Marine macroalgae and their associated microbiomes as a source of antimicrobial chemical diversity

Alessandro Busetti^{1*}, Christine A. Maggs² and Brendan F. Gilmore³

¹College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK ²Faculty of Science & Technology, Bournemouth University, BH12 5BB, UK ³School of Pharmacy, Queen's University Belfast, BT9 7BL, UK

*Corresponding author

Alessandro Busetti. E-mail: alessandro.busetti@gla.ac.uk

Short Running Title: Antimicrobials from macroalgae and their microbiomes

Abstract

Antimicrobial resistance (AMR) represents one of the major health threats faced by humanity over the next few years. To prevent a global epidemic of antimicrobial-resistant infections, the discovery of new antimicrobials and antibiotics, better anti-infection strategies and diagnostics, and changes to our current use of antibiotics have all become of paramount importance. Numerous studies investigating the bioactivities of seaweed extracts as well as their secondary and primary metabolites highlight the vast biochemical diversity of seaweeds, with new modes of action making them ideal sources for the discovery of novel antimicrobial bioactive compounds of pharmaceutical interest. In recent years, researchers have focused on characterizing the endophytic and epiphytic microbiomes of various algal species in an attempt to elucidate host-microbe interactions as well as to understand the function of microbial communities. Although environmental and host-associated factors crucially shape microbial composition, microbial mutualistic and obligate symbionts are often found to play a fundamental role in regulating many aspects of host fitness involving ecophysiology and metabolism. In particular, algal "core" epiphytic bacterial communities play an important role in the protection of surfaces from biofouling, pathogens and grazers through the production of bioactive metabolites. Together, marine macroalgae and their associated microbiomes represent unique biological systems offering great potential for the isolation and identification of novel compounds and strategies to contrast the rise and dissemination of AMR.

Key words: Algae, antimicrobials, antimicrobial resistance, bacteria, biofilms, epiphytes, marine, microbiome, pathogens, resistance, seaweeds

Introduction

The emergence of antimicrobial resistance (AMR) in bacteria is an ancient natural process (D'Costa et al., 2011) resulting from the perpetual selection of new traits evolving as a result of mutation (Livermore, 2002), gradual increases in tolerance to sub-lethal concentrations of biocides (Scenihr, 2009) and horizontal gene transfer through transformation, transduction, recombination and conjugation events (Furuya & Lowy, 2006). Despite the undeniable contribution of antibiotic use to the development of a much healthier modern society, the release of large quantities of antibiotics into the environment as a result of their manufacture at an industrial global scale for use in the clinical setting and for agriculture and animal care has increased the selective pressure on bacterial human pathogens (Busetti et al., 2014). As a result, in the clinical setting the link between antibiotic use and the generation and dissemination of resistant and multi-resistant strains is well established (Hawkey, 2008; Wellington et al., 2013). The world faces an emerging epidemic of antibiotic-resistant infections, the second-leading cause of premature death worldwide (Spellberg et al., 2008). Without effective solutions to confront AMR, by 2050, 10 million lives a year and more than 100 trillion USD of economic output world-wide could be at risk due to the rise of drugresistant infections (O'Neill, 2014). This article reviews the role of microbial biofilms in infection and the acquisition of resistance, examines the processes involved in the development and maintenance of microbial biofilms with a particular focus on the role of quorum sensing, discusses antimicrobial bioactives obtained from marine organisms, and reviews the current state of knowledge of marine macroalgae and their associated microbiomes as a source of antimicrobial chemical diversity

Biofilms

Biofilms, consortia of surface-attached microbial cells immersed in a self-secreted extracellular polymeric matrix (Costerton *et al.*, 1978; Donlan, 2002), constitute the principal form of microbial growth in almost all natural and pathogenic environments and a widespread survival strategy amongst microorganisms (O'Toole, 2011; Nett *et al.*, 2012). The National Institutes of Health (NIH) estimates that up to 80% of all human infections implicate microbial biofilms (Davies, 2003; Wu *et al.*, 2015). In fact, biofilm aetiology has been described as the root cause of a majority of chronic and recurrent human infections and in almost all device-associated infections (Wu *et al.*, 2015; Justin & Melander, 2009; Harrison *et al.*, 2010; Hoiby *et al.*, 2011). Microbial biofilms favour both spontaneous mutation and vertical evolution of resistance genes (Savage *et al.*, 2013) as well as the intra- and interspecific transmission and exchange of genetic components like plasmids harbouring resistance genes through horizontal gene transfer mechanisms (such as transformation,

conjugation and transduction) and the consequent dissemination of resistance genes (Appelbaum, 2007). For example, within biofilms, bacteria have been shown to use transposable elements to acquire resistance and develop multi-resistance (Ready *et al.*, 2002). The emergence of multiple-antibiotic-resistant strains amongst pathogens normally present in the hospital environment is of particular concern and over a decade ago hospital-acquired infections were estimated to be responsible for an additional annual health care cost of £986 million in England and Wales alone (Plowman, 2000, Plowman *et al.*, 2001). In light of the role of bacterial biofilms in infection and dissemination of AMR, the isolation and characterization of novel antibiofilm bioactives as well as the identification of novel therapeutic approaches is crucial.

Within biofilms, both Gram positive and Gram negative bacteria use quorum sensing (QS), a type of cell-to-cell communication based on the release and detection of small signalling compounds, to coordinate multicellular behaviour and control a wide variety of physiological activities (Papenfort & Bassler, 2016). Some bacterial species use QS to coordinate the transcription and translation of unrelated genetic loci. For instance, the opportunistic human pathogen *Pseudomonas aeruginosa* uses two hierarchically organized LuxI/LuxR type homologue pairs generally used by some Gram negative bacteria to produce and respond to acyl homoserine lactones, LasI/LasR and Rh11/Rh1R, to control 170-400 genes via a complex network (Hentzer *et al.*, 2002; Schuster *et al.*, 2003; Wagner *et al.*, 2003; Parsek & Greenberg, 2005). The synchronized synthesis and release of gene products with substantially different functions suggests that QS is an adaptative response evolved to cope with conditions of high population density, for instance those found in associations with plant and metazoan hosts (Swift *et al.*, 2001).

Biofilms in the marine environment

In marine environments all unprotected submerged surfaces are rapidly colonized by a succession of marine organisms in a process known as biofouling (Callow & Callow, 2002). Biofouling begins with the adsorption of dissolved organic matter by newly available surfaces and these "conditioned" surfaces are then rapidly colonized by prokaryotes and unicellular eukaryotes to form microbial biofilms (microfouling). In the marine environment, this stage is followed by macrofouling, the recruitment of invertebrate larvae and algal spores (Callow & Callow, 2002). Marine biofilms typically grow as diverse multi-species communities (Mueller *et al.*, 2006). In the photic zone they are usually dominated by phototrophic microalgal consortia (Rao *et al.*, 1997) and represent a crucial carbon source for other trophic levels, affecting mass transfer processes at the ecosystem level.

European Journal of Phycology

Marine microbial biofilms play a crucial role in regulating the colonisation of surfaces by marine microorganisms, invertebrates and algae and in some cases might be responsible for inducing cellular metamorphosis in some larval types (Dobretsov *et al.*, 2006). For example, tetrabromopyrrole, a compound produced by a *Pseudoalteromonas* bacterium, causes larval metamorphosis of the coral *Acropora millepora* (Tebben *et al.*, 2011). The complexity of the modulations of these phenomena is paralleled by the extreme diversity in the distribution and composition of biological and chemical species found in marine microbial biofilms. Experiments using monospecific biofilms (Dobretsov *et al.*, 2006; Wieczorek & Todd, 1998; Qian *et al.*, 2007) have shown an influence on the activity of the marine flora ascribable to the synthesis and release of antimicrobial compounds and a range of stimulatory signalling molecules that mostly remain to be isolated and characterized (Bowman, 2007).

Bioactive compounds

A "bioactive compound" can be defined as a secondary metabolite which at low concentrations exerts either beneficial or harmful effects on living organisms and is therefore of interest for potential industrial or medical applications (Rangel-Huerta *et al.*, 2015) .Of the more than 1 million natural products that have been discovered from both terrestrial and marine living organisms 20-25% have shown antimicrobial, antifungal, anti-protozoan, antinematode, anticancer, antiviral or anti-inflammatory properties (Bérdy, 2005; Penesyan *et al.*, 2010 ; Newman & Cragg, 2106). The diversity of natural compounds can be ascribed to the process of natural selection that has driven the evolution of molecules best suited to perform their biological activities (Koehn & Carter, 2005).

Natural products, chemicals produced by living organisms, are a traditional source of pharmacologically active compounds (Molinski *et al.*, 2009), and continue to be a major inspiration for the majority of US Food and Drug Administration (FDA)-approved agents and for drug discovery and design. In fact, more than 60% of small molecule agents approved for use as drugs can be traced back to natural products such as aspirin (willow/birch), morphine (poppy), penicillin (fungus), Lovastatin (fungus), Adriamycin/dauxorubicin (bacterium) and TaxolTM (yew tree).

Although the first indication of the presence in seawater of bacteria with an inhibitory effect against human pathogens such as *Vibrio cholerae* and *Bacillus anthracis* has been attributed to De Giaxa (1889; see Balcazar *et al.*, 2007), the "modern" study of bioactives of marine origin emerged more than 70 years ago with the pioneering work of the Italian microbiologist Giuseppe Brotzu (Professor of Hygiene at the University of Cagliari, Italy). In 1945 Brotzu grew cultures from seawater samples collected near a sewage outlet in Sardinia

(Mediterranean Sea) and tested isolates for antibiotic activity. Strong inhibitory activity by the fungus *Cephalosporium acremonium* against a broad range of pathogens led to the discovery of the cephalosporin family of antibiotics (Bo, 2000). Rosenfield & Zobell (1947) carried out the first large-scale systematic study on the antibiotic activity of marine organisms against B. anthracis. Spongothymidine and spongouridine extracted and identified from the Caribbean sponge Tethya crypta (Bergmann & Feeney, 1950, 1951) were natural nucleoside analogues, structurally similar to the nucleosides of nucleic acids, but containing arabinose rather than the typical ribose. More importantly, these marine-derived compounds displayed unexpected antiviral activities and became the basis for the synthesis of several antiviral and anticancer drugs including AZT (zidovudine; Fowler et al., 2016), commercially known as Retrovir® (GlaxoSmithKline), the first drug for the treatment of HIV, and Acyclovir (sold as Zovirax®; Han et al., 2017), used to treat infections caused by the herpes simplex virus. Vidarabine[®], also known as Ara-A, is a synthetic purine nucleoside analogue derived from the marine bacterium Streptomyces antibioticus isolated from T. crypta sponges (Agrawal et al, 2016), used typically as an opthalmic ointment for the treatment of acute herpes keratoconjunctivitis (Akkaya & Ozkurt, 2016) and recurrent superficial keratitis caused by HSV-1 and HSV-2.

Today marine ecosystems still largely constitute an untapped resource for pharmaceutical and biotechnological biodiscovery. In the marine environment, whereas submerged non-living surfaces rapidly become macrofouled, the living surfaces of organisms are comparatively free from macrofouling and are covered with a thin film of epibiotic bacteria (Armstrong *et al.*, 2001). This is in part ascribable to metabolites effective as antifouling compounds and to the surface characteristics of marine organisms. Marine macroalgae (seaweeds) are known to utilize a plethora of secondary metabolites to defend themselves from herbivores and bacterial colonization of their exposed surfaces. For example, halogenated furanones produced by the red alga *Delisea pulchra* display antibiofilm effects against *Bacillus subtilis* (Ren *et al.*, 2002), *Escherichia coli* (Ren *et al.*, 2001) and *Pseudomonas aeruginosa* (Hentzer *et al.*, 2002).

Microbes growing on the surface of a host can also contribute to the host's overall antifouling strategy. For example, epibiotic bacteria that colonize the surface of some crustacean larvae synthesize simple antimicrobial molecules that can defend the larvae from fungal infections (Gil-Turnes *et al.*, 1989). Bacteria isolated from the surface of a tunicate and grown as biofilms hindered the attachment of barnacle and tunicate larvae (Holmstrom *et al.*, 1992). Moreover, the presence of epiphytic bacteria on the surface of seaweeds has been shown to be important for proper development, with atypical morphology observed in axenic culture (e.g. Marshall *et al.*, 2006; Wichard *et al.*, 2015), suggesting that seaweeds and their

 epiphytic microbiome collaborate as a unified functional entity or holobiont (reviewed by Egan *et al.*, 2012).

Quorum sensing inhibition as a novel strategy to attenuate bacterial virulence

An emerging approach designed to attenuate bacterial virulence (i.e. the ability to cause damage to living organisms via the production of virulence factors such as enzymes and toxins) and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (QSI). In fact, the inability to co-ordinate communal behaviours can prevent bacterial pathogens from escaping or overcoming host immune responses and establishing an infection (Rasmussen & Givskov, 2006; Hentzer et al., 2003). Moreover, the ability to switch off virulence gene expression exogenously (Brackman et al., 2011) offers a novel strategy for the treatment or prevention of infection (Camara et al., 2002). Overall the use of QSIs represents an "antivirulence" strategy relying on the exploitation of small compounds with the capacity of disarming pathogens thereby rendering them harmless within their host by targeting precise factors (such as toxin function and delivery, virulence gene regulation, or cell adhesion) necessary for the establishment of an infection (Mellbye & Schuster, 2011). In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (Irie & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenve, 2015). For example, acylated homoserine lactone (AHL) QS mutants of Burkholderia cenocepacia and P. aeruginosa form flatter, less structured biofilm (Diggle et al., 2007) and are drastically impaired in their ability to maintain cells within the biofilm (Huber et al., 2001; Tomlin et al., 2005; Yang et al., 2009). Of relevance from a strategic therapeutic perspective, QSI-based treatments have been shown to increase the susceptibility of bacterial biofilms to antibiotics both in vitro and in vivo. For example, a significantly greater percentage of infected wax moth Galleria mellonella larvae and C. elegans survived infection by P. aeruginosa and B. *cenocepacia* following combined treatment with antibiotic and QS inhibitors, compared to treatment with an antibiotic alone (Brackman et al., 2011).

Paradoxically, the strong selective pressure imposed by the use of antibiotics in the clinical setting makes this environment a fertile ground for the generation and spread of resistant and multiresistant strains with a consequent rise in morbidity and mortality due to hospital-acquired infections (Hawkey, 2008). Since QS is not directly involved in essential processes such as cell division, one can reason that its inhibition will not generate a severe selective pressure likely to result in the development of resistance (Rasmussen & Givskov, 2006; Sperandio, 2007; Kendall & Sperandio, 2007). In fact, the impairment of QS results in a disruption of the signalling systems responsible for the synthesis and secretion of a number

of virulence factors. Although it is reasonable to conclude that resistance to QS would be selected *in vivo* during infection, when QS is involved in colonization, systemic spread and immune evasion (Defoirdt *et al.*, 2010), a broad-spectrum combinatorial approach relying on the use of conventional antibiotics in combination with QSIs as an anti-virulence approach would diminish the chance of this event considerably. In a study investigating the vertical evolution of QSI resistance as well as the fitness conferred during bacterial social interaction, Mellbye & Schuster (2011) co-cultured wild type *Pseudomonas aeruginosa* together with QS mutants (mimicking a QSI-sensitive phenotype) in minimal medium containing either bovine serum albumin (BSA) or adenosine as a sole carbon source. Whereas BSA degradation requires extracellular proteases thus providing a social benefit, adenosine is metabolized intracellularly providing a benefit for the individual. QSI-sensitive mimics were found to retard the growth of wild-type QSI-resistant mimics when grown in BSA (public nutrient acquisition) indicating QSI resistance is unlikely to spread, especially during infection (Mellbye & Schuster, 2011).

QSI targets

Marine organisms have proven to be a rich source of natural compounds exhibiting quorum sensing inhibitory activity (Dobretsov *et al.*, 2009, 2011; Saurav *et al.*, 2017). In a study examining the inhibition of marine biofouling by QSI, of 78 bioactives tested from compound libraries derived from marine organisms including sponges, seaweeds, fungi, bacteria, tunicates and cyanobacteria,, more than half of them displayed QSI activity (Dobretsov *et al.*, 2011). In particular, the compounds hymenialdisin, demethoxy encecalin, microcolins A and B and kojic acid were found to inhibit the QS responses of the LuxR based reporter strains induced by N-3-oxo-hexanoyl-L-homoserine lactone at micromolar concentrations.

The three components of the Gram negative AHL system are (1) the signal molecule generator, (2) the signal molecule itself and (3) the signal molecule receptor, representing the key targets of QSI for an anti-pathogenic drug approach (Rasmussen & Givskov, 2006).

(1) In AHL-based Gram negative QS, an inactivation of the LuxI-type synthase would interrupt the synthesis of the relative AHL signal meaning that a significant threshold concentration could not be reached, with failure to activate the downstream genes responsible for virulence. *In vitro*, a few substrate analogues have been found to actively block the production of AHL. For example, analogues of *S*-adenosyl-*L*-methionine (SAM) have proven to be potent inhibitors of AHL synthase in *P. aeruginosa* (Rasmussen & Givskov, 2006). This has yet to be tested *in vivo* and remains the least investigated method of interfering with QS.

(2) The signalling molecule itself constitutes another target to inhibit QS. The three principal strategies to de-activate a signalling molecule are metabolic, chemical and enzymatic degradation or inactivation. An alkaline pH causes the homoserine lactone ring

European Journal of Phycology

(Fig. 1) to open (Yates *et al.*, 2002). For example, when a plant recognizes colonization by the pathogen *Erwinia carotovora*, which uses AHL-based QS to regulate the synthesis of virulence factors, the plant actively causes alkalinization at the site of attack resulting in lactonolysis. In addition to pH, several other factors including temperature and the length of the acyl side chain influence the opening of the lactone ring. An increase in temperature will accelerate the rate at which the ring opens, whereas the longer the side chain the slower will be the lactonolysis.

AHL lactonases are enzymes that catalyse the ring opening reaction of the lactone ring (Rasmussen & Givskov, 2006). Several Bacillus species are known to produce the lactonase enzyme AiiA (Dong et al., 2000), which is specific for the degradation of AHLs. Homologues of AiiA have also been found in other members of the Bacillus genus as well as members of the genera Pseudomonas, Arthrobacter and Klebsiella (Rasmussen & Givskov, 2006). This form of inactivation is reversible when the pH is acidic. Moreover, when the AiiA gene was heterologously expressed in *P. aeruginosa* PAO1 a significant inhibition of virulence gene production and swarming motility was achieved (Reimmann et al., 2002). Similarly, when cloned and expressed in *Burkholderia* species the AiiA gene coding for the lactonase enzyme significantly reduced virulence in this pathogen (Ulrich 2004; Wopperer et al., 2006). AHL acylases are another class of enzymes that can deactivate the Gram negative signalling molecule by cleaving the N-acyl bond of AHLs. Production of acylases has been reported in numerous genera of bacteria including Ralstonia, pseudomonads, and a Streptomyces (Lin et al., 2003). Bacteria such as Variovorax paradoxus and P. aeruginosa produce amino acylases responsible for the cleavage of the peptide bond of the signal molecule (Rasmussen & Givskov, 2006) and can use the products of this metabolism as their sole source of energy. It has been hypothesized that P. aeruginosa creates its own AHL-acylases to regulate its own OS system, possibly to evade detection during initial infection of a host (Sio *et al.*, 2006).

(3) In AHL-based QS, the LuxR transcription factor responsible for the regulation of downstream QS-dependent pathways represents another valid target for QSI. The use of small AHL analogues to prevent LuxR activation has proven a successful strategy to target LuxR type transcription factors (Suga & Smith, 2003). These analogues can displace the original AHL and cause activation of the LuxR-type protein, acting as competitive agonists (Schaefer *et al.*, 1996). Synthetic analogues are developed in one of three ways: substitution in the acyl side chain leaving the ring unchanged; substitution and alteration to the lactone ring while the side chain remains unchanged; or extensive modification to both the side chain and lactone ring (Rasmussen & Givskov, 2006).

Algal compounds – promising leads for the treatment of biofilm-related infections

Macroalgal bioactives such as sulphated polysaccharides and kahalalides have long been recognized for medical applications (Smit, 2004) and interest in them remains high (e.g. Barbosa *et al.*, 2014). However, to date, only a few lead compounds and their synthetic derivatives have progressed to animal trials (e.g. Wu *et al.*, 2004).

Seaweeds rely on the coating/secretion of secondary metabolites (toxins and broad spectrum antimicrobials and antivirals) for protection against micro- and macro-colonizing organisms (Hentzer *et al.*, 2003). For example, several halogenated furanone compounds isolated from the red seaweed *Delisea pulchra* (Givskov *et al.*, 1996) are released at its surface at concentrations capable of inhibiting both prokaryotic and eukaryotic colonization (Steinberg *et al.*, 2002). These compounds were shown to be QSI-active against a broad range of bacteria (Hentzer *et al.*, 2002; Givskov *et al.*, 1996). The furanones produced by *Delisea* accelerate the turnover of the LuxR transcription factor inhibiting QS-dependent gene expression in Gram negative bacteria (Manefield *et al.*, 2002) and the capacity to synthesize such compounds is likely to have evolved as an antifouling strategy to preserve the surface of algal fronds from colonization by Gram negative marine bacteria. However, as they are brominated, their application in humans is limited, making it necessary to search for QSI from other natural sources (Zhu & Sun, 2008). Overall, macroalgae have yielded more than 3,000 natural products, accounting for approximately 20% of marine natural compounds (Amsler, 2008).

Red seaweeds (Rhodophyta)

Research on red seaweeds has discovered the majority of macroalgal secondary metabolites accounting for more than 1500 bioactives (Maschek & Baker, 2008)). With the exception of phlorotannins, which are unique to brown algae, red seaweeds synthesize all major classes of algal natural products (Blunt *et al.*, 2016). Red algae primarily synthesize isoprenoid and acetogenin derivatives, as well as amino acid, shikimate and nucleic acid derivatives (Amsler, 2008). Halogenated compounds underpin red algal chemistry, with over 90% of compounds reported to contain bromine or chlorine.

