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Abstract—Nonlinear Fourier transform (NFT) based trans-
mission technique relies on the integrability of the nonlinear
Schrödinger equation (NLSE). However, the lossless NLSE is
not directly applicable for the description of light evolution in
fibre links with lumped amplifications such as Erbium-doped
fibre amplifier (EDFA) because of the non-uniform loss and gain
evolution. In this case, the path-averaged model is usually applied
as an approximation of the true NLSE model including the fibre
loss. However, the inaccuracy of the lossless path-average model,
even though being small, can also result in a notable performance
degradation in NFT-based transmission systems. In this work, we
extend the theoretical approach, which was firstly proposed for
solitons in EDFA systems, to the case of NFT-based systems to
constructively diminish the aforementioned performance penalty.
Based on the quantitative analysis of distortions due to the
use of path-average model, we optimise the signal launch and
detection points to minimise the models mismatch. Without loss of
generality, we demonstrate how the approach works for the NFT
systems that use continuous NFT spectrum modulation (vanishing
signals) and NFT main spectrum modulation (periodic signals).
Through numerical modelling we quantify the corresponding
improvements in system performance.

Index Terms—Fibre-optic communication, nonlinear Fourier
transform, nonlinear inverse synthesis, periodic nonlinear
Fourier transform.

I. INTRODUCTION

Application of NFT [1] for fibre-optic communication,
dating back to the celebrated work of Hasegawa and Nyu [2],
has attracted a great deal of interest in recent years. The NFT
capability to effectively linearise the channel thus removing
(or, in reality, suppressing) the nonlinear cross-talk, and new
fast numerical methods to perform the NFT operations, have
made the NFT a promising approach in overcoming the
nonlinearity-induced limits on the achievable data rate in fibre
optic communications [3–16]. The basic concept of NFT is the
possibility to decompose the solution of the NLSE (the master
model describing the light evolution in the fibre), into non-
interacting “nonlinear modes” evolving inside the NFT domain
in a simple linear manner. This property makes the parameters
of these modes to be promising candidates to carry the data
along the fibre, the idea which lies behind the most of the NFT-
based techniques [4]. However the linear unperturbed evolu-
tion of NFT modes along the line takes place only in the case
of perfect (so-called integrable) NLSE when the loss and gain
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exactly cancel each other at any propagation point. Evidently,
the NFT technique can stay viable in optical transmission
engineering only if the NLSE stays to be an accurate enough
model to describe the light evolution in a real optical system.
However, in a real-world transmission we always have features
that are at odds with the integrable NLSE model, to name the
most important two: optical noise and fibre loss [17]. The
former is usually studied and incorporated into the integrable
model using a perturbation approach [3, 16], resulting in
the slightly-perturbed stochastic evolution of modulated NFT
spectrum. The latter can be dealt with in two different ways.
First, in fibre links using distributed second-order Raman
amplification compensating for the fibre loss, the signal power
can be assumed to stay almost constant along the propagation
[18–20], which leads us to an effectively unperturbed NLSE
(this case was automatically assumed in the majority of initial
NFT works). At the same time, the lumped EDFA schemes are
widely deployed in modern fibre-optic communication systems
dominating over any other types of amplifiers. When a periodic
amplification (e.g. using EDFA) is implemented, it is possible
to attribute the integrable NLSE version to the path-average
evolution of signal [12, 21–23]. In this work we demonstrate
how to improve the performance of NFT-based systems using
specific properties of the perturbation theory developed for
NLSE in the case of EDFA system. We show that the accuracy
of the path-average description can be improved through a
simple design of the NFT-based links by using the special
launching and detecting points of the system leading to an
improvement in the Q2-factor which is calculated using the
EVM between the received and transmitted QAM symbols.
The paper is organised as follows. First, we recall the ba-
sic features of the path-average model. Then we describe
(without much details) the NFT-based communication system
designs: we consider the NFT communication in the burst
mode [11, 12], dealing with the so-called nonlinear inverse
synthesis [7, 11, 12] technique, and after that describe the
NFT communication system that uses periodically-continued
signals and operates with the periodic version of NFT pro-
cessing [24–26]. Finally, we present and discuss the results
of our numerical modelling and the system performance. Our
findings are summarised in the Conclusion.

