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Abstract

This thesis describes the development and validation of a new computational pro-

cedure for the calculation of thermal transmittance (U-value) of existing building

elements from the measurement of surface heat flux, and surface and nearby air tem-

peratures.

The U-value plays a key role in the determination of the final energy consumption

of a dwelling, and, as in the current political scenario reducing carbon emissions is

a growing concern, obtaining accurate and quick measurements of thermal transmit-

tance is of particular relevance to the precise representation of the energy performance

of the building sector.

The calculation method developed is an extension of the RC network, a model

based on the discretisation of building elements in resistors and capacitors in analogy

with electrical circuits.

The advances proposed in this work extend the discrete RC networks to a model

based on the full heat equation, with continuous, spatially varying thermal prop-

erties. The solution algorithm is inserted in a Bayesian framework that allows the

reformulation of the problem in terms of probability distributions.
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Two solution schemes have been confronted: Markov Chain Monte Carlo and En-

semble Kalman Filters approximation.

The model proposed has been validated on synthetic data, laboratory data col-

lected in an environmental chamber on a solid and cavity wall, and in-situ data

collected in 3 different locations (2 solid walls and 1 insulated steel frame construc-

tion).

The results show that the model offers an improved characterisation of the heat

transfer through the building elements, furthermore, the algorithm can be used to

analyse different wall constructions without the necessity of changing the structure of

the model, as opposed to the standard RC networks, and, finally, it offers the practi-

cal advantages of the uncertainty reduction on thermal transmittance (from 14-25%

to 7-10%) and a diminution of the necessary monitoring period from a minimum of 3

days to 1 day or less.

These advantages, in turn, benefit the building performance evaluation on different

levels: in first instance, the practicality of measuring thermal transmittance in-situ

is improved, thus making it easier to monitor the actual envelope performance and,

secondly, the uncertainty reduction on the U-value leads to important reductions on

the uncertainty surrounding the energy consumption predictions associated with a

dwelling.
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the posterior (middle). Bottom: Propagation of the uncertainty under Gext,STM (left)
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Introduction

Climate change is a growing concern in the current international political agenda as

it could represent the biggest challenge, so far, that humanity has had, and will have

to face.

Rising of sea levels, expansion of the deserts and an increased number of extreme

weather events such as heat waves, droughts, heavy rainfalls and floods that are

being witnessed in the last two decades [9] can all be connected to the effects of

global warming.

Global warming has been related to the increasing emissions of green house gases

(GHG) generated by the combustion of fossil fuels and the activities characterising

the development of the industrial era [9].

Since this connection has been ascertained, there has been evidence of interna-

tional efforts to reduce CO2 and green house gas emissions from all fronts of human

activities, such as the Kyoto protocol, [10], promoted by the United Nations Frame-

work Convention on Climate Change.

Under the protocol, the subscribing countries have to monitor their carbon emis-
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Figure 0.0.1: A light-hearted representation of the consequences of global warming.
Source Data: 4.5 Degree, xkcd.com [1]

sions and reduce them, aiming to reach an agreed target: for most European countries,

the second commitment period of the Kyoto protocol (2013-2020) requires a 20% re-

duction of the emissions of the 1990 baseline year [11].

Countries that ratified the Kyoto protocol, must meet their targets mainly through

national measures, and, in this context, the UK promoted the climate change act,

[12], binding the UK to achieve 80% emissions reduction by 2050.

In line with the climate change act, the UK has promoted the production and

transmission of electricity obtained from renewable sources (such as solar, wind, hydro

and tidal), bioenergy, the generation of heat through low carbon technologies such as

2



air source and ground source heat pumps, and more efficient energy usage [13].

UK National Energy Consumption

According to the latest UK national statistics, [2], the energy supply sector is the

largest contributor to the national carbon emissions (29%) followed by the transport

sector (24%). Business and Residential sectors occupy the third and fourth place with

17% and 13% of the national emissions respectively, see Figure 0.0.2 for more details.

Carbon and GHG emissions from the business sector primarily relate to the com-

bustion of fossil fuels required for the operation of machinery, refrigeration and air

conditioning, while the main emission sources in the residential sector relate to the

combustion of natural gas for heating and cooking. In this case, the emissions related

to residential electricity consumption (also for heating purposes) were counted in the

energy supply sector.

According to the latest Digest of UK Energy Statistics (DUKES), the current UK

national energy consumption amounts to 145.7 mtoe (million tonnes oil equivalent)

[14], and the domestic sector contributes approximately 27% of this figure [14]. As

can be seen from the energy flow chart published by the Department for Business,

Energy & Industrial Strategy [3], figure 0.0.3, this amounts to 39.6 mtoe, 63% of

which are attributed to natural gas consumption.

The last figure can be explained looking at the energy usage breakdown in a

3
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UK	National	Statistics
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Figure 0.0.2: Breakdown of carbon emissions by sector in the UK [2]

household. According to the data tables published by the Department for Business,

Energy & Industrial Strategy, relative to the latest Energy Consumption in the UK

Report, [4], space heating accounts for 57.5% of the domestic energy consumption,

mostly obtained by natural gas consumption. Figure 0.0.4 displays a pie chart of the

data relative to the energy consumption by end use published in the 2016 Energy

Consumption in the UK Report tables.

It is estimated that in a traditional dwelling construction up to 45% of the energy

necessary to maintain a comfortable indoor environment is lost to the outdoor envi-

ronment [15]. In a traditional house, the most prominent heat loss mechanisms are

infiltration, ventilation and conduction via the building envelope. The largest share

of envelope heat losses occurs through the external walls, 35%, and roof, 25%. This

means that, excluding doors and windows, the majority of heat losses occurs through

4
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Figure 0.0.4: Breakdown of domestic energy consumption by end use, [4]

the building fabric. Figure 0.0.5 shows a schematic diagram of the heat losses and

heat gains in a typical dwelling. The parameter that characterises the thermal per-

formance of the building fabric, is the thermal transmittance or U-value. In the light

of the figures presented above, it can be seen that this represents a crucial parameter

for building performance and building performance evaluation. An explanation of the

role of the U-value on the heat losses mechanism is given in section 1.1. The impact

of the U-value on whole building energy performance is explained in detail in the

literature review, sections 1.4 - 1.5.

