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A B S T R A C T

Tree or canopy height is an important attribute for carbon stock estimation, forest management and habitat
quality assessment. Airborne Laser Scanning (ALS) based on Light Detection and Ranging (LiDAR) has ad-
vantages over other remote sensing techniques for describing the structure of forests. However, sloped terrain
can be challenging for accurate estimation of tree locations and heights based on a Canopy Height Model (CHM)
generated from ALS data; a CHM is a height-normalised Digital Surface Model (DSM) obtained by subtracting a
Digital Terrain Model (DTM) from a DSM. On sloped terrain, points at the same elevation on a tree crown appear
to increase in height in the downhill direction, based on the ground elevations at these points. A point will be
incorrectly identified as the treetop by individual tree crown (ITC) recognition algorithms if its height is greater
than that of the actual treetop in the CHM, which will be recorded as the tree height. In this study, the influence
of terrain slope and crown characteristics on the detection of treetops and estimation of tree heights is assessed
using ALS data in a tropical forest with complex terrain (i.e. micro-topography) and tree crown characteristics.

Locations and heights of 11,442 trees based on a DSM are compared with those based on a CHM. The hor-
izontal (DH) and vertical displacements (DV) increase with terrain slope (r = 0.47 and r = 0.54 respectively,
p < 0.001). The overestimations in tree height are up to 16.6 m on slopes greater than 50° in our study area in
Sumatra. The errors in locations (DH) and tree heights (DV) are modelled for trees with conical and spherical tree
crowns. For a spherical tree crown, DH can be modelled as R sin θ, and DV as R (sec θ – 1). In this study, a model
is developed for an idealised conical tree crown, DV = R (tan θ – tan ψ), where R is the crown radius, and θ and ψ
are terrain and crown angles respectively. It is shown that errors occur only when terrain angle exceeds the
crown angle, with the horizontal displacement equal to the crown radius. Errors in location are seen to be greater
for spherical than conical trees on slopes where crown angles of conical trees are less than the terrain angle. The
results are especially relevant for biomass and carbon stock estimations in tropical forests where there are trees
with large crown radii on slopes.

1. Introduction

Tropical rainforests play an important role in regulating the Earth’s
climate by being a large sink for carbon dioxide (Corlett, 2016; Thomas
and Baltzer, 2001). An accurate estimation of carbon components
within a forest is a first step in the recent United Nations initiative for
Reducing carbon Emissions from Deforestation and forest Degradation
(REDD). However, limited knowledge about the quantity and spatial
distribution of biomass at the landscape level has led to considerable
uncertainties in the estimation of carbon stocks (Mascaro et al., 2011).
Canopy height is an important component of biomass/carbon stock
estimates in forests (Hudak et al., 2012).

Tropical forests also support a large proportion of the Earth’s plant

and animal species, many of which are endangered by increasing de-
forestation and forest degradation leading to fragmentation of habitats
(Thomas and Baltzer, 2001). Field-based surveys of habitats are difficult
for tropical forests in terms of access, and the species diversity is ex-
tremely high while the existing knowledge of taxonomy is relatively
poor (Salovaara et al., 2005). Remote sensing can be an efficient source
of information for mapping these forests, and to identify habitats for
more detailed field surveys (Moran et al., 1994; Salovaara et al., 2005).

Large trees account for most of the biomass in tropical forests, serve
as a focal point for biological activity and create large gaps at death,
altering the forest structure dynamics in addition to releasing the se-
questered carbon (Chambers et al., 2007; Ferraz et al., 2016). Presence
of tall trees would be a useful input for modelling species distributions
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and assessing the quality of habitat for many species including birds
and arboreal primates (Lesak et al., 2011). For example, emergent trees
are the preferred resting and sleeping places for endangered primates
such as siamangs, gibbons and langurs (Nijman and Geissman, 2008).
Canopy or tree heights are therefore also important for understanding
the habitat preferences of species and for devising conservation stra-
tegies for species threatened by the destruction and degradation of their
habitats.

