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Abstract 57 

Purpose: The Singapore regulatory agency for health products (Health Sciences Authority), in 58 

carrying out active surveillance of medicines and their potential harms, is open to new 59 

methods to achieve this goal. Laboratory tests are a potential source of data for this purpose. 60 

We have examined the performance of the Comparison on Extreme Laboratory Tests (CERT) 61 

algorithm, developed by Ajou University, Korea, as a potential tool for adverse drug reaction 62 

(ADR) detection based on the electronic medical records (EMR) of the Singapore healthcare 63 

system.   64 

Methods: We implemented the original CERT algorithm, comparing extreme laboratory 65 

results pre- and post-drug exposure, and five variations thereof using 4.5 years of National 66 

University Hospital (NUH) EMR data (31,869,588 laboratory tests, 6,699,591 drug dispensings 67 

from 272,328 hospitalizations). We investigated six drugs from the original CERT paper and 68 

an additional 47 drugs. We benchmarked results against a reference standard we created 69 

from UpToDate® 2015. 70 

Results: The original CERT algorithm applied to all 53 drugs and 44 laboratory abnormalities 71 

yielded a PPV and sensitivity of 50.3% and 54.1%, respectively. By raising the minimum 72 

number of cases for each drug-laboratory abnormality pair from 2 to 400, the PPV and 73 

sensitivity increased to 53.9% and 67.2%, respectively.  This post-hoc variation, named 74 

CERT400, performed particularly well for drug-induced hepatic and renal toxicities.   75 

Discussion: We have demonstrated that the CERT algorithm can be applied across national 76 

boundaries. One modification (CERT400) was able to identify ADR signals from laboratory 77 

data with reasonable PPV and sensitivity, which indicates potential utility as a supplementary 78 

pharmacovigilance tool.   79 

  80 



Text 81 

INTRODUCTION 82 

Traditionally, spontaneous reporting systems (SRS) have been the predominant data source 83 

for the detection of signals of adverse reactions.1-3 This system, usually maintained by a 84 

government agency, receives suspected adverse drug reaction (ADR) reports submitted by 85 

healthcare professionals, pharmaceutical companies and consumers.1-3  With the expanding 86 

use of electronic medical records (EMRs) in recent years, the pharmacovigilance community 87 

has another potentially rich source of information for drug safety surveillance.1,3  The prospect 88 

of scanning EMRs is attractive, as it overcomes some of the limitations inherent in the SRS: (1) 89 

reliance mainly on voluntary reporting from its contributors, and susceptibility to under-90 

reporting as well as over-reporting (e.g. due to media interest), (2) incomplete or missing data, 91 

hindering causality assessment, and (3) difficulty in detecting duplicate reports.1, 2  92 

As EMRs are used for the clinical management of patients, they constitute an information-93 

rich database3 of patients’ demographics, medications, past medical history, laboratory 94 

results, etc, which are commonly missing from ADR reports. The records reflect actual clinical 95 

practice, allowing for a more complete benefit-risk assessment. For specific ADRs, mining of 96 

EMRs has the added advantage of applying a consistent phenotype definition, thus 97 

overcoming variations in diagnostic criteria by different clinicians. However, unlike in SRS 98 

where a clinician has made a connection between the drug and an adverse event and files a 99 

report in a standardized format, much of EMR data are unstructured and housed in different 100 

databases. Pre-processing and data cleaning are required to extract and collate critical 101 

elements, such as drug exposure, concomitant medications, laboratory results, temporal 102 

relationships, and possible confounders.1  103 

The Comparison of Extreme Laboratory Test (CERT) algorithm was developed by Korean 104 

researchers who applied it to 10 different drugs over 10 years of EMR data from Ajou 105 

University Hospital.4  For each patient exposed to a particular drug, the algorithm selects the 106 

extreme laboratory test result (minimum or maximum) among multiple laboratory values 107 

from each of the pre-drug and post-drug exposure periods. CERT then determines whether a 108 

cohort of exposed patients demonstrates a significant change in abnormal laboratory values 109 

after drug exposure. As a regulatory agency seeking to build a toolkit of methods for active 110 

surveillance, the Health Sciences Authority (HSA), Singapore, sought to investigate the 111 

potential applicability of the CERT algorithm on the EMR in the Singapore healthcare system. 112 