The genus *Laurencia* (Rhodomelaceae, Ceramiales) has been the subject of nearly 50% of the publications on red algal chemistry, producing a plethora of halogenated sesquiterpenes and C15 acetogenins, as well as higher terpenes (Davis & Vasanthi, 2011). *Laurencia* species occur widely on temperate and tropical coasts and are recognized as a rich source of novel secondary metabolites (Cabrita *et al.*, 2010). Several of them display promising antimicrobial activity against a range of bacteria. For example, an unidentified species of *Laurencia* from Malaysia exerted potent antimicrobial activity against a range of marine bacteria; two halogenated C15 acetogenin compounds, elatol and iso-obtusol, were isolated from this alga and structurally elucidated based on spectroscopic data, confirming the potential of these

European Journal of Phycology

compounds as a source of pharmaceutically relevant bioactives (Vairappan *et al.*, 2001). In extracts from *L. majuscula*, elatol inhibited six bacterial species, with significant antimicrobial activities against *Staphylococcus epidermis*, *Klebsiella pneumonia* and *Salmonella sp.*. Iso-obtusol, a polyhalogenated sesquiterpene produced by *Laurencia obtusa*, was found to display antimicrobial activity against several bacteria, and proved particularly active against *K. pneumonia* and *Salmonella* sp. (Vairappan, 2003). Interestingly, the antimicrobial activity of elatol and iso-obtusol was found to be equal or better than conventional antibiotics against *K. pneumonia* and *Salmonella* sp. through a bacteriostatic mode of action (Vairappan, 2003). Subsequently, Vairappan *et al.* (2010) discovered a novel brominated diterpene, 10-acetoxyangasiol, as well as four previously known metabolites, aplysidiol, cupalaurenol, 1-methyl-2,3,5-tribromoindole, and chamigrane epoxide in *Laurencia* sp. These compounds displayed strong antimicrobial activity against clinically relevant bacteria including *Staphylococcus aureus*, *Streptococcus pyogenes*, *Salmonella sp.* and *Vibrio cholera*.

Members of the order Bonnemaisoniales also produce a diverse array of secondary halogenated metabolites displaying antimicrobial activity (Nash *et al.*, 2005). *Delisea*, *Asparagopsis*, *Bonnemaisonia* and *Ptilonia* all synthesize a group of linear halogenated ketones and branched lactones. Amongst these, the fimbrolides, a group of halogenated furanones (Fig. 2) from *Delisea pulchra* from southeastern Australia, show QSI activity against a range of bacteria, functioning as an intracellular signal antagonist as well as accelerating LuxR turnover (Rasmussen *et al.*, 2000; Manefield *et al.*, 2002), and hence providing an antifouling defence (Kjelleberg & Steinberg, 2001). From a screen of 39 macroalgae, *Asparagopsis taxiformis* extracts were shown to inhibit QS in *C. violaceum* CV026 bioreporter assays (Jha *et al.*, 2013). Based on Ion Cyclotron Resonance Fourier Transformation Mass Spectrometry analysis of the QSI-active fraction, the authors proposed that the compound responsible for the QSI activity was 2-dodecanoyloxyethanesulfonate (Fig. 6; Jha *et al.*, 2013).

Bonnemaisonia hamifera (Figs 7, 8) is native to Japan, was introduced into the North Atlantic Ocean prior to 1890 (Maggs & Stegenga, 1998) and is now widely distributed there. *B. hamifera* has a heteromorphic life cycle, alternating between a diploid filamentous "*Trailliella*" tetrasporophyte and a haploid gametophyte (Breeman *et al.*, 1988). Like *Delisea pulchra, B. hamifera* produces an assortment of mono- and poly-halogenated bioactives including 2-heptanones, 2-heptanols, acetates and acids, some of which display antimicrobial activity (Siuda *et al.*, 1975; Jacobsen & Madsen, 1978; McConnell & Fenical, 1979, Nylund *et al.*, 2013; Enge *et al.*, 2013).

One of the main secondary metabolites, 1,1,3,3-tetrabromo-2-heptanone (Fig. 11), stored in specialized gland cells in the *Trailliella* phase, has an ecologically relevant role as an

antifouling agent against bacterial surface colonization. Natural surface concentrations (3.6 μ g cm⁻²) of 1,1,3,3-tetrabromo-2-heptanone applied to artificial panels significantly reduced the number of settled bacteria (Nylund *et al.*, 2008). Moreover, organic extracts of *B. hamifera* show broad-spectrum antimicrobial activity at ecologically relevant concentrations (Nylund *et al.*, 2005, 2008, 2013) confirming the potential of this species as a novel source of marine-derived antibiofilm compounds active against human pathogens. The compound also acts as a chemical grazing deterrent (Enge *et al.*, 2013), which is metabolically expensive to produce but protects the seaweed against bacteria as well as grazers (Nylund *et al.*, 2013).

It is interesting to note that several of these members of the Bonnemaisoniales found in Europe and containing halogenated compounds such as bromophenols (Paul *et al.*, 2006) are aliens. These compounds undoubtedly contribute to their invasive potential by deterring grazing and allowing the establishment of high biomass (Enge *et al.*, 2013). This is a clear indication that alien species are worth targeting in the search for new bioactives. QSI compounds have also been described from a few non-invasive red algae, such as *Ahnfeltiopsis flabelliformis* (Gigartinales) from Korea which has been shown to produce three AHL inhibitory compounds, floridoside (Fig. 3), betonicine (Fig. 4) and isethionic acid (Fig. 5) (Kim *et al.*, 2007).

Brown seaweeds (Phaeophyceae)

Brown algae have also yielded a rich chemical diversity with more than 1,140 reported secondary metabolites. The most studied and representative bioactives of the brown seaweeds comprise diterpenes, phlorotannins, and small C11 acetogenins, all with very little halogenation (Blunt *et al.*, 2007). Phlorotannins are distinguishing compounds of brown algae, with a wide range of activities of pharmacological interest including antimicrobial (Eom *et al.*, 2012), antiviral (Ahn *et al.*, 2004), antidiabetic (Lee & Jeon, 2013; Kang *et al.*, 2013), anti-inflammatory (Sugiura *et al.*, 2013), anti-allergic (Sugiura *et al.*, 2009), anticancer (Lee *et al.*, 2012), and anti-neurodegenerative diseases (Myung *et al.*, 2005, Sathya *et al.*, 2013; Jung *et al.*, 2009; Heo *et al.*, 2012) especially against Alzheimer's disease (Yoon *et al.*, 2008; Yoon *et al.*, 2009i Ahn *et al.*, 2012). The ecological role of phlorotannins in brown seaweeds appears to include defence against epiphytes (Nakajima *et al.*, 2016), as well as grazing deterrence (McClintock & Baker, 2001).

Although many studies examining brown algal chemistry have focused on *Dictyota* (Dictyotaceae) and its wealth of terpenes (>250) (Munro & Blunt, 2005), several other genera display activities of pharmacological relevance. For example carotenoids from several brown algae have a wide range of bioactivities (Peng *et al.*, 2011). The meroditerpenoid methoxybifurcarenone isolated from *Cystoseira tamariscifolia* displays antifungal activity

European Journal of Phycology

against three plant pathogenic fungi and antibacterial activity against *Agrobacterium tumefaciens* and *E. coli* (Bennamara *et al.*, 1999).

Halidrys siliquosa (family Sargassaceae) is a large temperate macroalga growing up to 120 cm long in rock pools and sometimes as forests in the shallow subtidal zone. The bioactive potential of *H. siliquosa* was identified over four decades ago. Hornsey & Hide (1974, 1976) screened crude extracts of *H. siliquosa* against a series of opportunistic human pathogens and discovered antimicrobial activity against *Staphylococcus aureus, E. coli, Bacillus subtilis, Streptococcus pyogenes* and *Proteus.* Culioli *et al.* (2008) reported the antifouling activity of meroditerpenoids isolated from this species and identified nine tetraprenyltoluquinol-related metabolites exhibiting antifouling properties and inhibiting the growth of the marine bacteria *Cobetia marina, Marinobacterium stanieri, Vibrio fischeri, Pseudoalteromonas haloplanktis.* Non-cytotoxic concentrations of these meroditerpenoids were found to prevent the settlement of cyprids of *Balanus amphitrite. H. siliquosa* crude extract was active against the parasites *Trypanosoma brucei rhodesiense, T. cruzi* and *Leishmania donovani* and the bacterium *Mycobacterium tubercolosis* (Spavieri *et al.,* 2010) highlighting the potential of this alga for the treatment of mycobacterial and protozoal infections.

Busetti *et al.* (2015) reported antimicrobial and antibiofilm activity of methanolic extracts of *H. siliquosa* against clinically relevant human pathogens of the genera *Staphylococcus, Streptococcus, Enterococcus, Pseudomonas, Proteus, Stenotrophomonas,* and *Chromobacterium*. Biofilms of *S. aureus* MRSA ATCC 33593 and *S. aureus* MRSA NCTC 10442 were found to be susceptible to *H. siliquosa* extract which achieved minimum biofilm eradication concentration (MBEC) values of 1.25 mg ml⁻¹ and 5 mg ml⁻¹ respectively. Active extracts showed no toxicity against wax moth (*G. mellonella*) larvae across a wide range of concentrations (Busetti *et al.*, 2015). The activity of *H. siliquosa* methanolic extracts against the emerging pathogen *Stenotrophomonas maltophilia* suggests the production of bioactives with the potential to be used in a treatment strategy for cystic fibrosis as well as therapies for *Staphylococcus* biofilm-related infections. Moreover, the promising range of activities displayed by *H. siliquosa* organic extracts against clinically relevant, antibioticresistant, human pathogens highlight this alga as a candidate for further studies focused on the isolation of antibiofilm compounds and antimicrobials for the treatment of infections involving multi-resistant pathogenic strains.

Macroalgal microbiomes as a source of novel bioactives of pharmaceutical relevance

In recent years, several studies characterizing algal epiphytic bacterial communities (Figs 12-13) have highlighted the presence of "core microbial species" in mutualistic or obligate association with their host (Singh et al., 2015). In particular, several bacterial epiphytes have been reported to produce bioactive compounds that can protect macroalgal surfaces from biofouling (Dobretsov & Qian, 2002). However, whereas several concerted studies have focused on characterizing the composition of the human microbiomes as well as deciphering the physiological significance of the host-microbe interactions underlying the mutualistic relationships therein, in seaweeds the microbiomes and the significance of their functional relationship with their hosts remain largely unexplored. The advent of culture-independent, DNA-based, metagenomic and transcriptomic methods has provided powerful new tools for the characterization of host-associated microbiomes as well as for the elucidation of the many, complex, yet often fundamental processes involved in host-microbe interactions, providing future studies the tools to investigate the functional microbiome involved in the often complex life cycles of macroalgae (Singh & Reddy, 2016). The discoveries deriving from such studies could assist in promoting fitness and productivity in macroalgal species of commercial interest through the modulation of a functionally active microbiome as well as providing enormous potential for the discovery of novel antibiofilm or QSI compounds of clinical relevance.

For example, the epiphytic bacterium *Pseudoalteromonas tunicata* isolated from the surface of *Ulva lactuca* can hinder biofilm formation of competing Gram negative microbes through the synthesis of pigmented substances that inhibit LuxR-dependent transcriptional control through a similar mode of action to the furanones (McLean *et al.*, 2004). *Halobacillus salinus*, a marine Gram positive bacterium isolated from a seagrass, synthesizes and releases QSI bioactives active against Gram negative strains (Teasdale *et al.*, 2009) through competitive binding (Teasdale *et al.*, 2009). These examples indicate that QS inhibition represents a natural, widespread, antifouling strategy evolved by marine organisms making marine ecosystems an ideal source for the discovery of QS inhibitors with potentially clinically relevant antibiofilm activity.

In a recent study, an isolate belonging to the *Pseudoalteromonas* genus obtained from the algal fronds of the red seaweed *Plocamium maggsiae* displayed potent QSI activity against acyl homoserine lactone-based reporter strains (Busetti *et al.*, 2014). The isolate's filter-sterilized supernatant significantly diminished biofilm biomass both during biofilm formation as well as in pre-established, mature *P. aeruginosa* PAO1 biofilms causing a 0.97log reduction and a 2-log reduction in PAO1 biofilm viable counts in the biofilm formation and eradication assays. The crude organic extract obtained from this isolate displayed a minimum inhibitory concentration (MIC) of 2 mg ml⁻¹ against PAO1 but failed to produce a minimum bactericidal concentration (MBC) confirming the lack of antimicrobial activity in

European Journal of Phycology

the extract at the concentrations tested. Sub-MIC concentrations of the crude organic extract were found to significantly reduce the quorum sensing (QS)-dependent production of the two virulence factors pyoverdin and pyocyanin in *P. aeruginosa* PAO1 without affecting growth. A combinatorial approach using tobramycin and the crude organic extract at 1 mg ml⁻¹ against planktonic *P. aeruginosa* PAO1 increased the effectiveness of tobramycin by ten times, lowering its MIC against this pathogen from 0.75 to 0.075 mg ml⁻¹ (Busetti *et al.*, 2014). The results of this study confirm the efficacy of combinatorial strategies combining current antibiotic treatment with (non-antibiotic) QSI compounds derived from algal microbial epiphytes to improve the efficacy of current antibiotic treatments.

Future perspectives

The imminent global health threat of antimicrobial resistance with the realistic prospect of mankind entering a 'post-antibiotic era' has driven research into innovative therapeutic strategies relying on different targets and approaches for the treatment of microbial infections. The gradual elucidation of widespread bacterial communication (QS) systems regulated by small diffusible signal molecules as a means to coordinate group behaviours has revolutionized our classical conception of bacteria as unicellular and thus independent in nature. Targeting complex social behaviours, which include virulence and pathogenicity, regulated by chemical intra- and inter-species signal molecules which allow them to coordinate their behaviour at a community level, represents a novel target for non-antibiotic anti-infective chemotherapy.

Marine organisms are known to produce a variety of QSIs that can thwart biofilm development of competing species (McClean & Winson *et al.*, 1997; Bauer & Robinson 2002; Saurav *et al.*, 2017), representing an important resource for the isolation of novel "antipathogenic" antibiofilm compounds. Bacteria from algal microbiomes remain a relatively untapped source of novel candidate compounds displaying QSI activity with the potential to attenuate biofilm formation, virulence factor production or increase the antimicrobial susceptibility of clinically important pathogenic bacteria in the constant fight against emergence of multi-resistant microorganisms (Saurav *et al.*, 2017).

As in many other discovery and development programs in marine bioactives, there are a multitude of challenges associated with the biodiscovery and commercialization of macroalgal compounds as pharmaceutical agents. These include accessibility to the biodiversity, efficient screening, sustainable supply, variability in the spectrum and quantities of bioactives produced (due to factors such as seasonality and geographic distribution), elucidation of the mechanism of action, suitable pharmacokinetics/ pharmacodynamic parameters and ultimately costs associated with sustainable aquaculture and processing. Despite this, a significant body of early-stage biodiscovery research highlights marine

macroalgae as promising sources of novel antimicrobials, antibiofilm compounds, antivirals, anticancer, antimicrobial, anti-inflammatory and neuroprotective agents.

Several studies have validated approaches that combine regular antibiotic agents with non-antibiotic compounds, such as QSIs, to enhance the effectiveness of present treatments, but have not yet moved to clinical trials. Drawing inspiration from nature, future studies could focus on evaluating the combinatorial effects of algal secondary metabolites with those produced by the core members of their bacterial microbiomes in an attempt to mimic the complex natural chemical mechanisms underlying the mutualistic symbiotic relationships in their environments.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

All authors contributed to the manuscript. A. Busetti prepared the first draft; A. Busetti, C.A. Maggs and B.F. Gilmore reviewed, revised and updated the manuscript.

Funding

This work was funded by the Beaufort Marine Biodiscovery Project (BEAU/BIOD/01; BEAU/BIOD/03; BEAU/BIOD/04), within the National Development Programme of Ireland.

REFERENCES

- Agrawal, S., Adholeya, A. & Deshmukh, S.K. (2016). The pharmacological potential of nonribosomal peptides from marine sponge and tunicates. *Frontiers in Pharmacology*, **7**: 10.3389/fphar.2016.00333.
- Ahn, B.R., Moon, H.E., Kim, H.R., Jung, H.A. & Choi, J.S. (2012). Neuroprotective effect of edible brown alga *Eisenia bicyclis* on amyloid beta peptide-induced toxicity in PC12 cells. *Archives of Pharmacal Research*, **35**: 1989-1998.
- Ahn, M.J., Yoon, K.D., Min, S.Y., Lee, J.S., Kim, J.H., Kim, T.G., Kim, S.H., Kim, N.G., Huh, H. & Kim, J. (2004). Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga *Ecklonia cava*. *Biological and Pharmaceutical Bulletin*, 27: 544-547.

י ר	
2	
3	
4	
5	
6	
7	
γ Q	
0	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
20	
30	
37	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
47	
48	
10	
49	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	

Akkaya, S. & Ozkurt, Y.B. (2016) Persistent symblepharon in an infant following epidemic
keratoconjunctivitis. Medical Hypothesis, Discovery and Innovation in Ophthalmology,
5: 74-77.

- Amsler, C.D. (2008) Algal Chemical Ecology. Springer Verlag, Berlin & Heidelberg.
- Appelbaum, P.C. (2007) Reduced glycopeptide susceptibility in methicillin-resistant
 - Staphylococcus aureus (MRSA). International Journal of Antimicrobial Agents, **30**: 398-408.
- Armstrong, E., Yan, L., Boyd, K.G., Wright, P.C. & Burgess, J.G. (2001). The symbiotic role of marine microbes on living surfaces. *Hydrobiologia*, 461: 37-40.
- Balcazar, J.L., Rojas-Luna, T. & Cunningham, D.P. (2007). Effect of the addition of four potential probiotic strains on the survival of Pacific white shrimp (*Litopenaeus vannamei*) following immersion challenge with *Vibrio parahaemolyticus*. *Journal of Invertebrate Pathology*, **96**: 147-150.
- Barbosa, M., Valentão, P., & Andrade, P. B. (2014). Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases. *Marine Drugs*, 12: 4935–4972.
- Bennamara, A., Abourriche, A., Berrada, M., Charrouf, M., Chaib, N., Boudouma, M. & Garneau, F.X. (1999). Methoxybifurcarenone: an antifungal and antibacterial meroditerpenoid from the brown alga *Cystoseira tamariscifolia*. *Phytochemistry*, **52**: 37-40.
- Bérdy, J. (2005). Bioactive microbial metabolites. Journal of Antibiotics, 58: 1-26.
- Bergmann, W. & Feeney, R.J. (1950). The isolation of a new thymine pentoside from sponges. *Journal of the American Chemical Society*, 72: 2809-2810.
- Bergmann, W. & Feeney, R.J. (1951). Contributions to the study of marine products. XXXII. The nucleosides of sponges. I. *Journal of Organic Chemistry*, 16: 981-987.
- Blunt, J.W., Copp, B.R., Hu, W.P., Munro, M.H., Northcote, P.T. & Prinsep, M.R. (2007). Marine natural products. *Natural Product Reports*, 24: 31-86.
- Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H. & Prinsep, M.R. (2016). Marine natural products. *Natural Product Reports*, 33: 382-431.
- Bo, G. (2000). Giuseppe Brotzu and the discovery of cephalosporins. *Clinical Microbiology and Infection*, **6**, Suppl **3**: 6-9.
- Bowman, J.P. (2007). Bioactive compound synthetic capacity and ecological significance of marine bacterial genus *Pseudoalteromonas*. *Marine Drugs*, **5**: 220-241.
- Brackman, G., Celen, S., Hillaert, U., Van Calenbergh, S., Cos, P., Maes, L., Nelis, H.J. & Coenye, T. (2011). Structure-activity relationship of cinnamaldehyde analogs as inhibitors of AI-2 based quorum sensing and their effect on virulence of *Vibrio* spp. *PloS ONE*, 6, 1: e16084.

- Brackman, G. & Coenye, T. (2015). Quorum sensing inhibitors as anti-biofilm agents, *Current Pharmaceutical Design*, **21**: 5-11.
- Brackman, G., Cos, P., Maes, L., Nelis, H.J. & Coenye, T. (2011). Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. *Antimicrobial Agents and Chemotherapy*, 55: 2655-2661.
- Breeman, A.M., Meulenhoff, E.J.S. & Guiry, M.D. (1988). Life history regulation and phenology of the red alga *Bonnemaisonia hamifera*. *Helgoländer Meeresuntersuchungen*, **42**: 535-551.
- Busetti, A., Shaw, G., Megaw, J., Gorman, S.P., Maggs, C.A. & Gilmore, B.F. (2014).
 Marine-derived quorum-sensing inhibitory activities enhance the antibacterial efficacy of tobramycin against *Pseudomonas aeruginosa*. *Marine Drugs*, **13**: 1-28.
- Busetti, A., Thompson, T.P., Tegazzini, D., Megaw, J., Maggs, C.A. & Gilmore, B.F. (2015). Antibiofilm activity of the brown alga *Halidrys siliquosa* against clinically relevant human pathogens. *Marine Drugs*, **13**: 3581-3605.
- Cabrita, M.T., Vale, C. & Rauter, A.P. (2010). Halogenated compounds from marine algae. *Marine Drugs*, **8**: 2301-2317.
- Callow, M.E. & Callow, J.E. (2002). Marine biofouling: a sticky problem. *The Biologist*, **49**: 10-14.
- Camara, M., Williams, P. & Hardman, A. (2002). Controlling infection by tuning in and turning down the volume of bacterial small-talk. *The Lancet Infectious Diseases*, 2: 667-676.
- Costerton, J.W., Geesey, G.G. & Cheng, K.J. (1978). How bacteria stick. *Scientific American*, **238**: 86-95.
- Culioli, G., Ortalo-Magne, A., Valls, R., Hellio, C., Clare, A.S. & Piovetti, L. (2008).
 Antifouling activity of meroditerpenoids from the marine brown alga *Halidrys siliquosa*. *Journal of Natural Products*, **71**: 1121-1126.
- Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. *Nature Reviews Drug Discovery*, 2: 114-122.
- Davis, G.D. & Vasanthi, A.H. (2011). Seaweed metabolite database (SWMD): A database of natural compounds from marine algae. *Bioinformation*, 5: 361-364.
- D'Costa, V.M., King, C.E., Kalan, L., Morar, M., Sung, W.W., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G.B., Poinar, H.N. & Wright, G.D. (2011). Antibiotic resistance is ancient. *Nature*, **477**: 457-461.
- Defoirdt, T., Boon, N. & Bossier, P. (2010). Can bacteria evolve resistance to quorum sensing disruption? *PLoS Pathogens*, **6**, 7, e1000989.
- Diggle, S.P., Crusz, S.A. & Cámara, M. (2007). Quorum sensing. *Current Biology*, **17**: R907-910.

Dobretsov, S., Dahms, H.U. & Qian, P.Y. (2006). Inhibition of biofouling by mari	ne
microorganisms and their metabolites. <i>Biofouling</i> , 22: 43-54.	

