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Abstract: A principal goal of volcanology is to successfully forecast the 

start of volcanic eruptions. This paper introduces a general forecasting 

method, which relies on a stream of monitoring data and a statistical 

description of a given threshold criterion for an eruption to start. 

Specifically we investigate the timing of intrusive and eruptive events 

at inflating volcanoes. The gradual inflation of the ground surface is a 

well-known phenomenon at many volcanoes and is attributable to 

pressurized magma accumulating within a shallow chamber. Inflation 

usually culminates in a rapid deflation event caused by magma escaping 

from the chamber to produce a shallow intrusion and, in some cases, a 

volcanic eruption. We show that the ground elevation during 15 inflation 

periods at Krafla volcano, Iceland, increased with time towards a 

limiting value by following a decaying exponential with characteristic 

timescale τ. The available data for Krafla, Kilauea and Mauna Loa 

volcanoes show that the duration of inflation (t*) is approximately equal 

to τ. The distribution of t*/τ values follows a log-logistic distribution 

in which the central 60% of the data lie between 0.99 < t*/τ < 1.76. 

Therefore, if τ can be constrained during an on-going inflation period, 

then the cumulative distribution function of t*/τ values calibrated from 

other inflation periods allows the probability of a deflation event 

starting during a specified time interval to be estimated. The time 

window in which there is a specified probability of deflation starting 

can also be forecast, and forecasts can be updated after each new 

deformation measurement. The method provides stronger forecasts than one 

based on the distribution of repose times alone and is transferable to 

other types of monitoring data and/or other patterns of pre-eruptive 

unrest. 
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Abstract 10 

A principal goal of volcanology is to successfully forecast the start of volcanic eruptions. This paper 11 

introduces a general forecasting method, which relies on a stream of monitoring data and a statistical 12 

description of a given threshold criterion for an eruption to start. Specifically we investigate the 13 

timing of intrusive and eruptive events at inflating volcanoes. The gradual inflation of the ground 14 

surface is a well-known phenomenon at many volcanoes and is attributable to pressurized magma 15 

accumulating within a shallow chamber. Inflation usually culminates in a rapid deflation event caused 16 

by magma escaping from the chamber to produce a shallow intrusion and, in some cases, a volcanic 17 

eruption. We show that the ground elevation during 15 inflation periods at Krafla volcano, Iceland, 18 

increased with time towards a limiting value by following a decaying exponential with characteristic 19 

timescale τ. The available data for Krafla, Kilauea and Mauna Loa volcanoes show that the duration 20 

of inflation (t*) is approximately equal to τ. The distribution of t*/τ values follows a log-logistic 21 

distribution in which the central 60% of the data lie between 0.99 < t*/τ < 1.76. Therefore, if τ can be 22 

constrained during an on-going inflation period, then the cumulative distribution function of t*/τ 23 

values calibrated from other inflation periods allows the probability of a deflation event starting 24 
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during a specified time interval to be estimated. The time window in which there is a specified 25 

probability of deflation starting can also be forecast, and forecasts can be updated after each new 26 

deformation measurement. The method provides stronger forecasts than one based on the distribution 27 

of repose times alone and is transferable to other types of monitoring data and/or other patterns of pre-28 

eruptive unrest.  29 

Keywords: Krafla, eruption forecasting, conditional probability 30 

 31 

1. Introduction 32 

Forecasting the onset, size, location, style and duration of a volcanic eruption is an important and 33 

challenging goal of volcanology. In terms of forecasting the start of an eruption, one approach is to 34 

use a time series of monitoring data to extrapolate to the time at which the measured parameter will 35 

reach a known threshold value at which an eruption starts (Chadwick et al., 2012; Nooner and 36 

Chadwick, 2016). The theoretical basis of this approach is exemplified by the materials failure 37 

forecast method (Voight, 1988) and relies on the eruption threshold condition being known precisely. 38 

This approach can, in principle, predict the time at which failure is reached, and an eruption starts. In 39 

practice, however, uncertainty in the data, in the model of the time-dependence of the measured 40 

quantity, in the fitting of data to a model, and in the extrapolation of the fitted trend result in 41 

uncertainty in the predicted eruption onset time, although the uncertainty diminishes with increasing 42 

time (Bell et al., 2011, 2013). 43 

Alternatively, monitoring data can be used to make a judgement of the likelihood of an eruption 44 

starting within some future time window, such as “the next N days”, rather than pin-pointing the 45 

eruption time. This type of approach may use a statistical analysis of a volcano’s long-term record of 46 

repose periods (reviewed by Marzocchi and Bebbington, 2012), or interpretation of on-going short-47 

term unrest (e.g., Swanson et al., 1983, 1985; Linde et al., 1993; Harlow et al., 1996; Chadwick et al., 48 

2012; and reviews by Sparks, 2003; Bell et al., 2015; Pallister and McNutt, 2015). Useful measures of 49 

unrest for this purpose include the rates of seismicity (Voight, 1988; Cornelius and Voight, 1994, 50 
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1995; Kilburn 2012; Robertson and Kilburn 2016), changes in the seismic properties of the volcano 51 