Light Detection and Ranging (LiDAR) has significantly contributed
to the remote sensing of forests in the last two decades (Dubayah and
Drake, 2000; Lim et al., 2003). This is mainly due to the capability of
LiDAR to collect data in the form of x, y and z locations of points (often
referred to as a point cloud), even from the ground below forest canopy.
Airborne Laser Scanning (ALS), using a LiDAR sensor from an airborne
platform, has been extensively used for deriving structural attributes of
forest canopies. ALS provides information about the three-dimensional
structure of forests, which provides an additional perspective of the
habitat needs and requirements of species compared to two-dimen-
sional satellite imagery (Bergen et al., 2009; Coops et al., 2016). Ca-
nopy height is an important attribute which can be used to derive other
forest structural characteristics such as stand volume, basal area and
above-ground biomass (AGB).

The ALS point cloud is initially classified into ground and non-
ground; this process, known as ground filtering, is still an active area of
research, especially in complex terrain and forests (Maguya et al., 2014;
Yang et al., 2016). A Digital Terrain Model (DTM) is generated from the
ground points (Axelsson, 2000; Kraus and Pfeifer, 1998; Sithole and
Vosselman, 2004), and the highest points, or the 95th percentile to
avoid outliers (Kane et al., 2010), within grid cells are typically used to
generate a Digital Surface Model (DSM). A Canopy Height Model
(CHM), which represents the height of canopy above the ground, can
then be derived by subtracting the DTM from the DSM.

Delineation of individual trees from ALS data is a topic which has
received considerable attention from researchers in forestry. The first
step in most algorithms for delineating tree crowns based on a CHM is
the detection of treetops based on local maxima within predefined
windows (kernels). The grid cells belonging to a tree crown are then
delineated or “grown” from adjacent cells with lower height or eleva-
tion values, often using a watershed algorithm. The algorithm termi-
nates when there are no more cells adjacent to, and lower than, the
detected cells (Chen et al., 2006; Popescu and Wynne, 2004).

Dense forests on complex terrain, especially on steep slopes, are
considered to be challenging both for the generation of accurate DTMs
and for the height estimation of forest stands and individual trees.
Fewer points from the ground may be collected from below dense
forests, reducing the accuracy of the generated DTM since local varia-
tions in micro-topography, such as peaks and pits, may not be detected.
The ground below points of a tree crown on sloping terrain, in the
downslope direction, are lower than the ground below the tree top,
causing an upward shift in the height percentiles of forest stands with
increasing slope (Breidenbach et al., 2008; Khosravipour et al., 2015).

ALS is increasingly being used to characterise tropical forests and
quantify above-ground biomass, where approaches are based either on
the characteristics of individual tree crowns or grid-based models
(Asner and Mascaro, 2014; Asner et al., 2012; Ferraz et al., 2016; Vaglio
Laurin et al., 2016). The influence of slope and crown characteristics on
the estimation of tree locations and heights in tropical forests on
complex terrain has not yet been analysed or modelled. Since carbon
stock estimations are based on canopy and individual tree heights to a
large extent (Ioki et al., 2014), it is important to assess the influence of
slope on height estimations from ALS data.

It has been noted that height-normalisation of a DSM or the point
cloud, based on a DTM, could introduce errors in the case of sloping
terrain (Vega et al., 2014), and the estimation of tree locations before
normalisation may be a better alternative. However, there has been
only one attempt to quantify the influence of terrain slope on the

estimation of tree locations and heights. Tree heights were shown to be
overestimated by up to 1.8 m for Scots pine (Pinus sylvestris) trees for
terrain slopes above 30°, while there was no influence of slope on
height estimates of conical mountain pine (Pinus uncinata) trees, in an
analysis of 395 trees belonging to the two species (Khosravipour et al.,
2015). However, the crown radii of Scots pines did not have a corre-
lation with errors in height estimation, as would have been expected
from a theoretical model.