From the figures presented above, it is clear that improving the building stock

energy performance must be a priority in the carbon savings strategy, and, in line

with these data several support policies and incentive schemes targeting building per-

6



Figure 0.0.5: Diagram explaining the fabric heat losses in typical dwelling

formance are currently operating in the UK such as the Energy Company Obligation

(ECO), Minimum Energy Performance Standards, Renewable Energy Feed in Tariff

and Renewable Heat incentive, [16].

Among these, the ECO and the Minimum Energy Performance Standards are the

policies that focus mostly on the improvement of the building fabric. The first aims

in particular to provide energy efficient measures to low income population via their

energy provider [17]. The latter targets the private rented sector, which presents the

highest proportion of homes with low energy efficiency ratings, as from April 2018 it

will be illegal to rent properties in the two lowest energy performance bands [18].

Several policies promoting energy efficiency have been scrapped by the 2015 gov-

7



ernment such as the Green Deal, providing pay-as-you-save loan schemes and the Zero

Carbon Homes Policy, requiring all new buildings built after 2016 to be highly energy

efficient. Still, energy efficiency policies remain part of the UK political agenda as re-

cently a POSTnote on the future of energy efficiency policies was published amongst

the parliament research briefings [19]. The briefing outlines options for future energy

efficiency policies and summarises analysis of the effectiveness of different policy op-

tions.

Perhaps the most important and continuous drive ensuring minimum energy ef-

ficiency standards of domestic buildings are the building regulations, a set of laws

ensuring that the environmental policies proposed in the Kyoto protocol and climate

change act are respected. Part L of the building regulations is the most relevant to

this research, as it regulates the conservation of fuel and power in existing and newly

built dwellings. This part of the regulations will be discussed further in Chapter 1,

section 1.2, where details of the current building regulations are explained.

To ensure that the standards outlined in the building regulations are met, the

government promoted the development of the Standard Assessment Procedure (SAP),

a tool to evaluate the actual and predicted energy performance of domestic buildings.

Still, as discussed in sections 1.3 - 1.4, a wide discrepancy between the predicted

and actual thermal performance of dwellings exists. This is commonly referred to

as “performance gap” and, as explained in section 1.4, it can lead to important

misestimations of the energy consumption and carbon emissions attributed to the

8



built environment.

Aims and objectives

The previous sections illustrated the role of the residential sector in the national

energy consumption and carbon emissions. From the heat transfer mechanisms oc-

curring in a dwelling, it is clear that the role played by the building fabric has an

important effect on the energy efficiency performance of the building, thus deter-

mining the amount of energy consumed in guaranteeing the thermal comfort of the

occupants. As mentioned in the previous paragraphs, this can be summarised in the

U-value, and, therefore, it is clear that a good characterisation of this parameter is

essential for the characterisation of the building energy performance that, in turn,

will determine the amount of energy consumed and the carbon emissions generated

by the building.

In particular, the thermal transmittance measurement is of particular relevance

in this context as it characterises the actual performance of the building envelope as

built, and, therefore, it is reasonable to assume that energy performance assessments

based on a measured value of the thermal transmittance will offer the most accurate

energy consumption and carbon emissions predictions.

This study aims to develop a new computational approach for the calculation of

the U-value that will improve the current measurement methodology, allowing for
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shorter monitoring periods and, at the same time, providing an estimation of the

uncertainty of the value found. This, in turn, will enable researcher to estimate the

confidence level of a building performance assessment thus contributing to the relia-

bility of the carbon saving estimates obtained.

This aim is pursued by fulfilling the following objectives:

i. Investigation of the most recent publications in the field of thermal transmit-

tance measurements and building performance assessment, aiming to under-

stand the work already published in this area and the current research trends.

ii. Numerical solution of the heat transfer equation with space varying thermal

properties across the wall thickness, as opposed to constant (or piecewise con-

stant) thermal properties.

iii. Introduction of a statistical framework to solve the inverse heat transfer prob-

lem of determining building element thermal properties from measurements of

surface temperature (or near-by air temperature) and heat flux.

iv. Definition of probability distributions, modelling the prior knowledge of the

researcher concerning the wall structure under examination. This includes the

adaptation of a mathematical framework allowing the generation of continuous,

spatially dependent, thermal properties.

v. Implementation of sampling algorithms for the solution of the inverse problem,

including Markov Chain Monte Carlo and Ensemble Kalman filter techniques.
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vi. Experimental data collection for the validation of the model proposed, including

data collected in controlled environment (such as an environmental chamber),

unoccupied and occupied properties, for different construction types.

vii. Assessment of the results obtained, including an evaluation of the impact of

U-value uncertainty on the whole building energy efficiency.

The rest of the thesis has been organised as follows:

I. Chapter 1 offers a description of the context justifying the research carried out,

posing particular attention to the work available on the performance gap and

in particular to the role of the U-value calculation on the whole building energy

performance.

Moreover this chapter offers a review of the methodologies available to the mea-

surement of U-values, dividing the techniques in direct and indirect methods,

stressing advantages and disadvantages of each procedure. Later, an overview

of the efforts made in the advancement of RC network models and inverse heat

transfer problems is presented and finally the aims and contributions of this

study are explained in further detail.

II. Chapter 2 offers a description of the mathematical background necessary to

understand and develop the models proposed. This includes a formulation of

the heat transfer problem in one dimension and an explanation of the Bayesian

framework adopted. Here, the sampling techniques employed are explained
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along with the Markov Chain Monte Carlo procedure and Metropolis within

Gibbs algorithms used.

III. Chapter 3 describes the experimental methodology followed for the collection

of different data sets employed for the validation of the models proposed. This

includes data collected in an environmental chamber, monitoring of an unoccu-

pied solid wall property, including a thermographic survey, and monitoring of

an occupied office space. Finally, a section is reserved for the description of a

set of data collected by the Building Services Research and Innovation Associa-

tion (BSRIA). The model was also validated using this data set to compare its

results with studies available in literature.

