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Abstract

Background: The Lives Saved Tool (LiST) is a widely used resource for evidence-based decision-making regarding
health program scale-up in low- and middle-income countries. LiST estimates the impact of specified changes in
intervention coverage on mortality and stunting among children under 5 years of age. We aimed to improve the
estimates of the parameters in LiST that determine the rate at which the effects of interventions to prevent stunting
attenuate as children get older.

Methods: We identified datasets with serial measurements of children’s lengths or heights and used random effects
models and restricted cubic splines to model the growth trajectories of children with at least six serial length/height
measurements. We applied WHO growth standards to both measured and modelled (smoothed) lengths/heights to
determine children’s stunting status at multiple ages (1, 6, 12, 24 months). We then calculated the odds ratios for the
association of stunting at one age point with stunting at the next (“stunting-to-stunting ORs”) using both measured
and smoothed data points. We ran analyses in LiST to compare the impact on intervention effect attenuation of using
smoothed rather than measured stunting-to-stunting ORs.

Results: A total of 21,786 children with 178,786 length/height measurements between them contributed to our analysis.
The odds of stunting at a given age were strongly related to whether a child is stunted at an earlier age, using
both measured and smoothed lengths/heights, although the relationship was stronger for smoothed than measured
lengths/heights. Using smoothed lengths/heights, we estimated that children stunted at 1 month have 45 times the
odds of being stunted at 6 months, with corresponding odds ratios of 362 for the period 6 to 12 months and 175 for
the period 12 to 24 months. Using the odds ratios derived from the smoothed data in LiST resulted in a somewhat
slower attenuation of intervention effects over time, but substantial attenuation was still observed in the LiST outputs.
For example, in Mali the effect of effectively eliminating SGA births reduced prevalence of stunting at age 59 months
from 44.4% to 43.7% when using odds ratios derived from measured lengths/heights and from 44.4% to 41.9% when
using odds ratios derived from smoothed lengths/heights.

Conclusions: Smoothing of children’s measured lengths/heights increased the strength of the association between
stunting at a given age and stunting at an earlier age. Using odds ratios based on smoothed lengths/heights in LiST
resulted in a small reduction in the attenuation of intervention effects with age and thus some increase in the estimated
benefits, and may better reflect the true benefits of early nutritional interventions.
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Background
The Lives Saved Tool (LiST) is a freely available software
package which allows users to explore the potential im-
pact of scaling-up different interventions on a number
of maternal and child health outcomes, notably mortality
and nutritional (anthropometric) status. It is designed to
help policy-makers and program managers in low- and
middle-income settings make evidence-informed policy
and investment decisions [1, 2].
In LiST, child stunting is both an outcome in its own

right as well as a risk factor for child mortality. In 2013,
the Lancet published a series on maternal and child nu-
trition which included an exercise using LiST to model
the impact on child mortality of scaling up a range of
nutrition-related interventions in the 34 countries that
account for 90% of the world’s stunted children [3]. In
the course of this exercise, it was noted that the effect
on stunting of interventions during pregnancy to reduce
the risk that a baby is born small-for-gestational-age
(SGA) attenuated rapidly. For example, we noted that
introducing a simulated intervention that effectively
eliminated all SGA births reduced stunting prevalence at
1 month by 7.0%, but only reduced stunting prevalence
at age 60 months by 1.5%. While some attenuation of
effect is to be expected, there were concerns that the ob-
served attenuation was greater than one might reason-
ably expect. We therefore sought to understand which
aspects of the way in which nutrition outcomes are im-
plemented in LiST might explain this rapid attenuation,
and to investigate whether modifications to LiST’s ap-
proach to modelling stunting are required.