(Brenguier et al., 2008; Chouet and Matoza, 2013; Crampin et al., 2015), the gas composition or 52 

emission rate (Carapezza and Federico, 2000; Laiolo et al., 2012; Aiuppa et al., 2007; Carapezza et 53 

al., 2009; de Moor et al., 2015), thermal remote sensing data (van Manen et al., 2013; Reath et al., 54 

2016), crustal deformation (Linde et al., 1993) and ground surface deformation (Chadwick et al., 55 

2012; Segall, 2013). Methods which combine two or more types of data have also been advocated 56 

(e.g., Klein, 1984; Schmid et al., 2012; Pallister and McNutt, 2015). Given an empirically-defined 57 

statistical model connecting the magnitude of unrest and the time remaining to an eruption onset, then 58 

quantitative probabilistic forecasts of an eruption starting within a particular time window can be 59 

made. An example is the forecasting of explosive eruptions during dome-forming episodes of 60 

Bezymianny volcano using thermal remote sensing data (van Manen et al., 2013). The forecasting of 61 

eruption duration using historical data (Sparks and Aspinall, 2004; Gunn et al., 2014; Wolpert et al., 62 

2016) relies on the same type of analysis. This paper applies this statistics-based approach to the 63 

surface inflation that precedes eruptions and shallow intrusions, presenting general expressions for 64 

forecasting the probability of an event happening within any user-defined time interval.  65 

In some cases, pre-eruptive surface inflation proceeds at a constant rate (e.g., Chaussard et al., 2013; 66 

Delgado et al., 2014; Champenois et al., 2014), whereas in other cases an exponentially decreasing 67 

rate of inflation has been measured such that tilt, vertical and horizontal displacement, or volume of 68 

the inflation dome follows  69 

ΔD = a (1 – exp(-t/τ)),     (1) 70 

where ΔD is the change in the measured deformational quantity since the start of inflation at time t = 71 

0, a is a constant equal to the value of ΔD that would be attained at time t = ∞, and τ is a characteristic 72 

e-folding timescale (Dvorak and Okamura, 1987; Lu et al., 2003; Lengliné et al., 2008; Dzurisin et al., 73 

2009). This behaviour is readily explained by physics-based models of the growing over-pressure 74 

within a replenished shallow magma chamber that is contained in elastic country rock and fed at a rate 75 

determined by the pressure gradient along the feeding conduit (Lengliné et al., 2008; Pinel et al., 76 
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2010). Inflation, being proportional to chamber over-pressure, increases up to the point when a 77 

threshold over-pressure breaks open the chamber (Blake, 1981). Magma then escapes from the 78 

chamber, causing the ground surface to deflate, and a dyke propagates away from the chamber and 79 

may intercept the ground surface. The start of deflation is thus the time at which magma withdrawal 80 

starts and an intrusion is initiated, in some cases feeding an eruption. Whether an intrusion actually 81 

breaks the surface (and how long after the start of deflation, and where the location of any eruptive 82 

vents is) is likely to depend on magma properties, rock properties, crustal stress and topography, as 83 

explored in theoretical models by Buck et al., (2006), Heimisson et al., (2015a) and Pinel et al., 84 

(2017).  85 

According to Eq. (1), if deflation is triggered when the amount of deformation is ΔD*, then this 86 

happens at time t* which is proportional to the exponential timescale (τ) 87 

t* = -τ ln(1 - ΔD*/a),     (2) 88 

This implies that if early monitoring data can constrain the value of τ, then a forecast of the time at 89 

which magma withdrawal starts, t*, can be made within the limits of variation in -ln(1 - ΔD*/a). 90 

In Section 2, Eq. (1) is fitted to inflation periods at Krafla volcano which preceded intrusions (as 91 

detected by seismic and deformational evidence) and, in some cases, eruptions. The results, together 92 

with published results from Kilauea and Mauna Loa, show that t* seems to be proportional to τ, with 93 

the ratio t*/τ falling in a narrow range. In Sections 3 and 4 the statistical distribution of t*/τ values is 94 

used to calculate the probability that deflation will start within any user-defined time interval. We also 95 

calculate the size of the time window in which the probability has a particular value, and show how 96 

forecasts can be continuously updated on the basis of new monitoring data. Section 5 discusses how 97 

our method can be adapted to make the same type of forecasts using other types of pre-eruptive 98 

measurements that follow a given time-dependent function.  99 

2. Ground inflation, deflation and eruptions at Krafla 100 
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The Krafla volcanic system is situated in Iceland’s Northern Volcanic Zone. It has a 12-km diameter 101 

caldera and a system of ground fissures and vents which extend beyond the caldera to the North and 102 

South. An active geothermal system lies within the caldera. In 1975-1984 a repeated sequence of 103 

activity occurred in which gradual ground inflation centred within the caldera was interrupted by 104 

rapid deflation accompanied by rifting and sometimes basaltic eruptions (e.g., Björnsson et al., 1979; 105 