- Dobretsov, S. & Qian, P.Y. (2002). Effect of bacteria associated with the green alga *Ulva reticulata* on marine micro- and macrofouling. *Biofouling*, **18**: 217-228.
- Dobretsov, S., Teplitski, M., Bayer, M., Gunasekera, S., Proksch, P. & Paul, V.J. (2011). Inhibition of marine biofouling by bacterial quorum sensing inhibitors. *Biofouling*, 27: 893-905.
- Dobretsov, S., Teplitski, M. & Paul, V. (2009). Mini-review: quorum sensing in the marine environment and its relationship to biofouling. *Biofouling*, **25**: 413-427.
- Dong, Y.H., Xu, J.L., Li, X.Z. & Zhang, L.H. (2000). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of *Erwinia carotovora*. *Proceedings of the National Academy of Sciences of the United States of America*, **97**: 3526-3531.
- Egan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S. & Thomas, T. (2012). The seaweed holobiont: understanding seaweed–bacteria interactions. *FEMS Microbiology Reviews*, **37**: 462–476.
- Enge, S., Nylund, G.M., Harder, T. & Pavia, H. (2013). An exotic chemical weapon explains low herbivore damage in an invasive alga. *Ecology*, **93**: 2736-2745.
- Eom, S., Kim, Y. & Kim, S. (2012). Antimicrobial effect of phlorotannins from marine brown algae. Food and Chemical Toxicology, 50: 3251-3255.
- Fowler, M.G. *et al.* (2016). Benefits and risks of antiretroviral therapy for perinatal HIV prevention. *New England Journal of Medicine*, **375**: 1726-1737.
- Furuya, E.Y. & Lowy, F.D. (2006). Antimicrobial-resistant bacteria in the community setting. *Nature Reviews Microbiology*, 4: 36-45.
- Gil-Turnes, M.S., Hay, M.E. & Fenical, W. (1989). Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. *Science*, **246**: 116-118.
- Givskov, M., de Nys, R., Manefield, M., Gram, L., Maximilien, R., Eberl, L., Molin, S., Steinberg, P.D. & Kjelleberg, S. (1996). Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. *Journal of Bacteriology*, **178**: 6618-6622.
- Han, S.B., Kim, S.k., Lee, J.W., Lee, D., Chung, N., Jeong, D.C., Cho, B. & Kang, J. (2017). *Varicella zoster* virus infection after allogeneic hematopoietic cell transplantation in children using a relatively short duration of acyclovir prophylaxis: A retrospective study. *Medicine*, **96**: e6546.
- Hardie, K.R. & Heurlier, K. (2008). Establishing bacterial communities by 'word of mouth': LuxS and autoinducer 2 in biofilm development. *Nature Reviews Microbiology*, 6: 635-643.

Harrison, J.J., Stremick, C.A., Turner, R.J., Allan, N.D., Olson, M.E. & Ceri, H. (2010).
Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. *Nature Protocols*, 5: 1236-1254.

- Hawkey, P.M. (2008). The growing burden of antimicrobial resistance. *Journal of Antimicrobial Chemotherapy*, **62** (Suppl. 1): i1-i9.
- Hentzer, M., Riedel, K., Rasmussen, T.B., Heydorn, A., Andersen, J.B., Parsek, M.R., Rice, S.A., Eberl, L., Molin, S., Hoiby, N., Kjelleberg, S. & Givskov, M. (2002). Inhibition of quorum sensing in *Pseudomonas aeruginosa* biofilm bacteria by a halogenated furanone compound. *Microbiology*, **148**: 87-102.
- Hentzer, M., Wu, H., Andersen, J.B., Riedel, K., Rasmussen, T.B., Bagge, N., Kumar, N., Schembri, M.A., Song, Z., Kristoffersen, P., Manefield, M., Costerton, J.W., Molin, S., Eberl, L., Steinberg, P., Kjelleberg, S., Hoiby, N. & Givskov, M. (2003). Attenuation of *Pseudomonas aeruginosa* virulence by quorum sensing inhibitors. *EMBO Journal*, 22: 3803-3815.
- Heo, S., Cha, S., Kim, K., Lee, S., Ahn, G., Kang, D., Oh, C., Choi, Y., Affan, A., Kim, D. & Jeon, Y. (2012). Neuroprotective effect of phlorotannin isolated from *Ishige okamurae* against H₂O₂-induced oxidative stress in murine hippocampal neuronal cells, HT22. *Applied Biochemistry and Biotechnology*, **166**: 1520-1532.
- Hoiby, N., Ciofu, O., Johansen, H.K., Song, Z.J., Moser, C., Jensen, P.O., Molin, S., Givskov,
 M., Tolker-Nielsen, T. & Bjarnsholt, T. (2011). The clinical impact of bacterial biofilms. *International Journal of Oral Science*, 3: 55-65.
- Holmstrom, C., Rittschof, D. & Kjelleberg, S. (1992). Inhibition of settlement by larvae of *Balanus amphitrite* and *Ciona intestinalis* by a surface-colonizing marine bacterium.
 Applied and Environmental Microbiology, 58: 2111-2115.
- Hornsey, I.S. & Hide, D. (1976). The production of antimicrobial compounds by British marine algae II. Seasonal variation in production of antibiotics. *British Phycological Journal*, 11: 63-67.
- Hornsey, I.S. & Hide, D. (1974). The production of antimicrobial compounds by British marine algae I. Antibiotic-producing marine algae. *British Phycological Journal*, 9: 353-361.
- Huber, B., Riedel, K., Hentzer, M., Heydorn, A., Gotschlich, A., Givskov, M., Molin, S. & Eberl, L. (2001). The cep quorum-sensing system of *Burkholderia cepacia* H111 controls biofilm formation and swarming motility. *Microbiology*, 147: 2517-2528.
- Humeniuk, R., Menon, L.G., Mishra, P.J., Saydam, G., Longo-Sorbello, G.S., Elisseyeff, Y., Lewis, L.D., Aracil, M., Jimeno, J., Bertino, J.R. & Banerjee, D. (2007). Aplidin synergizes with cytosine arabinoside: functional relevance of mitochondria in Aplidininduced cytotoxicity. *Leukemia*, **21**: 2399-2405.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
31	
34 25	
30	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40 10	
40 47	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
29	
ъU	

Irie,	Y. & Parsek,	M.R.	(2008).	Quorum	sensing	and micro	obial bio	ofilms.	Current	Topics in
	Microbiology	v and .	Immuno	logy, 32 2	2 : 67-84.					

- Jacobsen, N. & Madsen, J.O. (1978). Halogenated metabolites including brominated 2heptanols and 2-heptyl acetates from the tetrasporophyte of the red alga *Bonnemaisonia hamifera*. *Tetrahedron Letters*, **33**: 3065-3068.
- Jha, B., Kavita, K., Westphal, J., Hartmann, A., Schmitt-Kopplin, P. (2013). Quorum sensing inhibition by *Asparagopsis taxiformis*, a marine macroalga: separation of the compound that interrupts bacterial communication. *Marine Drugs*, 11: 253-265.
- Jung, W.K., Heo, S.J., Jeon, Y.J., Lee, C.M., Park, Y.M., Byun, H.G., Choi, Y.H., Park, S.G.
 & Choi, I.W. (2009). Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. *Journal of Agricultural and Food Chemistry*, 57: 4439-4446.
- Justin, J.R. & Melander, C. (2009). Small molecule approaches toward the non-microbicidal modulation of bacterial biofilm growth and maintenance. *Anti-Infective Agents in Medicinal Chemistry*, 8: 295-314.
- Kang, M.C., Wijesinghe, W.A., Lee, S.H., Kang, S.M., Ko, S.C., Yang, X., Kang, N., Jeon, B.T., Kim, J., Lee, D.H. & Jeon, Y.J. (2013). Dieckol isolated from brown seaweed *Ecklonia cava* attenuates type II diabetes in *db/db* mouse model. *Food and Chemical Toxicology*, 53: 294-298.
- Kendall, M.M. & Sperandio, V. (2007). Quorum sensing by enteric pathogens. *Current Opinion in Gastroenterology*, 23: 10-15.
- Kim, J.S., Kim, Y.H., Seo, Y.W., Park, S. (2007). Quorum sensing inhibitors from the red alga, *Ahnfeltiopsis flabelliformis*. *Biotechnology & Bioprocess Engineering*, **12**: 308-311.
- Koehn, F.E. & Carter, G.T. (2005). The evolving role of natural products in drug discovery. *Nature Reviews Drug Discovery*, **4**: 206-220.
- Lee, J.Y., Kim, S.M., Jung, W., Song, D., Um, B., Son, J. & Pan, C. (2012).
 Phlorofucofuroeckol-A, a potent inhibitor of aldo-keto reductase family 1 member B10, from the edible brown alga *Eisenia bicyclis*. *Journal of the Korean Society for Applied Biological Chemistry*, 55: 721-727.
- Lee, S.H. & Jeon, Y.J. (2013). Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. *Fitoterapia*, **86**: 129-136.
- Lee, S.J., Park, S.Y., Lee, J.J., Yum, D.Y., Koo, B.T. & Lee, J.K. (2002). Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of *Bacillus thuringiensis. Applied and Environmental Microbiology*, 68: 3919-3924.

- Lin, Y.H., Xu, J.L., Hu, J., Wang, L.H., Ong, S.L., Leadbetter, J.R. & Zhang, L.H. (2003). Acyl-homoserine lactone acylase from *Ralstonia* strain XJ12B represents a novel and potent class of quorum-quenching enzymes. *Molecular Microbiology*, 47: 849-860.
- Livermore, D.M. (2002). Multiple mechanisms of antimicrobial resistance in *Pseudomonas aeruginosa*: our worst nightmare? *Clinical Infectious Disease*, **34**: 634-640.
- Maggs, C.A. & Stegenga, H. (1998). Red algal exotics on North Sea coasts. *Helgoländer Meeresuntersuchungen*, **52**: 243-258.
- Manefield, M., Rasmussen, T.B., Henzter, M., Andersen, J.B., Steinberg, P., Kjelleberg, S. & Givskov, M. (2002). Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. *Microbiology*, **148**: 1119-1127.
- Maschek, J.A. & Baker, B.J. (2008) The chemistry of algal secondary metabolism. In *Algal Chemical Ecology* (Amsler, C.D., Editor), 1-20. Springer, Berlin.
- McClintock, J.B. & Baker, B.J. (2001). Marine Chemical Ecology. CRC Press.
- McConnell, O.J. & Fenical, W. (1979). Antimicrobial agents from the marine red algae of the family Bonnemaisoniaceae, in Hoppe, H.A. (editor) *Marine Algae in Pharmaceutical Science*, 479-500. Walter der Gruyter, Berlin.
- McLean, R.J., Pierson, L.S. 3rd & Fuqua, C. (2004). A simple screening protocol for the identification of quorum signal antagonists. *Journal of Microbiological Methods*, 58: 351-360.
- Mellbye, B. & Schuster, M. (2011). The sociomicrobiology of antivirulence drug resistance: a proof of concept. *mBio*, **2**, 10.1128/mBio.00131-11.
- Molinski, T.F., Dalisay, D.S., Lievens, S.L. & Saludes, J.P. (2009). Drug development from marine natural products. *Nature Reviews Drug Discovery*, **8**: 69-85.
- Mueller, L.N., de Brouwer, J.F., Almeida, J.S., Stal, L.J. & Xavier, J.B. (2006). Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP. *BMC Ecology*, **6**, 1.
- Myung, C., Shin, H., Bao, H.Y., Yeo, S.J., Lee, B.H. & Kang, J.S. (2005). Improvement of memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: Possible involvement of the inhibition of acetylcholinesterase. *Archives of Pharmacal Research*, 28: 691-698.
- Nakajima, N. *et al.* (2016). Diversity of phlorotannin profiles among sargassacean species affecting variation and abundance of epiphytes. *European Journal of Phycology*, **51**: 307-316.
- Nash, R., Rindi, F. & Guiry, M.D. (2005). Optimum conditions for cultivation of the *Trailliella* phase of *Bonnemaisonia hamifera* Hariot (Bonnemaisoniales, Rhodophyta), a candidate species for secondary metabolite production. *Botanica Marina*, 48: 257-265.

2
2
3
4
5
6
U 7
7
8
à
10
10
11
12
10
13
14
15
16
47
17
18
19
20
20
21
22
23
24
∠4 25
25
26
27
21
28
29
30
24
31
32
33
34
04
35
36
37
20
38
39
40
11
41
42
43
44
15
40
46
47
18
40
49
50
51
50
52
53
54
55
55
56
57
58
50
59
60

Newman, D.J. & Cragg, G.M. (2016). Natural products as sources of new drugs from 198	1 to
2014. Journal of Natural Products, 79: 629–66.	

- Nylund, G.M., Cervin, G., Hermansson, M. & Pavia, H. (2005). Chemical inhibition of bacterial colonization by the red alga *Bonnemaisonia hamifera*. *Marine Ecology Progress Series*, **302**: 27-36.
- Nylund, G.M., Cervin, G., Persson, F., Hermansson, M., Steinberg, P.D. & Pavia, H. (2008). Seaweed defence against bacteria: a poly-brominated 2-heptanone from the red alga *Bonnemaisonia hamifera* inhibits bacterial colonisation. *Marine Ecology Progress Series*, **369**: 39-50.
- Nylund, G.M., Enge, S. & Pavia, H. (2013) Costs and benefits of chemical defence in the red alga *Bonnemaisonia hamifera*. *PLoS ONE*, **8**: e61291.
- O'Neill, J. (2014). *Review on antimicrobial resistance, December 2014*. Available: <u>http://amr-review.org/</u> [Accessed 01/8/2016].
- Papenfort, K. & Bassler, B.L. (2016). Quorum sensing signal–response systems in Gramnegative bacteria. *Nature Reviews Microbiology*, 14: 576–588.
- Parsek, M.R. & Greenberg, E.P. (2005). Sociomicrobiology: the connections between quorum sensing and biofilms. *Trends in Microbiology*, **13**: 27-33.
- Paul, N.A., de Nys, R. & Steinberg, P.D. (2006). Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. Marine Ecology Progress Series, 306: 87-101.
- Penesyan, A., Kjelleberg, S. & Egan, S. (2010). Development of novel drugs from marine surface associated microorganisms. *Marine Drugs*, 8: 438-459.
- Peng, J., Yuan, J., Wu, C. & Wang, J. (2011). Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health *Marine Drugs*, 9: 1806-1828.
- Plowman, R. (2000). The socioeconomic burden of hospital acquired infection. *European Communicable Disease Bulletin*, **5(4):** 49-50.
- Plowman, R., Graves, N., Griffin, M.A.S., Roberts, J.A., Swan, A.V., Cookson, B. & Taylor, L. (2001). The rate and cost of hospital-acquired infections occurring in patients admitted to selected specialties of a district general hospital in England and the national burden imposed. *Journal of Hospital Infection*, 47: 198-209.
- Qian, P.Y., Lau, S.C.K., Dahms, H.U., Dobretsov, S. & Harder, T. (2007). Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. *Marine Biotechnology*, **9**: 399-410.
- Rangel-Huerta, O.D., Pastor-Villaescusa, B., Aguilera, C.M., & Gil, A. (2015). A systematic review of the efficacy of bioactive compounds in cardiovascular disease: phenolic compounds. *Nutrients*, 7: 5177–5216.

- Rao, T., Rani, P., Venugopalan, V. & Nair, K. (1997). Biofilm formation in a freshwater environment under photic and aphotic conditions. *Biofouling*, 11: 265-282.
- Rasmussen, T.B. & Givskov, M. (2006). Quorum-sensing inhibitors as anti-pathogenic drugs. *International Journal of Medical Microbiology*, **296**: 149-161.
- Rasmussen, T.B., Manefield, M., Andersen, J.B., Eberl, L., Anthoni, U., Christophersen, C., Steinberg, P., Kjelleberg, S. & Givskov, M. (2000). How *Delisea pulchra* furanones affect quorum sensing and swarming motility in *Serratia liquefaciens* MG1. *Microbiology*, 146: 3237-3244.
- Ready, D., Roberts, A.P., Pratten, J., Spratt, D.A., Wilson, M. & Mullany, P. (2002).
 Composition and antibiotic resistance profile of microcosm dental plaques before and after exposure to tetracycline. *Journal of Antimicrobial Chemotherapy*, **49**: 769-775.
- Reimmann, C., Ginet, N., Michel, L., Keel, C., Michaux, P., Krishnapillai, V., Zala, M., Heurlier, K., Triandafillu, K., Harms, H., Defago, G. & Haas, D. (2002). Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in *Pseudomonas aeruginosa* PAO1. *Microbiology*, **148**: 923-932.
- Ren, D., Sims, J.J. & Wood, T.K. (2002). Inhibition of biofilm formation and swarming of *Bacillus subtilis* by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. *Letters in Applied Microbiology*, **34**: 293-299.
- Ren, D., Sims, J.J. & Wood, T.K. (2001). Inhibition of biofilm formation and swarming of *Escherichia coli* by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. *Environmental Microbiology*, **3**: 731-736.
- Rosenfeld, W.D. & Zobell, C.E. (1947). Antibiotic production by marine microorganisms. *Journal of Bacteriology*, **54**: 393-398.
- Sathya, R., Kanaga, N., Sankar, P. & Jeeva, S. (2013). Antioxidant properties of phlorotannins from brown seaweed *Cystoseira trinodis* (Forsskal) C. Agardh. *Arabian Journal of Chemistry*, doi:10.1016/j.arabjc.2013.09.039.
- Saurav, K., Costantino, V., Venturi, V., Steindler, L. (2017). Quorum sensing inhibitors from the sea discovered using bacterial N-acyl-homoserine lactone-based biosensors. *Marine Drugs*, **15(3)**: 53.
- Savage, V.J., Chopra, I. & O'Neill, A.J. (2013). *Staphylococcus aureus* biofilms promote horizontal transfer of antibiotic resistance. *Antimicrobial Agents and Chemotherapy*, 57: 1968-1970.
- SCENIHR (2009). Assessment of the Antibiotic Resistance Effects of Biocides. European Commission, Brussels, Belgium.
- Schaefer, A.L., Hanzelka, B.L., Eberhard, A. & Greenberg, E.P. (1996). Quorum sensing in *Vibrio fischeri*: probing autoinducer-LuxR interactions with autoinducer analogs. *Journal of Bacteriology*, **178**: 2897-2901.

Page 25 of 64

- Schuster, M., Lostroh, C.P., Ogi, T. & Greenberg, E.P. (2003). Identification, timing, and signal specificity of *Pseudomonas aeruginosa* quorum-controlled genes: a transcriptome analysis. *Journal of Bacteriology*, **185**: 2066-2079.
 - Singh, R.P., Baghel, R.S., Reddy, C.R.K. & Jha, B. (2015). Effect of quorum sensing signals produced by seaweed-associated bacteria on carpospore liberation from *Gracilaria dura*. *Frontiers in Plant Science*. <u>https://doi.org/10.3389/fpls.2015.00117</u>
 - Singh, R.P. & Reddy, C.R.K. (2015). Unraveling the functions of the macroalgal microbiome. *Frontiers in Microbiology*, **6**: 1488. http://doi.org/10.3389/fmicb.2015.01488
 - Sio, C.F., Otten, L.G., Cool, R.H., Diggle, S.P., Braun, P.G., Bos, R., Daykin, M., Camara, M., Williams, P. & Quax, W.J. (2006). Quorum quenching by an N-acyl-homoserine lactone acylase from *Pseudomonas aeruginosa* PAO1. *Infection and immunity*, **74**: 1673-1682.
 - Siuda, J.F., Van Blaricom, G.R., Shaw, P.D., Johnson, R.D., White, R.H., Hager, L.P. & Rinehart, K.L. (1975). 1-Iodo-3,3-dibromo-2-heptanone, 1,1,3,3-tetrabromo-2heptanone, and related compounds from the red alga *Bonnemaisonia hamifera*. *Journal of the American Chemical Society*, **97**: 937-938.
 - Smit, A.J. (2004). Medicinal and pharmaceutical uses of seaweed natural products: A review. *Journal of Applied Phycology*, 16: 245-262.
 - Spavieri, J., Allmendinger, A., Kaiser, M., Casey, R., Hingley-Wilson, S., Lalvani, A., Guiry, M.D., Blunden, G. & Tasdemir, D. 2010). Antimycobacterial, antiprotozoal and cytotoxic potential of twenty-one brown algae (Phaeophyceae) from British and Irish waters. *Phytotherapy Research*, 24: 1724-1729.
 - Spellberg, B., Guidos, R., Gilbert, D., Bradley, J., Boucher, H.W., Scheld, W.M., Bartlett, J.G., Edwards, J., Jr & Infectious Diseases Society of America (2008). The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. *Clinical Infectious Diseases*, **46**: 155-164.
 - Sperandio, V. (2007). Novel approaches to bacterial infection therapy by interfering with bacteria-to-bacteria signaling. *Expert Review of Anti-Infective Therapy*, **5**: 271-276.
 - Steinberg, P.D., De Nys, R. & Kjelleberg, S. (2002). Chemical cues for surface colonization, Journal of Chemical Ecology, 28: 1935-1951.
 - Suga, H. & Smith, K.M. (2003). Molecular mechanisms of bacterial quorum sensing as a new drug target. *Current Opinion in Chemical Biology*, 7: 586-591.
 - Sugiura, Y., Matsuda, K., Okamoto, T., Yamada, Y., Imai, K., Ito, T., Kakinuma, M. & Amano, H. (2009). The inhibitory effects of components from a brown alga, *Eisenia arborea*, on degranulation of mast cells and eicosanoid synthesis. *Journal of Functional Foods*, 1: 387-393.

- Sugiura, Y., Tanaka, R., Katsuzaki, H., Imai, K. & Matsushita, T. (2013). The antiinflammatory effects of phlorotannins from *Eisenia arborea* on mouse ear edema by inflammatory inducers. *Journal of Functional Foods*, **5**: 2019-2023.
- Swift, S., Downie, J.A., Whitehead, N.A., Barnard, A.M., Salmond, G.P. & Williams, P. (2001). Quorum sensing as a population-density-dependent determinant of bacterial physiology. *Advances in Microbial Physiology*, **45**: 199-270.
- Teasdale, M.E., Liu, J., Wallace, J., Akhlaghi, F. & Rowley, D.C. (2009). Secondary metabolites produced by the marine bacterium *Halobacillus salinus* that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. *Applied and Environmental Microbiology*, **75**: 567-572.
- Tebben, J., Tapiolas, D.M., Motti, C.A., Abrego, D., Negri, A.P., Blackall, L.L., Steinberg,
 P.D. & Harder, T. (2011). Induction of larval metamorphosis of the coral *Acropora millepora* by tetrabromopyrrole isolated from a *Pseudoalteromonas* bacterium. *PloS ONE*, 6, no. 4, e19082.
- Tomlin, K.L., Malott, R.J., Ramage, G., Storey, D.G., Sokol, P.A. & Ceri, H. (2005). Quorum-sensing mutations affect attachment and stability of *Burkholderia cenocepacia* biofilms. *Applied and Environmental Microbiology*, **71**: 5208-5218.
- Vairappan, C.S. (2003). Potent antibacterial activity of halogenated metabolites from Malaysian red algae, *Laurencia majuscula* (Rhodomelaceae, Ceramiales), *Biomolecular Engineering*, **20**: 255-259.
- Vairappan, C.S., Daitoh, M., Suzuki, M., Abe, T. & Masuda, M. (2001). Antibacterial halogenated metabolites from the Malaysian *Laurencia* species. *Phytochemistry*, 58: 291-297.
- Vairappan, C.S., Ishii, T., Lee, T.K., Suzuki, M. & Zhaoqi, Z. (2010). Antibacterial activities of a new brominated diterpene from Borneon *Laurencia* spp. *Marine Drugs*, 8: 1743-1749.
- Wagner, V.E., Bushnell, D., Passador, L., Brooks, A.I. & Iglewski, B.H. (2003). Microarray analysis of *Pseudomonas aeruginosa* quorum-sensing regulons: effects of growth phase and environment. *Journal of Bacteriology*, **185**: 2080-2095.
- Wellington, E.M., Boxall, A.B., Cross, P., Feil, E.J., Gaze, W.H., Hawkey, P.M., Johnson-Rollings, A.S., Jones, D.L., Lee, N.M., Otten, W., Thomas, C.M. & Williams, A.P. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. *The Lancet Infectious Diseases*, 13: 155-165.
- Wichard, T., Charrier, B. Mineur, F., Bothwell, J.H., De Clerck, O. & Coates, J.C. (2015).The green seaweed *Ulva*: a model system to study morphogenesis. *Frontiers in Plant Science*, 6: 72.