The aim of this study is to assess the influence of slope and crown
characteristics on the detection of treetops and estimation of tree
heights using ALS data in a tropical forest with complex terrain and tree
crown characteristics. The first objective is to estimate the differences
in the locations and heights of trees using a DSM and a CHM generated
from ALS data; the CHM-based method is more widely used and im-
plemented in software packages (Chen, 2007; Chen et al., 2006; Kini
and Popescu, 2004; McGaughey, 2015). The second objective is to as-
sess the effect of slope on the horizontal and vertical displacements in
the detected treetops using the two methods. The third objective is to
model the differences in estimated tree height based on terrain slope
and tree crown characteristics, using crown slope in addition to crown
radius, thereby extending the model developed by Khosravipour et al.
(2015). This could provide a method to model errors in above-ground
biomass and carbon stock estimations based on terrain and tree crown
characteristics.

2. Materials and methods

2.1. Study area and dataset

The study area is in Batang Toru (1° 49′N, 99° 5′E), in the
Indonesian province of North Sumatra, and covers an area of approxi-
mately 14.7 km2. The Batang Toru forests are home to a number of
unique plant and animal species including the critically endangered
Sumatran orang-utans (Pongo abelii), Malayan tapirs (Tapirus indicus)
and Sumatran tigers (Panthera tigris sumatrae).

ALS data were collected between 23rd March and 4th April 2015,
using a Leica ALS-70 HP LiDAR system from a fixed wing aircraft for an
area of 162 km2. The flying height was between 900 m and 1350 m
above ground level, and the scan half angle was 22.5°. This generated
an ALS point cloud with an average density of 12 returns m−2

(Alexander et al., 2017). The returns were classified into ground and
non-ground using an algorithm based on adaptive Triangulated Irre-
gular Network (TIN) filtering implemented in Terrasolid software, and
divided into 240 (1 km × 1 km) tiles for both the ground returns and
non-ground returns (Axelsson, 2000; McElhanney, 2015). Sixteen tiles
from this dataset were used for this study.

2.2. Generation of terrain, surface and canopy height models

A DTM with a grid cell size of 1 m was generated using the mean
elevation of all ground returns within each cell in FUSION v3.60
(McGaughey, 2015). The cells that did not contain any returns were
filled by interpolation. The slope of each grid cell in the DTM was
calculated in ArcGIS™ 10.1 based on the maximum rate of change in
value from that cell to its eight neighbours.

The ground and non-ground returns were merged in FUSION. A
DSM at a grid cell size of 1 m was generated from these points using the
CanopyModel function, which assigns the highest elevation within each
grid cell to that cell. A CHM which represents the height of each cell
above the ground was generated by subtracting the DTM from the DSM.

2.3. Detection of treetops

Most algorithms for identifying treetops using ALS data locate the
local maxima within windows of variable sizes (Popescu and Wynne,
2004; Popescu et al., 2002). The window sizes are determined by
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equations using the height of the cell under consideration, and coeffi-
cients generated from tree height and crown width measurements in
similar forests. For example, the default equation for calculating the
window size for detecting local maxima in FUSION is
2.51503 + 0.009*ht2 where ht is the canopy surface height from a CHM
(Kini and Popescu, 2004; McGaughey, 2015). A fixed circular window
of 15 m radius was used in this study to detect treetops (local maxima)
in both the DSM and the CHM since the height-specific window sizes
could not be determined for the DSM. A height threshold of 10 m was
used for detecting treetops in the CHM, to limit the number of detected
trees to tall, large, trees which would be more useful for addressing the
objectives than smaller trees. The elevations of cells identified as tree-
tops in the DSM were subtracted from the corresponding grid cell va-
lues in the DTM to calculate the heights of trees, and trees taller than
10 m were selected for further analysis.

Treetops generated from the CHM (TreesCHM) that were closest to
the treetops generated from the DSM (TreesDSM), and within 10 m radii,

were considered to belong to the same trees; a buffer of 10 m was
considered to be sufficient to detect maxima in the CHM and the DSM
within the same tree crown. A second criterion was used to reduce the
possibility of comparing adjacent treetops; treetops in TreesDSM and
TreesCHM were considered to belong to the same tree only if the treetop
in TreesCHM was within the tree crown in TreesDSM delineated using a
watershed algorithm (Gougeon, 1995). The DSM was first inverted
(multiplied by −1) so that all the treetops were located at the local
minima points. A raster of flow direction from each cell to its steepest
downslope neighbour was created. The downslope area contributing to
the location of each treetop, or the upslope area contributing to each
outlet, was delineated using the Hydrology toolbox in ArcGIS™. Only
TreesCHM within the tree crown area of adjacent TreesDSM were selected
for further analysis.