Ewart et al., 1990, 1991; Buck et al., 2006; Wright et al., 2012). Seismicity accompanying rifting has 106 

been interpreted to have resulted from dominantly lateral propagation of dykes carrying basaltic 107 

magma from a shallow magma chamber below the caldera. An S-wave shadow zone (Einarsson, 108 

1978; Brandsdóttir and Menke 1992; Brandsdóttir et al., 1997) and modelling of ground deformation 109 

(e.g., Björnsson et al., 1979; Johnsen et al., 1980; Ewart et al., 1990, 1991; Heimisson et al., 2015b) 110 

place the shallow chamber, or a complex of magma storage compartments, at about 2 to 4 km depth.  111 

Here, we investigate the record of ground inflation using the data on surface elevation provided by 112 

Björnsson and Eysteinnson (1998) (see Fig. 1) pertaining to levelling station FM5596 located about 1 113 

km from the centre of deformation. Measurements were typically recorded on a daily to hourly basis. 114 

We designate as inflation period 1 the measured inflation which started in February 1976, following 115 

the end of the first eruptive event in the 1975-1984 activity, because this marks the start of frequent 116 

measurements of inflation. The elevation at which deflation started generally increased over time, 117 

rather than occurring at a more or less constant threshold elevation, as appears to be the case at Axial 118 

Seamount (Chadwick et al., 2012; Nooner and Chadwick, 2016). At Krafla, the threshold elevation is 119 

variable and is likely to be a function of time-dependent magmatic, tectonic and topographic stresses 120 

(Buck et al., 2006). 121 

Of the 17 inflation periods which preceded deflation (Fig. 1), all but the two most recent periods 122 

(lasting from 04/02/1981 to 18/11/1981 and from 22/11/1981 to 04/09/1984) are described well by the 123 

single exponential function of Eq. (1). These are the 15 periods plotted in Fig. 2 and listed in Table 1. 124 

They lasted from tens of days to hundreds of days and inflation stopped (when deflation and 125 

eruption/intrusion started) after inflation of 0.2 to 1.2 m. Note that although elevation increases during 126 

each inflation period at a decreasing rate through time, some irregularity occurs because of occasional 127 
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rapid but small deflations and inflations. These are treated as noise because they are much smaller 128 

than the 0.1 to 1.05 m deflation events that accompany intrusions and eruptions. Fitting was done 129 

using the Levenberg-Marquardt algorithm (see Appendix A) and the best-fit parameter values are 130 

listed in Table 1; the time constant τ ranges from 13.7 to 537 days. Figure 3 shows a representative 131 

example of a fitted curve. 132 

Inflations 16 and 17 followed a double exponential model which, as will be mentioned in the 133 

Discussion, we attribute to a viscoelastic response of the system after sufficiently long time (cf. 134 

Nooner and Chadwick, 2009). However, for the purposes of this paper, attention is focused on 135 

inflations described by Eq. (1).  136 

3. Forecasting method 137 

As already noted, Dvorak and Okamura (1987) and Lengliné et al. (2008) used Eq. (1) to describe 138 

some inflation episodes at Kilauea and Mauna Loa volcanoes. Combining their best-fit values of τ 139 

with the new results from Krafla (Table 1), Figure 4a compares the duration of inflation, t*, with the 140 

exponential timescale, τ, for these three basaltic volcanoes. A strong correlation exists such that for 141 

given τ, the time when deflation starts, t*, is likely to lie within a well-prescribed range. The 142 

correlation holds irrespective of whether the deflation was accompanied by an eruption or only an 143 

intrusion, as is expected if deflation is triggered at a critical threshold whereas an eruption requires an 144 

additional criterion related to dyke propagation dynamics, magma buoyancy and surface topography. 145 

The correlation between t* and τ in Fig. 4a also appears to be independent of which volcano is 146 

involved, albeit with the caveat that more data from Kilauea, Mauna Loa and other volcanoes would 147 

be interesting.  148 

That the Hawaiian and Krafla data have similar t*/τ ratios is not unexpected for the following reason: 149 

In physical terms, for a magma chamber inflating due to the inflow of buoyant magma from below 150 

(e.g., Pinel et al., 2010), the critical amount of inflation ΔD* is proportional to the critical over-151 

pressure in the chamber (ΔP*). The maximum permissible amount of inflation, a, is that which would 152 

be caused by an excess chamber pressure that balances the buoyancy of the magma in the feeder 153 
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conduit given by gΔρL where g is the acceleration due to gravity, Δρ is the density difference between 154 

the magma and country rock, and L is the length of the feeder conduit. In such a model, t*/τ = -ln(1- 155 

ΔP*/gΔρL) and a deflation will be triggered as long as ΔP*/gΔρL < 1. Choosing reasonable values for 156 

these parameters (3 < ΔP*< 30 MPa, 100 < Δρ < 400 kg m
-3

 and 5 < L < 20 km) yields a spread of 157 

t*/τ ratios that are confined within the range of about 0.07 to 5, which is consistent with Fig. 4. 158 