IV. Chapter 4 demonstrates the performance of the Markov Chain Monte Carlo

model developed. Here the model is trialled on synthetic data and on the data

collected in the environmental chamber.

Synthetic data experiments permit the validation of the model in an optimal

situation, where the researcher has absolute knowledge of the problem consid-

ered. This allows for exploration of the limitations and the potentials of the

model developed that can be later tested on experimental data.

Secondly, the results obtained from the environmental chamber data are pre-

sented and discussed.

V. Chapter 5 presents the validation of the model developed on different data sets

collected under more realistic conditions to demonstrate to what extent the
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findings and conclusions obtained from the synthetic data trials and climatic

chamber tests can be expected to hold in reality. This chapter includes an

explanation of the model limitations and computational costs.

VI. Chapter 6 Introduces the Ensemble Kalman Filter algorithm and discusses how

this technique can overcome the limitations experienced with the Markov Chain

Monte Carlo method. Secondly it presents the results obtained implementing

the Ensemble Kalman filtering technique. These are compared with the figures

obtained with the Markov Chain Monte Carlo, advantages and disadvantages

of both techniques are discussed.

VII. Chapter 7 Draws the conclusions from the results obtained and includes a dis-

cussion of the relevance of the outcomes in relation to the existing body of

work, stressing the improvements that the model can achieve as compared with

current standards. In particular it is shown how the uncertainty impacts on the

final energy consumption predictions and how the error reduction achievable

with the model proposed offers significant improvements on this prediction.

This chapter also includes proposals for future research to improve the model

developed and suggests other sectors in the built environment that can benefit

from the type of analysis proposed.
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Chapter 1

Literature Review

This chapter introduces the context in which this research is inserted. Initially some

general building physics concepts necessary to understand the importance of the U-

value in determining the amount of heat lost through the building fabric is given in

section 1.1. Following this, a panoramic on Part L of the current building regulations

is given, section 1.2 followed by an explanation of the Standard Assessment Procedure,

section 1.3. Section 1.4 illustrates the current research on the performance gap and

enlightens the impact of U-value on the final building energy consumption predictions.

Section 1.5 explains the current practices on inferring U-values from assumed thermal

properties values and “in-situ” measurements of temperature and surface heat flux.

Finally, section 1.6 provides a detailed outline of the contributions of this thesis

in light of the literature investigated, showing how this research extends the works

reviewed so far.
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1.1. Heat transfer through building walls Chapter 1. Literature Review

1.1 Heat transfer through building walls

Heat losses through single layer walls mainly occur by conduction, convection and

radiation. In a cold climate, the indoor temperature, most of the time, is higher than

the external temperature, and therefore the heat will naturally flow from the internal

environment to the external environment, following the temperature gradient.

If the building element can be considered an isotropic material, (i.e. constant

thermal conductivity) and the temperatures across the internal and external facades

are uniform across the surface, it is reasonable to assume that the heat transfer process

across the wall thickness is unidimensional. Figure 1.1.1 shows a diagram representing

this situation.

Figure 1.1.1: Diagram explaining the heat conduction process across a planar wall

If the temperature inside the wall remains constant, i.e. no change in energy

stored inside the wall, the heat flux entering the wall equals the heat flux leaving the

wall, in other words the rate of heat transfer through the wall is constant. Under

such conditions the heat flux through the wall can be expressed by the Fourier’s law,
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equation (1.1), [20]:

q(t) = −k∂T
∂x

[W/m2] (1.1)

Note that in equation (1.1) the left hand side q(t) represents the heat flux, [W/m2],

this explains the absence of the area on the right hand side. Separating the variables

in equation (1.1) and integrating from x = 0 where T (0) = Tsi to x = L where

T (L) = Tse, it can be seen that

∫ L

0

q(t)dx = −
∫ Tse

Tsi

kdT (1.2)

leading to

q(t) =
k

L
(Tsi − Tse) (1.3)

From equation (1.3), it is clear that the heat flux through the wall depends linearly

on the temperature gradient across the wall and it is inversely proportional to the

thermal conductivity k. Defining the thermal resistance as

R =
L

k
[m2K/W ] (1.4)

The heat flux through a homogeneous planar element can be calculated as

q(t) =
(Tsi − Tse)

R
(1.5)
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1.1.1 Surface Resistance

Convection heat transfer from a surface at temperature Ts to a fluid at temperature

T∞, is given by Newton’s cooling law, [20]:

qconv(t) = hc(Ts − T∞) (1.6)

where hc [W/m2K] is the convective heat transfer coefficient. Using an approach

similar to the conduction case, the convective resistance Rconv can be defined as

Rconv =
1

hc
(1.7)

Radiation effects also contribute to the overall wall heat transfer, and depend

upon the surface temperature of the body in consideration and the temperature of

the surrounding surfaces at average temperature Tsurr, [20]. The flux deriving from

the radiative component can be written as

qrad(t) = εσ(T 4
s − T 4

surr) = hrad(Ts − Tsurr) =
Ts − Tsurr
Rrad

(1.8)

where

hrad = εσ(T 2
s + T 2

surr)(Ts + Tsurr) (1.9)

The notation adopted in equation (1.8), is very convenient as it makes it possible to

express the contribution of radiative heat transfer in the same format as the convective

and conductive contribution. Still, looking at equation (1.9), it must be remarked
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that the radiative heat transfer coefficient depends on the temperature, as opposed

to the convective heat transfer coefficient.

When T∞ ≈ Tsurr, as it is often the case for the heat transfer problem in building

elements, the radiation effect can be properly accounted for by replacing the convec-

tive heat transfer coefficient with

hcombined = hc + hrad (1.10)

and the contribution to the heat flux can be calculated as

q(t)conv,rad = hcombined(Ts − T∞) (1.11)

The combined heat transfer coefficient in equation (1.11) represents a convective heat

transfer coefficient modified to account for radiation effects, reassuming the heat

transfer effects occurring at the surface, [20]. As it was done for conduction and

pure convection, a surface resistance can be connected to this coefficient and here

Rsi is used for the internal surface and Rse for the external surface. This reflects

the different conditions occurring in the indoor and outdoor environment, as the

convective coefficient depends on the surface roughness and the air velocity (different

indoors and outdoors), [8], and the radiative coefficient depends on the temperature

difference.