In the cases where more than one tree in TreesCHM occurred inside a
single tree polygon in TreesDSM, the duplicates were removed by se-
lecting the tree in TreesCHM which was the closest to the corresponding

Fig. 1. Digital Terrain Model of the study area (A); Distribution of mean terrain slope (B).
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treetop in TreesDSM. Points which are above a certain height from the
ground can be considered as outliers and ignored while generating a
CHM, for example points above 150 m in forests. However, this method
would not work for removing outliers from a DSM. The outliers were
therefore removed later by removing treetops that were above a height
threshold from their neighbouring cells. The focal means of cells within
a 3 × 3 window were calculated. If a detected treetop was three stan-
dard deviations higher than the mean, the treetop was considered as an
outlier, and not considered for further analyses.

2.4. Comparison of the locations and heights of trees

The mean terrain slope was calculated from the DTM within a 10 m
radius of the location of each treetop for the selected TreesDSM. The
locations and heights of trees from TreesCHM closest to the selected
TreesDSM were then identified, and the attributes transferred across.
Each treetop in TreesDSM now held information on its X and Y co-or-
dinates, height and mean terrain slope within a 10 m radius, plus the
first three attributes for the corresponding treetop in TreesCHM and the
horizontal distance between the treetops (DH), as its attributes. The
differences in heights between corresponding treetops in TreesDSM and
TreesCHM were also calculated (DV). Statistical analysis (Student’s t-test,
p < 0.001) was performed in MATLAB to test whether the heights of
TreesCHM were significantly different from TreesDSM.

2.5. Modelling the differences in estimated tree heights

The displacements of treetops in TreesCHM from the treetops in
TreesDSM, in the horizontal and vertical directions, were analysed to
determine the relationship of displacements with terrain slope and tree
crown characteristics. These were used to develop a model to quantify
the potential errors in the estimation of tree locations and heights from
a CHM on sloped terrain. Trees with conical crowns were found to be
useful in modelling the relationship between terrain slope, crown
characteristics and displacements in the locations and heights of trees.
Trees with spherical crowns were used mainly to compare the model
developed in this study to that developed by Khosravipour et al. (2015).
Statistical analyses (Pearson's correlation, α: 0.001) were performed to
test whether the horizontal and vertical displacements of treetops were
correlated with each other and with terrain slope.

3. Results and discussion

3.1. Locations and heights of trees

The classified ground returns in the study area had an average
density of 0.32 returns m−2. The terrain elevation ranged from 468.3 to
1417.9 m (Fig. 1A). The maximum terrain slope was 80.7°, and the
mean slope within a 10 m radius of cells ranged from 0.4 to 58.7°
(Fig. 1B).

There were 21,977 detected trees in TreesDSM that were taller than
10 m, and there were 11,671 trees in TreesCHM that were within 10 m of
the treetops of TreesDSM and within their crown polygons (Fig. 2). This
was reduced to 11,442 treetops when outliers and duplicates were re-
moved. The mean height of trees in TreesDSM (after terrain normal-
isation) was 31.39 ± 9.85 m, while the mean height of trees in
TreesCHM was 31.86 ± 10.22 m. The mean horizontal displacement
was 1.46 ± 1.84 m, with no horizontal displacement for 5038 (44%)
of the trees. The mean vertical displacement between TreesDSM and
TreesCHM was 0.47 ± 0.87 m, with 3011 (26.3%) trees in TreesDSM
being taller or equal in height to TreesCHM.