Although the ranges of physical parameter values, and hence t*/τ ratios, within a given volcanic 159 

system are likely to be narrower, disparate volcanoes can still be expected to have t*/τ values that 160 

overlap, as appears to be the case from Fig. 4. Thus, until more deformation data are available, the 161 

dispersion in the data represented by the pooled cumulative distribution function (cdf) in Fig. 4b is 162 

taken to describe the relationship between the duration (t*) and time-constant (τ) of inflation at most 163 

volcanoes which behave according to Eq. (1).  164 

The cumulative distribution function (cdf) of the ratio t*/τ (Fig. 4b) is sigmoidal, such that deflation is 165 

more likely to start when t*/τ is near the median value. A smoothed version of the empirical cdf can 166 

be calculated using a best-fit to a theoretical distribution, such as a log-logistic distribution. We 167 

consider this distribution because it is adequate for events whose rate increases initially and decreases 168 

later as exponential decay. The distribution has a sigmoidal shape and a simple 2-parameter 169 

definition: 170 

                
 

   
      

 
 
   ,  (3) 171 

where α is the median value of t*/τ and β is a shape factor. Values of α = 1.319 and β = 4.756 were 172 

found by maximum likelihood estimation to approximate the empirical cdf, with the goodness of fit 173 

being validated using the Kolmogorov-Smirnov test. The empirical cdf of t*/τ as well as the log-174 

logistic fit are shown in Fig. 4b. 175 

The cdf of t*/τ can be used to calculate the probability of a deflation starting within a given time 176 

interval by applying the theory of conditional probability and using an estimate of τ found by fitting 177 
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Eq. (1) to on-going inflation data. Thus, at some time, t, after the start of an inflation period the 178 

probability of deflation starting between t1 (≥ t) and t2 (> t1) is (see Appendix B) 179 

  
                   

          
 .    (4) 180 

We focus on the probability, evaluated at the elapsed time t, of deflation starting in the time window 181 

between t and t + Δt. In other words, at any current time during the course of on-going inflation, we 182 

wish to find the probability that a deflation event will start before a time period of length Δt has 183 

passed. Following Eq. (4), this is: 184 

  
                      

          
 .    (5) 185 

Graphs showing how this probability changes over time, and for different values of Δt, are given in 186 

Fig. 5, where t and Δt are normalised by τ and the cdf is given by the log-logistic model in Eq. (3) and 187 

Fig. 4b. Figure 5a makes the obvious point that the probability increases with an increasing size of 188 

time window, Δt/τ. For given Δt/τ, the probability of deflation happening within that time window is 189 

initially low; this is because the cdf is relatively flat at small times, and increases as the steepest 190 

portion of the cdf is approached, which is when t/τ is close to the median value of t*/τ. At later times, 191 

if deflation has not yet happened, the probability decreases once the long tail of the cdf is reached 192 

because a given size of time window contains a diminishingly small proportion of the cdf. 193 

Fig. 5(b) shows that the shortest time interval associated with a given probability is reached when t/τ 194 

is close to the median value of t*/τ. This is where the cdf is steepest, such that a given proportion of 195 

t*/τ values is contained within the shortest time span. The shortest time interval with a probability 196 

greater than 0.5 is initially Δt/τ = 1.32 (because this is the median value of t*/τ) and falls to Δt/τ = 0.3 197 

at t/τ = 1.5.198 

4. A retrospective illustration of probabilistic forecasting in real time 199 

As shown above, the probabilities of deflation starting in a given time window can be calculated from 200 

the cdf as a function of the dimensionless time t/τ. To express the size of these time windows in 201 
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absolute terms requires knowledge of τ, and this is estimated by fitting Eq. (1) to deformation data 202 

obtained up to time t (< t*). This is designated as τ(t) to distinguish it from the values of τ (Table 1, 203 

Fig. 4) which are calculated based on all measurements in an inflation period. The fitting method is 204 

described in Appendix A.  205 

Using inflation period 9 (τ = 121 days, t* = 177 days) for illustration, irregularities in the elevation 206 

data cause the best fit values of τ(t) to vary during the course of inflation (Fig. 6) but inevitably the 207 

locus of (t, τ(t)) points moves towards the region of Fig. 4(a) occupied by (t*, τ) values, and t*/τ ratios, 208 

which characterise the start of deflations. The time evolution of forecasts will therefore reflect any 209 

change in τ(t) as well as the passage of time on the conditional probabilities. 210 

In applying the forecasting method, a user may be interested in the probability of a deflation starting 211 

in a given time interval or, conversely, the time interval which carries a given probability. In the 212 

former case, continually updated conditional probabilities are calculated using Eq. (5) with τ replaced 213 

by τ(t) as shown in Fig. 7a for inflation 9. In the alternative case, Equations (3) and (5) are rearranged 214 

to find Δt for given p: 215 

         
   

 

 

  

    
 
 

   
 

   

