 4.1 for examples relevant to the Potts model. Note that although
we have sampled a colouring σ of the whole graph, the colours of v and its
neighbours do not form part of the local view. In fact it is best to think
of these colours as having not been revealed. An important part of the
method is the spatial Markov property; conditioned on the local view, the
distribution of colourings of v and its neighbours can be determined. For
fixed d and q there are only a finite number of possible local views; call this
set of local views Ld,q. Each d-regular graph G and inverse temperature β
induces a probability distribution on Ld,q.

Not all probability distributions on Ld,q can arise from a graph; there are
certain consistency conditions that must hold. For example, the expected
number of monochromatic edges incident to v must equal the expected
number of monochromatic edges incident to a uniformly chosen neighbour of
v. Moreover, we can compute both of these expectations given a probability
distribution on Ld,q; in fact they are both linear functions of the probabilities.
For d = 3 this constraint is sufficient, but for larger d more are required.
Another family of consistency conditions are that for every multiset S of size
d from q colours, the probability N(v) is coloured by S must be the same as
the probability N(u) is coloured by S for a uniformly chosen neighbour u of
v. Finally, the quantity we wish to optimise, U qG(β) is also a linear function
of the probabilities in the distribution on Ld,q.

So instead of maximising or minimising U qG(β) over all d-regular graphs, we
relax the problem and instead optimise over all probability distributions on
Ld,q that satisfy the above consistency conditions. This is simply a linear
program over |Ld,q| variables. For some values of d, q, and β we know this
linear program is not tight although we conjecture it to be tight whenever
q ≥ d+ 1 ≥ 3 and β > 0.

This method builds on previous work on independent sets and matchings (see
Chapters 2 and 3, and [24, 25, 78]) and the Widom–Rowlinson model [15],
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but here we generalise the previous approach in two ways. Firstly, we deal
with q-spin models instead of 2-spin models; and secondly we deal with
soft and hard constraints instead of just hard constraints. The family of
linear programs in 3 for matchings was an infinite family indexed by two
parameters (the vertex degree d and a fugacity parameter λ > 0), and the
entire family could be solved analytically with a single proof via the duality
theorem. Here the situation is worse: we have an infinite family of linear
programs indexed by d, q, and β. Moreover, while the number of constraints
for the matching program grew linearly in d, here the number of constraints
needed can grow like the integer partition number of d. Here, we solve the
program for d = 3 where there are 35 variables.

In Section 4.2 we solve the linear program (both the maximisation and
minimisation problem) for d = 3, q ≥ 2, and all β > 0, and we solve it in a
somewhat mechanical way that does not reveal much about generalisations
to higher d.

Nevertheless, we suspect that our method yields a program which is tight
for a much wider set of parameters, including for q ≥ d+ 1 and β > 0. For
some other parameter values the constraints described above are not enough
to solve the internal energy minimisation problem for all d, q, and β > 0. It
is easy to find values of β so that if d ≥ 4 and q ≤ d, the minimiser of the
linear program is smaller than U qKd,d(β). Two challenges for future work are:

(i) Solve the infinite family of linear programs with d ≥ 4, q ≥ d+1, β > 0
that we conjecture is tight.

(ii) Find additional consistency conditions (constraints) that can further
tighten the program for q ≤ d; or prove that this cannot be done.

4.1 Maximising the number of q-colourings of d-
regular graphs

If we take take β →∞ in the Potts model, we bias more and more against
monochromatic edges, and thus if a proper q-colouring of G exists, the
‘zero-temperature’ anti-ferromagnetic Potts model is simply the uniform
distribution over proper q-colourings of G. The limit of the partition func-
tion is limβ→∞ Z

q
G(β) = Cq(G), the number of proper q-colourings of G.
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Maximising Cq(G) over different families of graphs has been the study of
much work in extremal combinatorics. Linial [70] asked which graph on
n vertices with m edges maximises Cq(G). After a series of bounds by
Labeznik and coauthors [66, 67, 68], Loh, Pikhurko, and Sudakov [71] gave
a complete answer to this question for a wide range of parameters q, n, m,
using the regularity lemma to reduce the maximisation problem over graphs
to a quadratic program in 2q − 1 variables.

A similar question in a very different setting is to ask which d-regular, n-
vertex graph maximises the number of q-colourings; or, given that Cq is
multiplicative when taking disjoint unions of graphs, which d-regular graph
maximises 1

|V (G)| logCq(G)? Although neither question specifies the sparsity
of the graph, one can think of Linial’s question as a question about dense
graphs and this question as one about sparse graphs (and the techniques
of [71] and this chapter reflect this: the regularity lemma primarily concerns
dense graphs, while statistical mechanics is primarily concerned with sparse,
regular graphs).

For regular graphs, Galvin and Tetali [44] conjectured that Kd,d maximises
the normalised number of q-colourings over all d-regular graphs.

Conjecture 4.6 (Galvin and Tetali [44]). For any q ≥ 2, d ≥ 1, and all
d-regular graphs G,

1
|V (G)| logCq(G) ≤ 1

2d logCq(Kd,d) . (4.2)

In the same paper they prove that (4.2) holds for all d-regular, bipartite
G. In the language of graph homomorphisms, Cq(G) counts the number of
homomorphisms from G into Kq, and their results holds for the number of
homomorphisms of a d-regular bipartite G in to any target graph H.

Before this work, Conjecture 4.6 was not known for any pair (q, d) apart from
the trivial cases d = 1, d = 2, and q = 2 (see Section 4.4). However, significant
partial progress was made in addition to the bipartite case. Employing the
bipartite swapping trick, Zhao [103] showed that for q ≥ (2n)2n−2, the
bipartite restriction could be removed for graphs on n vertices. Galvin [40]
then reduced the lower bound on q, showing that q > 2

(nd/2
4
)
suffices.

Dependence on n in the number of colours is of course not ideal, as it
does not prove Conjecture 4.6 for any pair (q, d), but it does restrict the
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class of possible counterexamples. In another direction of partial progress on
Conjecture 4.6, Galvin [42] gave an upper bound on Cq(G) for all d-regular
G, that is tight, asymptotically in d, on a logarithmic scale.

The following lemma relates bounds on internal energy per particle to bounds
on the number of q-colourings.

Lemma 4.7. Fix d and q. If for all d-regular G, and all β > 0, we have
U qG(β) ≥ U qKd,d(β), then (4.2) holds.

Proof. Let G be any d-regular graph. If Cq(G) = 0 then (4.2) clearly holds.
Otherwise, we take logarithms and write

1
|V (G)| logCq(G) = lim

β→+∞

1
|V (G)| logZqG(β)

= log q −
∫ ∞

0
U qG(β) dβ

≤ log q −
∫ ∞

0
U qKd,d(β) dβ

= 1
2d logCq(Kd,d) .

As a corollary of Theorem 4.1 and Lemma 4.7, we prove Conjecture 4.6 for
d = 3 and all q.

Corollary 4.8. For any 3-regular graph G, and any q ≥ 2,

1
|V (G)| logCq(G) ≤ 1

6 logCq(K3,3) ,

with equality if and only if G is a union of K3,3’s.

We remark that in a similar fashion, Theorem 4.1 gives that

1
|V (G)| logCq(G) ≥ 1

4 logCq(K4)

for all cubic graphs G, but this result was recently proved for all d by Csikvári
(see [104]).

Theorem 4.9 (Csikvári). For all d, all q ≥ 2, and all d-regular G,

1
|V (G)| logCq(G) ≥ 1

d+ 1 logCq(Kd+1) .
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Csikvári and Lin [21] also proved that for any d-regular, bipartite G,

Cq(G)1/|V (G)| ≥ q
(
q − 1
q

)d/2
,

a result that, for q large enough as function of d, is tight asymptotically for
a sequence of bipartite graphs of diverging girth.

4.2 Proof of Theorem 4.1

In this section we prove Theorem 4.1 by formulating and solving the linear
program described in the introduction. For brevity we drop the superscripts
in notation for partition functions and internal energy of a graph G, writing
ZG and UG for these quantities.

Recall the experiment which defines the local view: sample a colouring σ :
V (G)→ [q] according to the q-colour Potts model with inverse temperature
β and independently, uniformly at random sample a vertex v ∈ V (G). The
local view consists of the induced subgraph of G on v ∪N(v), together with,
for each u ∈ N(v), the multiset of colours that appears in N(u)\({v}∪N(v)).
Four examples are pictured in Figure 4.1. As noted in the introduction, our
calculations depend only on the number of ‘external neighbours’ of vertices
u ∈ N(v) which receive each colour, and not the graph structure between
these external neighbours. For clarity we draw the vertices themselves. Let
Cq denote all possible local views for the q-colour Potts model on cubic
graphs.

As q grows larger the number of possible local views grows like qd(d−1). How-
ever, if we consider equivalence classes of the local views under permutations
of the colours (as detailed below), the number of possible local views is
bounded in terms of d. This makes the linear program finite for any fixed
d. For a complete list of local views (up to equivalence) for d = 3 see
Appendix A.

Suppose that the local view C arises from selecting the colouring σ and the
vertex v. Recall that we refer to the coloured vertices at distance two from v

as the boundary, and write VC for the set of uncoloured vertices in C, so that
the set of q-colourings of these vertices is [q]VC . The colouring σ induces a
random local colouring χ : VC → [q] that, by the spatial Markov property
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1 1 1 1 1 1
(a) Local view C1

1 2 1 2 1 2
(b) Local view C2

1 2 3 4
(c) Local view with 1 triangle

1 2
(d) Local view with 2 triangles

Figure 4.1: Example local views. Figures (a) and (b) show,
up to permutations of the colours, the only local views which
can arise in K3,3. The coloured, numbered vertices are rep-
resentations of the multiset of colours that appear in the
boundary N(u) \ ({v} ∪N(v)) for u ∈ N(v).

of the Potts model, is distributed according to the Potts model on C. For
χ : V (C)→ [q], write m(χ) for the total number of monochromatic edges in
C (including any monochromatic edges between VC and the boundary), and
given a vertex u ∈ VC write mu(χ) for the number of monochromatic edges
in C incident to u. Then, with the local partition function defined as

ZqC(β) =
∑

χ:VC→[q]
e−βm(χ) ,

a local colouring χ is distributed according to

P[χ|C] = e−βm(χ)

ZqC(β) .

This fact means that we can interpret the internal energy per particle as an
expectation over the random local view C and local colouring χ. Each edge

60



Chapter 4. The Potts model

of G is incident to exactly two vertices, hence

UG(β) = 1
|V (G)|Eσ[m(σ)]

= 1
2|V (G)|

∑
v∈V (G)

∑
u∈N(v)

P(uv monochromatic)

= 1
2EC

[ ∑
u∈N(v)

P(uv monochromatic|C)
]

= 1
2EC,χ[mv(χ)] .

Moreover, since G is regular, a neighbour of v chosen uniformly at random
is distributed uniformly over V (G), giving

UG(β) = 1
2EC,χ

[1
3

∑
u∈N(v)

mu(χ)
]
.

Given these observations, for a local view C we define

UvC = 1
2ZC

∑
χ∈[q]VC

mv(χ)e−βm(χ) ,

UNC = 1
6ZC

∑
χ∈[q]VC

∑
u∈N(v)

mu(χ)e−βm(χ) ,

so that

UG(β) = EC [UvC ] = EC [UNC ] ,

giving us a constraint on probability distributions on local views that holds
for all distributions arising from graphs.

We can now define the two linear programs for the q-colour Potts model,

{Umin, Umax} = {min,max}
∑
C∈Cq

pCU
v
C s.t.

pC ≥ 0 ∀C ∈ Cq ,∑
C∈Cq

pC = 1 ,

∑
C∈Cq

pC(UvC − UNC ) = 0 .
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4.2.1 Minimising

For the minimisation problem, the dual program (with variables Λ, ∆) is

Umin = max Λ subject to

Λ + ∆(UvC − UNC ) ≤ UvC ∀C ∈ Cq .

For a given β > 0 and q ≥ 2, to show that Umin = UK3,3 via linear program-
ming duality, we must find ∆∗ so that the assignment Λ = UK3,3 , ∆ = ∆∗ is
feasible for the dual. That is,

UK3,3 + ∆∗(UvC − UNC ) ≤ UvC (4.3)

for all C ∈ Cq.

In fact it suffices to show (4.3) on a subset of Cq. We say C,C ′ ∈ Cq are
equivalent if

UvC = UvC′ and UNC = UNC′

as functions of q and β. For instance if C is obtained from C ′ by a permutation
of the colours, then C and C ′ are equivalent by symmetry. This equivalence
relation partitions Cq into equivalence classes. Call this set of equivalence
classes C′q. We always choose a representative member of the equivalence
class that has an initial segment of the colours [q] on its boundary, and write
qC for the total number of colours on the boundary of a local view C. For
d = 3 and arbitrary q there are 35 non-isomorphic equivalence classes which
we list in Appendix A.

We give the local views that arise in the optimising graphs names, writing C1

and C2 (see Figure 4.1) for representatives of the only two equivalence classes
of local views are that can appear with positive probability when G = K3,3.
In K4, the only local view that can arise is isomorphic to K4 itself.

To find a value of ∆∗ we solve the dual constraint (4.3) for the local view C1

(see Figure 4.1a) to hold with equality when Λ = UK3,3 :

UK3,3 + ∆∗(UvC1 − U
N
C1) = UvC1 .
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Writing λ = e−β (so that 0 < λ < 1), we find

ZC1 = (λ3 + q − 1)3 + (q − 1)(λ2 + λ+ q − 2)3 ,

UvC1 = 3
2ZC1

(
λ3(1 + λ3)2 + (q − 1)λ2(λ2 + λ+ q − 2)2

)
UNC1 = 1

2ZC1

(
3λ3(1 + λ3)2 + (q − 1)(λ+ 2λ2)(λ2 + λ+ q − 2)2

)
and hence

UNC1 − U
v
C1 = 1

2ZC1
λ(1− λ)(q − 1)(λ2 + λ+ q − 2)2 .

Then we calculate

ZK3,3 = q(λ3 + q − 1)3 + 3q(q − 1)(λ2 + λ+ q − 2)3+

q(q − 1)(q − 2)(3λ+ q − 3)3 ,

UK3,3 = 3q
2ZK3,3

(
λ3(λ3 + q − 1)2 + λ(q − 1)(q − 2)(3λ+ q − 3)2+

(q − 1)(2λ2 + λ)(λ2 + λ+ q − 2)2
)
,

and hence

∆∗ = − 3q(1− λ)2

2(λ2 + λ+ q − 2)2ZK3,3

[
2
(
λ2 + 2λ− 1

)
q5

+ 2
(
λ4 + 9λ3 + 22λ2 + 27λ+ 13

)
(λ− 1)6

+
(
λ5 + 3λ4 + 20λ3 − 41λ+ 17

)
q4

+
(
8λ4 + 31λ3 + 91λ2 + 47λ− 57

)
(λ− 1)2q3

+
(
25λ4 + 82λ3 + 146λ2 + 22λ− 95

)
(λ− 1)3q2

+
(
2λ5 + 36λ4 + 87λ3 + 93λ2 − 31λ− 79

)
(λ− 1)4q

]
.

(4.4)

The term slack is used to describe the size of the left-hand side in the (slightly
rearranged) dual constraint

UvC + ∆∗(UNC − UvC)− UK3,3 ≥ 0 .

Considering the slack as a function SC of C (and d, q, β), dual feasibility
reduces to the following claim.
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Claim 4.10. For all q ≥ 2 and all β > 0, the function

SC = UvC + ∆∗(UNC − UvC)− UK3,3

with ∆∗ given by (4.4) is identically 0 for C ∈ {C1, C2} and strictly positive
for all other C ∈ C′q.

Claim 4.10 immediately proves that U qG(β) ≥ U qK3,3,
(β). To show uniqueness,

observe that strict positivity of the slack function implies via complementary
slackness (see [13]) that the support of any distribution achieving the optimum
must be contained in {C1, C2}; K3,3 is the only connected graph whose
distribution satisfies this. To see this note that, for any other connected
cubic graph, there exists a vertex v with two neighbours u1, u2 such that
the external neighbourhoods of u1 and u2 are distinct. Then there exists a
colouring such that the external neighbours of u1 are monochromatic, whilst
those of u2 are not. This means a local view not isomorphic to C1 or C2

appears with positive probability.

In order to prove Claim 4.10, we change variables and multiply the slack
by a positive scaling factor, carefully chosen to result in a polynomial with
positive coefficients. Write r = q − 3 and t = eβ − 1 = 1/λ− 1, so that for
any q ≥ 3 and β > 0 we have r ≥ 0 and t > 0. It then suffices to show that
the following scaling of the slack is non-negative:

S̃C = 4(1 + t)17(r(1 + t)2 + t2 + 3t+ 3)2

(3 + r)t2 ZK3,3ZC · SC . (4.5)

In fact something stronger is true:

Claim 4.11. For all C ∈ C′q, S̃C is a bivariate polynomial in r and t

with all coefficients positive. The polynomial is identically 0 if and only if
C ∈ {C1, C2}.

For the case q = 2 we do something slightly different.

Claim 4.12. For all C ∈ C′2 (which necessarily use at most 2 colours on the
boundary), evaluating S̃C at r = −1 yields a polynomial in t with positive
coefficients. The polynomial is identically 0 if and only if C ∈ {C1, C2}.

Claims 4.11 and 4.12 are proved by simply computing the functions S̃C for
each of the 35 equivalence classes in C′q, simplifying and collecting coefficients.
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We include in Appendix B a computer program for the Sage mathematical
software used to compute S̃C for each local view C, but we emphasise that
we use a computer just to multiply polynomials and collect coefficients. Each
of the steps the program performs are readily achievable by hand, though
the number of steps and the size of the polynomials involved make this
unappealing.

The output shows a list of S̃C for all 35 non-isomorphic local views, demon-
strating that it is zero for C1 and C2 and a non-zero polynomial in r and
t with non-negative coefficients for all other C. It also shows S̃C evaluated
at r = −1 for local views C which use at most 2 colours on the boundary,
yielding a non-zero polynomial in t with non-negative coefficients for all such
C except C1 and C2, as desired.

4.2.2 Maximising

To show that K4 is the unique maximiser of the linear program is somewhat
more straightforward than the minimisation problem, largely because only
one local view can arise in K4; K4 itself (with no boundary vertices). Since
the distribution yielding K4 as a local view with probability one is feasible
in the linear program, it suffices to show that UvK4

> UvC for all C 6= K4.

Claim 4.13. Let

Dv
C = 2(1 + t)14ZK4ZCt

−2(UvK4 − U
v
C

)
. (4.6)

Then for all C ∈ Cq, Dv
C is a polynomial t = eβ − 1 = 1/λ − 1 and s =

q −max{3, qC} with all positive coefficients, and identically 0 if and only if
C = K4.

Since local views with qC > q cannot occur, for q ≥ 3 and β > 0 we have
s ≥ 0 and t ≥ 0 and hence Claim 4.13 implies UvK4

> UvC for all C 6= K4. The
quantity Dv

C is listed for all 35 non-isomorphic local views in Appendix A.
Again, for q = 2 we must do more; for C ∈ C′2 we list Dv

C evaluated at q = 2,
observing that it is a polynomial in t with non-negative coefficients, except
for K4 where it is identically zero.

As with the computations for S̃C , we use a computer to multiply polynomials
and obtain Dv

C for each local view, see Appendix B.
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4.3 Extensions to d ≥ 4

How might we extend Theorem 4.1 to graphs of larger degree? The min-
imisation program defined above in Section 4.2 is not tight in general: we
can in fact see that it is insufficiently constrained by comparing the number
of constraints, 2, to the number of equivalence classes of local views in the
support of the distribution induced by Kd,d, which is the partition number
of d− 1 when q ≥ d− 1, and always greater than 2 if d ≥ 4 and q ≥ 2.

There is a large family of constraints that we can add to the program. Let
Sq,d be the set of all q-partitions of size d; that is, partitions of d into at most
q parts which we represent by vectors of length q with non-negative integer
entries that sum to d, written in non-decreasing order. Any q-colouring
χ of d vertices induces a q-partition; for instance if χ assigns the colours
{1, 4, 2, 2, 1, 2}, then the q-partition H(χ) = {3, 2, 1, 0} ∈ S4,6. Our family of
constraints will be that for every S ∈ Sq,d, the probability that the neighbours
of v receive a colouring with q-partition S equals the average probability of
the same for a neighbour of v.

Both of these probabilities can be computed as expectations over the random
local view. For a local view C and a q-partition S ∈ Sq,d we define

γv,SC := 1
ZC

∑
χ∈[q]VC

1{H(χ(N(v)))=S} · e−βm(χ) ,

γN,SC := 1
d

1
ZC

∑
χ∈[q]VC

∑
u∈N(v)

1{H(χ(N(u)))=S} · e−βm(χ) .

Observe that for any graph and any q-partition S, we must have

EC [γv,SC ] = EC [γN,SC ] .
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Our minimisation program becomes

Umin = min
∑
C

pCU
v
C s.t.

pC ≥ 0 ∀C ,∑
C

pC = 1 ,

∑
C

pC(γv,SC − γN,SC ) = 0 ∀S ∈ Sq,d.

This program is stronger than the one used in Section 4.2: the q-partition
constraints together imply the constraint EC [UvC ] = EC [UNC ].

We can solve this program for small values of d and fixed β, which leads us
to the following conjecture.

Conjecture 4.14. The above minimisation program is tight for d ≥ 3, q ≥
d+ 1 and all β > 0, and shows that

U qKd,d(β) ≤ U qG(β)

for all d-regular G.

However we can also find values of β for d ≥ 4, q ≤ d so that Umin < U qKd,d ,
and so we believe that this program is not tight in these cases.

4.4 2-regular graphs and other easy cases

Theorem 4.1 shows that K3,3 is optimal on the level of internal energy per
particle in the Potts model, and by Corollary 4.8 it maximises 1

|V (G)| logCq(G)
over cubic graphs G. For arbitrary d, in the case q = 2, the fact that
Kd,d maximises 1

|V (G)| logCq(G) over d-regular G follows simply from the
observation that Kd,d is the smallest bipartite d-regular graph. Indeed for
q = 2, if G is not bipartite then Cq(G) = 0 and if G is bipartite Cq(G) = 2c(G),
where c(G) is the number of connected components of G.

For d = 2, the only d-regular connected graphs are cycles, and there is an
explicit formula for the q-colour Potts partition function of the n-cycle. In
the language of statistical physics the 1-dimensional Potts model (including
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the 0-temperature Potts model) is exactly solvable:

ZqCn(β) = (q − 1)(e−β − 1)n + (e−β + q − 1)n.

One way to obtain this formula is to use the mapping of the Tutte polynomial
T (x, y) to the Potts partition function, given in [99], and then using the
formula TCn(x, y) = xn−x

x−1 + y.

Taking the logarithmic derivative gives:

U qCn(β) = e−β

e−β − 1 ·

(
1 + q

e−β−1

)n−1
+ q − 1(

1 + q
e−β−1

)n
+ q − 1

(4.7)

Proposition 4.15. If β > 0 then

U qCn(β) > U qCn+2
(β) for n ≥ 3 odd ,

U qCn(β) < U qCn+2
(β) for n ≥ 4 even .

If β < 0 then

U qCn(β) > U qCn+1
(β) for all n ≥ 3 .

Proof. Let β > 0 and suppose that n ≥ 3 is odd. Let x := 1 + q
e−β−1 . By

(4.7), we then have that U qCn(β) > U qCn+2
if and only if

xn + xn+1 > xn−1 + xn+2 . (4.8)

Since n is odd, (4.8) holds if and only if x+ x2 > 1 + x3 which holds since
x < −1. For even n ≥ 4, the proof is the same.

Suppose now that β < 0 and n ≥ 3. Defining x as before, we have that
x > 0. In this case, the inequality U qCn(β) > U qCn+1

(β) simply reduces to the
inequality xn−1(1− x)2 > 0.

Letting Z1 denote a doubly-infinite path we have that

U qZ1
(β) = e−β

e−β + q − 1 = lim
n→∞

U qCn(β) . (4.9)

Taking the limit here is justified as the Potts model on Z1 is in the Gibbs
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uniqueness regime for all q, β > 0.

Corollary 4.16. Conjectures 4.2, 4.5, and 4.6 hold for d = 2. Moreover, If
β > 0 then

U qCn(β) > U qZ1
(β) for n ≥ 3 odd ,

U qCn(β) < U qZ1
(β) for n ≥ 4 even .

If β < 0 then

U qCn(β) > U qZ1
(β) for all n ≥ 3 .

Proof. This follows from Proposition 4.15 and (4.9).
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5
Hypergraph embedding

In this chapter we have two main results. The first is an inheritance lemma
for uniform hypergraphs, which works for relatively dense subgraphs of
sufficiently well-behaved ambient hypergraphs. The second main result is to
define the concept of a good partial embedding. This concept characterises a
setting where we are trying to find a homomorphism from some hypergraph
H to a hypergraph G, and we have decided on images for some vertices of H,
so we have a partial embedding. Such a setting is good if certain conditions
are satisfied which imply, first, that we can choose an image for one further
vertex in approximately the expected number of ways, second, that most
of these choices again give a good partial embedding, and third, that the
atypical choices do not cause too great an error for a counting lemma. Given
the correct definition, the proof that it has these properties becomes quite
straightforward. Using these two results, we prove a counting lemma. Slightly
weaker counting lemmas have been proved in the literature (e.g. [76] for
dense hypergraphs) or follow fairly easily from known results (e.g. [17] for
sparse hypergraphs); we prove this version partly as a demonstration that
our method allows for a direct generalisation of the approach used in dense
graphs, and partly because it is needed as part of an inductive proof that a
good partial embedding has the property we claim.

Finally, we use the good partial embedding approach to obtain lower bounds
on the number of homomorphisms from H to G in the setting where H may
have a large (growing with v(G)) number of vertices. Such lower bounds are
not available from the older approaches. Of course, what one would really
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like is an analogue of the blow-up lemma [63] that gives the existence not
just of many homomorphisms from H to G, but also the existence of an
injective homomorphism (with positive weight), that is, of an embedding of
H in G, under suitable conditions. We avoid such details here as we intend
in future work to prove a blow-up lemma of this form.

The rest of this chapter is organised as follows. In Section 5.1 we state
the main results, including the inheritance lemma, counting and embedding
results, and the definition of a good partial embedding and other necessary
concepts. In Section 5.2 we use the inheritance lemma to prove embedding
and counting results for good partial embeddings. Section 5.3 contains
a discussion of hypergraph regularity lemmas and the usual embedding
and counting results in this setting. We prove slightly stronger versions of
standard embedding and counting results for hypergraphs by constructing
a good partial embedding and applying the results of Section 5.2. The
technical work of the chapter is largely contained in the last three sections:
in Section 5.4 we develop auxiliary results based on the Cauchy–Schwarz
inequality which are used throughout the chapter, in Section 5.5 we prove
the inheritance lemma, and finally in Section 5.6 we prove that a suitable
random hypergraph has the pseudorandomness property necessary for our
counting and inheritance lemmas.

5.1 Main results

Before we can state our main results, we need some definitions. Before we
give these, we explain the way we will view hypergraphs in this chapter. The
usual definition of a hypergraph consists of a vertex set V and edge set E
containing subsets of V . Normally one is interested in k-uniform hypergraphs
which are hypergraphs with the additional condition that E only contains
subsets of V of size exactly k. When considering hypergraph regularity,
one is often forced to consider k-complexes which correspond to a union of
`-uniform hypergraphs for ` ∈ [k] on the same vertex set with the additional
property that the edge set E of a complex is down-closed: if f ∈ E and
e ⊆ f then e ∈ E. We prefer to give alternative definitions to better separate
the roles of complexes and hypergraphs in our methods.

We are primarily interested in finding homomorphisms from a complex H (as
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above) to a complex G that in applications is usually in some way ‘inspired
by’ a uniform hypergraph. For this reason we exclusively use complex to
refer to the object H whose vertices form the domain of the homomorphism,
and hypergraph to refer to the ‘host graph’ G whose vertices form the image
of the homomorphism. In particular, contrasting with usual ‘uniform’ usage,
our definition of hypergraph allows for edges of each size from 0 upwards.
Later we will generalise the hypergraphs to weighted hypergraphs, but we are
not interested in weights on H, and so do not refer to ‘weighted complexes’.

If for some k ≥ 1, the complex H contains no edges of size greater than
k, we say H is a k-complex (we do not insist that H contains edges of
size exactly k). We will, however, not insist that our hypergraphs G are
necessarily down-closed. As we will see when we come to the definition of a
homomorphism, an edge of G whose subsets are not all contained in G cannot
play a role in any homomorphisms from H to G, but it will nevertheless be
convenient in the proof to allow such edges.

More importantly, we will work throughout with weighted hypergraphs.
Given a vertex set V , a weighted hypergraph is a function from the power set
of V to the non-negative reals. We think of a normal unweighted hypergraph
as being equivalent to its characteristic function. This extra generality turns
out not to complicate the proofs, and to rather simplify the notation. It is
not essential to our approach; if one starts with unweighted hypergraphs,
the functions appearing throughout will take only values {0, 1}; that is, they
are unweighted hypergraphs.

We use the letter Γ and calligraphic letters G, H for weighted hypergraphs,
and the corresponding lower case letters γ, g, and h for the weight functions.

A homomorphism φ from a complex H to a weighted hypergraph G is a map
φ : V (H)→ V (G) such that

∣∣φ(e)
∣∣ = |e| for each e ∈ H, and the weight of φ

is
G(φ) :=

∏
e∈H

g
(
φ(e)

)
.

Note that this product does run over e = ∅ and edges of size 1 in H.
If G is an unweighted hypergraph, then the weight of φ is either 0 or 1,
taking the latter value if and only if φ(e) is an edge of H (in the usual
unweighted sense) for each e ∈ F , including edges of size one (vertices). In
other words, this is if and only if φ is a homomorphism according to the
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usual unweighted definition from H to G. We will be interested in summing
the weights of homomorphisms, which is thus equivalent for unweighted
hypergraphs to counting homomorphisms by the usual definition. Slightly
abusing terminology for the sake of avoiding unwieldy phrases, we will talk
about ‘counting homomorphisms’ or ‘the number of homomorphisms’ when
what we really mean is the sum of weights of homomorphisms.

Bearing in mind that our weighted hypergraphs are ‘inspired by’ k-uniform
hypergraphs, we wish to consider weighted hypergraphs which contain edges
of size 0, 1, . . . , k, but not of size k+ 1. If the weight function is to generalise
the indicator function for edges in the unweighted setting then we should
say that G is a k-graph to mean that g(e) = 0 for any edge e of size at least
k + 1. We prefer an alternative definition for convenience of notation. If
one is interested in weights in G of edges up to size k, one can ask for a
homomorphism from a k-complex into G, which naturally excludes any edges
of size at least k + 1.

It is more convenient for our purposes to say that G is a k-graph to mean
that g(e) = 1 for all edges e of size at least k + 1, so that such edges do
not affect the weight of any homomorphisms into G. This affords a certain
amount of flexibility in the homomorphism counting methods we develop.
For example, let H be a (k+ 1)-simplex (the down-closure of a single edge of
size k + 1), and H ′ be obtained from H by removing the edge of size k + 1.
If G is a k-graph then homomorphisms from H and H ′ to G receive the same
weight and we do not need to distinguish between them.

We are usually not interested in counting general homomorphisms from H

to G; for simplicity we reduce to a partite setting where we have identified
special image sets in V (G) for each vertex of H. More formally, for the
partite setting we will have a complex H on vertex set X, a k-graph G on
vertex set V , a partition of X into disjoint sets {Xj}j∈J indexed by J , and
a partition of V into disjoint sets {Vj}j∈J indexed by J . The sets Xj and Vj
are called parts. We say a set of vertices (e.g. in X) is crossing, or partite if
it contains at most one vertex from each part. As a shorthand, we say that
H, G are J-partite to mean we have this setting; partitions of V (H) and
V (G) indexed by J . If only the number of indices matters, we sometimes
write e.g. k-partite to mean J-partite for some set J of size k.

Given this partite setting, a partite homomorphism from H to G is a ho-
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momorphism from H to G that maps each Xj into Vj . That is, given an
index set J and partitions of X and V indexed by J , we consider special
homomorphisms from X to V that ‘respect’ the partition. Given x ∈ Xj we
sometimes write Vx for the part Vj into which we intend to embed x; and for
a subset e of X we write Ve =

∏
x∈e Vx for the collection of partite |e|-sets

with vertices in
⋃
x∈e Vx.

We will always be interested in counting partite homomorphisms, Turning
to counting weighted homomorphisms, and given the partite setup above
we write G(H) for the expected weight of a uniformly random partite ho-
momorphism from H to G, that is, the normalised sum over all partite
homomorphisms φ from H to G of the weight of φ,

G(H) := E
[∏
e∈H

g
(
φ(e)

)]
=
( ∏
j∈J
|Vj |−|Xj |

)∑
φ

∏
e∈H

g
(
φ(e)

)
.

If G is constant on the sets Vf for crossing f ⊆ V (H), then we obtain
G(H) = G(φ) for any partite homomorphism φ : H → G, and a counting
lemma states that G(H) is close to this ‘expected value’.

In this chapter we will primarily work with partite homomorphisms which
map exactly one vertex of H into each part of G. We reduce the general
setting to this one-vertex-per-part setting by the following somewhat standard
‘copying process’.

Definition 5.1 (Standard construction). Given an index set J , a k-complex
H with vertex set X partitioned into {Xj}j∈J and a k-graph G with vertex
set V partitioned into {Vj}j∈J , the standard construction is as follows. Let
G′ be an X-partite k-graph with vertex sets {V ′x}x∈X where for each x ∈ X,
the set V ′x is a copy of Vx, and where for each set f ⊆ V (H) and each e ∈ V ′f
we define

g′(e) :=

1 if f 6∈ H

g(e′) if f ∈ H ,

where e′ is the natural projection of e to V (G).

This construction defines a new k-graph G′ (together with a partition of its
vertices indexed by X) whose vertices are all copies of vertices in G, with
weights given precisely so that J-partite homomorphism counts from H to G
correspond to X-partite homomorphism counts from H to G′. One is forced
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to consider H as J-partite for the former counts, and X-partite (with parts
of size 1) for the latter.

That is, for f 6∈ H the edges V ′f all have weight one in G′, so for each
φ : V (H)→ V (G′) we have

G(φ) =
∏
f∈H

g
(
φ(f)

)
=

∏
f⊆V (H)

g′
(
φ(f)

)
= G′(φ) ,

where we abuse notation by identifying φ with its natural projection onto
V (G). Since it simplifies notation, in what follows we will always assume
that if we are embedding some k-complex H to some V (H)-partite k-graph
G, and for f 6∈ H we suppose g(e) = 1 for all e ∈ Vf .

We now define the link graph of a vertex v in a weighted hypergraph. Let J
be an index set containing a ‘special value’ e.g. 0, and let G be a graph with
vertex sets {Vj}j∈J . For a vertex v ∈ V0, let Gv be the graph on {Vj}j∈J\{0}
with weight function gv defined as follows. For f ⊆ J \ {0} and e ∈ Vf , we
set

gv(e) := g(e) · g(v, e) .

Note that we write g(v, e) for the more cumbersome g
(
{v} ∪ e

)
and we do

allow e = ∅ in this definition.

We can now explain part of our embedding scheme. Given a complex H
and a V (H)-partite setup where we want to find a partite homomorphism
from H to a weighted graph G, we start with a trivial partial embedding φ0

from H0 := H to G0 := G in which no vertices are embedded. Now for each
t = 1, . . . , v(H) in succession, we choose a vertex xt of Ht−1 and a vertex
vt of Vxt . We set φt := φt−1 ∪ {xt → vt}, we set Ht := Ht−1 \ {xt}, and set
Gt := (Gt−1)vt , that is we take the link graph. The graph Gv(H) is an empty
weighted graph with weight function gv(H): the only edge it contains is the
empty set, and its weight is

gv(H)(∅) =
∏

e⊆V (H)
g
(
φ(e)

)
= G(φ) .

This is the vertex-by-vertex embedding mentioned in the introduction. Obvi-
ously, in general the final value G(φ) depends on the choices of the vt made
along the way. An important special case to bear in mind, however, is when
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for each f ⊆ V (H) the function g is constant, say equal to d(f), on Vf . In
this case whatever choice we make at each step, we obtain the same answer.
Furthermore, (trivially) at each step t, when we are to choose vt the average
weight in Gt−1 of vertices in Vxt depends only on the values d(f) and not
on the choices made; and a similar statement is true for the edges in each
Vf . We will refer to these average weights in a constant Gt−1 as the expected
values (for given values of d(f)); we will want to compare the values obtained
in this process when G is not necessarily constant on each Vf , but the average
weight of edges e ∈ Vf is roughly equal to d(f), with these expected values
obtained from the constant weighted graph.

In the case where a partition of V (G) is indexed by a set J , and we have
constants d(f) which represent the average weight G gives to edges in Vf , we
can reuse the notation for k-graphs to represent the product of densities that
form the expected value of G(φ). More formally, we have a k-graph D on
vertex set J whose weight function is f 7→ d(f). If G is constant on each Vf ,
then (trivially) we have G(F )/g(∅) = D(F )/d(∅). More generally, if G is not
constant, but the edges are well-distributed (in a sense we will make precise
later) and the density on each Vf is about d(f), we will say D is a density
graph for G. Note that we do not insist that densities are given exactly by D
(we allow a small error which we will specify later) and hence D is not given
uniquely by G. This turns out to be convenient for notation. Furthermore, at
this point the reader already sees that our definition of weighted hypergraph,
in which the empty set is given a weight, is not always quite convenient. We
cannot keep control of the weight of the empty set, and as a result we have
to scale explicitly by it in many formulae. But this piece of ‘formal nonsense’
does serve a purpose (keeping track of the embedded weight in a partial
embedding) for which we would otherwise have to invent further notation,
and avoids our having to explicitly exclude it throughout the argument.

Observe that if D is a density graph for the k-graph G (in our usual partite
setting), and we have j ∈ J and v ∈ Vj , then we would expect that the
link graph Dj is a density graph for Gv. Certainly this occurs in the model
situation that G is constant on each Vf ; much of the point of this chapter
is that it also occurs when G is not constant but sufficiently well-behaved.
However we should stress that when G is not constant, even if we have
g(∅) = d(∅), typically the weight of the empty set will be different in Dj and
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Gv, simply because although the average weight of vertices in Vj is d(j), it
may well be that no v ∈ Vj actually has weight close to d(j). This is what
we mean by the above ‘we cannot keep control of the weight of the empty
set’.

When G is not a constant hypergraph the value G(φ) will depend substantially
on the choices made; but a counting lemma states that G(H), the average
(taken over all choices of partite φ) of H(φ), is, up to a small error, the
expected value g(∅)

d(∅)D(H). Roughly, we will prove it by following the above
vertex-by-vertex embedding and showing that for most choices of φt the
average weights of vertices (and larger sets) in Gt are, up to small errors, the
expected values, and that the atypical choices do not contribute much to the
average. Even more roughly, the underlying idea is that if the weights of
edges in G in each Vf are on average d(f) and furthermore they are evenly
distributed then we will obtain this property. It is not too hard to see that
even when Gt−1 does have the desired good distribution, there can be choices
of vertex vt = φt(xt) for which Gt does not have the expected average weights
or the desired good distribution. This motivates the need for a regularity
inheritance lemma which tells us that these bad choices are few.

Before we define precisely what we mean by ‘good distribution’, namely
regularity, we give a word of warning. Taken on its own, the above sketch
leads to a proof of a result called the dense counting lemma. This is a
counting lemma valid only when all of the densities d(f) are much larger
than any of the initial error parameters in the regularity of G. In practice, one
does not obtain this ideal situation, and we will have to work harder to prove
a more general counting lemma. Nothing in the previous paragraph is false,
but there is an omission; namely that we will have to keep track of several
additional weighted graphs, each of which must exhibit good behaviour and
this leads to extra (but still few) atypical vertices. We come to this in
Section 5.1.3.

5.1.1 Regularity of weighted hypergraphs

As mentioned in the introduction, a bipartite graph of density d is ε-regular
if and only if the number of copies of C4 it contains is close to minimal
for that density. To generalise this to hypergraphs, we need to define the
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octahedron graph. We will need several related graphs later, so we give the
general definition.

Given a vector a with k non-negative integer entries, we define Ok(a) to be
the k-partite complex whose jth part has aj vertices, and which contains
all crossing i-edges for each 1 ≤ i ≤ k. Let 1k and 2k denote the k-vectors
all of whose entries are respectively 1 and 2. Then Ok(1k) is the complex
generated by down-closure of a single k-uniform edge, while Ok(2k) is ‘the
octahedron’. Note that O2(22) is the down-closure of the usual graph C4,
and Figure 5.1 contains drawings of the octahedron O3(23) that show it
viewed as a complete 3-partite 3-complex and as a Platonic solid.

x1

x2

y1

y2

z1 z2

(a) Tripartite representation

x1

x2

y1 y2

z1

z2

(b) Octahedron representation

Figure 5.1: Drawings of O3(23) where every black line is an
edge of size two and every triangle is an edge of size three.

We are now in a position to define regularity for hypergraphs. Even when we
are working in the ‘dense case’, that is, we are thinking of G as a relatively
dense subgraph of the complete hypergraph (as opposed to some much sparser
‘ambient hypergraph’), we will often need to introduce a graph Γ which is not
complete and of which G is a relatively dense subgraph. The reader should
always think of Γ as being a hypergraph whose good behaviour we have
already established (and we are trying to show that G is also well-behaved).

Definition 5.2 (Regularity of hypergraphs). Given k ≥ 1 and non-negative
real numbers ε, d, let G and Γ be k-partite hypergraphs on the same vertex
parts. Suppose that for each e with |e| < k we have g(e) = γ(e), and suppose
that for each e with |e| = k we have g(e) ≤ γ(e). Then we say that G is
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(ε, d)-regular with respect to Γ if

G
(
Ok(1k)

)
= (d± ε)Γ

(
Ok(1k)

)
and G

(
Ok(2k)

)
≤
(
d2k + ε

)
Γ
(
Ok(2k)

)
.

We say that G is ε-regular with respect to Γ to mean that the corresponding
(ε, d)-regularity statement holds with d = G(Ok(1k))/Γ(Ok(1k)).

Note that in this definition we do not specify the octahedron density of G but
only give an upper bound. The definition is only useful for graphs Γ such that
a matching lower bound holds for all G, which we will see (Corollary 5.20) is
the case when Γ is sufficiently well behaved.

Regularity for k-graphs is not usually discussed for k = 1, but we use the
notion as a shorthand for relative density in this chapter. The definition
makes sense when k = 1, but only the first part of the assertion, that G has
density close to d with respect to Γ, is important. For any 1-graph G on a
vertex set V , we have

G
(
O1(21)

)
= E[g(u)g(v)|u, v ∈ V ] = E[g(v)|v ∈ V ]2 = G

(
O1(11)

)2
,

and so imposing the upper bound on octahedron count is superfluous, as
essentially the same upper bound (the change in ε being unimportant) follows
from the density.

5.1.2 Inheritance of regularity

In this section we state our regularity inheritance lemma. Recall that for
2-graphs, a regularity inheritance lemma states that, given vertex sets X, Y
and Z, neighbourhoods of vertices z ∈ Z on one or two sides of the regular
pair (X,Y ) usually induce regular subpairs (provided that we are working
within a sufficiently well-behaved ambient graph). For 2-graphs (see [2, 16])
the cases ‘one side’ and ‘two sides’ are usually stated as separate lemmas,
and the quantitative requirement for ‘well-behaved’ are a little different. In
this chapter, we will not try to optimise this quantitative requirement and
so state one lemma which covers all cases.

In the 2-graph case, in addition to a regularity inheritance lemma one usually
needs to make use of the (trivial) observation that given a regular pair (X,Y )
in G, if Y ′ is a subset of Y which is not too small then most vertices in X
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have about the expected neighbourhood in Y ′. Another way of phrasing
this is to define a partite weighted graph G on X ∪ Y , with weights on the
crossing 2-edges corresponding to edges of G and weights on the vertices
of Y being the characteristic function of Y ′; then for most v ∈ X the link
1-graph Gv has about the expected density (recall that regularity is trivial
for 1-graphs). We will need a generalisation of this observation to graphs of
higher uniformity, where we will need not only that the link graph typically
has the right density but also that it is typically regular. It is convenient to
state this too as part of our general regularity inheritance lemma.

Informally, the idea is the following. If G ⊆ Γ are {0, . . . , k}-partite weighted
graphs, which are equal on all edges except those in V[k] and V{0,...,k}, and
we have that G[V[k]] and G[V{0,...,k}] are respectively (ε, d)-regular and (ε, d′)-
regular with respect to Γ, and Γ is sufficiently well-behaved, then for most
v ∈ V0 the graph Gv is (ε′, dd′)-regular with respect to Γv, where ε′ is not
too much larger than ε.

To state formally what ‘well-behaved’ means, we require the following nota-
tion for blowups of a k-complex R with vertex set J . Let a be a vector with
non-negative integer entries indexed by J , and write R(a) for the blow-up
of R where the jth vertex is blown up into aj copies. That is, R(a) has
vertex set

⋃
j∈J{j1, . . . , jaj} and e ∈ R(a) if and only if, under the projection

ρ : V (R(a)) → J given by identifying ji with j, we have ρ(e) ∈ R. This
means that if aj = 0 we remove the jth vertex of R and any edges that
contain it. To represent two copies of R(1,a) which share the same first
vertex but are otherwise disjoint we write +2R(0,a). In the statement of
the lemma we also use notation H(`) to mean the k-graph which gives the
same weight as H to edges of size ` but weight 1 to all other crossing edges,
a natural extension of this to H(≤`) to mean the weight has been set to 1
for all crossing edges of size greater than `, and H · H′ to mean the k-graph
whose weight function is the pointwise product h · h′. Given two weighted
graphs H, H′ on the same vertex set, we say H ≤ H′ to mean that h ≤ h′

pointwise. Finally, for a single part Vj of a partite k-graph H, and U ⊆ Vj ,
we write ‖U‖H := E[1v∈Uh(v)], where the expectation is over a uniform
choice of v ∈ Vj , so that ‖Vj‖H is the average weight of a vertex in Vj .

Lemma 5.3. For all k ≥ 1 and ε′, d0 > 0, provided ε, η > 0 are small
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enough that

min{ε′, 2−k} ≥ 22k+6
k3(ε1/16 + η1/32)d−2k+1

0 ,

the following holds for all P and all d, d′ ≥ d0.

Let {Vj}0≤j≤k be vertex sets, and P be a density graph on {0, . . . , k}. Let
G ≤ Γ be (k + 1)-partite (k + 1)-graphs on V0, . . . , Vk such that

(INH1) for all complexes R of the form +2Ok(a) or Ok+1(b), where
a ∈ {0, 1, 2}k and b ∈ {0, 1, 2}k+1, we have

Γ(R) = (1± η)γ(∅)
p(∅)P(R) ,

(INH2) G gives the same weight as Γ to every edge except those of size
k + 1 and those in V[k],

(INH3) G(k+1) · Γ(≤k) is (ε, d′)-regular with respect to Γ,

(INH4) G[V1, . . . , Vk] is (ε, d)-regular with respect to Γ[V1, . . . , Vk].

Then there exists a set V ′0 ⊆ V0 with ‖V ′0‖Γ ≥ (1 − ε′)‖V0‖Γ such that for
every v ∈ V ′0 the graph Gv is (ε′, dd′)-regular with respect to Γv.

This is the promised regularity inheritance lemma. The quantification of
the constants is crucial for the definition of a good partial embedding in
the following Section 5.1.3; in order for a useful counting lemma to follow
from our approach one needs to be able to control the regularity error
parameters at every step of a vertex-by-vertex embedding, and work with
underlying densities much smaller than these errors. Observe that in the
statement above, the quantities d and d′ are relative densities of parts of
G with respect to Γ; they need to be large compared to ε′ (and ε) in order
for the statement to be interesting, and η also needs to be small compared
to ε′. But the densities p(e) from P, which by (INH1) are approximately
the absolute densities in Γ, can be (and in applications usually will be) very
small compared to all other quantities. In typical applications d, d′, ε, ε′,
η will be constants fixed in a proof and independent of v(G), while the p(e)
may well tend to zero as v(G) grows.
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5.1.3 Good partial embeddings and counting

At last, we come to the second main result of this chapter, namely the
definitions that allow us to work in a hypergraph regularity setting, with a
potentially sparse but sufficiently well-behaved ambient hypergraph Γ, and
perform embedding and counting vertex by vertex.