3.2. Influence of slope on estimated heights of trees and above-ground
biomass

The horizontal distances between the treetops of TreesDSM and

TreesCHM had a positive correlation with terrain slope (r = 0.47;
p < 0.001). The median horizontal displacement was zero up to a
mean terrain slope of 20°. The heights of TreesDSM were significantly
greater than those of TreesCHM (p < 0.001), with the vertical dis-
placement increasing with terrain slope (r = 0.54; p < 0.001) (Fig. 3).

3.3. Modelling vertical displacement of treetops

The angle that a line connecting a detected treetop and a point on
the tree crown surface (DSM) makes with the horizontal plane, is
hereafter referred to as the crown angle (ψ). The crown angle would be
the same for every point on the surface of an idealised conical tree
crown (Fig. 5). For a hemi-spherical tree crown, ψ would increase with
increasing distance from the treetop, from 0° at the top to 45° when the
distance from the treetop is equal to the crown radius. The angle that a
line connecting the ground (DTM) points below a detected treetop and a
crown point makes with the horizontal plane, is referred to as the ter-
rain angle (θ; Figs. 4 and 5)

The vertical displacement of treetops (DV) in TreesCHM in the study
area was highly correlated with their horizontal (DH) displacement (r=
0.74; p < 0.001). The vertical displacement was also correlated (r =
0.60; p < 0.001) with the slope between the terrain points (θ). The
vertical displacement (DV) was equal to the difference between the
vertical displacements of the terrain (ΔT) and the canopy (ΔC; Eq. (1)
and Fig. 4). For 0 ≤ ΔC≤ ΔT, DV could be written in terms of the ter-
rain and crown slopes (Eq. (2)), which could be simplified (Eq. (3)) as
DH (tan θ-tan ψ).

= −D ΔT ΔCV (1)

= −D D tanθ D tanψV H H (2)

= −D D tanθ tanψ( )V H (3)

Tree heights were overestimated in TreesCHM when there was any
point on the crown envelope described by the DSM where ψ was less
than θ (Fig. 4). There would be no horizontal or vertical displacement
when ψ was greater than θ, since the treetop in TreesDSM would be
higher than all the other points even after normalisation using a DTM.
The horizontal displacement of the treetop in TreesCHM was equal to the
horizontal distance between this point and the treetop. The vertical
displacement was related to the difference between θ and ψ as well as
the horizontal displacement.

The slope of individual cells of the DTM within the crown area from
the ground elevation at the location of the trunk, or the treetop, has an
influence on the overestimation of tree heights in TreesCHM. These va-
lues were different from the mean terrain slope within a 10 m radius of
the detected treetops in TreesDSM. The slope between terrain points (θ)
was correlated with the mean terrain slope (r = 0.73; p < 0.001).
However there was a mean difference of 1.53 ± 9.12 m between the
two values. The estimated heights of TreesDSM and TreesCHM would be
the same for trees with a crown angle of 75° up to a terrain slope of 75°,
for conical tree crowns (Fig. 5).

On the other hand, tree heights could be overestimated by almost
7 m for a tree with a radius of 2 m, crown angle of 15° and terrain angle
of 75° (Fig. 6A). The overestimation could be above 40 m for a tree with
a radius of 12 m, crown angle of 15° and terrain angle of 75° (Fig. 6B).

For a tree with a spherical or hemi-spherical crown, the maximum
crown angle is 45° (Fig. 7) and occurs on the surface of the sphere on a
horizontal plane through the centre. The crown angle decreases from
this point to the top of the crown. The spherical crown is therefore more
difficult to describe in terms of crown angle than a conical crown. The
sagitta of a circular arc (h) is the distance from the centre of the arc to
the centre of its base. This would represent the vertical distance from
the treetop and can be calculated as

= − −h R R DH
2 2 (4)
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where R is the radius and DH is the horizontal displacement. Therefore,
for any point on the spherical crown at a horizontal distance DH from
the treetop,

= = − −D R R D Dtan ψ h/ ( )/H H H
2 2 (5)

where ψ is the crown angle and R is the crown radius. The horizontal
displacement at x is the distance at which the tree height based on the
CHM, HCHM is maximised.