The CERT algorithm had many desirable features that we were seeking, namely a temporal 113 

relation between drug exposure and a laboratory abnormality, the flexibility to evaluate any 114 

drug and laboratory test, and good performance metrics. Utilisation of numerical laboratory 115 

values before and after drug exposure made it potentially more portable across national 116 

boundaries, regardless of the language of the country.  The objectives of this work were to 117 

implement and test CERT on the EMRs of the National University of Hospital (NUH), examine 118 

variations that could improve predictive performance, and assess its potential utility as a 119 

pharmacovigilance tool.  120 

 121 



METHODS 122 

Data source 123 

De-identified EMRs were obtained from NUH, a 1,230-bed tertiary hospital, following 124 

approval of the study by the National Healthcare Group Domain Specific Review Board.  The 125 

information retrieved included patient demographics, admission and discharge dates, 126 

inpatient drug dispensings, and laboratory test results over a 4.5 year period from July 2009 127 

to Dec 2013. The data comprised over 31 million (31,869,588) laboratory tests and 6 million 128 

(6,699,591) inpatient drug dispensed orders from 272,327 hospitalization visits for 158,096 129 

patients.  130 

 131 

Selection of drugs for evaluation 132 

Among the ten drugs analysed in the original CERT paper, one drug (ketorolac) was not used 133 

at NUH, while three oncologic drugs (etoposide, fluorouracil and methotrexate) were 134 

incompletely captured because oncologic drugs are mainly ordered and recorded in another 135 

database.  In order to have a direct head-to-head comparison of algorithm performance from 136 

the EMRs of two different healthcare institutions, we first analysed only six drugs described 137 

in the original CERT publication (Round 1, Table 1). 138 

In Round 2, we investigated an additional 47 drugs (Table 2). Factors considered in drug 139 

selection were drug usage volume and the likelihood of the drug being started during 140 

hospitalisation. Drugs with high usage were prioritised to provide sufficient number of cases 141 

for analysis. We also included negative controls (chlorpheniramine, metronidazole and 142 

risedronic acid) with no ADRs detectable by abnormal laboratory test results in the reference 143 

standard.  144 

The CERT algorithm and variations 145 

The original CERT algorithm paper examined 41 laboratory tests and 51 laboratory 146 

abnormalities. Six laboratory tests and seven laboratory abnormalities were not included in 147 

our evaluation because the laboratory results were infrequently ordered by clinicians in NUH 148 

(most of the 53 drugs had zero cases).  Consequently, our evaluation included 35 laboratory 149 

tests and 44 laboratory abnormalities (Supplementary Table S1). 150 

A common issue in assessing EMR data mining is the need for a benchmark reference standard 151 

to evaluate algorithm performance. 1,4  The original CERT publication used the 2010 version of 152 

UpToDate® Drug Information Database (UpToDate Inc, Waltham, MA, USA) to create a 153 

reference standard.  We used the 2010 version of UpToDate® to directly compare our results 154 

with those previously published.  To evaluate the performance of the original CERT algorithm 155 

and variations for all 53 drugs, two pharmacists constructed an updated reference standard 156 

from UpToDate® 2015 (Supplementary Table S3).  As CERT utilises laboratory abnormalities 157 

as a surrogate of ADRs, the ADRs were mapped to their respective laboratory abnormalities 158 

using the mapping table described in the original CERT paper.4  159 

In the original CERT algorithm, a case is defined when (1) the patient was prescribed the study 160 

drug at least once, and (2) at least one laboratory test result exists in each of the pre-drug and 161 



post-drug periods.  A minimum of two cases was required for CERT to run the statistical tests 162 

and generate output. If either the paired t-test or McNemar’s test had P<0.05, the drug-163 

laboratory-abnormality pair would be considered a positive signal. 164 

Four variations of the original CERT algorithm were assessed on the set of 53 drugs (Table 3): 165 

(1) Limiting the period of observation to a defined period after the start of drug exposure, (2) 166 

Limiting the post-drug exposure observation period to a defined number of laboratory tests, 167 