Wieczorek, S.K. & Todd, D.C. (1998). Inhibition and facilitation of	f settlement of epifaunal
marine invertebrate larvae by microbial biofilm cues. Biofoulin	ng, 12 : 81-118.

- Wu, H., Moser, C., Wang, H.Z., Hoiby, N. & Song, Z.J. (2015). Strategies for combating bacterial biofilm infections. *International Journal of Oral Science*, 7: 1-7.
- Wu, H., Song, Z., Hentzer, M., Andersen, J. B., Molin, S., Givskov, M. & Høiby, N. (2004)
 Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in *Pseudomonas aeruginosa* lung infection in mice. *Journal of Antimicrobial Chemotherapy*, 53: 1054-1061.
- Yang, L., Rybtke, M.T., Jakobsen, T.H., Hentzer, M., Bjarnsholt, T., Givskov, M. & Tolker-Nielsen, T. (2009). Computer-aided identification of recognized drugs as *Pseudomonas aeruginosa* quorum-sensing inhibitors. *Antimicrobial Agents and Chemotherapy*, 53: 2432-2443.
- Yates, E.A., Philipp, B., Buckley, C., Atkinson, S., Chhabra, S.R., Sockett, R.E., Goldner, M., Dessaux, Y., Camara, M., Smith, H. & Williams, P. (2002). N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of *Yersinia pseudotuberculosis* and *Pseudomonas aeruginosa*. *Infection and Immunity*, **70**: 5635-5646.
- Yoon, N.Y., Chung, H.Y., Kim, H.R. & Choi, J.E. (2008). Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from *Ecklonia stolonifera*. *Fisheries Science*, 74: 200-207.
- Yoon, N.Y., Lee, S., Yong-Li & Kim, S. (2009). Phlorotannins from *Ishige okamurae* and their acetyl- and butyrylcholinesterase inhibitory effects. *Journal of Functional Foods*, 1: 331-335.
- Zhu, H. & Sun, S.J. (2008). Inhibition of bacterial quorum sensing-regulated behaviors by *Tremella fuciformis* extract. *Current Microbiology*, **57**: 418-422.

Figure legends

Figs 1-6. Molecular structures of acyl homoserine lactones and quorum sensing inhibitors isolated from marine algae. Fig. 1. General structure of acyl homoserine lactones. Fig. 2. Halogenated furanones. Fig. 3. Floridoside. Fig. 4. Betonicine. Fig. 5. Isethionic acid. Fig. 6. 2-dodecanoyloxyethanesulfonate. Figure adapted from Saurav *et al.* (2017).

Figs 7-10. The red algae *Bonnemaisonia hamifera* and *Bonnemaisonia asparagoides* display strong antimicrobial activity against AHL quorum sensing bioreporter strain *Chromobacterium violaceum*. Algal samples were overlaid with *C. violaceum* in 0.5% agar prior to incubation. Fig. 7. *B. hamifera* washed in ddH₂O. Fig. 8. *B. hamifera* pre-washed in 70% ethanol; QSI activity not altered by ethanol wash. Fig. 9. *B. asparagoides* washed in ddH₂O. Fig. 10. *B. asparagoides* washed in 70% ethanol, exhibiting significant loss of QSI activity which has been extracted by the ethanol wash.

Fig. 11. Structure of 1,1,3,3-tetrabromo-2-heptanone, a poly-brominated 2-heptanone produced by *Bonnemaisonia hamifera* displaying antifouling properties.

Figs 12-13. SEM of the epiphytic microbial colonisation of *Halidrys siliquosa* algal fronds. **Fig. 12.** Diatom embedded amongst diverse prokaryotes. **Fig. 13.** Three-dimensional structure of microbial biofilm.

Marine macroalgae and their associated microbiomes as a

source of antimicrobial chemical diversity

Alessandro Busetti^{1*}, Christine A. Maggs² and Brendan F. Gilmore³

¹College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK
²Faculty of Science & Technology, Bournemouth University, BH12 5BB, UK
³School of Pharmacy, Queen's University Belfast, BT9 7BL, UK

*Corresponding author Alessandro Busetti. E-mail: <u>alessandro.busetti@gla.ac.uk</u>

Short Running Title: Antimicrobials from macroalgae and their microbiomes

Abstract

Antimicrobial resistance (AMR) represents one of the major health threats faced by humanity in the coming decades over the next few years. To prevent a global epidemic of antimicrobialresistant infections, the discovery of new antimicrobials and antibiotics, better anti-infection strategies and diagnostics, and changes to our current use of antibiotics have all become of paramount importance. Numerous studies investigating the bioactivities of seaweed extracts as well as their secondary and primary metabolites highlight the vast biochemical virtuosity diversity of seaweeds, with new modes of action making them ideal sources for the discovery of novel antimicrobial bioactive compounds of pharmaceutical interest. In recent years, researchers have focused on characterizing the endophytic and epiphytic microbiomes of various algal species in an attempt to elucidate host-microbe interactions as well as to understand the function of microbial communities. Although environmental and hostassociated factors crucially shape microbial composition, microbial mutualistic and obligate symbionts are often found to play a erucial-fundamental role in regulating many aspects of host fitness involving ecophysiology and metabolism. In particular, algal "core" epiphytic bacterial communities play an important role in the protection of surfaces from biofouling, pathogens and grazers through the production of bioactive metabolites. Together, marine macroalgae and their associated microbiomes represent unique biological systems offering great potential for the isolation and identification of novel compounds and strategies to contrast the rise and dissemination of AMR.

Key words: Algae, antimicrobials, antimicrobial resistance, bacteria, biofilms, epiphytes, marine, microbiome, pathogens, resistance, seaweeds

Comment [CM1]: years

Comment [CM2]: new modes of action

European Journal of Phycology

1		
2		
3		
4		
5		
6		
7		
1		
8		
9		
10		
11		
12		
13		
14		
15		
16		
10		
17		
18	Interdenting	
19	The emergence of antimicrobial resistance (AMR) in bacteria is an ancient natural process	
20	(D'Costa et al., 2011) resulting from the perpetual selection of new traits evolving as a result	
21	of mutation (Livermore, 2002), gradual increases in tolerance to sub-lethal concentrations of biocides (Scenihr 2009) and horizontal gene transfer through transformation transduction	
22	recombination and conjugation events (Furuya & Lowy, 2006). Despite the undeniable	
23	contribution of antibiotic use to the development of a much healthier modern society, the	
24	release of large quantities of antibiotics into the environment as a result of their manufacture of antibiotics at an industrial global scale for use in the clinical setting and for agriculture and	
25	animal care and the consequent release of large quantities of antibiotics into the environment,	
20	has accentuated heightened increased the selective pressure on bacterial human pathogens	
20	clear relationshipthe between-link betweening antibioticmicrobial use toandand the	
21	generationemergence and dissemination of resistant and multi-resistant strains is new	Comment [CM3]: has a longer history
28	evidente well established (Hawkey, 2008; Wellington et al., 2013). The world faces an emerging epidemic of antibiotic-resistant infections, the second-leading cause of premature	
29	death worldwide (Spellberg et al., 2008), causing an estimated 700,000 deaths per year. A	
30	2014 review commissioned by the then British Prime Minister, David Cameron, highlighted that without Without effective solutions to confront AMR, by 2050, 10 million lives a year	
31	and more than 100 trillion USDs of economic output world-wide will could be at risk due to	Comment [CMJ]: why in dollars?
32	the rise of drug-resistant infections (O'Neill, 2014). In this article, we leview This article	Formatted: Not Highlight Formatted: Not Highlight
33	reviews the role of microbial biofilms in infection and the acquisition of resistance, examines the processes involved in the development and maintenance of microbial biofilms with a	Comment [AB5]: The scope of this article is to review the
34	particular focus on the role of quorum sensing, discusses antimicrobial bioactives obtained	
35	from marine organisms, and reviews the current state of knowledge of marine macroalgae and	
36	ueu associateu interotionies as a source or antimerotiar chemical diversity-	
37		
20	Biofilms Biofilms communities consortia of surface-associated attached microbial cells embedded	- Commant (CNR): Accombinance
30	immersed in a self-secreted extracellular polymeric matrix (Costerton et al., 1978; Donlan,	Formatted: Highlight
39	2002), represent <u>constitute</u> the <u>predominant principal mode form</u> of microbial growth in	
40	aimost all natural and pathogenic environments and a widespread survival strategy amongst microorganisms (O'Toole, 2011; Nett et al., 2012). The National Institutes of Health (NIH)	
41	estimates that up to 80% of all human infections implicateinvolve microbial biofilms (Davies,	
42	2003; Wu et al., 2015). In fact, biofilm aetiology has been described as the root cause of a	
43		
44	3	
45		
46		
47		
48		
- 1 0 /0		
49 50		
50 54		
51		
52		
53		

2	
2	
3	
Δ	
-	
5	
~	
6	
7	
'	
8	
č	
9	
1	n
1	U
1	1
1	
1	2
4	2
1	J
1	Δ
1	_
1	5
	~
1	ю
1	7
	'
1	8
Ż	ž
1	y
0	ሶ
2	U
2	1
~	-
2	2
~	~
2	J
2	Λ
~	-
2	5
_	~
2	6
2	7
2	'
2	8
-	2
2	9
2	^
3	U
З	1
0	
ີ	\sim
	2
2	2
3	23
3	2 3 1
3 3	2 3 4
333	2 3 4 5
333	2345
3 3 3 3 3	2 3 4 5 6
3333	234567
3 3 3 3 3 3	2 3 4 5 6 7
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2345678
3 3 3 3 3 3 3 3	2345678
3 3 3 3 3 3 3 3 3 3 3 3	23456789
3 3 3 3 3 3 3 3 3 3 3 3	234567890
3 3 3 3 3 3 3 3 4	2 3 4 5 6 7 8 9 0
3 3 3 3 3 3 3 3 4 4	2345678901
3 3 3 3 3 3 3 3 4 4	2345678901
3 3 3 3 3 3 3 3 4 4 4	23456789012
3 3 3 3 3 3 3 3 4 4 4 4	234567890122
3 3 3 3 3 3 3 4 4 4 4 4	234567890123
3333334444 1	2345678901234
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4	2345678901234
333333444444	23456789012345
3333334444444	23456789012345
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4	234567890123456
33333344444444	2345678901234567
33333344444444	2345678901234567
3333334444444444	23456789012345678
33333334444444444	23456789012345678
3333333444444444444	234567890123456789
3333333444444444444	2345678901234567890
33333334444444444445	2345678901234567890
33333334444444444455	23456789012345678901
3333333444444444455	23456789012345678901
33333334444444444555	234567890123456789012
333333344444444445555	2345678901234567890122
3333333444444444455555	2345678901234567890123
33333334444444444555555	23456789012345678901234
33333334444444444555555	23456789012345678901234
333333344444444445555555555555555555555	234567890123456789012345
333333334444444444555555555555555555555	2345678901234567890123456
3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	2345678901234567890123456
333333344444444444555555555555555555555	23456789012345678901234567
333333344444444444555555555555555555555	23456789012345678901234567
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	234567890123456789012345678
333333344444444444555555555555555555555	234567890123456789012345678
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	2345678901234567890123456789
333333344444444445555555555555555555555	23456789012345678901234567890

infections (Wu et al., 2015; Justin & Melander, 2009; Harrison et al., 2010; Hoiby et al., 2011). Microbial biofilms provide constitute a favo able propitious ambient favour both for spontaneous mutation and vertical evolution of resistance genes (Savage et al., 2013) as well as foras the intra- and inter-specific transmission and exchange of genetic elements components like plasmids harbouring resistance genes through horizontal gene transfer mechanisms (such as transformation, conjugation and transduction) and the consequent dissemination of resistance genes (Appelbaum, 2007). For example, within biofilms, bacteria have been shown to use transposable elements to acquire resistance and develop multi-resistance (Ready et al., 2002). The emergence of multiple-antibiotic-resistant strains amongst pathogens normally present in the nosocomial hospital environment is of particular concern and over a decade ago hospital-acquired infections were estimated to be responsible for an additional annual health care cost of £986 million in England and Wales alone (Plowman, 2000, Plowman et al., 2001). In light of the role of bacterial biofilms in infection and dissemination of AMR, the discovery isolation and characteriszation of novel antibiofilm compoundsbioactives and as well as the identification of novel therapeutic sapproaches is crucial. Within biofilms, both Gram positive and Gram negative bacteria use quorum sensing (QS), a form-type of cell-to-cell communication based on the release and detection of small signalling moleculescompounds, to coordinate multicellular behaviour and regulatecontrol a wide varietydiverse array of physiological activities (Papenfort & Bassler, 2016). Some bacterial species use QS to coordinate the expression transcription and translation of unlinked unrelated genetic loci. For exampleinstance, in-the opportunistic human pathogen Pseudomonas aeruginosa uses- two hierarchically organiszed LuxI/LuxR type homologue pairs generally used by some Gram negative bacteria to produce and respond to acyl homoserine lactones, LasI/LasR and Rh11/Rh1R, to, regulatecontrol 170-400 genes via a complex network (Hentzer et al., 2002; Schuster et al., 2003; Wagner et al., 2003; Parsek & Greenberg, 2005). The coordinated synchronized production synthesis and release of multiple sgene products of diversewith substantially different functions suggests that QS is an adaptational adaptative response evolved to cope with conditions of high population density,

majority of chronic and recurrent human infections and in almost all device-associated

Biofilms in the marine environment

hosts (Swift et al., 2001).

In marine aqualic environments all unprotected submerged surfaces are rapidly colonized by a succession of marine organisms in a process known as biofouling (Callow & Callow, 2002). Biofouling begins with the adsorption of dissolved organic matter by newly available surfaces

such as for instance those encounteredfound in associations with plant and animal-metazoan

Comment [CM7]: Does this mean adaptive?

1 2 3		
4 5		
6		
7		
8		
9 10		
10		
12		
13		
14		
15		
10		
18		
19	and these "conditioned" surfaces are then rapidly colonized by prokaryotes and unicellular eukaryotes to form microbial biofilms (microfouline). In the marine environment, this stage is	
20	followed by macrofouling, the recruitment of invertebrate larvae and algal spores (Callow &	
21	et al., 2006). In the photic zone they are usually dominated by phototrophic microalgal	
22	consortia (Rao et al., 1997) and represent a crucial carbon source for other trophic levels, affecting mass transfer processes at the ecosystem level.	
23 24	Marine microbial biofilms play a crucial role in regulating the colonisation of surfaces by marine microorganisms, invertebrates and algae and in some cases might be	
25	responsible for inducing cellular metamorphosis in some larval types Marine microbial	Formatted: Font: 11 pt
26	biofinits play a crucial role in regulating the settlement of a variety of marine microorganisms, invertebrates and algae and may promote cellular metamorphosis	
27	(Dobretsov et al., 2006). For example, tetrabromopyrrole, a compound produced by a <i>Pseudoalteromonas</i> bacterium, causes larval metamorphosis of the coral <i>Acropora millepora</i>	
28	(Tebben et al., 2011). The complexity of the modulations of these phenomena is paralleled by the extreme diversity in the distribution and composition of biological and chemical species	
29 30	found in marine microbial biofilms. Experiments using monospecific biofilms (Dobretsov et al., 2006; Wieczorek & Todd, 1998; Oian et al., 2007) have shown an influence on the	
31	activity of the marine flora ascribable to the production synthesis and release of antimicrohialbiotic compounds and as well as a range of stimulatory chemical cues signalling	
32	molecules that mostly remain so far mostlyin great part to be isolated and uncharacterized	
33	(Bowman, 2007).	Formatted: Font: (Default) +Body (Cambria), 12 pt
34	Bioactive compounds A "bioactive compound" <u>can be defined is as</u> a secondary metabolite which at low	
36	concentrations is either beneficial or harmful toexerts either beneficial or harmful effects on living organisms and is therefore of interest for potential industrial or medical applications	
37	(Rangel-Huerta et al., 2015 heads reference). More Bordy (2005) reported that mOf the more	Comment [CM8]: Reviewers says It's old - maybe delete?
38	marine living organisms (Table 1; Bérdy, 2005), of which 20-25% have haved shown	Comment [CM9]: Reviewers says it's old - maybe delete?
39	antimicrobial, antifungal, anti-protozoan, anti-nematode, anticancer, antiviral or anti- inflammatory properties (Bérdy, 2005; Penesyan <i>et al.</i> , 2010 <u>; Newman and& Crage, 2106</u>).	
40	The diversity of natural compounds can be ascribed to the process of natural selection that has driven the evolution of molecules best suited to perform their biological activities (Koehn &	
41 42	Carter, 2005).	
43		
44	5	
45		
46 47		
47 48		
49		
50		
51		
52 52		
54		
55		
56		
57		
58 59		
60		
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60		