To begin with, we need to define what ‘sufficiently well-behaved’ for the
ambient graph Γ means. Roughly, it means that we can count accurately
copies of small complexes (and the count corresponds to what we would
have in a random hypergraph of the same density) and that this property is
typically hereditary in the sense that for most vertices v we can count in the
link Γv, and we can count in typical links of Γv, and so on. The important
point separating this definition from simply ‘we can count all small subgraphs
accurately’ is that we may take links a large (depending on the number of
vertices of Γ) number of times.

Definition 5.4 (Typically hereditary counting). Given k ≥ 1, a vertex set
J endowed with a linear order, and a density k-graph D on J , we say the
J-partite k-graph H is an (η, c∗)-THC graph if the following two properties
hold.

(THC1) For each J-partite k-complex R with at most 4 vertices in each
part and at most c∗ vertices in total, we have

H(R) =
(
1± v(R)η

)h(∅)
d(∅)D(F ) .

(THC2) If |J | ≥ 2 and x is the first vertex of J , there is a set V ′x ⊆ Vx

with ‖V ′x‖H ≥ (1− η)‖Vx‖H such that for each v ∈ V ′x the graph
Hv is an (η, c∗)-THC graph on J \ {x} with density graph Dx.

It is trivial that when H is the complete J-partite k-graph (that is, it assigns
weight 1 to all J-partite edges) then for any c∗ it is a (0, c∗)-THC graph, with
density graph D being the complete k-graph on J (and the ordering on J is
irrelevant). This is the setting we obtain (from the standard construction)
when we are interested in embedding a k-complex F on J into a dense partite
k-graph G, which we think of as a relatively dense subgraph of the complete
k-graph on V (G).
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More interestingly, if Γ is a sparse k-graph with vertex partition {Vj}j∈J ,
and F is a J-partite k-complex which we want to embed into some (relatively
dense) subgraph G of Γ, then applying the standard construction we obtain
X = V (F ), vertex sets {V ′x}x∈X , and X-partite k-graphs G′ ⊆ Γ′ such that
we want to find embeddings of F where each vertex x ∈ X is embedded to
V ′x. Note that since X could be comparable in size to V (Γ), the graph Γ′

could be much bigger than Γ. But if F has small maximum degree, and
small degeneracy (see below) then most edges of G′ and Γ′ receive weight
one. It is easy to check that in this setup, if Γ is a typical random k-uniform
hypergraph G(k)(n, p), then the resulting Γ′ will be an (η, c∗)-THC graph,
provided that p is large enough depending mainly on c∗ and two properties
of F : the maximum degree and the vertex-degeneracy, which we explain
below. See Section 5.6 for a proof the relevant THC property in a random
hypergraph.

We write ∆(F ) for the maximum degree of F , which is the largest number of
edges in which a single vertex is contained. Since we deal with down-closed
F , given any vertex x of F , there are at most ∆(F ) vertices which share an
edge of F with x, which we exploit when finding embeddings of F . Given a
fixed linear order of V (F ), we write vdeg(F ) for the vertex-degeneracy of F ,
which we define as

vdeg(F ) := max
e∈F

∣∣∣{x ∈ V (F ) : x ≤ y for all y ∈ e, and

{x} ∪ e′ ∈ F for some ∅ 6= e′ ⊆ e
}∣∣∣ .

Then given a fixed ordering of V (F ) and a partial embedding φ for an initial
segment of V (F ), for any unembedded edge e ∈ F there can be at most
vdeg(F ) vertices x for which there is y ∈ e with {x, y} ∈ F .

We can now state our counting and embedding lemmas. In the dense
case, that is, when Γ is a complete J-partite k-graph, our counting lemma,
Theorem 5.5, is more or less the same as that given in [76]. The notion of
regularity used there is that obtained by the regularity lemma of [86], which
is slightly stronger than the octahedron minimality we use. The embedding
lemma, Theorem 5.6, is (as far as we know) not found in this form in the
literature, but it does follow fairly easily from [76]; a related but rather harder
statement is found in [18]. In the sparse case, our Theorem 5.5 essentially
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follows from the results of [76] and of [17], though again it is not explicitly
stated. However we would like to stress that the main novelty here is that
our proofs go by vertex-by-vertex embedding. As is standard in this context,
we write e.g. 0 < η0 � d1, . . . , dk to mean that there is an increasing function
f such that the argument is valid for 0 < η0 ≤ f(d1, . . . , dk).

Theorem 5.5 (Counting lemma for sparse hypergraphs). For all k ≥ 2,
finite sets J , and J-partite k-complexes F , given parameters ηk, η0 and ε`,
d` for 1 ≤ ` ≤ k such that 0 < η0 � d1, . . . , dk, ηk, and for all ` we have
0 < ε` � d`, . . . , dk, ηk, the following holds.

Let c∗ = max{2v(F )−1, 4k2 +k}. For any J-partite weighted k-graphs G ⊆ Γ
and density graphs D, P, where Γ is an

(
η0, c

∗)-THC graph with density
graph P, and where for each e ⊆ J of size 1 ≤ ` ≤ k, the graph G[Ve] is
ε`-regular with relative density d(e) ≥ d` with respect to the graph obtained
from G[Ve] by replacing layer ` with Γ, we have

G(F ) =
(
1± v(F )ηk

) g(∅)
d(∅)p(∅)D(F )P(F ) .

Theorem 5.6 (Embedding lemma for sparse hypergraphs). For all k ≥ 2
and ∆ ≥ 1, given parameters ηk, η0, and ε`, d` for 1 ≤ ` ≤ k such that
0 < η0 � d1, . . . , dk, ηk, ∆, and for all ` we have 0 < ε` � d`, . . . , dk, ηk, ∆,
the following holds.

Let G ⊆ Γ be J-partite weighted k-graphs with associated density graphs D,
P, where Γ is an (η0, 4k2 + k)-THC graph with density graph P, and where
for each e ⊆ J of size 1 ≤ ` ≤ k, the graph G[Ve] is ε`-regular with relative
density d(e) ≥ d` with respect to the graph obtained from G[Ve] by replacing
layer ` with Γ. Then we have

G(F ) ≥ (1− ηk)v(F ) g(∅)
d(∅)p(∅)D(F )P(F ) .

for all J-partite k-complexes F of maximum degree ∆.

In Section 5.3 we prove these results and discuss how they relate to the
structure one can obtain by existing regularity lemmas, but give a motivating
sketch of this structure here.

When the (strong) hypergraph regularity lemma is applied to a k-uniform
subgraph of Γ, one ends up working with a subgraph G of Γ which has the
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following properties. First, there is a vertex partition {Vj}j∈J indexed by J
of V (G) = V (Γ). Second, for each f ⊆ J with 2 ≤ |f | ≤ k, the graph G[Vf ] is(
ε|f |, d(f)

)
-regular with respect to the graph whose weight function is equal

to that of G on edges of size at most |f | − 1 and to Γ on edges of size |f |.
Here one should think of the edges of G of size k− 1 and less as being output
by the regularity lemma, and the k-edges as being the subgraph of Γ which
we are regularising. The difficulty is that, while we always have ε|f | � d(f),
and indeed ε` � d(f) for any f with |f | ≥ `, it may be the case that ε` is
large compared to the d(f) with |f | < `. Note that in this setting G always
gives weight one to vertices; for the purpose of the following sketch we will
assume that G has this property, though we will eventually get rid of that
assumption.

The solution to this is to separate counting and embedding into several steps.
To begin with, we can count any small hypergraph to high precision in the
ambient Γ by assumption. We define a hypergraph whose edges are given
weight equal to Γ on edges of size 3 and above, but equal to G on edges of
size two (and one). We can think of this hypergraph as being very regular
and dense relative to Γ: the relative density parameters are d(e) for |e| = 2
which are much larger than the regularity parameter ε2. Using our regularity
inheritance lemma, we show that we can count any small hypergraph to
high precision in this new hypergraph. This means we can now think of our
new hypergraph as a well-behaved ambient hypergraph, and consider the
hypergraph whose edges have weight equal to Γ on edges of size 4 and above,
but equal to G on edges of size 3 and below. The same argument shows we
can count small hypergraphs to high precision in this hypergraph too, and
so on. Our approach thus keeps track of a stack of hypergraphs, where we
assume that we can count in the bottom level Γ and inductively bootstrap
our way to counting in the top layer G by using the fact that each level is
relatively dense and very regular with respect to the level below.

In general, we may have a more complicated setup because we have embedded
some vertices. We begin by defining abstractly the structure we consider,
and will then move on to giving the conditions it must satisfy in order that
we can work with it. It is convenient to introduce a complex F and a partial
embedding of that complex in order to define the update rule; we do not
need to specify the graph into which F is partially embedded.
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Definition 5.7 (Stack of candidate graphs, update rule). Let k ≥ 2, and
suppose that a k-complex F , a partial embedding φ of F , and disjoint vertex
sets Vx for each x ∈ V (F ) which is unembedded (that is, x 6∈ domφ) are
given. Suppose that for each 0 ≤ ` ≤ k and each e ⊆ V (F ) \ domφ we are
given a subgraph C(`)(e) of Ve. We write C(`) for the union of the C(`)(e); that
is, the graph with parts {Vx}x∈V (F )\domφ whose weight function is equal to
that of C(`)(e) on Ve for each e ⊆ V (F ) \ domφ. If C(0) ≥ C(1) ≥ · · · ≥ C(k)

then we call the collection of k + 1 graphs a stack of candidate graphs, and
C(`) is the layer ` candidate graph.

Given x ∈ V (F ) \ domφ and v ∈ Vx, we form a stack of candidate graphs
corresponding to the partial embedding φ∪{x 7→ v} according to the following
update rule. For each 0 ≤ ` ≤ k, we let C(`)

x 7→v := C(`)
v be the link graph of v in

C(`). Note that trivially since C(`) ≤ C(`−1) we have C(`)
x 7→v ≤ C(`−1)

x 7→v for each
1 ≤ ` ≤ k, so that this indeed gives a stack of candidate graphs.

It will be important in what follows that we think of each C(`) both as
specifying weights for an ongoing embedding of F , and also as a partite
graph into which we expect to know the number of embeddings of some
(small, not necessarily related to F ) complex R.

We are now in a position to define a good partial embedding (GPE). Informally,
this is a partial embedding of F together with a stack of candidate graphs,
such that for each 1 ≤ ` ≤ k the graph C(`) is relatively dense and regular with
respect to C(`−1). We specify the relative density of each C(`)(e) explicitly
in terms of numbers a density k-graph D(`) with densities d(`)(f) ∈ [0, 1]
for each 1 ≤ ` ≤ k and f ⊆ V (F ), which we think of as being the relative
densities in the trivial GPE. We denote by D(`)

φ the density k-graph obtained
from D(`) by repeatedly taking the neighbourhood of vertices x ∈ domφ, so
that D(`)

φ gives the ‘current’ relative densities of C(`).

We will need a collection of parameters which describe, respectively, the
minimum relative densities in each layer of the stack (with respect to the
layer below) at any step of the embedding (denoted δ`), the required accuracy
of counting in each layer (denoted η`), and the regularity required in each
layer. The regularity parameters are somewhat complicated. In general, one
should focus on the best- and worst-case regularity; it is necessary to have
the other parameters, but one only needs the extra granularity they offer in
certain parts of the argument. Briefly, when we say C(`)(e) is ε`,r,h-regular,
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the ` indicates the layer in the stack, r = |e| gives the uniformity, and h

is the number of hits, that is, how many times in creating φ we previously
degraded the regularity of C(`)(e). This will turn out to be equal to

πφ(e) :=
∣∣{x ∈ domφ : {x} ∪ e′ ∈ F for some ∅ 6= e′ ⊆ e}

∣∣ .
Our definition of vertex-degeneracy was chosen precisely to make πφ(e) ≤
vdeg(F ) hold for all unembedded e ∈ F whenever φ is a partial embedding
of F with domφ an initial segment of V (F ).

Definition 5.8 (Ensemble of parameters, valid ensemble). For integers
k, c∗, h∗, and ∆, an ensemble of parameters is a collection δ1, . . . , δk of
minimum relative densities, η0, . . . , ηk of counting accuracy parameters, and
(ε`,r,h)`,r∈[k],h∈{0,...,h∗} of regularity parameters. For each ` ∈ [k] we define the
best-case regularity ε` := minr∈[k],h∈{0,...,h∗} ε`,r,h and the worst-case regularity
ε′` := maxr∈[k],h∈{0,...,h∗} ε`,r,h.

An ensemble of parameters is valid if the following statements hold for each
1 ≤ ` ≤ k.

(VE1) We have

η0 � δ1, . . . , δ`, η`, k, c
∗ ,

and for all `′ ∈ [`], we have

ε′`′ � δ`′ , . . . , δ`, η`, k, c
∗, ∆ ,

such that

η0 ≤
η`

72(k + 1)c∗
∏

0<`′′≤`
δc
∗
`′′ ,

ε′`′ ≤
η`δ`′

72k(k + 1)∆2

∏
`′<`′′≤`

δc
∗
`′′ .

(VE2) For each r ∈ [k] and 0 ≤ h ≤ h∗ − 1, we have ε`,r,h � ε`,r,h+1, δ`

small enough for Lemma 5.3 (inheritance and link regularity)
with input δ` and ε`,r,h+1. In particular ε`,r,h increases with h.

(VE3) For each r ∈ [k − 1] we have ε`,r+1,h∗ ≤ ε`,r,0.

(VE4) The counting accuracy (4k + 1)η`−1 is good enough for each
application of Lemma 5.3 as above. That is, with inputs δ` and
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ε`,r,h for 1 ≤ h ≤ h∗ we have (4k + 1)η`−1 small enough to apply
Lemma 5.3.

By this definition, we always have ε` = ε`,k,1 and ε′` = ε`,1,h∗ . It is important
to observe that we can obtain a valid ensemble of parameters by starting
with δk and ηk, choosing εk,1,h∗ = ε′k to satisfy

εk,1,h∗ ≤
ηkδk

72k(k + 1)∆2 ,

then choosing in order

εk,1,h∗−1 � · · · � εk,1,0 � εk,2,h∗ � · · · � εk,2,1 � · · · � εk,k,0 = εk ,

at which point we can calculate the required accuracy of counting ηk−1 and
given δk−1 choose ε′k−1 to match it, and repeat this process down the stack.
In particular, this order of choosing constants is compatible with the strong
hypergraph regularity lemma (see Section 5.3), to which we would first input
εk, be given a dk−1 which means we can specify δk−1, then choose εk−1, and
be able to calculate δk−2, and so on.

Given a partial embedding, a stack of candidate graphs, 1 ≤ ` ≤ k and
e ⊆ V (F )\domφ with |e| ≥ 1, we let C(`−1)(e) denote the subgraph of C(`−1)

induced by
⋃
x∈e Vx. We let C̃(`)(e) denote the graph obtained from C(`−1)(e)

by replacing the weights of edges in Ve with the weights of C`(e). We will
always consider regularity of C̃(`)(e) with respect to C(`−1)(e). This may
seem strange—if we are working with unweighted graphs, presumably there
are edges at all levels of the complex C(`−1)(e) which are not in C(`)(e), and
so we are insisting on a regularity involving some edges of C(`)(e) which do
not contribute to the count of embeddings into C(`). But it turns out to be
necessary.

Definition 5.9 (Good partial embedding). Given k ≥ 2, a k-complex F
of maximum degree ∆, integers c∗, h∗, and for each 0 ≤ ` ≤ k a density
k-graph D(`) on V (F ), let δ1, . . . , δk, η0, . . . , ηk, and (ε`,r,h)`,r∈[k],h∈[h∗] be
a valid ensemble of parameters. Given 1 ≤ ` ≤ k, we say that a partial
embedding φ of V (F ) together with a stack of candidate graphs C(0), . . . , C(`)

is an `-good partial embedding (`-GPE) if the following hold.

(GPE1) The graph C(0) is an
(
η0, c

∗)-THC graph with density graph D(0)
φ .
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(GPE2) For each 1 ≤ `′ ≤ ` and ∅ 6= e ⊆ V (F ) \ domφ, the graph C̃(`′)(e)
is (ε, d)-regular with respect to C(`′−1)(e), where

ε = ε`′,|e|,πφ(e) , and d = d
(`′)
φ (e) =

∏
f⊆V (F ),

e⊆f, f\e⊆domφ

d(`′)(f) .

(GPE3) The parameters δ1, . . . , δ` are ‘global’ lower bounds on the relative
density terms in the sense that for each 1 ≤ `′ ≤ ` and ∅ 6= e ⊆
V (F ) \ domφ, we have

δ`′ ≤
∏

f⊆V (F ),
e⊆f

d(`′)(f) .

When we have a k-good partial embedding, we will usually simply say good
partial embedding (GPE).

If we were told that the trivial partial embedding was good, and that for every
x and v ∈ Vx, extending a good partial embedding φ of F to φ ∪ {x 7→ v}
and using the update rule to obtain a new stack of candidate graphs would
result in a good partial embedding, then we would rather trivially conclude
the desired counting lemma. We would simply count the number of ways to
complete the embedding: when we come to embed some x to C(k)(x) (with
respect to the current GPE φ) the density of C(k)(x) would be

k∏
`=0

d
(`)
φ (x) =

k∏
`=0

∏
f⊆V (F ), x∈f,
f\{x}⊆domφ

d(`)(f) ,

up to a relative error which is small provided that for each `, all the ε`,r,h are
small enough compared to the d(`)(f). Since this formula does not depend
on a specific φ but only on domφ (so, on the order we embed the vertices)
we conclude that the total weight of embeddings of F is

c(k)(∅)∏
0≤`≤k d

(`)(∅)

k∏
`=0
D(`)(F ) = c(k)(∅)∏

0≤`≤k d
(`)(∅)

k∏
`=0

∏
f⊆V (F )

d(`)(f) ,

up to a relative error which is small provided that for each `, all the ε`,r,h are
small enough given the d(`)(f) and v(F )−1. This is the statement we would
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like to prove. Of course, it is unrealistic to expect that we always get a good
partial embedding when we extend a good partial embedding. However, it
is enough if we usually get a good partial embedding, and the next lemma
states that this is the case.

Lemma 5.10 (One-step lemma). Given k ≥ 2, a k-complex F of maximum
degree ∆ and vertex-degeneracy vdeg(F ) ≤ ∆′, positive integers c∗ and h∗, a
valid ensemble of parameters, a partial embedding φ and stack of candidate
graphs C(0), . . . , C(k) giving a GPE, let B0(x) denote the set of vertices v ∈ Vx
such that condition (GPE1) does not hold for the extension φ∪ {x 7→ v} and
the updated candidate graph C(0)

x 7→v. For 1 ≤ ` ≤ k, let B`(x) denote the set
of vertices v ∈ Vx such that φ ∪ {x 7→ v} and the updated candidate graphs
do not form an `-GPE.

Then for every 1 ≤ ` ≤ k such that `(4k + 1) ≤ c∗ and `(4k + 1) + k∆′ ≤ h∗,
we have

‖B`(x) \B`−1(x)‖C(`−1)(x) ≤ k∆2ε′`‖Vx‖C(`−1)(x) .

The point of this collection of bounds on atypical vertices is that if a vertex
v is in B`(x) \B`−1(x) for some `, then we will be able to upper bound the
count of F -copies extending φ ∪ {x 7→ v} in terms of the count of those
F -copies in C(`−1) (which we show we can estimate accurately). This upper
bound is bigger than the number we would like to get (the count in C(k)) by
the reciprocal of a product of some d(`′)(f) terms, for various f but only for
`′ ≥ `. In particular, if v(F )− |domφ| is not too large then this product is
much larger than ε′`, so that the vertices of B`(x) \B`−1(x) in total do not
contribute much to the overall count.

The corresponding counting lemma is then the following.

Lemma 5.11 (Counting lemma for GPEs). Given k ≥ 2, positive integers
∆, c∗, h∗, and a valid ensemble of parameters, let φ be a partial embedding
of a k-complex F of maximum degree ∆, and suppose that for some 1 ≤
` ≤ k, the stack of candidate graphs C(0), . . . , C(`) gives an `-GPE. Write
r = v(F )− |domφ| and suppose that we have c∗ ≥ max{2r − 1, `(4k + 1)},
h∗ ≥ `(4k + 1) + vdeg(F ), and rη` ≤ 1/2. Then

C(`)(F − domφ) = (1± rη`) c(`)(∅)∏
0≤`′≤` d

(`′)
φ

(∅)

∏
0≤`′≤`

D(`′)
φ (F − domφ) .
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The right-hand side consists of a relative error term and a product of densities,
where the ∅ terms correspond to edges of F which are fully embedded by φ,
and the remaining terms correspond to the expected weight of edges not yet
fully embedded by φ.

The proofs of Lemmas 5.10 and 5.11 are an intertwined induction, which
we give in the following Section 5.2. Specifically, to prove Lemma 5.10 for
some ` ≥ 1 we assume Lemma 5.11 for `′ < `, and to prove Lemma 5.11 for
` ≥ 1 we assume Lemma 5.10 for `′ ≤ `. The base case is provided by the
observation that the counting conditions we require to prove Lemma 5.10 for
` = 1, in C(0), hold because (GPE1) states that C(0) is a THC graph.

If one is only interested in a lower bound for the purpose of embedding, our
methods are significantly simpler because we trivially have zero as a lower
bound for the total weight of embeddings using bad vertices, and one can
afford the luxury of ignoring levels below k of the stack. Controlling this
error is what requires c∗ ≥ 2r − 1 in Lemma 5.11, but we would like to
depend less on the global structure of F in an embedding result, stated as
Lemma 5.12 below.

Lemma 5.12 (Embedding lemma for GPEs). For k ≥ 2, positive integers ∆,
∆′, c∗ ≥ k(4k+1), h∗ ≥ k(4k+1)+k∆′, and a valid ensemble of parameters,
let φ be a partial embedding of a k-complex F of maximum degree ∆ and
vertex-degeneracy at most ∆′, and suppose that the stack of candidate graphs
C(0), . . . , C(k) gives a k-GPE. Write r = v(F )− |domφ|.

Then we have

C(k)(F − domφ) ≥ (1− ηk)r c(k)(∅)∏
0≤`≤k d

(`)
φ

(∅)

∏
0≤`≤k

D(`)
φ (F − domφ) .

Note that although Lemmas 5.11 and 5.12 only explicitly allow for counting
embeddings in a partite graph where one vertex is embedded to each part,
it is easy to deduce versions where multiple vertices may be embedded into
each part by applying the standard construction at each layer of the stack. It
is trivial to check that for layers 1 to k the required regularity is carried over,
and the homomorphism counts imposed on the bottom layer are similarly
preserved by duplication.
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5.2 Embedding and counting

In this section we prove Lemmas 5.10, 5.11, and 5.12. As mentioned above,
we prove the first two lemmas together, by induction on ` in each lemma.
We begin by assuming Lemma 5.11 for `′ < ` in order to prove the bound
on B`(x) claimed in Lemma 5.10. We will use Lemma 5.11 to show that
the various counting conditions for Lemma 5.3 are met; the rest is simply
bookkeeping.

Proof of Lemma 5.10 for ` ≥ 1. If a vertex v ∈ Vx is in B`(x)\B`−1(x), then
by definition there is a failure of regularity in the graph C(`)

x 7→v (obtained
by applying the update rule to C(`)). Specifically, there is some e ⊆ F \(

dom(φ) ∪ {x}
)
such that, although C̃(`)(e) is

(
ε`,|e|,πφ(e), d

)
-regular (with

d as given in (GPE2)) with respect to C(`−1)(e), the graph C̃(`)
x 7→v(e) is not(

ε`,|e|,πφ∪{x→v}(e), dx
)
-regular (with dx as given in (GPE2)) with respect to

C(`−1)
x 7→v (e).

First, observe that if πφ(e) = πφ∪{x 7→v}(e), then this failure of regularity is
impossible: we have C̃(`)(e) = C̃(`)

x 7→v(e) and C(`−1)(e) = C(`−1)
x 7→v (e). Thus there

is an edge of F which both contains x and some non-empty subset of e; since
there are at most ∆ edges of F containing x, each of whose at most k − 1
other vertices are in at most ∆− 1 different edges of F , there are in total at
most ∆ + (k − 1)∆(∆− 1) ≤ k∆2 choices of e.

Thus, in order to prove the ` case of Lemma 5.10, it suffices to show that for
any given non-empty e ⊆ F \

(
dom(φ) ∪ {x}

)
, the total weight of vertices

v in C(`)(x) such that C̃(`)
x 7→v(e) is not

(
ε`,|e|,πφ(e)+1, dx

)
-regular, with respect

to C(`−1)
x 7→v (e), is at most ε′`‖Vx‖C(`−1)(x). The idea is that Lemma 5.3 should

provide this desired bound.

To that end, let V = Vx ∪
⋃
y∈e Vy, let Γ := C(`−1)[V ] with the inherited

vertex partition, and let G be obtained from Γ by replacing the edges in Ve
and V{x}∪e with those from C(`). Now by (GPE2) the graphs G ∩ Ve and
G ∩ Ve∪{x} are both ε := ε`,|e|,πφ(e)-regular with densities d, d′ ≥ δ` with
respect to Γ. With ε′ := ε`,|e|,πφ(e)+1, dx = dd′, and the update rule; by
definition failure of regularity in the sense of an `-GPE coincides with failure
to inherit regularity in Lemma 5.3. The conditions (VE2) and (VE3) state
that the constants above are compatible with Lemma 5.3 in this case, and the
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conclusion of Lemma 5.3 is the desired bound. It only remains to show that
all the conditions of Lemma 5.3 are met. By construction, we have (INH2),
while (INH3) and (INH4) are given by (GPE2). Thus to complete the proof
of Lemma 5.10 we only need to show that the counting condition (INH1)
holds.

Write s = |e| and e′ = {x} ∪ e. Note that we have 0 < s ≤ k. We now
justify that for any given k-complex R of the form Os+1(a) or +2Os(0,b)
with a ∈ {0, 1, 2}e′ and b ∈ {0, 1, 2}e, we can accurately count R in Γ. This
verifies (INH1).

We separate two cases. First, if ` = 1 then Γ is an induced subgraph of C(0).
By (GPE1), C(0) is an (η0, c

∗)-THC graph, and thus by (THC1), c∗ ≥ 4k+ 1,
and (VE4), we obtain the required count immediately.

The second, slightly more difficult case is ` > 1. Here we aim to deduce the
required count of R from the ` − 1 case of Lemma 5.11 (which is valid by
induction). We obtain a stack of candidate graphs by applying the standard
construction (with the e′-partite k-complex R) to the graphs C(i)[V ] for
i = 0, . . . , k. Now the required count follows immediately from Lemma 5.11
and condition (VE4) on η`−1, provided that we can justify that the trivial
partial embedding of R (in which no vertices are embedded) together with
this stack of candidate graphs forms an (`− 1)-GPE. To do this we need to
specify the valid ensemble of parameters we use. These are identical to the
valid ensemble we are provided with, except that we shift the indices for hits
in the regularity parameters, that is, we use ε`′,r,h with h0 ≤ h ≤ h∗ where
h0 = max{πφ(f) : ∅ 6= f ⊆ e′}. Recall that we have h0 ≤ vdeg(F ).

By construction the property (GPE1) for the trivial embedding of R is
implied by (GPE1) for φ and F . For (GPE2), we use the assumption that φ
is an (`− 1)-GPE, so for each edge f and each 1 ≤ `′ ≤ k − 1, we have that
C̃(`′)(f) is

(
ε`′,|f |,πφ(f), df

)
-regular (with df as given in (GPE2)) with respect

to C(`′−1)(f). Since πφ(f) ≤ h0 we have ε`′,|f |,πφ(f) ≤ ε`′,|f |,h0 , and so indeed
the trivial partial embedding of R with the given stack of candidate graphs
satisfies the conditions (GPE2) for 1 ≤ `′ ≤ `− 1 and the shifted regularity
parameters.

Finally we must verify that the shifted ensemble is valid and suitable for use
in Lemma 5.11. The ‘length’ of the sequences of shifted regularity parameters
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is h∗0 := h∗ − h0 ≤ h∗, hence (VE1) and (VE4) are implied by the same
conditions for the unshifted ensemble. The property (VE2) is unchanged
by shifting, and (VE3) holds because we have ε`,r+1,h∗0 ≤ ε`,r+1,h0 ≤ ε`,r,0 ≤
ε`,r,h0 . For counting R with the height ` − 1 case of Lemma 5.11 we need
c∗ ≥ max{8k + 1, (`− 1)(4k + 1)},

h∗0 ≥ h∗ −∆′ ≥ `(4k + 1) ≥ (`− 1)(4k + 1) + vdeg(R) ,

and (4k + 1)η` ≤ 1/2, which hold for this case by the assumptions of
Lemma 5.10 because ` ≥ 2.

The second part of the intertwined induction is a proof of Lemma 5.11. We
first give a proof of Lemma 5.12 which assumes Lemma 5.10 (for ` ≤ k),
because it serves as a good introduction to aspects of the method without
the notation necessary for the induction on `, or calculations involving bad
vertices.

Proof of Lemma 5.12. We prove Lemma 5.12 by induction on r = v(F ) −
|domφ|, assuming the ` ≤ k cases of Lemma 5.10.

The statement for r = 0 is a tautology, since then F − domφ = ∅ and the
empty set appears identically on both sides of the required count.

For r = 1, the statement follows directly from the definition of a GPE, without
the need to apply Lemma 5.10. The empty set is dealt with explicitly, so
here we consider consider the weights C(`)(x) as functions on Vx, and by the
density of C(`)(x) we mean ‖Vx‖C(`)(x). Let V (F ) = {x}, and note that by
(GPE1) we know that C(0)(x) has density

‖Vx‖C(0)(x) = (1± η0)d(0)
φ (x) ,

and by (GPE2), for each 1 ≤ `′ ≤ `, the graph C(`′)(x) is a subgraph (in the
sense of a weighted 1-graph) of C(`′−1)(x) of relative density

d
(`′)
φ (x)± ε′`′ .
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Thus C(k) has density

(1± η0)d(0)
φ (x)

∏
`∈[k]

(
1± ε′`

δ`

)
d

(`)
φ (x) = (1± ηk)

∏
0≤`≤k

d
(`)
φ (x) , (5.1)

because we have a valid ensemble of parameters ensuring for ` ∈ [k] that
η0, ε

′
` � δ`, ηk, k by (VE1). Multiplied by the weight c(k)(∅), this is the

desired expression for C(`)(F − domφ) in the case r = 1.

For r ≥ 2, fix any x ∈ V (F ). We will consider embedding x to some v ∈ Vx
and use induction on r to count the contribution from good choices of v.
The key observation is that the update rule implies

C(`)(F − domφ) = E
[
C(`)
x 7→v

(
F − domφ− {x}

)]
,

where the expectation is over a uniformly random choice of v ∈ Vx. We
separate three types of density term in the desired counting statement: d(`)(∅)
terms, d(`)(x) terms, and the remaining terms for which we write

ξ(`) :=
D(`)
φ

(
F − domφ

)
d

(`)
φ (∅)d(`)

φ (x)
=
D(`)
φ∪{x 7→v}

(
F − domφ− x

)
d

(`)
φ∪{x 7→v}(∅)

, (5.2)

where the second expression for ξ(`) comes from the update rule. Note
that despite the appearance of v in the notation on the right-hand side, as
an expected density ξ does not depend on the choice of v. The weight of
the empty set is dealt with explicitly, analysing the choice of v ∈ Vx gives
the d(`)

φ (x) terms, and the ξ(`) terms are found by induction on r. We can
afford to ignore bad vertices for a lower bound, we merely need to estimate
‖Vx \Bk(x)‖C(k)(x) with Lemma 5.10. For brevity we write B` for B`(x) in
the following calculations.

For B0 we have

‖B0‖C(k)(x) ≤ ‖B0‖C(0)(x) ≤ η0‖Vx‖C(0)(x) ≤ 2η0d
(0)
φ (x)

by (GPE1) and the condition (THC2) of a THC-graph. The same argument
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as for (5.1) gives that the density of C(`′)(x) satisfies

‖Vx‖C(`′)(x) = (1± η0)d(0)
φ (x)

∏
`′′∈[`′]

(
1± ε′`′′

δ`′′

)
d

(`′′)
φ (x)

= (1± η`′)
∏

0≤`′′≤`
d

(`′′)
φ (x) .

(5.3)

Then by Lemma 5.10 and (5.3), we calculate for 1 ≤ ` ≤ k the bound

‖B` \B`−1‖C(k)(x) ≤ ‖B` \B`−1‖C(`−1)(x)

≤ k∆2ε′` · ‖Vx‖C(`−1)(x)

≤ 2k∆2ε′`
∏

0≤`′<`
d

(`′)
φ (x) .

We next give a short calculation which shows that

‖Vx \Bk‖C(k)(x) ≥ (1− ηk)
∏

0≤`≤k
d

(`)
φ (x) , (5.4)

by a careful collection of density terms and ‘compensating’ error terms from
lower levels of the stack. We have

‖Vx \Bk‖C(k)(x) ≥ ‖Vx‖C(k)(x) − ‖B0‖C(0)(x) −
∑
`∈[k]
‖B` \B`−1‖C(k)(x)

≥

(
(1− η0)

∏
`′∈[k]

(
1− ε′`′

δ`′

)

− 2η0∏
`′∈[k] δ`′

−
∑
`∈[k]

2k∆2ε′`∏k
`′=` δ`′

) ∏
0≤`≤k

d
(`)
φ (x)

≥ (1− ηk)
∏

0≤`≤k
d

(`)
φ (x) .

The δ`′ terms in the denominators of the second line correspond to ‘missing
densities’ lost because we can only account for failure of a regularity condition
in level `′ of the stack with the regularity properties of that level. We can
afford to write δ`′ terms instead of d(`′)

φ (x) because we have δ`′ ≤ d
(`′)
φ (x)

by (GPE3). For B0 the missing densities are for levels `′ ∈ [k] but there
is a very small η0 to compensate, and for B` \ B`−1 we have a product of
missing densities from levels ` to k of the stack, but a comparatively small
ε′` to compensate.
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With (5.4) in hand, we finish the proof with the induction on r. For any
v ∈ Vx \ Bk, note that applying the induction hypothesis is valid as the
required lower bounds on c∗, h∗ still hold, and we have

C(k)
x 7→v(F − domφ− x)

≥ (1− ηk)r−1 c
(k)
x 7→v(∅)∏

0≤`≤k d
(`)
φ∪{x 7→v}(∅)

∏
0≤`≤k

D(`)
φ∪{x 7→v}

(
F − domφ− x

)
= (1− ηk)r−1c(k)

x 7→v(∅)
∏

0≤`≤k
ξ(`) ,

where we have separated out the only term c
(k)
x 7→v(∅) which depends on v, so

that the remaining product over ` is independent of v. By the update rule
we have c(k)

x 7→v(∅) = c(k)(∅)c(k)(v), which gives

C(k)(F − domφ) = E
[
C(k)
x7→v

(
F − domφ− x

)∣∣∣v ∈ Vx]
≥ (1− ηk)r−1c(k)(∅)‖Vx \Bk‖C(k)(x)

∏
0≤`≤k

ξ(`)

= (1− ηk)r c(k)(∅)∏
0≤`≤k d

(`)
φ

(∅)

∏
0≤`≤k

D(`)
φ (F − domφ) ,

where for the last line we observe that density terms involving x are taken
care of by ‖Vx \ Bk‖C(k)(x) via (5.4), and the other terms are given by ξ

via (5.2).

The proof for Lemma 5.11 is similar, but we must proceed by induction on
the height ` of the GPE and handle bad vertices more carefully. For the
latter consideration, we use the following consequence of the Cauchy–Schwarz
inequality, which we prove along with several related tools in Section 5.4.

Lemma 5.13. Let W , X, and Y be discrete random variables such that
W takes values in [0, 1], X takes values in the non-negative reals, and Y is
real-valued. Suppose also that for 0 ≤ ε ≤ 1 and d ≥ 0 we have

E[XY ] = (1± ε)dEX and E[XY 2] ≤ (1 + ε)d2 EX .

Then

E[WXY ] =
(

1− ε± 2
√

εEX
E[WX]

)
dE[WX] ,
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and

E[WXY 2] =
(

1− 2ε± 7
√
ε

EX
E[WX]

)
d2 E[WX] .

Proof of Lemma 5.11 for ` ≥ 1. Given `, we prove Lemma 5.11 for height `
by induction on r = v(F )−|domφ|, assuming the `′ ≤ ` cases of Lemma 5.10
and `′ < ` cases of Lemma 5.11. Below we write B` as a shorthand for B`(x).

As in the previous proof, the case r = 0 is a tautology, and the statement for
r = 1 follows directly from the definition of `-GPE. The same applications
of properties (GPE1), (GPE2), and (VE1) as for (5.1) and (5.3) give that
for `′ ≤ ` we have

‖Vx‖C(`′)(x) = (1± η0)d(0)
φ (x)

∏
`′′∈[`′]

(
1± ε′`′′

δ`′′

)
d

(`′′)
φ (x)

= (1± η`′)
∏

0≤`′′≤`′
d

(`′′)
φ (x) .

(5.5)

When r = 1, with `′ = `, and multiplied by the factor c(`)(∅), this is the
desired statement.

Now given r ≥ 2, fix x ∈ V (F ). We use the statement of Lemma 5.11 for
heights `′ < ` and with the complex F − x, and (the induction assumption
in this proof) for height `.

We have a partition of Vx into the bad vertices B0, and B`′ \B`′−1 for `′ ∈ [`],
and the good vertices Vx \ B`. As in the previous proof, we separately
consider density terms for ∅, x, and the ones of the form ξ(`′) obtained via
the induction on r. From (5.2) recall that ξ is independent of v. The desired
counting statement is then

C(`)(F − domφ) = (1± rη`)c(`)(∅)
∏

0≤`′≤`
d

(`′)
φ (x)ξ(`′) .

As before, by Lemma 5.10, (5.5), and the fact that in any valid ensemble we
have η`′−1 < 1 for all `′, we calculate for 1 ≤ `′ ≤ ` the bound

‖B`′ \B`′−1‖C(`′) ≤ ‖B`′ \B`′−1(x)‖C(`′−1)(x)

≤ k∆2ε′`′ · ‖Vx‖C(`′−1)(x)

≤ 2k∆2ε′`′
∏

0≤`′′<`′
d

(`′′)
φ (x) .

(5.6)
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By definition, for each v ∈ Vx \B`′(x), the partial embedding φ ∪ {x→ v}
together with the stack of candidate graphs C(0)

x 7→v, . . . , C(`′)
x 7→v obtained by

the update rule is an `′-GPE. Applying for each 1 ≤ `′ ≤ ` the `′ case of
Lemma 5.11 with the partial embedding φ∪{x 7→ v} and updated candidate
graphs (where we note that c∗ and h∗ are large enough and η`′ small enough
for this to be valid), it follows that for each such choice of v we have

C(`′)
x 7→v(F − domφ− x)

=
(
1± (r − 1)η`′

) c
(`′)
x 7→v(∅)∏

0≤`′′≤`′ d
(`′′)
φ∪{x 7→v}(∅)

∏
0≤`′′≤`′

D(`′′)
φ∪{x 7→v}(F − domφ− x)

=
(
1± (r − 1)η`′

)
c(`′)(∅)c(`′)(v)

∏
0≤`′′≤`′

ξ(`′′) ,

where the second line follows from the update rule and definition of ξ. We
will carefully account for the empty set in level ` and not below. Then by
the fact that C(`′) ≤ C(`), for each 1 ≤ `′ ≤ ` and v ∈ Vx \B`′ we have

C(`)
x7→v(F − domφ− x) ≤ c(`)(∅)

c(`′)(∅)C
(`′)
x7→v(F − domφ− x)

=
(
1± (r − 1)η`′

)
c(`)(∅)c(`′)(v)

∏
0≤`′′≤`′

ξ(`′′) .
(5.7)

Putting (5.5), (5.6), and (5.7) together will give us the required lower bound
on C(`)(F ), but for the upper bound we still need to show that the contribution
made by v ∈ B0 is small. Letting F ′ be the k-complex on r′ := 2r − 1 ≤ c∗

vertices obtained by taking two disjoint copies of F and identifying each
vertex in domφ ∪ {x} with the corresponding vertex in the other copy, we
have the following counts in the bottom layer of the stack by (GPE1),

C(0)(F − domφ) = (1± rη0) c
(0)(∅)
d

(0)
φ

(∅)
D(0)
φ (F − domφ) ,

= (1± rη0)c(0)(∅)d(0)
φ (x)ξ(0) , (5.8)

C(0)(F ′ − domφ) = (1± r′η0) c
(0)(∅)
d

(0)
φ

(∅)
D(0)
φ (F ′ − domφ)

= (1± r′η0)c(0)(∅)d(0)
φ (x)ξ(0)2 . (5.9)
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From this, apply Lemma 5.13 to the experiment of choosing v ∈ Vx, with

X := c(0)
x 7→v(∅) ,

Y := C(0)
x 7→v(F − domφ− x)/c(0)

x 7→v(∅) ,

W := 1v∈B0(x) .

Property (GPE1) gives EX = (1 ± η0)c(0)(∅)d(0)
φ (x), and statements (5.8)

and (5.9) give bounds on E[XY ] and E[XY 2]. We also have E[WX] ≤ η0 EX
by (GPE1) and condition (THC2). Hence we conclude

E[WXY ] ≤ 5r′η0 · c(0)(∅)d(0)
φ (x)ξ(0) ≤ 10η0c

∗ · c(0)(∅)d(0)
φ (x)ξ(0) .

Again, taking care to deal with the empty set in level `, we deduce the upper
bound bound

10η0c
∗ · c(`)(∅)d(0)

φ (x)ξ(0) (5.10)

on the contribution to C(`)(F − domφ) from vertices v ∈ B0.

To complete the proof we substitute these bounds into the expression

C(`)(F − domφ) = E
[
1v/∈B`C

(`)
x 7→v(F − domφ− x)

]
±
∑
`′∈[`]

E
[
1v∈B`′\B`′−1

C(`)
x 7→v(F − domφ− x)

]
± E

[
1v∈B0C(0)

x 7→v(F − domφ− x)
]
.
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Using (5.5), (5.6), (5.7), and (5.10), we obtain

C(`)(F − domφ)

=
(
1± (r − 1)η`

)
c(`)(∅)‖Vx \B`‖C(`)(x) ·

∏
0≤`′′≤`

ξ(`′′)

±
∑
`′∈[`]

(
1 + (r − 1)η`′

)
c(`)(∅)‖B`′ \B`′−1‖C(`′)(x) ·

∏
0≤`′′≤`′

ξ(`′)

± 10η0c
∗ · c(`)(∅)d(0)

φ (x)ξ(0)

=
(
1± (r − 1)η`

)
c(`)(∅)

(
1±
‖B`‖C(`)(x)
‖Vx‖C(`)(x)

)
(1± η0)

·
( ∏
`′′∈[`]

(
1 + ε′`′′

δ`′′

))
·
∏

0≤`′′≤`
d

(`′′)
φ (x)ξ(`′′)

±
∑
`′∈[`]

(
1 + (r − 1)η`′

)
c(`)(∅) · 2k∆2 ε′`′

d
(`′)
φ (x)

·
∏

0≤`′′≤`′
d

(`′′)
φ (x)ξ(`′′)

± 10η0c
∗ · c(`)(∅)d(0)

φ (x)ξ(0) .

This is almost the desired statement. By collecting terms we have

C(`)(F − domφ) = (1± rη`)c(`)(∅)
∏

0≤`′′≤`
d

(`′′)
φ (x)ξ(`′′) ,

with a relative error given by rη`, provided the following holds:

1 + rη` ≥
(
1 + (r − 1)η`

)(
1 +
‖B`(x)‖C(`)(x)
‖Vx‖C(`)(x)

)
(1 + η0)

∏
`′′∈[`]

(
1 + ε′`′′

δ`′′

)

+
∑
`′∈[`]

(
1 + (r − 1)η`′

)
2k∆2 · ε′`′

δ`′
∏
`′<`′′≤` δ`′′ξ(`′′)

+ 10η0c
∗∏

0<`′′≤` δ`′′ξ(`′′)
.

The definition of a valid ensemble is chosen to make this inequality hold.
Considering the right-hand side, the first line can be made at most 1 + (r −
2/3)η`, and each of the two remaining terms can be made at most η`/3.
Essentially the point is that where we have products of ‘missing’ minimum
densities in the denominator of error terms, there is an ε′`′ or η0 to compensate
in the numerator. The ε′`′ parameters are chosen to be small enough to
compensate for any product of minimum densities from the same level or
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higher, and η0 is small enough to compensate for any densities in layers
above 0.

Here we require the upper bound on r, since it implies the ξ(`′) terms
corresponding to edges remaining after x is embedded cannot be too small.
We give the required calculations below, relying on the facts that for all
`′ ≥ 1, we have

δ`′ ≤ d
(`′)
φ (x) , and δc

∗−1
`′ ≤ ξ(`′) . (5.11)

The first bound states the contribution to the final count at level `′ from
embedding x is at least δ`′ , which holds by assumption: δ`′ is a minimum
density. Then with 2r−1 ≤ c∗ the first inequality implies the second because
ξ(`′) is a product over the remaining r − 1 vertices of their contributions.
The next claim deals with the smaller two error terms, and a subsequent
claim deals with the main term.

Claim 5.14. (VE1) implies both

∑
`′∈[`]

(
1 + (r − 1)η`′

)
2k∆2 · ε′`′

δ`′
∏
`′<`′′≤` δ`′′ξ(`′′)

≤ η`
3 ,

and
10η0c

∗∏
0<`′′≤` δ`′′ξ(`′′)

≤ 10η0c
∗∏

0<`′′≤` δ
c∗
`′′
≤ η`

3 .

Proof. For the first statement, since we have (r − 1)η`′ ≤ 1/2 and (5.11) it
suffices to ensure that

ε′`′ ≤
η`

9k2∆2 δ`′
∏

`′<`′′≤`
δc
∗
`′′

for each `′ ∈ [`], which holds by (VE1). In the second statement the first
inequality holds by (5.11), and the second holds by (VE1).

Claim 5.15. (VE1) implies

(
1 + (r − 1)η`

)(
1 +
‖B`(x)‖C(`)(x)
‖Vx‖C(`)(x)

)
(1 + η0)

∏
`′′∈[`]

(
1 + ε′`′′

δ`′′

)
≤ 1 +

(
r − 2

3
)
η`

Proof. First we bound ‖B`(x)‖C(`)(x). By (5.5), (5.6), and ‖B0(x)‖C(0)(x) ≤
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η0‖Vx‖C(0)(x), we have

‖B`(x)‖C(`)(x) ≤ ‖B0(x)‖C(0)(x) +
∑
`′∈[`]
‖B`′(x) \B`′−1(x)‖C(`′)(x)

≤ 2η0d
(0)
φ (x) +

∑
`′∈[`]

2k∆2ε′`′
∏

0≤`′′<`′
d

(`′′)
φ (x) .

Hence (using that η` < 1/2), we have

‖B`(x)‖C(`)(x)
‖Vx‖C(`)(x)

≤ 4η0∏
`′∈[`] d

(`′)(x)
+
∑
`′∈[`]

4k∆2 ε′`′∏
`′≤`′′≤` d

(`′′)(x)

≤ 4η0∏
`′∈[`] δ`′

+
∑
`′∈[`]

4k∆2 ε′`′∏
`′≤`′′≤` δ`′′

.

For the claim, by rη` < 1/2 it now suffices to show

(
1 + 4η0∏

`′∈[`] δ`′
+
∑
`′∈[`]

4k∆2 ε′`′∏
`′≤`′′≤` δ`′′

)
(1 + η0)

∏
`′′∈[`]

(
1 + ε′`′′

δ`′′

)

≤ 1 + η`
9 ≤

1 + (r − 2/3)η`
1 + (r − 1)η`

.

We use that η` � k, 1. The first bracketed term and (1 + η0) are each at
most 1 + η`/36 by (VE1), and similarly we have

1 + ε′`′′

δ`′′
≤ 1 + η`

72k ≤
(
1 + η`

36
)1/k

,

which shows the product over [`] is also at most 1 + η`/36. It follows that
the expression is at most (1 + η`/36)3 ≤ 1 + η`/9 as required.