In practice, these values are tabulated for different wall structures and environ-

mental conditions and can be found in the CIBSE Guide A [8].
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1.1.2 Multilayered walls

In practice, building elements are often composed of a series of layers, each with

different resistances, such as a cavity wall that includes an air gap sandwiched between

two layers of bricks, or an insulated solid wall, that comprises a double layer of

bricks and an insulation layer. Figure 1.1.2 shows a schematic representation of these

constructions. In this case, in analogy with the electrical case, the total resistance

Figure 1.1.2: Schematic representation of an insulated cavity wall construction and
insulated solid wall construction

of the whole building element is given by the sum of the resistances of the single

elements.

Rw = R1 +R2 + ...+RN (1.12)

Considering the concepts of surface resistance introduced in the previous paragraphs,

the total resistance of the wall can be calculated by combining the surface resistance

values with the resistance of the construction:

Rtot = Rsi +Rw +Rse (1.13)
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In practice, it is more convenient to consider the reciprocal of the resistance.

If considering the resistance of the building element alone, this is called thermal

conductance, K, and, if considering also the effect of the surface resistances this is

called thermal transmittance or U-value, U ,

K =
1

Rw

[W/m2K] U =
1

Rtot

[W/m2K] (1.14)

so that the total heat flux through the building element can be given by

qtot(t) = U(Tint − Tout) (1.15)

From equation (1.15), it is clear that the U-value ultimately determines the

amount of heat transferred through a construction element and, as this applies to

all the external surfaces of a building, it is clear that it has a large role in determining

the amount of heat losses through the building envelope, thus dictating to a large

extent the building energy consumption.

1.2 Building Regulations

In line with the results of the UK energy consumption analysis and of the role played

by the domestic sector in this scenario, it is essential to promote the construction of

new low energy buildings, and, as it is estimated that 70% of the existing buildings

will still be standing as of 2050 [21], it is imperative to improve the current building

stock energy performance.
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1.2. Building Regulations Chapter 1. Literature Review

In order to guarantee the energy efficiency of new built constructions and effective

retrofit measures, the UK government issued specific building regulations is support

of the policies to achieve the carbon reduction targets.

Part L1a and Part L1b of the 2016 building regulations, [7], are the parts specif-

ically relevant to this study, as they concern the conservation of fuel and power in

new built (Part L1a) and existing dwellings (Part L1b).

Part L1a, Schedule 1 L1(a) - (b) establishes five criteria to be met to demonstrate

compliance with the energy efficiency requirements [7]:

Criteria 1: Achieving Dwelling CO2 Emission Rates [kg/m2] (DER) and Dwelling

Fabric Energy Efficiency [kWh/m2] (DFEE) no greater than the Target CO2

Emission Rates [kg/m2] (TER) and Target Fabric Energy Efficiency [kWh/m2]

(TFEE) calculated with the Standard Assessment Procedure SAP2012 (see

paragraph 1.3.1).

Criteria 2: “The performance of each individual fabric element and the fixed build-

ing services should achieve reasonable overall standards of energy efficiency”,

including meeting the prescribed U-value thresholds indicated in table 1.2.1.

Criteria 3: The dwelling should have passive control measures to limit the effect of

heat gains in the summer.

Criteria 4: The performance of the dwelling as built should be consistent with the

DER and DFEE.
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Table 1.2.1: U-values imposed by the building regulations for new and retrofitted
elements [7]

Building element New Built Retrofit
[W/m2K] [W/m2K]

Wall (cavity insulation) 0.28 0.55
Wall (internal or external insulation) 0.28 0.30
Floor 0.22 0.25
Roof (insulated at ceiling level) 0.16 0.16
Roof (insulated between the rafters) 0.18 0.18
Flat Roof 0.18 0.18

Criteria 5: Provisions for enabling the energy efficiency of the dwelling should be

put in place, such as provide the owner with sufficient information about the

building.

Part L1b establishes that “[...] the renovation of an individual thermal element

[...] must be carried out as to ensure that the whole element complies with paragraph

L1(a)(i) of Schedule 1 as far it is technically, functionally and economically feasible”,

and prescribes new target U-values for the improved building elements set out in table

1.2.1, [7].

As can be seen from this brief overview of Part L, the building regulations approach

building efficiency from different angles by regulating the upgrade of energy efficient

systems and building envelope, avoiding overheating and achieving an overall higher

dwelling efficiency.

Indeed, in the literature investigated, there is evidence of efforts to improve build-

ing performance across multiple disciplines, such as improved fabric performance by

increased envelope air tightness [22], more efficient windows and glazing [23], whole
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1.3. Building Performance Assessment Chapter 1. Literature Review

building performance [24, 25] and improved building services [26].

In the past, to facilitate the take up of domestic energy efficiency measures, the

government pressed larger gas and electricity suppliers to achieve carbon reduction

targets from domestic premises in Britain via the Carbon Emissions Reduction Tar-

get (CERT 2008-2012) and the Community Energy Saving Programme (CESP 2009

- 2012)[27]. Furthermore the Warm Front scheme (2000-2013) was designed to pro-

vide economic assistance to low-income households with the installation of insulation

and energy efficient heating measures in their homes. All these schemes have been

substituted by the Green Deal from 2013 - 2015 [28].

Besides these practical interventions, other aspects of improving the building per-

formance include the modelling of the building behaviour (criteria 1), and the post-

intervention assessment (criteria 4). As will be shown in the following paragraphs,

1.3-1.4, these steps play a crucial role in the quantification of the dwelling energy

consumption.