1		
1		
2		
3		
4		
5		
5		
6		
7		
8		
9		
10		
10		
11		
12		
13		
14		
15		
10		
16		
17		
18		
19	secondary metabolites to defend themselves from herbivores and bacterial colonization of	
20	their exposed surfaces. For example, halogenated furanones produced by the red alga Delisea	
20	coli (Ren et al., 2001) and Pseudomonas aeruginosa (Hentzer et al., 2002).	
21	Microbes growing on the surface of a host can also contribute to the host's overall	
22	antifouling strategy. For example, epibiotic bacteria found onthat colonisze the surface of	
23	larvae of some crustacean larvaes produce synthestize simple antibacterial antimicrobial	
24	al., 1989). Bacteria isolated from the surface of a tunicate and grown as biofilms prevented	
25	hindered the settlement attachment of barnacle and tunicate larvae (Holmstrom et al., 1992).	
20	Moreover, the presence of epiphytic bacteria on the surface of seaweeds has been shown to be	
20	Marshall et al., 2006; Wichard et al., 2015), suggesting that macroaleae seaweeds and their	- Comment ICM11: We can institution
27	epiphytic bacteria microbiome interact collaborate as a unified functional entity or holobiont	
28	(reviewed by Egan et al., 2012).	
29	Quorum sensing inhibition as a novel strategy to attenuate bacterial virulence	
30	An emerging approach designed to attenuate bacterial virulence (i.e. the ability to cause	- Comment ICM12I: Virulence seems to be used as a synorym for biofilm formation?
31	damage to living organisms via the production of virulence factors such as enzymes and	Formatted: Not Highlight
31	damage to living organisms via the production of virulence factors such as enzymes and toxins) and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication processes now commonly termed "monum quenchine" and "monum sensine	Formatted: Not Highlight
31 32	damage to living organisms via the production of virulence factors such as enzymes and toxins) and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (QSI); In fact, the inability to co-ordinate communal behaviours can prevent	Formatted: Not Highlight
31 32 33	damage to living organisms via the production of virulence factors such as enzymes and toxins) and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (QSD): <u>In fact, the inability to co-ordinate communal behaviours can prevent</u> bacterial pathogens from escaping or overcoming host immune responses or that bacteria fail	Formatted: Not Highlight
31 32 33 34	damage to living organisms via the production of vinulence factors such as enzymes and tooms) and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (2005), <u>in fact the inability to co-ordinate communal behaviours can prevent</u> bacterial pathogens from escaping or overcoming host immune response; so that bacteris full to adapt to the host environment and do notand establishing an infection (Rasmussen & Giushow, 2006). Hentree <i>et al.</i> 2003. Moreover, the ability to sciently of yinlence energy	Formatted: Not Highlight
31 32 33 34 35	damage to living organisms via the production of vinulence factors such as enzymes and tooms) and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (2005), <u>in fact, the inability to co-ordinate communal behaviours can prevent</u> <u>bacterial pathogens from escaping or overcoming host immune response;</u> so that bacteris fuil to adapt to the host environment and do notand establishing an infection (Rasmussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression escopously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or	Formatted: Not Highlight
31 32 33 34 35 36	damage to living organisms via the production of vinulence factors such as enzymes and toxins; and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (2005), <u>in fact, the inability to co-ordinate communal behaviours can prevent</u> <u>bacterial pathogens from escaping or overcoming host immune response; so that bacteris fuil</u> to adapt to the host environment and do notand establishing an infection (Rasmussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenosity (Brackman <i>et al.</i> , 2101) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall <u>the use of</u> QSIs <u>son be</u>	Formatted: Not Highlight
31 32 33 34 35 36 37	damage to living organisms via the production of vinulence factors such as enzymes and toxins; and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (2005), <u>in fact, the inability to co-ordinate communal behaviours can prevent</u> <u>bacterial pathogens from escaping or overcoming host immune response; so that bacteris fuil</u> to adapt to the host environment and do notand establishing an infection (Rasmussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenosity (Brackman <i>et al.</i> , 211) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall <u>the use of QSIs son be</u> considered engressing an "antivirulence" <u>approach strategy based relying on the use</u> considered engressing an "antivirulence" the community of a first man estapere	Formatted: Not Highlight
31 32 33 34 35 36 37 38	damage to living organisms via the production of vinulence factors such as enzymes and tooms) and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (2005), <u>in fact, the inability to co-ordinate communal behaviours can prevent</u> <u>bacterial pathogens from escaping or overcoming host immune response; so that bacteris fuil</u> to adapt to the host environment and do notand establishing an infection (Rasmussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenosity (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Caman <i>et al.</i> , 2002). Overall the use of QSIs <u>can be</u> <u>consideredigpresents</u> an "antivirulence" approach strategy based relying on the use <u>exploitation of small molecules compounds with the capacityeapable</u> of disarming pathogens	Formatted: Not Highlight
31 32 33 34 35 36 37 38	damage to living organisms via the production of vinulence factors such as enzymes and toxins; and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (205); <u>in fact, the inability to co-ordinate communal behaviours can prevent</u> <u>bacterial pathogens from escaping or overcoming host immune response; so that bacteris fuil</u> to adapt to the host environment and do notand establishing an infection (Rasmussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall <u>the use of QSIs son-be</u> <u>exploitation of small molecules compounds with the capacity spaticle</u> of disarming pathogens <u>thereby rendering them harmitess</u> within their host by trageting specifypecies factors (such as toos in direction and delivery, virulence gene regulation, or cell adhesion) necessary for the	Formatted: Not Highlight
31 32 33 34 35 36 37 38 39	damage to living organisms via the production of vinulence factors such as enzymes and toxins; and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (2005), is fact, the inability to co-ordinate communal behaviours can prevent bacterial pathogens from escaping or overcoming host immune response; so that bacteris fuil to adapt to the host environment and do notgand establishing an infection (Rasmussen & Givskov, 2006; Hentzer et al., 2003). Moreover, the ability to switch off virulence gene expression ecogenosity (Brackman et al., 2011) offers a novel strategy for the treatment or prevention of infection (Camara et al., 2002). Overall the use of QSIs son-be considered egreesing an "antivirulence" approach strategy based relying on the use exploitation of small molecules compounds with the caractivesphele of disarming pathogens thereby rendering them harmless within their host by trageting specifyprecise factors (such as toxin function and delivery, virulence gene regulation, or cell adhesion) necessary for the successful efficiency establishment of an infection- such as toxin function, toxin delivery, sinch and the disting of the disting of the successful efficiency in the successful efficiency in the disting of the successful efficiency is abilishment of an infection, such as toxin function and delivery, virulence gene regulation, or cell adhesion) necessary for the successful efficiency is abilishment of an infection, such as toxin function, and the disting of the disting of the disting of the successful efficiency is abilishment of an infection such as toxin functions and the disting of the disting of the disting of the successful efficiency is abilishment of an infection such as toxin functions and the disting of the disting of the disting of the successful efficiency exploration of the disting	Formatted: Not Highlight
31 32 33 34 35 36 37 38 39 40	damage to living organisms via the production of vinulence factors such as enzymes and toxins; and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (205); <u>in fact, the inability to co-ordinate communal behaviours can prevent</u> <u>bacterial pathogens from escaping or overcoming host immune response; so that bacteris fuil</u> to adapt to the host environment and do notand establishing an infection (Rismussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall the use of QSIs son be considered; <u>opteoses</u> an "antivitulence" <u>approach strategy bacted relying</u> on the use <u>exploitation of small molecules</u> within the capacity-esplishe of disarming pathogens thereby rendering them harmless within the in host by trageting "performations" (factors (such as tooin function and delivery, virulence gene regulation, or cell adhesion) necessary for the useesenfuleffications, escali adhesion (Mellby & Schuster, 2011). In certain species of bacteria, dirustion of OS has been shown to affect biolinil formation (frice & Tarsée, 2008)	Formatted: Not Highlight
31 32 33 34 35 36 37 38 39 40 41	damage to living organisms via the production of vinulence factors such as enzymes and twoms) and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (205). Is fact, the inability to co-ordinate communal behaviours can prevent bacterial pathogens from escaping or overcoming host immune response; so that bacteris full to adapt to the host environment and do notand establishing an infection (Rasmussen & Givskov, 2006; Hentzer et al., 2003). Moreover, the ability to switch off virulence gene expression ecogenously (Brackman et al., 2011) offers a novel strategy for the treatment or prevention of infection (Camara et al., 2002). Overall the use of QSIs son-be considered egressing and "antivirulence" approach strategy based relying on the use exploitation of small molecules compounds with the capacity spatial of disarming pathogens thereby rendering them harmless within their host by targeting specificprecise factors (such as twoin function and delivery, virulence gene regulation, or cell adhesion) necessary for the use escolitation of engliablishment of an infection-such as toxin function, toxin delivery, virulence gene regulation, or cell adhesion (Mellby & Schuster, 2011). In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (Frie & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to	Formatted: Not Highlight
31 32 33 34 35 36 37 38 39 40 41 42	damage to living organisms via the production of vinulence factors such as enzymes and toxins; and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (205); <u>in fact, the inability to co-ordinate communal behaviours can prevent</u> <u>bacterial pathogens from escaping or overcoming host immune response; so that bacteris fuil</u> to adapt to the host environment and do nosing (establishing an infection (Rismussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenosity (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall <u>the use of QSIs son be</u> considered <u>copresents</u> and <u>and the son by targeting prevention</u> distanting the use <u>exploitation of small molecules compounds with the capacity spaticle</u> of disarming pathogens <u>thereby rendering them harmless</u> within their host by targeting experiprecise factors (<u>such as</u> <u>twoin function and delivery, virulence gene regulation, or cell adhesion</u>) necessary for the <u>use considuelf mediates establishment of an infection-such as towin function</u> . In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (Frie & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated	Formatted: Not Highlight
31 32 33 34 35 36 37 38 39 40 41 42 43	damage to living organisms via the production of vinulence factors such as enzymes and twins; and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (2005); In fact, the inability to co-ordinate communal behaviours can prevent bacterial pathogens from escaping or overcoming host immune response; so that bacteris full to adapt to the host environment and do noting at abilistying an infection (Rismussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall the use of QSIs son be considered egressions composition at <i>et al.</i> , 2011) offers a novel strategy for distarting provide the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall the use of QSIs son be considered egressions compositions within the canactive spatishe of distarting pathogens thereby rendering them harmless within their host by trageting "eperformations" factors (such as toxin function and delivery, virulence gene regulation, or cell adhesion) necessary for the uscessfulefficient of QSIs has been shown to affect biofilm formation (Irie & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactone (AHL) QS mutants of Burkholderia cenocepacia and <i>P. aeruginsa</i> form	Formatted: Not Highlight
31 32 33 34 35 36 37 38 39 40 41 42 43	damage to living organisms via the production of vinulence factors such as enzymes and two ign and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (305), is fact, the inability to co-ordinate communal behaviours can prevent bacterial pathogens from escaping or overcoming host immune response; so that bacteris fail and the host environment and do negatify establishing an infection (Rismussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off vinulence gene expression ecogenosity (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall the use of QSIs so the considered egression and "antivitulence" approach strategy based relying on the use exploration and delivery, vinulence gene regulation, or cell adhesion) necessary for the users of the strategy is thin their host by trageting "perefised factors (such as ion influction and delivery, vinulence gene regulation, or cell adhesion) necessary for the users of discription of QS has been shown to affect biofilm formation (Frie & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactone (AHL) QS mutants of Burkholderia cencecpacia and <i>P. aeruginasa</i> form	Formatted: Not Highlight
31 32 33 34 35 36 37 38 39 40 41 42 43 44	damage to living organisms via the production of vinulence factors such as enzymes and two ign and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (305). Is fact, the inability to co-ordinate communal behaviours can prevent bacterial pathogens from escaping or overcoming host immune responses so that bacteris fail and the host environment and do notand establishing an infection (Rismussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenosity (Brackman <i>et al.</i> , 2011) offers a novel strategy for the transment or prevention of infection (Camara <i>et al.</i> , 2002). Overall the use of QSIs as be considered epiresenis as "antivirulence" approach strategy bacter felling on the use expression ecogenosity (Brackman <i>et al.</i> , 2012) to traget in generifynecise factors (such as two in function and delivery, vintence gene regulation, or cell adhesion) necessary for the useesofule fiberiation of QSI has been shown to affect biofilm formation (Irie & Parsek, 2006) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to tratement with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactone (AHL) QS mutants of Burkholderia cenocepacia and <i>P. aeruginsoa</i> form	Formatted: Not Highlight
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	damage to living organisms via the production of vinulence factors such as enzymes and two inj and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (2005). In fact, the inability to co-ordinate communal behaviours can prevent bacterial pathogens from escaping or overcoming host immune responses so that bacteris fail to adapt to the host environment and do negang establishing an infection (Rismussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenosity (Brackman <i>et al.</i> , 2010). Objects a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall the use of QSIs en-be- considered genesses): a "antivirulence" approach strategy based-relying on the use expression ecogenosity (Brackman <i>et al.</i> , 2010) to trageting specifynecise factors (such as tooin function and delivery, vinience gene regulation, or cell adhesion) necessary for the successful fiftuations, establishment of an infection, such as toxin function, toxin delivery, vinience gene regulation, or cell adhesion (Mellby & Schuster, 2011). In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (Irie & Parsek, 2008) and differentiation (Hardie & Heuriter, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactone (AHL) QS mutants of Burkholderia cenocepacia and <i>P. aeruginsoa</i> form	Formatted: Not Highlight
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	damage to living organisms via the production of vinulence factors such as enzymes and twonsj and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (2005). In fact, the inability to co-ordinate communal behaviours can prevent bacterial pathogens from escaping or overcoming host immune responses so that bacteris fail to adapt to the host environment and do negatify establishing an infection (Rismussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenously (Brackman <i>et al.</i> , 2010) forser a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall the use of QSIs en-be- censidered generations and <i>et al.</i> , 2002). Overall the use of QSIs en-be- toristic expression ecogenously (Brackman <i>et al.</i> , 2010) to first a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall the use of QSIs en-be- censidered generations and ethic to be trageting specifynecise factors (such as tooin function and delivery, vinience gene regulation, or cell adhesion) necessary for the successful efficiencience estimation. (Mellby & Schuster, 2011). In certain species of bacteria, disruption of QSI has been shown to affect biofilm formation (Irie & Parsek, 2008) and differentiation (Hardie & Heuriter, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactone (AHL) QS mutants of Burkholderia cenocepacia and <i>P. aeruginosa</i> form	Formatted: Not Highlight
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	damage to living organisms via the production of vinulence factors such as enzymes and twinsj and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (2005). In fact, the inability to co-ordinate communal behaviours can prevent hacterial pathogens from escaping or overcoming host immune responses so that bacteris full to adapt to the host environment and do nesting establishing an infection (Rismussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off vinulence gene expression ecogenously (Brackman <i>et al.</i> , 2010) forse a novel strategy for the treatment or prevention of infection (Caman <i>et al.</i> , 2002). Overall the use of QSIs en-be- considered/gpresents an "antivirulence" approach strategy-based-relying on the use expression ecogenously (Brackman <i>et al.</i> , 2002). Overall the use of QSIs en-be- considered/gpresents an "antivirulence" approach strategy-based-relying on the use expression ecogenously (Brackman <i>et al.</i> , 2002). Overall the use of QSIs en-be- ton function and delivery, vintence gene regulation, or cell adhesion presension for the successful efficacious establishment of an infection, such as toxin function, norse delivery, vintence gene regulation, or cell adhesion (Mellby & Schuster, 2011). In certain species of bacteria, disruption of QSIs has been shown to affect biofilm formation (Irie & Parsek, 2008) and differentiation (Hardie & Heuriter, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated bomoserine lactone (AHL) QS mutants of Burkholderia cenocepacia and <i>P. aeruginosa</i> form	Formatted: Net Highlight
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	damage to living organisms via the production of vinulence factors such as enzymes and twinsj and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (2005). In fact, the inability to co-ordinate communal behaviours can prevent hacterial pathogens from escaping or overcoming host immune responses so that bacteris full to adapt to the host environment and do nesting establishing an infection (Rismussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off vinulence gene expression ecogenously (Brackman <i>et al.</i> , 2010) forse a novel strategy for the treatment or prevention of infection (Caman <i>et al.</i> , 2002). Overall the use of QSIs en-be considered/gpresents an "antivirulence" approach strategy-based-relying on the use expression ecogenously (Brackman <i>et al.</i> , 2002). Overall the use of QSIs en-be considered/gpresents an "antivirulence" approach strategy-based-relying on the use exploitation of small molecules: compounds with the capacity-esplate of distrain in pathogens thereby rendering them harmless within their host by targeting specifynecise factors (such as tooin function and delivery, vinience gene regulation, or cell adhesion) necessary for the successful-fiftuacious-establishment of an infection, such as toxin function, down delivery, vinience gene regulation, or cell adhesion (Mellby & Schuster, 2011). In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (Irie & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactone (AHL) QS mutants of Burkholderia cenocepacia and <i>P. aeruginosa</i> form	Formatted: Not Highlight
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	damage to living organisms via the production of vinulence factors such as enzymes and twinsi and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (QSI): <u>in fact, the inhibitiv to co-ordinate communal behaviours can prevent</u> <u>bacterial pathogens from escaping or overcoming host immune responses as that bacteria full</u> to adapt to the host environment and da noting establishing an infection (Rasmussen & Girskov, QGO, Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression exogenously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2020). Overall the gas of QSIs eas -b eonsideredegreeens; an "antivirulence" approach <u>strategy</u> bardet <u>clying on</u> the use <u>exploitation of anall andeesides compounds</u> with the <u>capacity expassible</u> of disarming pathogens thereby rendering them harmless within their host by targeting specific graceise factors (<u>such as</u> <u>torin function and delivery, virulence gene regulation, or cell adhesion) necessary for the successfullefficiential stablishment of an infection, such as toxin function, toxin delivery; <u>virulence gene equilation</u>, ar cell adhesion (Mellby & Schuster, 2011). In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (Irie & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactone (AHL) QS mutants of <i>Burtholderia cenocepacia</i> and <i>P. aeruginosa</i> form</u>	Formatived: Next Highlight
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 90	damage to living organisms via the production of vinulence factors such as enzymes and twinsi and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (QSI): <u>in fact, the inability to co-ordinate communal behaviours can prevent</u> <u>bacterial pathogens</u> from escaping or overcoming host immune responses se that bacterie full to adapt to the host anvironment and do nogand establishing an inflection (Ramussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2020). Overall the que of QSIs en-be considered genescale, and "antivirulence" approach strategy burder <u>clyine</u> be considered genescale, and "antivirulence" approach <u>strategy</u> burder <u>clyine</u> factors (<u>such as</u> <u>torn infection</u> and <u>an elevise scompounds with the capacity espatishe</u> of disarming pathogens thereby rendering them harmless within their host by targeting specific genesis factors (<u>such as</u> <u>torn infection and delivery, virulence gene regulation, or cell adhesion) necessary for the successful efficiencies establishment of an infection, such as toxin function toxin delivery, virulence gene engulation, <i>at</i> cell alkesion (Mellby & Schuster, 2011). In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (tric & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactone (AHL) QS mutants of <i>Burkholderia cenceptacia</i> and <i>P. aeruginosa</i> form</u>	Formatives: Not Highlight
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 51	damage to living organisms via the production of vinulence factors such as enzymes and twinsi and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (QSI): <u>in fact, the inability to co-ordinate communal behaviours can prevent</u> <u>bacterial pathogens</u> from escaping or overcoming host immune responses se that bacteris full to adapt to the host environment and do nogand establishing an inflection (Ramussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2020). Overall <u>the quo of QSIs</u> en-the considered <u>regresents</u> an "antivirulence" approach_strategy bared-region of the use exploitation of small molecules compounds with the capacity-espathe of disarming pathogens thereby rendering them harmless within their host by targeting specificgreeise factors (<u>such as</u> <u>twin function and delivery, virulence gene regulation, or cell adhesion) necessary for the successful_efficientum_stablishment of an infection, such as toxin function toxin delivery, virulence gene regulation, or cell adhesion (Mellby & Schuster, 2011). In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (tric & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactone (AHL) QS mutants of <i>Burkholderia cenocepacia</i> and <i>P. aeruginosa</i> form</u>	Formattee: Not Highlight
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 950 51	damage to living organisms via the production of vinulence factors such as enzymes and toxins; and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (QSI): <u>in fact, the inability to co-ordinate communal behaviours can prevent</u> <u>bacterial pathogens</u> from escaping or overcoming host immune response; so that bacteris full to adapt to the host avvicomment and do noting establishing an inflection (Rasmussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2020). Overall the two of QSIs ears be considered grizcents; an "antivirulence" approach <u>strategy</u> bacd <u>relying</u> on the use <u>considered grizcents</u> ; an "antivirulence" approach <u>strategy</u> bacd <u>relying</u> on the use <u>considered grizcents</u> ; an "antivirulence" approach <u>strategy</u> bacd <u>relying</u> on the use <u>considered grizcents</u> ; an "antivirulence" approach <u>strategy</u> bacd <u>relying</u> on the use <u>considered grizcents</u> ; an "antivirulence" approach <u>strategy</u> bacd <u>relying</u> on the use <u>considered grizcents</u> ; an "antivirulence" approach <u>strategy</u> bacd <u>relying</u> on the use <u>considered grizcents</u> ; and "antivirulence" approach <u>strategy</u> bacd <u>relying</u> on the use <u>considered grizcents</u> ; and "antivirulence" approach <u>strategy</u> bacd <u>relying</u> on the use <u>considered grizcents</u> ; and <u>relying</u> which the host by targeting specificgrecise factors (<u>such as</u> <u>toxin function and delivery, virulence gene regulation, or cell adhesion) hocessary for the <u>successful efficience</u> <u>setablishient</u> of an infection, such as toxin function, noris delivery, <u>virulence gene regulation</u>, ar <u>cell adhesion</u> (Mellby & Schuster, 2011). In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (Irie & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), oft</u>	Formation: Not Highlight
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52	damage to living organisms via the production of vinulence factors such as enzymes and toxins; and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (QSI): <u>in fact, the inability to co-ordinate communal behaviours can prevent</u> <u>bacterial pathogens</u> from escaping or overcoming host immune response; so that bacteris full to adapt to the host anvironment and do noting establishing an inflection (Rasmussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2020). Overall the taxe of QSIs ears be considered grizcents; an "antivirulence" approach <u>strategy</u> bacet <u>relying</u> on the use <u>considered grizcents</u> ; an "antivirulence" approach <u>strategy</u> bacet <u>relying</u> on the use <u>considered grizcents</u> ; an "antivirulence" approach <u>strategy</u> bacet <u>relying</u> on the use <u>considered grizcents</u> ; an "antivirulence" approach <u>strategy</u> bacet <u>relying</u> on the use <u>considered grizcents</u> ; an "antivirulence" approach <u>strategy</u> bacet <u>relying</u> on the use <u>considered grizcents</u> ; an "antivirulence" approach <u>strategy</u> bacet <u>relying</u> on the use <u>considered grizcents</u> ; and "antivirulence" approach <u>strategy</u> bacet <u>relying</u> on the use <u>considered grizcents</u> ; and <u>strategy</u> bacet <u>relying</u> on the use <u>considered grizcents</u> ; and <u>strategy</u> bacet <u>relying</u> on the use <u>considered grizcents</u> ; <u>strategy</u> bacet <u>relying</u> on the use <u>to treatment</u> ; <u>baceting</u> <u>strategy</u> bacet <u>relying</u> on the use <u>to treatment</u> ; <u>baceting</u> <u>strategy</u> bacet <u>relying</u> on the <u>strategy</u> . 2003) and <u>differentiation</u> (<u>fratife</u> <u>kell bachesing</u> <u>Meelly</u> <u>kell</u> ; <u>considering</u> <u>strategy</u> . 2008) and <u>differentiation</u> (<u>fratife</u> <u>kell bachesis</u> ; <u>Grazcent</u> <u>strategy</u> <u>strategy</u> . 2015). For example, acylated <u>bactering</u> lactone (AHL) QS mutants of <u>Burkholderia</u> cenceptac	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53	damage to living organisms via the production of vinulence factors such as enzymes and torms jund limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (QSI): <u>in fact, the inability to co-ordinate communal behaviours can prevent</u> <u>bacterial pathogens</u> from escaping or overcoming host immune responses so that bacteris full to adapt to the host anvironment and do noting establishing an inflection (Rasmussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2020). Overall the two of QSIs ear-be considered grizcents; an "antivirulence" approach- <u>strategy</u> bacd- <u>relying</u> on the use exploitation of <u>small</u> antiecesses compounds with the rabity to zero. <i>Factors</i> (zuch as torin function and delivery, virulence gene regulation, or cell adhesion) necessary for the uscessful-fiftedices, establishment of an infection, such as toxin function, toxin delivery, virulence gene regulation, or cell adhesion (Mellye & Schuster, 2011). In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (trie & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactone (AHL) QS mutants of <i>Burkholderia cenocepacia</i> and <i>P. aeruginosa</i> form	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 51 52 53 54	damage to living organisms via the production of vinulence factors such as enzymes and toxins; and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (QSI): <u>in fact, the inability to co-cordinate communal behaviours can prevent</u> <u>bacterial pathogens</u> from escaping or overcoming host immune response; so that bacteris full to adapt to the host avvicament and do noting detablishing an inflection (Rasmussin & Givskov, 2006; Hentze <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall the use of QSIs ear-be considred gene equation, and an information of a strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall the use of QSIs ear-be considred gene equation, and <i>et al.</i> , 2011) offers a novel strategy for discoving the thereby rendering them harmless, within their host by targeting precision (actors) (actor is a toxin function and delivery, virulence gene regulation, or cell adhesion) necessary for the uscessful efficience establishment of an infection, such as toxin fluctuation, toxin delivery, virulence gene regulation, or cell adhesion (Mellby & Schuster, 2011). In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (Irie & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactone (AHL) QS mutants of <i>Burkholderia cenocepacia</i> and <i>P. aeruginosa</i> form	
31 32 33 34 35 36 37 38 30 41 42 43 44 50 51 52 53 54 55	damage to living organisms via the production of vinulence factors such as enzymes and tormal and limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (QSI): <u>in fact, the inability to co-cordinate communal behaviours can prevent</u> <u>bacterial pathogens</u> from escaping or overcoming host immune responses so that bacteris full to adapt to the host avvicament and do noting establishing an inflection (Rasmussen & Givskov, 2006; Hentze <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall the use of QSIs ear-be considred gene equation, and <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall the use of QSIs ear-be considred gene equation, are <i>et al.</i> , 2003). Outprever, strategy, based relying on the use capitalism of small anviewise compounds with the rost by targeting specific genecies factors (<u>auch us</u> <u>torin function and delivery, virulence gene regulation, or cell adhesion) necessary for the uscessful efficience establishment of an infection, such as toxin fluction, toxin delivery, virulence gene regulation, or cell adhesion (Mellye & Schuster, 2011). In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (Irie & Parsek, 2008) and differentiation (Hardie & Heuriter, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactone (AHL) QS mutants of <i>Burkholderia cenocepacia</i> and <i>P. aeruginasa</i> form</u>	
31 32 33 34 35 36 37 38 30 41 42 44 45 46 78 90 51 23 45 55 55	damage to living organisms via the production of vinulence factors such as enzymes and terms jund limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (QSI): <u>in fact, the inability to co-ordinate communal behaviours can prevent</u> <u>bacterial pathogens</u> from escaping or overcoming host immune responses se that bacteris full to adapt to the host anvironment and do nogand establishing an inflection (Ramussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off vinulence gene expression ecogenously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2020). Overall the taxe of QSIs ent-is considered genesensity of many the capacity espacitive of disarming pathogens thereby rendering films harmless within their host by targeting specific genesis factors (such as toxin function and delivery, vinulence gene regulation, or cell adhesion) necessary for the successful efficience, stablishment of an infection, such as toxin function, toxin delivery, vinulence gene regulation, ar cell adhesion (Mellby & Schuster, 2011). In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (tric & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactone (AHL) QS mutants of <i>Burkholderia cenocepacia</i> and <i>P. aeruginasa</i> form	
31 32 33 34 35 36 37 38 30 41 42 44 45 46 78 90 51 52 53 54 556 57	damage to living organisms via the production of vinulence factors such as enzymes and terms jund limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (9S1): <u>in fact, the inability to co-codinate communal behaviours can prevent</u> <u>bacterial pathogens</u> from escaping or overcoming host immune responses so that bacteris full to adapt to the host anvironment and do noting establishing an inflection (Rasmussen & Givskov, 2006; Hentzer <i>et al.</i> , 2003). Moreover, the ability to switch off virulence gene expression ecogenously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall the use of QSIs ear-be considred(grizens); an "antivirulence" approach-strategy-based-tellying on the use exploitation of small anviewscence compounds with the target (ysugheshe) of disarming pathogens thereby rendering them harmless within their host by targeting specificgneeise factors (such as two infunction and delivery, virulence gene regulation, or cell adhesion) necessary for the successful-fifte-adue, setablishment of an infection, such as toxin fluctuien, toxin delivery, virulence gene regulation, or cell adhesion (Mellye & Schuster, 2011). In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (trie & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactone (AHL) QS mutants of <i>Burtholderia cenocepacia</i> and <i>P. aeruginosa</i> form	
31 32 33 34 35 36 37 38 39 41 42 44 45 46 47 48 50 52 54 55 56	damage to living organisms via the production of vinulence factors such as enzymes and terms jund limit the emergence of pathogenic traits relies on interfering with cell-to-cell communication, processes now commonly termed "quorum quenching" and "quorum sensing inhibition" (9S1): <u>in fact, the inability to co-codinate communal behaviours can prevent</u> <u>bacterial pathogens</u> from escaping or overcoming host immune responses so that bacteris full to adapt to the host avvioument and do noting detablishing an inflection (Rasmussen & Givskov, 2006; Hentze <i>et al.</i> , 2003). Moreover, the ability to switch off vinulence gene expression ecogenously (Brackman <i>et al.</i> , 2011) offers a novel strategy for the treatment or prevention of infection (Camara <i>et al.</i> , 2002). Overall the use of QSIs ear-be considered egreesing compounds with the tost by targeting "precise" factors (<u>auch us</u> <u>tors infection</u> (<u>Samar <i>et al.</i>, 2002). Overall the use of QSIs ear-be considered egreesing in "antivirulence" approach-strategy based (<u>sclving</u> on the use <u>capitation of Samal anticeises</u> compounds with the rols by targeting "precise" factors (<u>auch us</u> <u>tors infunction and delivery</u>, vinulence gene regulation, or cell adhesion) necessary for the <u>uscessfuluffications</u> establishment of an infection, such as toxin fluction, toxin delivery, <u>vinulence gene regulation</u>, or cell adhesion (Mellye & Schuster, 2011). In certain species of bacteria, disruption of QS has been shown to affect biofilm formation (Irie & Parsek, 2008) and differentiation (Hardie & Heurlier, 2008), often rendering the biofilm more susceptible to treatment with biocides and antibiotics (Brackman & Coenye, 2015). For example, acylated homoserine lactore (AHL) QS mutants of <i>Burkholderia cenocepacia</i> and <i>P. aeruginosa</i> form</u>	