(3) Taking an average of the two most extreme values instead of using only one extreme pre- 168 

and post-drug value, and (4) Using the paired t-test and non-parametric Wilcoxon’s signed-169 

rank test instead of paired t-test and McNemar’s test. A fifth variation was also assessed post-170 

hoc in which only drug-AE pairs with a minimum of 400 cases were included. The rationale for 171 

these variations is presented in the Discussion section. 172 

Evaluation metrics 173 

To evaluate the performance of CERT, we compared the drug-laboratory-abnormality pairs 174 

detected as significant signals by CERT with those identified in the reference standard. We 175 

then calculated the average positive predictive value (PPV), negative predictive value (NPV), 176 

sensitivity and specificity for each drug based on laboratory abnormalities. The F-score, which 177 

is the harmonic mean of PPV and sensitivity, is also reported (Supplementary Table S2). To 178 

contrast the results from different variations of the algorithm and get a pooled point estimate 179 

of the performance metrics and the 95% confidence interval, a random effects meta-analysis 180 

was performed to summarise a particular measurement of interest.  181 

Creation of a reference standard  182 

Supplementary Table S3 presents the reference standard created by mapping ADRs in 183 

UpToDate® 2015 for the 53 drugs to laboratory abnormalities. Researchers may find this a 184 

useful resource for benchmarking other algorithms intended to identify ADRs from laboratory 185 

abnormalities.  However, it is worthwhile to note that this reference standard is not a list of 186 

confirmed ADRs, and is constantly being updated, and hence some may consider it a “silver 187 

standard” rather than a “gold standard”. While UpToDate® contains information from 188 

multiple sources about a drug’s safety profile, ADRs that occur in specific population could be 189 

overlooked, and it may be incomplete for drugs that have only been recently approved.     190 

RESULTS 191 

Evaluation of CERT performance 192 

The PPV, NPV, sensitivity and specificity for Round 1 (6 drugs) are summarised in Table 4A. 193 

When comparing the same drugs between NUH and Ajou University, our results showed 194 

similar PPV (55.6% vs 58%) and better specificity (64.3% vs 52.2%).  We had lower NPV (56.2% 195 

vs 66.7%) and sensitivity (48.9% vs 71.3%). 196 

When the CERT algorithm was evaluated on a larger set of 47 drugs (Round 2) and 197 

benchmarked against an updated reference standard, PPV decreased to 48.5%, specificity was 198 

similar (65.2%), and sensitivity increased to 54.7%.  Combining all 53 drugs evaluated in both 199 



Rounds, overall PPV was 50.3%, specificity was 65.4%, and sensitivity was 54.1% for an F-score 200 

of 52.1% (Table 4B). 201 

Performance across different laboratory panels  202 

Consistent with Ajou University’s findings, the majority of the signals (93.6%) detected by 203 

CERT were from “haematopoiesis and coagulation”, “hepatobiliary enzymes” and “renal 204 

function and urine tests”, and these panels were associated with higher F-scores compared 205 

to the remaining laboratory panels. However, decreases in red blood cells, white blood cells, 206 

neutrophils, haematocrit, as well as haemoglobin were found for all of the drugs (with the 207 

exception of alendronic acid).  Therefore, CERT may not be particularly discriminating for drug 208 

effects on those laboratory tests.   209 

In “hepatobiliary enzymes”, ALT and AST showed good PPV (92%, 87%) and specificity (83%, 210 

83%), suggesting potential utility in detecting hepatotoxicity signals. The trade-off is the lower 211 

sensitivity (59%, 32%), potentially missing some valid signals. For the “renal function and urine 212 

tests”, creatinine showed good PPV (80%) and specificity (93%) but very low sensitivity (11%). 213 

BUN had good PPV (77%) and sensitivity (62%). Many signals for increased potassium were 214 

detected which were not reported in UpToDate®.5  The lipid and metabolism, hormones and 215 

other panels also had high specificity (>87%) but low sensitivity (16-17%). PPV was also low, 216 

presumably because ADRs related to these abnormalities are rarer.  217 

Performance across different variations 218 

Among the four initial variations, Variations 1, 3 and 4 generally did not perform better than 219 

the original algorithm (Table 6, Figure 2).  Variation 2 had the best specificity (76.8%, Table 6).  220 

However, this was accompanied by a large drop in sensitivity (38.3%).  When we examined 221 

the evaluation metrics as a function of number of cases, we noted that sensitivity increased 222 

above 50% when there were 400 or more cases (Figure 1). Increasing the minimum number 223 

of cases from two to 400 cases for each drug-laboratory abnormality pair appears to better 224 

control the number of false negatives, as expected from increased power of a larger sample 225 

size. Hence, we performed a post-hoc analysis by imposing a threshold of 400 cases (Variation 226 