1.3 Building Performance Assessment

A key step to the improvement of building energy efficiency, is the understanding of

the current building performance, in order to maximise the energy savings achievable

with a retrofit intervention. This will lead to a sound and realistic national carbon

saving policy.
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The simulation of building performance and energy demand can be accomplished

with the aid of commercial software (such as DesignBuilder [29], EnergyPlus [30]

and Tas [31] amongst others) based on numerical models of the heat dynamics in

the building elements. These software tools allow for the specification of single wall

constructions, efficiency of heating systems, building-tailored geometry specifications,

producing design days and annual simulations based on actual weather data.

Still, they are impractical to use on wide scale as they are time consuming, weather

data are not easily available and they require advanced skills to setup and run the

models.

1.3.1 Standard Assessment Procedure

To overcome these issues, the Building Research Establishment (BRE), on behalf

of the former Department of the Environment (1992), developed the Standard As-

sessment Procedure (SAP), a methodology to assess and compare the energy and

environmental performance of dwellings.

SAP assesses how much energy a dwelling will consume when delivering a defined

level of comfort and service provision. This is based on standardised assumptions

for occupancy and behaviour thus enabling a like for like comparison of dwelling

performance [32]. The calculation methodology is set out in a form of worksheets,

accompanied by tables, specifying standard values for the parameters taken in con-
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1.3. Building Performance Assessment Chapter 1. Literature Review

sideration. Once the worksheets are completed, the data can be used to perform the

calculation. The following entries are requested as inputs:

Dwelling Dimensions: The geometry of the building envelope is defined, disregard-

ing the internal dwelling partitions, defining the size of the elements, type of

roof, floor area and glazing surfaces, leaving out unheated spaces clearly divided

from the dwelling.

Ventilation: The ventilation air change rate and infiltration rate are specified. If

its not possible to carry out a pressurisation test, these can be calculated from

the information available on chimneys, fans and passive vents. Mechanical

ventilation systems are detailed in this section

Heat Transmission: U-values of windows, walls, roofs and floors are specified based

on the design construction. Allowance is made for thermal bridging based on

the total exposed surface area.

Domestic Hot Water: The demand for hot water is based on the floor area. Heat

gains from the hot water storage and distribution are estimated in this section.

Internal Gains: Gains from lights, appliances, cooking and occupants are estimated

from the floor area.

Solar Gains: Calculated based on the area of glazed surfaces.

Mean Internal Temperature: Calculated monthly based on the average heating

requirement of a typical household, taking account of the extent to which the

dwelling is insulated and how well the heating can be controlled.
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Climatic Data: Solar radiation, wind speed and external temperature of the loca-

tion selected.

Space Heating Requirements: Calculated from the internal and external tem-

peratures, allowing for internal and solar gains. This calculation includes the

heating system efficiency and type of fuel.

Space Cooling Requirements: Should always be calculated as it is included in

the DER. It is based on a standardised 6 hour/day cooling schedule to cool the

spaces to 24◦.

Fabric Energy Efficiency: Calculated as the heating and cooling requirements per

floor square meter.

Total Energy Use: Including total annual heating and cooling requirements and

electricity for pumps, fans and lighting.

Energy Cost Rating: Cost rating related to the energy consumption, also includ-

ing the energy generating on site by technologies like micro-CHP and photo-

voltaics.

Carbon Dioxide Emissions and Primary Energy: CO2 emissions related to space

and water heating, ventilation and lighting less the emissions saved by energy

generation technologies.

The SAP will then elaborate the data inputed to generate the Energy Efficiency

Rating Band of the dwelling (on a scale from 1 to 100), the Dwelling Emission Rate,

in compliance with the building regulations presented in the previous section.
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When the complete data set for the SAP calculation is not available, it is possible

to assess the performance of a dwelling by applying the Reduced data SAP (RdSAP).

This is based on a site survey and it can be used only for existing dwellings. The

calculation takes part in two stages: first the data available are expanded to the full

data set, based on default assumptions and inference procedure, and then the SAP

calculation is performed on the extended data set, as explained in appendix S of the

Standard Assessment Procedure for the energy rating of dwellings [32].

1.4 Performance Gap

Unfortunately, in spite of the best efforts at characterising and predicting building

energy performance, experimental evidence based on post occupancy monitoring has

shown that a large gap exists between the design performance and as built perfor-

mance. This, besides leading to unreliable carbon savings predictions [33], directly

affects home owners, since nowadays, retrofit interventions are advised on economi-

cal grounds, based on the payback period that energy savings and capital costs will

generate [34].

The performance gap has been widely investigated and several factors have been

indicated as potential contributors to the discrepancy.

Hong et al., [35], in a study of the effectiveness of the Warm Front retrofit actions

involving more than 3000 dwellings, found that the combination of loft and cavity

insulation could reduce the space heating gas consumption by 11-17%. Still this is a
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wide discrepancy with the predicted savings obtained from SAP modelling, that were

indicating a 45-49% reduction from the pre-retrofit energy consumption level.

It was found that in several of the monitored dwellings, cavity insulation was not

uniform, leaving uninsulated approximately 20% of the area that theoretically was

expected to be filled. Similarly, loft insulation was covering approximately 13% less

loft area, especially close to the edges where the installation of the insulation is more

difficult.

The same authors found that, draft stripping interventions, undertaken as part

of Warm Front scheme, failed to achieve the theoretical reduction of air infiltration.

Furthermore, it was found that the installation of gas central heating systems con-

tributed to increases in air infiltration of up to 13% [36].

These findings show that the construction/installation phase can be detrimental to

the expected performance of the energy saving measures if not carried out accurately

and that the combination of multiple interventions, such as draft stripping and fitting

a gas central heating system, could show counterproductive effects.

Still, these are not the only factors affecting the performance gap.

Hong et al., [35], in their study cite the “take back” or “Comfort factor” i.e. en-

ergy efficiency benefits are taken through maintaining higher indoor temperatures,

thus improving the thermal comfort of the occupants rather than in fuel savings.