This completes the proof of Lemma 5.11.

5.3 Relating GPEs and regularity lemmas

There are several approaches to generalising Szemerédi’s regularity lemma to
hypergraphs [47, 77, 85, 86]. Recall that main idea is to partition a hyper-
graph into a bounded number of pieces, almost all of which are pseudorandom.
Difficulties arise in giving a precise formulation of pseudorandomness that is
both weak enough to be found by a regularity lemma and strong enough to

103



Chapter 5. Hypergraph embedding

support a counting lemma. We use a notion of octahedron minimality as our
pseudorandomness condition (Definition 5.2), and in this section we describe
how existing results imply that we can partition arbitrary hypergraphs into
pieces which have the necessary structure.

In dense hypergraphs, the combined use of (strong) regularity lemmas with
compatible counting lemmas constitute the standard hypergraph regularity
method [84, 87]. Our Theorem 5.5 is essentially a version of the counting
lemma of [76] for use with our definition of regularity. In the following
subsection we show how to derive the setup of Theorem 5.5 from the strong
regularity lemma of [86], allowing our Theorem 5.5 to be used in many
applications of the standard hypergraph regularity method.

Versions of these tools for sparse graphs are less well-developed, but notably
the weak regularity lemma and accompanying counting lemma of Conlon,
Fox, and Zhao [17], give a general technique for transferring results for dense
hypergraphs to a sparse setting. We show how combined use of the regularity
methods of [17] and [76, 86] can yield the setup of Theorems 5.5 and 5.6,
giving a powerful vertex-by-vertex method for counting and embedding in
sparse hypergraphs. At the end of the section we prove Theorems 5.5 and 5.6.

5.3.1 Dense hypergraphs

We use results of Rödl and Skokan [86], and Nagle, Rödl, and Schacht [76],
which allow us to partition a k-uniform hypergraph H into ‘pieces’ G which
satisfy the hypotheses of Theorems 5.5 and 5.6 when Γ is taken to be the
constant function 1.

We must use both the strong regularity lemma of [86] and the corresponding
counting lemma [76] because our definition of regularity is related to octa-
hedron counts which one obtains from the Rödl–Skokan version of regularity
by a counting lemma. The precise structure of the partition into pieces
which results from the strong regularity lemma is rather technical, but for
our purposes it suffices to observe that, applied to H, we obtain a number
of k-complexes whose k-layers form a partition of E(H). We choose to
represented these k-complexes as weighted k-graphs with weights in {0, 1},
and call them slices of H. The technical part of the definition relates to how
the levels below k of different slices overlap, which we do not discuss.
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In general one can show that all but a constant proportion of the edges of H
lie in slices that have the regularity structure we seek, but in this sketch we
make the simplifying assumption that all slices have the required regularity.
In applications one deals with this proportion separately without use of a
counting lemma, either making the constant proportion so small that the
edges in irregular slices have a negligible effect, or assuming strong properties
of H which imply it can be fully partitioned into regular slices.

The slices we obtain from combined use of the strong regularity lemma
and the counting lemma are as follows. Firstly V (H) is partitioned into
{Vj}j∈J , such that each slice G of H is a k-partite k-graph on {Vj}j∈f for
some f ∈

(J
k

)
. For any constant εk > 0 and family of functions ε2, . . . , εk−1

where ε` : [0, 1]k−` → R>0, we obtain lower bounds d1, . . . , dk−1 such that
every slice G on vertex sets {Vj}j∈f has the following properties.

(i) The vertex partition is equitable such that for all j, |Vj | ≥ d1|V (H)|.

(ii) For each e ( f with |e| = ` ≥ 2, G[Ve] is ε`(d`, . . . , dk−1)-regular with
relative density d(e) ≥ d` with respect to the `-graph obtained from
G[Ve] by replacing layer ` with the constant 1.

(iii) G is εk-regular with respect to the k-graph obtained from G by replacing
layer k with the constant 1.

Note that we do not control the k-level relative density, d(f) say, of G above,
but in applications for a given constant dk we can make εk small enough
that any slice where d(f) < dk may be neglected. This formulation permits
ε` � d`, . . . , dk, and hence for suitable ε` functions these slices have the
required properties for the use of Theorems 5.5 and 5.6 in the case Γ = 1.

To prove Theorems 5.5 and 5.6 for dense hypergraphs it is enough to construct
a stack of candidate graphs from a slice of the above form such that the
empty partial embedding is a GPE, and apply Lemmas 5.10 and 5.11 as
required. There are additional complications for sparse hypergraphs which
we deal with first.

5.3.2 Sparse hypergraphs

We can represent a sparse, pseudorandom k-uniform hypergraph Γ as a
weighted k-graph Γ which is an (η, 2c∗)-THC graph with density graph P
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which is equal to some 0 < p ≤ 1 at the k-layer and equal to 1 elsewhere.
In fact, for this sketch suppose that Γ has a slightly stronger version of the
THC properties which allow us to count complexes with at most 8 vertices in
each part. For an arbitrary H ⊆ Γ, we wish to partition H and Γ into slices
of the form G ⊆ Γ′ which satisfy the hypotheses of Theorems 5.5 and 5.6.

As above, when considering an application of Theorem 5.5 or 5.6, we will
have εk > 0 and functions ε` : [0, 1]k−` → R>0 to ensure that any errors in
level ` are small enough compared to relative densities from levels ` and
above. In addition we will have some maximum permitted error η0 for the
THC properties of the eventual slices Γ′.

In order to apply the methods of Conlon, Fox, and Zhao [17], we require H to
have a property known as upper regularity, but this holds for any H because
of our assumptions on Γ, see [17]. We restrict our attention to k-partite
pieces of Γ′ which can be obtained from the general case by the standard
construction. Then let |f | = k and Γ be k-partite on vertex sets {Uj}j∈f .

With the weak regularity lemma of [17], given ν > 0 (to be determined
later), we find a dense approximation H̃ of H with a prescribed structure on
s� 1/ν ‘pieces’. Vf is partitioned into k-uniform hypergraphs Q1, . . . ,Qs,
(with functions qi to indicate their edges) such that each Qi is the set
of k-cliques in some (k − 1)-uniform hypergraph, and we have densities
α1, . . . , αs ∈ [0, 1] such that with k-level weight given by

h̃(xf ) =
∑
i∈[s]

αiqi(xf ) ∈ [0, 1] ,

we can view H̃ as a ‘density-weighted’ union of the dense, k-uniform hyper-
graphs Q1, . . . ,Qs.

The sense in which H̃ approximates H is that the functions p−1h and h̃

from Vf to R≥0 are a ν-discrepancy pair. This means that for any functions
ue : Ue → [0, 1] where e ( f we have∣∣∣E[(p−1h(xf )− h̃(xf )

) ∏
e(f

ue(xe)
∣∣∣xf ∈ Uf]∣∣∣ ≤ ν . (5.12)

In contrast to the strong hypergraph regularity lemma, this is a global
statement: we have not refined the partition {Uj}j∈f . We will have to take
ν small enough that this global statement gives usable bounds even when
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the ue functions are used to restrict our attention more locally.

To obtain the required structure for our results, we first use the methods
for dense hypergraphs of the previous subsection, and then use the counting
lemma of [17] which relates subgraph counts in graphs whose weight functions
are a discrepancy pair. We require a standard, slight generalisation of the
methods described in the previous subsection, where we start the regularity
lemma with a prescribed partition which must be refined, and simultaneously
regularise some finite number s of k-uniform hypergraphs. Applied to the
Qi, these methods partition H̃ into a number of slices (depending on s and
the ε`) with the property that each slice has its k-layer contained within
exactly one Qi. In particular, given s and the ε`, we obtain a bounded
number of slices G̃ with minimum relative densities d1, . . . , dk−1 and vertex
sets Vj ⊆ Uj of size at least d1|Uj | such that (i) to (iii) hold. In this setting
the k-layer of each G̃ is complete with respect to the layer below in the sense
that g̃(xf ) =

∏
e(f g̃(xe) ∈ {0, 1}. This means we may use the ue functions

for e ( f in (5.12) to restrict attention to k-edges supported by the slice G̃.
The fact that we know d1, . . . , dk−1 in terms of s and the ε` means that we
can choose ν small enough that (5.12) is still accurate when rescaled to be
over Vf instead of Uf .

The graphs G and Γ′ that we show satisfy the hypotheses of Theorems 5.5
and 5.6 are H restricted to G̃, and Γ′ := Γ[Vf ] respectively, where we consider
both G and Γ′ to have vertex sets Vj for j ∈ f .

Firstly, we show that Γ′ is an (η′, c∗)-THC graph with density k-graph P,
which we recall is p at layer k and 1 on e ( f . The main idea is that
accurate counting of small subgraphs is a ‘linear forms condition’, and
powerful combinatorial techniques exist to manage graphs which satisfy these
conditions. A standard argument using repeated applications of the Cauchy–
Schwarz inequality shows that the (η, 2c∗)-THC condition (strengthened to
allow complexes with up to 8 vertices in each part) on Γ implies that, up to
errors controlled by η and k, the function p−1γ on Uf may be replaced by 1 in
counting expressions which involve subgraphs of Γ. The argument is related
to the Gowers–Cauchy–Schwarz inequality [46], proofs of generalised von
Neumann theorems [48, 96], and the rather simpler methods in Section 5.4.
Conlon, Fox, and Zhao [17, Section 6.2] give a full exposition of this fact,
showing (in more generality than we need here) that when we restrict
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attention to slices Γ′ on Vf instead of Uf we can still count any k-complex
F on at most c∗ vertices. The loss in the accuracy of these statements is
controlled by polynomials in η of degree bounded in k, and in d−k1 which
gives a bound on how small Vf can be. Then provided ηd−k1 � η0, k we have
Γ′(F ) = (1± η0)pm for any F with v(F ) ≤ r and exactly m edges of size k,
which shows Γ′ is an (η0, c

∗)-THC graph.

Now we turn to G, which is H restricted to G̃, hence we write g(xf ) =
h(xf )g̃(xf ). Multiplying by g̃ and rescaling (5.12) so the expectation is over
Vf instead of Uf , we have for any functions ue : Ve → [0, 1],∣∣∣E[(p−1g(xf )− αig̃(xf )

) ∏
e(f

ue(xe)
∣∣∣xf ∈ Vf]∣∣∣ ≤ νd−k1 .

This means p−1g and αig̃ are a νd−k1 -discrepancy pair (as functions Vf →
R≥0), and by the THC condition in Γ′ which gives us the necessary linear
forms conditions, the counting lemma of [17] implies that small subgraph
counts agree to accuracy ν ′ provided νd−k1 � ν ′, k.

Since G and Γ′ agree with G̃ on edges of size up to k − 1, the methods for
dense hypergraphs in the previous subsection give that for all e ( f of size
2 ≤ ` ≤ k − 1, the graph G[Ve] is ε`-regular with relative density d(e) ≥ d`
with respect to the graph obtained from G[Ve] by replacing layer ` with Γ′,
where we use that Γ′ = 1 at layers below k. For layer k, we need to count
Ok(1k) and Ok(2k) in G and Γ′, and the counting lemma of [17] implies

G
(
Ok(1k)

)
=
(
αiG̃

(
Ok(1k)

)
± ν ′

)
p

= (αi ± εk)Γ′
(
Ok(1k)

)
,

and

G
(
Ok(2k)

)
=
(
α2k
i G̃(Ok(2k)

)
± ν ′

)
p2k

≤
(
α2k
i + εk

)
Γ′
(
Ok(2k)

)
,

provided η0 � εk and ν ′, εk−1 � εk, d2, . . . , dk−1, k. For the second count
we need to lower bound Ok(2k) in G̃, which can be done with accuracy that
tends to zero with εk−1 by Theorem 5.5 for (k − 1)-graphs since at layer k
we know that G̃ is complete with respect to layer k− 1. A careful analysis of
the constants shows that, given any functions ε` and an η0 as we would have
for either Theorem 5.5 or 5.6, we can choose ν and η small enough (and r
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large enough) that this sketch yields slices of the desired form.

Again, we do not control the densities αi, and we should allow for irregular
slices in the dense regularity methods, but in applications εk can be chosen
small enough in terms of some lower bound dk that irregular slices and slices
with αi ≤ dk can be ignored.

5.3.3 Proofs of Theorems 5.5 and 5.6

Having sketched constructions which show how to obtain the hypotheses of
Theorems 5.5 and 5.6, we now turn to their proofs.

Proof of Theorem 5.5. We construct a stack of candidate graphs which show
that the trivial partial embedding of F is a GPE, and apply Lemma 5.11.

First, let C(0) = Γ, and note that this is an (η0, c
∗)-THC graph with density

graph D(0) = P by assumption. For higher levels in the stack let C(`) be the
graph obtained from C(`−1) by replacing weights on edges of size ` by those
in G.

For (GPE2) recall that we must consider the regularity of C̃(`)(e) with respect
to C(`−1)(e) for all e ⊆ J , and that C(`−1)(e) is simply the subgraph of C(`)

induced by Vx for x ∈ e. By the definitions of the C(`) in terms of G and Γ,
C̃(`)(e) is identical to C(`−1)(e) except when |e| = ` in which case we obtain
C̃(`)(e) from C(`−1)(e) by replacing the weights in Ve with those from G. Then
the required regularity holds trivially with d(`)(e) = 1 for |e| 6= ` because
the graphs are equal, and when |e| = ` the required regularity holds with
d(`)(e) = d(e) by the assumptions on G ⊆ Γ.

In order to apply Lemma 5.11 with ∆ = ∆(F ), c∗ is as required by assumption,
but we must give a suitable h∗ and valid ensemble of parameters. Let
h∗ = 4k2 + k + vdeg(F ), and choose an ensemble of parameters as described
following Definition 5.8. We must ensure that η0 and the ε` are small enough
that this ensemble is indeed valid, but this is allowed by the dependencies
among the constants. Then the conclusion of Lemma 5.11 gives the desired
bounds because by construction

∏
0≤`≤k d

(`)(e) = d(e)p(e), giving

G(F ) = C(k)(F ) =
(
1± v(F )ηk

) g(∅)
d(∅)p(∅)D(F )P(F ) .

Proof of Theorem 5.6. The proof is almost identical to the above, but we use
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Lemma 5.12. The construction of the stack of candidate graphs is identical,
and again we use h∗ = 4k2 + k + vdeg(F ) ≤ 4k2 + k + k∆ and ensure that
η0 and the ε` are small enough that the same construction of an ensemble is
valid. Lemma 5.12 gives the required lower bound.

5.4 Applying the Cauchy–Schwarz inequality

We can always consider a k-complex on t vertices as t-partite with parts of
size one, and in this case we represent the sum giving H(F ) by an expectation
as follows. A partite homomorphism φ : F → H must map vertex j of F
to a vertex xj ∈ Vj of H, so for |J | = t indexing the vertex sets, a partite
homomorphism ψ from F to H is equivalent to a vector of vertices xJ ∈ VJ ,
and we have

H(F ) = E
[∏
e∈F

h(xe)
∣∣∣xJ ∈ VJ] ,

where the expectation is over the uniform distribution on vectors xJ ∈ VJ ,
and we write xe for the natural projection of xe onto Ve.

Let a ∈ {0, 1, 2}J . We use the following notation for the count of octahedra
such as Ok(a) in H. Suppose that for j ∈ J and i ∈ [aj ], vertices x(i)

j are
chosen uniformly at random (with replacement) from Vj . For e ⊆ J and
ω ∈

∏
j∈J [aj ] we write x(ω)

e for the vector indexed by j ∈ e of vertices x(ωj)
j .

Then we have the notation

H
(
F (a)

)
= E

[ ∏
e∈F

ω:ωi∈[ai]

h(x(ω)
e )

∣∣∣x(i)
j ∈ Vj for each j ∈ J and i ∈ [aj ]

]
,

for the expected weight of a uniformly random partite homomorphism from
Ok(a) to H. With this notation in place, we turn to the main tool of the
chapter.

5.4.1 Basic applications

We make extensive use of the Cauchy–Schwarz inequality in the form
E[XY ]2 ≤ E[X]E[XY 2], where we take care to ensure that X takes non-
negative values throughout. First, we restate Lemma 5.13 and give a proof.

110



Chapter 5. Hypergraph embedding

Lemma 5.13. Let W , X, and Y be discrete random variables such that
W takes values in [0, 1], X takes values in the non-negative reals, and Y is
real-valued. Suppose also that for 0 ≤ ε ≤ 1 and d ≥ 0 we have

E[XY ] = (1± ε)dEX and E[XY 2] ≤ (1 + ε)d2 EX .

Then

E[WXY ] =
(

1− ε± 2
√

εEX
E[WX]

)
dE[WX] ,

and

E[WXY 2] =
(

1− 2ε± 7
√
ε

EX
E[WX]

)
d2 E[WX] .

Proof. For the first statement, observe that X, W , and 1−W are all non-
negative random variables. Then we have

(1 + ε)d2 EX ≥ E[XY 2] = E[WXY 2] + E[(1−W )XY 2]

≥ E[WXY ]2

E[WX] + E[(1−W )XY ]2

E[(1−W )X] ,
(5.13)

where the second inequality is by two applications of the Cauchy–Schwarz
inequality. Given fixed E[WXY ] the right hand side is minimised when
E[XY ] = (1− ε)dEX, so we may assume

E[(1−W )XY ] = (1− ε)dEX − E[WXY ] .

Let E[WXY ] = (1− ε+ c)dE[WX]. Then from (5.13) we have

(1 + ε)EX ≥ (1− ε+ c)2 E[WX] +
(
(1− ε)EX − (1− ε+ c)E[WX]

)2
E[(1−W )X]

= (1− ε+ c)2 E[WX] +
(
(1− ε)E[(1−W )X]− cE[WX]

)2
E[(1−W )X]

= (1− ε)2 EX + c2 E[X]E[WX]
E[(1−W )X] ,

and so
3ε− ε2 ≥ c2 E[WX]

E[(1−W )X] ≥ c
2E[WX]

EX
,

which is a contradiction if c2 ≥ 4εE[X]/E[WX], as required.
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For the second statement, we have by the Cauchy–Schwarz inequality and
the first part,

E[WXY 2] ≥ E[WXY ]2

E[WX] ≥
(

1− ε− 2
√

εEX
E[WX]

)2

d2 E[WX]

≥
(

1− 2ε− 4
√

εEX
E[WX]

)
d2 E[WX] ,

and similarly

E[(1−W )XY 2] ≥ E[(1−W )XY ]2

E[(1−W )X]

≥

(
(1− ε)E[(1−W )X]− 2

√
εE[X]E[WX]

)2

E[(1−W )X] d2

≥
(

(1− 2ε)E[(1−W )X]− 4
√
εE[X]E[WX]

)
d2 ,

so that

E[WXY 2] ≤ (1 + ε)d2 EX

−
(

(1− 2ε)E[(1−W )X]− 4
√
εE[X]E[WX]

)
d2

≤
(

1− 2ε+ 7
√
ε

EX
E[WX]

)
d2 E[WX] .

Corollary 5.16. Let X and Y be random variables such that X takes values
in the non-negative reals and Y is real-valued. Suppose also that for 0 ≤ ε ≤ 1
and d ≥ 0 we have

E[XY ] = (1± ε)dEX and E[XY 2] ≤ (1 + ε)d2 EX .

Let W be the indicator of the event that Y = (1± 2ε1/4)d. Then

E[WX] ≥ (1− 4ε1/4)EX .

Proof. Write ε′ = 2ε1/4 and let Z indicate the event that Y > (1 + ε′)d.
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Then using Lemma 5.13 with weight 1− Z we have

(1 + ε)dEX ≥ E[XY ] = E[(1− Z)XY ] + E[ZXY ]

≥
(
1− ε− 2

√
εEX

E[(1−Z)X]

)
dE[(1− Z)X] + (1 + ε′)dE[ZX]

≥
(
1− ε− 2

√
ε+ ε′ E[ZX]

EX

)
dEX ,

which implies that E[ZX] ≤ 2ε1/4 EX.

With a similar argument we deal with the event that Y < (1 − ε′)d, now
using the letter Z for the indicator of this event we calculate

(1− ε)dEX

≤ E[XY ] = E[(1− Z)XY ] + E[ZXY ]

≤
(

1− ε+ 2
√

εEX
E[(1− Z)X]

)
dE[(1− Z)X] + (1− ε′)dE[ZX]

≤
(

1 + 2
√
ε− ε′E[ZX]

EX

)
dEX ,

which implies that E[ZX] ≤ 2ε1/4 EX. Together, the two arguments prove
that E[WX] ≥ (1− 4ε1/4)EX as required.

Corollary 5.17. Let X and Y be random variables such that X takes values
in the non-negative reals and Y is real-valued. Suppose also that for a natural
number t ≥ 2, and reals 0 ≤ ε < 22−2t and d ≥ 0 we have

E[XY ] = (1± ε)dEX and E[XY 2t ] ≤ (1 + ε)d2t EX .

Let W be the indicator of the event that Y = (1± 2ε1/8)d. Then

E[WX] ≥ (1− 4ε1/8)EX .

Proof. Let Z := Y 2t−1 and d̃ := d2t−1 . Then by the Cauchy–Schwarz
inequality we have

E[XZ]2 ≤ E[X]E[XZ2] = E[X]E[XY 2t ] ≤ (1 + ε)d̃ 2 E[X]2 .

By t− 1 further applications of the Cauchy–Schwarz inequality we also have

E[XZ] ≥ E[X]1−2t−1
E[XY ]2t−1 ≥ (1− ε)2t−1

d̃EX ≥ (1− 2t−1ε)d̃EX .

113



Chapter 5. Hypergraph embedding

With ε̃ := ε1/2 ≥ 2t−1ε this implies

E[XZ] = (1± ε̃)d̃EX , E[XZ2] ≤ (1 + ε̃)d̃ 2 EX .

The result now follows from Corollary 5.16. Note that Z = (1 ± 2ε̃1/4)d̃
implies the event Y = (1 ± 2ε1/8)d which is indicated by W , hence by
Corollary 5.16 we obtain E[WX] ≥ (1− 4ε1/8)EX.

5.4.2 Lower bounds on octahedra

The common theme in the following results is an application of the Cauchy–
Schwarz inequality to the expectation in a normalised homomorphism count.

Lemma 5.18. For every natural number k ≥ 2, vertex set J of size k,
index i ∈ J and vectors a, b, c ∈ {1, 2}J which satisfy aj = bj = cj for
all j ∈ J \ {i} and ai = 0, bi = 1, ci = 2 the following holds. Let H be a
k-partite k-graph on vertex set {Vj}j∈J . Then

H
(
Ok(c)

)
≥
H
(
Ok(b)

)2
H
(
Ok−1(a)

) .
Proof. We prove the case J = {0, 1, . . . , k− 1} and i = 0, writing f = [k− 1]
for the indices on which a, b, and c agree. The other cases follow by
relabelling indices.

Observe that a copy of Ok(c) simply consists of two copies of Ok(b) agreeing
on a copy of Ok−1(a). Let X be the random variable giving the weight of
a uniform random copy of Ok−1(a), and Y be the random variable which,
given a uniform random copy of Ok−1(a), returns the total weight of the
ways to extend it to a copy of Ok(b). More concretely, we choose uniformly
at random (with replacement) vertices x(i)

j ∈ Vj for each i ∈ [aj ], and let

X :=
∏
e⊆f,

ω:ωi∈[ai]

g(x(ω)
e ) , and Y := E

[ ∏
e⊆f,

ω:ωi∈[ai]

g(x0, x
(ω)
e )

∣∣∣x0 ∈ V0
]
.

Thus we have EX = H
(
Ok−1(a)

)
, E[XY ] = H

(
Ok(b)

)
, and E[XY 2] =

H
(
Ok(c)

)
. Since X is a non-negative random variable, the Cauchy-Schwarz

inequality E[XY ]2 ≤ E[X]E[XY 2] gives the required statement.

114



Chapter 5. Hypergraph embedding

Lemma 5.18 justifies the term ‘minimal’ used in the following definition.

Definition 5.19. Let H be a k-partite k-graph and η ≥ 0. Then we say
that H is η-minimal if, for every i ∈ [k] and for every a,b, c ∈ {0, 1, 2}k

which satisfy aj = bj = cj for all j ∈ [k] \ {i} and ai = 0, bi = 1, ci = 2, we
have

H
(
Ok(c)

)
≤ (1 + η) H(Ok(b))2

H(Ok−1(a)) .

Suppose Γ and G are k-partite k-graphs, and G agrees with Γ on edges of size
k − 1 and less. Suppose furthermore that the density of G relative to Γ is d.
If Γ is a complete graph, then it is well known that G has at least d2k times
as many octahedra as Γ. For general Γ this statement is false, but we will
now show that if Γ is η-minimal it is approximately true (and generalise it).

Corollary 5.20. For all natural numbers k ≥ 2 and vectors s, s′ ∈ {1, 2}k

with s ≥ s′ pointwise and such that s has t more 2 entries than s′, the
following holds. Suppose that G and Γ are k-partite k-graphs on the same
partite vertex set, with g(e) = γ(e) for all e with |e| < k, and suppose
G
(
Ok(s′)

)
= d · Γ

(
Ok(s′)

)
. Moreover suppose that Γ is η-minimal. Then

G
(
Ok(s)

)
≥ d2t

(1 + η)2t−1 Γ
(
Ok(s)

)
.

Proof. We prove the case s = (2t+a,1k−t−a) where a ≥ 0 is an integer; the
other cases follow by relabelling indices. Letting s(i) := (2t+a−i,1k+i−t−a)
and r(i) := (2t+a−i−1, 0,1k+i−t−a), we have s(0) = s and s(t) = s′. By
Lemma 5.18 and η-minimality of Γ respectively, for each 0 ≤ i ≤ t− 1 we
have

G
(
Ok(s(i))

)
≥
G
(
Ok(s(i+1))

)2
G
(
Ok−1(r(i+1))

)
Γ
(
Ok(s(i))

)
≤ (1 + η)

Γ
(
Ok(s(i+1))

)2
Γ
(
Ok−1(r(i+1))

) .
Note that since G and Γ agree on edges of size less than k, the denominators
in both fractions are equal, so for each 0 ≤ i ≤ t− 1 we have

G
(
Ok(s(i))

)
Γ
(
Ok(s(i))

) ≥ 1
1 + η

(G(Ok(s(i+1))
)

Γ
(
Ok(s(i+1))

))2
,
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and thus

G
(
Ok(s(0))

)
Γ
(
Ok(s(0))

) ≥ 1
(1 + η)2t−1

(G(Ok(s(t))
)

Γ
(
Ok(s(t))

))2t

= d2t

(1 + η)2t−1 ,

as desired.

In particular, it follows that if G is (ε, d)-regular with respect to the η-minimal
Γ, then G is itself ε′-minimal, where ε′ is small provided η is sufficiently small
and ε is small enough compared to d.

Corollary 5.21. Given ε′, d > 0, then for ε, η small enough that

ε′ ≥ max
{

1− (1−ε/d)2k

(1+η)2k−1 ,
(
1 + εd−2k)(1 + η)2k−1 − 1

}
,

the following holds. Let Γ and G be k-partite k-graphs on the same partite
vertex set, such that γ(e) = g(e) whenever |e| < k. Suppose that G is
(ε, d)-regular with respect to Γ, and that Γ is η-minimal. Then G is ε′-
minimal, and for each c ∈ {1, 2}k we have G

(
Ok(c)

)
= (1± ε′)drΓ

(
Ok(c)

)
with r =

∏
i∈[k] ci.

Moreover we note that if the above inequality for ε′ is tight, we have

ε′ ≤ 22k(εd−2k + η
)
.

Proof. We begin with the second statement, comparing G
(
Ok(c)

)
to Γ

(
Ok(c)

)
.

Corollary 5.20 with s = c and s′ = 1k and the regularity bound on G
(
Ok(1k)

)
give the required lower bound, since for any 1 ≤ r ≤ 2k we have by choice of
ε and η,

(1− ε/d)r

(1 + η)r−1 ≥
(1− ε/d)2k

(1 + η)2k−1 ≥ 1− ε′ .

To obtain the upper bound, suppose for contradiction that G
(
Ok(c)

)
>

(1 + ε′)drΓ
(
Ok(c)

)
, where r :=

∏
i∈[k] ci. Then applying Corollary 5.20 with

s = 2k and s′ = c, we have

G
(
Ok(2k)

)
>

(
(1 + ε′)dr

)2k/r
(1 + η)2k/r−1 Γ

(
Ok(2k)

)
≥ (1 + ε′)2k/r

(1 + η)2k−1d
2kΓ

(
Ok(2k)

)
≥
(
d2k + ε

)
Γ
(
Ok(2k)

)
,
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by 1 ≤ r ≤ 2k and choice of ε, η. This contradicts the (ε, d)-regularity of G
with respect to Γ.

The minimality argument is essentially identical. Suppose for contradiction
that G is not ε′-minimal, and let a, b, c ∈ {0, 1, 2}k be vectors witnessing
this. That is, these vectors agree on [k] \ {j} for some j ∈ [k] and we have
aj = 0, bj = 1, cj = 2, and

G
(
Ok(c)

)
> (1 + ε′)

G
(
Ok(b)

)2
G
(
Ok−1(a)

) . (5.14)

Observe that b cannot contain any zero entries, since otherwise the three
octahedron counts are the same as in Γ, and since ε′ ≥ η the three vectors
then witness that Γ is not η-minimal. Let t be the number of 2 entries in b.
By Corollary 5.20, we have G

(
Ok(b)

)
≥ d2t

(1+η)2t−1 Γ
(
Ok(b)

)
, so since G and Γ

agree on edges of size at most k − 1, we have

G
(
Ok(c)

)(5.14)
> (1 + ε′) d2t+1

(1 + η)2t+1−2
Γ
(
Ok(b)

)2
Γ
(
Ok−1(a)

) ≥ (1 + ε′)d2t+1

(1 + η)2t+1−1 Γ
(
Ok(c)

)
,

where the second inequality uses the η-minimality of Γ. Applying Corol-
lary 5.20 with s = 2k and s′ = c, we obtain

G
(
Ok(2k)

)
> (1 + η)2k−t−1−1

(
(1 + ε′)d2t+1

(1 + η)2t+1−1

)2k−t−1

Γ
(
Ok(2k)

)
= (1 + ε′)2k−t−1

(1 + η)2k−1 d2kΓ
(
Ok(2k)

)
.

Since t ≤ k− 1, and since (1 + ε′)(1 + η)1−2kd2k ≥ d2k + ε, this is the desired
contradiction to the (ε, d)-regularity of G with respect to Γ.

5.4.3 Regular subgraphs of regular graphs

In this section we show that, given an η-minimal graph Γ, if we replace the
`-edges V[`] by a subgraph which is relatively dense and regular with respect
to Γ[V1, . . . , V`] then the result is still η′-minimal. This is a generalisation of
the slicing lemma for 2-graphs, which says that large subsets of a regular
pair induce a regular pair; in other words, replacing 1-edges with a relatively
dense subgraph preserves regularity of the 2-edges. Note that regularity is a
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trivial condition for 1-graphs.

Lemma 5.22. Given ε′, d > 0, then for ε, η small enough that

min{ε′, 1/2} ≥ η + max
{

27k3
(
1− (1−ε/d)2k−1

(1+η)2k−1−1

)
,

27k3
((

1 + εd−2k−1)(1 + η)2k−1−1 − 1
)
,

29k3
((

1 + 100√ηd−2k−1)(1 + 2η)− 1
)}

,

the following holds. Let Γ be an η-minimal k-partite k-graph with parts
V1, . . . , Vk, and let G be a subgraph on the same vertex set, which agrees with
Γ except on V[`] for some ` < k, and which has the property that G[V1, . . . , V`]
is (ε, d)-regular with respect to Γ[V1, . . . , V`]. Then G is ε′-minimal, and for
each s ∈ {0, 1, 2}k we have G

(
Ok(s)

)
= (1± ε′)drΓ

(
Ok(s)

)
with r :=

∏
i∈[`] si.

Moreover, we note that when ε′ < 1/2 and the above inequality for ε′ is tight,
we have

ε′ ≤ 22k−1+18k3(ε+√η)d−2k−1
.

Proof. Let ξ be maximal such that
(1+2kξ

1−2kξ
)2(1 + η) ≤ 1 + ε′, noting that

this gives 2−7k−3(ε′ − η) ≤ ξ ≤ (4k)−1ε′. The choice of ε, η ensure that
when Corollary 5.21 is applied (e.g. to G[V1, . . . , V`] and Γ[V1, . . . , V`]) with
kC5.21 = ` and ε, η as in this lemma, the resulting ε′C5.21 is at most ξ, and
that (

1 + 100√ηd−2k−1)(1 + 2η) ≤ 1 + 1
4ξ . (5.15)

The following claim, and choice of ξ, gives the desired counting in G.

Claim 5.23. Given s ∈ {0, 1, 2}k, let q :=
∑
i∈[k] si and r :=

∏
i∈[`] si. Then

we have
G
(
Ok(s)

)
= (1± qξ)drΓ

(
Ok(s)

)
.

The required counting statements in G follow because q ≤ 2k and ξ ≤ (4k)−1ε′.
The desired ε′-minimality follows directly from this claim and η-minimality
of Γ. Indeed, let a, b and c be vectors in {0, 1, 2}k agreeing at all indices
except j, and with aj = 0, bj = 1, cj = 2. Let ta =

∏
i∈[`] ai, and define

similarly tb and tc. Note that either j ∈ [`] and we have ta = 0 and tc = 2tb,
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or j 6∈ [`] and all three are equal. Since
∑
i∈[k] ci ≤ 2k, we have by the claim,

G
(
Ok(c)

)
≤ (1 + 2kξ)dtcΓ

(
Ok(c)

)
≤ (1 + 2kξ)(1 + η)dtc

Γ
(
Ok(b)

)2
Γ
(
Ok(a)

)
≤ (1 + 2kξ)(1 + η)dtc

(1− 2kξ)−2d−2tbG
(
Ok(b)

)2
(1 + 2kξ)−1d−taG

(
Ok(a)

)
=
(

1 + 2kξ
1− 2kξ

)2

(1 + η)
G
(
Ok(b)

)2
G
(
Ok(a)

) ,
as desired. It remains only to prove the claim, which we now do by induction
on the number of zeroes in s outside [`].

Proof of Claim 5.23. The base case is that all entries of s outside [`] are
equal to zero. Note that if s = 0k then the claim is trivial, so we assume this
is not the case, and hence q =

∑
i∈[k] si ≥ 1. Write s′ ∈ {0, 1, 2}` for the first `

entries of s, which for the base case are the only entries which may be non-zero,
giving G

(
Ok(s)

)
= G[V1, . . . , V`]

(
O`(s′)

)
. Since G[V1, . . . , V`] is (ε, d)-regular

with respect to Γ[V1, . . . , V`], which is η-minimal, by Corollary 5.21 and
choice of ε, η, the claim statement follows.

For the induction step, suppose that j /∈ [`] is such that sj 6= 0. For i = 0, 1, 2,
let s(i) be the vector equal to s at all entries except the jth, and with s(i)

j = i.
By induction, the claim statement holds for s(0). Again, write s′ ∈ {0, 1, 2}`

for the first ` entries of s. We define random variables W , X, Y as follows.
The random experiment we perform is to choose, for each i ∈ [`], uniformly
at random (with replacement) s(0)

i vertices in Vi. We let X be the weight
of the copy of Ok−1(s(0)) in Γ on these vertices, WX be the weight of the
copy of Ok−1(s(0)) in G on these vertices, and XY be the expected weight,
over a uniformly random choice of vertex in Vj , of the copy of Ok(s(1)) in
Γ. Note that since G is a subgraph of Γ, we always have 0 ≤W ≤ 1. More
formally (and dealing with the trivial exceptional case X = 0), let x(m)

i ∈ Vi
be chosen independently, uniformly at random for each i ∈ [k] \ {j} and
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m ∈ [s(0)
i ]. Write Ω =

∏
i∈[k]\{j}[si] and Ω′ =

∏
i∈[k][s

(1)
i ], and define

X :=
∏

e⊆[k]\{j}

∏
ω∈Ω

γ
(
x(ω)
e

)
,

Y := E
[ ∏
e⊆[k], j∈e

∏
ω∈Ω′

γ
(
x(ω)
e

)∣∣∣x(1)
j ∈ Vj

]
, and

W :=


1
X

∏
e⊆[k]\{j}

∏
ω∈Ω g

(
x

(ω)
e
)

if X > 0

1 if X = 0 .

The key feature of these definitions is that E[XY i] = Γ
(
Ok(s(i))

)
for each

i = 0, 1, 2, and similarly E[WXY i] = G
(
Ok(s(i))

)
. If EX = 0 then trivially

the claim holds, since Γ
(
Ok(s)

)
= 0. So we may assume EX > 0, and let d′

be such that E[XY ] = d′ EX. By Lemma 5.18 and the η-minimality of Γ,
we have E[XY 2] = (1± η)E[XY ]2/EX = (1± η)(d′)2 EX. We are thus in
a position to apply Lemma 5.13, with εL5.13 = η. We obtain

E[WXY ] =
(
1− η ± 2

√
η EX
E[WX]

)
d′ · E[WX] and

E[WXY 2] =
(
1− 2η ± 7√η EX

E[WX]
)
(d′)2 E[WX] .

Recall that from the induction hypothesis with q :=
∑
i∈[k] s(0)

i and r :=∏
i∈[`] s(0)

i we have

E[WX] = G
(
Ok−1(s(0))

)
= (1± qξ)drΓ

(
Ok(s(0))

)
= (1± qξ)dr EX .

This gives

G
(
Ok(s(1))

)
=
(
1− η ± 2

√
η(1 + 2qξ)d−r

)
(1± qξ)drΓ

(
Ok(s(1))

)
, and

G
(
Ok(s(2))

)
=
(
1− 2η ± 7√η(1 + 2qξ)d−r

)
(1± qξ)(1± 2η)drΓ

(
Ok(s(2))

)
,

where we use the η-minimality of Γ in obtaining the second statement. By
choice of ξ and (5.15), this proves the claim for s(i) with i = 1, 2, and in
particular for s, as desired.

The proof of Claim 5.23 completes the proof of Lemma 5.22.
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5.5 Inheritance of regularity

Our goal in this section is to prove Lemma 5.3. Note that in proving the
counting and embedding lemmas (see Section 5.2) for k-graphs, we must
apply Lemma 5.3 for kL5.3-graphs where kL5.3 takes values up to k, which
means we must mention (k+1)-partite (k+1)-graphs in the proof below. Our
definitions mean that in Section 5.2, whenever we are applying Lemma 5.3
to a (k + 1)-partite (k + 1)-graph, the graphs are trivial and equal to 1 on
edges of size k + 1. This feature is visible in the graph case: when k = 2
the inheritance lemmas of [2, 16] involve a 3-partite graphs, and to deduce
similar results from our inheritance lemma one must form a 3-graph from
this 3-partite graph by giving edges of size 3 weight 1.

We with a brief outline of the method for proving Lemma 5.3. First, let H
be the k-graph on V0, . . . , Vk with edge weights

h(e) :=

γ(e) e 6∈ V[k]

g(e) e ∈ V[k] .

By Lemma 5.22 and (INH3), G is regular with respect to H, and by (INH4),
H[V1, . . . , Vk] is regular with respect to Γ[V1, . . . , Vk]. This, together with
Corollary 5.21, in particular allows us to estimate G

(
Ok+1(1k+1)

)
and

G
(
Ok+1(1,2k)

)
accurately.

These two quantities are by definition equal to the averages, over v ∈ V0, of
Gv
(
Ok(1k)

)
and Gv

(
Ok(2k)

)
respectively. Using (INH1), we conclude that

on average the relative density of Gv with respect to Γv is about dd′, and
the number of octahedra it contains is about (dd′)2k times the number of
octahedra in Γv.

However, we can also give a lower bound on the average number of octahedra
in Gv using its density relative to Γv and Corollary 5.20, whenever Γv satisfies
the counting conditions of that lemma. The assumption (INH1) implies
that these counting conditions are typically satisfied, and the few atypical
vertices do not much affect the argument. Using the defect Cauchy–Schwarz
inequality and the fact that we know the average density of Gv relative to
Γv, we conclude that the only way this lower bound does not contradict the
previous estimate is if typically Gv has density about dd′ relative to Γv and

121



Chapter 5. Hypergraph embedding

number of octahedra about (dd′)2k times the number in Γv. In other words,
Gv is typically (ε′, dd′)-regular with respect to Γv, as desired.

Proof of Lemma 5.3. We use the letter v for a vertex in V0 to draw attention
to the special role of the set V0, but use xj for a vertex in Vj when j ∈ [k].
As in the proof of Lemmas 5.11 and 5.12, we use the correspondence between
copies of Ok+1(1,a) in G or Γ, and the average of the counts of Ok(a) in the
graphs Gv or Γv over v ∈ V0. More precisely, we have for any a ∈ {0, 1, 2}k,

G
(
Ok+1(1,a)

)
= E

[
Gv
(
Ok(a)

)∣∣v ∈ V0
]
, (5.16)

Γ
(
Ok+1(1,a)

)
= E

[
Γv
(
Ok(a)

)∣∣v ∈ V0
]
. (5.17)

When Γv is well-behaved (in a way we make precise below) we are able to
count carefully in Gv but when Γv is not well-behaved, we can bound weights
in Gv from above by those in Γv.

Though in general it is difficult to control the weight of the empty set, in this
proof we only embed a single vertex into V0, hence there is not much to control.
Instead of the usual sprinkling of weights involving the empty set, for this
proof we can assume without loss of generality that γ(∅) = g(∅) = p(∅) = 1
and avoid most of these factors. We will have similar correcting factors when
counting in Gv and Γv, however.

The first step of the proof is to use the counting conditions in Γ to establish
the existence of U ⊆ V0 such that for each vertex v ∈ U , the link Γv is
well-behaved. We also give additional properties of Γ and U that are useful
later. Property (INH1) specifies a kind of pseudorandomness for Γ, and
the natural definition of a well-behaved vertex v ∈ V0 is that its link Γv is
similarly pseudorandom, so our definition of U will involve control of the
counts of Ok(a) in links. As ever, we must deal carefully with the weight of
the empty set in these links, but for edges of size greater than one, we will
see that (INH1) implies concentration of the edge weights by the Cauchy–
Schwarz inequality. We state the definition in terms of P rather than Pv for
more convenient use later.

Write η′ := 23/2η1/4 (and note we have η′ < 1/2), and let U ⊆ V0 be those
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vertices v ∈ V0 such that for any a ∈ {0, 1, 2}k \ {0k} we have

Γv
(
Ok(a)

)
= (1± η′)γ(v)

p(0)P
(
Ok+1(1,a)

)
. (5.18)

The counting assumptions (INH1) are a form of pseudorandomness which
suggests that U will be a large subset of V0, which we prove in the necessary
weighted setting below.

Claim 5.24.

(i) Γ is 16η-minimal.

(ii) For v ∈ U , Γv is 16η′-minimal.

(iii) The contribution to Γ
(
Ok+1(1k+1)

)
from homomorphisms which use a

vertex in V0 \ U is at most 3k+3η′P
(
Ok+1(1k+1)

)
.

Proof. To see (i), we use (INH1). Let j ∈ {0} ∪ [k], and vectors a,b, c ∈
{0, 1, 2}k+1 be equal on {0} ∪ [k] \ {j} and satisfy aj = 0, bj = 1, cj = 2.
Then by (INH1) we have

Γ
(
Ok+1(a)

)
Γ
(
Ok+1(c)

)
≤ (1 + η)2 · P

(
Ok+1(a)

)
P
(
Ok+1(c)

)
= (1 + η)2 · P

(
Ok+1(b)

)2
≤ (1 + η)2

(1− η)2 · Γ
(
Ok+1(b)

)2
,

which shows Γ is minimal with parameter (1 + η)2(1− η)−2 − 1 ≤ 16η.

The proof of (ii) is similar but we use the definition of U . Let j ∈ [k], and
a,b, c ∈ {0, 1, 2}k be equal on [k] \ {j} and satisfy aj = 0, bj = 1, cj = 2. If
a = 0k then the required bound is trivial, otherwise by the fact that v ∈ U
we have

Γv
(
Ok(a)

)
Γv
(
Ok(c)

)
≤ (1 + η′)2 · γ(v)2

p(0)2P
(
Ok+1(1,a)

)
P
(
Ok+1(1, c)

)
= (1 + η′)2 · γ(v)2

p(0)2P
(
Ok+1(1,b)

)2
≤ (1 + η′)2

(1− η′)2 · Γv
(
Ok(b)

)2
,
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which shows that when v ∈ U , Γv is minimal with parameter (1 + η′)2(1−
η′)−2 − 1 ≤ 16η′.

Part (iii) resembles a step in the proof of Lemma 5.11 involving C(0). We
first establish a lower bound on ‖U‖Γ. Fix a ∈ {0, 1, 2}k and recall that
+2Ok+1(0,a) is the (k + 1)-complex obtained by taking two vertex-disjoint
copies of Ok+1(1,a) and identifying their first vertices. Consider the experi-
ment where v ∈ V0 is chosen uniformly at random, and let

X := γ(v) , and Y := Γv(Ok(a))
γ(v) .

By (5.17) and (INH1) we have

E[XY ] = E
[
Γv
(
Ok(a)

)]
= Γ

(
Ok+1(1,a)

)
= (1± η)P

(
Ok+1(1,a)

)
= (1± η)p(0) ·

P
(
Ok+1(1,a)

)
p(0) ,

E[XY 2] = E
[

Γv
(
Ok(a)

)2
γ(v)

]
= Γ

(
+2Ok+1(0,a)

)
= (1± η)P

(
+2Ok+1(0,a)

)
= (1± η)p(0) ·

(
P
(
Ok+1(1,a)

)
p(0)

)2

.

Noting that EX = (1± η)p(0) by (INH1), we can apply Lemma 5.13 and
Corollary 5.16 in the arguments below with an appropriate a, εL5.13 =
εC5.16 := 4η, and

dL5.13 = dC5.16 :=
P
(
Ok+1(1,a)

)
p(0) .

To bound ‖U‖Γ, for a ∈ {0, 1, 2}k \ {0k}, let Ua ⊆ V0 be those vertices v
which satisfy

Γv
(
Ok(a)

)
= (1± η′)γ(v)

p(0)P
(
Ok+1(1,a)

)
,

so that U is the intersection of the 3k − 1 different Ua. By Corollary 5.16 we
have ‖Ua‖Γ ≥ (1− 2η′)‖V0‖Γ, and hence ‖U‖Γ ≥ (1− 3k+1η′)‖V0‖Γ, so that

‖V0 \ U‖Γ ≤ 3k+1η′‖V0‖Γ .
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The contribution to Γ
(
Ok+1(1k+1)

)
from homomorphisms that use a vertex

in V0 \ U can be written as

E
[
Γv
(
Ok(1k)

)
1v∈V0\U

]
,

which is a weighting of E
[
Γv
(
Ok(1k)

)]
by the weight W := 1v∈V0\U . We

apply Lemma 5.13 with this weight W and X, Y as above with a = 1k to
obtain

E
[
Γv
(
Ok(1k)

)
1v∈V0\U

]
≤
(

1− 4η + 4
√

η‖V0‖Γ
‖V0\U‖Γ

)P(Ok+1(1k+1)
)

p(0) ‖V0 \ U‖Γ

≤ (1 + η)
(
3k+1η′ + 4

√
3k+1ηη′

)
P
(
Ok+1(1k+1)

)
,

and note that the coefficient of P
(
Ok+1(1k+1)

)
here is at most 3k+3η′.

With the set U understood, we proceed by counting Ok+1(1,2k) in G two
different ways. Firstly, we estimate counts of Ok+1(1k+1) and Ok+1(1,2k)
in G with Corollary 5.21 and Lemma 5.22. We give crude values of the
constants that work in the argument, but make no effort to optimise them.

Let H have layer k + 1 given by G, and lower layers given by Γ. Then by
assumption (INH3) H is (ε, d′)-regular with respect to Γ, and we obtain G
from H by replacing weights on V[k] with those from G. By Claim 5.24(i),
and Corollary 5.21 for (k + 1)-graphs, H is εm-minimal where

εm := 22k+1(
ε(d′)−2k+1 + η

)
> max

{
1− (1−ε/d′)2k+1

(1+η)2k+1−1 ,
(
1 + ε(d′)−2k+1)(1 + η)2k+1−1 − 1

}
.