How LiST models stunting
LiST is a population-based cohort model which predicts
stunting rates from birth up to 5 years of age. For the
sake of simplicity, it models children’s progress at the
group level; that is to say, it models the prevalence of
stunting in the population as a whole, and how this
evolves with age, but does not track the progress of indi-
vidual children. Also for simplicity, LiST works with
discrete age bands, estimating the prevalence of stunting
at the end of each age band (i.e., at 1, 6, 12, 24, and
60 months of age). Thus, for example, in LiST the preva-
lence of stunting at age 6 months influences but does
not fix the prevalence of stunting at age 12 months
(Table 1) under the assumption that some children who

were stunted at 6 months may cease being stunted at
12 months, while other children who were not stunted
at age 6 months may become stunted at 12 months.
Note that this is a Markov model in the sense that the
prevalence of stunting at, for example, 12 months de-
pends on the prevalence of stunting at 6 months, but
given the prevalence of stunting at 6 months is inde-
pendent of the prevalence of stunting at earlier ages.

The phenomenon of decaying intervention effects
LiST allows for the possibility that, in the absence of any
intervention, children who were stunted at, for example,
6 months cease to be stunted at 12 months, while other
children who were not stunted at age 6 months become
stunted at 12 months. Using the notation in Table 1, the
extent to which children switch between being stunted
and not being stunted can be quantified in terms of
Ω = C/D (the odds of stunting at 12 months in those
not stunted at 6 months) and B/A (the odds of not being
stunted at 12 months for those stunted at 6 months).
But B/A = 1/(Ω x R) where R is the “stunting-to-stunt-
ing” odds ratio (= AD/BC using the notation in Table 1).
If stunting prevalence at both 6 and 12 months is fixed,
then as R increases Ω gets smaller, and hence the
amount of switching is reduced.
A consequence of this switching is that the effect of an

intervention occurring in an early age band decays as chil-
dren pass through subsequent age bands in the absence of
any ongoing intervention. To demonstrate, suppose that
currently the prevalence of stunting at 6 months is p6 and
that the prevalence at 12 months is p12. Then the relation-
ship between p6 and p12 is given by:

p12 ¼ 1‐p6ð Þ �Ω= 1þΩð Þ þ p6 �ΩR= 1þΩRð Þ
where Ω/(1 + Ω) is the probability that an unstunted child
becomes stunted while ΩR/(1 + ΩR) is the probability
that a stunted child remains stunted. Now suppose that
we intervene prior to 6 months and reduce the prevalence
of stunting at 6 months from p6 to p6*: i.e. stunting at
6 months is reduced by a factor p6*/p6. If we do not inter-
vene after 6 months of age the prevalence of stunting at
12 months will be given by (replacing p6 with p6*):

1‐p6
�ð Þ �Ω= 1þΩð Þ þ p6

� �ΩR= 1þΩRð Þ
This means that stunting at 12 months will be reduced

by a factor of

1‐p6
�ð Þ �Ω= 1þΩð Þ þ p6 � �ΩR= 1þΩRð Þ

1‐p6ð Þ �Ω= 1þΩð Þ þ p6 �ΩR= 1þΩRð Þ
which is not equal to p6*/p6. A simple scenario illus-
trates this phenomenon. Without intervention, the
prevalence of stunting is assumed to remain constant at

Table 1 Cross-tabulation of stunting status at 12 months versus
stunting status at 6 months for a hypothetical population

Status at 12 months

Stunted Not stunted

Status at 6 months Stunted A B

Not stunted C D
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50% between 6 and 59 months of age. We also assume
that the “stunting-to-stunting” odds ratio (R) takes the
value 50 during each of the age bands. Under these as-
sumptions, implementing an intervention prior to age
6 months which reduces the prevalence of stunting at
6 months from 50% to 25%, followed by no intervention
after 6 months, will result in a reduction from 50% to
31% in stunting at age 12 months, from 50% to 35% at
24 months, and 50% to 39% at 60 months of age. In the
version of LiST used for the 2013 Lancet series, the
stunting-to-stunting ORs used were all less than 50,
some much less than 50. Thus with the odds ratios cur-
rently used within LiST, the attenuation will actually be
more extreme than the scenario illustrated above, that
is, predicted stunting prevalence at 60 months of age
will be closer to 50%.
Previous work presented in the Lancet Nutrition series

(2013) was based on stunting-to-stunting odds ratios de-
rived from measured lengths/heights in seven cohorts
with data from 2375 children from four countries (see
Table 2). These studies did not have sufficient data to esti-
mate separately the association between stunting at
1 month and stunting at 6 months of age. A primary aim
of this work was therefore to identify additional data to in-
crease the sample size used to estimate these odds ratios.