   ,  (6) 216 

The results from this calculation are shown in Fig. 7b. 217 

Both plots in Fig. 7 show variation due to variation in τ(t) superimposed on the trends found in the 218 

normalised plots for constant τ in Fig. 5. For example, the major changes at early times in Fig. 7a,b 219 

are mainly due to changes in the best fit value of τ(t) shown in Fig. 6. Once τ(t) becomes more stable, 220 

the trends in Fig. 7 more closely follow the theoretical curves of Fig. 5 in which the probability of a 221 

deflation in a given size of time window increases until t ≈ τ, and then gradually decreases. Likewise, 222 

the length of the time window associated with a given probability decreases until t ≈ τ and then slowly 223 

increases. 224 



 

10 
 

It may seem counter-intuitive that the probability does not continue to increase while more and more 225 

time goes by without a deflation event. However, there are two reasons why the probability of 226 

deflation starting within a time window of given length (as opposed to deflation starting at any time 227 

which, in our model is p = 1) eventually decreases if a deflation event has not happened after a 228 

sufficiently long time.  229 

The first is that the probabilities are calculated from a model distribution that by definition extends to 230 

infinite time. In other words, there is no known or assumed upper limit to how long inflation will 231 

continue. If there was a finite time by which deflation must start, then the probability would indeed 232 

increase as that time was approached, but here there is no such constraint. 233 

The probabilities depend on the shape of the cdf. In particular, the log-logistic distribution has a long 234 

tail in which the slope of the cdf decreases as the cdf asymptotes to 1 as time tends to infinity. This 235 

contrasts with the shape of the cdf at early times, which shows the slope of the cdf increasing.  This 236 

shape reflects the fact that the distribution of t*/τ values has a central peak straddled by shallow tails, 237 

as illustrated by the clustering of data points in Figure 4a. 238 

Secondly, then, the proportion of the population of all deflation start times contained within a time 239 

window that lies in the long tail of the distribution is small and becomes smaller as t tends to infinity 240 

and the cdf asymptotes to 1. This is the opposite of the trend at earlier times, when the proportion 241 

increases according to the steepening of the cdf.  242 

The probability (Eq. 5) depends on the ratio of the proportion of the population of all deflation start 243 

times that lies between t and Δt, divided by the proportion of the population that lies beyond the 244 

present time. These proportions are (cdf(t /τ  + Δt/τ) – cdf(t/τ)) and (1 – cdf(t/τ)) respectively. The 245 

former term increases as the cdf curve steepens (up to the median time) and decreases as the cdf curve 246 

flattens out (after the median time). The latter term always decreases with time. Consequently, at early 247 

times the probability increases and at later times decreases. 248 

 249 
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Figure 7 also illustrates how the method can be used. After 30 days of inflation, there is a 40% chance 250 

of deflation starting in the next 50 days (i.e., before the 80
th
 day after this inflation period started) and 251 

only a 2% chance that it starts in the next 10 days. As time passes without deflation and with the 252 

gathering of more deformation data that allows τ(t) to be re-calculated with more data, the 253 

probabilities associated with given time windows are continually updated. After 130 days, there is a 254 

68% chance of deflation happening in the next 50 days, and a 20% chance of deflation in the next 10 255 

days. 256 

Alternatively, specifying an 80% probability of deflation starting, the model forecasts a time window 257 

that decreases from about 100 days to 70 days as inflation continues to the 130
th
 day. Thereafter, the 258 

length of the time window increases once t >> τ as a consequence of the cdf of t*/τ flattening, as 259 

explained in Section 3. A trade-off between high probabilities being associated with long time 260 

windows and a desire to anticipate a deflation event within a short time window but with high 261 

probability is met when the times and time windows are of order τ × the median value of the t*/τ ratio, 262 

in this case 1.32 τ. In other words, the strongest forecasts are made around the times when the curves 263 

in Figs. 5a and 7a reach high values and when the curves in Figs. 5b and 7b reach low values.  264 

5. Discussion 265 

This section compares the model with other approaches and explains how it can be used with data 266 

which follow a different time-dependence from the decaying exponential of Eq. (1). First, we remark 267 

on a caveat that applies to all eruption forecasting methods which is that geophysical unrest need not 268 

lead inevitably to an eruption (Moran et al., 2011), because the priming mechanism may cease before 269 

a given critical threshold is reached. A survey by Biggs et al. (2014) found that of the 54 volcanoes 270 

which showed surface deformation detected by InSAR in the previous 18 years, 25 erupted whereas 271 

29 did not erupt. Of their 34 studied volcanoes which did erupt, 9 did so without accompanying 272 

deformation. The reasons for these varied behaviours probably relate to tectonic setting and the depth 273 

of magma bodies (Biggs et al., 2014) and the detectability of the surface expression of sub-surface 274 
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volume or mass changes within complex magma plumbing systems of varying size and location 275 

(Biggs and Pritchard, 2017; Sparks and Cashman, 2017). 276 

The forecasting approach introduced here can be compared with one based only on the distribution of 277 

inflation durations (t*). Fig. 8 compares the empirical cdfs of t* and of t*/τ for the 15 inflation periods 278 

of Krafla. It shows that the t*/τ cdf has a narrower central portion, indicating that including the extra 279 

information provided by a value of τ allows better discrimination of when deflation is likely to start. 280 