We can now apply Lemma 5.22 for (k + 1)-graphs to G and H to obtain the
required counts in G. With εL5.22 = ε, ηL5.22 = εm as above, and dL5.22 = d,
we obtain that for

ε′m := 22k+22k3(ε1/2(d′)−2k + η1/2)d2−k ,

the (k + 1)-graph G is ε′m-minimal, and the remaining assertions of Corol-
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lary 5.21 and Lemma 5.22 give

G
(
Ok+1(1k+1)

)
= (1± ε′m)d · H

(
Ok+1(1k+1)

)
= (1± εm)(1± ε′m)dd′Γ

(
Ok+1(1k+1)

)
= (1± ε′′m)dd′ · P

(
Ok+1(1k+1)

)
,

(5.19)

G(Ok+1(1,2k)) ≤ (1 + ε′m)d2kH
(
Ok+1(1,2k)

)
≤ (1 + εm)(1 + ε′m)(dd′)2kΓ

(
Ok+1(1,2k)

)
≤ (1 + ε′′m)(dd′)2k · P

(
Ok+1(1,2k)

)
,

(5.20)

where
ε′′m = 22k+25k3(ε1/2(d′)−2k+1 + η1/2)d2−k .

The second method for counting Ok+1(1,2k) involves counting Ok(2k) in the
links of vertices v ∈ V0. We have Gv ≤ Γv and since we do not try to control
Gv directly when v /∈ U , we define

dv =


Gv(Ok(1k))
Γv(Ok(1k)) if v ∈ U ,

0 otherwise .

Claim 5.25. Writing

ζ := max
{
ε′′m + η′ + 3k+3η′

dd′ , ε′′m + 2η′ + 2η′ε′′m,
(1+16η′)2k−1

1−16η′ (1 + ε′′m)− 1
}
,

we have

E[γ(v)dv] = (1± ζ)dd′ · p(0) , and

E
[
γ(v)d2k−1

v

]
≤ (1 + ζ)(dd′)2k−1 · p(0) .

Moreover, we note that a crude calculation gives

ζ ≤ 22k+1+50k3(ε1/2 + η1/4)(dd′)−2k+1
.

Proof. First we bound E[γ(v)dv]. By (5.16) we have

G(Ok+1(1k+1)) = E
[
Gv
(
Ok(1k)

)]
≤ E

[
dvΓv

(
Ok(1k)

)]
+ E

[
Γv
(
Ok(1k)

)
1v∈V0\U

]
.
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By the definition (5.18) of U , for the first expectation we have an upper
bound on Γv(Ok(1k)) which depends only on γ(v), and by Claim 5.24(iii) we
have a bound on the final expectation which represents copies of Ok+1(1k+1)
using a vertex in V0 \ U . We combine these facts with (5.19) to obtain a
lower bound on E[γ0(v)dv]. That is,

(1− ε′′m)dd′ · P
(
Ok+1(1k+1)

)
≤ G

(
Ok+1(1k+1)

)
≤ (1 + η′)

P
(
Ok+1(1k+1)

)
p(0) E[γ(v)dv] + 3k+3η′P

(
Ok+1(1k+1)

)
,

which yields the lower bound

E[γ(v)dv] ≥
(

1− ε′′m − η′ −
3k+3η′

dd′

)
dd′ · p(0) .

For a corresponding upper bound we have

(1 + ε′′m)dd′ · P
(
Ok+1(1k+1)

)
≥ G

(
Ok+1(1k+1)

)
≥ E

[
dvΓv

(
Ok(1k)

)]
≥ (1− η′)

P
(
Ok+1(1k+1)

)
p(0) E[γ(v)dv] ,

by the definition of U and (5.19). We conclude

E[γ(v)dv] ≤
(
1 + ε′′m + 2η′ + 2η′ε′′m

)
dd′ · p(0) .

For the second statement, Claim 5.24(ii) means that when v ∈ U we can
apply Corollary 5.20 to Gv ≤ Γv and obtain a lower bound on Gv

(
Ok(2k)

)
,

Gv
(
Ok(2k)

)
≥ d2k

v

(1 + 16η′)2k−1 Γv
(
Ok(2k)

)
(5.21)

≥ 1− η′

(1 + 16η′)2k−1
P
(
Ok+1(1,2k)

)
p(0) · γ(v)d2k

v .

Then by (5.16) again,

p(0)G
(
Ok+1(1,2k)

)
≥ 1− η′

(1 + 16η′)2k−1P
(
Ok+1(1,2k)

)
E
[
γ(v)d2k

v

]
,
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which together with (5.20) implies the required upper bound

E
[
γ(v)d2k

v

]
≤ (1 + 16η′)2k−1

1− 16η′ (1 + ε′′m)(dd′)2k · p(0) .

Claim 5.25 means that we have concentration of dv by Corollary 5.17 with
X := γ(v) and Y := dv. Writing Uconc ⊆ U for the vertices v with dv =
(1± 2ζ1/8)dd′, we have

‖Uconc‖Γ ≥
(
1− 4ζ1/8)p(0) . (5.22)

It remains to show that for almost all of the weight in Uconc, Gv is regular in
the sense that the weight of Ok(2k) is close to minimal. Let Ureg ⊆ U be the
vertices v ∈ U with

Gv
(
Ok(2k)

)
≤ (d2k

v + ε′)Γv
(
Ok(2k)

)
.

For all vertices v ∈ U we have the lower bound (5.21) on Gv
(
Ok(2k)

)
, hence

we are supposing that for v ∈ U \ Ureg we have an additive improvement
on (5.21) of at least ε′Γv

(
Ok(2k)

)
. Then we have

G
(
Ok+1(1,2k)

)
= E

[
Gv
(
Ok(2k)

)]
≥ 1

(1 + 16η′)2k−1 E
[(
d2k
v + ε′1v∈U\Ureg

)
Γv
(
Ok(2k)

)]
≥ 1− η′

(1 + 16η′)2k−1

(
E
[
γ(v)d2k

v

]
+ ε′‖U \ Ureg‖Γ

) P(Ok+1(1,2k)
)

p(0)

≥ 1− η′

(1 + 16η′)2k−1

(
E[γ0(v)dv]2

k

‖U‖2k−1
Γ

+ ε′‖U \ Ureg‖Γ

)
P
(
Ok+1(1,2k)

)
p(0)

≥ (1− η′)(1− ζ)2k(
(1 + 16η′)(1 + η)

)2k−1

(
(dd′)2k + ε′‖U \ Ureg‖Γ

p(0)

)
P
(
Ok+1(1,2k)

)
,

where the fourth line is by the Cauchy–Schwarz inequality, and the fifth is
by Claim 5.25, and the fact that ‖U‖Γ ≤ ‖V0‖Γ ≤ (1 + η)p(0). With (5.20)
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we have

‖U \ Ureg‖Γ ≤
1
ε′

((
(1+16η′)(1+η)

)2k−1
(1+ε′′m)

(1−η′)(1−ζ)2k − 1
)

(dd′)2kp(0) (5.23)

≤ 1
ε′
· 22k+2+54k3(ε1/2 + η1/4)(dd′)−2kp(0)

≤ 22k+2+54k3(ε1/4 + η1/8)(dd′)−2kp(0) ,

where for the last line we use that ε′ ≥ max{ε1/4, η1/8}.

Now, for Lemma 5.3 we may take V ′0 = Uconc ∩ Ureg, since then for v ∈ V ′0
the link Gv inherits both the desired relative density and regularity from G.
Moreover, by (5.22) and (5.23) we have

‖V0‖Γ ≥ ‖Uconc‖Γ − ‖U \ Ureg‖Γ

≥
(
1− 4ζ1/8 − 22k+2+54k3(ε1/4 + η1/8)(dd′)−2k

)
p(0)

≥
(
1− 22k+6

k3(ε1/16 + η1/32)(dd′)−2k
)
‖V0‖Γ ,

where we again use (INH1) for the last line. To complete the proof, observe
that we choose ε, η in terms of ε′, d, d′, and k to satisfy

min{ε′, 2−k} ≥ 22k+6
k3(ε1/16 + η1/32)(dd′)−2k .

5.6 THC in random hypergraphs

In this section we consider a random k-uniform hypergraph on n vertices,
which we view as a k-graph that is complete (i.e. weight 1) on edges of size at
most k−1, and for which weights of k-edges are independent Bernoulli random
variables (taking values in {0, 1}) with probability p. Let Γ = G(k)(n, p) be
this k-graph.

For a finite set J , let F be a J-partite k-complex on a vertex set X, and
let V (Γ) be partitioned into {Vj}j∈J . Suppose that X comes with a linear
order. By the standard construction we obtain vertex sets {V ′x}x∈X , and an
X-partite k-graph Γ′. Note that, as observed after Definition 5.1, partite
homomorphism counts in Γ and in Γ′ are in correspondence. In particular,
the counting property (THC1) is equivalent to asking for the same bounds on
homomorphism counts in Γ. Furthermore, if we embed an initial segment of
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X and update Γ′ by taking links of all the embedded vertices, then (THC1)
in the link graph is the same as asking for a count of rooted homomorphisms
in Γ. There is a slight subtlety here, namely that if we embed two vertices of
X to (automatically) different vertices of Γ′ which correspond to one vertex
of Γ, then the complex we count in a link of Γ′ and that which we count
rooted in Γ are not quite the same.

We would like to know that in this setup Γ′ is well-behaved enough to apply
the main results of this chapter, which we might expect to be true provided
p is not too small. We prove that for c∗ ∈ N and η > 0, provided p and the
parts Vj are large enough, with high probability Γ′ is an (η, c∗)-THC graph.

To state the requirements on p formally we use another definition of degener-
acy more suited to the random k-graph. Suppose that X is equipped with a
fixed ordering, and let

degk(F ) := max
e∈F

∣∣{f ∈ F (k) : e ⊆ f, f \ e precedes e}
∣∣ ,

where f \ e precedes e if and only if each vertex of f \ e comes before every
vertex of e in the order on X. Then, when embedding vertices in order,
part-way through the process an edge e can be the set of unembedded vertices
for at most degk(F ) edges of size k in F . We make no attempt to optimise
the dependence of p on the relevant parameters.

Lemma 5.26. Let η > 0 be a real number, c∗, ∆, d ∈ N, and J be a finite
set. Suppose that F is a J-partite k-complex of maximum degree ∆ and
degeneracy degk(F ) ≤ d with vertex set X equipped with some fixed ordering.
For some fixed 0 < ε < 1, let Γ = G(k)(n, p) be a random k-graph where
min

{
p4kc∗d, p4k∆+d} ≥ (2 logn)nε−1. Suppose also that (1− η)∆ ≥ 1/2 and

|X| ≤ n. Then with probability at least 1− o(1) the following holds.

For any partition {Vj}j∈J of V (Γ) into parts of size at least n0 = n/ logn,
writing Γ′ for the X-partite graph obtained by the standard construction to
F , Γ, and {Vj}j∈J , we have that Γ′ in an (η, c∗)-THC graph with density
graph Q that gives weight p to edges of F (k) and weight 1 elsewhere.

The proof will involve showing that counts of complexes R in Γ′ and in
related k-graphs obtained by taking links are close to their expectation, and
such counts will correspond to counts of weighted homomorphism-like objects
in Γ. In order to avoid trying to deal with Γ and Γ′ simultaneously, we first
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state and prove the required property of Γ, which is rather technical.

Let Y be an initial segment of X and φ : Y → V (Γ) be a partite map. Let
Z be a vertex set disjoint from Y , equipped with a map ρ that associates
each z ∈ Z to some ρ(z) ∈ X \ Y . For convenience we extend ρ to be the
identity map on Y . Let R be a J-partite k-complex on Z, and let Rφ be the
hypergraph with vertex set imφ ∪ Z, and edge set

E(Rφ) := E(R) ∪ {f ⊆ domφ ∪ Z : f ∩ Z 6= ∅, ρ(f) ∈ F} .

We view Rφ as J-partite in the following way. Each vertex in imφ is in Vj
for some j ∈ J , which naturally gives an association to the index j, and
vertices in Z are related to indices j through the map ρ : Z → X and the
partition of X into parts indexed by J . We write Vz for the Vj to which
z ∈ Z is associated in this way.

Then the homomorphism-like objects we consider in Γ are partite maps ψ
from Rφ to Γ, where we insist that ψ extends the identity map on imφ. This
definition is rather difficult to parse, but a certain amount of complexity
is necessary to deal with the case that φ is not injective. In any case, the
idea is that ψ signifies a copy of Rφ in Γ ‘rooted’ at some fixed vertices
specified by imφ. We are interested in weighting such ψ according to the
subset R(≥2)

φ ⊆ Rφ of edges of size at least 2, preferring to deal separately
with the empty set (which has weight 1 in this setup) and vertex weights.
For z ∈ Z, let Uz ⊆ Vz be a set of exactly n1 := npd/(2 logn) vertices. We
define

N(φ,R,UZ) :=
∑
ψ

∏
e∈R(≥2)

φ

γ
(
ψ(e)

)
, (5.24)

where the sum is over all maps ψ : imφ ∪Z → V (Γ) such that ψ(w) = w for
any w ∈ imφ and ψ(z) ∈ Uz for all z ∈ Z. Note that with Y = φ = ∅ we have
Rφ = R, and since Γ is complete on edges of size at most 1, n−|Z|1 N(φ,R) is
then the partite count of copies of R in Γ that lie on UZ .

The main probabilistic tool we require for counting in Γ′ is a statement that
for any suitable R, the count N(φ,R,UZ) is close to its expectation with very
high probability. It turns out that we are interested in R of the following
form. Given Y , let F 4 be the complex F with each vertex blown up into 4
copies. A suitable R is any subcomplex of F 4 on at most c∗ vertices which
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uses no copies of vertices in Y . Considering suitable R is what requires us
to work with 4k∆ and 4kd in what follows.

Claim 5.27. Consider the setup of Lemma 5.26, the above definitions, and
a suitable R. Then with probability at least 1− exp

(
−O(n1+ε)

)
we have

N(φ,R,UZ) =
(
1± 1

logn
)
n
|Z|
1

∏
e∈R(≥2)

φ

q(e) . (5.25)

Proof. Formally, we proceed by induction on |Z|. The claim is trivial if
|Z| ≤ 1, as the product over E2(Rφ) is empty.

If |Z| ≥ 2, note that it suffices to consider injective maps ψ in (5.24). Any
non-injective partite map ψ′ : imφ ∪ Z → V (Γ) of the form considered
in (5.24) is an injective partite map into V (Γ) from the complex R′ on a
vertex set Z ′ formed from R by identifying any vertices of z with the same
images under ψ′. Applying the claim to R′ (which is on fewer vertices), we see
that with probability at least 1− exp

(
−O(n1+ε)

)
, these non-injective maps

contribute an amount at most twice expectation of N(ψ,R′, UZ′). Comparing
the expectations of N(ψ,R,UZ) and N(ψ,R′, UZ′), identifying a pair z, z′

of vertices in Z ‘costs’ a factor n1 but can gain a factor up to p−4k∆ since
the edges involving z, of which there are at most 4k∆, are now coupled in Γ
with those containing z′. Then the assumptions on n and p imply that the
contribution to N(φ,R,UZ) from non-injective homomorphisms is at most a
factor O(n−ε) times the expected contribution from injective homomorphisms.
Write N∗ for the contribution to N(φ,R,UZ) from injective ψ, noting that
the above argument shows that N(φ,R,UZ) =

(
1±O(n−ε)

)
N∗.

For each injective ψ, the term X∗ψ :=
∏
e∈R(≥2)

φ

γ
(
ψ(e)

)
appearing in N∗

is a product of independent Bernoulli random variables with probabilities
given by q(e). The X∗ψ themselves are therefore ‘partly dependent’ Bernoulli
random variables, each with the same probability

p∗ :=
∏

e∈R(≥2)
φ

q(e) .

Since we consider only the edges R(≥2)
φ , if X∗ψ and X∗ψ′ are dependent it must

be because they agree on at least two vertices of Z. Then each X∗ψ can be
dependent on at most

(|Z|
2
)
n
|Z|−2
1 other variables X∗ψ′ . We apply a theorem
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of Janson [54, Corollary 2.6] which bounds the probability of large deviations
in sums of partly dependent random variables.

Theorem 5.28 (Janson [54]). Let Ψ be an index set, and N∗ =
∑
ψ∈Ψ X∗ψ,

such that each X∗ψ is a Bernoulli random variable with probability p∗ ∈ (0, 1).
Let ∆∗1 be one more than the maximum degree of the graph on vertex set Ψ
such that ψ and ψ′ are adjacent if and only if X∗ψ and X∗ψ′ are dependent.
Then for any δ > 0,

P
[
N∗ = (1± δ)EN∗

]
≥ 1− 2 exp

(
−

3δ2|Ψ|p∗
(
1−∆∗1/|Ψ|

)
8∆∗1

)
. (5.26)

In the setup above, we have n|Z|1 (1 − |Z|/n1)|Z| ≤ |Ψ| ≤ n
|Z|
1 and ∆∗1 ≤

|Z|2n|Z|−2
1 . Since |Z| ≤ c∗ is bounded by a constant, this means |Ψ| =(

1±O(n−1
1 )
)
n
|Z|
1 ,

|Ψ|
∆∗1

= Ω(n2
1) , and ∆∗1

|Ψ| = O(n−2
1 ) .

Moreover, we know that p∗ ≤ p(|Z|−1)4kd since embedding the first vertex of
Z is ‘free’, and each remaining vertex can be the last vertex of at most 4kd
edges which occur with probability p each. Then for δ := 1/(2 logn), the
exponent on the right-hand side of (5.26) is

−Ω
(
p4kd|Z|n2) = −Ω

(
n1+ε) ,

by the assumptions on n and p. The claim follows since the event that (5.25)
that we wish to control occurs with probability 1 provided N∗ = (1± δ)EN∗

and n is large enough. We have

EN∗ = |Ψ|
∏

e∈R(≥2)
φ

q(e) =
(
1±O(n−1

1 )
)
n
|Z|
1

∏
e∈R(≥2)

φ

q(e) ,
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and hence for large enough n, with probability at least 1− exp
(
−O(n1+ε)

)
,

N(φ,R) =
(
1±O(n−ε)

)
N∗

=
(
1±O(n−ε)

)(
1± 2

logn

)
EN∗

=
(
1± 1

logn
)
n
|Z|
1

∏
e∈R(≥2)

φ

q(e) .

With the main probabilistic argument complete, we can now apply Claim 5.27
to the problem of showing Γ′ is an (η, c∗)-THC graph.

Proof of Lemma 5.26. We start with a sketch of the proof. Given a fixed
partition {Vj}j∈J , to verify Γ′ is an (η, c∗)-THC graph we must count suitable
X-partite complexes R in graphs obtained from Γ′ by embedding vertices of
F . We are not required to consider arbitrary embeddings, at each step we
are permitted by (THC2) to avoid a ‘bad set’ of potential images, which we
will exploit in due course.

At first, no vertex of F has been embedded and we count R in Γ′, which by
the standard construction is the same as counting R in Γ. By Claim 5.27
with Y = φ = ∅ and a union bound over suitable R, with high probability
we have the required accurate counts of R in Γ. In fact, these counts are
accurate enough to imply deterministically that there is a small ‘bad set’
which, if avoided, allows us to embed the next vertex x and continue the
argument with ‘well-behaved’ vertex weights in Γ′x.

When some initial segment Y of X has been embedded, say by a map
φ′ : Y → V (Γ′), we always have an associated map φ : Y → V (Γ) obtained
by identifying the copies of parts Vj made in the standard construction.
Write Γ′φ′ for the k-graph obtained from Γ′ by taking the link of vertices in
imφ′ By construction, the required counts of complexes R in Γ′φ′ correspond
to counts of Rφ in Γ, which we can control with Claim 5.27. We handle
vertex weights separately, and apply Claim 5.27 with subsets Uz ⊆ Vz of
vertices that receive weight 1 in Γ′φ′ . We then take a union bound over
choices of partition to complete the lemma.

The notion of ‘well behaved’ for vertex weights in Γ′φ′ that we maintain is as
follows. Recall that given a partition {Vj}j∈J , we have V (Γ′) partitioned into
{V ′x}x∈X where V ′x is a copy of the Vj into which x will be embedded. Since
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we view vertices in Z as copies of vertices in X, we also write V ′z for the part
of Γ′ into which z should be embedded. Given Y ⊆ X and φ, φ′ as above,
let Qφ be the density k-graph obtained from Q by taking links of vertices in
imφ. For a fixed suitable R on vertex set Z, and z ∈ Z, let AY,z be the event
that ‖V ′z‖ΓW = (1± η)π(z)qY (z), where π(z) :=

∣∣{y ∈ Y : {y, z} ∈ F}
∣∣ ≤ ∆,

and let AY be the intersection of AY,z for all z ∈ Z. The event A∅ holds
with probability 1 because Γ gives weight 1 to all vertices, and by avoiding
bad vertices we will maintain AY as we embed.

We are now ready to give the main proof. Supposing that the initial segment
Y ⊆ X has been embedded, we have the associated partite maps ψ and ψ′

from Y to V (Γ) and V (Γ′) respectively, we count copies of suitable R in Γ′.

Given AY , since we have by assumption (1 − η)∆ ≥ 1/2, |Vz| ≥ n/ logn,
and qY (z) ≥ pd, we can apply Claim 5.27 for every collection of Uz such
that Uz ⊆ Vz is of size exactly n1. There are

∏
z∈Z

(|Vz |
n1

)
= eO(n) choices

of collection, hence by Claim 5.27 and a union bound over collections,
conditioned on AY for all z ∈ Z, with probability at least 1−exp

(
−O(n1+ε)

)
,

the N(φ,R,UZ) counts are close to their expectation for all such UZ . In
particular, theN(φ,R,UZ) are ‘correct’ for the collections where every u ∈ Uz
receives weight 1 as a vertex in Γ′φ′ . The count N(φ,R,UZ) deals with edges
of Rφ of size at least 2, hence by the above argument and averaging over
sets Uz of vertices that receive weight 1 in Γ′φ′ , we obtain that with high
probability the count Γ′φ′(R) is close to its expectation.

More precisely, by a union bound over the constant number of complexes R
to consider, and by averaging over the choice of collection {Uz}z∈Z , we have,
conditioned on AY , with probability at least 1− exp

(
−O(n1+ε)

)
,

Γ′φ′(R) =
(
1± 1

logn
)( ∏

e∈R(≥2)
φ

q(e)
) ∏
z∈Z
‖V ′z‖Γ′

φ′
, (5.27)

for all suitable k-complexes R.

Let x be the next vertex to embed. To prove the lemma it now suffices to
show that there is a subset Ṽ ′x ⊆ V ′x with ‖Ṽ ′x‖Γ′

φ′
≥ (1− η)‖V ′x‖Γ′

φ′
such that

AY ∪{x} holds. Then the above argument after x has been embedded, and a
union bound over the total number of vertices to embed (at most n) gives
the result.
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Suppose that we embed x to w ∈ V ′x. Since F has maximum degree ∆, there
are at most ∆ vertices z ∈ ρ(Z) with Γ′φ′∪{x 7→w}[V

′
z ] 6= Γ′φ′ [V ′z ]. Let Z ′ be

the set of these vertices. The counts (5.27) imply that for z ∈ Z ′,

|V ′x|−1 ∑
u∈Vx

γ′φ′(u) =
(
1± 1

logn
)
‖V ′x‖Γ′

φ′
,

|V ′x|−1|V ′z |−1 ∑
uv∈V ′xz

γ′φ′(u)γ′φ′(v)γ′φ′(u, v)

=
(
1± 1

logn
)
qY (x, z)‖Vz‖Γ′

φ′
· ‖V ′x‖Γ′

φ′
,

|V ′x|−1 ∑
u∈V ′x

γ′φ′(u)
(
|V ′z |−1 ∑

v∈V ′z

γ′φ′(v)γ′φ′(u, v)
)2

=
(
1± 1

logn
)
qY (x, z)2‖V ′z‖2Γ′

φ′
· ‖V ′x‖Γ′

φ′

hence we may apply Corollary 5.16 with εC5.16 := 4/ logn and dC5.16 :=
qY (x, z)‖Vz‖Γ′

φ′
to obtain the following.

For each z ∈ Z ′ there is a set Bz ⊆ V ′x with ‖Bz‖Γ′
φ′
≤ 8(logn)−1/4‖V ′z‖Γ′

φ′

such that for all w ∈ V ′x \Bz, if x is embedded to w we have

‖V ′z‖Γ′
φ′∪{x 7→w}

=
(
1± 4

(logn)1/4

)
qY (x, z)‖V ′z‖Γ′

φ′
.

Set Ṽ ′x = V ′x \
⋃
z∈Z′ Bz, so that

‖Ṽ ′x‖Γ′
φ′
≥
(
1− 8∆

(logn)1/4

)
‖V ′x‖Γ′W ,

which is at least (1− η)‖V ′x‖Γ′
φ′

for large enough n. Then given AY and the
counts (5.27), we have a small ‘bad set’ which, if avoided when embedding x,
implies AY ∪{x} holds deterministically. So we can maintain well-behaved ver-
tex weights throughout the embedding, and we may repeat the probabilistic
argument above to control the counting properties (5.27) after each vertex is
embedded. There are at most n embeddings, and hence with probability at
least 1− exp

(
−O(n1+ε)

)
the partition {Vj}j∈J yields a Γ′ with the required

properties. To complete the proof we take a union bound over the eO(n)

possible partitions.

136



6
Multicolour Ramsey
numbers of paths and even
cycles

In this chapter we prove upper bounds on the multicolour Ramsey numbers
of the n-vertex path Pn, and for even n, the n-vertex cycle Cn.

The 2-colour Ramsey number of a path was completely determined by
Gerencsér and Gyárfás [45] who showed that for n ≥ 2,

R2(Pn) =
⌊3n− 2

2

⌋
.

For 3 colours, Faudree and Schelp [33] conjectured that

R3(Pn) =

2n− 2 for n even ,

2n− 1 for n odd .

This conjecture was resolved for large n by Gyárfás, Ruszinkó, Sárközy, and
Szemerédi [50], but for k ≥ 4 much less is known. A well-known upper
bound Rk(Pn) ≤ kn follows easily by observing that any k-edge-colouring
of the edges of the complete graph on kn vertices contains a colour class
with at least (kn− 1)n2 edges by the pigeonhole principle. A result of Erdős
and Gallai [29] (see Lemma 6.5) then implies that any graph on kn vertices
with this many edges contains a copy of Pn. Despite the simplicity of this
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observation, the bound was only recently improved upon by Sárközy [90]
who proved a stability version of Lemma 6.5 and showed that for k ≥ 4 and
n sufficiently large,

Rk(Pn) ≤
(
k − k

16k3 + 1

)
n .

We improve on the above result for all k ≥ 4, reducing the upper bound on
Rk(Pn) by an amount that does not deteriorate as k grows. Our method is
similar to that of [90] in that we also use results of Erdős and Gallai [29], and
Kopylov [65] to bound the number of edges in the densest two colours. Our
improvement comes from using more information about the densest colour
in order to obtain stronger bounds on the number of edges in the second
densest. For paths we prove the following.

Theorem 6.1. For k ≥ 4 and all n ≥ 64k,

Rk(Pn) ≤
(
k − 1

4 + 1
2k

)
n .

If n is much larger we can in fact slightly improve on this bound and extend
it to even cycles, see Theorem 6.2 below.

The fact that Pn is a subgraph of Cn and the regularity method of Łuczak
in [73] mean that we can apply similar methods to the problem of determining
Rk(Cn) for even n. In the case of two colours Faudree and Schelp [32], and
independently Rosta [88], showed that R2(Cn) = 3n

2 + 1 for even n ≥ 6.
For three colours, Benevides and Skokan [7] proved that R3(Cn) = 2n for
sufficiently large even n. For k ≥ 4 colours, again very little is known. Łuczak,
Simonovits, and Skokan [74] showed that for n even, Rk(Cn) ≤ kn+o(n); and
recently Sárközy [90] improved this upper bound to

(
k − k

16k3+1

)
n+ o(n).

Here we obtain a slight strengthening of Theorem 6.1 for large n.

Theorem 6.2. For k ≥ 4 and n even

Rk(Cn) ≤
(
k − 1

4

)
n+ o(n) .

It is interesting to note that odd cycles behave very differently in this context.
Recently Jenssen and Skokan [55] showed, via analytic methods, that for
k ≥ 4 and n odd and sufficiently large, Rk(Cn) = 2k−1(n − 1) + 1. This
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resolved a conjecture of Bondy and Erdős [12] for large n.

6.1 Lower bounds

Before proving Theorems 6.1 and 6.2 we briefly discuss lower bounds. Con-
structions based on finite affine planes (see [10]) show that Rk(Pn) ≥
(k − 1)(n − 1), when k − 1 is a prime power and this lower bound is
thought to be closer to the truth than our upper bound. Yongqi, Yuan-
sheng, Feng, and Bingxi [101] provide a construction which shows that
Rk(Cn) ≥ (k− 1)(n− 2) + 2 for any k and for even n. This construction can
easily be modified to give a lower bound on Rk(Pn) for any k and any n. We
sketch this construction below.

To see that Rk(Pn) ≥ 2(k− 1)
(⌊
n
2
⌋
− 1

)
+ 1, consider a complete graph G on

vertices {0, 1, . . . , 2k − 3} and for 1 ≤ i ≤ k − 1 colour the edges from vertex
i to vertices i+ 1, . . . , i+k− 2 and the edges from vertex i+k− 1 to vertices
i+ k, . . . , i+ 2k − 3 (taken modulo 2k − 2) with colour ci. Then each colour
c1, . . . , ck−1 consists of two vertex-disjoint stars, each on k − 1 vertices. The
remaining edges are those of the form {j, j+k−1} for j = 0, . . . , k−2 which
are coloured with the final colour ck. The final colour forms a matching on
k − 1 edges. Construct G′ by ‘blowing up’ each vertex i of G into a set Vi
of
⌊
n
2
⌋
− 1 vertices and colour the edges within Vi with colour ck. Edges

between sets Vi and Vj in G′ are coloured with the same colour as the edge
{i, j} in G.

There is no monochromatic Pn in G′ because in colours c1, . . . , ck−1, com-
ponents are bipartite with smallest part size

⌊
n
2
⌋
− 1, hence cannot contain a

Pn. The components in colour ck have less than n vertices and so cannot
contain a Pn. Again, this lower bound is generally considered to be closer to
the truth than our upper bound.

6.2 Methods

We omit floor and ceiling signs whenever they are not crucial. To prove
Theorem 6.1 we will proceed by contradiction. We take a complete graph on
N = (k − 1

4 + 1
2k )n vertices whose edges have been coloured with k colours
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and suppose it contains no monochromatic Pn. First we show that the
densest colour has only a few components and these are not too large. For
the other colours we consider the edges between these components and use
the multipartite structure to bound the number of such edges. This gives
a bound on the total number of edges which is less than

(N
2
)
; yielding the

desired contradiction. The proof is given in Section 6.3.

Recall that we use the regularity method of Łuczak [34, 35, 73] which reduces
the problem to that of finding a monochromatic connected matching in
the reduced graph. We use the term connected matching of t edges to
mean a connected graph which contains a matching of t edges. We deduce
Theorem 6.2 from the following result, which we prove in Section 6.4.

Theorem 6.3. Let k ≥ 4 be a positive integer, and let 0 ≤ δ < 1
64k2 . Then

for even n ≥ 32k and N = (k− 1
4)n the following holds. Suppose that G is a

k-edge-coloured, N -vertex graph with at least (1− δ)
(N

2
)
edges, then we may

find a monochromatic connected matching of n
2 edges in G.

The statement we use to deduce Theorem 6.2 from Theorem 6.3 is from a
paper of Figaj and Łuczak [34, Lemma 3].

Lemma 6.4 (Figaj and Łuczak [34]). Let t > 0 be a real number. If for
every ε > 0 there exists δ > 0 and an n1 such that for every even n > n1 and
any k-edge-coloured graph G with v(G) > (1 + ε)tn and e(G) ≥ (1− δ)

(v(G)
2
)

has a monochromatic connected matching of n
2 edges, then asymptotically as

n→∞ we have for even n that Rk(Cn) ≤ (t+ o(1))n.

Theorem 6.2 follows from Theorem 6.3 by applying Lemma 6.4 with t = k− 1
4

and for any positive ε choosing δ < 1
64k2 and n1 ≥ 32k. Note that Lemma 6.4

hides the details of the regularity method, which is convenient for our
purposes, but it obscures one detail the knowledgeable reader may wish to
note. Let m be an even natural number. In using the regularity method to
prove an upper bound on Rk(Cm), one is interested in finding a connected
matching in the reduced graph such that in the original graph we find a Cm.
A single edge in the reduced graph yields a path spanning the corresponding
parts in the original graph, which means that to find Cm we will apply
Theorem 6.3 with a value of n that is smaller than m. Though this may
suggest it is preferable to state Theorem 6.3 with the parameters renamed,
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keeping n allows us to use the same notation in the technical proofs of this
chapter, hiding the necessary change in n inside the ‘black box’ of Lemma 6.4.

The remainder of this chapter is devoted to proving Theorems 6.1 and 6.3.
We will need the following extremal results for graphs not containing an
n-vertex path.

Lemma 6.5 (Erdős and Gallai [29]). Let H be a graph which does not
contain an n-vertex path. Then

e(H) ≤ n− 2
2 v(H) .

The following simplified version of a result due to Kopylov [65] improves on
the above result for connected graphs.

Lemma 6.6. Let H be a connected graph which does not contain an n-vertex
path. Then

e(H) ≤ n

2 max
{
n, v(H)− n

4

}
.

Our next result gives a slight improvement of Lemma 6.6 under the additional
assumption that H is c-partite. In this case the bound on e(H) can be
improved when v(H) is small.

Lemma 6.7. Let H be a c-partite connected graph which does not contain
an n-vertex path. Then

e(H) ≤



(
1− 1

c

)
v(H)2

2 for v(H) ≤ n
√

c
c−1 ,

n2

2 for n
√

c
c−1 < v(H) ≤ 5n

4 ,

n
2
(
v(H)− n

4
)

for 5n
4 < v(H) .

Proof. In the ‘small’ case v(H) ≤ n
√

c
c−1 we simply use that a c-partite graph

has at most as many edges as the complete balanced c-partite graph on the
same number of vertices. Therefore we conclude that e(H) ≤

(
1− 1

c

)
v(H)2

2
without the assumption that H contains no copy of Pn.

The ‘medium’ case where n
√

c
c−1 < v(H) ≤ 5n

4 and the remaining ‘large’ case
follow directly from Lemma 6.6 and make no use of the c-partite assumption
on H.
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Lemma 6.7 is already strong enough for us to prove Theorem 6.1, however
we require another modification to prove Theorem 6.2. We will defer its
proof to Section 6.4.

Lemma 6.8. Let H be a c-partite connected graph which does not contain a
matching of n

2 edges. Suppose further that there is a c-partition of H such
that the sum of the sizes of any two parts is at least n. Then

e(H) ≤



(
1− 1

c

)
v(H)2

2 for v(H) ≤ n
√

c
c−1 ,

n2

2 for n
√

c
c−1 < v(H) ≤ 5n

4 ,

n
2
(
v(H)− n

4
)

for 5n
4 < v(H) < 31n

16 ,

n
2

(
v(H)− 7n

16

)
for 31n

16 ≤ v(H) .

6.3 Paths

Proof of Theorem 6.1. Let α = 1
4 −

1
2k and let G be a k-edge-coloured com-

plete graph on N = (k − α)n vertices. Let ‘blue’ be one of these colours.
We proceed by contradiction, supposing that G contains no monochromatic
n-vertex path. Over all such G consider the one in which blue has the most
edges. In particular G has at least as many blue edges as any other colour.
The main idea of our argument is to use bounds on the sizes and the number
of blue components to bound the number of edges of G which lie inside blue
components, and then to bound the number of edges in each other colour
that lie between different blue components.

Let B denote the blue subgraph of G and let B1, . . . , Bc be the connected
components of B. Let ‘red’ be the colour that has the most edges lying
between blue connected components and let R′ denote the c-partite graph of
those red edges. We will prove the following two bounds. Firstly the number
of edges (of any colour) within blue components satisfies

c∑
i=1

(
v(Bi)

2

)
≤
(
k − 2α+ 5α2

) n2

2 , (6.1)

and secondly the number of red edges between blue components satisfies

e(R′) ≤
(
k − α− 1

4

)
n2

2 . (6.2)
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It follows that

e(G) ≤ (k−1)e(R′)+
c∑
i=1

(
v(Bi)

2

)
≤
(

(k−1)(k−α− 1
4)+(k−2α+5α2)

)
n2

2 .

Since e(G) =
(N

2
)

= (k − α)(k − α− 1
n)n2

2 it is easy to verify that this fails
for α = 1

4 −
1
2k and n ≥ 64k, reaching the desired contradiction.

We now proceed with proving inequalities (6.1) and (6.2). As a first step
toward proving (6.1), we establish bounds on the size of blue components.
We first argue that there cannot be large blue components.

Claim 6.9. There is no blue component in G on more than 5n
4 vertices.

Proof. For contradiction, suppose there is a blue component B1 on βn vertices
with β > 5

4 . In this case, by Lemma 6.6 we have e(B1) ≤ (β − 1
4)n2

2 . Using
Lemma 6.5 on the rest of the blue graph B, we obtain

e(B) ≤
(
β − 1

4

)
n2

2 + (k − α− β) n
2

2 =
(
k − α− 1

4

)
n2

2 .

Since blue is the densest colour we have e(G) ≤ k · e(B) and hence(
N

2

)
= (k − α)

(
k − α− 1

n

)
n2

2 ≤ k
(
k − α− 1

4

)
n2

2

α2 − kα+ k

4 −
k − α
n
≤ 0 .

This fails when α = 1
4 −

1
2k and n ≥ 64k.

The main application of Claim 6.9 is that now when applying Lemma 6.6 to
a blue component Bi we obtain the bound e(Bi) ≤ n2

2 . Using this fact we
get a tighter bound on the size of blue components. Let x be defined by the
equation

xn =
c∑
i=1

max{v(Bi)− n, 0} .

We refer to x as the excess size of blue components. The motivation for this
definition is that we expect blue components to be of size approximately n.

Claim 6.10. We have x < α.
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Proof. Let B1, . . . , B` be the blue components with more than n vertices.
By Lemma 6.6 and Claim 6.9 we have that there are at most n2

2 edges in
each of B1, . . . , B`. Using Lemma 6.5 on the rest of the blue graph we have

e(B) ≤ `n
2

2 + (k − α− `− x)n
2

2 = (k − α− x)n
2

2 .

Since blue is the densest colour we have e(G) ≤ k · e(B), and so(
N

2

)
= (k − α)

(
k − α− 1

n

)
n2

2 ≤ k(k − α− x)n
2

2

therefore
x ≤ α− α2

k
+ k − α

kn
,

and in particular x < α for α = 1
4 −

1
2k and n ≥ 64k.

With this bound on the excess, we can prove (6.1), completing the first part
of the proof.

Proof of inequality (6.1). By convexity,
∑c
i=1

(v(Bi)
2
)
is maximised when there

is one blue component of size (1 + x)n which has all the excess, (k − 2)
components of size n and one component of size (1−α− x)n. Note that this
is at least n/2 as x, α < 1/4. It follows that

c∑
i=1

(
v(Bi)

2

)
≤
(
(1 + x)2 + (k − 2) + (1− α− x)2

) n2

2

=
(
k − 2α+ α2 + 2αx+ 2x2

) n2

2 .

Using the bound x < α from Claim 6.10 completes the argument.

The second step of the proof of Theorem 6.1 is to bound the number of red
edges which lie between different blue components, establishing (6.2). We
begin with the following claim.

Claim 6.11. The number, c, of blue components of G is at most 4
3(k−α)+1.

Proof. It suffices to show that all but at most one blue component contain
more than 3n

4 vertices. Suppose for contradiction that B1 and B2 each have
at most 3n

4 vertices, and let b satisfy bn = v(B1 ∪ B2). Note that, by the

144



Chapter 6. Multicolour Ramsey numbers

maximality assumption on blue, B1 ∪B2 must contain at least n− 1 vertices.
If not, putting a blue clique on V (B1 ∪ B2) would increase e(B) without
creating a blue Pn in G. We therefore have n−1

n ≤ b ≤ 3
2 . e(B1 ∪ B2) is

maximal when both components are cliques and by convexity is maximised
when v(B1) = 3n

4 , v(B2) =
(
b− 3

4

)
n. Using Lemma 6.5 on the rest of the

blue graph we have

e(B) ≤ 9
16
n2

2 +
(
b− 3

4

)2 n2

2 + (k − α− b)n
2

2

≤
(
b2 − 5

2b+ k − α+ 9
8

)
n2

2 .

Under the constraint n−1
n ≤ b ≤

3
2 , the quadratic function b

2− 5b
2 is maximised

at b = n−1
n , hence

e(B) ≤
(
k − α− 3

8 + 1
2n + 1

n2

)
n2

2 .

Since blue is the densest colour we have e(G) ≤ k · e(B) which gives(
N

2

)
= (k − α)

(
k − α− 1

n

)
n2

2 ≤ k
(
k − α− 3

8 + 1
2n + 1

n2

)
n2

2

hence
α2 − αk + 3k

8 −
3k − 2α

2n − k

n2 ≤ 0 .

However this fails for α = 1
4 −

1
2k and n ≥ 64k; the desired contradiction.

Using the above bound on c, the next claim uses Lemma 6.7 to bound the
number of edges of R′.

Claim 6.12. Let H be a c-partite connected graph on at most (k − α)n
vertices which does not contain an n-vertex path. Then

e(H)
v(H) ≤

n

2

(
1− 1

4(k − α)

)
.

Proof. We use Lemma 6.7 to break the proof into three cases depending
on the size of H. Firstly in the case where v(H) ≤ n

√
c
c−1 we have e(H)

v(H) ≤

(1− 1
c )
v(H)

2 . Since v(H) ≤ n
√

c
c−1 this is at most n

2

√
c−1
c ≤

n
2

(
1− 1

2c

)
. By
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Claim 6.11 we know that c ≤ 4
3(k − α) + 1. This gives a bound of

e(H)
v(H) ≤

n

2

(
1− 3

8(k − α) + 6

)
≤ n

2

(
1− 1

4(k − α)

)
.

Next suppose n
√

c
c−1 < v(H) ≤ 5n

4 . Then, by Lemma 6.7, we have e(H)
v(H) ≤

n
2

√
c−1
c . As shown in the previous case n

2

√
c−1
c is at most n

2

(
1− 1

4(k−α)

)
.

Finally suppose v(H) > 5n
4 . Then e(H)

v(H) ≤
n
2

(
1− n

4v(H)

)
. This is maximised

when v(H) is as large as possible giving e(H)
v(H) ≤

n
2

(
1− 1

4(k−α)

)
.

We can now deduce (6.2) from Claim 6.12. There will be a connected
component H of R′ with at least as high a ratio e(H)/v(H) as the overall
ratio e(R′)/v(R′). Therefore if R′ had more than

(
k − α− 1

4

)
n2

2 edges there
would be a connected component H satisfying

e(H)
v(H) >

1
N

(
k − α− 1

4

)
n2

2 = n

2

(
1− 1

4(k − α)

)
.

This contradicts Claim 6.12, completing the proof.

6.4 Even Cycles

The proof of Theorem 6.3 closely resembles the arguments of the previous
section. We make three changes, the first two of which are only minor
adjustments. We must work with the value α = 1

4 instead of the value 1
4 −

1
2k ,

and we must permit the host graph G to have as few as (1 − δ)
(N

2
)
edges

for some small δ > 0 which we choose. The more significant change is that
we apply Lemma 6.8 instead of Lemma 6.7 to bound the number of edges
between blue components.

The reason we are able to improve upon the result of Theorem 6.1 is that
when looking only for a connected matching (rather than a path) we can
better deal with large components of the graph R′ consisting of red edges
between blue components. In particular, the tight case of Claim 6.12 is when
v(H) > 5n

4 where we can do no better than assume R′ consists of one large
connected component. The improvement in this case is given by Lemma 6.8,
where we get a better bound on e(H) when H is a component of R′ with at
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least 31n
16 vertices.

Proof of Lemma 6.8. First note that the three bounds for the range v(H) <
31n
16 follow directly from Lemma 6.7 since, for even n, a copy of Pn contains
a matching of n

2 edges. We therefore assume H is a c-partite, connected
graph on at least 31n

16 vertices, in which the sizes of any two parts sum to
at least n and which contains no matching of n

2 edges. We will show that
e(H) ≤ n

2 (v(H)− 7n
16 ).

Let A = {v ∈ H : d(v) ≥ n} and let M denote a maximal matching in
H ′ := H\A. We may assume v(M) < n as H does not contain any matching
with n/2 edges. We will bound e(H) by first bounding e(H ′) and then
bounding the number of edges incident to A. First note that

|A| ≤ n

2 −
v(M)

2 , (6.3)

otherwise we could greedily extend M to a matching of size n
2 in H, con-

tradicting the assumption of the lemma. For v ∈ H ′ let d∗(v) denote the
number of neighbours of v in H ′\M . Now let {u, v} be an edge of M . Note
that either d∗(u) ≤ 1 or d∗(v) ≤ 1 else we could replace the edge {u, v} with
a pair of edges {u, x}, {v, y} to get a larger matching in H ′. Let us denote
the edges of M by {ui, vi} for i = 1, . . . , v(M)

2 and assume without loss of
generality that d∗(ui) ≤ 1 for all i. Since each edge of H ′ is incident to an
edge of M by maximality it follows that

e(H ′) ≤
1
2v(M)∑
i=1

(
d(vi) + d∗(ui)

)
+
(

1
2v(M)

2

)

≤ v(M)
2

(
n+ v(M)

4

)
≤ 5

8n
2 − 3

2 |A|n+ |A|
2

2 , (6.4)

where for the second inequality we used that d(v) < n for all v ∈ H ′ by
the definition of A, and d∗(ui) ≤ 1 for all i by assumption. For the last
inequality we used (6.3). We now turn our attention to bounding the number
of edges incident to A. Recall that H is c-partite and let t denote the size
of its smallest part. First let us suppose that t ≤ |A|. Since we assume the
sum of any two parts of H is at least n, it follows that the second smallest
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part of H has size at least n− t (note that t ≤ n
2 by (6.3)). It follows that at

most t vertices of A have degree v(H)− t and the rest have degree at most
v(H)− n+ t so that

∑
v∈A

d(v) ≤ t(v(H)− t) + (|A| − t)(v(H)− n+ t) .

Considering the right hand side as a quadratic function in t we see that it is
maximised when t = n+|A|

4 and so

∑
v∈A

d(v) ≤ |A|
2

8 +
(
v(H)− 3

4n
)
|A|+ n2

8 . (6.5)

Since e(H) ≤ e(H ′) +
∑
v∈A d(v) it follows by (6.4) and (6.5) that

e(H) ≤ 5
8 |A|

2 +
(
v(H)− 9

4n
)
|A|+ 3

4n
2 .

We consider the right hand side as a quadratic function in |A| and optimise
under the constraint 0 ≤ |A| ≤ n

2 . The maximum must occur at either
|A| = 0 or |A| = n

2 and it is simple to check that the latter is the maximiser
under the assumption that v(H) ≥ 31

16n. It follows that e(H) ≤ n
2 v(H)− 7

32n
2

as claimed. It remains to consider the case where t ≥ |A|. Recall that the
maximum degree of H is at most v(H)− t and so

∑
v∈A

d(v) ≤ |A|(v(H)− t) ≤ |A|(v(H)− |A|) ≤ n

2 v(H)− n2

4 ,

where for the last inequality we again use the bound |A| ≤ n
2 . The result

follows.

Proof of Theorem 6.3. Let α = 1
4 , 0 < δ < 1

64k2 and let G be a k-edge-
coloured graph on N = (k − α)n vertices with at least (1 − δ)

(N
2
)
edges.

We proceed by contradiction, supposing that G contains no monochromatic
connected matching of n2 edges. Over all such G consider the one in which
blue has the most edges.