		European Journal of Phycology	Page 36 of 64
1			
2 3			
4			
5 6			
7			
8 9			
10			
11 12			
13			
14 15			
16 17			
18			
19 20	flatter, less structured biofilm (Diggle et al., 2007) and are drastically impaired in their ability to maintain cells within the biofilm (Huber et al., 2001; Tomlin et al., 2005; Yang et al., 2000). Of columns from a stratistic threasuring assentiation (SEI) hand totatmath two hore		
20	shown to increase the userptibility of bacterial biofilms to antibiotics both in vitro and in who. For example, a significantly higher greater percentage of infected wax moth <i>Galleria</i>		
22 23	mellonella larvae and C. elegans survived infection by P. aeruginosa and B. cenocepacia following combined treatment with antibiotic and QS inhibitors, compared to treatment with		
24	an antibotic alone (Brackman et al., 2011). <u>Paradoxically, if the strong selective pressure imposed by the use of antibiotics</u> antimicrobial use is particularly evident in the near-coming disinglenear-coming linical		
25 26	environment_setting makes this environment a fertile ground forwhere clear relationships between antimicrobial use and the emergence generation and spread of resistant and		
27	multiresistant strains-san be seen with a consequent rise in morbidity and mortality due to hospital-acquired infections (Hawkey, 2008). Since QS is not directly involved in essential propage and the acquired of the hospital division on an append her to inshibition will		
28 29	processes; such as genored to the successing of all such as the summary of the successes and the successes and the succession of the succe		
30 31	fact, the impairment of it has been shown that by inhibiting QS results in a disruption of the signalling systems controlling the production and releaseresponsible for the synthesis and		
32	<u>secretion</u> of a number of virulence factors is achieved. <u>Although it is reasonable to conclude</u> <u>that resistance to OS</u> . <u>It has been hypothesized that the emergence of QS resistance would be</u> selected <i>in vivo</i> during infection when OS is involved insert OS accountse colonization.		
33 34	systemic spread-ander immune evasion (Defoird1 et al., 2010)_ although a broad-spectrum_ combinatorial approach relying on the use of conventional antibiotics in combination with	Formatted: Not Highlight Formatted: Not Highlight	
35	OSIs as an anti-virulence approach would diminish the chance of this event considerably com intrimer chaltentivirulence approach access the filefilined of the goes identifier in <u>a study</u>	Formatted: Not Highlight Formatted: Highlight	
36 37	<u>investigating</u> the vertical evolution of QST resistance as were as the interest conterred during bacterial social interaction. <u>Multiples and Schuster (Mellbyc & Schuster (-2011)-co-cultured</u> wild type <i>Pseudomonas aeruginosa</i> together with QS mutants (<u>minicking a QSI-sensitive</u>)	Formatted: Not Highlight Formatted: Not Highlight	
38	phenotype) in minimal medium containing either bovine serum albumin (BSA) or adenosine as a sole carbon source. Whereas BSA degradation requires extracellular proteases thus	Formatted: Not Highlight)
39 40	providing a social benefit, adenosine is metabolized intracellularly providing a benefit for the individual. OSI-sensitive mimics were found to retard the growth of wild-type OSI-resistant mimics when grown in BSA (rouble nutrient acoustition) indicating OSI resistance is unlikely and the other of the other of the other		
41 42	to spread, especially during infection /QSI-sensitive mimics) behaved as social elesters delaying population growth and preventing enrichment of wild type co-operators (QSI-	- Formatted: Not Highlight	
43			
44 45	Ű		
46			
47 48			
49 50			
51			
52 53			
54 55			
56			
57 58			
59			
υU			

European Journal of Phycology

resistant mimics) only when nutrient acquisition was public (extracellular), sug QSI resistance is unlikely to spread (Mellbye & Schuster, 2011).

QSI targets

Marine organisms have proven to be a rich source A large number of natural compounds isolated from a variety of marine organisms have been shown to proceedingeshifting quorum sensing inhibitory activity (Dohretsov et al., 2009, 2011; Saurav et al., 2017). In a study examining the inhibition of marine biofouling by becteriei QSI, of 78 mtmml bioactivesproduces tested from elemical-compound libraries containing compounds derived from marine organisms including (sponges, sleagescawceds, fungi, bacteria, funicates and cyanobacteria) and terrestrial plants screened, more than half of them displayed QSI activity (Dohretsov et al., 2011). In particular, the compounds hymenialdisin, demethoxy enceculan, microcolins A and B and kojic acid were found to inhibit at micromolar concentrations inhibitedine QS responses of the LuxR based reporter strains induced by N-3-oxo-hexanoyl-L-homoserine lactone at micromolar concentrations. The three components of the Gram negative AHL system are (1) the signal molecule

generator, (2) the signal molecule itself and (3) the signal molecule receptor, representing the key targets of QSI for an anti-pathogenic drug approach (Rasmussen & Givskov, 2006). (1) In <u>AIL-based</u> Gram negative QS, an inactivation of the LuxI-type synthase would block interrupt the preduction synthesis of the relative AIL signal-molecule meaning that significant threshold concentration could no be reached, with failure to activate the

downstream genes responsible for virulence. In vitro, a few substrate analogues have been found to actively block the production of AHL. For example, analogues of S-adenosyl-Lmethionine (SAM) have proven to be potent inhibitors of AHL synthase in P. aeruginosa (Rasmussen & Givskov, 2006). This has yet to be tested in vivo and remains the least investigated method of interfering with QS.

(2) The signalling molecule itself constitutes another target to inhibit OS QS can be inhibited by targeting the signal molecule itself. The three principalmain strategies to deactivate a signalling molecule are metabolic, chemical and enzymatic degradation or inactivation. An alkaline pH causes the homoserine lactone ring (Fig. 1) to open (Yates et al., 2002). For example, will hen a plant recognizes <u>colonizzation</u> by the pathogen *Erwinia carotovora*, which uses <u>AHI-based</u> QS to control regulate the expression-synthesis of virulence factors, the plant actively causes alkalinization at the site of attack resulting in lactonolysis. In addition to pH, several other factors including temperature and the length of the acyl side chain influence the opening of the lactone ring. An increase in temperature will accelerate the rate at which the ring opens, whereas the longer the side chain the slower will be the lactonolysis.

AHL lactonases are enzymes that catalyse the ring opening reaction of the lactone ring	
(Rasmussen & Givskov, 2006). Several Bacillus species have been foundare known to produce the lactonase enzyme AiiA (Dong et al., 2000), which is specific for the degradation of AHLs. Homologues of AiiA have also been found in other members of the Bacillus genus as well as members of the general bacterial species including Pacudamonas, aeruginosa, Arthrobacter species and Richstella memoriand (Rasmussen & Givskov, 2006). This form of the strange of the seven and the seve	
inactivation is reversible when the pH is acidic. Moreover, when the AiiA gene was heterologously expressed in expression of AHL lactonase in the human pathogen P aeruginosa <u>PAO1</u> resulted in larges significant decreases inhibition of in virulence gene	Formatted: Not Highlight
expression greduction and swarming motility was achieved (Reimmann et al., 2002),	Formated: Not Highlight // // Formated: Not Highlight // Formated: Not Highlight
virulence <u>in this pathogen</u> (Ulrich 2004; Wopperer <i>et al.</i> , 2006). AHL acylases <u>are another</u> class of enzymes that <u>can deactivate the Gram negative signalling molecule by cleavings</u> the Nacyl bond of AHLs <u>Production of acylases has have been found reported in in several</u>	Formatted: Not Highlight Formatted: Not Highlight Formatted: Not Highlight
preudomats, and a <i>Streponyces</i> -precise (I.i. <i>et al.</i> , 2003). Bacteria such as <i>Variovorax paradoxus</i> and <i>P. aeruginosa</i> produce amino acylases responsible for the cleavage of the peptide bond of the signal molecule (Rasmussen & Givskov, 2006) and can use the products of this metabolism as their sole source of energy. <u>Interestingly, it []</u> has been hypothesized that <i>P. aeruginosa</i> creates its own AHL-acylases to regulate its own QS system, possibly to evade detection during initial infection of a host (Sio <i>et al.</i> , 2006). (3) In AHL-based OS. The third target for QSL is the LuxR transcription factor	
responsible for the regulation of downstream Conception of paintways represents another valid target for QSI. The use of small AHL analogues to prevent LuxR activation has proven a successful strategy to target LuxR type transcription factors Small AHL analogues have been used to block the activation of LuxR (Suga & Smith, 2003). These analogues can displace the original AHL and cause activation of the LuxR-type protein, acting as competitive agonists (Schaefer <i>et al.</i> , 1996). Synthetic analogues are developed in one of three ways: substitution in the acyl side chain leaving the ring unchanged; substitution and alteration to the lactonering while the side chain remains unchanged, or extensive	
modification to both the side chain and lactone ring (Rasmussen & Givskov, 2006). Algal compounds. <u>—</u> promising leads for the treatment of biofilm-related infections	
Macroalgal bioactives such as sulphated polysaccharides and kahalalides have long been recognized for medical applications (Smit, 2004) and interest in them remains high (e.g. 10	

URL: http:/mc.manuscriptcentral.com/tejp Email: ejp@nhm.ac.uk

1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19	Barbosa et al., 2014). However, to date, only a few lead compounds and their synthetic	
20	derivatives have progressed to animal trials (e.g. Wu <i>et al.</i> , 2004). despite the many purported elinical applications for seaweed preparations, to date only a few	
21	small clinical trials have been conducted by a limited number of seearchers	- Comment [CM13]: Please provide detail
22	Seaweeds rely on the coating/secretion of secondary metabolites (toxins and broad spectrum antimicrobials and antivirals) for protection against micro- and macro-colonizing	
23	organisms (Hentzer et al., 2003). For example, several halogenated furanone compounds	
24	isolated from the red seaweed <i>Delisea pulchra</i> (Givskov et al., 1996) are released at its surface at concentrations capable of inhibiting both prokaryotic and eukaryotic colonization	
25	(Steinberg et al., 2002). These compounds were shown to be QSI_active against a broad	
26	range of bacteria (Hentzer et al., 2002; Givskov et al., 1996). Their production may have evolved in response to the negative impacts of AHL-dependent colonization of the surface of	
27	the algae by marine bacteria. These furanones produced by <i>Delisea</i> accelerate the turnover of	
28	the LuxR transcription factor inhibiting effectively antagonize AHLOS-dependent gene expression through accelerated degradation of the transcriptional activatorin Gram negative	
29	bacteria (Manefield et al., 2002) and the capacity to synthesize such compounds is likely to	
30	have evolved as an antifouling strategy to preserve the surface of algal fronds from the colonization by Gram negative marine bacteriaHowever, as they are brominated, their	
31	application in humans is limited, making it necessary to search for QSI from other natural	
32	sources (Zhu & Sun, 2008). Overall, macroalgae have yielded more than 3,000 natural products, accounting for approximately 20% of marine natural compounds (Amsler, 2008;	
33	Table 1).	
34	Red seaweeds (Rhodophyta)	Formatted: Font: 12 pt, No underline
35	Research on red seaweeds has discovered the majority of macroalgal secondary metabolites	
36	reference). With the exception of phlorotannins, which are unique to brown algae, red	< \ \Comment (\u00ed reference
37	seaweeds synthesize all major classes of algal natural products (Blunt et al., 2016). Red algae	
38	and nucleic acid derivatives (Amsler, 2008). Halogenated compounds underpin red algal	
39	chemistry, with over 90% of compounds reported to contain bromine or chlorine.	
40	nearly <u>50%half</u> of the reports pubblications on red algal chemistry, producing a plethora of	
40 41	halogenated sequiterpenes and C15 acetogenins-characterized by the presence of halogen	
42	greater, Davis & Vasanthi, 2011). Laurencia species occur widely on temperate and tropical	
43	coasts and are recognized as a rich source of novel secondary metabolites (Cabrita et al.,	Formatted: Font. Italic
44	11	
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

2010). Several of them display promising antimicrobial activity against a range of bacteria. An-For example, an unidentified species of Laurencia from Malaysia exerted potent antimicrobial activity against a range of marine bacteria: two halogenated C15 acetogenir compounds, elatol and iso-obtusol, were isolated from this alga and structurally elucidated based on spectroscopic data, confirming the potential of these compounds as a source of pharmaceutically relevant bioactives (Vairappan et al., 2001). In extracts from L. jusculomajuscula, elatol inhibited six bacterial species, with significant antibacterial antimicrobial activities against Staphylococcus epidermis, Klebsiella pneumonia and Salmonella sp., while iso-obtusol, a polyhalogenated sesquiterpene produced by Laurencia obtusa, was found to exhibited antibacterialdisplay antimicrobial activity against four-several bacteria, and proved particularly active againstwith significant activity against K. pneumonia and Salmonella sp. (Vairappan, 2003). Interestingly, the antimicrobial activity of Interestingly, elatol and iso-obtusol was found to be equal or better showed equal or better antibacterial activity than tested commercialconventional antibiotics while iso o displayed similar potency to commercial antibiotics against K. pneumonia and Salmonella 🐅 📁 두 Formatted: Font: Not Italic tFhrough sp. Both compounds had a bacteriostatic mode of action against the tested bacteria (Vairappan, 2003).- Subsequently, Vairappan et al. (2010) found-discovered a novel brominated diterpene, 10-acetoxyangasiol, as well as four previously known metabolites, aplysidiol, cupalaurenol, 1-methyl-2,3,5-tribromoindole, and chamigrane epoxide in Laurencia sp. Isolated These compoundsmetabolites exhibited potentdisplayed strong antibacterial antimicrobial activityies against clinically relevant bacteria including. Staphylococcus aureus, Staphylococcus sp., Streptococcus pyogenes, Salmonella sp. and Vibrio cholera. Members of the order Bonnemaisoniales also produce a diverse array of secondary halogenated metabolites displaying antimicrobial activity (Nash et al., 2005). Delisea, Asparagopsis, Bonnemaisonia and Ptilonia all synthesize a group of linear halogenated ketones and branched lactones. Amongst these, the fimbrolides, a group of halogenated furanones (Fig. 2) from Delisea pulchra from southeastern Australia, show QSI activity against a range of bacteria, functioning as an intracellular signal antagonist as well as accelerating LuxR turnover (Rasmussen et al., 2000; Manefield et al., 2002), and hence providing an antifouling defence (Kjelleberg & Steinberg, 2001). From a screen of 39 macroalgae, Asparagopsis taxiformis extracts were shown to inhibit QS in C. violaceum CV026 bioreporter assays (Jha et al., 2013). The authors proposed, Bbased on Ion Cyclotron Resonance Fourier Transformation Mass Spectrometry (ICR-FT/MS) analysis of the QSI-active fraction, the authors proposed that the compound responsible for the QSI activity was 2-dodecanoyloxyethanesulfonate (Fig. 6; Jha et al., 2013).

 Bomemaisonia hamifera (Figs 7, 8) is native to Japan, was introduced into the North Atlantic Ocean prior to 1890 (Maggs & Stegenga, 1998) and is now widely distributed there. B. hamifera has a heteromorphic life cycle, alternating between a diploid filamentous "Trailliella" tetrasporophyte and a haploid gametophyte (Breeman et al., 1988). Like Delisea pulchra, B. hamifera produces an assortment of mone- and poly-halogenated compounds <u>hometives</u> including 2-heptanones, 2-heptanols, acetates and acids, some of which display antimicrobial activity (Siuda et al., 1975, Jacobsen & Madsen, 1978; McConnell & Fenical, 1979, Nylund et al., 2013; Enge et al., 2013).

One of the main secondary metabolites, 1,1,3,3-tetrabromo-2-heptanone (Fig. 11), stored in specialized gland cells in the *Trailliella* phase, has an ecologically relevant role as an antifouling agent against bacterial surface colonization. Natural surface concentrations (3.6 µg cm⁻³) of 1,1,3,3-tetrabromo-2-heptanone applied to artificial panels significantly reduced the number of settled bacteria (Nylund *et al.*, 2008). Moreover, <u>organicende</u> extracts of *B. hamifera* show broad-spectrum antimicrobial activity <u>against bacterial growth at ecologically</u> <u>relevant</u> concentrations with ceological relevance (Nylund *et al.*, 2005, 2008, 2013) confirming the potential of this species as a novel source of marine-derived antibiofilm compounds active against human pathogens. The compound also acts as a chemical grazing deterrent (Enge *et al.*, 2013), which is metabolically expensive to produce but protects the seaweed against bacteria as well as grazers (Nylund *et al.*, 2013).

It is interesting to note that several of these members of the Bonnemaisoniales found in Europe and containing halogenated compounds such as bromophenols (Paul *et al.*, 2006), are aliens. These compounds undoubtedly contribute to their invasive potential by deterring grazing and allowing the establishment of large high biomass (Enge *et al.*, 2013). This is a clear indication that alien species are worth targeting in the search for new bioactives. QSI compounds have also been described from a few non-invasive red algae, such as *Ahnfeltiopsis flabellformis* (Gigatrinales) from Korea which has been shown to produce three AHL inhibitory compounds, floridoside (Fig. 3), betonicine (Fig. 4) and isethionic acid (Fig. 5) (Kim *et al.*, 2007).

Brown seaweeds (Phaeophyceae)

Brown algae have also yielded a rich chemical diversity with more than 1,140 reported secondary metabolites. The most studied and representative <u>bioactives</u> compounds of the brown seaweeds include comprise ditrepenes, phlorotannins, and small C11 acetogenins, all with very little halogenation (Blunt *et al.*, 2007). Phlorotannins are distinguishing compounds of brown algae, with a wide range of activities of pharmacological interest including antimicrobial (Eom *et al.*, 2012), antiviral (Ahn *et al.*, 2004), anticidibetic (Lee & Jeon, 2013; Kang *et al.*, 2013), anti-inflammatory (Sugiura *et al.*, 2013, anti-allergic (Sugiura *et al.*, 2013).

2009), anti-cancer (Lee et al., 2012), and anti-neurodegenerative diseases (Myung et al., 2005, Sathya et al., 2013; Jung et al., 2009; Heo et al., 2012) especially against Atzheimer's disease (Yoon et al., 2008; Yoon et al., 2009i Ahn et al., 2012). The ecological role of phlorotannins in brown seaweeds appears to include defence against epiphytes (Nakajima et al., 2016), as well as grazing deterrence (McClintock & Baker, 2001). Atthough many studies examining brown algal chemistry have focused on *Dictyota*

(Dictyotaceae) and its wealth of terpenes (>250) (Munro & Blunt, 2005), several other genera display activities of pharmacological relevance. For example carotenoids from several brown algae have a wide range of bioactivities (Peng et al., 2011). The meroditerpenoid methoxybifurcarenone isolated from (*Systoseira tamariscifolia* displays antifungal activity against three plant pathogenic fungi and antibacterial activity against. *Agrobacterium tumefaciens* and *E. coli* (Bennamara et al., 1999).