II. MASTER MODEL FOR THE OPTICAL SIGNAL
TRANSMISSION IN FIBRE

The integrable NLSE for some field function q in a nor-
malised form (see the details of normalisation for the optical-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/132196427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


0733-8724 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JLT.2017.2775105, Journal of
Lightwave Technology

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

fibre systems in e.g. [4, 21, 23]) reads

i
∂q

∂z
+

1

2

∂2q

∂t2
+ |q|2q = 0, (1)

where in the case considered in our paper, i.e. for the light
propagation down the fibre, t is the retarded time variable in
the frame moving with the group velocity of the light envelope
and z is the distance along the fibre. Eq. (1) is integrable in
the sense that it can be exactly solved through using the NFT
formalism [1] (the “inverse scattering method” name is widely
used in mathematical literature) in a manner that is very similar
to the use of conventional Fourier transform applied for the
solution of linear partial differential equations (see [3, 4] and
works cited therein).
However, in fact, the lossless NLSE is an approximation
of the Maxwell equations describing the propagation of an
electromagnetic field in the fibre. Considering only the second
order dispersion and taking into account the fibre loss, Kerr
nonlinearity, and periodic amplification, the perturbed NLSE
(in the normalised form, again) becomes [23]:

i
∂q

∂z
+

1

2

∂2q

∂t2
+ |q|2q = −iΓq + i

(
eΓL − 1

)
×

N∑
n=1

δ(z − nL)q,

(2)

where q is the envelope of the field, L is the normalized span
length, N is the number of amplifiers and Γ is the fibre loss co-
efficient. Eq. (2) is not integrable, i.e. its exact solution cannot
be explicitly presented as the simple evolution of NFT modes.
However, a simple change of variable q(z, t) = a(z)Q(z, t),
where a(z) satisfies the relation

da

dz
= −Γa+

(
eΓL − 1

)
×

N∑
n=1

δ(z − nL) a, (3)

leads to the following equation for the new function Q:

i
∂Q

∂z
+

1

2

∂2Q

∂t2
+ a(z)2|Q|2Q = 0, (4)

which is the NLSE with the z-dependent nonlinear parameter.
Following [21], we decompose the signal Q and nonlinear
varying parameter a in the form of a sum of average and os-
cillating (marked by tildes) parts: Q(z, t) = Q0(z, t)+Q̃(z, t)

and a(z)2 = 1 + ã(z) with
〈
Q̃(z)

〉
= 〈ã(z)〉 = 0 where the

average 〈·〉 is taken over one span of the length L. Then, the
average function Q0(z, t) obeys the following equation:

i
∂Q0

∂z
+

1

2

∂2Q0

∂t2
+ |Q0|2Q0

+ [higher order terms involving Q̃(z)] = 0,

(5)

where

Q̃(z) = iã1(z)|Q0|2Q0 (6)

up to the order of corrections ∼ L2 (see the Appendix for
more details), and ã1(z) is explicitly given by the expression

ã1(z) =
1

2Γ
+
L

2
−z− Le−2Γz

1− e−2ΓL
, 0 < z < L. (7)

This means that the solution to Eq. (4) can be presented as
a combination of the contribution that is governed by the
(lossless) NLSE, Eq. (5), up to order O(L), and a component
describing deviations of the full solution of (2) from the
solution of pure NLSE due to the periodic variations of loss
and gain [21]:

q(z, t) = Λe−Γz′[
Q0 + Q̃(z′)

]
, (8)

where z = nL+ z′, 0 < z′ < L, and

Λ2 =
2ΓL

1− e−2ΓL
. (9)

In the next section we explain how to exploit these expressions
to improve the performance of fibre-optic communication
systems based on NFT.