Let B1, . . . , Bc be the blue connected components of G, suppose that red
has the most edges between blue connected components and let R′ denote
the c-partite graph of red edges which lie between blue components. The
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method is the same as the previous section. We establish the following two
bounds.

c∑
i=1

(
v(Bi)

2

)
≤
(
k − 2α+ 5α2

) n2

2 =
(
k − 3

16

)
n2

2 , (6.6)

e(R′) ≤
(
k − α− 7

16

)
n2

2 =
(
k − 11

16

)
n2

2 . (6.7)

We then deduce

e(G) ≤ (k − 1)e(R′) +
c∑
i=1

(
v(Bi)

2

)
≤
(
k2 − 11

16k + 1
2

)
n2

2 .

Since e(G) ≥ (1− δ)
(N

2
)

= (1 − δ)(k − 1
4)(k − 1

4 −
1
n)n2

2 it is easy to verify
that with δ < 1

64k2 and n ≥ 32k we reach the desired contradiction.

It remains to prove the inequalities (6.6) and (6.7). We start by showing
Claims 6.9 and 6.10 have direct analogues here.

Claim 6.13. There is no blue component on more than 5n
4 vertices.

Proof. For contradiction, suppose there is a blue component B1 on βn vertices
with β > 5n

4 . In this case, by Lemma 6.6 we have e(B1) ≤ (β − 1
4)n2

2 . Using
Lemma 6.5 on the rest of the blue graph, B, we obtain

e(B) ≤
(
β − 1

4

)
n2

2 + (k − α− β) n
2

2 =
(
k − α− 1

4

)
n2

2 .

Since blue is the densest colour we have e(G) ≤ k · e(B) and hence

(1− δ)
(
N

2

)
= (1− δ)(k − α)

(
k − α− 1

n

)
n2

2 ≤ k
(
k − α− 1

4

)
n2

2

(1− δ)α2 − (1− 2δ)kα+ k

4 − (1− δ)k − α
n
− δk2 ≤ 0 .

This fails with α = 1
4 , n ≥ 32k and δ < 1

64k2 .

Using the above claim we get a tighter bound on the size of blue components.
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Let x be the excess size of blue components,

xn =
c∑
i=1

max{v(Bi)− n, 0}

as before.

Claim 6.14. We have x < α.

Proof. Let B1, . . . , B` be the blue components with more than n vertices.
By Lemma 6.6 and Claim 6.13 we have that there are at most n2

2 edges in
each of B1, . . . , B`. Using Lemma 6.5 on the rest of the blue graph we have

e(B) ≤ `n
2

2 + (k − α− `− x)n
2

2 = (k − α− x)n
2

2 .

Since blue is the densest colour we have e(G) ≤ k · e(B), and so

(1− δ)
(
N

2

)
= (1− δ)(k − α)

(
k − α− 1

n

)
n2

2 ≤ k(k − α− x)n
2

2 .

Therefore

x ≤ (1− 2δ)α− (1− δ)α
2

k
+ δk + (1− δ)k − α

kn
,

and in particular x < α for α = 1
4 , n ≥ 32k and δ < 1

64k2 .

Inequality (6.6) follows from Claim 6.14 in the exact same way as inequal-
ity (6.1) follows from Claim 6.10.

We require the same bound as before on the number of blue components,
now with α = 1

4 .

Claim 6.15. The number, c, of blue components of G is at most 4
3(k−α)+1.

Proof. The proof follows that of Claim 6.11 replacing
(N

2
)
with (1− δ)

(N
2
)
.

With α = 1
4 , n ≥ 32k, and δ < 1

64k2 the required contradiction holds.

The final claim is the improved version of Claim 6.12 which makes use of
Lemma 6.8 and the above claim bounding c.

150



Chapter 6. Multicolour Ramsey numbers

Claim 6.16. Let H be a c-partite connected graph which does not contain a
matching of n

2 edges. Suppose further that there is a c-partition of H such
that the sum of the sizes of any two parts is at least n. Then

e(H)
v(H) ≤

n

2

(
1− 7

16(k − α)

)
.

Proof. We prove this using Lemma 6.8 in the same way that we proved
Claim 6.12 using Lemma 6.7; breaking into cases depending on the size of H.

Firstly if v(H) ≤ n
√

c
c−1 , or if n

√
c
c−1 < v(H) ≤ 5n

4 , the argument is
identical to that of Claim 6.12 giving in both cases

e(H)
v(H) ≤

n

2

(
1− 3

4(k − α) + 6

)
≤ n

2

(
1− 7

16(k − α)

)
.

If 5n
4 < v(H) < 31n

16 then

e(H)
v(H) ≤

n

2

(
1− n

4v(H)

)
≤ n

2

(
1− 4

31

)
≤ n

2

(
1− 7

16(k − α)

)
.

Finally if 31n
16 ≤ v(H) we have e(H)

v(H) ≤
n
2

(
1− 7n

16v(H)

)
. This is maximised

when v(H) is as large as possible and so we have

e(H)
v(H) ≤

n

2

(
1− 7

16(k − α)

)
.

We can now deduce inequality (6.7) from Claim 6.16. Suppose for contradic-
tion that e(R′) >

(
k − α− 7

16

)
n2

2 . Then, by the pigeonhole principle, there
is a connected component of H with

e(H)
v(H) >

1
N

(
k − α− 7

16

)
n2

2 = n

2

(
1− 7

16(k − α)

)
.

This contradicts Claim 6.16, proving (6.7) and completing the proof of
Theorem 6.3.
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A
List of local views in the
Potts model on cubic graphs

Local view 1 of 35 (named C1)

1 1 1 1 1 1

ZC = λ9 + 4λ6(q − 1) + 3λ5(q − 1) + 3λ4(q − 1)(q − 2) + 3λ4(q − 1) + 9λ3(q − 1)(q − 2) +
3λ2(q − 1)(q − 2)(q − 3) + 4λ3(q − 1) + 6λ2(q − 1)(q − 2) + 3λ(q − 1)(q − 2)(q − 3) +
(q − 1)(q − 2)(q − 3)(q − 4) + 3λ(q − 1)(q − 2) + 4(q − 1)(q − 2)(q − 3) +
4(q − 1)(q − 2) + q − 1.

2ZCUvC = 3λ9 + 6λ6(q − 1) + 3λ5(q − 1) + 6λ4(q − 1) + 9λ3(q − 1)(q − 2) + 6λ3(q − 1) +
6λ2(q − 1)(q − 2) + 3λ(q − 1)(q − 2)(q − 3) + 3λ(q − 1)(q − 2).

6ZCUNC = 9λ9 + 24λ6(q − 1) + 15λ5(q − 1) + 12λ4(q − 1)(q − 2) + 12λ4(q − 1) +
27λ3(q − 1)(q − 2) + 6λ2(q − 1)(q − 2)(q − 3) + 12λ3(q − 1) + 12λ2(q − 1)(q − 2) +
3λ(q − 1)(q − 2)(q − 3) + 3λ(q − 1)(q − 2).

S̃C = 0.

DUC = 3(2s4t7 + 14s4t6 + 12s3t7 + 42s4t5 + 91s3t6 + 27s2t7 + 70s4t4 + 300s3t5 + 221s2t6 +
27st7 + 70s4t3 + 554s3t4 + 796s2t5 + 237st6 + 10t7 + 42s4t2 + 616s3t3 + 1619s2t4 +
928st5 + 94t6 + 14s4t+ 411s3t2 + 1994s2t3 + 2071st4 + 400t5 + 2s4 + 152s3t+
1481s2t2 + 2816st3 + 978t4 + 24s3 + 612s2t+ 2325st2 + 1464t3 + 108s2 + 1080st+
1341t2 + 216s+ 702t+ 162)(s+ 3)(s+ 2)(t+ 1)4.

DUC |q=2 = 6(t2 + 2t+ 2)(t+ 2)4(t+ 1)4.
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Appendix A. Local views in the Potts model

Local view 2 of 35

1 1 1 1 1 2

ZC = λ8 + λ7 + λ6(q − 2) + λ6 + 5λ5(q − 2) + λ4(q − 2)(q − 3) + 5λ5 + 11λ4(q − 2) +
10λ3(q − 2)(q − 3)+2λ2(q − 2)(q − 3)(q − 4)+5λ4 +19λ3(q − 2)+15λ2(q − 2)(q − 3)+
5λ(q − 2)(q − 3)(q − 4) + (q − 2)(q − 3)(q − 4)(q − 5) + λ3 + 15λ2(q − 2) +
17λ(q − 2)(q − 3)+7(q − 2)(q − 3)(q − 4)+λ2+9λ(q − 2)+12(q − 2)(q − 3)+λ+5q−10.

2ZCUvC = 3λ8 + 2λ7 + 2λ6(q − 2) + λ6 + 5λ5(q − 2) + 8λ5 + 12λ4(q − 2) + 6λ3(q − 2)(q − 3) +
7λ4 + 19λ3(q − 2) + 12λ2(q − 2)(q − 3) + 3λ(q − 2)(q − 3)(q − 4) + 2λ3 +
16λ2(q − 2) + 9λ(q − 2)(q − 3) + λ2 + 3λ(q − 2).

6ZCUNC = 8λ8 + 7λ7 + 6λ6(q − 2) + 6λ6 + 25λ5(q − 2) + 4λ4(q − 2)(q − 3) + 25λ5 + 44λ4(q − 2) +
30λ3(q − 2)(q − 3)+4λ2(q − 2)(q − 3)(q − 4)+20λ4+57λ3(q − 2)+30λ2(q − 2)(q − 3)+
5λ(q − 2)(q − 3)(q − 4) + 3λ3 + 30λ2(q − 2) + 17λ(q − 2)(q − 3) + 2λ2 + 9λ(q − 2) + λ.

S̃C = (4r8t15 + 60r8t14 + 42r7t15 + 424r8t13 + 662r7t14 + 194r6t15 + 1872r8t12 + 4930r7t13 +
3202r6t14 + 514r5t15 + 5772r8t11 + 22994r7t12 + 25050r6t13 + 8862r5t14 + 851r4t15 +
13156r8t10 + 75032r7t11 + 123078r6t12 + 72648r5t13 + 15324r4t14 + 895r3t15 +
22880r8t9 + 181196r7t10 + 424020r6t11 + 375096r5t12 + 131468r4t13 + 16896r3t14 +
576r2t15 + 30888r8t8 + 334044r7t9 + 1082836r6t10 + 1361314r5t11 + 712016r4t12 +
151828r3t13 + 11526r2t14 + 202rt15 + 32604r8t7 + 478020r7t8 + 2113148r6t9 +
3669346r5t10 + 2716791r4t11 + 861812r3t12 + 108975r2t13 + 4396rt14 + 28t15 +
26884r8t6 + 534618r7t7 + 3202540r6t8 + 7568730r5t9 + 7715100r4t10 + 3451813r3t11 +
648892r2t12 + 44221rt13 + 704t14 + 17160r8t5 + 466734r7t6 + 3793562r6t7 +
12135518r5t8 + 16794876r4t9 + 10309598r3t10 + 2725907r2t11 + 277292rt12 +
7710t13 + 8320r8t4 + 315146r7t5 + 3507018r6t6 + 15216656r5t7 + 28456722r4t8 +
23648956r3t9 + 8550366r2t10 + 1222221rt11 + 51336t12 + 2964r8t3 + 161482r7t4 +
2506578r6t5 + 14895064r5t6 + 37743412r4t7 + 42293290r3t8 + 20637616r2t9 +
4022318rt10 + 237894t11 + 732r8t2 + 60740r7t3 + 1358926r6t4 + 11273998r5t5 +
39109440r4t6 + 59288290r3t7 + 38909474r2t8 + 10202454rt9 + 821076t10 + 112r8t+
15824r7t2 + 540560r6t3 + 6473218r5t4 + 31355250r4t5 + 65005470r3t6 +
57600846r2t7 + 20256420rt8 + 2186316t9 + 8r8 + 2552r7t+ 148864r6t2 +
2727300r5t3 + 19081926r4t4 + 55206558r3t5 + 66794490r2t6 + 31642596rt7 +
4566960t8 + 192r7 + 25368r6t+ 795600r5t2 + 8527320r4t3 + 35630622r3t4 +
60082830r2t5 + 38788956rt6 + 7523064t7 + 2016r6 + 143640r5t+ 2640600r4t2 +
16909452r3t3 + 41140170r2t4 + 36949770rt5 + 9745272t6 + 12096r5 + 506520r4t+
5569776r3t2 + 20755440r2t3 + 26847126rt4 + 9829350t5 + 45360r4 + 1138536r3t+
7286112r2t2 + 14409900rt3 + 7579170t4 + 108864r3 + 1592136r2t+ 5400432rt2 +
4330260t3 + 163296r2 + 1265544rt+ 1735020t2 + 139968r+ 437400t+ 52488)(t+ 1)2t.

S̃C |q=2 = 4(t2 + t+ 1)(t+ 2)9(t+ 1)2t.
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Appendix A. Local views in the Potts model

DUC = (6s5t10+60s5t9+42s4t10+270s5t8+449s4t9+117s3t10+720s5t7+2163s4t8+1336s3t9+
162s2t10 +1260s5t6 +6181s4t7 +6875s3t8 +1972s2t9 +111st10 +1512s5t5 +11599s4t6 +
20997s3t7+10815s2t8+1439st9+30t10+1260s5t4+14931s4t5+42146s3t6+35222s2t7+
8398st8 + 414t9 + 720s5t3 + 13349s4t4 + 58090s3t5 + 75472s2t6 + 29118st7 + 2568t8 +
270s5t2 + 8183s4t3 + 55671s3t4 + 111207s2t5 + 66507st6 + 9468t7 + 60s5t+ 3291s4t2 +
36625s3t3 +114140s2t4 +104641st5 +23030t6 +6s5 +784s4t+15827s3t2 +80595s2t3 +
114932st4+38665t5+84s4+4056s3t+37479s2t2+87087st3+45420t4+468s3+10368s2t+
43623st2 + 36918t3 + 1296s2 + 13068st+ 19926t2 + 1782s+ 6480t+ 972)(s+ 3)(t+ 1).

DUC |q=2 = 2(3t4 + 12t3 + 20t2 + 16t+ 6)(t+ 2)4(t+ 1).

Local view 3 of 35

1 1 1 1 2 2

ZC = λ8 + 2λ7 + 2λ6(q − 2) + 2λ6 + 7λ5(q − 2) + 3λ4(q − 2)(q − 3) + 3λ5 + 11λ4(q − 2) +
9λ3(q − 2)(q − 3) + 3λ2(q − 2)(q − 3)(q − 4) + 3λ4 + 14λ3(q − 2) +
15λ2(q − 2)(q − 3) + 3λ(q − 2)(q − 3)(q − 4) + (q − 2)(q − 3)(q − 4)(q − 5) + 2λ3 +
14λ2(q − 2) + 12λ(q − 2)(q − 3) + 8(q − 2)(q − 3)(q − 4) + 2λ2 + 10λ(q − 2) +
16(q − 2)(q − 3) + λ+ 7q − 14.

2ZCUvC = 2λ8 + 4λ7 + 2λ6(q − 2) + 4λ6 + 7λ5(q − 2) + 5λ5 + 14λ4(q − 2) + 9λ3(q − 2)(q − 3) +
4λ4 + 16λ3(q − 2) + 6λ2(q − 2)(q − 3) + 3λ(q − 2)(q − 3)(q − 4) + 2λ3 + 8λ2(q − 2) +
12λ(q − 2)(q − 3) + 2λ2 + 10λ(q − 2) + λ.

6ZCUNC = 8λ8+14λ7+12λ6(q − 2)+12λ6+35λ5(q − 2)+12λ4(q − 2)(q − 3)+15λ5+44λ4(q − 2)+
27λ3(q − 2)(q − 3)+6λ2(q − 2)(q − 3)(q − 4)+12λ4+42λ3(q − 2)+30λ2(q − 2)(q − 3)+
3λ(q − 2)(q − 3)(q − 4) + 6λ3 + 28λ2(q − 2) + 12λ(q − 2)(q − 3) + 4λ2 + 10λ(q − 2) +λ.

S̃C = 2(4r4t9 + 36r4t8 + 27r3t9 + 144r4t7 + 252r3t8 + 69r2t9 + 336r4t6 + 1053r3t7 +
666r2t8 + 79rt9 + 504r4t5 + 2586r3t6 + 2895r2t7 + 786rt8 + 34t9 + 504r4t4 +
4113r3t5 + 7446r2t6 + 3540rt7 + 348t8 + 336r4t3 + 4392r3t4 + 12495r2t5 + 9496rt6 +
1620t7 + 144r4t2 + 3147r3t3 + 14190r2t4 + 16746rt5 + 4520t6 + 36r4t+ 1458r3t2 +
10905r2t3 + 20154rt4 + 8352t5 + 4r4 + 396r3t+ 5466r2t2 + 16569rt3 + 10620t4 + 48r3 +
1620r2t+ 8982rt2 + 9315t3 + 216r2 + 2916rt+ 5454t2 + 432r + 1944t+ 324)(r4t7 +
8r4t6 + 4r3t7 + 27r4t5 + 40r3t6 + 6r2t7 + 50r4t4 + 164r3t5 + 76r2t6 + 5rt7 + 55r4t3 +
360r3t4 + 370r2t5 + 68rt6 + 2t7 + 36r4t2 + 460r3t3 + 948r2t4 + 373rt5 + 24t6 + 13r4t+
344r3t2 + 1402r2t3 + 1090rt4 + 141t5 + 2r4 + 140r3t+ 1204r2t2 + 1848rt3 + 462t4 +
24r3 + 558r2t+ 1824rt2 + 891t3 + 108r2 + 972rt+ 1008t2 + 216r+ 621t+ 162)(t+ 2)t.

S̃C |q=2 = 2(t2 + 2t+ 2)3(t+ 2)9t.

DUC = (6s5t11 + 66s5t10 + 44s4t11 + 330s5t9 + 501s4t10 + 130s3t11 + 990s5t8 + 2612s4t9 +
1524s3t10+193s2t11+1980s5t7+8224s4t8+8238s3t9+2316s2t10+143st11+2772s5t6+
17360s4t7+27073s3t8+12904s2t9+1749st10+42t11+2772s5t5+25774s4t6+60024s3t7+
44023s2t8 + 9996st9 + 522t10 + 1980s5t4 + 27440s4t5 + 94143s3t6 + 102037s2t7 +
35230st8+3048t9+990s5t3+20932s4t4+106442s3t5+168439s2t6+84987st7+11048t8+
330s5t2+11204s4t3+86643s3t4+201738s2t5+147118st6+27618t7+66s5t+4005s4t2+
49698s3t3 +175033s2t4 +186160st5 +49947t6 +6s5 +860s4t+19109s3t2 +107664s2t3 +
171928st4 + 66586t5 + 84s4 + 4428s3t+ 44661s2t2 + 113448st3 + 65352t4 + 468s3 +
11232s2t+50913st2+46260t3+1296s2+13986st+22518t2+1782s+6804t+972)(s+3).
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Appendix A. Local views in the Potts model

DUC |q=2 = 2(2t2 + 4t+ 3)(t2 + 2t+ 2)(t+ 2)4.

Local view 4 of 35

1 1 1 2 1 2

ZC = λ7 + 3λ6 + 2λ5(q − 2) + 4λ5 + 15λ4(q − 2) + 7λ3(q − 2)(q − 3) +
λ2(q − 2)(q − 3)(q − 4) + 4λ4 + 18λ3(q − 2) + 21λ2(q − 2)(q − 3) +
7λ(q − 2)(q − 3)(q − 4) + (q − 2)(q − 3)(q − 4)(q − 5) + 3λ3 + 20λ2(q − 2) +
18λ(q − 2)(q − 3) + 6(q − 2)(q − 3)(q − 4) + λ2 + 7λ(q − 2) + 9(q − 2)(q − 3) + 3q − 6.

2ZCUvC = 3λ7 + 6λ6 + 4λ5(q − 2) + 6λ5 + 14λ4(q − 2) + 3λ3(q − 2)(q − 3) + 6λ4 + 24λ3(q − 2) +
18λ2(q − 2)(q − 3) + 3λ(q − 2)(q − 3)(q − 4) + 3λ3 + 14λ2(q − 2) + 6λ(q − 2)(q − 3) +
λ(q − 2).

6ZCUNC = 7λ7 + 18λ6 + 10λ5(q − 2) + 20λ5 + 60λ4(q − 2) + 21λ3(q − 2)(q − 3) +
2λ2(q − 2)(q − 3)(q − 4) + 16λ4 + 54λ3(q − 2) + 42λ2(q − 2)(q − 3) +
7λ(q − 2)(q − 3)(q − 4) + 9λ3 + 40λ2(q − 2) + 18λ(q − 2)(q − 3) + 2λ2 + 7λ(q − 2).

S̃C = 2(2r8t15 + 30r8t14 + 20r7t15 + 212r8t13 + 318r7t14 + 87r6t15 + 936r8t12 + 2385r7t13 +
1466r6t14 + 214r5t15 + 2886r8t11 + 11188r7t12 + 11658r6t13 + 3831r5t14 + 322r4t15 +
6578r8t10 + 36681r7t11 + 58024r6t12 + 32319r5t13 + 6177r4t14 + 298r3t15 +
11440r8t9 + 88936r7t10 + 201983r6t11 + 170565r5t12 + 55484r4t13 + 6244r3t14 +
161r2t15 + 15444r8t8 + 164526r7t9 + 520248r6t10 + 629660r5t11 + 310756r4t12 +
60227r3t13 + 3822r2t14 + 44rt15 + 16302r8t7 + 236160r7t8 + 1022736r6t9 +
1720691r5t10 + 1215887r4t11 + 359076r3t12 + 40197r2t13 + 1274rt14 + 4t15 +
13442r8t6 + 264846r7t7 + 1560072r6t8 + 3590661r5t9 + 3521231r4t10 + 1489548r3t11 +
256633r2t12 + 14992rt13 + 172t14 + 8580r8t5 + 231782r7t6 + 1858797r6t7 +
5816311r5t8 + 7790635r4t9 + 4567498r3t10 + 1130413r2t11 + 103508rt12 + 2372t13 +
4160r8t4 + 156837r7t5 + 1727442r6t6 + 7360789r5t7 + 13388834r4t8 + 10701410r3t9 +
3668451r2t10 + 485621rt11 + 17988t12 + 1482r8t3 + 80508r7t4 + 1240394r6t5 +
7266070r5t6 + 17988696r4t7 + 19491608r3t8 + 9091388r2t9 + 1668073rt10 + 90342t11 +
366r8t2 + 30325r7t3 + 675120r6t4 + 5541140r5t5 + 18862222r4t6 + 27783569r3t7 +
17529532r2t8 +4368276rt9 +328710t10 +56r8t+7908r7t2 +269389r6t3 +3202160r5t4 +
15286059r4t5 +30939606r3t6 +26486622r2t7 +8905641rt8 +908856t9 +4r8 +1276r7t+
74348r6t2 +1356117r5t3 +9390348r4t4 +26655057r3t5 +31312386r2t6 +14250276rt7 +
1956834t8 + 96r7 + 12684r6t+ 397044r5t2 + 4228425r4t3 + 17423676r3t4 +
28681668r2t5 + 17874702rt6 + 3312711t7 + 1008r6 + 71820r5t+ 1316520r4t2 +
8356311r3t3 + 19965096r2t4 + 17407062rt5 + 4406076t6 + 6048r5 + 253260r4t+
2773548r3t2 + 10213695r2t3 + 12910104rt4 + 4560867t5 + 22680r4 + 569268r3t+
3622644r2t2 + 7054047rt3 + 3605148t4 + 54432r3 + 796068r2t+ 2679804rt2 +
2106081t3 + 81648r2 + 632772rt+ 858762t2 + 69984r + 218700t+ 26244)(t+ 1)2t.

S̃C |q=2 = 2(t2 + 2t+ 2)(t+ 2)9(t+ 1)2t.
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Appendix A. Local views in the Potts model

DUC = (6s5t9 + 54s5t8 + 38s4t9 + 216s5t7 + 377s4t8 + 95s3t9 + 504s5t6 + 1656s4t7 +
1037s3t8 + 118s2t9 + 756s5t5 + 4231s4t6 + 4986s3t7 + 1405s2t8 + 73st9 + 756s5t4 +
6934s4t5 + 13903s3t6 + 7356s2t7 + 937st8 + 18t9 + 504s5t3 + 7563s4t4 + 24835s3t5 +
22309s2t6 + 5310st7 + 246t8 + 216s5t2 + 5492s4t3 + 29523s3t4 + 43336s2t5 +
17450st6 + 1500t7 + 54s5t+ 2561s4t2 + 23384s3t3 + 56085s2t4 + 36767st5 + 5320t6 +
6s5 + 696s4t+ 11909s3t2 + 48486s2t3 + 51720st4 + 12118t5 + 84s4 + 3540s3t+
27057s2t2 + 48792st3 + 18477t4 + 468s3 + 8856s2t+ 29907st2 + 18990t3 + 1296s2 +
10854st+ 12798t2 + 1782s+ 5184t+ 972)(s+ 3)(t+ 1)2.

DUC |q=2 = 6(t2 + 2t+ 2)(t+ 2)4(t+ 1)2.

Local view 5 of 35

1 1 1 1 2 3

ZC = 3λ7 + λ6(q − 3) + 2λ6 + 3λ5(q − 3) + λ4(q − 3)(q − 4) + 6λ5 + 19λ4(q − 3) +
10λ3(q − 3)(q − 4) + 2λ2(q − 3)(q − 4)(q − 5) + 24λ4 + 35λ3(q − 3) +
21λ2(q − 3)(q − 4) + 5λ(q − 3)(q − 4)(q − 5) + (q − 3)(q − 4)(q − 5)(q − 6) + 14λ3 +
41λ2(q − 3) + 32λ(q − 3)(q − 4) + 11(q − 3)(q − 4)(q − 5) + 12λ2 + 49λ(q − 3) +
33(q − 3)(q − 4) + 18λ+ 27q − 79.

2ZCUvC = 7λ7 + 2λ6(q − 3) + 2λ6 + λ5(q − 3) + 8λ5 + 20λ4(q − 3) + 6λ3(q − 3)(q − 4) + 30λ4 +
31λ3(q − 3) + 12λ2(q − 3)(q − 4) + 3λ(q − 3)(q − 4)(q − 5) + 16λ3 + 32λ2(q − 3) +
18λ(q − 3)(q − 4) + 10λ2 + 25λ(q − 3) + 8λ.

6ZCUNC = 21λ7 + 6λ6(q − 3) + 12λ6 + 15λ5(q − 3) + 4λ4(q − 3)(q − 4) + 30λ5 + 76λ4(q − 3) +
30λ3(q − 3)(q − 4) + 4λ2(q − 3)(q − 4)(q − 5) + 96λ4 + 105λ3(q − 3) +
42λ2(q − 3)(q − 4) + 5λ(q − 3)(q − 4)(q − 5) + 42λ3 + 82λ2(q − 3) +
32λ(q − 3)(q − 4) + 24λ2 + 49λ(q − 3) + 18λ.

S̃C = 2(6r7t14 +88r7t13 +58r6t14 +600r7t12 +902r6t13 +242r5t14 +2520r7t11 +6522r6t12 +
3986r5t13 + 568r4t14 + 7282r7t10 + 29044r6t11 + 30502r5t12 + 9882r4t13 + 817r3t14 +
15312r7t9 + 88950r6t10 + 143666r5t11 + 79780r4t12 + 14927r3t13 + 729r2t14 +
24156r7t8 + 198108r6t9 + 465130r5t10 + 396172r4t11 + 126492r3t12 + 13834r2t13 +
378rt14 + 29040r7t7 + 330792r6t8 + 1094660r5t9 + 1351836r4t10 + 659334r3t11 +
122062r2t12 +7328rt13 +88t14 +26730r7t6 +420576r6t7 +1930768r5t8 +3352802r4t9 +
2362335r3t10 + 663832r2t11 + 66585rt12 + 1712t13 + 18744r7t5 + 409086r6t6 +
2592356r5t7 + 6232646r4t8 + 6155251r3t9 + 2485939r2t10 + 374998rt11 + 15834t12 +
9856r7t4 + 302902r6t5 + 2662222r5t6 + 8821590r4t7 + 12028550r3t8 + 6780484r2t9 +
1460034rt10 + 91644t11 + 3768r7t3 + 168050r6t4 + 2080858r5t5 + 9553402r4t6 +
17911252r3t7 + 13890298r2t8 + 4152645rt9 + 369072t10 + 990r7t2 + 67740r6t3 +
1218558r5t4 + 7878116r4t5 + 20425384r3t6 + 21712632r2t7 + 8891904rt8 + 1090674t9 +
160r7t+ 18754r6t2 + 518442r5t3 + 4870194r4t4 + 17755560r3t5 + 26030328r2t6 +
14558202rt7 +2434536t8 +12r7 +3192r6t+151494r5t2 +2188854r4t3 +11585304r3t4 +
23827338r2t5+18316728rt6+4166100t7+252r6+27216r5t+676170r4t2+5503788r3t3+
16402338r2t4 + 17633430rt5 + 5491800t6 + 2268r5 + 128520r4t+ 1800090r3t2 +
8239320r2t3 + 12797514rt4 + 5553036t5 + 11340r4 + 362880r3t+ 2856870r2t2 +
6797682rt3 + 4245210t4 + 34020r3 + 612360r2t+ 2501442rt2 + 2383830t3 + 61236r2 +
571536rt+ 931662t2 + 61236r + 227448t+ 26244)(rt2 + 2rt+ t2 + r + 3t+ 3)(t+ 1)t.
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Appendix A. Local views in the Potts model

DUC = (6s5t10+60s5t9+38s4t10+270s5t8+409s4t9+94s3t10+720s5t7+1987s4t8+1085s3t9+
112s2t10 +1260s5t6 +5733s4t7 +5673s3t8 +1379s2t9 +62st10 +1512s5t5 +10871s4t6 +
17675s3t7 +7739s2t8 +814st9 +12t10 +1260s5t4 +14147s4t5 +36295s3t6 +26036s2t7 +
4908st8 + 168t9 + 720s5t3 + 12789s4t4 + 51267s3t5 + 58010s2t6 + 17904st7 + 1092t8 +
270s5t2 + 7927s4t3 + 50395s3t4 + 89222s2t5 + 43578st6 + 4376t7 + 60s5t+ 3223s4t2 +
34013s3t3 + 95752s2t4 + 73556st5 + 11860t6 + 6s5 + 776s4t+ 15075s3t2 + 70719s2t3 +
86848st4+22398t5+84s4+3960s3t+34383s2t2+70707st3+29568t4+468s3+9936s2t+
38007st2 + 26874t3 + 1296s2 + 12204st+ 16146t2 + 1782s+ 5832t+ 972)(s+ 3)(t+ 1).

Local view 6 of 35

1 1 1 2 1 3

ZC = λ7+2λ6+2λ5(q − 3)+9λ5+14λ4(q − 3)+7λ3(q − 3)(q − 4)+λ2(q − 3)(q − 4)(q − 5)+
16λ4 + 36λ3(q − 3) + 24λ2(q − 3)(q − 4) + 7λ(q − 3)(q − 4)(q − 5) +
(q − 3)(q − 4)(q − 5)(q − 6) + 23λ3 + 56λ2(q − 3) + 39λ(q − 3)(q − 4) +
10(q − 3)(q − 4)(q − 5) + 18λ2 + 47λ(q − 3) + 27(q − 3)(q − 4) + 10λ+ 20q − 58.

2ZCUvC = 3λ7 + 4λ6 + 4λ5(q − 3) + 13λ5 + 12λ4(q − 3) + 3λ3(q − 3)(q − 4) + 22λ4 +
36λ3(q − 3) + 18λ2(q − 3)(q − 4) + 3λ(q − 3)(q − 4)(q − 5) + 23λ3 + 44λ2(q − 3) +
15λ(q − 3)(q − 4) + 14λ2 + 15λ(q − 3) + 2λ.

6ZCUNC = 7λ7 + 12λ6 + 10λ5(q − 3) + 45λ5 + 56λ4(q − 3) + 21λ3(q − 3)(q − 4) +
2λ2(q − 3)(q − 4)(q − 5) + 64λ4 + 108λ3(q − 3) + 48λ2(q − 3)(q − 4) +
7λ(q − 3)(q − 4)(q − 5) + 69λ3 + 112λ2(q − 3) + 39λ(q − 3)(q − 4) + 36λ2 +
47λ(q − 3) + 10λ.

S̃C = 2(4r8t14 +56r8t13 +40r7t14 +366r8t12 +600r7t13 +176r6t14 +1480r8t11 +4199r7t12 +
2816r6t13 + 445r5t14 + 4136r8t10 + 18169r7t11 + 21018r6t12 + 7564r5t13 + 706r4t14 +
8448r8t9 +54288r7t10 +96982r6t11 +59987r5t12 +12712r4t13 +718r3t14 +13002r8t8 +
118446r7t9 + 308972r6t10 + 294200r5t11 + 106786r4t12 + 13669r3t13 + 455r2t14 +
15312r8t7 + 194514r7t8 + 718618r6t9 + 996614r5t10 + 554989r4t11 + 121337r3t12 +
9155r2t13 + 162rt14 + 13860r8t6 + 244134r7t7 + 1257620r6t8 + 2465659r5t9 +
1993742r4t10 + 666580r3t11 + 85773r2t12 + 3466rt13 + 24t14 + 9592r8t5 + 235212r7t6 +
1681324r6t7 + 4591516r5t8 + 5235414r4t9 + 2533375r3t10 + 497251r2t11 + 34343rt12 +
560t13 + 4994r8t4 + 173032r7t5 + 1724480r6t6 + 6533287r5t7 + 10357086r4t8 +
7046204r3t9 + 1995702r2t10 + 210118rt11 + 5922t12 + 1896r8t3 + 95631r7t4 +
1349604r6t5+7132877r5t6+15669127r4t7+14783937r3t8+5869103r2t9+889848rt10+
38352t11 + 496r8t2 + 38489r7t3 + 792922r6t4 + 5942151r5t5 + 18203048r4t6 +
23753970r3t7 + 13040976r2t8 + 2764029rt9 + 171504t10 + 80r8t+ 10660r7t2 +
338974r6t3+3715869r5t4+16146918r4t5+29346600r3t6+22228443r2t7+6497001rt8+
562590t9 + 6r8 + 1818r7t+ 99636r6t2 + 1690497r5t3 + 10758312r4t4 + 27720468r3t5 +
29185326r2t6 + 11737197rt7 + 1398330t8 + 144r7 + 18018r6t+ 528660r5t2 +
5217750r4t3 + 19693881r3t4 + 29352942r2t5 + 16367319rt6 + 2676078t7 + 1512r6 +
101682r5t+ 1740420r4t2 + 10198683r3t3 + 22247946r2t4 + 17522973rt5 + 3961710t6 +
9072r5+357210r4t+3637548r3t2+12318642r2t3+14173947rt4+4513968t5+34020r4+
799470r3t+4709340r2t2+8400267rt3+3897234t4+81648r3+1112454r2t+3449628rt2+
2474226t3 + 122472r2 + 879174rt+ 1093500t2 + 104976r + 301806t+ 39366)(t+ 1)3t.
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Appendix A. Local views in the Potts model

DUC = (6s5t9 + 54s5t8 + 36s4t9 + 216s5t7 + 361s4t8 + 85s3t9 + 504s5t6 + 1600s4t7 +
945s3t8 + 99s2t9 + 756s5t5 + 4119s4t6 + 4620s3t7 + 1208s2t8 + 56st9 + 756s5t4 +
6794s4t5 + 13079s3t6 + 6476s2t7 + 750st8 + 12t9 + 504s5t3 + 7451s4t4 + 23685s3t5 +
20091s2t6 + 4392st7 + 180t8 + 216s5t2 + 5436s4t3 + 28503s3t4 + 39881s2t5 +
14873st6 + 1152t7 + 54s5t+ 2545s4t2 + 22822s3t3 + 52676s2t4 + 32282st5 + 4238t6 +
6s5 + 694s4t+ 11733s3t2 + 46404s2t3 + 46778st4 + 10008t5 + 84s4 + 3516s3t+
26337s2t2 + 45426st3 + 15864t4 + 468s3 + 8748s2t+ 28611st2 + 16992t3 + 1296s2 +
10638st+ 11934t2 + 1782s+ 5022t+ 972)(s+ 3)(t+ 1)2.

Local view 7 of 35

1 1 1 2 2 2

ZC = 2λ7 + 4λ6 + 7λ5(q − 2) + λ4(q − 2)(q − 3) + 2λ5 + 12λ4(q − 2) + 10λ3(q − 2)(q − 3) +
2λ2(q − 2)(q − 3)(q − 4) + 2λ4 + 15λ3(q − 2) + 15λ2(q − 2)(q − 3) +
5λ(q − 2)(q − 3)(q − 4) + (q − 2)(q − 3)(q − 4)(q − 5) + 4λ3 + 16λ2(q − 2) +
17λ(q − 2)(q − 3)+7(q − 2)(q − 3)(q − 4)+2λ2 +11λ(q − 2)+12(q − 2)(q − 3)+4q−8.

2ZCUvC = 4λ7 + 8λ6 + 7λ5(q − 2) + 4λ5 + 16λ4(q − 2) + 6λ3(q − 2)(q − 3) + 2λ4 + 15λ3(q − 2) +
12λ2(q − 2)(q − 3) + 3λ(q − 2)(q − 3)(q − 4) + 4λ3 + 14λ2(q − 2) + 9λ(q − 2)(q − 3) +
2λ2 + 5λ(q − 2).

6ZCUNC = 14λ7 + 24λ6 + 35λ5(q − 2) + 4λ4(q − 2)(q − 3) + 10λ5 + 48λ4(q − 2) +
30λ3(q − 2)(q − 3)+4λ2(q − 2)(q − 3)(q − 4)+8λ4+45λ3(q − 2)+30λ2(q − 2)(q − 3)+
5λ(q − 2)(q − 3)(q − 4) + 12λ3 + 32λ2(q − 2) + 17λ(q − 2)(q − 3) + 4λ2 + 11λ(q − 2).

S̃C = 2(4r7t14 +60r7t13 +38r6t14 +420r7t12 +602r6t13 +154r5t14 +1816r7t11 +4460r6t12 +
2582r5t13 + 347r4t14 + 5412r7t10 + 20440r6t11 + 20256r5t12 + 6160r4t13 + 472r3t14 +
11748r7t9 +64620r6t10 +98330r5t11 +51139r4t12 +8865r3t13 +390r2t14 +19140r7t8 +
148848r6t9 + 329320r5t10 + 262580r4t11 + 77743r3t12 + 7733r2t13 + 183rt14 +
23760r7t7 + 257292r6t8 + 803624r5t9 + 929933r4t10 + 421286r3t11 + 71408r2t12 +
3808rt13+38t14+22572r7t6+338712r6t7+1471540r5t8+2399420r4t9+1573944r3t10+
407025r2t11 + 36814rt12 + 820t13 + 16324r7t5 + 340998r6t6 + 2051924r5t7 +
4645999r4t8 + 4284089r3t9 + 1599239r2t10 + 219669rt11 + 8228t12 + 8844r7t4 +
261122r6t5 + 2187730r5t6 + 6851974r4t7 + 8753443r3t8 + 4579412r2t9 + 904252rt10 +
51094t11 + 3480r7t3 + 149660r6t4 + 1773798r5t5 + 7729240r4t6 + 13630488r3t7 +
9850467r2t8 + 2715769rt9 + 219468t10 + 940r7t2 + 62240r6t3 + 1076160r5t4 +
6633028r4t5 + 16247086r3t6 + 16163688r2t7 + 6134631rt8 + 689322t9 + 156r7t+
17752r6t2 + 473618r5t3 + 4261338r4t4 + 14747784r3t5 + 20328300r2t6 + 10586070rt7 +
1631466t8+12r7+3108r6t+142908r5t2+1986834r4t3+10033272r3t4+19499346r2t5+
14024340rt6 + 2954988t7 + 252r6 + 26460r5t+ 635400r4t2 + 4960188r3t3 +
14044428r2t4 + 14199246rt5 + 4117014t6 + 2268r5 + 124740r4t+ 1684260r3t2 +
7366356r2t3 + 10821276rt4 + 4394088t5 + 11340r4 + 351540r3t+ 2660040r2t2 +
6023322rt3 + 3540510t4 + 34020r3 + 591948r2t+ 2316276rt2 + 2091258t3 + 61236r2 +
551124rt+ 857304t2 + 61236r + 218700t+ 26244)(rt2 + 2rt+ t2 + r + 3t+ 3)(t+ 1)t.

S̃C |q=2 = 4(t4 + 3t3 + 6t2 + 6t+ 3)(t+ 2)9(t+ 1)t.
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Appendix A. Local views in the Potts model

DUC = (6s4t8 + 48s4t7 + 34s3t8 + 168s4t6 + 293s3t7 + 72s2t8 + 336s4t5 + 1107s3t6 +
666s2t7 + 68st8 + 420s4t4 + 2396s3t5 + 2697s2t6 + 667st7 + 24t8 + 336s4t3 +
3250s3t4 + 6267s2t5 + 2862st6 + 246t7 + 168s4t2 + 2829s3t3 + 9165s2t4 + 7073st5 +
1104t6 + 48s4t+ 1543s3t2 + 8655s2t3 + 11077st4 + 2870t5 + 6s4 + 482s3t+ 5160s2t2 +
11310st3 + 4774t4 + 66s3 + 1776s2t+ 7383st2 + 5250t3 + 270s2 + 2826st+ 3762t2 +
486s+ 1620t+ 324)(st2 + 2st+ t2 + s+ 3t+ 3)(s+ 3)(t+ 1).

DUC |q=2 = 4(2t2 + 4t+ 3)(t+ 2)4(t+ 1).

Local view 8 of 35 (named C2)

1 2 1 2 1 2

ZC = 2λ6 + 6λ5 + 6λ4(q − 2) + 6λ4 + 39λ3(q − 2) + 33λ2(q − 2)(q − 3) +
9λ(q − 2)(q − 3)(q − 4) + (q − 2)(q − 3)(q − 4)(q − 5) + 2λ3 + 12λ2(q − 2) +
15λ(q − 2)(q − 3) + 5(q − 2)(q − 3)(q − 4) + 6λ(q − 2) + 7(q − 2)(q − 3) + 2q − 4.

2ZCUvC = 6λ6 + 12λ5 + 12λ4(q − 2) + 6λ4 + 39λ3(q − 2) + 24λ2(q − 2)(q − 3) +
3λ(q − 2)(q − 3)(q − 4) + 6λ2(q − 2) + 3λ(q − 2)(q − 3).

6ZCUNC = 12λ6 + 30λ5 + 24λ4(q − 2) + 24λ4 + 117λ3(q − 2) + 66λ2(q − 2)(q − 3) +
9λ(q − 2)(q − 3)(q − 4) + 6λ3 + 24λ2(q − 2) + 15λ(q − 2)(q − 3) + 6λ(q − 2).

S̃C = 0.

DUC = 3(2s5t8 + 16s5t7 + 12s4t8 + 56s5t6 + 109s4t7 + 28s3t8 + 112s5t5 + 429s4t6 + 289s3t7 +
32s2t8+140s5t4+958s4t5+1277s3t6+372s2t7+18st8+112s5t3+1330s4t4+3178s3t5+
1840s2t6 + 232st7 + 4t8 + 56s5t2 + 1177s4t3 + 4898s3t4 + 5097s2t5 + 1280st6 + 56t7 +
16s5t+ 649s4t2 + 4805s3t3 + 8715s2t4 + 3943st5 + 344t6 + 2s5 + 204s4t+ 2937s3t2 +
9487s2t3 + 7471st4 + 1178t5 + 28s4 + 1024s3t+ 6457s2t2 + 9019st3 + 2466t4 + 156s3 +
2520s2t+6855st2 +3288t3 +432s2 +3024st+2790t2 +594s+1404t+324)(s+3)(t+1)3.

DUC |q=2 = 12(t+ 2)4(t+ 1)3.

Local view 9 of 35

1 1 1 2 2 3

ZC = 4λ6 + λ5(q − 3) + 9λ5 + 17λ4(q − 3) + 7λ3(q − 3)(q − 4) + λ2(q − 3)(q − 4)(q − 5) +
15λ4 + 34λ3(q − 3) + 24λ2(q − 3)(q − 4) + 7λ(q − 3)(q − 4)(q − 5) +
(q − 3)(q − 4)(q − 5)(q − 6) + 22λ3 + 54λ2(q − 3) + 39λ(q − 3)(q − 4) +
10(q − 3)(q − 4)(q − 5) + 18λ2 + 50λ(q − 3) + 27(q − 3)(q − 4) + 12λ+ 19q − 56.

2ZCUvC = 9λ6 + 2λ5(q − 3) + 13λ5 + 16λ4(q − 3) + 3λ3(q − 3)(q − 4) + 20λ4 + 36λ3(q − 3) +
18λ2(q − 3)(q − 4) + 3λ(q − 3)(q − 4)(q − 5) + 24λ3 + 40λ2(q − 3) +
15λ(q − 3)(q − 4) + 11λ2 + 17λ(q − 3) + 4λ.
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6ZCUNC = 24λ6+5λ5(q − 3)+45λ5+68λ4(q − 3)+21λ3(q − 3)(q − 4)+2λ2(q − 3)(q − 4)(q − 5)+
60λ4 + 102λ3(q − 3) + 48λ2(q − 3)(q − 4) + 7λ(q − 3)(q − 4)(q − 5) + 66λ3 +
108λ2(q − 3) + 39λ(q − 3)(q − 4) + 36λ2 + 50λ(q − 3) + 12λ.

S̃C = (12r8t15 + 184r8t14 + 122r7t15 + 1320r8t13 + 1992r7t14 + 544r6t15 + 5876r8t12 +
15210r7t13 + 9440r6t14 + 1393r5t15 + 18148r8t11 + 72024r7t12 + 76538r6t13 +
25621r5t14 + 2245r4t15 + 41184r8t10 + 236472r7t11 + 384604r6t12 + 219969r5t13 +
43624r4t14 + 2338r3t15 + 70928r8t9 + 570044r7t10 + 1339354r6t11 + 1169849r5t12 +
395367r4t13 + 47785r3t14 + 1542r2t15 + 94380r8t8 + 1041984r7t9 + 3423180r6t10 +
4310637r5t11 + 2218972r4t12 + 455499r3t13 + 32926r2t14 + 590rt15 + 97812r8t7 +
1470240r7t8 + 6631728r6t9 + 11657023r5t10 + 8629373r4t11 + 2689500r3t12 +
328617r2t13 + 13048rt14 + 100t15 + 78936r8t6 + 1614138r7t7 + 9913608r6t8 +
23896081r5t9 + 24636774r4t10 + 11009206r3t11 + 2034488r2t12 + 135646rt13 +
2272t14 + 49192r8t5 + 1378544r7t6 + 11526036r6t7 + 37802919r5t8 + 53345249r4t9 +
33108193r3t10 + 8742594r2t11 + 877585rt12 + 24480t13 + 23244r8t4 + 908202r7t5 +
10419640r6t6 + 46517906r5t7 + 89191552r4t8 + 75581141r3t9 + 27633528r2t10 +
3949192rt11 + 164994t12 + 8060r8t3 + 453192r7t4 + 7262426r6t5 + 44512308r5t6 +
116070972r4t7 + 133368090r3t8 + 66387341r2t9 + 13093898rt10 + 775944t11 +
1936r8t2 + 165780r7t3 + 3831788r6t4 + 32840950r5t5 + 117535058r4t6 +
183375982r3t7 + 123452570r2t8 + 33050346rt9 + 2694588t10 + 288r8t+ 41964r7t2 +
1481170r6t3 + 18341500r5t4 + 91824204r4t5 + 196417116r3t6 + 179152290r2t7 +
64680591rt8 + 7136856t9 + 20r8 + 6572r7t+ 395932r6t2 + 7504140r5t3 +
54335520r4t4 + 162509274r3t5 + 202857912r2t6 + 98961318rt7 + 14682726t8 +
480r7 + 65436r6t+ 2122812r5t2 + 23566050r4t3 + 101961792r3t4 + 177733062r2t5 +
118376208rt6 + 23662314t7 + 5040r6 + 371196r5t+ 7070220r4t2 + 46945980r3t3 +
118302876r2t4 + 109802790rt5 + 29879766t6 + 30240r5 + 1311660r4t+ 14969988r3t2 +
57897990r2t3 + 77562684rt4 + 29332044t5 + 113400r4 + 2955204r3t+ 19664532r2t2 +
40391460rt3 + 21991500t4 + 272160r3 + 4143636r2t+ 14641236rt2 + 12196170t3 +
408240r2 + 3303828rt+ 4726836t2 + 349920r + 1145988t+ 131220)(t+ 1)2t.