Halidrys siliquosa (family Sargassaceae) is a large temperate macroalga growing up to 120 cm long in rock pools and sometimes as forests in the shallow subtidal zone. The bioactive potential of H. siliquosa was identified over four decades ago. Hornsey & Hide (1974, 1976) screened crude extracts of H. siliquosa against a series of opportunistic human pathogens and discovered antimicrobial activity against Staphylococcus aureus, E. coli, Bacillus subtilis, Streptococcus pyogenes and Proteus. Culioli et al. (2008) reported the antifouling activity of meroditerpenoids isolated from this species and identified nine tetraprenyltoluquinol-related metabolites exhibiting antifouling properties and inhibiting the growth of the marine bacteria Cobetia marina, Marinobacterium stanieri, Vibrio fischeri, Pseudoalteromonas haloplanktis. (minimum inhibitory concentrations (MICs) < 2.5 µg ml⁺) Non-cytotoxic concentrations of these meroditerpenoids were found to preventand renting the settlement of cyprids of Balanus amphitrite (EC50 < 5 μg ml⁺) at nontoxic oncentrations (LC50 > 5 μ g mf⁺). A study of the antimyeobacterial, antiprotozoal and otential of 21 brown algae (Phaeophyceae) from British and Irish waters f that H. siliquosa crude extract was found to be active against the parasites Trypanosoma brucei rhodesiense, T. cruzi and Leishmania donovani and the bacterium Mycobacterium tubercolosis (Spavieri et al., 2010) highlighting the potential of this alga for the treatment of mycobacterial and protozoal infections.7 Busetti et al. (2015) reportedfound antimicrobial and antibiofilm activity of methanolic extracts of H. siliquosa against clinically relevant human pathogens of the genera Staphylococcus, Streptococcus, Enterococcus, Pseudomonas, Proteus, Stenotrophomonas,

and Chromobacterium___They reported MIC and minimum bactericidal concentration values (MBC) values of *II. siliquosa* methanolic extract ranging from 0.01.5 mg mf⁺-Moreover, bBjofilms of *S. aureus* MRSA ATCC 33593 and *S. aureus* MRSA NCTC 10442 were <u>found</u> to be susceptible to *H. siliquosa* methanolic extract <u>which acwhieved</u> ith minimum biofilm

1		
2		
3		
1		
4		
5		
6		
7		
8		
õ		
9		
10		
11		
12		
13		
1/		
17		
15		
16		
17		
18		
19	eradication concentration (MBEC) values of 1.25 mg ml ⁻¹ and 5 mg ml ⁻¹ respectively. AThe	
20	active extracts showed no toxicity against wax moth (<i>G. mellonella</i>) larvae across a wide	
20	range or concentrations up to the mighest concentration tested (Busetti et al., 2015). The final antimicrobial activity exhibited by the crude extract using the disc diffusion ascay or the MIC	
21	assay against MRSA ATCC 33593 is the result of the additive or synergistic activity of two	
22	distinct groups of compounds whereas the activity observed against C. violaceum ATCC	
23	12472 results from three distinct groups of compounds. The activity of <i>H. siliquosa</i>	
24	suggests the production of bioactives with the potential to be used in a treatment strategy for	
27	presence of compounds that could be used against the emerging cystic fibrosis pathogen	
20	Stenotrophomonas maltophilia as well as or in a treatment therapies for strategy for	
26	Staphylococcus biofilm-related infections. The vast arsenal of bioactive compounds produced by <i>H_siliquosa</i> renders this organism another ideal subject for the isolation and	
27	characterization of bioactive compounds displaying antimicrobial or antibiofilm activity	
28	against clinically relevant human pathogens. Moreover, the promising range of activities	
29	displayed by <i>H. siliquosa</i> organic extracts against clinically relevant, antibiotic-resistant,	Formatted: Font Italic
30	isolation of antibiofilm compounds and antimicrobials for the treatment of infections	
24	involving resistant-multi-resistant pathogenic strains.	
31	·	
32	Macroalgal microbiomes as a source of novel bioactives of pharmaceutical	
33	retevance In recent years, several studies characterizing algal epiphytic bacterial communities (Figs 12-	
34	13) have highlighted the presence of "core microbial species" in mutualistic or obligate	
35	association with their host (Singh et al., 2015). In particular, several bacterial epiphytes have	(Formatted: Not Highlight
26	been reported to produce bioactive compounds that can protect macroalgal surfaces from biofouling (Dobretsoy and Opian 2002). However, whereas several concerted studies have	Formatter: Not Hinblight
30	focused on characteriszing the composition of the human microbiomes as well as deciphering	Formatics in the highly the second seco
37	the physiological significance of the host-microbe interactions underlying the mutualistic	
38	relationships therein, in seaweeds the characterisation of microbiomes and the significance of their functional relationship with their hosts remain learning thready uncombered. The advect of	
39	culture-independent, DNA-based, metagenomic and transcriptomic methods has provided	
40	powerful new tools for the characteriszation of host-associated microbiomes as well as for the	- Formatted: Not Highlight
<u>4</u> 1	elucidation of the many, complex, yet often fundamental processes involved in host-microbe	Formatted: Not Highlight
40 	meracuons, providing ruture studies the tools to investigate the functional microbiome involved in the often complex life cycles of macroalgae (Singh and& Reddy, 2016). The	Formatted: Not Highlight
42		
43	47	
44	15	
45		
46		
17		
10		
40		
49		
50		
51		
52		
53		
50		
04 55		
55		
56		
57		
58		
59		

discoveries deriving from such studies could assist in promoting fitness and productivity in macroalgal species of commercial interest through the modulation of a functionally active microbione as well as providing enormous notential for the discovery of novel antibiofilm or	
OSI compounds of clinical relevance. Epiphytic bacterial communics have been reported to play an important role in protocting macroalgal surfaces from biofouling microorganisms through production of biologically active metaboliter. However, in contrast to the microbial	
indice associated with human skin and gut and plant; that have significantly advanced our knowledge on microhomes and their functional interactions with the host, in seaweeds the precise composition of microhomes and their functional partnership with their hosts remain advanced to the second	
rentively unknown. Increases, it is imperative to investigate the functional increasion into a closely involved in the life cycles of macroalgae using high-throughput techniques (inclugenomics and metationscriptomics). The findings from such investigations would help in promoting health and productivity in macroalgal species through regulation of a	
functionally active microbiome as well as providing enormous potential for the isolation of novel antibiofilm or QSI compounds of clinical relevance. For example, For example, the green alga the cpiphytic bacterium Pseudoalteromonaz	
Imicale isolated from the surface of U/wa lactica can hnderelies on the opphytic backersum Pseudoalieromonas tunicata to block biofilm formation of competing Gram negative microbes through the synthesis of pigmented substances that initibil <u>LuxR-dependent</u> AHL- dependent-transcriptional control in-through a comparable fashions imilar mode of action to	
the furanones (McLean et al., 2004). Halobacillus salinus, a marine Gram positive bacterium isolated from a seagrass, secretes synthesizes and releases OSI secondary metabolites/bioacrives capable of quenching QS controlled behaviours inactive against Gram	
negative strains (reaskate et al., 2009) <u>introden</u> competitive mixing. In a powerket mixing mean nontoxic metabolites may act as antagonists of bacterial QS by competing with AHLs for receptor binding (Teaskale et al., 2009). These examples indicate that QS inhibition represents a natural, widespread, <u>antifokultingentimicrobial</u> strategy utilized solved by marine	
organisms with significant impact on biofilm formation, making marine ecosystems an ideal source for the discovery of QS inhibitors with potentially clinically relevant antibiofilm activity.	
in a recent study an isolate belonging to the Pseudoalteromonas op genus isolateddobtained from the surface algal fronds of the red alga seaweed Plocamium maggsiae	Formatted: Font: 11 pt Formatted: Font: (Default) Times New Roman, 11 pt
displayed strong potent quorum sensing inhibitory (QSI) activity against acyl homoserine	Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman, 11 pt, Italic
(Buseti et al., 2014). The isolate's <u>filter-steriliseed</u> supernatant significantly reduced <u>diminished</u> biofilm biomass both during biofilm formation (by 63%) as well as nd-in pre- established, mature <i>P. aeruginosa</i> PAO1 biofilms (by 33%) causing a 0.97-log reduction	Formatted: Font Not Italic
16	

1	
2	
3	
4	
5	
6	
7	
0	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
11	
11	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54 57	
55	
56	
57	
58	
59	

(-89%) and a 2-log reduction (-99%) in PAO1 biofilm viable counts in the biofilm formation and the biofilm eradication assays. The crude organic extract obtained from this is displayehad a minimum inhibitory concentration (MIC) of 2 mg ml⁻¹ against PAO1 but failed to no produce a minimum bactericidal concentration (MBC) confirming the lack of antimicrobial activity in the extract at the concentrations tested. Sub-MIC concentrations (1 ng ml+) of KS8 the crude organic extract were found to significantly reduced the quorum sensing (QS)-dependent production of both-the two virulence factors pyoverdin and pyocyanin in P. aeruginosa PAO1 without affecting growth. A combinatorial approach using tobramycin and the crude organic extract at 1 mg ml-1 against planktonic P. aeruginosa PAO1 increased the efficacy effectiveness of tobramycin ten-foldby ten times, der lowering the its MIC against this pathogen from 0.75 to 0.075 mg ml⁻¹ (Busetti et al., 2014). These results of this study confirmdata support the validity efficacy of combinatorial approaches strategies combining conventional current antibiotic treatmentherapy with (non-antibiotic) OSI compounds derived from algal microbial epiphytes to improve the efficacy of current antibiotic treatments. - - Formatted: Right

ConclusionsFuture perspectives

The imminent global health threat of antimicrobial resistance with the realistic prospect of mankind entering a 'post-antibiotic en' has spurred (frven) research into ansel innovating therapeutic strategiess based tellying on new different targets and approaches for the treatment of microbial infections. The discovery gradual elucidition of widespread bacterial communication (QS) systems regulated by small diffusible signal molecules as a means to coordinate group behaviours has revolutionized our classical conception of bacteria as unicellular and thus independent in nature. Targeting complex social behaviours, which include virulence and pathogenicity, regulated by chemical intra- and inter-species signal molecules which allow them to coordinate their behaviour at a community level, represents a novel target for non-antibiotic anti-infective chemotherapy. Marine organisms ark known to produce a variety of QSIs that can interfere fluvant with the biofilm formation development of competing species (McClean & Winson *et al.*, 1997;

Bauer & Robinson 2002; Saurav et al., 2017), representing an important resource for the isolation of novel "antipathogenic" antibiofilm compounds. Bacteria from algal microbiomes remain a relatively untapped source of novel candidate compounds displaying QSI activity with the potential to attenuate biofilm formation, virulence factor production or increase the antimicrobial susceptibility of clinically important pathogenic bacteria in the constant fight against emergence of multi-resistant microorganisms (Surav et al., 2017). As in many other discovery and development programs im marine boactives, there are a

multitude of challenges associated with the biodiscovery and commercialization of

macroalgal compounds as pharmaceutical agents. These include accessibility to the biodiversity, efficient screening, sustainable supply, variability in the spectrum and quantities of bioactives produced (due to factors such as seasonality and geographic distribution), elucidation of the mechanism of action, suitable pharmacokinetics/ pharmacodynamic parameters and ultimately costs associated with sustainable aquaculture and processing. Despite this, a significant body of early-stage biodiscovery research highlights marine macroalgae as promising sources of novel antimicrobials, antibiofilm compounds, antivirals, antiancer, antimicrobial, anti-inflammatory and neuroprotective agents. Several studies have validated approaches that combine conventional <u>fegular</u> antibiotic agents with non-antibiotic compounds, such as QSbs, to enhance the effectivenessing of present unrent-treatments, but have not yet moved to clinical trials. Drawing inspiration from nature, future studies could focus on evaluating the combinatorial effects of algal secondary metabolites with those produced by the core members of their bacterial microbiomes in an attempt to immire the complex natural chemical mechanism.

Conflicts of Interest

The authors declare no conflict of interest.

symbiotic relationships in their environments.

Author Contributions

All authors contributed to the manuscript. A. Busetti prepared the first draft; A. Busetti, C.A. Maggs and B.-F. Gilmore reviewed, revised and updated the manuscript.

Funding

This work was funded by the Beaufort Marine Biodiscovery Project (BEAU/BIOD/01; BEAU/BIOD/03; BEAU/BIOD/04), within the National Development Programme of Ireland.

REFERENCES

Agrawal, S., Adholeya, A. & Deshmukh, S.K. (2016). The pharmacological potential of nonribosomal peptides from marine sponge and tunicates. *Frontiers in Pharmacology*, 7: 10.3389/fphar.2016.00333.

European Journal of Phycology

1 2 3 4 5 6 7 8 9 10 11 12 13	
14	
15	
16	
17	
18	
19	Ahn, B.R., Moon, H.E., Kim, H.R., Jung, H.A. & Choi, J.S. (2012). Neuroprotective effect of edible brown alga <i>Eisenia bicyclis</i> on amyloid beta peptide-induced toxicity in PC12
20	cells. Archives of Pharmacal Research, 35: 1989-1998.
21	Ahn, M.J., Yoon, K.D., Min, S.Y., Lee, J.S., Kim, J.H., Kim, T.G., Kim, S.H., Kim, N.G., Huh, H. & Kim, J. (2004). Inhibition of HIV-1 reverse transcriptase and protease by
22	phlorotannins from the brown alga Ecklonia cava. Biological and Pharmaceutical
23	Akkaya, S. & Ozkurt, Y.B. (2016) Persistent symblepharon in an infant following epidemic
24	keratoconjunctivitis. Medical Hypothesis, Discovery and Innovation in Ophthalmology, 5: 74-77
25	Amsler, C.D. (2008) Algal Chemical Ecology. Springer Verlag, Berlin & Heidelberg.
26	Appelbaum, P.C. (2007) Reduced glycopeptide susceptibility in methicillin-resistant Staphylococcus aureus (MRSA). International Journal of Antimicrobial Agents, 30: 398-
27	408.
28	Armstrong, E., Yan, L., Boyd, K.G., Wright, P.C. & Burgess, J.G. (2001). The symbiotic role of marine microbes on living surfaces. <i>Hydrobiologia</i> , 461: 37-40.
29	Balcazar, J.L., Rojas-Luna, T. & Cunningham, D.P. (2007). Effect of the addition of four
30	potential probiotic strains on the survival of Pacific white shrimp (Litopenaeus vannamei) following immersion challenge with Vibrio parahaemolyticus. Journal of
31	Invertebrate Pathology, 96: 147-150.
32	Barbosa, M., Valentão, P., & Andrade, P. B. (2014). Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases. <i>Marine Drugs</i> , 12:
33	4935-4972.
34	Bennamara, A., Abourriche, A., Berrada, M., Charrout, M., Chaib, N., Boudouma, M. & Garneau, F.X. (1999). Methoxybifurcarenone: an antifungal and antibacterial
35	meroditerpenoid from the brown alga Cystoseira tamariscifolia. Phytochemistry, 52: 37-
36	 Bérdy, J. (2005). Bioactive microbial metabolites. <i>Journal of Antibiotics</i>, 58: 1-26.
37	Bergmann, W. & Feeney, R.J. (1950). The isolation of a new thymine pentoside from sponges. <i>Journal of the American Chemical Society</i> , 72: 2809-2810.
38	Bergmann, W. & Feeney, R.J. (1951). Contributions to the study of marine products. XXXII.
39	The nucleosides of sponges. I. Journal of Organic Chemistry, 16: 981-987. Blunt I.W. Conn. B.R. Hu, W.P. Munro, M.H. Northcote, P.T. & Prinsen, M.R. (2007).
40	Marine natural products. Natural Product Reports, 24: 31-86.
41	Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H. & Prinsep, M.R. (2016). Marine natural products. Natural Product Reports, 33: 382,431
42	produces. Administ Frequence, 55, 502 For.
43	19
44	17
45	
46	
47	
48	
49	
50	
51	

1		
2		
3		
4		
5		
6		
0		
1		
8		
9		
10		
11		
12		
12		
13		
14		
15		
16		
17		
18		
19	Bo, G. (2000). Giuseppe Brotzu and the discovery of cephalosporins. Clinical Microbiology	
20	and Infection, 6, Suppl 3: 6-9. Bowman, I.P. (2007). Bioactive compound synthetic canacity and ecological significance of	
20	marine bacterial genus Pseudoalteromonas. Marine Drugs, 5: 220-241.	
∠ I 00	Brackman, G., Celen, S., Hillaert, U., Van Calenbergh, S., Cos, P., Maes, L., Nelis, H.J. &	
22	Coenye, T. (2011). Structure-activity relationship of cinnamaldehyde analogs as inhibitors of AI-2 based quorum sensing and their effect on virulence of Vibrio con Place.	
23	ONE, 6, 1: e16084.	
24	Brackman, G. & Coenye, T. (2015). Quorum sensing inhibitors as anti-biofilm agents,	
25	Current Pharmaceutical Design, 21: 5-11. Brackman, G. Cos, P. Maes, L. Nelis, H.L.& Coenve, T. (2011). Quorum sensing inhibitors	
26	increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo.	
27	Antimicrobial Agents and Chemotherapy, 55: 2655-2661.	
20	Breeman, A.M., Meulenhoff, E.J.S. & Guiry, M.D. (1988). Life history regulation and phenology of the red alga <i>Ronnemaisonia hamifera</i> . <i>Helgoländer</i> .	
20	Meeresuntersuchungen, 42: 535-551.	
29	Busetti, A., Shaw, G., Megaw, J., Gorman, S.P., Maggs, C.A. & Gilmore, B.F. (2014).	
30	Marine-derived quorum-sensing inhibitory activities enhance the antibacterial efficacy of tobramvcin against <i>Pseudomonas aeruginosa</i> . <i>Marine Drugs</i> . 13: 1-28.	
31	Busetti, A., Thompson, T.P., Tegazzini, D., Megaw, J., Maggs, C.A. & Gilmore, B.F. (2015).	
32	Antibiofilm activity of the brown alga Halidrys siliquosa against clinically relevant	
33	human pathogens. Marine Drugs, 13: 3581-3605. Cabrita M.T. Vale, C. & Rauter, A.P. (2010). Halogenated compounds from marine algae	
34	<u>Marine Drugs, 8: 2301-2317.</u>	Formatted: Font: Italic
35	Callow, M.E. & Callow, J.E. (2002). Marine biofouling: a sticky problem. The Biologist, 49:	Formatted: Font. Bold
30	10-14. Camara M. Williams P. & Hardman A. (2002) Controlling infection by tuning in and	
36	turning down the volume of bacterial small-talk. The Lancet Infectious Diseases, 2: 667-	
37	676.	
38	Costerton, J.W., Geesey, G.G. & Cheng, K.J. (1978). How bacteria stick. Scientific American, 238: 86-95.	
39	Culioli, G., Ortalo-Magne, A., Valls, R., Hellio, C., Clare, A.S. & Piovetti, L. (2008).	
40	Antifouling activity of meroditerpenoids from the marine brown alga Halidrys siliquosa.	
41	Journal of Natural Products, 11: 1121-1126. Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews	
42	Drug Discovery, 2: 114-122.	
-74 10		
43	20	
44	20	
45		
46		
47		
48		
49		
50		
50		
51		
52		
53		
54		
55		
56		
57		
51		
20		
59		
60		

European Journal of Phycology

1		
י כ		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
10		
10		
17		
18	Davis G.D. & Vasanthi A.H. (2011) Seguered matchedite database (SWAD). A database of	
19	natural compounds from marine algae. Bioinformation, 5: 361-364.	
20	D'Costa, V.M., King, C.E., Kalan, L., Morar, M., Sung, W.W., Schwarz, C., Froese, D.,	
21	(2011). Antibiotic resistance is ancient. <i>Nature</i> , 477: 457-461.	
22	Defoirdt, T., Boon, N. & Bossier, P. (2010). Can bacteria evolve resistance to quorum sensing	
23	disruption? PLoS Pathogens, 6, 7, e1000989. Diggle, S.P., Crusz, S.A. & Cámara, M. (2007). Ouorum sensing. Current Biology 17: R907-	
24	910.	
25	Dobretsov, S., Dahms, H.U. & Qian, P.Y. (2006). Inhibition of biofouling by marine microgramisms and their metabolites. <i>Biofouling</i> , 22: 43-54.	
26	Dobretsov, S. and& Qian, P.Y. (2002). Effect of bacteria associated with the green alga <i>Ulva</i> .	
27	reticulata on marine micro- and macrofouling. Biofouling, 18: 217-228.	Formatted: Font: Bold, Not Italic
28	Inhibition of marine biofouling by bacterial quorum sensing inhibitors. <i>Biofouling</i> , 27:	
29	893-905.	
30	Dobretsov, S., Tepittski, M. & Paul, V. (2009). Mini-review: quorum sensing in the marine environment and its relationship to biofouling. <i>Biofouling</i> , 25: 413-427.	
31	Dong, Y.H., Xu, J.L., Li, X.Z. & Zhang, L.H. (2000). AiiA, an enzyme that inactivates the	
22	acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences of the United States of	
3Z 22	America, 97: 3526-3531.	
33	Egan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S. & Thomas, T. (2012). The	
34	Reviews, 37: 462–476.	
35	Enge, S., Nylund, G.M., Harder, T. & Pavia, H. (2013). An exotic chemical weapon explains	
36	Iow herbivore damage in an invasive alga. Ecology, 93: 2/36-2/45. Eom, S., Kim, Y. & Kim, S. (2012). Antimicrobial effect of phlorotannins from marine brown	
37	algae. Food and Chemical Toxicology, 50: 3251-3255.	
38	Fowler, M.G. et al. (2016). Benefits and risks of antiretroviral therapy for perinatal HIV prevention. New England Journal of Medicine 375: 1726-1737	
39	Furuya, E.Y. & Lowy, F.D. (2006). Antimicrobial-resistant bacteria in the community setting.	
40	Nature Reviews Microbiology, 4: 36-45.	
41	defend crustacean embryos from a pathogenic fungus. Science, 246: 116-118.	
42		
43		
44	21	
45		
46		
47		
10		
40		
40 10		
40 49 50		
40 49 50		
49 50 51		
49 50 51 52		
49 50 51 52 53		
49 50 51 52 53 54		
49 50 51 52 53 54 55		

2
2
3
4
5
5
6
7
Q
0
9
10
11
11
12
13
1/
14
15
16
17
10
18
19
20
20
21
22
23
24
24
25
26
20
21
28
29
20
30
31
32
02
33
34
35
26
30
37
38
20
39
40
41
10
42
43
44
15
40
46
47
10
40
49
50
51
51
52
53
51
55
56
57
51
58
59