Furthermore, it has been shown that occupancy behavioural parameters have signif-

icant influence on the results of building energy models, confirming the impact of

occupant’s actions on energy use [37].
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Rajat Gupta and Matt Gregg, [38], studied a pre and post retrofit energy perfor-

mance of two occupied properties: a solid wall victorian house and a modern 1990s

cavity wall house. Both dwellings were monitored pre and post retrofit through site

visits, energy bills, in-situ measurements and occupant interviews. Furthermore, a

pre retrofit building assessment was carried out through the Standard Assessment

Procedure (SAP 2005). The pre-retrofit monitoring and evaluation highlighted that,

in the Victorian house, the indoor temperatures were considerably lower than those

assumed in the SAP methodology, leading to an actual gas consumption 50% lower

than the expected values. In the modern house it was found that the electricity

demand was significantly higher than SAP estimates.

Such discrepancies could be attributed to occupancy patterns and behaviours,

especially in the second case, due to the full time high occupancy. The pre-retrofit

monitoring informed the retrofit actions that, in both cases, followed the fabric-first

approach allowing some specific interventions, such as the increase of natural daylight-

ing in the first case and the re-organisation of the internal space in the second case.

Neither dwelling reached the 80% reduction target: the Victorian property achieved

75% emission reductions while the modern house achieved 55%. When comparing

with the actual pre retrofit performance, the reduction was around 40% in both cases.

This work highlights other difficulties and limitations of the building assessment

procedure, emissions reductions achieved in practice do not always correspond to the

modelled reduction as, as this case shows, the original actual performance of both

30



Chapter 1. Literature Review 1.4. Performance Gap

dwellings might be quite different from the assumed base line.

On the other hand some improvements included in the retrofit, such as the pas-

sive clothes drying space and the installation of energy efficient appliances, give an

important contribution to the reduction of CO2 emissions and energy savings but do

not have an effect on the SAP rating, thus not contributing to the 80% reduction

target.

These findings suggest that the models adopted for the prediction of building per-

formance do not fully capture the impact of human behaviour and cannot cope with

unforeseen construction issues that lead to suboptimal constructions. In other words,

they are not flexible, providing a guideline only whereas an accurate model should be

able to be tailored case by case.

Other sources of uncertainty in building performance modelling that contribute

to the performance gap, are related to the definition of the material constructions in

the model. Indeed, many building performance software tools, including SAP, rely

on the specification of the structure of the building elements, such as order, number

of layers and specific thermal properties of different construction materials, for the

calculation of the construction thermal transmittance, or allow the user to specify

directly the U-value of the building element assumed from the building design.

The U-value of the construction elements plays a key role in the final energy

performance of the building, as it is an essential parameter for the determination of
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the heat losses through the fabric.

The values input to building simulation software are often sourced from the lit-

erature, such as tabled values in the CIBSE guides, where a wide range of values is

available. This increases the difficulty in selecting the appropriate material for the

case taken under consideration, or calculated via the calculation method proposed by

ISO6946, (see section 1.5.1 for further details).

Furthermore, it is often assumed that the wall is formed of layers each with homo-

geneous thermal properties (i.e. conductivity and capacitance) without accounting

for defects and inhomogeneities. Parameters such as the number of constitutive lay-

ers, their material, their thickness and heterogeneities, such as cavities, are typically

assessed by visual inspection. All together, these assumptions lead to an inaccurate

characterisation of the wall and to a misleading evaluation of its thermal transmit-

tance.

Indeed, it has been reported that assumed U-values of solid walls might not be

sufficient to produce reliable carbon saving estimates.

Li et al. [33], for example, analysed the thermal transmittance of 40 solid wall

constructions and 18 stone walls. Their findings showed that the assumed U-value

(2.1 W/m2K) underestimates the actual performance of these constructions, that, in

both cases, showed mean U-values of 1.3 W/m2K. Propagating this finding across the

whole English housing stock by means of the Cambridge Housing Model (CHM [39]),

the authors showed that the U-value from standard assumptions leads to an overes-
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timated mean predicted annual heating demand of 16% from the solid wall housing

stock, corresponding to a 2% change in the mean English heat demand.

Cesaratto and De Carli, [40], carried out a monitoring campaign over the winters

2006 - 2010 on 29 buildings in the North-East of Italy, collecting in-situ measurements

of heat flux and surface temperature. Following the measurement campaign the data

were analysed with different methodologies: according to the “Average Method” and

calculation method described in the iso standards ISO9869 and ISO6946, through the

software package LORD, [41], and other techniques.

The authors found that LORD was the most reliable tool for the inference of the

thermal conductance.

In most of the cases considered, the measured thermal conductance was higher

than the design conductance, showing differences from 6% (for constructions with

higher conductance) to 20% (for constructions with lower conductance). Following

the analysis of the experimental results, the authors carried out building performance

simulations by means of the software TRNSYS [42] comparing the net energy demand

when using the design conductance and the measured conductance. It was found that

this could lead to differences of between 11 and 14%.

These studies show the impact of the U-value alone on the assessment of building

energy performance. It is considered that in-situ measurements of thermal transmit-

tance are able to provide more realistic observations of the actual performance of

the building envelope and thus contribute to a more faithful characterisation of the
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energy requirements of a dwelling.

Sean Doran, on behalf of the Building Research Establishment, carried out an

investigation of the thermal transmittance of “as built” construction elements, [43],

monitoring 29 cavity walls and timber frame walls across Great Britain. This study

focussed especially on modern constructions complying with the 1995 Edition of the

Approved Document L, (Building Regulations Part L). The results of the project

indicated that the measured U-values are greater than the U-values obtained by cal-

culation, and therefore the calculation method might underestimate the heat losses

for walls by more than 30%.

With similar results, Asdrubali et al [44], presented the outcomes of a monitoring

campaign in Central Italy in six study case buildings of new construction with ex-

pected thermal transmittance between 0.25 W/m2K and 0.33 W/m2K. The authors

showed how the calculated U-values are often lower than the measured ones, thus

leading to an overestimation of the performance of the building fabric.

Later on, Baker, carried out a study on behalf on Historic Scotland to assess the

suitability of modern U-value calculation methods, such as the BRE U-value cal-

culator, for predicting the properties of traditional constructions [45]. The study

considered 67 in-situ U-value measurements carried out from 2007 to 2010. As op-

posed Doran’s findings, this study found that modern calculation methods tend to

overestimate the U-value of traditional constructions thus underestimating their ther-
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mal performance.