DUC = (6s5t9 + 54s5t8 + 34s4t9 + 216s5t7 + 343s4t8 + 74s3t9 + 504s5t6 + 1530s4t7 +
836s3t8 + 77s2t9 + 756s5t5 + 3965s4t6 + 4152s3t7 + 965s2t8 + 37st9 + 756s5t4 +
6584s4t5 + 11941s3t6 + 5322s2t7 + 514st8 + 6t9 + 504s5t3 + 7269s4t4 + 21970s3t5 +
16997s2t6 + 3153st7 + 96t8 + 216s5t2 + 5338s4t3 + 26862s3t4 + 34739s2t5 +
11217st6 + 666t7 + 54s5t+ 2515s4t2 + 21848s3t3 + 47241s2t4 + 25587st5 + 2662t6 +
6s5 + 690s4t+ 11405s3t2 + 42834s2t3 + 38955st4 + 6826t5 + 84s4 + 3468s3t+
25005s2t2 + 39720st3 + 11745t4 + 468s3 + 8532s2t+ 26235st2 + 13644t3 + 1296s2 +
10206st+ 10368t2 + 1782s+ 4698t+ 972)(s+ 3)(t+ 1)2.

Local view 10 of 35

1 1 1 3 2 2

ZC = λ7 + 6λ6 + 6λ5(q − 3) + λ4(q − 3)(q − 4) + 9λ5 + 17λ4(q − 3) + 10λ3(q − 3)(q − 4) +
2λ2(q − 3)(q − 4)(q − 5) + 13λ4 + 33λ3(q − 3) + 21λ2(q − 3)(q − 4) +
5λ(q − 3)(q − 4)(q − 5) + (q − 3)(q − 4)(q − 5)(q − 6) + 18λ3 + 44λ2(q − 3) +
32λ(q − 3)(q − 4) + 11(q − 3)(q − 4)(q − 5) + 18λ2 + 48λ(q − 3) + 33(q − 3)(q − 4) +
13λ+ 27q − 78.
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Appendix A. Local views in the Potts model

2ZCUvC = 2λ7 + 9λ6 + 5λ5(q − 3) + 16λ5 + 20λ4(q − 3) + 6λ3(q − 3)(q − 4) + 16λ4 +
27λ3(q − 3) + 12λ2(q − 3)(q − 4) + 3λ(q − 3)(q − 4)(q − 5) + 15λ3 + 34λ2(q − 3) +
18λ(q − 3)(q − 4) + 17λ2 + 25λ(q − 3) + 6λ.

6ZCUNC = 7λ7 + 36λ6 + 30λ5(q − 3) + 4λ4(q − 3)(q − 4) + 45λ5 + 68λ4(q − 3) +
30λ3(q − 3)(q − 4) + 4λ2(q − 3)(q − 4)(q − 5) + 52λ4 + 99λ3(q − 3) +
42λ2(q − 3)(q − 4) + 5λ(q − 3)(q − 4)(q − 5) + 54λ3 + 88λ2(q − 3) +
32λ(q − 3)(q − 4) + 36λ2 + 48λ(q − 3) + 13λ.

S̃C = (12r8t16 + 204r8t15 + 124r7t16 + 1628r8t14 + 2224r7t15 + 560r6t16 + 8092r8t13 +
18744r7t14 + 10598r6t15 + 1449r5t16 + 28028r8t12 + 98452r7t13 + 94258r6t14 +
28902r5t15 + 2360r4t16 + 71708r8t11 + 360432r7t12 + 522470r6t13 + 270832r5t14 +
49475r4t15 + 2491r3t16 + 140140r8t10 + 974620r7t11 + 2018518r6t12 + 1581392r5t13 +
487190r4t14 + 54609r3t15 + 1672r2t16 + 213356r8t9 + 2012516r7t10 + 5759548r6t11 +
6435446r5t12 + 2989397r4t13 + 562841r3t14 + 38050r2t15 + 652rt16 + 255684r8t8 +
3235848r7t9 + 12548376r6t10 + 19342576r5t11 + 12786028r4t12 + 3617707r3t13 +
408294r2t14 + 15296rt15 + 112t16 + 241956r8t7 + 4092924r7t8 + 21284460r6t9 +
44395064r5t10 + 40401943r4t11 + 16220843r3t12 + 2738395r2t13 + 169957rt14 +
2704t15 + 180180r8t6 + 4085224r7t7 + 28395276r6t8 + 79339936r5t9 + 97524496r4t10 +
53770313r3t11 + 12834156r2t12 + 1184677rt13 + 31002t14 + 104468r8t5 +
3206368r7t6 + 29885390r6t7 + 111539609r5t8 + 183382229r4t9 + 136262671r3t10 +
44532146r2t11 + 5786935rt12 + 223846t13 + 46228r8t4 + 1957860r7t5 +
24726482r6t6 + 123728950r5t7 + 271397042r4t8 + 269204933r3t9 + 118267914r2t10 +
20973866rt11 + 1136790t12 + 15092r8t3 + 911704r7t4 + 15910942r6t5 +
107913884r5t6 + 317106478r4t7 + 418949958r3t8 + 245144867r2t9 + 58282811rt10 +
4296036t11 + 3428r8t2 + 312972r7t3 + 7805102r6t4 + 73211456r5t5 + 291496218r4t6 +
515224702r3t7 + 400729520r2t8 + 126590649rt9 + 12475590t10 + 484r8t+ 74692r7t2 +
2821456r6t3 + 37868944r5t4 + 208559766r4t5 + 498997944r3t6 + 518288724r2t7 +
217141005rt8 + 28367550t9 + 32r8 + 11072r7t+ 708772r6t2 + 14435652r5t3 +
113843214r4t4 + 376569828r3t5 + 528629382r2t6 + 295127820rt7 + 51019974t8 +
768r7 + 110544r6t+ 3824244r5t2 + 45825120r4t3 + 217058472r3t4 + 420758442r2t5 +
316844460rt6 + 72824292t7 + 8064r6 + 628992r5t+ 12826620r4t2 + 92375316r3t3 +
256228218r2t4 + 265946328rt5 + 82254042t6 + 48384r5 + 2230200r4t+ 27370764r3t2 +
115416576r2t3 +171153648rt4 +72789678t5 +181440r4 +5044032r3t+36268236r2t2 +
81676188rt3 + 49514166t4 + 435456r3 + 7103376r2t+ 27267516rt2 + 25051356t3 +
653184r2 + 5692032rt+ 8899632t2 + 559872r + 1985796t+ 209952)(t+ 1)t.

DUC = (6s5t10+60s5t9+38s4t10+270s5t8+407s4t9+96s3t10+720s5t7+1969s4t8+1093s3t9+
121s2t10 +1260s5t6 +5663s4t7 +5639s3t8 +1450s2t9 +75st10 +1512s5t5 +10717s4t6 +
17367s3t7 +7901s2t8 +944st9 +18t10 +1260s5t4 +13937s4t5 +35357s3t6 +25842s2t7 +
5395st8 + 240t9 + 720s5t3 + 12607s4t4 + 49699s3t5 + 56251s2t6 + 18571st7 + 1434t8 +
270s5t2 + 7829s4t3 + 48813s3t4 + 85169s2t5 + 42861st6 + 5142t7 + 60s5t+ 3193s4t2 +
33049s3t3 + 90800s2t4 + 69516st5 + 12422t6 + 6s5 + 772s4t+ 14747s3t2 + 67239s2t3 +
80330st4+21349t5+84s4+3912s3t+33051s2t2+65271st3+26610t4+468s3+9720s2t+
35631st2 + 23796t3 + 1296s2 + 11772st+ 14580t2 + 1782s+ 5508t+ 972)(s+ 3)(t+ 1).
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Local view 11 of 35

1 2 1 2 1 3

ZC = λ6 + 6λ5 + 4λ4(q − 3) + 21λ4 + 47λ3(q − 3) + 33λ2(q − 3)(q − 4) +
9λ(q − 3)(q − 4)(q − 5) + (q − 3)(q − 4)(q − 5)(q − 6) + 25λ3 + 66λ2(q − 3) +
42λ(q − 3)(q − 4) + 9(q − 3)(q − 4)(q − 5) + 21λ2 + 44λ(q − 3) + 22(q − 3)(q − 4) +
6λ+ 14q − 41.

2ZCUvC = 3λ6 + 13λ5 + 8λ4(q − 3) + 32λ4 + 51λ3(q − 3) + 24λ2(q − 3)(q − 4) +
3λ(q − 3)(q − 4)(q − 5)+21λ3+42λ2(q − 3)+12λ(q − 3)(q − 4)+11λ2+10λ(q − 3)+λ.

6ZCUNC = 6λ6 + 30λ5 + 16λ4(q − 3) + 84λ4 + 141λ3(q − 3) + 66λ2(q − 3)(q − 4) +
9λ(q − 3)(q − 4)(q − 5) + 75λ3 + 132λ2(q − 3) + 42λ(q − 3)(q − 4) + 42λ2 +
44λ(q − 3) + 6λ.

S̃C = (2r4t8 + 16r4t7 + 12r3t8 + 56r4t6 + 104r3t7 + 28r2t8 + 112r4t5 + 396r3t6 + 260r2t7 +
31rt8 + 140r4t4 + 864r3t5 + 1064r2t6 + 301rt7 + 14t8 + 112r4t3 + 1180r3t4 +
2504r2t5 + 1298rt6 + 138t7 + 56r4t2 + 1032r3t3 + 3704r2t4 + 3246rt5 + 612t6 +
16r4t+ 564r3t2 + 3524r2t3 + 5146rt4 + 1596t5 + 2r4 + 176r3t+ 2104r2t2 + 5292rt3 +
2676t4 + 24r3 + 720r2t+ 3444rt2 + 2952t3 + 108r2 + 1296rt+ 2088t2 + 216r + 864t+
162)(4r4t6 + 24r4t5 + 15r3t6 + 60r4t4 + 120r3t5 + 21r2t6 + 80r4t3 + 378r3t4 +
210r2t5 + 12rt6 + 60r4t2 + 612r3t3 + 828r2t4 + 150rt5 + 2t6 + 24r4t+ 543r3t2 +
1650r2t3 + 741rt4 + 36t5 + 4r4 + 252r3t+ 1767r2t2 + 1836rt3 + 225t4 + 48r3 +
972r2t+ 2421rt2 + 702t3 + 216r2 + 1620rt+ 1161t2 + 432r + 972t+ 324)(t+ 1)3t.

DUC = (6s5t8 + 48s5t7 + 32s4t8 + 168s5t6 + 299s4t7 + 65s3t8 + 336s5t5 + 1203s4t6 + 708s3t7 +
64s2t8+420s5t4+2734s4t5+3273s3t6+793s2t7+31st8+336s5t3+3850s4t4+8464s3t5+
4188s2t6 +423st7 +6t8 +168s5t2 +3447s4t3 +13479s3t4 +12337s2t5 +2508st6 +90t7 +
48s5t+1919s4t2 +13596s3t3 +22309s2t4 +8369st5 +576t6 +6s5 +608s4t+8507s3t2 +
25530s2t3+17218st4+2110t5+84s4+3024s3t+18147s2t2+22512st3+4872t4+468s3+
7344s2t+18405st2+7299t3+1296s2+8640st+6966t2+1782s+3888t+972)(s+3)(t+1)3.

Local view 12 of 35

1 1 1 2 3 4

ZC = 3λ6 + λ5(q − 4) + 13λ5 + 16λ4(q − 4) + 7λ3(q − 4)(q − 5) + λ2(q − 4)(q − 5)(q − 6) +
28λ4 + 52λ3(q − 4) + 27λ2(q − 4)(q − 5) + 7λ(q − 4)(q − 5)(q − 6) +
(q − 4)(q − 5)(q − 6)(q − 7) + 62λ3 + 96λ2(q − 4) + 60λ(q − 4)(q − 5) +
14(q − 4)(q − 5)(q − 6) + 63λ2 + 132λ(q − 4) + 57(q − 4)(q − 5) + 69λ+ 72q − 270.

2ZCUvC = 7λ6 + 2λ5(q − 4) + 18λ5 + 14λ4(q − 4) + 3λ3(q − 4)(q − 5) + 36λ4 + 48λ3(q − 4) +
18λ2(q − 4)(q − 5) + 3λ(q − 4)(q − 5)(q − 6) + 62λ3 + 70λ2(q − 4) +
24λ(q − 4)(q − 5) + 45λ2 + 49λ(q − 4) + 24λ.
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6ZCUNC = 18λ6+5λ5(q − 4)+65λ5+64λ4(q − 4)+21λ3(q − 4)(q − 5)+2λ2(q − 4)(q − 5)(q − 6)+
112λ4 + 156λ3(q − 4) + 54λ2(q − 4)(q − 5) + 7λ(q − 4)(q − 5)(q − 6) + 186λ3 +
192λ2(q − 4) + 60λ(q − 4)(q − 5) + 126λ2 + 132λ(q − 4) + 69λ.

S̃C = (16r8t15 + 244r8t14 + 162r7t15 + 1740r8t13 + 2636r7t14 + 722r6t15 + 7696r8t12 +
20038r7t13 + 12492r6t14 + 1855r5t15 + 23608r8t11 + 94384r7t12 + 100890r6t13 +
33977r5t14 + 3013r4t15 + 53196r8t10 + 308024r7t11 + 504556r6t12 + 290433r5t13 +
58106r4t14 + 3178r3t15 + 90948r8t9 + 737640r7t10 + 1747296r6t11 + 1537093r5t12 +
523395r4t13 + 64071r3t14 + 2130r2t15 + 120120r8t8 + 1338852r7t9 + 4437864r6t10 +
5632945r5t11 + 2921010r4t12 + 605057r3t13 + 44502r2t14 + 826rt15 + 123552r8t7 +
1875216r7t8 + 8538732r6t9 + 15140187r5t10 + 11295061r4t11 + 3547182r3t12 +
438079r2t13 + 17756rt14 + 140t15 + 98956r8t6 + 2043138r7t7 + 12671352r6t8 +
30829109r5t9 + 32052624r4t10 + 14430020r3t11 + 2687270r2t12 + 181280rt13 +
3096t14 + 61204r8t5 + 1731468r7t6 + 14620050r6t7 + 48419903r5t8 + 68948979r4t9 +
43132355r3t10 + 11467674r2t11 + 1159491rt12 + 32700t13 + 28704r8t4 +
1131854r7t5 + 13112924r6t6 + 59128656r5t7 + 114466310r4t8 + 97838603r3t9 +
36026236r2t10 + 5177882rt11 + 217566t12 + 9880r8t3 + 560416r7t4 + 9066690r6t5 +
56130224r5t6 + 147837930r4t7 + 171460688r3t8 + 86024723r2t9 + 17065506rt10 +
1014972t11 + 2356r8t2 + 203428r7t3 + 4745340r6t4 + 41074710r5t5 + 148510546r4t6 +
234009984r3t7 + 158932344r2t8 + 42835854rt9 + 3505356t10 + 348r8t+ 51104r7t2 +
1819612r6t3 + 22749912r5t4 + 115062546r4t5 + 248672040r3t6 + 229006584r2t7 +
83337705rt8 + 9240984t9 + 24r8 + 7944r7t+ 482544r6t2 + 9230220r5t3 +
67506948r4t4 + 204027858r3t5 + 257309676r2t6 + 126669798rt7 + 18917874t8 +
576r7 + 79128r6t+ 2589408r5t2 + 29025540r4t3 + 126899568r3t4 + 223571502r2t5 +
150407388rt6 + 30312468t7 + 6048r6 + 449064r5t+ 8632440r4t2 + 57905820r3t3 +
147505860r2t4 + 138382506rt5 + 38018970t6 + 36288r5 + 1587600r4t+ 18296928r3t2 +
71526564r2t3 + 96890904rt4 + 37032714t5 + 136080r4 + 3578904r3t+ 24062832r2t2 +
49983156rt3 + 27524124t4 + 326592r3 + 5021352r2t+ 17939232rt2 + 15119460t3 +
489888r2 + 4006584rt+ 5799924t2 + 419904r + 1390932t+ 157464)(t+ 1)2t.

DUC = (6s5t9 + 54s5t8 + 62s4t9 + 216s5t7 + 597s4t8 + 252s3t9 + 504s5t6 + 2554s4t7 +
2592s3t8 + 502s2t9 + 756s5t5 + 6373s4t6 + 11842s3t7 + 5502s2t8 + 486st9 + 756s5t4 +
10224s4t5 + 31569s3t6 + 26804s2t7 + 5673st8 + 180t9 + 504s5t3 + 10937s4t4 +
54156s3t5 + 76288s2t6 + 29453st7 + 2250t8 + 216s5t2 + 7802s4t3 + 62030s3t4 +
139968s2t5 + 89481st6 + 12471t7 + 54s5t+ 3579s4t2 + 47454s3t3 + 171860s2t4 +
175686st5 + 40473t6 + 6s5 + 958s4t+ 23385s3t2 + 141342s2t3 + 231611st4 + 85122t5 +
114s4 + 6736s3t+ 75126s2t2 + 205364st3 + 120732t4 + 864s3 + 23424s2t+ 118272st2 +
115824t3 + 3264s2 + 40192st+ 72672t2 + 6144s+ 27136t+ 4608)(s+ 4)(t+ 1)2.

Local view 13 of 35

1 2 1 3 1 4

ZC = λ6 + 3λ5 + 3λ4(q − 4) + 36λ4 + 51λ3(q − 4) + 33λ2(q − 4)(q − 5) +
9λ(q − 4)(q − 5)(q − 6) + (q − 4)(q − 5)(q − 6)(q − 7) + 58λ3 + 126λ2(q − 4) +
69λ(q − 4)(q − 5) + 13(q − 4)(q − 5)(q − 6) + 93λ2 + 132λ(q − 4) + 49(q − 4)(q − 5) +
51λ+ 57q − 214.
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Appendix A. Local views in the Potts model

2ZCUvC = 3λ6 + 6λ5 + 6λ4(q − 4) + 60λ4 + 57λ3(q − 4) + 24λ2(q − 4)(q − 5) +
3λ(q − 4)(q − 5)(q − 6) + 54λ3 + 84λ2(q − 4) + 21λ(q − 4)(q − 5) + 57λ2 +
36λ(q − 4) + 12λ.

6ZCUNC = 6λ6 + 15λ5 + 12λ4(q − 4) + 144λ4 + 153λ3(q − 4) + 66λ2(q − 4)(q − 5) +
9λ(q − 4)(q − 5)(q − 6) + 174λ3 + 252λ2(q − 4) + 69λ(q − 4)(q − 5) + 186λ2 +
132λ(q − 4) + 51λ.

S̃C = 3(2r4t8 + 16r4t7 + 12r3t8 + 56r4t6 + 104r3t7 + 28r2t8 + 112r4t5 + 396r3t6 + 260r2t7 +
31rt8 + 140r4t4 + 864r3t5 + 1064r2t6 + 301rt7 + 14t8 + 112r4t3 + 1180r3t4 +
2504r2t5 + 1298rt6 + 138t7 + 56r4t2 + 1032r3t3 + 3704r2t4 + 3246rt5 + 612t6 +
16r4t+ 564r3t2 + 3524r2t3 + 5146rt4 + 1596t5 + 2r4 + 176r3t+ 2104r2t2 + 5292rt3 +
2676t4 + 24r3 + 720r2t+ 3444rt2 + 2952t3 + 108r2 + 1296rt+ 2088t2 + 216r + 864t+
162)(2r3t4 + 8r3t3 + 7r2t4 + 12r3t2 + 38r2t3 + 9rt4 + 8r3t+ 73r2t2 + 57rt3 + 4t4 +
2r3 + 60r2t+ 138rt2 + 27t3 + 18r2 + 144rt+ 81t2 + 54r+ 108t+ 54)(rt+ r+ 3)(t+ 1)4t.

DUC = 3(2s5t8 + 16s5t7 + 20s4t8 + 56s5t6 + 175s4t7 + 79s3t8 + 112s5t5 + 667s4t6 +
752s3t7 + 155s2t8 + 140s5t4 + 1448s4t5 + 3111s3t6 + 1589s2t7 + 152st8 + 112s5t3 +
1960s4t4 + 7320s3t5 + 7095s2t6 + 1658st7 + 60t8 + 56s5t2 + 1695s4t3 + 10733s3t4 +
18047s2t5 + 7918st6 + 690t7 + 16s5t+ 915s4t2 + 10056s3t3 + 28656s2t4 + 21659st5 +
3477t6 + 2s5 + 282s4t+ 5885s3t2 + 29144s2t3 + 37179st4 + 10122t5 + 38s4 +
1968s3t+ 18570s2t2 + 41100st3 + 18684t4 + 288s3 + 6784s2t+ 28640st2 + 22448t3 +
1088s2 + 11520st+ 17184t2 + 2048s+ 7680t+ 1536)(s+ 4)(t+ 1)3.

Local view 14 of 35

1 1 2 2 3 3

ZC = 3λ7 + λ6(q − 3) + 6λ6 + 9λ5(q − 3) + 3λ4(q − 3)(q − 4) + 9λ5 + 18λ4(q − 3) +
9λ3(q − 3)(q − 4) + 3λ2(q − 3)(q − 4)(q − 5) + 12λ4 + 28λ3(q − 3) +
24λ2(q − 3)(q − 4) + 3λ(q − 3)(q − 4)(q − 5) + (q − 3)(q − 4)(q − 5)(q − 6) + 15λ3 +
45λ2(q − 3) + 21λ(q − 3)(q − 4) + 12(q − 3)(q − 4)(q − 5) + 18λ2 + 36λ(q − 3) +
40(q − 3)(q − 4) + 12λ+ 38q − 108.

2ZCUvC = 3λ7 + 12λ6 + 9λ5(q − 3) + 15λ5 + 18λ4(q − 3) + 9λ3(q − 3)(q − 4) + 12λ4 +
30λ3(q − 3) + 6λ2(q − 3)(q − 4) + 3λ(q − 3)(q − 4)(q − 5) + 15λ3 + 18λ2(q − 3) +
21λ(q − 3)(q − 4) + 12λ2 + 36λ(q − 3) + 12λ.

6ZCUNC = 21λ7 + 6λ6(q − 3) + 36λ6 + 45λ5(q − 3) + 12λ4(q − 3)(q − 4) + 45λ5 + 72λ4(q − 3) +
27λ3(q − 3)(q − 4) + 6λ2(q − 3)(q − 4)(q − 5) + 48λ4 + 84λ3(q − 3) +
48λ2(q − 3)(q − 4) + 3λ(q − 3)(q − 4)(q − 5) + 45λ3 + 90λ2(q − 3) +
21λ(q − 3)(q − 4) + 36λ2 + 36λ(q − 3) + 12λ.

S̃C = 6(r4t7 + 8r4t6 + 4r3t7 + 27r4t5 + 40r3t6 + 6r2t7 + 50r4t4 + 164r3t5 + 76r2t6 + 5rt7 +
55r4t3 + 360r3t4 + 370r2t5 + 68rt6 + 2t7 + 36r4t2 + 460r3t3 + 948r2t4 + 373rt5 + 24t6 +
13r4t+344r3t2+1402r2t3+1090rt4+141t5+2r4+140r3t+1204r2t2+1848rt3+462t4+
24r3 + 558r2t+ 1824rt2 + 891t3 + 108r2 + 972rt+ 1008t2 + 216r+ 621t+ 162)(2r3t6 +
12r3t5 + 11r2t6 + 30r3t4 + 69r2t5 + 21rt6 + 40r3t3 + 183r2t4 + 136rt5 + 14t6 + 30r3t2 +
263r2t3 + 376rt4 + 92t5 + 12r3t+ 216r2t2 + 573rt3 + 260t4 + 2r3 + 96r2t+ 510rt2 +
414t3 + 18r2 + 252rt+ 396t2 + 54r+ 216t+ 54)(rt2 + 2rt+ t2 + r+ 3t+ 3)(t+ 2)(t+ 1)t.
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Appendix A. Local views in the Potts model

DUC = 3(2s4t8+16s4t7+12s3t8+56s4t6+99s3t7+28s2t8+112s4t5+363s3t6+233s2t7+30st8+
140s4t4 + 772s3t5 + 874s2t6 + 246st7 + 12t8 + 112s4t3 + 1040s3t4 + 1936s2t5 + 918st6 +
96t7 + 56s4t2 + 907s3t3 + 2772s2t4 + 2063st5 + 348t6 + 16s4t+ 499s3t2 + 2623s2t3 +
3082st4 +766t5 +2s4 +158s3t+1596s2t2 +3144st3 +1156t4 +22s3 +568s2t+2131st2 +
1258t3 +90s2 +870st+966t2 +162s+468t+108)(st2 +2st+t2 +s+3t+3)(s+3)(t+1).

Local view 15 of 35

1 1 2 3 2 3

ZC = 2λ6 + 15λ5 + 21λ4(q − 3) + 7λ3(q − 3)(q − 4) + λ2(q − 3)(q − 4)(q − 5) + 12λ4 +
28λ3(q − 3) + 24λ2(q − 3)(q − 4) + 7λ(q − 3)(q − 4)(q − 5) +
(q − 3)(q − 4)(q − 5)(q − 6) + 14λ3 + 58λ2(q − 3) + 39λ(q − 3)(q − 4) +
10(q − 3)(q − 4)(q − 5) + 30λ2 + 49λ(q − 3) + 27(q − 3)(q − 4) + 6λ+ 19q − 55.

2ZCUvC = 4λ6+25λ5+22λ4(q − 3)+3λ3(q − 3)(q − 4)+16λ4+30λ3(q − 3)+18λ2(q − 3)(q − 4)+
3λ(q − 3)(q − 4)(q − 5)+14λ3+42λ2(q − 3)+15λ(q − 3)(q − 4)+20λ2+17λ(q − 3)+2λ.

6ZCUNC = 12λ6 + 75λ5 + 84λ4(q − 3) + 21λ3(q − 3)(q − 4) + 2λ2(q − 3)(q − 4)(q − 5) + 48λ4 +
84λ3(q − 3) + 48λ2(q − 3)(q − 4) + 7λ(q − 3)(q − 4)(q − 5) + 42λ3 + 116λ2(q − 3) +
39λ(q − 3)(q − 4) + 60λ2 + 49λ(q − 3) + 6λ.

S̃C = 2(6r8t15 +94r8t14 +59r7t15 +688r8t13 +988r7t14 +252r6t15 +3120r8t12 +7727r7t13 +
4514r6t14 + 610r5t15 + 9802r8t11 + 37420r7t12 + 37702r6t13 + 11702r5t14 + 911r4t15 +
22594r8t10 + 125434r7t11 + 194742r6t12 + 104357r5t13 + 18780r4t14 + 852r3t15 +
39468r8t9 + 308166r7t10 + 695544r6t11 + 574402r5t12 + 179005r4t13 + 19014r3t14 +
480r2t15 + 53196r8t8 + 573066r7t9 + 1819074r6t10 + 2183288r5t11 + 1049694r4t12 +
194327r3t13 + 11760r2t14 + 144rt15 + 55770r8t7 + 821184r7t8 + 3597912r6t9 +
6071290r5t10 + 4242621r4t11 + 1215280r3t12 + 129735r2t13 + 3996rt14 + 16t15 +
45474r8t6+914055r7t7+5478900r6t8+12759962r5t9+12531878r4t10+5222615r3t11+
867936r2t12 + 48258rt13 + 552t14 + 28600r8t5 + 790208r7t6 + 6475188r6t7 +
20636932r5t8 + 27961299r4t9 + 16376750r3t10 + 3970620r2t11 + 347760rt12 +
7536t13 + 13624r8t4 + 526195r7t5 + 5938254r6t6 + 25892270r5t7 + 47997990r4t8 +
38764066r3t9 + 13220244r2t10 + 1699353rt11 + 59328t12 + 4758r8t3 + 265028r7t4 +
4190846r6t5 + 25197866r5t6 + 63913684r4t7 + 70582724r3t8 + 33187851r2t9 +
6016896rt10 + 311850t11 + 1150r8t2 + 97732r7t3 + 2234998r6t4 + 18863029r5t5 +
66016256r4t6 + 99716067r3t7 + 64072452r2t8 + 16027956rt9 + 1178496t10 + 172r8t+
24910r7t2 + 871848r6t3 + 10665930r5t4 + 52456332r4t5 + 109320894r3t6 +
96005988r2t7 + 32809878rt8 + 3337308t9 + 12r8 + 3924r7t+ 234846r6t2 +
4409280r5t3 + 31486464r4t4 + 92251521r3t5 + 111712392r2t6 + 52135812rt7 +
7249500t8 + 288r7 + 39060r6t+ 1258038r5t2 + 13818600r4t3 + 58843800r3t4 +
100151586r2t5 + 64386144rt6 + 12219822t7 + 3024r6 + 221508r5t+ 4185810r4t2 +
27462564r3t3 + 67948470r2t4 + 61341543rt5 + 16018560t6 + 18144r5 + 782460r4t+
8852490r3t2 + 33775056r2t3 + 44299386rt4 + 16221708t5 + 68040r4 + 1762236r3t+
11612970r2t2 + 23485464rt3 + 12477564t4 + 163296r3 + 2469852r2t+ 8632818rt2 +
7064010t3 + 244944r2 + 1968300rt+ 2781864t2 + 209952r+ 682344t+ 78732)(t+ 1)2t.
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Appendix A. Local views in the Potts model

DUC = (6s5t9 + 54s5t8 + 34s4t9 + 216s5t7 + 341s4t8 + 76s3t9 + 504s5t6 + 1516s4t7 +
840s3t8 + 86s2t9 + 756s5t5 + 3923s4t6 + 4110s3t7 + 1018s2t8 + 50st9 + 756s5t4 +
6514s4t5 + 11717s3t6 + 5378s2t7 + 618st8 + 12t9 + 504s5t3 + 7199s4t4 + 21480s3t5 +
16691s2t6 + 3432st7 + 156t8 + 216s5t2 + 5296s4t3 + 26274s3t4 + 33592s2t5 +
11326st6 + 888t7 + 54s5t+ 2501s4t2 + 21442s3t3 + 45482s2t4 + 24652st5 + 2984t6 +
6s5 + 688s4t+ 11253s3t2 + 41400s2t3 + 36785st4 + 6744t5 + 84s4 + 3444s3t+
24393s2t2 + 37542st3 + 10860t4 + 468s3 + 8424s2t+ 25155st2 + 12456t3 + 1296s2 +
9990st+ 9666t2 + 1782s+ 4536t+ 972)(s+ 3)(t+ 1)2.

Local view 16 of 35

1 2 1 3 2 3

ZC = 9λ5 + 3λ4(q − 3) + 18λ4 + 51λ3(q − 3) + 33λ2(q − 3)(q − 4) + 9λ(q − 3)(q − 4)(q − 5) +
(q − 3)(q − 4)(q − 5)(q − 6) + 27λ3 + 60λ2(q − 3) + 42λ(q − 3)(q − 4) +
9(q − 3)(q − 4)(q − 5) + 18λ2 + 48λ(q − 3) + 22(q − 3)(q − 4) + 9λ+ 13q − 39.

2ZCUvC = 21λ5 +6λ4(q − 3)+24λ4 +57λ3(q − 3)+24λ2(q − 3)(q − 4)+3λ(q − 3)(q − 4)(q − 5)+
27λ3 + 36λ2(q − 3) + 12λ(q − 3)(q − 4) + 6λ2 + 12λ(q − 3) + 3λ.

6ZCUNC = 45λ5+12λ4(q − 3)+72λ4+153λ3(q − 3)+66λ2(q − 3)(q − 4)+9λ(q − 3)(q − 4)(q − 5)+
81λ3 + 120λ2(q − 3) + 42λ(q − 3)(q − 4) + 36λ2 + 48λ(q − 3) + 9λ.

S̃C = 6(2r4t8 + 16r4t7 + 12r3t8 + 56r4t6 + 104r3t7 + 28r2t8 + 112r4t5 + 396r3t6 + 260r2t7 +
31rt8 + 140r4t4 + 864r3t5 + 1064r2t6 + 301rt7 + 14t8 + 112r4t3 + 1180r3t4 +
2504r2t5 + 1298rt6 + 138t7 + 56r4t2 + 1032r3t3 + 3704r2t4 + 3246rt5 + 612t6 + 16r4t+
564r3t2 + 3524r2t3 + 5146rt4 + 1596t5 + 2r4 + 176r3t+ 2104r2t2 + 5292rt3 + 2676t4 +
24r3 + 720r2t+ 3444rt2 + 2952t3 + 108r2 + 1296rt+ 2088t2 + 216r+ 864t+ 162)(r3t4 +
4r3t3 + 3r2t4 + 6r3t2 + 18r2t3 + 3rt4 + 4r3t+ 36r2t2 + 24rt3 + t4 + r3 + 30r2t+
66rt2 + 9t3 + 9r2 + 72rt+ 36t2 + 27r + 54t+ 27)(rt2 + 2rt+ t2 + r + 3t+ 3)(t+ 1)3t.

DUC = 3(2s5t8 + 16s5t7 + 10s4t8 + 56s5t6 + 95s4t7 + 18s3t8 + 112s5t5 + 387s4t6 + 207s3t7 +
14s2t8 +140s5t4 +888s4t5 +993s3t6 +198s2t7 +4st8 +112s5t3 +1260s4t4 +2638s3t5 +
1144s2t6 + 75st7 + 56s5t2 + 1135s4t3 + 4288s3t4 + 3585s2t5 + 555st6 + 6t7 + 16s5t+
635s4t2 + 4395s3t3 + 6777s2t4 + 2133st5 + 78t6 + 2s5 + 202s4t+ 2785s3t2 + 8017s2t3 +
4821st4 + 406t5 + 28s4 + 1000s3t+ 5845s2t2 + 6733st3 + 1158t4 + 156s3 + 2412s2t+
5775st2 + 1992t3 + 432s2 + 2808st+ 2088t2 + 594s+ 1242t+ 324)(s+ 3)(t+ 1)3.

Local view 17 of 35

1 1 2 2 3 4
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Appendix A. Local views in the Potts model

ZC = 8λ6 + 5λ5(q − 4) + λ4(q − 4)(q − 5) + 14λ5 + 22λ4(q − 4) + 10λ3(q − 4)(q − 5) +
2λ2(q − 4)(q − 5)(q − 6) + 32λ4 + 51λ3(q − 4) + 27λ2(q − 4)(q − 5) +
5λ(q − 4)(q − 5)(q − 6) + (q − 4)(q − 5)(q − 6)(q − 7) + 48λ3 + 84λ2(q − 4) +
47λ(q − 4)(q − 5) + 15(q − 4)(q − 5)(q − 6) + 60λ2 + 115λ(q − 4) + 66(q − 4)(q − 5) +
66λ+ 92q − 340.

2ZCUvC = 10λ6 + 3λ5(q − 4) + 24λ5 + 24λ4(q − 4) + 6λ3(q − 4)(q − 5) + 38λ4 + 39λ3(q − 4) +
12λ2(q − 4)(q − 5) + 3λ(q − 4)(q − 5)(q − 6) + 38λ3 + 54λ2(q − 4) +
27λ(q − 4)(q − 5) + 48λ2 + 63λ(q − 4) + 34λ.

6ZCUNC = 48λ6 + 25λ5(q − 4) + 4λ4(q − 4)(q − 5) + 70λ5 + 88λ4(q − 4) + 30λ3(q − 4)(q − 5) +
4λ2(q − 4)(q − 5)(q − 6) + 128λ4 + 153λ3(q − 4) + 54λ2(q − 4)(q − 5) +
5λ(q − 4)(q − 5)(q − 6) + 144λ3 + 168λ2(q − 4) + 47λ(q − 4)(q − 5) + 120λ2 +
115λ(q − 4) + 66λ.

S̃C = 2(8r8t15+128r8t14+82r7t15+956r8t13+1392r7t14+368r6t15+4420r8t12+11038r7t13+
6624r6t14 +948r5t15 +14144r8t11 +54196r7t12 +55680r6t13 +18056r5t14 +1541r4t15 +
33176r8t10 + 184156r7t11 + 289740r6t12 + 160506r5t13 + 30924r4t14 + 1629r3t15 +
58916r8t9 + 458504r7t10 + 1043222r6t11 + 883024r5t12 + 289661r4t13 + 34186r3t14 +
1099r2t15 + 80652r8t8 + 863784r7t9 + 2751704r6t10 + 3361112r5t11 + 1679622r4t12 +
335637r3t13 + 23874r2t14 + 431rt15 + 85800r8t7 + 1253496r7t8 + 5490868r6t9 +
9373024r5t10 + 6741057r4t11 + 2043386r3t12 + 244030r2t13 + 9612rt14 + 74t15 +
70928r8t6+1412442r7t7+8437832r6t8+19776896r5t9+19830664r4t10+8621729r3t11+
1552812r2t12 + 101652rt13 + 1696t14 + 45188r8t5 + 1235632r7t6 + 10065316r6t7 +
32142232r5t8 + 44164209r4t9 + 26693890r3t10 + 6866402r2t11 + 673120rt12 +
18504t13 + 21788r8t4 + 832302r7t5 + 9318640r6t6 + 40560068r5t7 + 75808326r4t8 +
62632709r3t9 + 22323598r2t10 + 3110230rt11 + 127104t12 + 7696r8t3 + 423892r7t4 +
6640336r6t5 + 39732640r5t6 + 101104052r4t7 + 113385106r3t8 + 55087475r2t9 +
10596752rt10 + 612252t11 + 1880r8t2 + 158008r7t3 + 3576284r6t4 + 29963866r5t5 +
104753312r4t6 + 159659830r3t7 + 105032966r2t8 + 27461787rt9 + 2182776t10 +
284r8t+ 40696r7t2 + 1409062r6t3 + 17081560r5t4 + 83618838r4t5 + 174864732r3t6 +
155994678r2t7 + 55084350rt8 + 5934978t9 + 20r8 + 6476r7t+ 383416r6t2 +
7124736r5t3 + 50496480r4t4 + 147743910r3t5 + 180484740r2t6 + 86211756rt7 +
12515220t8 + 480r7 + 64428r6t+ 2052504r5t2 + 22328910r4t3 + 94568004r3t4 +
161373168r2t5 + 105302484rt6 + 20628378t7 + 5040r6 + 365148r5t+ 6824520r4t2 +
44388648r3t3 + 109522476r2t4 + 99604242rt5 + 26585820t6 + 30240r5 + 1288980r4t+
14423400r3t2 + 54629154r2t3 + 71690832rt4 + 26594406t5 + 113400r4 + 2900772r3t+
18909288r2t2 + 38032416rt3 + 20300220t4 + 272160r3 + 4061988r2t+ 14049288rt2 +
11461338t3 +408240r2 +3233844rt+4525632t2 +349920r+1119744t+131220)(t+1)2t.

DUC = (6s5t9 + 54s5t8 + 66s4t9 + 216s5t7 + 621s4t8 + 290s3t9 + 504s5t6 + 2610s4t7 +
2839s3t8 + 636s2t9 + 756s5t5 + 6429s4t6 + 12474s3t7 + 6444s2t8 + 694st9 + 756s5t4 +
10224s4t5 + 32293s3t6 + 29436s2t7 + 7250st8 + 300t9 + 504s5t3 + 10881s4t4 +
54278s3t5 + 79695s2t6 + 34248st7 + 3228t8 + 216s5t2 + 7746s4t3 + 61401s3t4 +
141060s2t5 + 96427st6 + 15696t7 + 54s5t+ 3555s4t2 + 46718s3t3 + 169317s2t4 +
178904st5 + 45660t6 + 6s5 + 954s4t+ 23035s3t2 + 137778s2t3 + 227277st4 + 88242t5 +
114s4 + 6672s3t+ 73230s2t2 + 197844st3 + 118164t4 + 864s3 + 23040s2t+ 113760st2 +
110000t3 + 3264s2 + 39168st+ 68704t2 + 6144s+ 26112t+ 4608)(s+ 4)(t+ 1)2.
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Appendix A. Local views in the Potts model

Local view 18 of 35

1 1 2 3 2 4

ZC = λ6 + 18λ5 + 20λ4(q − 4) + 7λ3(q − 4)(q − 5) + λ2(q − 4)(q − 5)(q − 6) + 29λ4 +
46λ3(q − 4) + 27λ2(q − 4)(q − 5) + 7λ(q − 4)(q − 5)(q − 6) +
(q − 4)(q − 5)(q − 6)(q − 7) + 48λ3 + 100λ2(q − 4) + 60λ(q − 4)(q − 5) +
14(q − 4)(q − 5)(q − 6) + 79λ2 + 131λ(q − 4) + 57(q − 4)(q − 5) + 62λ+ 72q − 269.

2ZCUvC = 2λ6 + 28λ5 + 20λ4(q − 4) + 3λ3(q − 4)(q − 5) + 38λ4 + 42λ3(q − 4) +
18λ2(q − 4)(q − 5) + 3λ(q − 4)(q − 5)(q − 6) + 46λ3 + 72λ2(q − 4) +
24λ(q − 4)(q − 5) + 56λ2 + 49λ(q − 4) + 22λ.

6ZCUNC = 6λ6 + 90λ5 + 80λ4(q − 4) + 21λ3(q − 4)(q − 5) + 2λ2(q − 4)(q − 5)(q − 6) + 116λ4 +
138λ3(q − 4) + 54λ2(q − 4)(q − 5) + 7λ(q − 4)(q − 5)(q − 6) + 144λ3 + 200λ2(q − 4) +
60λ(q − 4)(q − 5) + 158λ2 + 131λ(q − 4) + 62λ.

S̃C = 2(8r8t15+124r8t14+79r7t15+898r8t13+1310r7t14+341r6t15+4030r8t12+10141r7t13+
6040r6t14 +841r5t15 +12532r8t11 +48600r7t12 +49878r6t13 +15880r5t14 +1295r4t15 +
28600r8t10 + 161210r7t11 + 254718r6t12 + 139589r5t13 + 26021r4t14 + 1272r3t15 +
49478r8t9 + 391964r7t10 + 899515r6t11 + 758024r5t12 + 243019r4t13 + 27157r3t14 +
774r2t15 + 66066r8t8 + 721500r7t9 + 2326416r6t10 + 2844442r5t11 + 1400713r4t12 +
269106r3t13 + 17548r2t14 + 262rt15 + 68640r8t7 + 1023672r7t8 + 4551414r6t9 +
7812872r5t10 + 5575465r4t11 + 1644121r3t12 + 184466r2t13 + 6350rt14 + 36t15 +
55484r8t6+1128555r7t7+6857772r6t8+16226476r5t9+16239803r4t10+6933022r3t11+
1194327r2t12 + 71075rt13 + 964t14 + 34606r8t5 + 966670r7t6 + 8022195r6t7 +
25945424r5t8 + 35763164r4t9 + 21388831r3t10 + 5333160r2t11 + 488713rt12 +
11646t13 + 16354r8t4 + 638021r7t5 + 7284896r6t6 + 32197645r5t7 + 60635369r4t8 +
49892797r3t9 + 17416598r2t10 + 2313698rt11 + 85614t12 + 5668r8t3 + 318640r7t4 +
5092978r6t5 + 31006824r5t6 + 79797163r4t7 + 89629023r3t8 + 43006542r2t9 +
8002700rt10 + 431364t11 + 1360r8t2 + 116556r7t3 + 2691774r6t4 + 22979909r5t5 +
81504000r4t6 + 125033068r3t7 + 81812339r2t8 + 20920710rt9 + 1583880t10 + 202r8t+
29480r7t2 + 1041069r6t3 + 12870136r5t4 + 64075503r4t5 + 135448356r3t6 +
120933135r2t7 + 42138435rt8 + 4389372t9 + 14r8 + 4610r7t+ 278152r6t2 +
5272320r5t3 + 38072178r4t4 + 113010813r3t5 + 138938274r2t6 + 65990052rt7 +
9367074t8 + 336r7 + 45906r6t+ 1491336r5t2 + 16548345r4t3 + 71312688r3t4 +
123070806r2t5 + 80401734rt6 + 15544899t7 + 3528r6 + 260442r5t+ 4966920r4t2 +
32942484r3t3 + 82549962r2t4 + 75631401rt5 + 20088162t6 + 21168r5 + 920430r4t+
10515960r3t2 + 40589343r2t3 + 53963496rt4 + 20072043t5 + 79380r4 + 2074086r3t+
13812120r2t2 + 28281312rt3 + 15243876t4 + 190512r3 + 2908710r2t+ 10281816rt2 +
8525655t3 + 285768r2 + 2319678rt+ 3318408t2 + 244944r+ 804816t+ 91854)(t+ 1)2t.

DUC = (6s5t9 + 54s5t8 + 62s4t9 + 216s5t7 + 595s4t8 + 254s3t9 + 504s5t6 + 2540s4t7 +
2588s3t8 + 517s2t9 + 756s5t5 + 6331s4t6 + 11744s3t7 + 5555s2t8 + 523st9 + 756s5t4 +
10154s4t5 + 31177s3t6 + 26650s2t7 + 5887st8 + 210t9 + 504s5t3 + 10867s4t4 +
53386s3t5 + 75058s2t6 + 29662st7 + 2469t8 + 216s5t2 + 7760s4t3 + 61162s3t4 +
136931s2t5 + 88138st6 + 12972t7 + 54s5t+ 3565s4t2 + 46880s3t3 + 167917s2t4 +
170707st5 + 40332t6 + 6s5 + 956s4t+ 23177s3t2 + 138438s2t3 + 223879st4 + 82398t5 +
114s4 + 6704s3t+ 73974s2t2 + 198932st3 + 115260t4 + 864s3 + 23232s2t+ 115456st2 +
110576t3 + 3264s2 + 39680st+ 70112t2 + 6144s+ 26624t+ 4608)(s+ 4)(t+ 1)2.
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Appendix A. Local views in the Potts model

Local view 19 of 35

1 2 1 2 3 4

ZC = 6λ5 + 2λ4(q − 4) + 32λ4 + 55λ3(q − 4) + 33λ2(q − 4)(q − 5) + 9λ(q − 4)(q − 5)(q − 6) +
(q − 4)(q − 5)(q − 6)(q − 7) + 64λ3 + 120λ2(q − 4) + 69λ(q − 4)(q − 5) +
13(q − 4)(q − 5)(q − 6) + 84λ2 + 136λ(q − 4) + 49(q − 4)(q − 5) + 58λ+ 56q − 212.

2ZCUvC = 14λ5 +4λ4(q − 4)+50λ4 +63λ3(q − 4)+24λ2(q − 4)(q − 5)+3λ(q − 4)(q − 5)(q − 6)+
66λ3 + 78λ2(q − 4) + 21λ(q − 4)(q − 5) + 46λ2 + 38λ(q − 4) + 16λ.

6ZCUNC = 30λ5+8λ4(q − 4)+128λ4+165λ3(q − 4)+66λ2(q − 4)(q − 5)+9λ(q − 4)(q − 5)(q − 6)+
192λ3 + 240λ2(q − 4) + 69λ(q − 4)(q − 5) + 168λ2 + 136λ(q − 4) + 58λ.

S̃C = 2(2r4t8 + 16r4t7 + 12r3t8 + 56r4t6 + 104r3t7 + 28r2t8 + 112r4t5 + 396r3t6 + 260r2t7 +
31rt8 + 140r4t4 + 864r3t5 + 1064r2t6 + 301rt7 + 14t8 + 112r4t3 + 1180r3t4 +
2504r2t5 + 1298rt6 + 138t7 + 56r4t2 + 1032r3t3 + 3704r2t4 + 3246rt5 + 612t6 +
16r4t+ 564r3t2 + 3524r2t3 + 5146rt4 + 1596t5 + 2r4 + 176r3t+ 2104r2t2 + 5292rt3 +
2676t4 + 24r3 + 720r2t+ 3444rt2 + 2952t3 + 108r2 + 1296rt+ 2088t2 + 216r + 864t+
162)(4r4t6 + 24r4t5 + 15r3t6 + 60r4t4 + 120r3t5 + 21r2t6 + 80r4t3 + 378r3t4 +
210r2t5 + 12rt6 + 60r4t2 + 612r3t3 + 828r2t4 + 150rt5 + 2t6 + 24r4t+ 543r3t2 +
1650r2t3 + 741rt4 + 36t5 + 4r4 + 252r3t+ 1767r2t2 + 1836rt3 + 225t4 + 48r3 +
972r2t+ 2421rt2 + 702t3 + 216r2 + 1620rt+ 1161t2 + 432r + 972t+ 324)(t+ 1)3t.