III. NFT-BASED COMMUNICATION SYSTEMS

To avoid unnecessary repetitions, we refer readers for the
details of the NFT operations to the recent review paper [4].
In simple terms, it is possible to present the evolution of
any decaying signal governed by Eq. (1) by the equivalent
evolution of nonlinear spectral modes defined inside the NFT
spectrum domain in a unique manner, where evolution of each
nonlinear spectral component along the fibre becomes trivial,
decoupled, and linear. Taking advantage of this property, it
is possible to map our data on the NFT spectrum, generate
the corresponding profile in the space-time domain and then
launch the resulting signal into the fibre. At the receiver, the
data-carrying NFT spectrum is extracted from the (usually
distorted) signal and after a simple equalisation (to reverse
the trivial evolution of NFT spectrum), the transmitted data
is retrieved. In the context of the distortions produced by the
periodic alternation of loss and gain, given the “approximately
integrable” NLSE (5) one can construct Q0 for which the
nonlinear spectrum contains the data to be transmitted. The
resulting Q0 is the path-averaged of the solution of the actual
NLSE describing the lossy fibre, Eq. (2). Next, from Q0 we
construct the function q(0, t) according to the rule given by
Eq. (8) ignoring the higher order terms and launch it into the
lossy system where the light evolution is governed by Eq. (2).
Q0 is only the average of the actual signal travelling through
the fibre over one span length. The presence in (5) of the
additional term Q̃, Eq. (6), results in the deviation of the
solution for the (almost) integrable NLSE, Eq. (5), from the
actual solution for the complete model (2). This additional
term entails two kinds of distortion/error in such a system.
The first type comes from the higher order terms of the
fluctuating part Q̃ omitted in Eq. (5). The second source of
errors emerges from our constructing the function q from
the given Q0 according to Eq. (8), i.e. from the presence of
the oscillatory Q̃ in (8). The latter source of error takes its
minimum value at two spatial points, z1,2, where the condition
ã1(z) = 0 is satisfied, according to definition (6). At such
points in z the average of the solution to Eq. (2) is truly a
solution to Eq. (5) up to order O(L), though there is still
an accumulated error ensuing from the higher orders terms
disregarded in Eq. (5). Therefore, launching and detecting our
signal at these spatial points z1,2 reduces the overall error. This
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Fig. 1: An NIS system. At the transmitter the signal whose continuous NFT spectrum matches the linear spectrum of an
encoded (here an OFDM) signal is generated. At the receiver, the continuous spectrum is calculated and the encoded data
(corrupted by noise) is retrieved.

Fig. 2: Schematic of the optical link with lumped amplifier and the power profile along it for a conventional set up (top
scheme), and the optimised system where the amplifiers are shifted to reduce the accumulated error of the path-average model
(bottom scheme).

approach is known in the soliton communication systems [27–
30], and in this paper we apply it to the NFT transmission. We
would like to stress that this technique can be applied to any
NFT-based communication system (or to any system relying in
its design and functionality on the properties of the integrable
NLSE model), so the particular NFT-based systems considered
below provide just examples of the technique utilisation.
In what follows, we evaluate improvement in the performance
of two different NFT-based communication systems resulting
from the use of the technique described above. The first exam-
ple is the nonlinear inverse synthesis (NIS) system, introduced
in [7] and assessed in [11, 12], in which the data is mapped
on the continuous NFT spectrum of a signal having a finite
extent (i.e. corresponding to NFT for decaying signals). The
experimental evaluations of such a system has been taken place
in [31–33] showing the potential of NFT-based systems in the
mitigation of nonlinear transmission impairments. The second
example is a system based on the periodic NFT, introduced
in [34] and studied in detail in [25, 26], in which the data is
mapped on the main spectrum of the periodically continued

signal. As the periodic NFT spectrum is discrete, the latter
situation is different from the NIS method, and the similarity in
the improvement of performance for both cases demonstrates
the generality of the path-average approach.