Potential for bias when estimating the stunting-to-
stunting odds ratio
In addition to uncertainty arising from small sample
sizes, a possible source of bias in the initial estimates of
these odds ratios comes from measurement error. The
stunting-to-stunting odds ratio is the key parameter de-
termining the rate at which intervention effects attenu-
ate over time. These ORs were derived from field studies

that followed children over time, repeatedly measuring
their length/height and classifying children as stunted or
not stunted at 6, 12, etc. months of age. However,
length/height measurements, particularly of very young
children, are subject to measurement error. In epidemio-
logical studies, random (non-differential) measurement
error of both binary exposure and outcome is well
known to result in estimated risk and odds ratios which
are biased towards the null (1.0) [4]. Thus, random
measurement error of length/height in the studies used
by LiST will tend to result in an underestimate the
stunting-to-stunting OR and hence an overestimate of
the amount of switching in stunting status that occurs.
For an intuitive explanation of why this will be so, con-
sider an extreme scenario in which every child perfectly
tracks a particular centile of the growth standard. In
these circumstances, no children switch from being
stunted to not stunted, or vice versa, and the true
stunting-to-stunting OR is effectively infinite. Now sup-
pose that children are measured with random error and
their stunting status determined based on these error-
prone measurements. Some children will appear to
switch their status so that the estimated stunting-to-
stunting odds ratio will be finite and thus biased towards
the null compared with the true odds ratio.
In practice, relatively small measurement errors can

have an important effect on a child’s estimated length/
height-for-age z-score (LAZ/HAZ) and could therefore
lead to substantial attenuation of the stunting-to-
stunting OR. A measurement error of 0.5 cm in length/
height will change a girl’s LAZ/HAZ by ± 0.10 at age
60 months, and by ± 0.16, ± 0.19, ± 0.22, and ± 0.26, at
age 24, 12, 6, and 1 months, respectively. The aims of
the work described in this paper were to:

Table 2 Data sources, numbers of children and numbers of length/height measurements contributing to the analysis

Data source Number of children retained
in the analysis

Number of records retained
in the analysis

Pakistan MNP trial 2153 22,623

Nepal NNIPS-1 3723 24,830

Jivita (Bangladesh) 7873 47,238

Zvitambo (Zimbabwe) 3355 25,397

Cebu (Philippines) 2307 26,159

Multi-country database Peru 1985a 519 7850

Peru 1989a 192 2704

Peru 1995a 224 5031

Brazil 1989a 106 715

Guinea-Bissau 1987a 397 3110

Guinea-Bissau 1996a 684 7716

Bangladesh 1993a 253 5408

Total 21,786 178,786
aData sources contributing to the 2013 Lancet Nutrition series
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1. Increase the pool of cohorts contributing to the
estimation of stunting to stunting ORs.

2. Account for measurement error of lengths/heights
when estimating stunting to stunting ORs.

3. Assess the effect of accounting for measurement
error on estimates of stunting prevalence obtained
from LiST.

Methods
We identified datasets with serial measurements of
length/height [5–10] (Table 2). Within each dataset we
retained the records for children with at least 6 serial
measurements. Figure 1 shows the distribution of mea-
sured lengths/heights for the 21,786 children retained in
the analysis. Before fitting growth curves to the data, we
applied the following transformation to age

transformed age ¼ age in monthsð Þ0:35

This transformation resulted in a more linear rela-
tionship between (transformed) age and length/height
(Additional file 1: Figure S1) and is the transformation
used by the WHO Multicentre Growth Reference Study
Group to produce the WHO Child Growth Standards
(11). Restricted cubic splines (with knots at 1, 2, and 3
of transformed age) were used to model individual chil-
dren’s growth curves, with random intercepts and coef-
ficients for each child, using the mixed command in
Stata 14 (www.stata.com). The model was fitted separ-
ately to each cohort, with the exception that we com-
bined the Peru and Brazil cohorts from the multi-
country study. Fitted (i.e. smoothed) lengths/heights
were estimated taking account of both the fixed and
random components of the model. LAZ/HAZs were
then computed for measured lengths/heights and