Indeed, the cdf of t* values is close to a straight line, such that t* values between the minimum and 281 

maximum values are equally likely whereas the sigmoidal log-logistic cdf of t*/τ implies that t*/τ will 282 

be more likely to lie in a narrower range. A further advantage of the new model is that the distribution 283 

of normalised inflation times, t*/τ, appears to be general whereas the distribution of t* values is 284 

volcano-specific. 285 

We reiterate that our method forecasts the onset of deflation whether or not the subsequent intrusion 286 

produced an eruption. At Krafla, the 15 inflation periods which followed Eq. (1) all culminated in an 287 

intrusion but only 6 of them produced an eruption. While separate cdfs for inflation episodes which 288 

preceded eruptive and non-eruptive deflations could be made in order to allow separate forecasts of 289 

the probabilities of the timing of eruptive and non-eruptive deflations (on the assumption that 290 

eruptions happen randomly in any sequence of deflation events), the small amount of available data 291 

precludes this. However, the empirical evidence of Fig. 4a is that eruptive and non-eruptive deflations 292 

are not associated with different populations of t*/τ values. This is consistent with the expectation that 293 

the condition for an eruption to happen at some time during deflation is independent of the condition 294 

for deflation to start. 295 

The t*/τ method introduced here applies only to inflations which follow Eq. (1), in other words, 296 

volcanoes with inflation at an exponentially decreasing rate. The procedure of updating fits to Eq. (1) 297 

as more monitoring data are collected allows the user to continually judge whether Eq. (1) adequately 298 

fits the data. If it does, then the forecasting method using Eqs. (4) and (5) and the cdf shown in Fig. 4b 299 

remain valid. However, if Eq. (1) becomes inadequate, then the forecasting method should be 300 
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modified. Inflation histories that are described by equations other than Eq. (1) (Nooner and Chadwick, 301 

2009; Reverso et al., 2014; Le Mével et al., 2015, 2016; Carrier et al., 2015) may reflect additional 302 

processes or boundary conditions but can in principle be treated using Eqs. (4) and (5) if an 303 

appropriate scaling of the eruption time (t*) can be found and the cdf of the scaled eruption time can 304 

be defined. 305 

For example, inflation episodes 16 (from 04/02/1981 to 18/11/1981, t* = 286 days) and 17 (from 306 

22/11/1981 to 04/09/1984, t* = 1018 days) at Krafla show systematic departures from the single 307 

exponential model of Eq. (1). Figure 9a,b shows that they are more clearly described by the double 308 

exponential model  309 

ΔD = a1(1 - exp(-t/τ1)) + a2(1 – exp(-t/τ2)),   (7) 310 

which Nooner and Chadwick (2009) used to describe inflation of Axial Seamount between its 311 

eruptions in 1998 and 2011. The second exponential term only becomes necessary after long times 312 

and may arise when the system starts to respond in a viscoelastic way. As with the single exponential 313 

model, given sufficient data, it would be possible to define a cdf of t*/τ2 (where τ2 > τ1) and then use it 314 

in the forecast model of Eq. 4. 315 

In general, the approach based on Eq. (4) can be applied in any situation where a physical measure, Q, 316 

of pre-eruptive unrest (e.g., ground elevation, tilt, earthquake rate) is monitored and obeys a time-317 

dependent function f(t/T), where T is a constant normalising time-scale whose value can be estimated 318 

by fitting Q = f(t/T) to monitoring data. The function f can be empirical or be based on a physics-319 

based model, such as pressurisation of an elastic magma chamber (as in Eq. (1)) and inelastic 320 

deformation (wherein the inverse of the rate of elevation change decreases linearly with time (f   (1 - 321 

t/T); Robertson and Kilburn (2016)). Given a number of past eruptions happening at known t* and T, 322 

then the cdf of t*/T can be plotted and described by the best fit to an appropriate reference distribution 323 

(e.g., log-logistic, Weibull, normal etc). The best-fit cdf then defines the population of t*/T values at 324 

which eruptions begin. The probability of an eruption starting within any user-defined time window, 325 

given that some amount of time t has already passed, can then be calculated by applying Eq. (4), the 326 
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value of T having been found through fitting Q = f(t/T). The value of T and the probability can be 327 

continually updated in real-time as monitoring data accrues. 328 

6. Conclusions 329 

Motivated by the need for improved quantitative probabilistic forecasting methods for volcanic 330 

eruptions, we introduce a method which produces forecasts of the type “The probability that a 331 

deflation will start during the next N days is p”. The method requires monitoring data and a statistical 332 

description of the threshold conditions for an eruption (or other event) to start. In our case, the time at 333 

which an inflating volcano starts to deflate, a process which initiates a shallow intrusion that 334 

sometimes leads to an eruption, is parameterised by an exponential timescale (τ) describing the time-335 

dependence of inflation rate. In particular, we have shown that Eq. (1) describes inflation episodes at 336 