A. Nonlinear inverse synthesis NFT systems

The diagram representing the sequence of operations for
the NIS scheme is shown in Fig. 1: here the conventional data
is mapped onto the continuous part of the NFT spectrum of
the signal. This is done numerically through starting out from
a given (encoded) continuous NFT and then performing the
inverse NFT (INFT) operation [35] to recover the correspond-
ing profile in time domain. Here, without loss of generality
and for the illustration purpose, we use the spectrum of an
ordinary orthogonal frequency-division multiplexing (OFDM)
signal as a starting point to get the profile in space-time
domain Q0(0, t). It means that we construct a solution of
Eq.(5), ignoring the higher order terms, whose continuous
NFT spectrum matches the spectrum of OFDM signal. (As
shown in [11], OFDM is the better option for NIS due to its
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good spatial localization). Then the obtained Q0 is used to
get q(0, t) through (8), ignoring the higher order terms and
the resulting signal is sent to the system with periodically
implanted amplifiers (see Fig. 2). After receiving the signal,
the pre-factor Λe−Γz′

in (8) is removed. Then we compute the
NFT spectrum of the resulting waveform, and finally the data-
carrying OFDM signal (or rather its spectrum) is retrieved by
applying a one step equalisation, as the NLSE channel plays
the role of the all-pass filter for the continuous NFT spectrum
part [11, 12]. In our simulations, the fibre parameters have the
typical values: the dispersion coefficient is β2 = −20 ps2/km,
the Kerr nonlinearity coefficient is γ = 1.22/W/km, and the
attenuation coefficient is α = 0.2 dB/km. The link consists of
several spans of lossy fibre with an amplifier at the end of each
span compensating for the span loss. Thus, the first amplifier
overshoots the signal above its power loss during the first part
of the link. The OFDM signal is constructed with 256 sub-
carriers each carrying a QPSK symbol forming a 3 ns signal
amounting to the overall bandwidth of 85 GHz.

B. Periodic NFT systems

Periodic NFT (PNFT) can be advantageous to other NFT-
based designs in terms of the simpler encoding scheme and
reduced processing load at the receiver [24]. Since in the
inverse stage of designing the encoded signal at the transmitter
the PNFT does not require any zero wings, the consecutive
symbols can be transmitted continuously (i.e. without the
“gaps” in the stream otherwise required by the methods em-
ploying ordinary NFT) leading to a higher spectral efficiency
[26]. PNFT communication system proposed in [25] is based
on mapping the encoded data onto the discrete points of
the invariant main spectrum of the signal; a similar block
diagram as the one shown in Fig. 1 without the OFDM mod-
ulator/demodulator and inserting cyclic prefix instead of zero
wings delineates the system, for more details and definitions
see [24, 25]. In our system we use the simple approximation of
perturbed plane wave [24, 36]. A plane wave basically acquires
a single (nondegenerate) point in its main spectrum and a few
double (degenerate) ones which can further split up into pairs
of single points. These single points are the ones determining
the behaviour of the signal. Following the steps explained in
[25, Sec. 3.2], we can control the aperture between points
of each pair allowing to modulate it according to the data
to transmit [25, 36]. Here, we simulate a periodic NFT
based communication system with a 16-QAM constellation
and 1 GSym/s. Symbols are separated using cyclic extensions
according to the distance to which the signal is sent, with the
duration of each extension slightly exceeding the dispersion-
induced memory ∆Text = 2πβ2WZ, where W is the signal
bandwidth and Z is the overall transmission distance.