5). Variation 5, not surprisingly because of its post-hoc nature, gave the best overall 227 

performance (PPV 53.9%, sensitivity 67.2%, F-score 59.8%), and hereafter is referred to as 228 

CERT400.   229 

Negative controls   230 

We tested CERT on three negative controls: chlorpheniramine, metronidazole and risedronic 231 

acid.  These drugs have no signals in the reference standard that would be indicative of 232 

laboratory abnormalities. Yet, for all three drugs, CERT detected decreases in red blood cell, 233 

white blood cell, neutrophil, haematocrit, haemoglobin, and protein, as well as increases in 234 

platelets and alkaline phosphatase (ALP).  As noted above, most haematopoeisis tests 235 

returned positive results for all drugs, therefore these tests are of limited utility for ADR signal 236 

detection using CERT.   237 

DISCUSSION 238 



As a drug regulatory authority responsible for monitoring the post-market safety of drugs, 239 

HSA has been interested in supplementing SRS with other methodologies to strengthen the 240 

system for identifying drug safety signals. Knowledge of the full safety profile of a drug, 241 

particularly for rarer adverse reactions, only becomes available through post-marketing 242 

surveillance from drug usage in actual clinical practice across a broad population.6  With EMRs, 243 

new opportunities have arisen to mine these information-rich resources for safety signals. 244 

Here, we have shown that the CERT algorithm, which utilises laboratory test data in a 245 

temporal relationship with drug exposure, can be implemented on EMR data in a healthcare 246 

institution from another country with a different population.  We have examined the 247 

performance of CERT for 53 drugs, of which direct comparison could be performed for 6 drugs 248 

in both countries. We also investigated 5 variations of the original CERT algorithm, and 249 

identified two that improve specificity and/or sensitivity.  250 

The PPV of CERT was high for the liver enzymes ALT and AST and renal tests serum BUN and 251 

creatinine (92%, 87%, 77% and 80%, respectively), thus a positive signal from CERT is likely to 252 

signify hepatic and renal toxicity. However, the aminoglycosides gentamicin and amikacin, 253 

which are known to be nephrotoxic, did not show a positive signal with either increased 254 

creatinine or BUN. This could be a result of close monitoring of renal function and/or 255 

therapeutic drug monitoring by clinicians to prevent any acute renal injury, thereby 256 

dampening the incidence of a well-known signal. CERT did detect a signal of raised creatinine 257 

for other drugs with known nephrotoxic potential (e.g. hydrochlorothiazide, ranitidine, 258 

cefazolin), but sensitivity of the serum creatinine test was low (11%). However, sensitivity for 259 

BUN was much higher at 62%.   260 

CERT appears to be less discriminating for the hematopoiesis and coagulation panel, as nearly 261 

every drug had one or more signals in this panel. This may be more a reflection of the course 262 

of the disease or treatment. Similarly, the high number of false positives with potassium may 263 

be due to the high incidence of hyperkalaemia (up to 10%) in hospitalised patients, as many 264 

conditions can affect potassium levels (e.g. transcellular shifts, impaired excretion, or increase 265 

in potassium intake).5 Indeed, a major limitation of the CERT algorithm is the lack of 266 

adjustment for confounding factors.  The CLEAR algorithm7 , also developed by the Ajou 267 

University group, controls for confounder effects with the use of matched controls having the 268 

same admitting department and diagnosis but who had not taken the drug, but CLEAR is much 269 

more computationally intensive.  Another limitation is the lack of an actual gold standard for 270 

ADRs. Even though we created a reference standard using UpToDate 2015, we cannot confirm 271 

that the ADRs listed are indeed true ADRs. In addition, for chronic medications (e.g. 272 

simvastatin, enalapril), patients might already be taking them prior to admission. As such, the 273 

pre-exposure laboratory test results retrieved by CERT for these cases may not be true, 274 

potentially diluting any positive signals.  275 

In the original CERT algorithm, all tests in the pre- and post-drug exposure period were 276 

included.  However, it was often the case that many more tests were ordered during the post-277 

drug exposure period, which tends to inflate the chance finding of an abnormal result in the 278 

post-drug exposure period. By limiting the number of tests in the post-drug exposure period 279 

to two more than the number in the pre-drug exposure period (Variation 2), we observed an 280 



increase in the specificity of CERT from 65.4% to 76.8%.  The original CERT algorithm counted 281 

a drug-laboratory abnormality pair if there were at least two cases. We found that raising the 282 

minimum to 400 cases for each drug-laboratory abnormality pair (CERT400) helped to reduce 283 

the false negative rate, increasing the sensitivity from 54.1% to 67.2%. However, since the 284 

choice of 400 is based on results in these data, these estimates may be biased upwards. 285 