Krafla volcano which are followed by deflation, intrusion and in some cases, eruption. Certain 337 

inflation episodes at Kilauea and Mauna Loa also follow Eq. (1) (Dvorak and Okamura, 1987; 338 

Lengliné et al., 2008). The pooled data show that the duration of inflation t* is proportional to the 339 

exponential timescale τ, and the ratio t*/τ follows a log-logistic distribution with median of ca. 1.3 and 340 

20% and 80% percentile values of ca. 0.99 and ca. 1.78. The cdf of t*/τ allows the probability that 341 

deflation will start within a given user-defined time window to be calculated (Eqs. (4) and (5) and 342 

Figs. 5 and 7). Probabilities can be continually updated in real-time as more deformation data become 343 

available during an ongoing inflation period because this allows the value of τ to be continually 344 

refined. The method performs better than forecasts based solely on the statistics of t* values. The 345 

methodology is transferable to any time-dependent pre-eruptive monitoring data for which the cdf of 346 

the duration of unrest (t*) scaled by a time-scale, T, is known and for which a value of T can be 347 

determined from on-going monitoring data. 348 
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 Table 1: Inflation periods considered in this study from Krafla, Mauna Loa and Kilauea volcanoes. Kilauea 

1977-1979 and Mauna Loa parameters are from Lengliné et al. (2008).  Puu O’o’ values are from Dvorak 

and Okamura (1987). *a values are given in [m] units except Puu O’o’ given in [μ rad] units (“N/A” when 

the values were not reported). 

Inflation 

Start date  

(dd-mm-yy) Duration (t*) [days] 

τ 

[days] 

a 

[]* t*/τ 

  Krafla 1 15-02-76 227.63 537.12 3.954 0.42 

  Krafla 2 04-10-76 26.83 23.34 0.234 1.15 

  Krafla 3 01-11-76 79.16 99.67 1.089 0.79 

  Krafla 4 21-01-77 95.89 77.79 0.827 1.23 

  Krafla 5 28-04-77 132.82 111.5 1.174 1.19 

  Krafla 6 14-09-77 114.79 79.23 0.893 1.45 

  Krafla 7 25-01-78 166.10 160 1.603 1.04 

  Krafla 8 12-07-78 120.79 139.2 1.193 0.87 

  Krafla 9 15-11-78 178.88 121.3 1.090 1.47 

  Krafla 10 18-05-79 258.58 85.06 0.840 3.04 

  Krafla 11 19-02-80 26.05 13.71 0.070 1.90 

  Krafla 12 17-03-80 115.33 51.25 0.635 2.25 

  Krafla 13 16-07-80 94.86 61.49 0.528 1.54 

  Krafla 14 23-10-80 60.98 41.9 2.561 1.46 

  Krafla 15 29-12-80 32.29 21.53 0.222 1.50 

  Mauna Loa 1975-1984 

(Lengliné et al, 2008) 06-07-75 3184.31 2670 

N/A 

1.19 

  Kilauea 1977-1979 

(Lengliné et al, 2008) 01-10-77 605.05 412.45 

N/A 

1.47 

  Kilauea between Puu 

O’o’ Episodes 3 and 4 09-04-83 65.31 40 

       

      32* 1.63 

  



 

24 
 

(Dvorak and Okamura, 

1987) 

526 
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Figure Captions 527 

Figure 1: Elevation above sea level of station FM5596 at Krafla (data from Björnsson and 528 

Eysteinnson (1998)) showing the 17 periods (represented with different colours for clarity) of gradual 529 

inflation followed by rapid deflation. Deflation events that were accompanied by an eruption are 530 

indicated with a red star. 531 

Figure 2. Change in elevation during inflation periods 1 to 15 at Krafla (see Table 1), plotted from 532 

data in Björnsson and Eysteinsson (1998). Time and elevation change are referenced to the first data 533 

point in each inflation period, which was within a few hours or at most days of the start of inflation, as 534 

identified by other means. Colours as in Figure 1. 535 

Figure 3. Plot of elevation change since the start of Krafla inflation period 9 and, in red, the best fit to 536 

equation (1) found using the Levenberg-Marquardt algorithm. 537 

Figure 4. (a) Log-log plot of t* versus τ, the t*/τ = 0.9852 and t*/τ = 1.7648 blue lines define the 538 

envelope around the central 60% of the data as shown in panel (b). Filled symbols refer to inflation 539 

events that culminated in a shallow intrusion which fed an eruption, open symbols refer to inflation 540 

events that culminated in a non-eruptive intrusion. (b) Cumulative distribution function of t*/τ with 541 

best-fit log-logistic distribution in red (Eq. (3)) and parameter values α = 1.318539 and β = 4.756239. 542 

Blue lines with t*/τ = 0.9852, 1.31068 and 1.7648 represent 20%, 50% and 80% probability 543 

respectively. 544 

Figure 5. Relationships between the probability at elapsed time t, of deflation starting within the next 545 