IV. SIMULATION RESULTS

Firstly, we address the case of NIS-based transmission,
Sec. III-A. At the beginning, we demonstrate that the main
contribution to the improvement in Q2-factor stems from
our diminishing the error between the real system and its
approximation by the NLSE model. This can be made evident
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Fig. 3: Q2-factor and error (10) against location of the
amplifier showing a correlation between the two for a link
with 10 spans of length Lspan = 100 km and signal power
of −11.8,−9.8 and −7.8 dBm. The analytically obtained
optimum launch and/or detection points are marked by a
vertical line.

by showing the correlation between the overall Q2-factor and
the error between the data obtained at the receiver using the
processing of the signal constructed by means of Eqs. (5)-(8)
and by using the true signal obtained from the solution of
the full Eq. (2). In Fig. 3 we depict the error and the Q2-
factor against the shift in the amplifier location showing the
correlation between the two in a link consisting of 10 spans
of length Lspan = 100 km. In this figure, keeping the length
of the link and number of amplifiers fixed, all amplifiers are
shifted with the value shown in the x-axis. Hereafter, the signal
power is defined as the power of the signal at the end of the
first amplifier. The error in Fig. 3 is defined as the l1-norm
of the difference between the solution of Eq. (2), q(Z, t), and
Λe−Γz′

Q0(Z, t) at the end of the link having the total length
Z:

e =

∫
t
|Λe−Γz′

Q0(Z, t)− q(Z, t)|dt∫
t
|q(Z, t)|dt

, (10)

where z′ is the location of the first amplifier. Now we turn to
studying the improvement in the performance resulting from
shifting the location of the amplifiers to the optimum points,
z1 or z2, at which ã1 defined by (7) is exactly zero. Fig. 4 (a)
shows the result for the noiseless system consisting of 10 spans
of length 100 km, so the total system length is 1000 km.
This figure compares the Q2-factor behaviour for two cases:
for the system with zero shift in the amplifier location and
for the system where we shifted the amplifier location to the
point z1. From this figure we see that we can gain a minimum
improvement of 5 dB when the location of the amplifiers is
optimised.
As it is shown in [27], in a split-step Fourier analysis of the
signal evolution, the commutator, [D̂, N̂ ], between the linear
and nonlinear operators

D̂ = − i
2

∂2

∂t2
, N̂ = −i|q|2, (11)

contributes to the error risen from the path-average model
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Fig. 4: a) Q2-factor vs signal power with/without amplifier
shift, b) improvement in Q2-factor and error (e1 and e2 of
Eq. (10) for the case w/o and w/ shifting the amplifier location
respectively) by shifting the amplifier without noise where the
link consists of 10 spans of length Lspan = 100 km for the
OFDM-NIS system of Sec. III-A.

in a form of a prefactor to ã1(z). Hence, the actual error
coming from the approximations in Eqs. (5)–(8) also depends
on the value of the commutator, and the latter increases with
the growing signal power. Therefore, one might expect a
higher improvement in the performance ensuing from our
shifting the amplifier location when we operate with signals
having higher powers. However, as shown in Fig. 4 (b) this
tendency is true at the beginning but after some threshold
power value the optimised system performance starts to drop
down. This discrepancy is explained by the fact that the overall
performance of the NIS system also massively depends on the
errors induced by the numerical NFT routines: these errors
become significant at high signal powers [11] and, in fact, start
to be the determining factor in the performance degradation
of NIS system. Hence, as it is seen from Fig. 4 (b), while the
improvement of the agreement between the approximate and
true models increases with power, the gain in the Q2-factor
reaches a maximum and then starts to decay when we enter
the high powers region. This decline in the performance at
high powers can only be rectified by increasing the number of
samples. Specially, to have an acceptable level of accuracy in
the inverse NFT stage, the time window in which the signal
is defined, should be large enough to contain as much of the
signal energy in the decaying wings as possible. This in turn
leads to a significant computational complexity beyond the