Both studies demonstrate the importance of the in situ measurement, as a simple

calculation based on assumed values is found to be unreliable on a diverse number

of construction techniques. This, coupled with the results presented in [33, 35, 40]

stressing the impact of U-values on the whole building performance, shows how it is

necessary to use in-situ U-value measurements as opposed to assumed figures.

Furthermore, the large number of elements investigated in both studies allows

some observations on the shortcomings of the experimental procedure to the mea-

surement of the U-value to be made. For instance, both studies were limited by the

fact that the measurements are season bound, as, in order to minimise solar radiation

impact, the monitoring can be carried out only during the winter season. This meant

that the monitoring campaigns were carried on over several years to monitor all the

elements accurately.

Another important drawback is the length of the monitoring period for a single

element, that, as reported by Baker, [45], takes at least two weeks foe accounting

the inertia of the wall, therefore contributing to the length of the experimental data

collection.

Finally, the quantification of uncertainty surrounding the U-value measurement

cannot be easily determined as stated by Baker [45] due to the model adopted in

the calculation of the U-value from experimental measurements and parameters that
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are outside the control of the experimenter. This will be discussed further in section

1.5.1.2.

As previously mentioned, the lack of uncertainty in relation to single parameters

propagates in the building performance models, thus leaving the researchers without

an estimate of the reliability of the results obtained.

Based on these conclusions, the aim of the work carried out in this study is to pro-

duce a mathematical model that will be able to infer the thermal transmittance from

a short measurement period, possibly non season bound, and that, most importantly,

will be able to offer an estimate of the uncertainty of the U-value measured.

Having stated the clear aim of this research, the following sections of this liter-

ature review will cover the current U-value calculation standards, both in-situ and

from literature values, and other methodologies developed to infer the U-values from

experimental measurements of heat flux and surface temperatures.

1.5 Current U-value calculation methodologies

This section describes the current methodologies for the measurement of U-value. It

starts by presenting the direct procedures to obtain the thermal transmittance via

predefined formulas, from design specifications or experimental measurements. These

correspond to the procedures promoted by the ISO standards and, more recently, to

the calculation of the U-value from surface temperature measurements taken with

the employment of infrared cameras. These techniques have been classified as “direct
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methods” as in each case the U-value can be obtained from the application of a

pre-defined formula.

The second section instead is concerned with techniques where the U-value is

inferred by producing a best fit to collected data. In this case, there is not a formula

that can be applied to calculate the U-value, for this reason these techniques are

referred to as “indirect methods”.

1.5.1 Direct Methods

1.5.1.1 ISO 6946, calculation method

ISO 6946:2007 regulates the calculation procedure based on the construction design.

According to the ISO 6946:2007, the U-value can be calculated from the total

resistance of a building element. This, in turn, can be obtained by combining the

thermal resistances of each of its thermally homogeneous components and, where

appropriate, the effects of the surface resistance due to the air layers in proximity of

the element surface.

The single component resistance can be obtained by dividing its thickness d by

its thermal conductivity k, as shown in equation (1.16) where the index i indicates

the component taken in consideration.

Ri =
di
ki

[m2K/W ] (1.16)

The surface resistances have to be chosen according to the situation considered, and

in the case of vertical surfaces with horizontal heat flow these can be considered
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as Rsi = 0.13m2K/W for the internal surface and Rse = 0.04m2K/W for external

surfaces [46]. The components thermal resistances are then summed to obtain the

total resistance of the building element, R, and the U-value, U , is the reciprocal of

the resistance (equation (1.17))

R = Rsi +R1 +R2 + ...+RN +Rse, U =
1

R
, [W/m2K] (1.17)

1.5.1.2 ISO 9869, measurement method

ISO 9869 describes the standard measurement procedure to calculate the U-value in-

situ, thus obtaining the evaluation of the performance of the actual building element.

This calculation is based on measurements of surface heat flux and temperature. This

procedure necessitates the installation of several instruments on the location of in-

terest. The equipment necessary comprises, heat flux sensors, also called heat flux

plates, (in this study Hukseflux HFP01 sensors are used,[5]), temperature measure-

ment equipment (in this study PT100 and thermocouples are used) and a data logging

system (this study used a DataTaker DT85 with CEM20 expansion [47]).

A description of the working principles of the instrumentation necessary for the

data collection can be found in the explanation of the experimental methodology,

Chapter 3.

According to the ISO 9869:2014 [48], the U-value can be inferred from in-situ

measurements of temperature and heat flux. The calculation should be performed
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using the “Average Method”, as shown in equations 1.18

R =

∑
(T isi − T ise)∑

qi
, K =

∑
qi∑

(T isi − T ise)
, U =

∑
qi∑

(T iair,I − T iair,E)
(1.18)

where R is the wall resistance [m2K/W ], K is the thermal conductance [W/m2K],

U is the thermal transmittance[W/m2K], Tsi, Tse, Tair,I , Tair,E are the internal and

external surface and air temperatures, and qi is heat flux through the building element

considered at regular time intervals i.

The “Average Method” is based on the assumption that the energy stored in the

wall during the measurement is not changing. This in reality will occur only if the

temperature profile through the element is the same at the beginning and the end

of the test. As this situation is quite unlikely, the final result might be affected by

storage effects. In order to reduce these, it is recommended that the test period is

continued for an integer multiple of 24h periods, (at least 72h), and to verify the

following two stability criteria, [48]:

Criteria 1: The resistance value R obtained at the end of the test does not deviate

by more than ±5% from the value obtained 24h before.

Criteria 2: The R value obtained by analysing the initial 2/3 of data does not

deviate by more than ± 5% from the values obtained from the data collected

during the last time period of the same duration.
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1.5.1.3 Limitations of the ISO standard calculations

ISO6946 relies on the ready availability of design thermal conductivity or thermal

resistance of all the layers comprising a building element. In practice, these are

not easily available and the ISO does not account for scenarios where the actual

construction differs from the design due to unavailability of prescribed materials or

substitutions of design materials during the construction phase.