Although these performance metrics are not sufficiently high to solely rely on CERT400 for 286 

active surveillance, it promises to be a valuable addition to the toolkit for postmarket 287 

surveillance. A drug-laboratory abnormality pair identified by an automated CERT400 288 

algorithm could then be further evaluated by other methodologies such as text mining of 289 

discharge summaries8-10  to determine the validity of the signal. In the case of infrequently 290 

ordered laboratory tests, rarely used drugs, or newly approved drugs where usage has yet to 291 

pick up, the use of CERT400 may hinder detection of safety signals, since there may be 292 

insufficient cases to meet the minimum.  With the growth of electronic data in healthcare 293 

databases and linkages across multiple institutions, however, we anticipate that the rising 294 

volume of data will overcome the limitation of having this threshold of cases for evaluating 295 

the algorithm. 296 

Other groups have been investigating a variety of data mining methodologies to query health 297 

records for identification of ADRs based primarily on clinical features.11-16  One notable effort 298 

is the Sentinel Initiative funded by the United States Food and Drug Administration.  Specific 299 

queries of interest are submitted to the Sentinel coordinating center, which sends computer 300 

programs to data partners to extract and aggregate data on administrative and insurance 301 

claims data of over 180 million subjects.17  The Sentinel group successfully identified 302 

intussusception after rotavirus vaccination in infants13  and risk of coeliac disease in patients 303 

on long-term therapy with olmesartan18, 19 from algorithms applied to their extensive 304 

databases. The Observational Medical Outcomes Partnership investigated methods that 305 

relied primarily on diagnosis codes in administrative databases.11, 20, 21  Our dataset had 306 

limited structured diagnostic coding, which made it challenging for us to explore algorithms 307 

that rely on codes such as ICD-9.     308 

Methods using abnormal laboratory values for identifying ADRs have been investigated 309 

previously. In a study by Levy et al22 , automatic laboratory signals were generated when a 310 

specific laboratory value met a pre-defined criteria and tested on a prospective cohort of 192 311 

patients.  A list of cases was generated for further manual review. The false positive rate 312 

throughout the entire study period was 83%, which is a likely barrier to implementation. 313 

Ramirez et al implemented a prospective program based on automatic laboratory signals (ALS) 314 

for 54,525 hospitalisations in Spain.23  The algorithm flagged patients whose laboratory values 315 

met the criteria specified for six serious ADRs, but did not include a temporal relationship with 316 

drug intake, hence the cases needed to be manually reviewed to determine if the timing of 317 

drug intake could account for the abnormal laboratory values. The authors concluded that 318 

this was an intensive manual process requiring considerable effort.  319 

Liu et al3 aimed to have a more automated methodology that incorporated a temporal 320 

relationship with drug exposure. Abnormal laboratory results were correlated with specific 321 

drug administration by comparing the outcomes of drug-exposed and a matched unexposed 322 



group; higher thresholds for categorizing a laboratory result as abnormal were used and a 323 

minimum of 25 cases was required. When benchmarked with two reference datasets (the 324 

same 10 drugs evaluated by Yoon et al. or 9 other drugs), the reporting odds ratio (ROR) 325 

method performed best when applied to an EMR database containing four times more unique 326 

patients than the NUH database (PPV 77% and 58% respectively, sensitivity 61% and 67%, 327 

respectively). 328 

In summary, we have demonstrated the transferability of the CERT algorithm to a health care 329 

institution of another country. We have developed a reference standard of drug-laboratory 330 

abnormalities for 53 drugs based on the 2015 version of UpToDate® to evaluate CERT on our 331 

data, and which can also be used to benchmark other published algorithms. CERT400, a 332 

modification of CERT which only accepts results generated from more than 400 drug-333 

laboratory abnormality cases, gave the best overall performance with a PPV of 53.9% and 334 

sensitivity of 67.2% (F-score 59.8%). High PPV for increased AST and ALT enzyme levels, BUN 335 

and serum creatinine suggests that CERT would be particularly useful for identifying drug-336 

induced hepatic and renal toxicities.  The ability of CERT400 to sift through a large volume of 337 

laboratory tests obtained before and after drug exposure and identify potential signals with 338 

reasonable positive predictive value and sensitivity indicates that it will be a useful tool to add 339 

to a pharmacovigilance programme.   340 

  341 



Tables and Figures 342 

 343 

Table 1: Database size and number of patient visits used for CERT comparison between Ajou 344 