capacity of the computers we use to simulate the system.
The impact of the span length is also visible from Fig. 5,
in which the Q2-factor is plotted against the normalized
location of amplifiers for Lspan = 50, 100, 200 km. This figure
reveals the compliance of the theoretically predicted optimum
points z1,2 with the optimised locations (corresponding to the
maxima in Q2-factor) obtained in the simulation. This figure
also demonstrates the overall increase of the error as the result
of the growing span length.
The simulations described above have been so far performed
without taking noise into account, just demonstrating the
performance improvement with the optimisation of amplifier
locations. Now we consider how the optimisation technique
works in the presence of the ASE noise. Fig. 6 shows the
effectiveness of using the optimal launch and detection points
and a noticeable improvement in the Q2-factor behaviour (as a
function of power) for a link consisting of 10 spans of length
100 km with loss, when the additive ASE noise is added at the
end of each span. To obtain this results, 216 16QAM symbols
are transmitted. The dependency of the performance on the
signal power and bandwidth is illustrated in Fig. 9 in which
the error between the real model and the path-averaged one
(this error is again defined by Eq. (10)) and the Q2-factor for
the two cases are shown. As can be seen from this figure,
an improvement in the performance is obtained at all powers
and bandwidth values. An almost linear improvement in the
performance with bandwidth (larger than 40 GHz) can be
inferred from Fig. 9. This figure yet again makes it evident that
the main contributor to the performance is the error between
the two models.
It is worth mentioning that we use Q2-factor as a measure of
system performance as is conventionally used in the fibre-
optic communication community. Using this figure implies
the assumption of Gaussianity for the received points in the
constellation which in an NFT-based system is not a trivial
fact. However, as is shown in Fig. 7 through a 2D histogram
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Fig. 5: Q2-factor vs normalised amplifier location for different
lengths of span in a noiseless scenario for a signal with power
P = −8.8 dBm for the OFDM-NIS system described in
Sec. III-A in a 1000 km link. The analytically obtained
optimum launch and/or detection points are marked by a
vertical dash for each Lspan.
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NIS system with noise.

of the received points, although with signal dependent param-
eters, noise can be considered as a Gaussian random variable.
Fig. 7 attributes to the received points of an OFDM-NIS
system with 256 subcarriers at the end of a 1000 km link
and shows the histogram of the displacement of the received
complex points in the nonlinear Fourier domain from the
transmitted ones for two sets of constellation points; close to
the centre (s1) and far away from it (s16) for two values of
power P = −11.8 dBm and P = −7.8 dBm. As the power
increases the distribution deviates from Gaussian. To obtain
these histograms, 216 16QAM symbols are used. For the PNFT
symbols, similar results are reported in [37] confirming that the
received constellation points in the nonlinear Fourier domain
acquire a Gaussian distribution to some level of approximation.
To confirm the validity of results from the Monte Carlo
simulation, we also present in Fig. 8 the histogram of the
Q2-factor for three points of Fig. 6 at P = −11.8,−9.8,−7.8
dBm. For each calculation of the Q2-factor, 29 16QAM symbol
are used and the averaging is done over 200 measurement. This
figure clearly shows the reliability of the measurements for the
standard deviation is small in all three cases.

For the PNFT system from Sec. III-B, the same simulations
have been performed basically showing similar tendency in
the system performance when the amplifier locations are
optimised using the theory from Sec. II. Fig. 10 compares
the Q2-factor of the system against the amplifier location
for three lengths of span for a signal with a relatively high
power of 0 dBm in a noiseless link. As is expected for
such a high power, the difference between the performance
for systems with the amplifiers located at the optimum point
and for those with the amplifiers positioned at the beginning
of the fibre is considerable. The next simulation run deals
with the situation when we add ASE noise after each span:
Fig. 11, again, compares the performance of systems with
and without an optimum shift in the location of amplifiers
against the transmission distance. This figure clearly demon-
strates a considerable advantage for the system with optimum
shift of amplifiers. By increasing the length of the link, the
accumulated error caused by the mismatch between the two

Fig. 7: 2D histogram of the error in the received constellation
and the fitted Gaussian distribution for a) symbol s1 close to
the origin of a 16QAM constellation at power P = −11.8
dBm, b) symbol s16 away from the origin of a 16QAM
constellation at power P = −11.8 dBm, c) symbol s1 close
to the origin of a 16QAM constellation at power P = −7.8
dBm and d) symbol s16 close to the origin of a 16QAM
constellation at power P = −7.8 dBm. ∆=λ and ∆<λ
represent the imaginary and real part of the displacement from
the transmitted constellation point respectively.