DUC = (6s5t8 + 48s5t7 + 58s4t8 + 168s5t6 + 511s4t7 + 218s3t8 + 336s5t5 + 1959s4t6 +
2113s3t7 + 398s2t8 + 420s5t4 + 4274s4t5 + 8871s3t6 + 4223s2t7 + 352st8 + 336s5t3 +
5810s4t4 +21130s3t5 +19395s2t6 +4061st7 +120t8 +168s5t2 +5043s4t3 +31304s3t4 +
50489s2t5 + 20349st6 + 1500t7 + 48s5t+ 2731s4t2 + 29589s3t3 + 81725s2t4 +
57913st5 + 8154t6 + 6s5 + 844s4t+ 17447s3t2 + 84468s2t3 + 102701st4 + 25302t5 +
114s4 + 5872s3t+ 54558s2t2 + 116628st3 + 49236t4 + 864s3 + 20160s2t+ 83104st2 +
61776t3 + 3264s2 + 34048st+ 48992t2 + 6144s+ 22528t+ 4608)(s+ 4)(t+ 1)3.

Local view 20 of 35

1 2 1 3 2 4

ZC = 6λ5 + 2λ4(q − 4) + 32λ4 + 55λ3(q − 4) + 33λ2(q − 4)(q − 5) + 9λ(q − 4)(q − 5)(q − 6) +
(q − 4)(q − 5)(q − 6)(q − 7) + 64λ3 + 120λ2(q − 4) + 69λ(q − 4)(q − 5) +
13(q − 4)(q − 5)(q − 6) + 84λ2 + 136λ(q − 4) + 49(q − 4)(q − 5) + 58λ+ 56q − 212.

2ZCUvC = 14λ5 +4λ4(q − 4)+50λ4 +63λ3(q − 4)+24λ2(q − 4)(q − 5)+3λ(q − 4)(q − 5)(q − 6)+
66λ3 + 78λ2(q − 4) + 21λ(q − 4)(q − 5) + 46λ2 + 38λ(q − 4) + 16λ.

6ZCUNC = 30λ5+8λ4(q − 4)+128λ4+165λ3(q − 4)+66λ2(q − 4)(q − 5)+9λ(q − 4)(q − 5)(q − 6)+
192λ3 + 240λ2(q − 4) + 69λ(q − 4)(q − 5) + 168λ2 + 136λ(q − 4) + 58λ.
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Appendix A. Local views in the Potts model

S̃C = 2(2r4t8 + 16r4t7 + 12r3t8 + 56r4t6 + 104r3t7 + 28r2t8 + 112r4t5 + 396r3t6 + 260r2t7 +
31rt8 + 140r4t4 + 864r3t5 + 1064r2t6 + 301rt7 + 14t8 + 112r4t3 + 1180r3t4 +
2504r2t5 + 1298rt6 + 138t7 + 56r4t2 + 1032r3t3 + 3704r2t4 + 3246rt5 + 612t6 +
16r4t+ 564r3t2 + 3524r2t3 + 5146rt4 + 1596t5 + 2r4 + 176r3t+ 2104r2t2 + 5292rt3 +
2676t4 + 24r3 + 720r2t+ 3444rt2 + 2952t3 + 108r2 + 1296rt+ 2088t2 + 216r + 864t+
162)(4r4t6 + 24r4t5 + 15r3t6 + 60r4t4 + 120r3t5 + 21r2t6 + 80r4t3 + 378r3t4 +
210r2t5 + 12rt6 + 60r4t2 + 612r3t3 + 828r2t4 + 150rt5 + 2t6 + 24r4t+ 543r3t2 +
1650r2t3 + 741rt4 + 36t5 + 4r4 + 252r3t+ 1767r2t2 + 1836rt3 + 225t4 + 48r3 +
972r2t+ 2421rt2 + 702t3 + 216r2 + 1620rt+ 1161t2 + 432r + 972t+ 324)(t+ 1)3t.

DUC = (6s5t8 + 48s5t7 + 58s4t8 + 168s5t6 + 511s4t7 + 218s3t8 + 336s5t5 + 1959s4t6 +
2113s3t7 + 398s2t8 + 420s5t4 + 4274s4t5 + 8871s3t6 + 4223s2t7 + 352st8 + 336s5t3 +
5810s4t4 +21130s3t5 +19395s2t6 +4061st7 +120t8 +168s5t2 +5043s4t3 +31304s3t4 +
50489s2t5 + 20349st6 + 1500t7 + 48s5t+ 2731s4t2 + 29589s3t3 + 81725s2t4 +
57913st5 + 8154t6 + 6s5 + 844s4t+ 17447s3t2 + 84468s2t3 + 102701st4 + 25302t5 +
114s4 + 5872s3t+ 54558s2t2 + 116628st3 + 49236t4 + 864s3 + 20160s2t+ 83104st2 +
61776t3 + 3264s2 + 34048st+ 48992t2 + 6144s+ 22528t+ 4608)(s+ 4)(t+ 1)3.

Local view 21 of 35

1 1 2 3 4 5

ZC = 21λ5 + 19λ4(q − 5) + 7λ3(q − 5)(q − 6) + λ2(q − 5)(q − 6)(q − 7) + 44λ4 +
64λ3(q − 5) + 30λ2(q − 5)(q − 6) + 7λ(q − 5)(q − 6)(q − 7) +
(q − 5)(q − 6)(q − 7)(q − 8) + 104λ3 + 148λ2(q − 5) + 81λ(q − 5)(q − 6) +
18(q − 5)(q − 6)(q − 7) + 164λ2 + 255λ(q − 5) + 99(q − 5)(q − 6) + 204λ+ 185q − 837.

2ZCUvC = 31λ5 + 18λ4(q − 5) + 3λ3(q − 5)(q − 6) + 56λ4 + 54λ3(q − 5) + 18λ2(q − 5)(q − 6) +
3λ(q − 5)(q − 6)(q − 7) + 96λ3 + 102λ2(q − 5) + 33λ(q − 5)(q − 6) + 116λ2 +
99λ(q − 5) + 76λ.

6ZCUNC = 105λ5 + 76λ4(q − 5) + 21λ3(q − 5)(q − 6) + 2λ2(q − 5)(q − 6)(q − 7) + 176λ4 +
192λ3(q − 5) + 60λ2(q − 5)(q − 6) + 7λ(q − 5)(q − 6)(q − 7) + 312λ3 + 296λ2(q − 5) +
81λ(q − 5)(q − 6) + 328λ2 + 255λ(q − 5) + 204λ.
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S̃C = 2(10r8t14 + 144r8t13 + 99r7t14 + 964r8t12 + 1533r7t13 + 430r6t14 + 3976r8t11 +
11022r7t12 + 7136r6t13 + 1072r5t14 + 11286r8t10 + 48758r7t11 + 54918r6t12 +
18986r5t13 + 1679r4t14 + 23320r8t9 + 148228r7t10 + 259776r6t11 + 155835r5t12 +
31583r4t13 + 1692r3t14 + 36168r8t8 + 327534r7t9 + 843710r6t10 + 785811r5t11 +
275450r4t12 + 33608r3t13 + 1068r2t14 + 42768r8t7 + 542400r7t8 + 1990048r6t9 +
2719785r5t10 + 1476282r4t11 + 310277r3t12 + 22268r2t13 + 380rt14 + 38742r8t6 +
683760r7t7 + 3514868r6t8 + 6834669r5t9 + 5432027r4t10 + 1762685r3t11 +
216929r2t12 + 8324rt13 + 56t14 + 26752r8t5 + 659295r7t6 + 4721776r6t7 +
12858321r5t8 + 14515701r4t9 + 6880744r3t10 + 1303789r2t11 + 85568rt12 + 1320t13 +
13860r8t4 + 483837r7t5 + 4847426r6t6 + 18395595r5t7 + 29049328r4t8 +
19520168r3t9 + 5391911r2t10 + 544098rt11 + 14436t12 + 5224r8t3 + 266010r7t4 +
3784112r6t5 + 20107425r5t6 + 44223420r4t7 + 41501360r3t8 + 16221041r2t9 +
2383945rt10 + 97464t11 + 1354r8t2 + 106242r7t3 + 2210998r6t4 + 16708357r5t5 +
51457222r4t6 + 67173962r3t7 + 36604192r2t8 + 7604559rt9 + 453414t10 + 216r8t+
29138r7t2 + 937552r6t3 + 10388432r5t4 + 45534522r4t5 + 83176107r3t6 +
62948034r2t7 + 18208905rt8 + 1535850t9 + 16r8 + 4912r7t+ 272738r6t2 +
4685910r5t3 + 30160152r4t4 + 78399711r3t5 + 82912248r2t6 + 33258087rt7 +
3905586t8 + 384r7 + 48720r6t+ 1449450r5t2 + 14497740r4t3 + 55370394r3t4 +
83251908r2t5 + 46586205rt6 + 7579062t7 + 4032r6 + 275184r5t+ 4780350r4t2 +
28411182r3t3 + 62738118r2t4 + 49831119rt5 + 11290914t6 + 24192r5 + 967680r4t+
10011222r3t2 + 34413336r2t3 + 40090140rt4 + 12866850t5 + 90720r4 + 2168208r3t+
12990294r2t2 + 23537466rt3 + 11055528t4 + 217728r3 + 3020976r2t+ 9539694rt2 +
6954660t3 + 326592r2 + 2391120rt+ 3032640t2 + 279936r+ 822312t+ 104976)(t+ 1)3t.

DUC = (6s5t8 +48s5t7 +90s4t8 +168s5t6 +759s4t7 +536s3t8 +336s5t5 +2805s4t6 +4752s3t7 +
1584s2t8 +420s5t4 +5934s4t5 +18498s3t6 +14712s2t7 +2320st8 +336s5t3 +7860s4t4 +
41323s3t5 + 60150s2t6 + 22500st7 + 1344t8 + 168s5t2 + 6675s4t3 + 57969s3t4 +
141615s2t5 + 96312st6 + 13584t7 + 48s5t+ 3549s4t2 + 52305s3t3 + 210243s2t4 +
238396st5 +60672t6 +6s5 +1080s4t+29645s3t2 +201705s2t3 +374142st4 +157376t5 +
144s4 +9648s3t+122175s2t2 +381903st3 +260616t4 +1380s3 +42720s2t+247875st2 +
283140t3 + 6600s2 + 93600st+ 197500t2 + 15750s+ 81000t+ 15000)(s+ 5)(t+ 1)3.

Local view 22 of 35

1 2 1 3 4 5

ZC = 3λ5 + λ4(q − 5) + 44λ4 + 59λ3(q − 5) + 33λ2(q − 5)(q − 6) + 9λ(q − 5)(q − 6)(q − 7) +
(q − 5)(q − 6)(q − 7)(q − 8) + 109λ3 + 180λ2(q − 5) + 96λ(q − 5)(q − 6) +
17(q − 5)(q − 6)(q − 7) + 204λ2 + 278λ(q − 5) + 88(q − 5)(q − 6) + 199λ+ 153q − 699.

2ZCUvC = 7λ5 + 2λ4(q − 5) + 72λ4 + 69λ3(q − 5) + 24λ2(q − 5)(q − 6) + 3λ(q − 5)(q − 6)(q − 7) +
117λ3 + 120λ2(q − 5) + 30λ(q − 5)(q − 6) + 122λ2 + 82λ(q − 5) + 57λ.

6ZCUNC = 15λ5+4λ4(q − 5)+176λ4+177λ3(q − 5)+66λ2(q − 5)(q − 6)+9λ(q − 5)(q − 6)(q − 7)+
327λ3 + 360λ2(q − 5) + 96λ(q − 5)(q − 6) + 408λ2 + 278λ(q − 5) + 199λ.
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S̃C = 2(2r4t8 + 16r4t7 + 12r3t8 + 56r4t6 + 104r3t7 + 28r2t8 + 112r4t5 + 396r3t6 + 260r2t7 +
31rt8 + 140r4t4 + 864r3t5 + 1064r2t6 + 301rt7 + 14t8 + 112r4t3 + 1180r3t4 +
2504r2t5 + 1298rt6 + 138t7 + 56r4t2 + 1032r3t3 + 3704r2t4 + 3246rt5 + 612t6 +
16r4t+ 564r3t2 + 3524r2t3 + 5146rt4 + 1596t5 + 2r4 + 176r3t+ 2104r2t2 + 5292rt3 +
2676t4 + 24r3 + 720r2t+ 3444rt2 + 2952t3 + 108r2 + 1296rt+ 2088t2 + 216r + 864t+
162)(5r4t6 + 30r4t5 + 18r3t6 + 75r4t4 + 147r3t5 + 24r2t6 + 100r4t3 + 468r3t4 +
249r2t5 + 12rt6 + 75r4t2 + 762r3t3 + 1008r2t4 + 168rt5 + t6 + 30r4t+ 678r3t2 +
2040r2t3 + 876rt4 + 36t5 + 5r4 + 315r3t+ 2202r2t2 + 2241rt3 + 252t4 + 60r3 +
1215r2t+ 3006rt2 + 837t3 + 270r2 + 2025rt+ 1431t2 + 540r + 1215t+ 405)(t+ 1)3t.

DUC = (6s5t8 +48s5t7 +86s4t8 +168s5t6 +737s4t7 +486s3t8 +336s5t5 +2757s4t6 +4453s3t7 +
1354s2t8 +420s5t4 +5884s4t5 +17787s3t6 +13216s2t7 +1860st8 +336s5t3 +7840s4t4 +
40506s3t5 + 56274s2t6 + 19247st7 + 1008t8 + 168s5t2 + 6681s4t3 + 57584s3t4 +
136711s2t5 + 87123st6 + 11004t7 + 48s5t+ 3557s4t2 + 52377s3t3 + 207559s2t4 +
225599st5 +52716t6 +6s5 +1082s4t+29787s3t2 +201945s2t3 +366091st4 +145164t5 +
144s4 +9688s3t+123105s2t2 +381903st3 +251836t4 +1380s3 +43020s2t+250525st2 +
282390t3 + 6600s2 + 94600st+ 200250t2 + 15750s+ 82250t+ 15000)(s+ 5)(t+ 1)3.

Local view 23 of 35

1 2 3 4 5 6

ZC = 54λ4 + 63λ3(q − 6) + 33λ2(q − 6)(q − 7) + 9λ(q − 6)(q − 7)(q − 8) +
(q − 6)(q − 7)(q − 8)(q − 9) + 162λ3 + 240λ2(q − 6) + 123λ(q − 6)(q − 7) +
21(q − 6)(q − 7)(q − 8)+378λ2 +474λ(q − 6)+139(q − 6)(q − 7)+486λ+328q−1752.

2ZCUvC = 90λ4 + 75λ3(q − 6) + 24λ2(q − 6)(q − 7) + 3λ(q − 6)(q − 7)(q − 8) + 180λ3 +
162λ2(q − 6) + 39λ(q − 6)(q − 7) + 234λ2 + 144λ(q − 6) + 144λ.

6ZCUNC = 216λ4 + 189λ3(q − 6) + 66λ2(q − 6)(q − 7) + 9λ(q − 6)(q − 7)(q − 8) + 486λ3 +
480λ2(q − 6) + 123λ(q − 6)(q − 7) + 756λ2 + 474λ(q − 6) + 486λ.

S̃C = 6(2r4t8 + 16r4t7 + 12r3t8 + 56r4t6 + 104r3t7 + 28r2t8 + 112r4t5 + 396r3t6 + 260r2t7 +
31rt8 + 140r4t4 + 864r3t5 + 1064r2t6 + 301rt7 + 14t8 + 112r4t3 + 1180r3t4 +
2504r2t5 + 1298rt6 + 138t7 + 56r4t2 + 1032r3t3 + 3704r2t4 + 3246rt5 + 612t6 +
16r4t+ 564r3t2 + 3524r2t3 + 5146rt4 + 1596t5 + 2r4 + 176r3t+ 2104r2t2 + 5292rt3 +
2676t4 + 24r3 + 720r2t+ 3444rt2 + 2952t3 + 108r2 + 1296rt+ 2088t2 + 216r + 864t+
162)(2r3t4 + 8r3t3 + 7r2t4 + 12r3t2 + 38r2t3 + 9rt4 + 8r3t+ 73r2t2 + 57rt3 + 4t4 +
2r3 + 60r2t+ 138rt2 + 27t3 + 18r2 + 144rt+ 81t2 + 54r+ 108t+ 54)(rt+ r+ 3)(t+ 1)4t.

DUC = 3(2s4t6 + 12s4t5 + 32s3t6 + 30s4t4 + 203s3t5 + 190s2t6 + 40s4t3 + 537s3t4 +
1270s2t5 + 496st6 + 30s4t2 + 759s3t3 + 3549s2t4 + 3471st5 + 480t6 + 12s4t+
605s3t2 + 5318s2t3 + 10224st4 + 3480t5 + 2s4 + 258s3t+ 4515s2t2 + 16253st3 +
10770t4 + 46s3 + 2062s2t+ 14740st2 + 18190t3 + 396s2 + 7248st+ 17700t2 + 1512s+
9432t+ 2160)(st+ s+ 3t+ 6)(s+ 6)(t+ 1)4.
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Appendix A. Local views in the Potts model

Local view 24 of 35

1 1 1 1

ZC = λ8 + 5λ5(q − 1) + 5λ4(q − 1) + 8λ3(q − 1)(q − 2) + λ2(q − 1)(q − 2)(q − 3) +
2λ3(q − 1)+9λ2(q − 1)(q − 2)+6λ(q − 1)(q − 2)(q − 3)+(q − 1)(q − 2)(q − 3)(q − 4)+
2λ2(q − 1) + 6λ(q − 1)(q − 2) + 3(q − 1)(q − 2)(q − 3) + λ(q − 1) + 2(q − 1)(q − 2).

2ZCUvC = 3λ8 + 8λ5(q − 1) + 7λ4(q − 1) + 5λ3(q − 1)(q − 2) + 4λ3(q − 1) + 11λ2(q − 1)(q − 2) +
3λ(q − 1)(q − 2)(q − 3) + 2λ2(q − 1) + 2λ(q − 1)(q − 2).

6ZCUNC = 9λ8 + 28λ5(q − 1) + 23λ4(q − 1) + 27λ3(q − 1)(q − 2) + 2λ2(q − 1)(q − 2)(q − 3) +
6λ3(q − 1) + 19λ2(q − 1)(q − 2) + 7λ(q − 1)(q − 2)(q − 3) + 4λ2(q − 1) +
8λ(q − 1)(q − 2) + 2λ(q − 1).

S̃C = 2(2r8t15 + 30r8t14 + 22r7t15 + 210r8t13 + 348r7t14 + 107r6t15 + 910r8t12 + 2572r7t13 +
1772r6t14 + 300r5t15 + 2730r8t11 + 11776r7t12 + 13752r6t13 + 5168r5t14 + 529r4t15 +
6006r8t10 +37338r7t11 +66265r6t12 +41910r5t13 +9431r4t14 +597r3t15 +10010r8t9 +
86812r7t10 + 221472r6t11 + 211780r5t12 + 79589r4t13 + 10995r3t14 + 415r2t15 +
12870r8t8 + 152856r7t9 + 543324r6t10 + 744278r5t11 + 420433r4t12 + 96326r3t13 +
7942r2t14 + 158rt15 + 12870r8t7 + 207504r7t8 + 1009908r6t9 + 1923580r5t10 +
1550155r4t11 +530694r3t12 +72342r2t13 +3208rt14 +24t15 +10010r8t6 +218922r7t7 +
1447350r6t8 +3771308r5t9 +4214356r4t10 +2048859r3t11 +415447r2t12 +30651rt13 +
544t14 + 6006r8t5 + 179476r7t6 + 1611639r6t7 + 5704600r5t8 + 8707559r4t9 +
5851225r3t10 + 1677481r2t11 + 183991rt12 + 5566t13 + 2730r8t4 + 113388r7t5 +
1393760r6t6+6705848r5t7+13897154r4t8+12729936r3t9+5026737r2t10+777101rt11+
35186t12 + 910r8t3 + 54208r7t4 + 928196r6t5 + 6121480r5t6 + 17247938r4t7 +
21428316r3t8 + 11506629r2t9 + 2441885rt10 + 155742t11 + 210r8t2 + 18982r7t3 +
467361r6t4+4301614r5t5+16628045r4t6+28079804r3t7+20421375r2t8+5877780rt9+
513150t10+30r8t+4596r7t2+172198r6t3+2284180r5t4+12340032r4t5+28600134r3t6+
28254375r2t7 + 10995174rt8 + 1298340t9 + 2r8 + 688r7t+ 43824r6t2 + 886950r5t3 +
6918813r4t4+22431804r3t5+30413628r2t6+16062570rt7+2559519t8+48r7+6888r6t+
237708r5t2 + 2835810r4t3 + 13294656r3t4 + 25226640r2t5 + 18278622rt6 + 3948642t7 +
504r6+39312r5t+801900r4t2+5760450r3t3+15819651r2t4+16042698rt5+4752189t6+
3024r5 +139860r4t+1722060r3t2 +7256466r2t3 +10654092rt4 +4415958t5 +11340r4 +
317520r3t+2297808r2t2+5180274rt3+3108213t4+27216r3+449064r2t+1740852rt2+
1603800t3 + 40824r2 + 361584rt+ 572994t2 + 34992r+ 126846t+ 13122)(r+ 2)(t+ 1)3.

S̃C |q=2 = 2(4t3 + 7t2 + 6t+ 2)(t+ 2)8(t+ 1)3.

DUC = (4s4t8 + 32s4t7 + 22s3t8 + 112s4t6 + 195s3t7 + 44s2t8 + 224s4t5 + 753s3t6 + 436s2t7 +
38st8 +280s4t4 +1658s3t5 +1859s2t6 +423st7 +12t8 +224s4t3 +2280s3t4 +4496s2t5 +
1989st6 + 150t7 + 112s4t2 + 2007s3t3 + 6790s2t4 + 5272st5 + 774t6 + 32s4t+ 1105s3t2 +
6584s2t3+8734st4+2240t5+4s4+348s3t+4011s2t2+9341st3+4068t4+48s3+1404s2t+
6327st2 + 4812t3 + 216s2 + 2484st+ 3645t2 + 432s+ 1620t+ 324)(s+ 3)(s+ 2)(t+ 1)3.

DUC |q=2 = 2(3t2 + 6t+ 4)(t+ 2)4(t+ 1)3.
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Appendix A. Local views in the Potts model

Local view 25 of 35

1 1 1 2

ZC = λ7 + λ6 + λ5(q − 2) + 2λ5 + 8λ4(q − 2) + 2λ3(q − 2)(q − 3) + 6λ4 + 16λ3(q − 2) +
21λ2(q − 2)(q − 3) + 8λ(q − 2)(q − 3)(q − 4) + (q − 2)(q − 3)(q − 4)(q − 5) + 5λ3 +
29λ2(q − 2) + 24λ(q − 2)(q − 3) + 6(q − 2)(q − 3)(q − 4) + λ2 + 9λ(q − 2) +
8(q − 2)(q − 3) + 2q − 4.

2ZCUvC = 3λ7 + 2λ6 + 2λ5(q − 2) + 4λ5 + 12λ4(q − 2) + 2λ3(q − 2)(q − 3) + 10λ4 +
20λ3(q − 2) + 17λ2(q − 2)(q − 3) + 3λ(q − 2)(q − 3)(q − 4) + 5λ3 + 21λ2(q − 2) +
8λ(q − 2)(q − 3) + 2λ(q − 2).

6ZCUNC = 8λ7 + 7λ6 + 6λ5(q − 2) + 12λ5 + 38λ4(q − 2) + 8λ3(q − 2)(q − 3) + 26λ4 +
52λ3(q − 2) + 45λ2(q − 2)(q − 3) + 9λ(q − 2)(q − 3)(q − 4) + 16λ3 + 63λ2(q − 2) +
28λ(q − 2)(q − 3) + 3λ2 + 12λ(q − 2).

S̃C = (4r8t14 + 56r8t13 + 44r7t14 + 364r8t12 + 652r7t13 + 208r6t14 + 1456r8t11 + 4484r7t12 +
3266r6t13 + 554r5t14 + 4004r8t10 + 18968r7t11 + 23784r6t12 + 9220r5t13 + 910r4t14 +
8008r8t9+55132r7t10+106466r6t11+71092r5t12+16066r4t13+940r3t14+12012r8t8+
116468r7t9 + 327264r6t10 + 336710r5t11 + 131148r4t12 + 17675r3t13 + 590r2t14 +
13728r8t7 + 184404r7t8 + 730716r6t9 + 1094526r5t10 + 656896r4t11 + 152915r3t12 +
11937r2t13 + 202rt14 + 12012r8t6 + 222288r7t7 + 1222092r6t8 + 2583346r5t9 +
2257058r4t10 +809875r3t11 +109880r2t12 +4490rt13 +28t14 +8008r8t5 +204996r7t6 +
1555188r6t7 + 4565542r5t8 + 5629710r4t9 + 2939665r3t10 + 615979r2t11 + 44347rt12 +
712t13 + 4004r8t4 + 143924r7t5 + 1513152r6t6 + 6137370r5t7 + 10513862r4t8 +
7744626r3t9 + 2361556r2t10 + 263944rt11 + 7662t12 + 1456r8t3 + 75724r7t4 +
1120138r6t5+6305888r5t6+14935738r4t7+15280200r3t8+6567844r2t9+1069469rt10+
48700t11 + 364r8t2 + 28952r7t3 + 621008r6t4 + 4927678r5t5 + 16217196r4t6 +
22941188r3t7+13683768r2t8+3138850rt9+208914t10+56r8t+7604r7t2+250026r6t3+
2882722r5t4 + 13392248r4t5 + 26337976r3t6 + 21709866r2t7 + 6902040rt8 + 647076t9 +
4r8+1228r7t+69104r6t2+1224152r5t3+8278770r4t4+23007300r3t5+26361756r2t6+
11567754rt7+1500912t8+92r7+11736r6t+356688r5t2+3714366r4t3+15050172r3t4+
24378930r2t5 + 14857560rt6 + 2656044t7 + 924r6 + 63828r5t+ 1143180r4t2 +
7147080r3t3 + 16898112r2t4 + 14554674rt5 + 3607848t6 + 5292r5 + 216000r4t+
2328372r3t2 + 8509590r2t3 + 10702854rt4 + 3745116t5 + 18900r4 + 465588r3t+
2941272r2t2+5726376rt3+2924586t4+43092r3+624024r2t+2105352rt2+1665522t3+
61236r2 + 475308rt+ 653184t2 + 49572r + 157464t+ 17496)(rt+ r + 2t+ 3)(t+ 1)3.

S̃C |q=2 = 4(t3 + 2t2 + 3t+ 1)(t+ 2)8(t+ 1)3.

DUC = (4s4t8 + 32s4t7 + 22s3t8 + 112s4t6 + 195s3t7 + 44s2t8 + 224s4t5 + 753s3t6 + 436s2t7 +
38st8 +280s4t4 +1658s3t5 +1859s2t6 +423st7 +12t8 +224s4t3 +2280s3t4 +4496s2t5 +
1989st6 + 150t7 + 112s4t2 + 2007s3t3 + 6790s2t4 + 5272st5 + 774t6 + 32s4t+ 1105s3t2 +
6584s2t3+8734st4+2240t5+4s4+348s3t+4011s2t2+9341st3+4068t4+48s3+1404s2t+
6327st2+4812t3+216s2+2484st+3645t2+432s+1620t+324)(st+s+t+2)(s+3)(t+1)2.

DUC |q=2 = 2(3t2 + 6t+ 4)(t+ 2)4(t+ 1)2.
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Appendix A. Local views in the Potts model

Local view 26 of 35

1 2 1 1

ZC = λ7+2λ6+2λ5(q − 2)+3λ5+12λ4(q − 2)+7λ3(q − 2)(q − 3)+λ2(q − 2)(q − 3)(q − 4)+
4λ4 + 15λ3(q − 2) + 15λ2(q − 2)(q − 3) + 6λ(q − 2)(q − 3)(q − 4) +
(q − 2)(q − 3)(q − 4)(q − 5) + 3λ3 + 17λ2(q − 2) + 21λ(q − 2)(q − 3) +
7(q − 2)(q − 3)(q − 4) + 2λ2 + 15λ(q − 2) + 12(q − 2)(q − 3) + λ+ 4q − 8.

2ZCUvC = 3λ7 + 4λ6 + 4λ5(q − 2) + 5λ5 + 14λ4(q − 2) + 5λ3(q − 2)(q − 3) + 6λ4 + 17λ3(q − 2) +
11λ2(q − 2)(q − 3) + 3λ(q − 2)(q − 3)(q − 4) + 3λ3 + 13λ2(q − 2) +
11λ(q − 2)(q − 3) + 2λ2 + 9λ(q − 2) + λ.

6ZCUNC = 8λ7 + 13λ6 + 11λ5(q − 2) + 17λ5 + 54λ4(q − 2) + 23λ3(q − 2)(q − 3) +
2λ2(q − 2)(q − 3)(q − 4) + 18λ4 + 49λ3(q − 2) + 33λ2(q − 2)(q − 3) +
7λ(q − 2)(q − 3)(q − 4)+10λ3 +39λ2(q − 2)+25λ(q − 2)(q − 3)+5λ2 +18λ(q − 2)+λ.

S̃C = (4r9t16 + 64r9t15 + 56r8t16 + 480r9t14 + 936r8t15 + 344r7t16 + 2240r9t13 + 7332r8t14 +
6008r7t15 + 1218r6t16 + 7280r9t12 + 35724r8t13 + 49178r7t14 + 22248r6t15 +
2747r5t16 + 17472r9t11 + 121160r8t12 + 250336r7t13 + 190418r6t14 + 52515r5t15 +
4112r4t16 + 32032r9t10 + 303264r8t11 + 886706r7t12 + 1013216r6t13 + 470127r5t14 +
82245r4t15 + 4115r3t16 + 45760r9t9 + 579436r8t10 + 2316724r7t11 + 3749964r6t12 +
2615189r5t13 + 769711r4t14 + 85886r3t15 + 2682r2t16 + 51480r9t8 + 862004r8t9 +
4617556r7t10 + 10232436r6t11 + 10113999r5t12 + 4473676r4t13 + 838579r3t14 +
58030r2t15 + 1046rt16 + 45760r9t7 + 1009008r8t8 + 7160496r7t9 + 21287484r6t10 +
28825339r5t11 + 18070074r4t12 + 5084426r3t13 + 588544r2t14 + 23182rt15 + 188t16 +
32032r9t6 + 932360r8t7 + 8729532r7t8 + 34432992r6t9 + 62605753r5t10 +
53770851r4t11 + 21423163r3t12 + 3711467r2t13 + 242417rt14 + 4196t15 + 17472r9t5 +
677820r8t6 + 8393552r7t7 + 43753866r6t8 + 105665559r5t9 + 121896961r4t10 +
66498786r3t11 + 16279291r2t12 + 1582660rt13 + 44778t14 + 7280r9t4 + 383604r8t5 +
6343346r7t6 + 43812864r6t7 + 140019440r5t8 + 214675450r4t9 + 157253303r3t10 +
52635547r2t11 + 7205113rt12 + 300812t13 + 2240r9t3 + 165672r8t4 + 3728048r7t5 +
34451082r6t6 + 146114290r5t7 + 296722376r4t8 + 288879206r3t9 + 129709697r2t10 +
24218883rt11 + 1416222t12 + 480r9t2 + 52784r8t3 + 1670218r7t4 + 21045200r6t5 +
119638620r5t6 + 322830314r4t7 + 416463980r3t8 + 248394900r2t9 + 62114124rt10 +
4937946t11 + 64r9t+ 11700r8t2 + 551396r7t3 + 9789224r6t4 + 76032544r5t5 +
275439646r4t6 +472527116r3t7 +373394412r2t8 +123892263rt9 +13161564t10 +4r9 +
1612r8t+126496r7t2 +3351300r6t3 +36753882r5t4 +182267148r4t5 +420322494r3t6 +
441829224r2t7 + 194096880rt8 + 27317358t9 + 104r8 + 18016r7t+ 796200r6t2 +
13059396r5t3 + 91653024r4t4 + 289844232r3t5 + 409893066r2t6 + 239481954rt7 +
44576406t8 + 1200r7 + 117264r6t+ 3215376r5t2 + 33833700r4t3 + 151766334r3t4 +
294750576r2t5 + 231755796rt6 + 57332502t7 + 8064r6 + 489888r5t+ 8640000r4t2 +
58269132r3t3 + 160869240r2t4 + 173884968rt5 + 57878226t6 + 34776r5 + 1362312r4t+
15448320r3t2 + 64316268r2t3 + 99015534rt4 + 45328896t5 + 99792r4 + 2522016r3t+
17723448r2t2 + 41275980rt3 + 26953560t4 + 190512r3 + 2997648r2t+ 11838960rt2 +
11731068t3 + 233280r2 + 2076192rt+ 3507948t2 + 166212r+ 638604t+ 52488)(t+ 1)2.

S̃C |q=2 = 2(t4 + 4t3 + 7t2 + 6t+ 1)(t2 + 2t+ 2)(t+ 2)8(t+ 1)2.
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Appendix A. Local views in the Potts model

DUC = (4s5t9 + 36s5t8 + 28s4t9 + 144s5t7 + 269s4t8 + 79s3t9 + 336s5t6 + 1152s4t7 + 802s3t8 +
113s2t9 + 504s5t5 + 2887s4t6 + 3645s3t7 + 1195s2t8 + 82st9 + 504s5t4 + 4666s4t5 +
9743s3t6 + 5700s2t7 + 890st8 + 24t9 + 336s5t3 + 5043s4t4 + 16889s3t5 + 16121s2t6 +
4401st7 + 264t8 + 144s5t2 + 3644s4t3 + 19692s3t4 + 29821s2t5 + 13053st6 + 1338t7 +
36s5t+1697s4t2 +15439s3t3 +37425s2t4 +25626st5 +4126t6 +4s5 +462s4t+7843s3t2 +
31854s2t3+34530st4+8552t5+56s4+2340s3t+17715s2t2+31909st3+12342t4+312s3+
5832s2t+19485st2+12378t3+864s2+7128st+8316t2+1188s+3402t+648)(s+3)(t+1)2.

DUC |q=2 = 4(t2 + 2t+ 2)(t+ 2)4(t+ 1)2.

Local view 27 of 35

1 1 2 2

ZC = λ7 + 3λ6 + 3λ5(q − 2) + 2λ5 + 11λ4(q − 2) + 8λ3(q − 2)(q − 3) +
λ2(q − 2)(q − 3)(q − 4) + 2λ4 + 14λ3(q − 2) + 12λ2(q − 2)(q − 3) +
6λ(q − 2)(q − 3)(q − 4) + (q − 2)(q − 3)(q − 4)(q − 5) + 5λ3 + 16λ2(q − 2) +
24λ(q − 2)(q − 3)+7(q − 2)(q − 3)(q − 4)+3λ2 +19λ(q − 2)+11(q − 2)(q − 3)+2q−4.

2ZCUvC = 2λ7 + 7λ6 + 4λ5(q − 2) + 4λ5 + 15λ4(q − 2) + 5λ3(q − 2)(q − 3) + 2λ4 + 14λ3(q − 2) +
11λ2(q − 2)(q − 3) + 3λ(q − 2)(q − 3)(q − 4) + 6λ3 + 16λ2(q − 2) +
11λ(q − 2)(q − 3) + 3λ2 + 8λ(q − 2).

6ZCUNC = 8λ7 + 21λ6 + 18λ5(q − 2) + 10λ5 + 47λ4(q − 2) + 27λ3(q − 2)(q − 3) +
2λ2(q − 2)(q − 3)(q − 4) + 8λ4 + 48λ3(q − 2) + 25λ2(q − 2)(q − 3) +
7λ(q − 2)(q − 3)(q − 4) + 18λ3 + 34λ2(q − 2) + 29λ(q − 2)(q − 3) + 7λ2 + 24λ(q − 2).
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Appendix A. Local views in the Potts model

S̃C = 2(2r9t17 + 34r9t16 + 30r8t17 + 272r9t15 + 528r8t16 + 193r7t17 + 1360r9t14 +
4374r8t15 +3523r7t16 +706r6t17 +4760r9t13 +22648r8t14 +30289r7t15 +13377r6t16 +
1632r5t17 + 12376r9t12 + 82082r8t13 + 162831r7t14 + 119478r6t15 + 32080r5t16 +
2488r4t17 + 24752r9t11 + 220948r8t12 + 612812r7t13 + 667658r6t14 + 297594r5t15 +
50655r4t16 + 2511r3t17 + 38896r9t10 + 457366r8t11 + 1712852r7t12 + 2612872r6t13 +
1728785r5t14 + 487512r4t15 + 52850r3t16 + 1620r2t17 + 48620r9t9 + 743600r8t10 +
3680782r7t11 + 7595415r6t12 + 7037884r5t13 + 2942040r4t14 + 526887r3t15 +
35199r2t16 + 606rt17 + 48620r9t8 + 961246r8t9 + 6209918r7t10 + 16974252r6t11 +
21291234r5t12 + 12454960r4t13 + 3299365r3t14 + 362982r2t15 + 13588rt16 + 100t17 +
38896r9t7 + 993564r8t8 + 8325537r7t9 + 29774808r6t10 + 49529088r5t11 +
39212682r4t12 + 14513697r3t13 + 2355570r2t14 + 144792rt15 + 2316t16 + 24752r9t6 +
821106r8t7 + 8918899r7t8 + 41485986r6t9 + 90436566r5t10 + 94982130r4t11 +
47533145r3t12 + 10756318r2t13 + 972620rt14 + 25488t15 + 12376r9t5 + 539448r8t6 +
7633285r7t7 + 46159759r6t8 + 131141028r5t9 + 180641225r4t10 + 119871384r3t11 +
36619498r2t12 + 4605495rt13 + 177048t14 + 4760r9t4 + 278278r8t5 + 5188915r7t6 +
41000622r6t7 + 151799532r5t8 + 272864112r4t9 + 237500090r3t10 + 96108204r2t11 +
16285593rt12 + 868478t13 + 1360r9t3 + 110348r8t4 + 2766954r7t5 + 28898418r6t6 +
140185306r5t7 + 328975930r4t8 + 373890368r3t9 + 198351034r2t10 + 44457254rt11 +
3187250t12 + 272r9t2 + 32482r8t3 + 1133006r7t4 + 15960212r6t5 + 102642729r5t6 +
316324390r4t7 + 469894193r3t8 + 325496542r2t9 + 95546900rt10 + 9044796t11 +
34r9t+ 6688r8t2 + 344012r7t3 + 6760153r6t4 + 58825220r5t5 + 241007787r4t6 +
470973223r3t7 + 426633918r2t8 + 163435575rt9 + 20235840t10 + 2r9 + 860r8t+
72976r7t2 + 2120112r6t3 + 25820158r5t4 + 143594604r4t5 + 373934139r3t6 +
446108022r2t7 + 223468308rt8 + 36075132t9 + 52r8 + 9656r7t+ 463788r6t2 +
8377308r5t3 + 65438517r4t4 + 232019454r3t5 + 369537102r2t6 + 243912546rt7 +
51460191t8 + 600r7 + 63168r6t+ 1891944r5t2 + 22003380r4t3 + 109990818r3t4 +
239161248r2t5 + 210998169rt6 + 58650588t7 + 4032r6 + 265356r5t+ 5137236r4t2 +
38403396r3t3 + 118164771r2t4 + 142629660rt5 + 53020413t6 + 17388r5 + 742392r4t+
9284544r3t2 + 42931296r2t3 + 73581210rt4 + 37477242t5 + 49896r4 + 1383480r3t+
10768788r2t2 + 27879876rt3 + 20221731t4 + 95256r3 + 1656288r2t+ 7272504rt2 +
8008794t3 + 116640r2 + 1156194rt+ 2178252t2 + 83106r + 358668t+ 26244)(t+ 1).

S̃C |q=2 = 2(3t6 + 14t5 + 33t4 + 48t3 + 41t2 + 18t+ 2)(t+ 2)8(t+ 1).

DUC =
(4s4t8+32s4t7+22s3t8+112s4t6+195s3t7+44s2t8+224s4t5+753s3t6+436s2t7+38st8+
280s4t4+1658s3t5+1859s2t6+423st7+12t8+224s4t3+2280s3t4+4496s2t5+1989st6+
150t7 +112s4t2 +2007s3t3 +6790s2t4 +5272st5 +774t6 +32s4t+1105s3t2 +6584s2t3 +
8734st4+2240t5+4s4+348s3t+4011s2t2+9341st3+4068t4+48s3+1404s2t+6327st2+
4812t3+216s2+2484st+3645t2+432s+1620t+324)(st2+2st+t2+s+2t+2)(s+3)(t+1).

DUC |q=2 = 2(3t2 + 6t+ 4)(t+ 2)4(t+ 1).

Local view 28 of 35

1 2 1 2
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Appendix A. Local views in the Potts model

ZC = 2λ6 + 4λ5 + 7λ4(q − 2) + λ3(q − 2)(q − 3) + 4λ4 + 25λ3(q − 2) + 24λ2(q − 2)(q − 3) +
8λ(q − 2)(q − 3)(q − 4) + (q − 2)(q − 3)(q − 4)(q − 5) + 4λ3 + 18λ2(q − 2) +
21λ(q − 2)(q − 3)+6(q − 2)(q − 3)(q − 4)+2λ2 +13λ(q − 2)+9(q − 2)(q − 3)+2q−4.

2ZCUvC = 6λ6 + 8λ5 + 15λ4(q − 2) + 2λ3(q − 2)(q − 3) + 4λ4 + 23λ3(q − 2) + 17λ2(q − 2)(q − 3) +
3λ(q − 2)(q − 3)(q − 4) + 4λ3 + 14λ2(q − 2) + 8λ(q − 2)(q − 3) + 2λ2 + 5λ(q − 2).

6ZCUNC = 14λ6+22λ5+33λ4(q − 2)+4λ3(q − 2)(q − 3)+18λ4+83λ3(q − 2)+53λ2(q − 2)(q − 3)+
9λ(q − 2)(q − 3)(q − 4) + 14λ3 + 40λ2(q − 2) + 24λ(q − 2)(q − 3) + 4λ2 + 15λ(q − 2).

S̃C = 2(2r9t14 + 28r9t13 + 26r8t14 + 182r9t12 + 386r8t13 + 150r7t14 + 728r9t11 + 2656r8t12 +
2356r7t13 + 503r6t14 + 2002r9t10 + 11228r8t11 + 17132r7t12 + 8349r6t13 + 1082r5t14 +
4004r9t9 + 32582r8t10 + 76452r7t11 + 64091r6t12 + 18948r5t13 + 1555r4t14 +
6006r9t8 + 68662r8t9 + 233930r7t10 + 301645r6t11 + 153338r5t12 + 28627r4t13 +
1501r3t14 + 6864r9t7 + 108372r8t8 + 519240r7t9 + 972583r6t10 + 760298r5t11 +
243619r4t12 + 28877r3t13 + 942r2t14 + 6006r9t6 + 130152r8t7 + 862272r7t8 +
2272875r6t9 + 2581016r5t10 + 1270386r4t11 + 257436r3t12 + 18801r2t13 + 349rt14 +
4004r9t5 + 119526r8t6 + 1088424r7t7 + 3970673r6t8 + 6347086r5t9 + 4535361r4t10 +
1408325r3t11 + 174724r2t12 + 7178rt13 + 58t14 + 2002r9t4 + 83534r8t5 + 1049514r7t6 +
5268479r6t7 + 11661826r5t8 + 11727539r4t9 + 5278986r3t10 + 999565r2t11 +
69174rt12 +1224t13 +728r9t3 +43736r8t4 +769380r7t5 +5335860r6t6 +16265434r5t7 +
22653365r4t8 + 14339118r3t9 + 3926007r2t10 + 412337rt11 + 12172t12 + 182r9t2 +
16636r8t3 +422140r7t4 +4105380r6t5 +17307668r5t6 +33210656r4t7 +29103325r3t8 +
11188194r2t9 +1693081rt10 +75318t11 +28r9t+4346r8t2 +168116r7t3 +2362312r6t4 +
13983454r5t5 + 37136434r4t6 + 44838724r3t7 + 23843502r2t8 + 5054880rt9 +
322518t10 + 2r9 + 698r8t+ 45942r7t2 + 985904r6t3 + 8444864r5t4 + 31522428r4t5 +
52697454r3t6+38594097r2t7+11302191rt8+1007352t9+52r8+7712r7t+282138r6t2+
3696948r5t3 + 19994868r4t4 + 47016732r3t5 + 47675988r2t6 + 19212930rt7 +
2361150t8 + 600r7 + 49560r6t+ 1109106r5t2 + 9190584r4t3 + 31347252r3t4 +
44728416r2t5 + 24946542rt6 + 4213728t7 + 4032r6 + 204120r5t+ 2893806r4t2 +
15143868r3t3 + 31369248r2t4 + 24618654rt5 + 5750352t6 + 17388r5 + 558684r4t+
5010498r3t2 + 15944688r2t3 + 18174942rt4 + 5970834t5 + 49896r4 + 1016064r3t+
5550606r2t2 + 9730692rt3 + 4643244t4 + 95256r3 + 1183896r2t+ 3569184rt2 +
2621484t3 + 116640r2 + 801900rt+ 1014768t2 + 83106r + 240570t+ 26244)(t+ 1)4.

S̃C |q=2 = 4(t3 + 2t2 + 3t+ 1)(t+ 2)8(t+ 1)4.

DUC = (4s5t8 + 32s5t7 + 26s4t8 + 112s5t6 + 229s4t7 + 66s3t8 + 224s5t5 + 881s4t6 + 640s3t7 +
82s2t8+280s5t4+1936s4t5+2699s3t6+872s2t7+50st8+224s5t3+2660s4t4+6496s3t5+
4015s2t6 +579st7 +12t8 +112s5t2 +2341s4t3 +9796s3t4 +10551s2t5 +2895st6 +150t7 +
32s5t+ 1289s4t2 + 9500s3t3 + 17430s2t4 + 8277st5 + 810t6 + 4s5 + 406s4t+ 5791s3t2 +
18639s2t3+14942st4+2510t5+56s4+2028s3t+12639s2t2+17608st3+4932t4+312s3+
4968s2t+13329st2+6384t3+864s2+5940st+5400t2+1188s+2754t+648)(s+3)(t+1)3.

DUC |q=2 = 8(t+ 2)4(t+ 1)3.

Local view 29 of 35

1 1 2 3
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Appendix A. Local views in the Potts model

ZC = 3λ6 + λ5(q − 3) + 4λ5 + 6λ4(q − 3) + 2λ3(q − 3)(q − 4) + 8λ4 + 28λ3(q − 3) +
21λ2(q − 3)(q − 4) + 8λ(q − 3)(q − 4)(q − 5) + (q − 3)(q − 4)(q − 5)(q − 6) + 30λ3 +
59λ2(q − 3) + 48λ(q − 3)(q − 4) + 10(q − 3)(q − 4)(q − 5) + 20λ2 + 65λ(q − 3) +
26(q − 3)(q − 4) + 16λ+ 16q − 48.

2ZCUvC = 7λ6 + 2λ5(q − 3) + 8λ5 + 8λ4(q − 3) + 2λ3(q − 3)(q − 4) + 12λ4 + 36λ3(q − 3) +
17λ2(q − 3)(q − 4) + 3λ(q − 3)(q − 4)(q − 5) + 38λ3 + 43λ2(q − 3) +
17λ(q − 3)(q − 4) + 10λ2 + 22λ(q − 3) + 6λ.

6ZCUNC = 21λ6 + 6λ5(q − 3) + 24λ5 + 30λ4(q − 3) + 8λ3(q − 3)(q − 4) + 36λ4 + 92λ3(q − 3) +
45λ2(q − 3)(q − 4) + 9λ(q − 3)(q − 4)(q − 5) + 96λ3 + 129λ2(q − 3) +
55λ(q − 3)(q − 4) + 48λ2 + 76λ(q − 3) + 18λ.