= + − = +

−
− −

H x H x tanθ x tanψ H x tanθ

x R R x
x

( )CHM DSM DSM

2 2

(6)

Replacing tanθ with m,

= + − + −H x H mx R R x( )CHM DSM
2 2 (7)

The horizontal displacement can be determined by solving for
=H x'( ) 0CHM (Khosravipour et al., 2015):

= + − =H x m x R x( ) / 0CHM
' 2 2 (8)

= + = + =

=

D mR m R θ θ R θ θ

R θ θ

/ 1 tan / 1 tan tan / sec

tan /sec
H

2 2 2

(9)

= =D R θ θ θ R θsin cos /cos sinH (10)

where DH is the horizontal displacement, R is the crown radius and θ is
the terrain angle.

Eq. (3) can be modified based on Eq. (5) and Eq. (10) as:

= − − −

= − − −

D D θ R R D D

R θ θ R R R θ D

(tan ( )/ )

sin (tan ( ( sin ) / ))
V H H H

H

2 2

2 2 (11)

= − − −

= − − −

D R θ θ R R R sin θ R θ

R θ θ R R sin θ R θ

sin (tan ( )/ sin )

sin (tan ( (1 ) / sin ))
V

2 2 2

2 2 (12)

= − −

= − −

D R θ θ R R cos θ R θ

R θ θ R R θ R θ

sin (tan ( )/ sin )

sin (tan ( cos )/ sin )
V

2 2

(13)

Fig. 2. Treetops detected in the Canopy Height
Model (TreesCHM) and Digital Surface Model
(TreesDSM), within the crown polygons of TreesDSM;
Local maxima were detected within circular win-
dows of radius 15 m, and trees taller than 10 m were
selected for analyses.

Fig. 3. Horizontal (A) and vertical (B) displacements between treetops detected in the
Canopy Height Model (TreesCHM) and Digital Surface Model (TreesDSM), within the crown
polygons of TreesDSM, in relation to terrain slope.
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= − − = −

+

D R θ θ R θ R θ R θ θ R

R θ

sin (tan (1 cos )/ sin ) sin tan

cos
V

(14)

= + − = + −D R θ θ θ R sin θ θ θ(sin tan cos 1) ( /cos cos 1)V
2 (15)

= + − = −D R sin θ cos θ θ θ R θ θ(( cos )/cos ) ((1 cos )/cos )V
2 2 (16)

= −D R θ(sec 1)V (17)

The horizontal and vertical displacements of treetops for a tree with
a spherical crown are therefore dependent only on the crown radius and
the terrain slope (Fig. 7).

The horizontal and vertical displacements for a tree with a spherical
crown increase steadily with terrain slope, with the maximum hor-
izontal displacement equal to its radius. The vertical displacement in-
creases with terrain slope and could be above 35 m for a crown radius
of 3.5 m and terrain slope of 85°. Unlike a spherical crown, there are no
errors in location or height for conical crowns on slopes less than 45°;
the crown angle of a conical tree with the location of the treetop and
crown radius equivalent to that of a hemi-spherical/spherical tree
crown is considered to be 45° (Figs. 7 and 8).

3.4. Discussion

There is increasing interest in the accurate estimation of canopy and
individual tree heights in tropical forests for estimating global above-
ground carbon stocks. These data are also important for understanding
the habitat requirements of species, often on the brink of extinction.
Tree height is one of the most important stand characteristics de-
termined in forest inventory (Khosravipour et al., 2015). Most of the
algorithms for estimating tree and canopy heights using ALS data,
which are currently considered the most accurate, have been developed
in boreal or temperate forests which are less complex than tropical
forests, with different tree species compositions. The results of this
study suggest that the algorithms that have been developed for ex-
tracting information from ALS data in other forest types may need to be
modified for tropical forests with complex terrain characteristics.