smoothed lengths/heights using the WHO reference
standard [11].
Based on these z-scores, children were then classified

as stunted/not stunted and stunting-to-stunting odds ra-
tios were computed, where stunting was defined as
LAZ/HAZ < −2. To combine ORs from different studies,
we used the Mantel-Haenszel method [12]. After obtain-
ing two sets of stunting-to-stunting ORs (based on mea-
sured and smoothed lengths/heights), each set was used
in a LiST analysis to examine how quickly intervention
effects attenuated. We also compared this attenuation to
that estimated using the stunting-to-stunting odds ratios
from the Lancet Nutrition series (2013). For this analysis
we created baseline models based on two sub-Saharan
African countries that have different birth outcome and
stunting profiles, Mali in the year 2013 and the Republic
of Congo for 2015. For the base year in Mali, we esti-
mated that roughly 35% of children are born SGA,
44.4% of children aged 24-59 months are stunted. In the
Republic of Congo, roughly 25% of children are born
SGA and 25% are stunted between the ages of 24-
59 months. To examine how the different sets of odds
ratios affected attenuation, we ran an analysis in which
we introduced a new intervention that is 99% effective
in eliminating SGA births and scaled up coverage to
99% and examined the estimated impact on stunting
prevalence at ages 1, 6, 12, 18, 24, and 60 months under
each set of stunting-to-stunting ORs.

Results
We identified and obtained data from five additional co-
horts, increasing the number of children included in our
analyses to 21,786. Three of the new studies included
over 13,000 children observed close to 1 month of age,
enabling us to estimate odds ratios from birth to 1
month, and from 1 month to 6 months.
Figure 2 shows the results of the fitting procedure for

6 children from Pakistan. The figure illustrates the
phenomenon of measurement error in that there are
clearly some instances where a later length/height meas-
urement is less than an earlier measurement. Assuming
that children do not shrink in size this must reflect
measurement error in one or both of the measurements.
The smoothed growth curves appear to fit the measured
data well.
While the individual fitted growth curves appear to

track the measured lengths/heights reasonably well,
there was some evidence of small systematic differences
between measured and fitted lengths/heights at key ages.
At 1 month of age, smoothed lengths were, on average,
slightly greater than measured lengths (5 mm greater).
At 6 months, fitted lengths were slightly shorter than
measured lengths (2 mm shorter). At 12 months, the dif-
ference was about 3 mm (smoothed longer than

Fig. 1 Distribution of measured lengths/heights by age for 21,786
children with at least six measurements between age 0 and 60 months
among twelve cohorts
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measured). At 24 months, the difference was about
1 mm, but this time smoothed shorter than measured.
At 60 months, the mean measured and fitted lengths
were very similar. A comparison of measured and fitted
lengths/heights across all cohorts is tabulated in Table 3.
Table 4 presents the stunting-to-stunting ORs derived

from the measured and smoothed lengths/heights.
Smoothing led to a substantial increase in the stunting-
to-stunting ORs for all age bands analysed. Odds ratios
with measured lengths/heights were similar to those
used in the 2013 Lancet Nutrition series (11 versus prior
12.4 for 1 to 6 months, 21 versus 21.4 for 6 to
12 months, and 22 versus 30.3 for 12 to 24 months),
despite the additional cohorts.
Table 5 shows the results obtained from LiST when

using different sets of stunting-to-stunting ORs. The
simulated intervention almost eliminated SGA births in
both countries. However, the impact of this reduction on
later stunting varied depending on which set of
stunting-to-stunting ORs were used. With the measured
odds ratios, the virtual elimination of SGA births only

reduced stunting prevalence at age 60 months in chil-
dren from 44.4% to 43.7% (a 1.6% reduction) in Mali
and from 25.1% to 24.8% (a 1.2% reduction) in the Re-
public of Congo. In the scenario using the smoothed
odds ratios, the stunting prevalence among children
aged 60 months in Mali were reduced from 44.4% to
41.9%, a 5.6% reduction in stunting and in the Republic
of Congo stunting in this age group dropped from 25.1%
to 24.0%, a 4.4% reduction in stunting. As expected, the
use of the smoothed ORs reduced the attenuation effects
seen with the measured odds ratios.