S̃C = 2(2r9t16 + 32r9t15 + 30r8t16 + 240r9t14 + 496r8t15 + 190r7t16 + 1120r9t13 +
3846r8t14 +3272r7t15 +679r6t16 +3640r9t12 +18564r8t13 +26410r7t14 +12221r6t15 +
1527r5t16 + 8736r9t11 + 62426r8t12 + 132624r7t13 + 102994r6t14 + 28740r5t15 +
2259r4t16 + 16016r9t10 + 155064r8t11 + 463766r7t12 + 539596r6t13 + 253080r5t14 +
44405r4t15 + 2210r3t16 + 22880r9t9 + 294294r8t10 + 1197400r7t11 + 1967252r6t12 +
1384544r5t13 + 408290r4t14 + 45262r3t15 + 1385r2t16 + 25740r9t8 + 435292r8t9 +
2361194r7t10 + 5292570r6t11 + 5268304r5t12 + 2331773r4t13 + 433889r3t14 +
29438r2t15 + 508rt16 + 22880r9t7 + 507078r8t8 + 3627360r7t9 + 10869330r6t10 +
14786648r5t11 + 9260658r4t12 + 2584320r3t13 + 293553r2t14 + 11122rt15 + 84t16 +
16016r9t6 + 466752r8t7 + 4387218r7t8 + 17381892r6t9 + 31669522r5t10 +
27125551r4t11 + 10706419r3t12 + 1820973r2t13 + 114948rt14 + 1868t15 + 8736r9t5 +
338338r8t6 + 4191352r7t7 + 21873963r6t8 + 52798808r5t9 + 60625090r4t10 +
32719790r3t11 + 7862259r2t12 + 741213rt13 + 19884t14 + 3640r9t4 + 191100r8t5 +
3152270r7t6 + 21732973r6t7 + 69245503r5t8 + 105464877r4t9 + 76315475r3t10 +
25054353r2t11 + 3331527rt12 + 132918t13 + 1120r9t3 + 82446r8t4 + 1846672r7t5 +
16990394r6t6 + 71672540r5t7 + 144314633r4t8 + 138581496r3t9 + 60964129r2t10 +
11061474rt11 + 621114t12 + 240r9t2 + 26264r8t3 + 826050r7t4 + 10341016r6t5 +
58346176r5t6 + 155827088r4t7 + 197993517r3t8 + 115556569r2t9 + 28064376rt10 +
2146944t11 + 32r9t+ 5826r8t2 + 272744r7t3 + 4803298r6t4 + 36958760r5t5 +
132301778r4t6 + 223259032r3t7 + 172433508r2t8 + 55509378rt9 + 5675940t10 + 2r9 +
804r8t+ 62686r7t2 + 1645892r6t3 + 17855238r5t4 + 87369846r4t5 + 197965242r3t6 +
203193063r2t7 + 86509998rt8 + 11709072t9 + 52r8 + 8960r7t+ 392346r6t2 +
6358824r5t3 + 43978902r4t4 + 136518204r3t5 + 188376498r2t6 + 106570620rt7 +
19053252t8 + 600r7 + 58128r6t+ 1574046r5t2 + 16305300r4t3 + 71730702r3t4 +
135859680r2t5 + 103381704rt6 + 24537924t7 + 4032r6 + 241920r5t+ 4197150r4t2 +
27738072r3t3 + 74652678r2t4 + 78079788rt5 + 24919488t6 + 17388r5 + 669816r4t+
7437258r3t2 + 30171852r2t3 + 44949330rt4 + 19729494t5 + 49896r4 + 1233792r3t+
8443278r2t2 + 19029816rt3 + 11919636t4 + 95256r3 + 1458000r2t+ 5571018rt2 +
5298372t3 + 116640r2 + 1003104rt+ 1627128t2 + 83106r + 306180t+ 26244)(t+ 1)2.

DUC = (4s4t8 + 32s4t7 + 22s3t8 + 112s4t6 + 195s3t7 + 44s2t8 + 224s4t5 + 753s3t6 + 436s2t7 +
38st8 +280s4t4 +1658s3t5 +1859s2t6 +423st7 +12t8 +224s4t3 +2280s3t4 +4496s2t5 +
1989st6 + 150t7 + 112s4t2 + 2007s3t3 + 6790s2t4 + 5272st5 + 774t6 + 32s4t+ 1105s3t2 +
6584s2t3+8734st4+2240t5+4s4+348s3t+4011s2t2+9341st3+4068t4+48s3+1404s2t+
6327st2 +4812t3 +216s2 +2484st+3645t2 +432s+1620t+324)(st+s+2)(s+3)(t+1)2.
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Appendix A. Local views in the Potts model

Local view 30 of 35

1 2 1 3

ZC = λ6 + 6λ5 + 6λ4(q − 3) + λ3(q − 3)(q − 4) + 13λ4 + 31λ3(q − 3) + 24λ2(q − 3)(q − 4) +
8λ(q − 3)(q − 4)(q − 5) + (q − 3)(q − 4)(q − 5)(q − 6) + 21λ3 + 60λ2(q − 3) +
45λ(q − 3)(q − 4) + 10(q − 3)(q − 4)(q − 5) + 27λ2 + 59λ(q − 3) + 27(q − 3)(q − 4) +
11λ+ 19q − 55.

2ZCUvC = 3λ6+14λ5+13λ4(q − 3)+2λ3(q − 3)(q − 4)+19λ4+33λ3(q − 3)+17λ2(q − 3)(q − 4)+
3λ(q − 3)(q − 4)(q − 5)+21λ3+42λ2(q − 3)+17λ(q − 3)(q − 4)+19λ2+23λ(q − 3)+5λ.

6ZCUNC = 7λ6 + 35λ5 + 29λ4(q − 3) + 4λ3(q − 3)(q − 4) + 57λ4 + 103λ3(q − 3) +
53λ2(q − 3)(q − 4) + 9λ(q − 3)(q − 4)(q − 5) + 71λ3 + 134λ2(q − 3) +
51λ(q − 3)(q − 4) + 61λ2 + 67λ(q − 3) + 12λ.

S̃C = (4r8t14 + 56r8t13 + 48r7t14 + 364r8t12 + 708r7t13 + 242r6t14 + 1456r8t11 + 4844r7t12 +
3786r6t13 +678r5t14 +4004r8t10 +20376r7t11 +27422r6t12 +11284r5t13 +1166r4t14 +
8008r8t9+58872r7t10+121894r6t11+86746r5t12+20640r4t13+1267r3t14+12012r8t8+
123596r7t9 + 371544r6t10 + 408452r5t11 + 168452r4t12 + 23817r3t13 + 849r2t14 +
13728r8t7 + 194436r7t8 + 821604r6t9 + 1316462r5t10 + 840728r4t11 + 206198r3t12 +
16940r2t13 + 320rt14 + 12012r8t6 + 232848r7t7 + 1359432r6t8 + 3073206r5t9 +
2868048r4t10+1090508r3t11+155508r2t12+6779rt13+52t14+8008r8t5+213312r7t6+
1709964r6t7 + 5359846r5t8 + 7077040r4t9 + 3938135r3t10 + 871224r2t11 + 66006rt12 +
1166t13 + 4004r8t4 + 148764r7t5 + 1643298r6t6 + 7096018r5t7 + 13029736r4t8 +
10277361r3t9 + 3330281r2t10 + 391838rt11 + 12044t12 + 1456r8t3 + 77748r7t4 +
1200818r6t5+7167552r5t6+18187392r4t7+19994068r3t8+9193464r2t9+1585738rt10+
75836t11 + 364r8t2 + 29528r7t3 + 656862r6t4 + 5497634r5t5 + 19343858r4t6 +
29463014r3t7+18908970r2t8+4631567rt9+325224t10+56r8t+7704r7t2+260846r6t3+
3152508r5t4+15602488r4t5+33049912r3t6+29443716r2t7+10074894rt8+1005702t9+
4r8+1236r7t+71092r6t2+1310722r5t3+9395664r4t4+28084716r3t5+34881678r2t6+
16588062rt7+2314836t8+92r7+11904r6t+373572r5t2+4096536r4t3+17795280r3t4+
31283154r2t5 + 20776716rt6 + 4032126t7 + 924r6 + 65340r5t+ 1222560r4t2 +
8151660r3t3 + 20899890r2t4 + 19696446rt5 + 5343678t6 + 5292r5 + 223560r4t+
2551392r3t2 + 10080558r2t3 + 13903488rt4 + 5361876t5 + 18900r4 + 488268r3t+
3315492r2t2+7078266rt3+4006908t4+43092r3+664848r2t+2452356rt2+2158812t3+
61236r2 + 516132rt+ 790236t2 + 49572r + 174960t+ 17496)(rt+ r + 2t+ 3)(t+ 1)3.

DUC = (4s5t8 + 32s5t7 + 24s4t8 + 112s5t6 + 215s4t7 + 57s3t8 + 224s5t5 + 839s4t6 + 565s3t7 +
69s2t8+280s5t4+1866s4t5+2435s3t6+736s2t7+44st8+224s5t3+2590s4t4+5986s3t5+
3439s2t6 +489st7 +12t8 +112s5t2 +2299s4t3 +9211s3t4 +9239s2t5 +2406st6 +138t7 +
32s5t+ 1275s4t2 + 9101s3t3 + 15677s2t4 + 6905st5 + 696t6 + 4s5 + 404s4t+ 5641s3t2 +
17259s2t3+12742st4+2054t5+56s4+2004s3t+12045s2t2+15565st3+3984t4+312s3+
4860s2t+12303st2+5304t3+864s2+5724st+4752t2+1188s+2592t+648)(s+3)(t+1)3.
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Appendix A. Local views in the Potts model

Local view 31 of 35

2 3 1 1

ZC = 3λ6 + λ5(q − 3) + 9λ5 + 15λ4(q − 3) + 7λ3(q − 3)(q − 4) + λ2(q − 3)(q − 4)(q − 5) +
10λ4 + 27λ3(q − 3) + 18λ2(q − 3)(q − 4) + 6λ(q − 3)(q − 4)(q − 5) +
(q − 3)(q − 4)(q − 5)(q − 6) + 17λ3 + 45λ2(q − 3) + 39λ(q − 3)(q − 4) +
11(q − 3)(q − 4)(q − 5) + 24λ2 + 60λ(q − 3) + 33(q − 3)(q − 4) + 14λ+ 27q − 77.

2ZCUvC = 7λ6 + 2λ5(q − 3) + 15λ5 + 18λ4(q − 3) + 5λ3(q − 3)(q − 4) + 14λ4 + 27λ3(q − 3) +
11λ2(q − 3)(q − 4) + 3λ(q − 3)(q − 4)(q − 5) + 17λ3 + 31λ2(q − 3) +
20λ(q − 3)(q − 4) + 18λ2 + 33λ(q − 3) + 10λ.

6ZCUNC = 21λ6+6λ5(q − 3)+49λ5+66λ4(q − 3)+23λ3(q − 3)(q − 4)+2λ2(q − 3)(q − 4)(q − 5)+
44λ4 + 89λ3(q − 3) + 39λ2(q − 3)(q − 4) + 7λ(q − 3)(q − 4)(q − 5) + 57λ3 +
101λ2(q − 3) + 46λ(q − 3)(q − 4) + 56λ2 + 71λ(q − 3) + 16λ.

S̃C = 2(2r9t16 + 32r9t15 + 30r8t16 + 240r9t14 + 500r8t15 + 191r7t16 + 1120r9t13 +
3904r8t14 +3330r7t15 +686r6t16 +3640r9t12 +18954r8t13 +27187r7t14 +12548r6t15 +
1546r5t16 + 8736r9t11 + 64038r8t12 + 137928r7t13 + 107398r6t14 + 29719r5t15 +
2284r4t16 + 16016r9t10 + 159640r8t11 + 486558r7t12 + 570750r6t13 + 267015r5t14 +
46164r4t15 + 2228r3t16 + 22880r9t9 + 303732r8t10 + 1265216r7t11 + 2107256r6t12 +
1488160r5t13 + 435527r4t14 + 47289r3t15 + 1397r2t16 + 25740r9t8 + 449878r8t9 +
2508230r7t10 + 5729730r6t11 + 5757222r5t12 + 2546224r4t13 + 468068r3t14 +
30988r2t15 + 518rt16 + 22880r9t7 + 524238r8t8 + 3866424r7t9 + 11865360r6t10 +
16389450r5t11 + 10324641r4t12 + 2868751r3t13 + 320902r2t14 + 11874rt15 + 88t16 +
16016r9t6 + 482196r8t7 + 4683051r7t8 + 19084404r6t9 + 35504178r5t10 +
30785410r4t11 + 12187312r3t12 + 2058396r2t13 + 127874rt14 + 2044t15 + 8736r9t5 +
348920r8t6 + 4471226r7t7 + 24088782r6t8 + 59682900r5t9 + 69808403r4t10 +
38054727r3t11 + 9152010r2t12 + 855668rt13 + 22652t14 + 3640r9t4 + 196534r8t5 +
3353679r7t6 + 23935160r6t7 + 78652998r5t8 + 122758494r4t9 + 90331359r3t10 +
29905312r2t11 + 3974529rt12 + 157296t13 + 1120r9t3 + 84474r8t4 + 1955200r7t5 +
18655334r6t6 + 81499663r5t7 + 169115669r4t8 + 166228537r3t9 + 74280460r2t10 +
13576423rt11 + 761354t12 + 240r9t2 + 26784r8t3 + 868512r7t4 + 11283094r6t5 +
66152431r5t6 + 183029936r4t7 + 239556490r3t8 + 143028836r2t9 + 35262818rt10 +
2715174t11 + 32r9t+ 5908r8t2 + 284148r7t3 + 5190156r6t4 + 41599812r5t5 +
155004162r4t6 + 271093024r3t7 + 215677563r2t8 + 71020089rt9 + 7369116t10 + 2r9 +
810r8t+ 64568r7t2 + 1754882r6t3 + 19857670r5t4 + 101558130r4t5 + 239896251r3t6 +
255372768r2t7 + 112047975rt8 + 15516234t9 + 52r8 + 9104r7t+ 411204r6t2 +
6951528r5t3 + 50417382r4t4 + 164074044r3t5 + 236403936r2t6 + 138853683rt7 +
25605288t8 + 600r7 + 59640r6t+ 1681776r5t2 + 18310590r4t3 + 84894156r3t4 +
169053750r2t5 + 134568351rt6 + 33209784t7 + 4032r6 + 250992r5t+ 4580820r4t2 +
32058612r3t3 + 91358064r2t4 + 100749744rt5 + 33708312t6 + 17388r5 + 703836r4t+
8309304r3t2 + 35958654r2t3 + 56976534rt4 + 26448444t5 + 49896r4 + 1315440r3t+
9678204r2t2 + 23432976rt3 + 15679332t4 + 95256r3 + 1580472r2t+ 6566832rt2 +
6754914t3 + 116640r2 + 1108080rt+ 1977048t2 + 83106r + 345546t+ 26244)(t+ 1)2.
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Appendix A. Local views in the Potts model

DUC = (4s5t9 + 36s5t8 + 26s4t9 + 144s5t7 + 251s4t8 + 70s3t9 + 336s5t6 + 1082s4t7 + 709s3t8 +
100s2t9 + 504s5t5 + 2733s4t6 + 3231s3t7 + 1033s2t8 + 76st9 + 504s5t4 + 4456s4t5 +
8705s3t6 + 4852s2t7 + 788st8 + 24t9 + 336s5t3 + 4861s4t4 + 15284s3t5 + 13657s2t6 +
3732st7 + 252t8 + 144s5t2 + 3546s4t3 + 18123s3t4 + 25444s2t5 + 10703st6 + 1200t7 +
36s5t+1667s4t2 +14491s3t3 +32539s2t4 +20682st5 +3442t6 +4s5 +458s4t+7519s3t2 +
28500s2t3+28087st4+6692t5+56s4+2292s3t+16419s2t2+26797st3+9366t4+312s3+
5616s2t+17217st2+9570t3+864s2+6696st+6858t2+1188s+3078t+648)(s+3)(t+1)2.

Local view 32 of 35

1 2 3 4

ZC = 8λ5 + 5λ4(q − 4) + λ3(q − 4)(q − 5) + 20λ4 + 37λ3(q − 4) + 24λ2(q − 4)(q − 5) +
8λ(q − 4)(q − 5)(q − 6) + (q − 4)(q − 5)(q − 6)(q − 7) + 48λ3 + 102λ2(q − 4) +
69λ(q − 4)(q − 5) + 14(q − 4)(q − 5)(q − 6) + 88λ2 + 153λ(q − 4) + 57(q − 4)(q − 5) +
72λ+ 72q − 268.

2ZCUvC = 20λ5 + 11λ4(q − 4) + 2λ3(q − 4)(q − 5) + 30λ4 + 43λ3(q − 4) + 17λ2(q − 4)(q − 5) +
3λ(q − 4)(q − 5)(q − 6) + 54λ3 + 70λ2(q − 4) + 26λ(q − 4)(q − 5) + 58λ2 +
59λ(q − 4) + 30λ.

6ZCUNC = 48λ5 + 25λ4(q − 4) + 4λ3(q − 4)(q − 5) + 88λ4 + 123λ3(q − 4) + 53λ2(q − 4)(q − 5) +
9λ(q − 4)(q − 5)(q − 6) + 160λ3 + 228λ2(q − 4) + 78λ(q − 4)(q − 5) + 200λ2 +
173λ(q − 4) + 80λ.
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Appendix A. Local views in the Potts model

S̃C = 2(2r9t15 + 30r9t14 + 30r8t15 + 210r9t13 + 468r8t14 + 188r7t15 + 910r9t12 + 3406r8t13 +
3082r7t14 +659r6t15 +2730r9t11 +15340r8t12 +23532r7t13 +11408r6t14 +1440r5t15 +
6006r9t10 + 47814r8t11 + 111016r7t12 + 91792r6t13 + 26378r5t14 + 2044r4t15 +
10010r9t9 + 109252r8t10 + 361928r7t11 + 455516r6t12 + 224150r5t13 + 39680r4t14 +
1882r3t15 + 12870r9t8 + 189046r8t9 + 863786r7t10 + 1559456r6t11 + 1172686r5t12 +
356593r4t13 + 38846r3t14 + 1076r2t15 + 12870r9t7 + 252252r8t8 + 1559184r7t9 +
3902050r6t10 + 4225742r5t11 + 1969513r4t12 + 369982r3t13 + 23783r2t14 + 343rt15 +
10010r9t6 + 261690r8t7 + 2167704r7t8 + 7373180r6t9 + 11112784r5t10 +
7481176r4t11 + 2160581r3t12 + 241096r2t13 + 8209rt14 + 46t15 + 6006r9t5 +
211068r8t6 + 2340492r7t7 + 10714936r6t8 + 22037174r5t9 + 20710820r4t10 +
8661988r3t11 + 1492527r2t12 + 89207rt13 + 1206t14 + 2730r9t4 + 131274r8t5 +
1962686r7t6 + 12075719r6t7 + 33561442r5t8 + 43181117r4t9 + 25274768r3t10 +
6326238r2t11 + 588063rt12 + 14190t13 + 910r9t3 + 61828r8t4 + 1267948r7t5 +
10555476r6t6 + 39581306r5t7 + 69057053r4t8 + 55480210r3t9 + 19480875r2t10 +
2642632rt11 + 100314t12 + 210r9t2 + 21346r8t3 + 619752r7t4 + 7098628r6t5 +
36153148r5t6 + 85415728r4t7 + 93318869r3t8 + 45073097r2t9 + 8603313rt10 +
480120t11 + 30r9t+ 5100r8t2 + 221872r7t3 + 3607292r6t4 + 25367752r5t5 +
81712316r4t6 + 121278082r3t7 + 79839699r2t8 + 21007956rt9 + 1657206t10 + 2r9 +
754r8t+ 54926r7t2 + 1340974r6t3 + 13429356r5t4 + 59961492r4t5 + 121769814r3t6 +
109189197r2t7 + 39232647rt8 + 4278276t9 + 52r8 + 8408r7t+ 344298r6t2 +
5192352r5t3 + 33141552r4t4 + 93663768r3t5 + 115280100r2t6 + 56533950rt7 +
8433882t8 + 600r7 + 54600r6t+ 1384290r5t2 + 13353390r4t3 + 54178488r3t4 +
93151512r2t5 + 62863398rt6 + 12819654t7 + 4032r6 + 227556r5t+ 3701970r4t2 +
22799448r3t3 + 56528604r2t4 + 53471502rt5 + 15033600t6 + 17388r5 + 631260r4t+
6584490r3t2 + 24907986r2t3 + 34127082rt4 + 13485366t5 + 49896r4 + 1165752r3t+
7510158r2t2 + 15788682rt3 + 9073620t4 + 95256r3 + 1382184r2t+ 4983444rt2 +
4420656t3 + 116640r2 + 954990rt+ 1465290t2 + 83106r + 293058t+ 26244)(t+ 1)3.

DUC = (4s5t8 + 32s5t7 + 42s4t8 + 112s5t6 + 361s4t7 + 176s3t8 + 224s5t5 + 1357s4t6 +
1614s3t7 + 372s2t8 + 280s5t4 + 2916s4t5 + 6479s3t6 + 3596s2t7 + 402st8 + 224s5t3 +
3920s4t4 +14900s3t5 +15278s2t6 +4033st7 +180t8 +112s5t2 +3377s4t3 +21506s3t4 +
37371s2t5 + 17904st6 + 1848t7 + 32s5t+ 1821s4t2 + 19970s3t3 + 57722s2t4 +
46119st5 + 8442t6 + 4s5 + 562s4t+ 11655s3t2 + 57767s2t3 + 75748st4 + 22554t5 +
76s4 + 3908s3t+ 36610s2t2 + 81534st3 + 38928t4 + 576s3 + 13424s2t+ 56256st2 +
44808t3 + 2176s2 + 22720st+ 33696t2 + 4096s+ 15104t+ 3072)(s+ 4)(t+ 1)3.

Local view 33 of 35

1 1

ZC = λ7 + λ5(q − 1) + 6λ4(q − 1) + 2λ3(q − 1)(q − 2) + 5λ3(q − 1) + 15λ2(q − 1)(q − 2) +
7λ(q − 1)(q − 2)(q − 3) + (q − 1)(q − 2)(q − 3)(q − 4) + 2λ2(q − 1) +
6λ(q − 1)(q − 2) + 3(q − 1)(q − 2)(q − 3) + λ(q − 1) + 2(q − 1)(q − 2).

2ZCUvC = 3λ7 + 3λ5(q − 1) + 10λ4(q − 1) + 4λ3(q − 1)(q − 2) + 5λ3(q − 1) + 10λ2(q − 1)(q − 2) +
3λ(q − 1)(q − 2)(q − 3) + 2λ2(q − 1) + 4λ(q − 1)(q − 2) + λ(q − 1).
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6ZCUNC = 9λ7 + 7λ5(q − 1) + 30λ4(q − 1) + 8λ3(q − 1)(q − 2) + 19λ3(q − 1) +
38λ2(q − 1)(q − 2)+9λ(q − 1)(q − 2)(q − 3)+6λ2(q − 1)+8λ(q − 1)(q − 2)+λ(q − 1).

S̃C = 2(4r8t13 +52r8t12 +43r7t13 +312r8t11 +601r7t12 +202r6t13 +1144r8t10 +3869r7t11 +
3028r6t12 + 540r5t13 + 2860r8t9 + 15191r7t10 + 20867r6t11 + 8680r5t12 + 897r4t13 +
5148r8t8 + 40590r7t9 + 87561r6t10 + 63967r5t11 + 15488r4t12 + 951r3t13 + 6864r8t7 +
77946r7t8 + 249672r6t9 + 286459r5t10 + 122037r4t11 + 17660r3t12 + 636r2t13 +
6864r8t6 + 110682r7t7 + 510972r6t8 + 870418r5t9 + 582615r4t10 + 148697r3t11 +
12644r2t12 + 251rt13 + 5148r8t5 + 117678r7t6 + 772338r6t7 + 1896176r5t8 +
1883784r4t9 + 755755r3t10 + 113399r2t11 + 5249rt12 + 46t13 + 2860r8t4 + 93687r7t5 +
873102r6t6 + 3048260r5t7 + 4362023r4t8 + 2595899r3t9 + 612010r2t10 + 49715rt11 +
978t12+1144r8t3+55165r7t4+738294r6t5+3662690r5t6+7449312r4t7+6378524r3t8+
2228185r2t9 +283566rt10 +9634t11 +312r8t2 +23353r7t3 +461272r6t4 +3290362r5t5 +
9506758r4t6 + 11554675r3t7 + 5798142r2t8 + 1090936rt9 + 57660t10 + 52r8t+
6731r7t2 + 206995r6t3 + 2183128r5t4 + 9071459r4t5 + 15644259r3t6 + 11121681r2t7 +
2999361rt8 + 233508t9 + 4r8 + 1184r7t+ 63185r6t2 + 1040021r5t3 + 6394875r4t4 +
15846771r3t5 +15952293r2t6 +6080067rt7 +676602t8 +96r7 +11760r6t+336915r5t2 +
3238095r4t3 + 11869965r3t4 + 17136468r2t5 + 9223605rt6 + 1446633t7 + 1008r6 +
66528r5t+ 1115505r4t2 + 6394347r3t3 + 13634190r2t4 + 10494252rt5 + 2317167t6 +
6048r5 +234360r4t+2346921r3t2 +7817769r2t3 +8861886rt4 +2788263t5 +22680r4 +
526176r3t+3062043r2t2+5408775rt3+2496339t4+54432r3+734832r2t+2263545rt2+
1621053t3 + 81648r2 + 583200rt+ 725355t2 + 69984r+ 201204t+ 26244)(r+ 2)(t+ 1)5.

S̃C |q=2 = 2(t4 + 5t3 + 12t2 + 12t+ 8)(t+ 2)7(t+ 1)5.

DUC = (2s3t6 + 12s3t5 + 9s2t6 + 30s3t4 + 57s2t5 + 13st6 + 40s3t3 + 153s2t4 + 87st5 + 6t6 +
30s3t2 + 225s2t3 + 249st4 + 42t5 + 12s3t+ 192s2t2 + 397st3 + 126t4 + 2s3 + 90s2t+
384st2+214t3+18s2+216st+234t2+54s+162t+54)(st+s+2t+3)(s+3)(s+2)(t+1)4.

DUC |q=2 = 4(t+ 2)4(t+ 1)4.

Local view 34 of 35

1 2

ZC = 2λ6 + λ5(q − 2) + 2λ5 + 4λ4(q − 2) + 2λ3(q − 2)(q − 3) + 2λ4 + 17λ3(q − 2) +
15λ2(q − 2)(q − 3) + 7λ(q − 2)(q − 3)(q − 4) + (q − 2)(q − 3)(q − 4)(q − 5) + 6λ3 +
20λ2(q − 2) + 27λ(q − 2)(q − 3) + 7(q − 2)(q − 3)(q − 4) + 4λ2 + 21λ(q − 2) +
11(q − 2)(q − 3) + 2q − 4.

2ZCUvC = 6λ6 + 3λ5(q − 2) + 4λ5 + 8λ4(q − 2) + 4λ3(q − 2)(q − 3) + 2λ4 + 19λ3(q − 2) +
10λ2(q − 2)(q − 3) + 3λ(q − 2)(q − 3)(q − 4) + 8λ3 + 16λ2(q − 2) +
13λ(q − 2)(q − 3) + 4λ2 + 11λ(q − 2).

6ZCUNC = 16λ6 + 7λ5(q − 2) + 12λ5 + 20λ4(q − 2) + 8λ3(q − 2)(q − 3) + 10λ4 + 65λ3(q − 2) +
38λ2(q − 2)(q − 3) + 9λ(q − 2)(q − 3)(q − 4) + 24λ3 + 52λ2(q − 2) +
35λ(q − 2)(q − 3) + 10λ2 + 27λ(q − 2).
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S̃C = 2(4r9t14 +56r9t13 +53r8t14 +364r9t12 +782r8t13 +311r7t14 +1456r9t11 +5354r8t12 +
4832r7t13 +1060r6t14 +4004r9t10 +22544r8t11 +34816r7t12 +17332r6t13 +2316r5t14 +
8008r9t9 + 65219r8t10 + 154196r7t11 + 131337r6t12 + 39801r5t13 + 3375r4t14 +
12012r9t8 + 137126r8t9 + 468955r7t10 + 611406r6t11 + 316853r5t12 + 60787r4t13 +
3294r3t14 + 13728r9t7 + 216084r8t8 + 1036032r7t9 + 1953617r6t10 + 1549056r5t11 +
507416r4t12 + 61882r3t13 + 2084r2t14 + 12012r9t6 + 259248r8t7 + 1714584r7t8 +
4532826r6t9 + 5196588r5t10 + 2601672r4t11 + 539998r3t12 + 40572r2t13 + 777rt14 +
8008r9t5 + 237963r8t6 + 2159352r7t7 + 7875952r6t8 + 12656061r5t9 + 9154266r4t10 +
2898053r3t11 + 368617r2t12 + 15562rt13 + 130t14 + 4004r9t4 + 166298r8t5 +
2079597r7t6 + 10411054r6t7 + 23079416r5t8 + 23386011r4t9 + 10681470r3t10 +
2065453r2t11 + 146527rt12 + 2660t13 + 1456r9t3 + 87098r8t4 + 1524080r7t5 +
10521252r6t6 + 32016814r5t7 + 44738506r4t8 + 28598227r3t9 + 7961479r2t10 +
854726rt11 + 25834t12 + 364r9t2 + 33152r8t3 + 836696r7t4 + 8089266r6t5 +
33954977r5t6 + 65118602r4t7 + 57362099r3t8 + 22316625r2t9 + 3439366rt10 +
156416t11 + 56r9t+ 8669r8t2 + 333652r7t3 + 4657791r6t4 + 27397004r5t5 +
72476656r4t6 + 87578534r3t7 + 46902435r2t8 + 10082132rt9 + 655872t10 + 4r9 +
1394r8t+ 91361r7t2 + 1947660r6t3 + 16555585r5t4 + 61388212r4t5 + 102294306r3t6 +
75087492r2t7 + 22187058rt8 + 2008428t9 + 104r8 + 15376r7t+ 559087r6t2 +
7265440r5t3 + 38953572r4t4 + 90978576r3t5 + 92034801r2t6 + 37230984rt7 +
4624848t8 + 1200r7 + 98616r6t+ 2188881r5t2 + 17956608r4t3 + 60654834r3t4 +
85967946r2t5 + 47881692rt6 + 8131536t7 + 8064r6 + 405216r5t+ 5684337r4t2 +
29395476r3t3 + 60250743r2t4 + 46981404rt5 + 10971288t6 + 34776r5 + 1106028r4t+
9789147r3t2 + 30725676r2t3 + 34631793rt4 + 11309382t5 + 99792r4 + 2004912r3t+
10777293r2t2 + 18600840rt3 + 8772300t4 + 190512r3 + 2326968r2t+ 6881031rt2 +
4966920t3 + 233280r2 + 1568808rt+ 1940598t2 + 166212r + 468018t+ 52488)(t+ 1)4.

S̃C |q=2 = 4(2t4 + 7t3 + 12t2 + 12t+ 4)(t+ 2)7(t+ 1)4.

DUC = (2s3t6 + 12s3t5 + 9s2t6 + 30s3t4 + 57s2t5 + 13st6 + 40s3t3 + 153s2t4 + 87st5 + 6t6 +
30s3t2+225s2t3+249st4+42t5+12s3t+192s2t2+397st3+126t4+2s3+90s2t+384st2+
214t3 +18s2 +216st+234t2 +54s+162t+54)(st+s+2t+3)(st+s+t+2)(s+3)(t+1)3.

DUC |q=2 = 4(t+ 2)4(t+ 1)3.

Local view 35 of 35 (named K4)

ZC = λ6q + 4λ3(q − 1)q + 3λ2(q − 1)q + 6λ(q − 1)(q − 2)q + (q − 1)(q − 2)(q − 3)q.

2ZCUvC = 3λ6q + 6λ3(q − 1)q + 3λ2(q − 1)q + 3λ(q − 1)(q − 2)q.

6ZCUNC = 9λ6q + 18λ3(q − 1)q + 9λ2(q − 1)q + 9λ(q − 1)(q − 2)q.
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S̃C = 6(2r5t8 + 16r5t7 + 14r4t8 + 56r5t6 + 125r4t7 + 40r3t8 + 112r5t5 + 485r4t6 + 392r3t7 +
59r2t8 + 140r5t4 + 1070r4t5 + 1668r3t6 + 620r2t7 + 45rt8 + 112r5t3 + 1470r4t4 +
4032r3t5 + 2857r2t6 + 496rt7 + 14t8 + 56r5t2 + 1289r4t3 + 6068r3t4 + 7512r2t5 +
2445rt6 + 160t7 + 16r5t+ 705r4t2 + 5832r3t3 + 12328r2t4 + 6942rt5 + 838t6 + 2r5 +
220r4t+ 3500r3t2 + 12962r2t3 + 12358rt4 + 2556t5 + 30r4 + 1200r3t+ 8550r2t2 +
14160rt3 + 4908t4 + 180r3 + 3240r2t+ 10260rt2 + 6093t3 + 540r2 + 4320rt+ 4833t2 +
810r + 2268t+ 486)(rt2 + 2rt+ t2 + r + 3t+ 3)2(r + 3)(r + 2)(t+ 1)6.

S̃C |q=2 = 12(t2 + t+ 2)(t+ 2)7(t+ 1)6.

DUC = 0.
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B
Potts model computations

The verification that, for each of the local views shown in Appendix A, the
scaled slack (4.5) and the scaled difference (4.6) are non-negative (and zero
where required) was done with the aid of a computer. Here we describe some
additional considerations required to perform this verification for arbitrary q
and β, and give a computer program which implements these ideas.

As noted in Section 4.2, the number of equivalence classes of local views
we must consider is bounded independently of q, and we only consider
representatives of each equivalence class that use an initial segment of colours
from {1, . . . , 6} on the boundary. In order to compute the partition function
and other properties of a local view C, one is required to consider the q4

possible local colourings of VC . This too can be done in a way that is bounded
independently of q by considering equivalence classes of local colourings.

Let C be a local view (that uses an initial segment of {1, . . . , 6} on the
boundary) and recall that qC is the largest colour appearing on the boundary
of C. Then given a local colouring χ of VC , we can only see at most qC + 4
colours. After permuting colours not used on the boundary, we may assume
that χ consists only of colours in [qC ] and initial segment of {qC+1, . . . , qC+4}
(which may be empty). This means we are considering equivalence classes
of local colourings and choosing a representative χ̃ of each class such that,
together with the colours on the boundary, we only ever colour C with an
initial segment of [qC + 4].

Then for arbitrary q it suffices to consider at most qC + 4 ≤ 10 colours in
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the calculations for ZC , UvC , and UNC . Given the set QC ⊆ [qC + 4]VC of
representative local colourings χ̃ such that χ̃ uses an initial segment (which
may be empty) of the colours {qC + 1, . . . , qC + 4}, and writing ` for the
largest colour used in χ̃, the Potts model on C induces the distribution

χ̃ 7→


e−βm(χ̃)

ZC

(q−qC
`−qC

)
if ` > qC

e−βm(χ̃)

ZC
otherwise

on χ̃ ∈ QC .

The consideration of these equivalence classes of local colourings means that
for any β, q, and C, the quantities ZC , UvC , and UNC may be computed by
summing over QC whose size is bounded independently of q. Using this
simplification, we used a SageMath1 computer program to compute the scaled
slack function S̃C and the scaled difference Dv

C for each of the 35 local views.
The program can be used to generate the data for Appendix A so that the
reader may verify the proof, and in addition the program can verify the
required coefficients are non-negative and print these observations.

Program listing

1 # Define a generator for all possible local views in cubic
2 # graphs , represented as a pair of lists. The first list
3 # comprises the colors of the boundary : external neighbors of
4 # each u in N(v). The second list comprises the edges inside
5 # N(v) = [1, 2, 3]
6 import itertools as its
7 from sage. combinat . permutation import Permutations_mset
8

9 # helper functions to manupulate colorings of the boundary
10 def color_Nus (Nu_sizes , tc):
11 f = lambda (a, s), l:(a + [range(s, s+l)], s+l)
12 ix , _ = reduce (f, Nu_sizes , ([], 0))
13 return tuple (map( lambda Nu: map( lambda i: tc[i], Nu), ix))
14 def tc_hash (tc):
15 s = int(len(tc ) -1). bit_length ()
16 return sum(map( lambda (i, c): c << (i*s),
17 zip(its.count (0), tc )))
18 def permute_cNu (cNu , g_perm , c_perm ):
19 return map( lambda Nu: map(c_perm , Nu), [cNu[ g_perm (i)]
20 for i in range(len(cNu ))])
21 is_minimal = lambda cNu: all(map(is_sorted , cNu ))

1http://www.sagemath.org
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22 is_sorted = lambda l: all(l[i] <= l[i+1]
23 for i in xrange (len(l) -1))
24

25 def gen_LVs ():
26 # Iterate over possible graphs on N(v): empty , an edge , two
27 # edges , and a triangle
28 all_Nv_edges = [[], [[1 ,2]] , [[1 ,2] ,[2 ,3]] ,
29 [[1 ,2] ,[1 ,3] ,[2 ,3]]]
30 all_Nus = [[[4 ,5] ,[6 ,7] ,[8 ,9]] , [[4] ,[5] ,[6 ,7]] ,
31 [[4] ,[] ,[5]] , [[] ,[] ,[]]]
32 # Symmetry groups for the possible graphs ( indices from 0)
33 all_sym_gps = map( PermutationGroup ,
34 [[(0 ,1) ,(1 ,2)] , [(0 ,1)] , [(0 ,2)] , [(0 ,1) ,(1 ,2)]])
35

36 for Nv_edges , Nus , Nv_sym_gp in its.izip( all_Nv_edges ,
37 all_Nus , all_sym_gps ):
38 Nu_sizes = map(len , Nus)
39

40 # There are 6-2* len( Nv_edges ) vertices on the boundary
41 for parts in Partitions (6 - 2* len( Nv_edges )):
42

43 color_set = range (1, 1+ len(parts ))
44 color_freqs = zip(color_set , parts)
45 color_multiset = reduce ( lambda a, t: a+[t[0]]*t[1],
46 color_freqs , [])
47

48 # Create the symmetry group for the colors
49 def accum_gens (a, kg):
50 colors = [f[0] for f in kg [1]]
51 # Tuples representing generators for symmetric
52 # group on these colors
53 new_gens = ([ tuple( colors [0:2]) , tuple( colors )]
54 if len( colors ) > 1 else [])
55 return a + new_gens
56 gens = reduce (accum_gens ,
57 its. groupby ( color_freqs , lambda t: t[1]) , [])
58 color_gp = PermutationGroup (gens , domain = color_set )
59

60 # Iterate through the isomorphic colorings
61 found_tcs = set ()
62 for coloring in Permutations_mset ( color_multiset ):
63 tc = tuple( coloring )
64 cNu = color_Nus (Nu_sizes , tc)
65 if not is_minimal (cNu ):
66 continue # we only need ’minimal ’ colorings
67 if tc_hash (tc) not in found_tcs :
68 # When a new coloring is found , yield an LV and
69 # store all isomorphic colorings to check
70 # against in future
71 yield [list(cNu), Nv_edges ]
72 for g_pm , c_pm in its. product (Nv_sym_gp ,
73 color_gp ):
74 isocNu = map(sorted ,
75 permute_cNu (cNu , g_pm , c_pm ))
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76 found_tcs .add( tc_hash ( flatten ( isocNu )))
77

78 # Name variables for the partition functions
79 q, r, s, t, varDelta = var(’q, r, s, t, varDelta ’)
80 lam = var(’lam ’, latex_name =’\\ lam ’)
81 b = var(’b’, latex_name =’\\ beta ’)
82

83 # Z and U for K33 and K4
84 ZK33(q, b) = (q*( exp (-3*b)+q -1)^3 +
85 3*q*(q -1)*( exp (-2*b)+ exp(-b)+q -2)^3 +
86 q*(q -1)*(q -2)*(3* exp(-b)+q -3)^3)
87 UK33(q, b) = -ZK33(q, b). derivative (b)/ ZK33(q, b)/6
88

89 ZK4(q, b) = (q*exp (-6*b) + 4*q*(q -1)* exp (-3*b) +
90 3*q*(q -1)* exp (-2*b) + 6*q*(q -1)*(q -2)* exp(-b) +
91 q*(q -1)*(q -2)*(q -3))
92 UK4(q, b) = -ZK4(q, b). derivative (b)/ ZK4(q, b)/4
93

94 # Put all the local views in a list
95 LVs = list( gen_LVs ())
96

97 # Give names to LVs that occur in the optimizing graphs
98 C1 = [[[1 , 1], [1, 1], [1, 1]], []]
99 C2 = [[[1 , 2], [1, 2], [1, 2]], []]

100 K4 = [[[] , [], []], [[1, 2], [1, 3], [2, 3]]]
101

102 # Helper functions for lists
103 first = lambda l: l[0]
104 rest = lambda l: l[1:]
105

106 # returns true for a list which is empty , a singleton ,
107 # or consists of repetitions of one value
108 def constQ (l):
109 if len(l) <= 1: return true
110 else: return l[0] == l[1] and constQ (rest(l))
111

112 # returns true for nonempty lists of nonnegative numbers
113 def nonNegativeListQ (l):
114 return (len(l) > 0 and
115 reduce ( lambda x,y: x and y,
116 map( lambda c: c >= 0,l),True ))
117

118 # Find the largest color used in a local view
119 def findqC (C):
120 cols = flatten (C[0])
121 if cols == []: return 0
122 else: return max(cols)
123

124 # Count the monochromatic edges in local view C with local
125 # coloring chi. There are three terms , monochromatic edges
126 # incident to v, those from u in N(v) to an external neighbor ,
127 # and those inside N(v)
128 def mChi(C, chi ):
129 cv = first(chi)
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130 cN = rest(chi)
131 return (cN. count(cv) +
132 sum(map( lambda j: C[0][j]. count(cN[j]), range (0 ,3))) +
133 map( lambda l: constQ ([cN[j -1] for j in l]),
134 C[1]). count(true ))
135

136 # Count the monochromatic edges incident to v
137 def mvChi(C, chi ):
138 cv = first(chi)
139 cN = rest(chi)
140 return cN.count(cv)
141

142 # Sum the number the monochromatic edges incident to u in N(v)
143 # In fact this simply counts all monochromatic edges in the
144 # local view , and double counts any inside N(v)
145 def mNChi(C, chi ):
146 cv = first(chi)
147 cN = rest(chi)
148 return (mChi(C,chi) +
149 map( lambda l: constQ ([cN[j -1] for j in l]),
150 C[1]). count(true ))
151

152 # returns True if chi uses an initial seqment of {qC +1 ,... ,q}
153 def validChi (chi , qC):
154 return (Set(chi ). intersection (Set(range(qC+1, max(chi )+1)))
155 == Set(range(qC+1, max(chi )+1)))
156

157 # returns the total weight of (a class of) local colourings
158 # divide by Z to obtain the probability
159 def zChi(C, q, b, chi ):
160 qC = findqC (C)
161 if validChi (chi , qC):
162 return ( binomial (q-qC , max(max(chi)-qC , 0)) *
163 exp(-b*mChi(C, chi )))
164 else:
165 return 0
166

167 # Partition function for a local view
168 def Z(C, q, b):
169 chis = Tuples (range (1, findqC (C)+5) ,4). list ()
170 return sum(zChi(C, q, b, chi) for chi in chis)
171

172 # Internal energy per particle from the perspective of v
173 def Uv(C, q, b):
174 chis = Tuples (range (1, findqC (C)+5) ,4). list ()
175 return 1/2/Z(C, q, b)* sum(mvChi(C, chi )* zChi(C, q, b, chi)
176 for chi in chis)
177

178 # Internal energy per particle from the perspective of N(v)
179 def UN(C, q, b):
180 chis = Tuples (range (1, findqC (C)+5) ,4). list ()
181 return 1/6/Z(C, q, b)* sum(mNChi(C, chi )* zChi(C, q, b, chi)
182 for chi in chis)
183
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184 # We solve DualConstraint == 0 on C1 (or C2) to obtain Delta
185 # Note the change of notation to lam = e^(-b)
186 def DualConstraint (C, q, lam , varDelta ):
187 b = -log(lam)
188 return Uv(C,q,b)+ varDelta *(UN(C,q,b)-Uv(C,q,b))- UK33(q,b)
189

190 Delta(q,lam) = solve( DualConstraint (C1 , q, lam , varDelta ) == 0,
191 varDelta )[0]. rhs ()
192

193 # Slack in the dual constraint
194 def Slack(C, q, lam ):
195 b = -log(lam)
196 return (Uv(C,q,b)+ Delta(q,lam )*( UN(C,q,b)-Uv(C,q,b))-
197 UK33(q,b))
198

199 # Scaling and reparametrisation of the slack
200 def ScaledSlack (C, r, t):
201 q = r+3
202 lam = 1/(1+t)
203 b = log (1+t)
204 ee = (ZK33(q,b)*Z(C,q,b )*4*(1+ t )^17*(3+3* t+t^2+r*(1+t )^2)^2
205 /(3+r)/t^2* Slack(C, q, lam )). simplify_log ()
206 if ee == 0: return ee # sage can ’t factor ’0’
207 else: return ee. factor ()
208

209 # Subtract Uv for C from Uv for K4
210 def UvComparison (C, q, b):
211 return UK4(q,b) - Uv(C,q,b)
212

213 # Scaling and reparametrisation of the difference
214 def ScaledUvComparison (C, s, t):
215 q = s+max (3, findqC (C))
216 b = log (1+t)
217 ee = (ZK4(q, b)*Z(C, q, b )*2*(1+ t)^14
218 /t^2* UvComparison (C, q, b)). simplify_log ()
219 if ee == 0: return ee # sage can ’t factor ’0’
220 else: return ee. factor ()
221

222 # Row of useful observations for a local view
223 def ObsRow (C):
224 b = -log(lam)
225 print(’Computing ObsRow for local view %s’ % C)
226 return [C, simplify (Z(C,q,b)),
227 simplify (2*Z(C,q,b)*Uv(C,q,b)),
228 simplify (6*Z(C, q, b)*UN(C, q, b)),
229 ScaledSlack (C, r, t),
230 ScaledSlack (C,-1,t) if findqC (C) <= 2 else false ,
231 ScaledUvComparison (C, s, t),
232 ( ScaledUvComparison (C, -1, t)
233 if findqC (C) <= 2 else false )]
234

235 # Check the required observations , should all print ’True ’
236 def RequiredObservations (C):
237 ss0 = ’ ScaledSlack is zero ... %s’
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238 ss1 = ’ ScaledSlack has nonneg coeffs ... %s’
239 ss2 = ’ ScaledSlack at q=2 has nonneg coeffs ... %s’
240 dv0 = ’ ScaledUvComparison is zero ... %s’
241 dv1 = ’ ScaledUvComparison has nonneg coeffs ... %s’
242 dv2 = ’ ScaledUvComparison at q=2 has nonneg coeffs ... %s’
243

244 print(’Testing local view %s’ % C)
245

246 qC = findqC (C)
247 ss = ScaledSlack (C, r, t)
248 if C == C1 or C == C2:
249 print(ss0 % ss. is_zero ())
250 else:
251 print(ss1 %
252 nonNegativeListQ (ss. polynomial (QQ). coefficients ()))
253 if qC <= 2:
254 print(ss2 % nonNegativeListQ (ss(r=-1)
255 . polynomial (QQ ). coefficients ()))
256

257 dv = ScaledUvComparison (C, s, t)
258 if C == K4:
259 print(dv0 % dv. is_zero ())
260 else:
261 print(dv1 %
262 nonNegativeListQ (dv. polynomial (QQ). coefficients ()))
263 if qC <= 2:
264 print(dv2 % nonNegativeListQ (dv(s=-1)
265 . polynomial (QQ ). coefficients ()))
266

267 # Check the required observations
268 map( RequiredObservations , LVs );
269 print(’Done ’)
270

271 # Generate the observation table
272 ObsTable = map(ObsRow , LVs)
273 save(ObsTable , os.path.join(os. getcwd (), ’ObsTable ’))
274 save(LVs , os.path.join(os. getcwd (), ’LVs ’))
275 print(’Done ’)
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