1

Givskov, M., de Nys, R., Manefield, M., Gram, L., Maximilien, R., Eberl, L., Molin, S., Steinberg, P.D. & Kjelleberg, S. (1996). Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. Journal of Bacteriology, 178: 6618-6622. Han, S.B., Kim, S.k., Lee, J.W., Lee, D., Chung, N., Jeong, D.C., Cho, B. & Kang, J. (2017). Varicella zoster virus infection after allogeneic hematopoietic cell transplantation in children using a relatively short duration of acyclovir prophylaxis: A retrospective study. Medicine, 96: e6546. Hardie, K.R. & Heurlier, K. (2008). Establishing bacterial communities by 'word of mouth': LuxS and autoinducer 2 in biofilm development. Nature Reviews Microbiology, 6: 635-643. Harrison, J.J., Stremick, C.A., Turner, R.J., Allan, N.D., Olson, M.E. & Ceri, H. (2010). Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nature Protocols, 5: 1236-1254. Hawkey, P.M. (2008). The growing burden of antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 62 (Suppl. 1): i1-i9. Hentzer, M., Riedel, K., Rasmussen, T.B., Heydorn, A., Andersen, J.B., Parsek, M.R., Rice, S.A., Eberl, L., Molin, S., Hoiby, N., Kjelleberg, S. & Givskov, M. (2002). Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology, 148: 87-102. Hentzer, M., Wu, H., Andersen, J.B., Riedel, K., Rasmussen, T.B., Bagge, N., Kumar, N., Schembri, M.A., Song, Z., Kristoffersen, P., Manefield, M., Costerton, J.W., Molin, S., Eberl, L., Steinberg, P., Kjelleberg, S., Hoiby, N. & Givskov, M. (2003). Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO Journal, 22: 3803-3815. Heo, S., Cha, S., Kim, K., Lee, S., Ahn, G., Kang, D., Oh, C., Choi, Y., Affan, A., Kim, D. & Jeon, Y. (2012). Neuroprotective effect of phlorotannin isolated from Ishige okamurae against H2O2-induced oxidative stress in murine hippocampal neuronal cells, HT22. Applied Biochemistry and Biotechnology, 166: 1520-1532. Hoiby, N., Ciofu, O., Johansen, H.K., Song, Z.J., Moser, C., Jensen, P.O., Molin, S., Givskov, M., Tolker-Nielsen, T. & Bjarnsholt, T. (2011). The clinical impact of bacterial biofilms. International Journal of Oral Science, 3: 55-65. Holmstrom, C., Rittschof, D. & Kjelleberg, S. (1992). Inhibition of settlement by larvae of Balanus amphitrite and Ciona intestinalis by a surface-colonizing marine bacterium. Applied and Environmental Microbiology, 58: 2111-2115. Hornsey, I.S. & Hide, D. (1976). The production of antimicrobial compounds by British marine algae II. Seasonal variation in production of antibiotics. British Phycological Journal, 11: 63-67. 22

European Journal of Phycology

1 2 3 4 5 6 7 8 9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	Hornsey, I.S. & Hide, D. (1974). The production of antimicrobial compounds by British
20	marine algae 1. Anubiouc-producing marine algae. <i>British Phycological Journal</i> , 9: 555- 361.
21	Huber, B., Riedel, K., Hentzer, M., Heydorn, A., Gotschlich, A., Givskov, M., Molin, S. & Eberl, L. (2001). The cen quarum-sensing system of <i>Burkholderia cenacia</i> H111
22	controls biofilm formation and swarming motility. <i>Microbiology</i> , 147: 2517-2528.
23	Humeniuk, R., Menon, L.G., Mishra, P.J., Saydam, G., Longo-Sorbello, G.S., Elisseyeff, Y., Lewis L.D. Aracil M. Jimeno J. Bertino J.R. & Banerice. D. (2007) Aplidin
24	synergizes with cytosine arabinoside: functional relevance of mitochondria in Aplidin-
25	induced cytotoxicity. Leukemia, 21: 2399-2405. Irie, Y. & Parsek, M.R. (2008). Quorum sensing and microbial biofilms. Current Topics in
26	Microbiology and Immunology, 322: 67-84.
27	Jacobsen, N. & Madsen, J.O. (1978). Halogenated metabolites including brominated 2- heptanols and 2-heptyl acetates from the tetrasporophyte of the red alga <i>Bonnemaisonia</i>
28	hamifera. Tetrahedron Letters, 33: 3065-3068.
29	Jha, B., Kavita, K., Westphal, J., Hartmann, A., Schmitt-Kopplin, P. (2013). Quorum sensing inhibition by Asparagopsis taxiformis, a marine macroalga: separation of the compound
30	that interrupts bacterial communication. Marine Drugs, 11: 253-265.
31	Sung, W.A., Heb, S.J., Scol, T.J., Lee, C.M., Faix, T.M., Byun, H.O., Choi, T.H., Faix, S.O. & Choi, I.W. (2009). Inhibitory effects and molecular mechanism of dieckol isolated
32	from marine brown alga on COX-2 and iNOS in microglial cells. Journal of Agricultural and Ecod Chemistry, 57: 4439-4446
33	Justin, J.R. & Melander, C. (2009). Small molecule approaches toward the non-microbicidal
34	modulation of bacterial biofilm growth and maintenance. Anti-Infective Agents in Medicinal Chemistry 8: 295-314
35	Kang, M.C., Wijesinghe, W.A., Lee, S.H., Kang, S.M., Ko, S.C., Yang, X., Kang, N., Jeon,
36	B.T., Kim, J., Lee, D.H. & Jeon, Y.J. (2013). Dieckol isolated from brown seaweed Ecklonia cava attenuates type II diabetes in db/db mouse model. Food and Chemical
37	Toxicology, 53: 294-298.
38	Kendall, M.M. & Sperandio, V. (2007). Quorum sensing by enteric pathogens. Current Opinion in Gastroenterology, 23: 10-15.
39	Kim, J.S., Kim, Y.H., Seo, Y.W., Park, S. (2007). Quorum sensing inhibitors from the red
40	aiga, Antifettiopsis flabeliljormis. Biolechnology & Bioprocess Engineering, 12: 508- 311.
41	Koehn, F.E. & Carter, G.T. (2005). The evolving role of natural products in drug discovery.
42	Naune Reviews Drug Discovery, 4. 200-220.
43	22
44	23
45	
46	
47	
48	
49	
50	

		European Journal of Phycology	Page 52 of 64
1 2 3 4 5 6 7 8 9 10 11 2 3 14 15			
16 17 18 19 20	Lee, J.Y., Kim, S.M., Jung, W., Song, D., Um, B., Son, J. & Pan, C. (2012). Philorofucorucockol-A, a potent inhibitor of aldo-keto reductase family 1 member B10, from the adults because along time to biaselite. Journal of the Assenta Sociator for Analised		
20 21 22 23 24 25 26 27 28 29 30	 from the edible brown alga Eisenia bicyclis. Journal of the Korean Society for Applied Biological Chemistry, 55: 721-727. Lee, S.H. & Jeon, Y.J. (2013). Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. <i>Flioterapia</i>, 86: 129-136. Lee, S.J., Park, S.Y., Lee, J.J., Yum, D.Y., Koo, B.T. & Lee, J.K. (2002). Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. <i>Applied and Environmental Microbiology</i>, 68: 3919-3924. Lin, Y.H., Xu, J.L., Hu, J., Wang, L.H., Ong, S.L., Leadbetter, J.R. & Zhang, L.H. (2003). Acyl-homoserine lactone acylase from <i>Ralsonia</i> strain XJ12B represents a novel and potent class of quorum-quenching enzymes. <i>Molecular Microbiology</i>, 67: 849-860. Livermore, D.M. (2002). Multiple mechanisms of antimicrobial resistance in <i>Pseudomonas</i> <i>aeruginosa</i>: our worst nightmare? <i>Clinical Infectious Disease</i>, 34: 634-640. Maggs, C.A. & Stegenga, H. (1998). Red algal exotics on North Sea coasts. <i>Heigolituder Meeresuntersuchungen</i>, 52: 243-258. Maneffeld, M., Rasmussen, T.B., Henzter, M., Andersen, J.B., Steinberg, P., Kjelleberg, S. & Givskov, M. (2002). Halogenated furanones inhibit quorum sensing through accelerated 		
31 32	LuxR turnover. Microbiology, 148: 1119-1127. Maschek, J.A. & Baker, B.J. (2008) The chemistry of algal secondary metabolism in Algal Chemical Ecology (Amsler, C.D., 4Editor), Algal Chemical Ecology (pp. 1-20).	Formatted: Font: Not Italic	
33 34 35 36 37 38	 Springer, Berlin, Springer, McClintock, J.B. & Baker, B.J. (2001). Marine Chemical Ecology. CRC Press. McConnell, O.J. & Fenical, W. (1979). Antimicrobial agents from the marine red algae of the family Bonnemaisoniaceae, in Hoppe, H.A. (ed.) Marine Algae in Pharmaceutical Science. Walter der Gruyter, Berlin, pp. 479-500. McLean, R.J., Pierson, L.S. 3rd & Fugua, C. (2004). A simple screening protocol for the identification of quorum signal antagonists. Journal of Microbiological Methods, 58: 351-360. Mellbye, B. & Schuster, M. (2011). The sociomicrobiology of antivirulence drug resistance: a proof of concept. mBio, 2, 10.1128/mBio.00131-11. 	(Formatted: English (U.K.)	
39 40 41 42 43	Molinski, T.F., Dalisay, D.S., Lievens, S.L. & Saludes, J.P. (2009). Drug development from marine natural products. <i>Nature Reviews Drug Discovery</i> , 8: 69-85.Mueller, L.N., de Brouwer, J.F., Almeida, J.S., Stal, L.J. & Xavier, J.B. (2006). Analysis of a marine phototrophic biofalm by confocal laser scanning microscopy using the new image quantification software PHLIP. <i>BMC Ecology</i> , 6, 1.		
44 45 46 47 48 49	2.		
50 51 52 53 54			
55 56 57 58 59 60			

URL: http:/mc.manuscriptcentral.com/tejp Email: ejp@nhm.ac.uk

1 2 3 4 5	
6 7	
8	
10	
11	
12	
13	
14	
15	
16	
17	
10	Myung, C., Shin, H., Bao, H.Y., Yeo, S.J., Lee, B.H. & Kang, J.S. (2005). Improvement of
20	memory by dieckol and phlorofucofuroeckol in ethanol-treated mice: Possible involvement of the inhibition of acetylcholinesterase. Archives of Pharmacal Research.
21	28: 691-698.
22	Nakajima, N. et al. (2016). Diversity of phlorotannin profiles among sargassacean species affecting variation and abundance of epiphytes. <i>European Journal of Phycology</i> , 51:
23	307-316. Nash R. Rindi F & Guiry M.D. (2005) Ontimum conditions for cultivation of the
24	Trailliella phase of Bonnemaisonia hamifera Hariot (Bonnemaisoniales, Rhodophyta), a
25	candidate species for secondary metabolite production. Botanica Marina, 48: 257-265. Newman, D.J. & Cragg, G.M. (2016). Natural products as sources of new drugs from 1981 to
26	2014. Journal of Natural Products, 79: 629-66. Nylund G.M. Cervin, G. Hermansson, M. & Pavia, H. (2005). Chemical inhibition of
27	bacterial colonization by the red alga Bonnemaisonia hamifera. Marine Ecology
28	Progress Series, 302: 27-36. Nylund, G.M., Cervin, G., Persson, F., Hermansson, M., Steinberg, P.D. & Pavia, H. (2008).
29	Seaweed defence against bacteria: a poly-brominated 2-heptanone from the red alga
30	Series, 369: 39-50.
32	Nylund, G.M., Enge, S. & Pavia, H. (2013) Costs and benefits of chemical defence in the red alga Bonnemaisonia hamifera. PLoS ONE, 8: e61291.
33	O'Neill, J. (2014). Review on antimicrobial resistance, December 2014. Available: http://ann-
34	Papenfort, K. & Bassler, B.L. (2016). Quorum sensing signal–response systems in Gram-
35	negative bacteria. Nature Reviews Microbiology, 14: 576–588. Parsek, M.R. & Greenberg, E.P. (2005). Sociomicrobiology: the connections between quorum
36	sensing and biofilms. <i>Trends in Microbiology</i> , 13: 27-33.
37	Paul, N.A., de Nys, K. & Steinberg, P.D. (2006). Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. Marine Ecology Progress
38	Series, 306: 87-101. Penesvan, A., Kielleberg, S. & Egan, S. (2010). Development of novel drugs from marine
39	surface associated microorganisms. <i>Marine Drugs</i> , 8: 438-459.
40	Peng, J., Yuan, J., Wu, C. & Wang, J. (2011). Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health
41	Marine Drugs, 9: 1806-1828. Plowman, R. (2000). The socioeconomic burden of hospital acquired infection. <i>European</i>
42	Communicable Disease Bulletin, 5(4): 49-50.
43	25
44 15	
40	
47	
48	
49	

1 2 3 4		
6 7 8 9		
10		
11		
12		
13		
14		
16		
17		
18		
19	Plowman, R., Graves, N., Griffin, M.A.S., Roberts, J.A., Swan, A.V., Cookson, B. & Taylor, L. (2001). The rate and cost of hospital-acquired infections occurring in patients	
20	admitted to selected specialties of a district general hospital in England and the national burden imposed. <i>Journal of Hospital Infection</i> , 47: 198-209.	
21	Qian, P.Y., Lau, S.C.K., Dahms, H.U., Dobretsov, S. & Harder, T. (2007). Marine biofilms as mediators of colonization by marine macrooreanisms: implications for antifouling and	
23	aquaculture. Marine Biotechnology, 9: 399-410.	
24	review of the efficacy of bioactive compounds in cardiovascular disease: phenolic	
25	compounds. <u>Nutrients. 1: 517/-5216</u> Rao, T., Rani, P., Venugopalan, V. & Nair, K. (1997). Biofilm formation in a freshwater	- Termatted: Font: Italic
26 27	environment under photic and aphotic conditions. <i>Biofouling</i> , 11: 265-282. Rasmussen, T.B. & Givskov, M. (2006). Quorum-sensing inhibitors as anti-pathogenic drugs.	
28	International Journal of Medical Microbiology, 296: 149-161. Rasmussen, T.B., Manefield, M., Andersen, J.B., Eberl, L., Anthoni, U., Christophersen, C.,	
29	Steinberg, P., Kjelleberg, S. & Givskov, M. (2000). How Delisea pulchra furanones affect quorum sensine and swarming motility in Serratia liauefaciens MG1.	
30	Microbiology, 146: 3237-3244. Ready D. Roberts A.P. Pratten I. Spratt D.A. Wilson M. & Mullany, P. (2002)	
31	Composition and antibiotic resistance profile of microsom dental plaques before and	
32	Reimmann, C., Ginet, N., Michel, L., Keel, C., Michaux, P., Krishnapillai, V., Zala, M.,	
34	Heurlier, K., Triandafillu, K., Harms, H., Defago, G. & Haas, D. (2002). Genetically programmed autoinducer destruction reduces virulence gene expression and swarming	
35	motility in Pseudomonas aeruginosa PAO1. Microbiology, 148: 923-932.Ren, D., Sims, J.J. & Wood, T.K. (2002). Inhibition of biofilm formation and swarming of	
36	Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Letters in Applied Microbiology, 34: 293-299.	
37	Ren, D., Sims, J.J. & Wood, T.K. (2001). Inhibition of biofilm formation and swarming of <i>Escherichia coli</i> by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone.	
30 39	Environmental Microbiology, 3: 731-736. Rosenfeld, W.D. & Zobell, C.E. (1947). Antibiotic production by marine microorganisms.	
40	Journal of Bacteriology, 54: 393-398. Sathya, R., Kanaga, N., Sankar, P. & Jeeva, S. (2013). Antioxidant properties of	
41	phlorotannins from brown seaweed <i>Cystoseira trinodis</i> (Forsskal) C. Agardh. Arabian Journal of Chemistry, doi:10.1016/j.arabia.2013.09.039	
42	bournary encountry, advicer or paragregations, solver,	
43 44	26	
45		
46		
47		
48 40		
4 9 50		
51		
52		
53		
54 55		
55		

1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19	antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America, <i>Clinical Infectious Diseases</i> , 46: 155-164		
20	Sperandio, V. (2007). Novel approaches to bacterial infection therapy by interfering with		
21	bacteria-to-bacteria signaling. Expert Review of Anti-Infective Therapy, 5: 271-276.		
22	Journal of Chemical Ecology, 28: 1935-1951.		
23	Suga, H. & Smith, K.M. (2003). Molecular mechanisms of bacterial quorum sensing as a new drug target. <i>Current Opinion in Chemical Biology</i> 7: 586-591		
24	Sugiura, Y., Matsuda, K., Okamoto, T., Yamada, Y., Imai, K., Ito, T., Kakinuma, M. &		
25	Amano, H. (2009). The inhibitory effects of components from a brown alga, Eisenia arborea. on deeranulation of mast cells and eicosanoid synthesis. Journal of Functional		
26	Foods, 1: 387-393.		
27	Sugiura, Y., Tanaka, R., Katsuzaki, H., Imai, K. & Matsushita, T. (2013). The anti- inflammatory effects of phlorotannins from <i>Eisenia arborea</i> on mouse ear edema by		
28	inflammatory inducers. Journal of Functional Foods, 5: 2019-2023.		
29	Swift, S., Downie, J.A., Whitehead, N.A., Barnard, A.M., Salmond, G.P. & Williams, P. (2001). Quorum sensing as a population-density-dependent determinant of bacterial		
30	physiology. Advances in Microbial Physiology, 45: 199-270.		
31	reasonate, M.E., Liu, J., Wallace, J., Akhlaghi, F. & Kowley, D.C. (2009). Secondary metabolites produced by the marine bacterium <i>Halobacillus salinus</i> that inhibit quorum		
32	sensing-controlled phenotypes in gram-negative bacteria. Applied and Environmental		
33	Tebben, J., Tapiolas, D.M., Motti, C.A., Abrego, D., Negri, A.P., Blackall, L.L., Steinberg,		
34	P.D. & Harder, T. (2011). Induction of larval metamorphosis of the coral <i>Acropora</i>		
35	ONE, 6, no. 4, e19082.		
36	Tomlin, K.L., Malott, R.J., Ramage, G., Storey, D.G., Sokol, P.A. & Ceri, H. (2005). Ouorum-sensing mutations affect attachment and stability of <i>Burkholderia cenocenacia</i>		
37	biofilms. Applied and Environmental Microbiology, 71: 5208-5218.		
38	Vairappan, C.S. (2003). Potent antibacterial activity of halogenated metabolites from Malaysian red aleae. Laurencia maiuscula (Rhodomelaceae. Ceramiales). Biomolecular		
39	Engineering, 20: 255-259.		
40	Vairappan, C.S., Daitoh, M., Suzuki, M., Abe, T. & Masuda, M. (2001). Antibacterial halogenated metabolites from the Malaysian <i>Laurencia</i> species. <i>Phytochemistry</i> , 58:		
41	291-297.		
42			
43			
44	28		
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
5/			
58			
59			
00			
	URL: http://mo	c.manuscriptcentral.com/tejp	Email: ejp@nhm.ac.uk

European Journal of Phycology

1		
2		
3		
4		
-		
5		
6		
7		
Q		
0		
9		
10		
11		
12		
10		
13		
14		
15		
16		
17		
10		
10	Vairannan C.S. Johiji T. Lao, T.K. Suzuki M. & Zhaoni Z. (2010). Antikaartiini antikiini	
19	van appan, c.o., Ishin, L., Lee, L.N., Suzuri, M. & Zhaoqi, Z. (2010). Antibacterial activities of a new brominated diterpene from Borneon Laurencia spp. Marine Drugs, 8: 1743-	
20	1749.	
21	Wagner, V.E., Bushnell, D., Passador, L., Brooks, A.I. & Iglewski, B.H. (2003). Microarray	
22	analysis of <i>Pseudomonas aeruginosa</i> quorum-sensing regulons: effects of growth phase and environment. <i>Journal of Ractariology</i> , 185: 2080-2005	
22	Wellington, E.M., Boxall, A.B., Cross, P., Feil, E.J., Gaze, W.H., Hawkey, P.M., Johnson-	
23	Rollings, A.S., Jones, D.L., Lee, N.M., Otten, W., Thomas, C.M. & Williams, A.P.	
24	(2013). The role of the natural environment in the emergence of antibiotic resistance in	
25	Gram-negative bacteria. The Lancet Infectious Diseases, 13: 155-165. Wichard T. Charrier, B. Mineur, F. Bothwell, I.H. De Clerck, O. & Coates, I.C. (2015).	
26	The green seaweed Ulva: a model system to study morphogenesis. Frontiers in Plant	
27	Science, 6: 72.	
21	Wieczorek, S.K. & Todd, D.C. (1998). Inhibition and facilitation of settlement of epifaunal	
28	marine invertebrate larvae by microbial biofilm cues. <i>Biofouling</i> , 12: 81-118. Wu H. Moser C. Wang H.Z. Hojby N. & Song Z.I. (2015) Strategies for combating	
29	bacterial biofilm infections. International Journal of Oral Science, 7: 1-7.	
30	Wu, H., Song, Z., Hentzer, M., Andersen, J. B., Molin, S., Givskov, M. & Høiby, N. (2004)	
31	Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in	
22	Pseudomonas aeruginosa lung infection in mice. Journal of Antimicrobial Chemotherany 53: 1054-1061	
32	Wu, H., Song, Z., Hentzer, M., Andersen, J. B., Molin, S., Givskov, M., Høiby, N. (2004)	
33	Synthetic furanones inhibit quorum sensing and enhance bacterial clearance in	
34	Pseudomonas aeruginosa lung infection in mice. Journal of Antimicrobial	Formatid: Fort hale Commands: Fort hale
35	C.nemolinerapy 35: 1024-1061. Yang, L., Rybtke, M.T., Jakobsen, T.H., Hentzer, M. Biarnsholt, T. Givskov, M. & Tolker-	(* WTHREWEGT VIE, RUNN
36	Nielsen, T. (2009). Computer-aided identification of recognized drugs as <i>Pseudomonas</i>	
27	aeruginosa quorum-sensing inhibitors. Antimicrobial Agents and Chemotherapy, 53:	
31	2432-2443. Votes E.A. Dhiling R. Bucklay C. Atkingon S. Chhabra S.D. Sockett D.E. College M.	
38	Faice, E.A., FIIIIPP, D., BUCKEY, C., AIKHISOI, S., CHIADFA, S.K., SOCKEII, K.E., GORINEF, M., Dessaux, Y., Camara, M., Smith, H. & Williams, P. (2002). N-acylhomoserine lactones	
39	undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner	
40	during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infection	
41	and Immunity, 70: 5635-5646. Yoon, N.Y., Chung, H.Y., Kim, H.R. & Choi, J.E. (2008). Acetyl- and hytyrylcholinesterses	
10	inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fisheries	
42	Science, 74: 200.	
43	20	
44	29	
45		
46		
47		
+1 40		
48		
49		
50		
51		
52		
52		
23		

1057x793mm (72 x 72 DPI)

URL: http:/mc.manuscriptcentral.com/tejp Email: ejp@nhm.ac.uk