University Hospital and NUH  345 
 

Ajou University Hospital NUH 

Number of patient visits* 1,011,055 272,328 

Drug Number of Visits 

Ciprofloxacin 16,706 17,576 

Clopidogrel 19,188 28,672 

Levofloxacin    9,059   4,673 

Ranitidine 68,995   7,474 

Rosuvastatin    4,811   2,252 

Valproic acid 11,523   4,300 

 346 

*Number of hospitalizations during which the patient received at least one dispensing of the drug. 347 

 348 

  349 



Table 2: Number of patient visits for 47 drugs used in Round 2  350 

Drug 
No. of patient 

visits 
Drug 

No. of patient 
visits 

Aciclovir 5,353 Ezetimibe 2,809 

Alendronic acid 2,009 Famotidine 23,590 

Allopurinol 8,694 Fenofibrate 6,552 

Amikacin 1,629 Fluconazole 3,566 

Amoxicillin-Clavulanic Acid 116,511 Gentamicin 13,512 

Ampicillin 4,850 Gliclazide 8,622 

Azithromycin 5,812 Hydrochlorothiazide 6,811 

Carbamazepine 1,373 Imipenem-cilastatin 3,509 

Carvedilol 40,013 Isoniazid 1,610 

Cefazolin 26,750 Itraconazole 629 

Ceftazidime 7,228 Levetiracetam 7,955 

Ceftriaxone 74,834 Losartan 19,158 

Celecoxib 3,266 Meropenem 26,273 

Chlorpheniramine 26,790 Metformin 55,881 

Clarithromycin 17,382 Metronidazole 22,212 

Clindamycin 3,869 Omeprazole 163,999 

Cloxacillin 6,505 Phenytoin 5,136 

Cotrimoxazole 14,969 Piperacillin-Tazobactam 14,843 

Digoxin 17,338 Pyrazinamide 1,061 

Domperidone 10,004 Rifampicin 1,758 

Doxycycline 1,813 Risedronic acid 1,551 

Enalapril 57,621 Simvastatin 81,590 

Entecavir 1,368 Vancomycin 34,028 

Ethambutol 1,328   

 351 

  352 



Table 3: Variations of the original CERT algorithm 353 

Algorithm 
Input (laboratory 

test results) 

Observation 
period after drug 

exposure 

Minimum 
no. cases 
required Statistical test 

Original Extreme values Till discharge 2 
Paired t-test & 

McNemar's test 

Variation 1 Extreme values 12 days 2 
Paired t-test & 

McNemar’s test 

Variation 2 Extreme values 
(n+2) laboratory 

test results 
2 

Paired t-test & 
McNemar’s test 

Variation 3 
Average of the two 

most extreme 
values 

Till discharge 2 
Paired t-test & 

McNemar’s test 

Variation 4 Extreme values Till discharge 2 
Paired t-test 

&Wilcoxon’s signed-rank 
test 

Variation 5 
(CERT400) 

Extreme values Till discharge 400 
Paired t-test & 

McNemar’s test 

Variation 1: Limit the unit of observation to 12 days after drug exposure, which is the mean (7.1 days) 
plus 2 times the standard deviation (2.6 days) of the time from drug administration to the time the 
extreme post-drug laboratory value was taken for all true positive cases. 
Variation 2: Limit the unit of observation to a maximum of (n+2) laboratory test results for each 
encounter, where n is the number of laboratory tests before the drug was started.   
Variation 3: Take the mean of the two most extreme values for both the pre- and post-drug periods, 
to minimize the possibility that a single extreme value, such as one caused by measurement error, 
would unduly influence the result.  
Variation 4: Use the non-parametric Wilcoxon’s signed-rank test to replace the McNemar’s test. 
Variation 5 (Post-hoc variation): Impose a minimum of 400 cases for each drug-laboratory test pair 
based on results shown in Figure 1. 