Normalisation using a DTM is an essential step in many tree de-
tection algorithms (Heurich and Weinacker, 2004; Koch et al., 2006). It
is possible to vary the search window size for detecting treetops from a
CHM, where the search window, representing the crown radius, is ex-
pected to increase with tree height (Popescu et al., 2002). For a fixed
window size, trees may be over-segmented if the window size is
smaller, and may be undetected if the window size is much larger, than

Fig. 4. Airborne Laser Scanner (ALS) points within 10 m radius of a detected treetop in the Digital Surface Model (DSM) coloured by elevation, with the estimated terrain and crown
slopes (A); ALS points after normalising using a Digital Terrain Model (DTM) showing the detected treetops in the DSM (lower) and the Canopy Height Model (B); DV = Vertical distance
between estimated treetops (difference in heights); ΔT = Difference in terrain elevations; ΔC = Difference in actual treetop elevations; θ = Terrain slope; ψ= Crown slope;
D = Horizontal distance between estimated treetops.
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the crown radius. The variable window size is therefore a very useful
step for delineating individual trees based on a CHM. Despite this ad-
vantage, tree delineation based on a DSM has recently been suggested
as a better alternative to that based on a CHM due to the potential effect
of terrain slope (Khosravipour et al., 2015; Vega et al., 2014). The re-
sults of this study support this argument, and this is especially relevant
for tropical forests with large trees.

Khosravipour et al. (2015) developed a theoretical model to quan-
tify the systematic error in CHM-based treetop identification for a
spherical tree crown. Although it was noted that the displacement of
treetops seemed to depend on crown shape in addition to terrain slope
and crown radius, it was not directly incorporated in their model:
vertical displacement = + −r m( 1 1)2 , where r is the crown radius
and m is the terrain slope, since it was based only on a spherical tree
crown. In this study, we attempted to develop a model incorporating
crown slope in addition to crown radius and terrain slope based on a
conical tree crown. We also developed a model for a spherical tree
crown for which our results agree with those of the above study
(Khosravipour et al., 2015).

The maximum observed overestimation of tree heights in our study
site in a tropical forest, based on CHM, are much higher (16.6 m) than
the maximum observed overestimation of 1.78 m in a forest dominated
by pine trees. The vertical displacement of mountain pines was found to
be less than that of Scots pine trees (Khosravipour et al., 2015). This
could be explained by crown slopes rather than crown radii, since errors
in the locations of treetops in the horizontal or vertical direction for
mountain pines, with an approximate crown angle of 60°, will be
negligible for terrain angles less than 60°.

In this study, the detected treetops in TreesDSM were considered to
be more accurate than those in TreesCHM since the tree crown shape and
positions would be maintained in the DSM (Figs. 4 and 5). The tree
locations and heights in TreesDSM were therefore considered to be the
actual values, in the absence of field data. Tree stems tend to grow
inclined in the downhill direction on slopes, in response to light
availability (Lang et al., 2010). This would produce errors in most of the
existing tree delineation algorithms where the position of the treetop is

assumed to be that of the tree trunk. Although this would affect the
estimated tree heights in both TreesDSM and TreesCHM, it is not expected
to have much effect on the estimated differences in tree locations or
heights.

A fixed window size of 15 m was used since the aim was only to
compare treetop locations and tree heights of TreesCHM to those of
TreesDSM. The selected window size could have resulted in small trees
not being detected, but this was not considered to be crucial for this
study. Trees shorter than 10 m were excluded to reduce the data vo-
lume, and those not within the same crown polygons were excluded to
avoid commission errors. The observed overestimation of tree heights
using a CHM should therefore be considered to be a conservative esti-
mate. Tree heights do not seem to have any influence on the errors in
CHM-based tree locations and heights. The errors will therefore be
more pronounced for short trees with large crown radii on steep slopes.

Errors in DTM generated from ALS data are known to increase with
slope, and with the density of tree cover (Clark et al., 2004; Su and
Bork, 2006). The density of returns have been shown to have a major
influence on the accuracy of the generated DTM in tropical forests, with
errors ranging from −2.88 m to 4.51 m for a density of 8 returns m−2,
although the mean error was only 0.38 m (Leitold et al., 2015). Fil-
tering algorithms for classifying ground points and interpolating these
points to generate a DTM could also influence the accuracy of the DTM
(Sithole and Vosselman, 2004). Accuracy of the DTM could have in-
fluenced the horizontal and vertical displacements of treetops in
TreesCHM compared with TreesDSM. It is also possible that the point
density of ground returns of 0.32 returns m−2 may not be sufficient to
represent the local micro-topography. However, the optimisation of
filtering algorithms is still a research topic in ALS, and was not an
objective of this study.