Discussion
In this paper we presented analyses of child growth tra-
jectories to estimate associations between stunting at
different ages. We increased substantially the amount of
information contributing to these estimates compared
with previous analyses. The number of contributing chil-
dren increased from 2375 to 21,785, the number of in-
dividual length/height measurements increased from
32,534 to 178,787, and the number of countries

Fig. 2 Some examples of fitted growth curves for individual children from the Pakistan data set

Table 3 A comparison of measured and fitted lengths/heights at different ages

Age in months Number of children Mean measured
length/height (cms)

Mean fitted
length/height (cms)

Mean difference
(95% c.i.)

1 10,028 52.2 52.7 0.48 (0.46, 0.51)

6 15,193 64.4 64.2 −0.22 (−0.24, −0.20)

12 15,094 71.1 71.4 0.26 (0.24, 0.28)

24 11,822 80.2 80.1 −0.09 (−0.11, −0.07)

60 1809 98.37 98.39 0.02 (−0.00, 0.04)

The Author(s) BMC Public Health 2017, 17(Suppl 4):778 Page 89 of 158



represented increased from 4 to 8. This increase in the
data available for estimating the ORs resulted in a more
robust set of estimates of the ORs between age periods,
providing more precise parameter estimates for use in
the model. In addition to increased data inputs, we ap-
plied smoothing to eliminate or reduce measurement
error in recorded lengths/heights and examined the ef-
fect of this smoothing on results obtained from the
LiST model.
Precisely measuring the length/height of very young

children is challenging. Random errors in sequential
measurements of length/height will tend to exaggerate
variation in individual children’s LAZ/HAZs and thus
the extent to which children switch from being stunted
to not stunted and vice versa. The extent of such switch-
ing is a key parameter in LiST, with intervention effects
attenuating more rapidly over time as the rate of switch-
ing increases. In the past, stunting was modelled in LiST
using stunting-to-stunting ORs estimated from mea-
sured lengths/heights.
To investigate the extent to which measurement error

may be affecting the results obtained from LiST, we

used length/height measurements from over 20,000
children with at least six measurements each from birth
to age 5 years, from cohorts representing several re-
gions and settings where stunting is most common. We
modelled individual children’s length/height over time
using random effects models to produce smoothed
growth trajectories for each child, in an attempt to re-
move random fluctuations in recorded measurements
due to measurement error.
As expected, smoothing resulted in increases in the es-

timated stunting-to-stunting ORs in all age bands. Some
of the ORs based on the smoothed lengths/heights were
very large indeed. For example, the smoothed OR for
the age band 6 to 12 months was approximately 360.
ORs this large may strike readers more familiar with
exposure-disease associations as implausibly large. In the
stunting context, however, this represents a situation in
which the proportion of children flipping between one
status and the other is in the region of 5%. As the pro-
portion of children who switch status decreases, the
stunting-to-stunting OR increased, very rapidly as the
switching rate falls below 10%. In the context of stunting

Table 4 Stunting-to-stunting odds ratios estimated using measured and smoothed

1 to 6 months 6 to 12 months 12 to 24 months

Cohort Measured Smoothed Measured Smoothed Measured Smoothed

Pakistan 4 9 7 291 11 65

Nepal Infinity 115

Peru/Brazil 11 5 47 522 20 39

Guinea-Bissau 36 25 31 337 19 223

Bangladesh 12 11 23 138 20 89

JIVITA 13 52 46 386 32 1770

Cebu 15 335 18 134

Zvitambo 8 47 14 348 18 82

Combined 11 45 21 362 22 175

Table 5 Results from a LiST analysis using different stunting to stunting ORs

Stunting-to-stunting
OR type used

Prevalence of SGA
at birth (%)