 354 

 355 

 356 

  357 



 358 

Table 4A: Performance Metrics of CERT: Comparison between NUH and Ajou* 359 

 PPV (%) NPV (%) Sensitivity  
(%) 

Specificity  
(%) 

F-
score 
(%) 

Avg. No. of 
signals 

detected per 
drug 

NUH 57.0 58.1 48.6 63.9    52.5 113/6 = 18.8 

Ajou University 
Hospital 

57.4 66.6 69.4 52.1 62.8 155/6 = 25.8 

Average performance for the 6 drugs from original paper 360 

*Results are benchmarked according to the 2010 Version of UpToDate used in original CERT paper. Six 361 

drugs included in the comparison are ciprofloxacin, clopidogrel, levofloxacin, ranitidine, rosuvastatin, 362 

and valproic acid  363 

  364 

 365 

Table 4B: Performance Metrics of CERT:  Comparison between Rounds 1 and 2 based on NUH EMR 366 

data* 367 

 No. of 
evaluated 

drugs  

PPV  
(%) 

NPV  
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

F-score 
(%) 

Avg. No. 
of signals 
detected 
per drug 

 Round 1  6 63.4 55.1 49.8 66.8 55.8 
113/6 = 

18.8 

 Round 2 47 45.6 70.6 55.5 64.4 50.1 
885/47 = 

18.8 

Total 53 47.6 68.9 54.8 64.6 51.0 
998/53 = 

18.8 
*Results are benchmarked according to 2015 Version of UpToDate 368 

 369 

 370 

 371 

 372 
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Table 5: Performance Metrics of CERT algorithm for 53 drugs – Comparison across Laboratory 374 

Panels* 375 

A) Analysis according to the original CERT algorithm for laboratory panels or 376 

selected tests 377 

Laboratory 

Panel or Test 

Avg. no. of 

cases 

No. of 

positive 

Signals 

PPV NPV Sensitivity Specificity F-score 

(%) (%) (%) (%) (%) 

Hemato-

poiesis and 

coagulation 

2634 600 44.7 71.7 67.3 49.8 53.7 

Hepatobiliary 

enzymes 
1507 228 63.6 31.5 59.7 35.2 61.6 

    AST 1532 15 86.7 26.3 31.7 83.3 46.4 

    ALT 1533 26 92.3 37.0 58.5 83.3 71.6 

Renal function 

and urine 

tests 

3867 75 61.3 35.7 46.0 50.8 52.6 

    BUN 3835 30 76.7 39.1 62.2 56.3 68.7 

    CRE 3848 5 80.0 29.2 10.5 93.3 18.6 

    K 3917 40 47.5 53.8 76 25 58.5 

Lipids and 

metabolism 
80 32 25.0 82.8 16.7 88.9 20.0 

Hormones 104 14 14.3 89.1 16.7 87.2 15.4 

Others 1158 49 34.7 71.1 15.5 87.7 21.4 

 378 

  379 



B) Analysis according to the CERT400 algorithm for laboratory panels or 380 

selected tests 381 

Laboratory 

Panel or Test 

Avg. no. of 

cases 

No. of 

positive 

Signals 

PPV NPV Sensitivity Specificity F-score 

(%) (%) (%) (%) (%) 

Hemato-

poiesis and 

coagulation 

3663 512 48.8 64.9 74.9 37.2 59.1 

Hepatobiliary 

enzymes 
2255 177 64.4 33.9 73.5 25.0 68.7 

    AST 2042 12 91.7 26.9 36.7 87.5 52.4 

    ALT 2000 23 91.3 37.5 67.7 75.0 77.8 

Renal function 

and urine 

tests 

4408 69 62.3 36.2 49.4 49.0 55.1 

    BUN 4372 27 74.1 36.8 62.5 50.0 67.8 

    CRE 4386 5 80.0 29.3 12.1 92.3 21.1 

    K 4466 37 51.4 66.7 86.4 25 64.4 

Lipids and 

metabolism 
639 5 40 40 40 40 40 

Hormones 567 1 0 100 Not valid 50 Not valid 

Others 2682 45 33.3 73.6 34.1 73.0 33.7 

*Results are benchmarked according to 2015 Version of UpToDate 382 
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Table 6: Performance Metrics for the Original CERT Algorithm and 5 Variations* 385 

Variation No. of 

cases 

(Avg) 

No. of 

positive 

Signals 

PPV 

(%) 