Δt, evaluated using equation (5) and the log-logistic model. (a) The probability, as a function of time 546 

t/τ, of deflation starting within the next Δt/τ. (b) The time interval Δt/τ within which there is a given 547 

probability of deflation starting, plotted as a function of time t/τ. 548 

Figure 6. Plot, akin to Fig. 4a but using linear axes and using data for Krafla inflation period 9, 549 

showing how τ(t) can vary over time and that t/τ(t) increases to values encountered at the start of 550 
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deflation. 60% of deflation start when (τ(t*), t*) plots between the lines t/τ(t) = 0.9852 and 1.764 (i.e. 551 

cdf = 0.2 and 0.8, as in Fig. 4b). 552 

Figure 7. Forecasts for Krafla inflation period 9 in terms of the relationships between the probability, 553 

at elapsed time t, of deflation starting within the next Δt, evaluated using Eq. (5) and the log-logistic 554 

model. (a) The probability of deflation starting in the next period Δt, as a function of time t. Different 555 

colours indicate deflation starting within the next 10 (black), 20 (red), 30 (blue), 50 (green) or 100 556 

(magenta) days. (b) The time interval Δt, as a function of time, associated with a 20% (green), 40% 557 

(blue), 60% (red) and 80% (black) probability of deflation starting, calculated using Eq. (6). 558 

Figure 8. Comparison of the cdfs of t* (blue) and t*/τ (red) for inflation periods 1 to 15 of Krafla, 559 

plotted by normalising to the maximum value in each case. 560 

Figure 9 Inflation 16 and 17 of Krafla volcano, showing single exponential fits (Eq. (1), red lines) 561 

and double exponential fit (Eq. 9, blue lines). (a) Inflation 16, with best fit parameters a = 0.452 m 562 

and τ = 71.32 days with a single exponential fit and a1 = 0.2347 m, τ1 = 23.5323 days, a2 = 1.7458 m, 563 

τ2 = 1822.9611 days with a double exponential fit. (b) Inflation 17, with best fit parameters a = 0.699 564 

m and τ = 114.426 days for a single exponential fit, and a1 = 0.3661 m, τ1 = 20.7144 days, a2 = 565 

0.5561m, τ2 = 613.736 days with a double exponential fit. 566 

 567 

Appendix A Parameter estimation 568 

Estimation of the parameters a and τ is performed using the Levenberg-Marquardt (Levenberg, 1944; 569 

Marquardt, 1963) non-linear least-squared regression on the inflation data at a given time and 570 

inflation ti and Δhi. The algorithm is an iterative method based on finding the vector of parameters β = 571 

(a, τ) that minimize the sum of the squares of deviation S(β) from the model curve f(t, β): 572 

                     
     (A.1) 573 
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Starting with an initial guess of β = (a0, τ0), the values are updated on iteration steps by replacing β by 574 

a new estimate β + δ in which δ is calculated from the set of linear equations resulting from the 575 

minimization of a relaxed version of the Jacobian of f(t, β). In general, if n parameters are unknown, 576 

the method requires at least n + 1 data points to converge, e.g. in theory at least three data points are 577 

required to solve for the two parameters a and τ. In practical terms, the iterative process requires many 578 

more data points to find a meaningful solution, i.e. with values of a and τ lying within realistic 579 

windows, as the algorithm finds local minima values and those can be spurious. We therefore apply 580 

cut-off criteria based on the following arguments:  581 

 First, as we want to examine an exponential model rather than a linear one, t/τ(t) shouldn't be 582 

too small (i.e. not << 1). Second, as very large values of t/τ(t) in Eq. (1) imply that inflation will cease 583 

after a very short time we regard any τ(t) values such that t/τ(t) > 10 as unrealistic. We therefore only 584 

accept τ(t) values if 0.1 ≤ t/τ(t) ≤ 10. 585 

Appendix B Conditional Probability 586 

Calculating the probability of deflation starting (at time t*) within some specified time interval, given 587 

that an amount of time t < t* has passed is a particular case of calculating the conditional probability 588 

of the occurrence of an event A given that an event B has already happened: P(A|B). It is well known 589 

that: 590 

       
      

    
   (B.1) 591 

i.e. this conditional probability is equal to the probability of the combined event divided by the 592 

probability of the event that has happened. In our case, defining the probability of deflation at a given 593 

time t* after a given amount of time t has occurred implies that A = t ≤ t*≤ t + Δt and B = t* > t. 594 

Because A∩B = t < t* ≤ t + Δt (i.e. the probability of the combined event is equal to the probability of 595 

the eruption happening after t) and P(t* > t) is the definition of the survivor function,  Eq. B.1 can be 596 

rewritten as: 597 
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 (B.2) 598 

To calculate these probabilities, we first estimate the cumulative distribution function of t*/τ, based on 599 

the values of t*/τ of previous inflations to assess the conditional probability as: 600 

                  
    

     

 
      

 

 
 

      
 

 
 

 (B.3) 601 

 602 
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