Prevalence of stunting at age (%)

1 month 6 months 12 months 24 months 60 months

Mali

No intervention – 35.2 14.9 14.9 17.2 37.3 44.4

Intervention Prior ORsa 0.7 8.1 11.9 15.4 36.1 43.5

Measured 0.7 8.1 12.0 15.5 36.2 43.7

Smoothed 0.7 8.1 10.4 13.2 34.3 41.9

Republic of Congo

No intervention – 24.6 8.5 8.5 15.3 29.6 25.1

Intervention Prior ORsa 0.5 5.0 7.3 14.6 29.1 24.8

Measured 0.5 5.0 7.3 14.6 29.2 24.8

Smoothed 0.5 5.0 6.5 13.5 28.2 24.0
aFrom 2013 Lancet Nutrition series
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switching rates of 10% or less may not be implausible, as
it is often argued that once children become stunted
they remain stunted [7].
The stunting-to-stunting ORs used in LiST will affect

the predictions that the model produces with respect to
the impact of interventions on stunting and, by exten-
sion, child mortality. The use of inappropriately small
stunting-to-stunting ORs will result in the attenuation of
intervention effects, especially those during pregnancy
and the first few months of life. Using ORs based on
measured lengths/heights, a simulated intervention that
essentially eliminated SGA births only resulted in a tiny
reduction in stunting prevalence at 60 months of age in
Mali (from 44.4% to 43.7%). The effect of the same re-
duction in SGA births using stunting-to-stunting ORs
based on smoothed lengths/heights resulted in a reduc-
tion in stunting at 60 months from 44.4% to 41.9%, a
relative reduction of 5.6% in the prevalence of stunting.
Unfortunately it is not known to what extent stunting is
accounted for or explained by SGA, and thus there is no
bench mark to measure this attenuation, even though
SGA and stunting are strongly associated in some set-
tings [13].
It might be argued that the smoothing procedure we

used not only removes random fluctuations due to
measurement error but also real variations in growth
trajectories. However, even using the much larger ORs
based on smoothed lengths/heights, there is still consid-
erable effect attenuation by 60 months of age, with LiST
outputs rather insensitive to even large changes in the
stunting-to-stunting ORs. Any over-smoothing which
did occur is therefore likely to have had only a very small
effect on LiST outputs. Perhaps we should not be very
surprised that an intervention effectively eliminating
SGA at birth has limited impact on stunting at age
60 months, given the many factors contributing to stunt-
ing after a child is born and as they grow older.
There are some limitations to our analysis. We were

not able to locate as many repeated measurements of
length/height in children across the age range 24 to
59 months as for younger children, as the observations
for the cohorts in this analysis were largely restricted to
the period from birth to 2 years. Smoothing measured
lengths/heights may be more appropriate for these youn-
ger children, if they are more difficult to measure and
thus their measured lengths are more prone to error.
Analysis of the association between stunting at different
ages for older children is the object of future research
for which we plan to seek further data.
A second limitation of our analyses is that we ob-

served some small but systematic differences between
average measured and smoothed lengths/heights, as
shown in Additional file 2: Figure S2. The alternating
direction of these differences suggests that the cubic

spline functions that we fitted may not have been quite
flexible enough to capture fully individual children’s
growth trajectories.

Conclusions
LiST is a powerful tool for predicting the health conse-
quences of different interventions for young children in
different low- and middle-income settings. Based on the
results of our modelling, the stunting-to-stunting ORs
used in LiST have been updated and LiST now uses the
ORs derived from smoothed lengths/heights. While this
has not resulted in major changes in the outputs ob-
tained from LiST, we believe that accounting for meas-
urement error is appropriate in this context and that
predictions in LiST now reflect better the nature of
stunting, its persistence in individual children, and the
consequent benefit of early intervention for the health
and growth of children under five. We note, however,
that smoothing will not be appropriate in all circum-
stances: for example, it may not be appropriate in rando-
mised trials to test the effectiveness of interventions.
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months. (DOCX 433 kb)
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