Carbon stock, or above-ground biomass, can be estimated using ALS
data based on individual tree heights or canopy heights (Coomes et al.,
2017). Study sites are often on flat or gently sloping terrain where
existing algorithms based on a CHM can be applied, even in tropical
forests (Ferraz et al., 2016; Jucker et al., 2017). However, it may be
necessary to take the terrain slope and crown characteristics into

Fig. 5. Potential errors in the locations and heights
of detected trees using a Canopy Height Model
(CHM) compared to a Digital Surface Model (DSM)
based on terrain and crown slopes; DV = DH(tan θ –
tanψ), where DV is the vertical displacement of the
treetop after height normalisation, DH is the hor-
izontal displacement, R is the radius of the tree, θ is
the terrain angle and ψ is the crown angle.
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consideration for tropical forests on slopes. It should be noted that the
ground surface area for a plot on a 60° slope would be twice that of the
horizontal surface area, or the area of a similar plot on flat terrain. The
tree stem density or canopy volume on a slope could therefore be more
than that on flat terrain, with corresponding increase in biomass. It may
be possible to predict errors in tree height estimations based on crown
radius, terrain slope and crown characteristics. However, more studies
are needed to ascertain whether the developed models can be used to
correct for slope in biomass estimations.

4. Conclusion

CHMs or height-normalised ALS point clouds are extensively used
for delineating individual tree crowns, estimating biomass and carbon
stock, and increasingly for habitat quality assessment of species under
threat of extinction. Many of the algorithms for extracting information
from ALS data for forests have been developed in boreal or temperate
forests. These algorithms may have to be modified for trees with large
crown radii in tropical forests on sloped terrain. In our study area in
Sumatra, the overestimation of tree heights based on a CHM compared
to a DSM was much higher, for example, than in a forest dominated by
pines in the French Alps (Khosravipour et al., 2015).

This study shows that the error in the estimated height of a tree with
a conical crown was influenced by the angle of the crown in addition to

crown radius and terrain slope. Therefore, errors occur only when the
terrain angle is more than the crown angle. CHMs can therefore be used
for tree crown delineation in forests dominated by species such as pines,
with steep crown angles as long as the terrain angle is less than the
crown angle. There were horizontal displacements, or errors in esti-
mated tree locations, for spherical tree crowns even on gentle slopes. In

Fig. 6. Modelled vertical displacement for conical tree crowns with crown angles ranging
from 0° to 75° at an interval of 15° for a horizontal displacement of 2 m (A); and for a
crown angle of 15° with horizontal displacement ranging from 2 m to 12 m at an interval
of 2 m (B); DV = DH (tan θ-tan ψ), where DV is the vertical displacement, DH is the
horizontal displacement of the detected treetops, θ is the terrain angle and ψ is the crown
angle.

Fig. 7. Potential errors in the locations and heights of detected trees using a Canopy
Height Model (CHM) compared to a Digital Surface Model (DSM) based on terrain and
crown slopes for a tree with spherical crown (A); DH = Rsin θ; DV = R(sec θ – 1).

Fig. 8. Modelled horizontal and vertical displacements for a spherical or hemispherical
tree crown with a crown radius of 3.5 m, compared to a conical tree crown for the same
radius, where the crown angle is considered to be 45°.

C. Alexander et al. Int J Appl  Earth Obs Geoinformation 65 (2018) 105–113

112



tropical forests dominated by trees with large crown radii on steep
slopes, treetop detection and height estimations based on a DSM could
be more accurate than based on a CHM. This in turn would improve
biomass estimations in tropical forests based on ALS data, supporting
climate change mitigation efforts such as REDD.
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