NPV 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F-score 

(%) 

 

Original 1899 998 50.3 67.2 54.1 65.4 52.1 

Variation 1 1853 761 50.6 64.5 40.3 74.1 44.9 

Variation 2 1899 707 51.6 64.6 38.3 76.8 44.0 

Variation 3 1833 905 49.1 65.6 48.4 68.2 48.7 

Variation 4  1898 1385 44.8 64.4 66.9 45.0 53.7 

Variation 5 

(CERT400) 
2969 792 53.9 53.5 67.2 42.3 59.8 

*Results are benchmarked according to 2015 Version of UpToDate for 53 drugs and 44 laboratory 386 

abnormalities 387 

 388 

 389 

 390 

 391 

 392 
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 399 

 400 
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Figure 1: CERT Algorithm: Dependence of PPV, Sensitivity and F-score on Number of Cases* 406 

 407 

*53 drugs, 44 laboratory abnormalities 408 
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Figure 2: Performance metrics and 95% confidence interval based on random effects meta-analysis 410 

for all the 53 drugs. 411 

  412 

  413 



Supplementary tables: (Recommended to put as additional supporting information online) 414 

Table S1: List of the 44 selected laboratory test abnormalities according to the laboratory panels. 415 

Hematopoiesis and coagulation 
 

Renal function and urine tests 
Activated partial thromboplastin 

time  
Increased 

 
Blood urea nitrogen  Increased 

  Decreased 
 

Creatinine Increased 

Basophil Decreased 
 

Potassium  Increased 

Eosinophil  Increased 
 

Lipids and metabolism 

  Decreased 
 

Cholesterol  Increased 

Fibrinogen Decreased 
 

Glucose Increased 

Hematocrit Decreased 
 

  Decreased 

Hemoglobin  Increased 
 

LDL cholesterol Increased 

  Decreased 
 

Triglyceride  Increased 

Lymphocyte  Increased 
 

Hormones 

Neutrophil Decreased 
 

Free thyroxine  Increased 

Platelet  Increased 
 

  Decreased 

  Decreased 
 

Others 

Prothrombin time  Increased 
 

Ammonemia  Increased 

  Decreased 
 

Amylase  Increased 

Red blood cell Decreased 
 

Creatine kinase  Increased 

Reticulocyte  Increased 
 

Lactate dehydrogenase  Increased 

  Decreased 
 

Lipase  Increased 

White blood cell  Increased 
 

Sodium Decreased 

  Decreased 
 

Uric acid  Increased 

Hepatobiliary enzymes 
   

Alanine transaminase  Increased 
   

Alkaline phosphatase  Increased 
   

Aspartate transaminase  Increased 
   

Direct bilirubin  Increased 
   

Gamma-glutamyl transpeptidase  Increased 
   

Protein Decreased 
   

Total bilirubin  Increased 
   

 416 

 417 
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Table S2 (a): Evaluation metrics PPV, NPV, sensitivity (sens), specificity (spec) and F-score. 419 

Algorithm Result 
2010/2015 Version of UpToDate 

 
Present Absent 

Positive 𝑇𝑃 𝐹𝑃 𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Negative 𝐹𝑁 𝑇𝑁 𝑁𝑃𝑉 =  
𝑇𝑁

𝐹𝑁 + 𝑇𝑁
 

 𝑠𝑒𝑛𝑠 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 𝑠𝑝𝑒𝑐 =  

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

  
𝐹 − 𝑠𝑐𝑜𝑟𝑒

=
2 × 𝑃𝑃𝑉 𝑥 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑃𝑉 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

 
 420 

Table S2 (b): Example to show the performance metrics for ALT laboratory test abnormality on the 421 

53 drugs we tested. 422 

Algorithm Result 
(for ALT) 

2015 Version of UpToDate (for ALT) 
 

Present Absent 

Positive 24 2 𝑃𝑃𝑉 =  
24

26
= 92% 

Negative 17 10 𝑁𝑃𝑉 =  
10

27
= 37% 

 𝑠𝑒𝑛𝑠 =  
24

41
= 59% 𝑠𝑝𝑒𝑐 =  

10

12
= 83% 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 72% 

 423 

  424 



Table S3:  Reference Standard of drug ADRs developed from UpToDate® 2015* 425 

 426 

 427 

*This table is uploaded separately online as well. 428 
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