models grows which intensifies the impact of choosing an
optimum launch/detection point. In Fig. 11 we also depicted
the transmitter and receiver constellation for the two cases (at
distance Z = 1400 km). From this figure we observe that the
deterministic error for the PNFT system (appearing in the form
of a shift in the received points) is clearly more pronounced
when the amplifier location is not optimised. Since the error
incurred from the inaccuracy of the path-averaged model is
deterministic, one can reduce its impact by de-skewing the
received constellation using some pilots (transmitted symbols
known to the receiver). While introducing such techniques
improves the performance (at the expense of losing data rate),
the improvement is limited as is depicted in Fig. 11. In
obtaining these result a pilot as long as 27 16QAM symbols
is used until the performance improvement is considerable.

V. CONCLUSION

In this work, we applied an approach known from the theory
of soliton communications to improve the performance of the
NFT-based transmission systems in fibre links with lumped
EDFA amplifiers. The optimisation can be implemented by
using special optimal launch and detection points within the
first and last spans. In this way, at no extra processing cost, the
accumulated error coming from the periodic loss/amplification
can be minimised. We implemented this method in two
communication systems based on NFT: i) for the NIS system
that utilises the continuous spectrum of a vanishing signal,
and ii) for the PNFT-based system that uses the main NFT
spectrum of a periodic signal. For both types of our systems we
demonstrated a clear performance improvement for different
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Fig. 9: a) Error and b) Q2-factor (in dB) for the case without shift in the amplifier location, and c) error and d) Q2-factor
(in dB) with optimum amplifier location. For all panels: 10 spans of length Lspan = 100 km, the system is the OFDM-NIS
described in Sec. III-A.

Fig. 8: The histogram of the calculated Q2-factor of three
points of Fig.6 at powers P = −11.8,−7.8,−4.8 dBm at the
end of a 1000 km link where 200 measurements of Q2-factor
each obtained from 29 16QAM symbols are used.

span lengths, powers and signal bandwidths, when the location
of amplifiers is optimised.
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APPENDIX

In this appendix we derive the path-average model and its
higher order terms contributing to the error of modelling in
Eqs. (5)-(8). Separating the operations in Eq. (4), let us define

H0(Q,Q∗) = −1

2

∂2Q

∂t2
− |Q|2Q,

and H̄0(Q,Q∗) = −|Q|2Q,
(12)
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Fig. 11: Q2-factor vs distance of a 16QAM constellation for
the two cases of no shift and z1 shift in amplifier location
when signal power is P = 0 dBm and Lspan = 200 km in
PNFT-based system of Sec. III-B. In the insets, the transmitted
(black) and received (light blue) constellation for two cases are
shown at the distance z=1400 km.

from Eq. (4) we have

i
dQ

dz
= H0(Q,Q∗) + ã(z)H̄0(Q,Q∗). (13)

By a change of variable to represent Q in terms of infinitesimal
deviations from the average Q0, one can separate the average
term from higher order ones in Eq. (13) as below

i
∂Q0

∂z
=− 1

2

∂2Q0

∂t2
− |Q0|2Q0

+
1

2
〈ãã2〉

[
H̄0,

[
H̄0, H0

]]
+O(L3),

(14)

with

dã2

dz
= ã1, 〈ã2〉 = 0, (15)

where
[
H̄0, H0

]
is the Lie bracket (see [38] for more details):[

H̄0, H0

]
= −(2Q0|Q0|2 +Q∗0Q0

2
t +Q2

0Q0
∗
tt), (16)

where the subscript represents the time derivative. In this
way, Q is related to Q0, up to O(L2), through the following
expression:

Q = Q0 + iã1|Q0|2Q0 −
1

2
ã2

1|Q0|4Q0

+ ã2

[
H̄0, H0

]
+O(L3).

(17)

Since ã2
1 and ã2 are of order O(L2), keeping the corrections

to Q0 up to the first order gives Eqs. (5) and (6).
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