It often happens that the assessment of the building element construction is done

visually and therefore the detailed layering of the wall might be misunderstood or

misrepresented.

Furthermore, design values of thermal properties might not correspond to the

actual thermal properties of the element taken in consideration, due to their large

variability for the same building material: for instance the thermal conductivity of

brick ranges between 0.3 W/mK and 1.30 W/mK, according to the values listed in

Appendix 3.A7 of CIBSE Guide A [8]. Besides, these values are derived from measure-

ments taken under controlled test conditions, that might not be representative of the

environment conditions where the wall is located (e.g. they might not account for the

amount of moisture absorbed) nor for the presence of impurities or inhomogeneities

in the material itself.

All the observations detailed above underline the limitations of calculating the

U-value a priori, just relying on literature values as the end result might be unrepre-

sentative of the actual specimen taken in consideration.
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Due to the concerns given above, and the findings obtained from the literature

survey, measuring the U-value in-situ is preferable as it will be a more faithful repre-

sentation of the thermal performance of the actual element under consideration. The

measurement procedure is detailed in the ISO9869 as explained in the section above.

Still, the methodology and the calculations promoted by ISO 9869:2014 present some

practical difficulties that prevent a quick and reliable estimate of the element thermal

transmittance.

The assumption that the energy stored in the wall will not change during the

measurement period is unlikely to be true in practice, as the weather conditions are

unpredictable and can lead to important fluctuations of the mean external tempera-

ture, thus increasing or decreasing the energy stored in the wall. In order to ascertain

that the heat storage effects are not affecting the measurement result, the standard

introduced two stability criteria and the test shall continue until the duration exceeds

72h and both criteria are met. In practice, as reported by Baker, [45], monitoring

periods of above 10 days are common.

Even if these monitoring conditions are fulfilled, ISO 9869:2014 introduces a 10%

uncertainty on the measured value due to the variations over time of temperatures and

heat flow [48]. This error is a direct consequence of the model adopted for the calcula-

tion and it is the largest contributor to the total uncertainty in the measured U-value.

Furthermore, the sensors should be placed in an area of the wall far from thermal

bridges and joints, that is uniform and without defects so that it is representative of

the whole wall. In practice, this can be difficult to find and it has been shown that the
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sensor location has an important effect on the U-value measurement [49]. Externally

the location should be shielded from solar radiation, snow and rain, therefore, very

often, this restricts the monitoring periods to the winter season, as this offers the

advantage of a reduced solar radiation, which can have a minor impact on the energy

stored in the wall, and produce a steep temperature gradient between the indoor

and outdoor environment [50]. As a drawback, this impacts on the flexibility of the

measuring technique since it can only be applied during a small fraction of the year.

All the observations listed above, underline the impracticalities of the “Average

Method” and contribute to the difficulty of realising frequent monitoring campaigns

thus limiting the supervision of the “as built” performance and impeding the narrow-

ing of the so called “Performance gap”.

1.5.1.4 Thermography

In the built environment thermal imaging is widely used, to investigate the presence

of defects in the building envelope thanks to its quick, portable and non destructive

nature, [51]. Fox et al. [52] presented a review of the existing literature, covering well-

established and emerging building thermography methodologies. Thermal imaging

has been used for production aerial surveys, offering the advantage of screening several

buildings in a single session but presenting the drawback of being expensive and

a qualitative tool only. Two more traditional surveying techniques are the walk

around (external) and walk through methodologies, where the researchers monitor

the external perimeter (walk around) and the external and internal surfaces (walk
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through) of a building. These traditional techniques are still the most common for

building survey as they have proved to be more effective in defect detection [53].

More recently, some research studies presented quantitative applications of ther-

mography, especially in relation to the measurement of the thermal transmittance.

Albatici et al. described the “Infrared Thermovision Technique (ITT)” [54] to

compute the U-value of a building element from measurements taken with an IR

camera. In the calculation procedure adopted in the “Infrared Thermovision Tech-

nique”, the thermal transmittance is given by the ratio between the rate of heat

transfer per unit area through the element and the difference between the inner and

outer temperature:

U =
P

Tint − Tout
[W/m2K] (1.19)

Where P is the thermal power passing through the building element, dissipated in

the form of radiation and convection:

P = εσT 4
s + hc(Ts − Tair) (1.20)

Here Ts is the surface temperature expressed in Kelvin [K], ε is the surface emissivity

and σ is the Stephan-Boltzmann constant.

Later on, the same authors presented the results of a 3 year research study on

the calculation of the U-value of heavy and light constructions via the ITT explained

above[55]. The authors compared the U-values obtained with the ITT against the
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thermal transmittance obtained with the “Average Method”, (see section 1.5.1.2),

finding good agreement for heavyweight structures with an absolute deviation be-

tween 8-20% between the two methodologies, but poor repeatability on lightweight

structures.

Fokaides et Kalogirou [56] calculated the U-value from thermograms via equation

(1.21) based on the same principle of the ITT :

U =
4εσT 3

s (Ts − Tref ) + hc(Ts − Tint)
(Tint − Tout)

(1.21)

The authors compared the results obtained via equation (1.21) with the values ob-

tained employing a thermohygrometer and the nominal values obtained via the ISO6946.

They found that the discrepancy between the nominal values and the values found

via equation (1.21) showed an absolute deviation between 10-20%.

Giuliano Dall’O et al. [57] used IR thermography to survey 14 residential buildings

of different construction in Milan during January 2013. The U-values were calculated

via equation (1.22), where Tse is the external surface temperature, and Tint and Tout

are the internal and outdoor temperature respectively:

U = hc
Tse − Tout
Tint − Tout

(1.22)

The results of the research showed that the method does not allow the determina-
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tion of a precise U-value but rather a range within the value is likely to lie. This is

attributed to the large number of critical parameters that influence the temperature

reading with an IR camera in an external environment: difficulty in obtaining precise

emissivity and reflected temperature, accurate determination of the convective heat

transfer coefficient hc and variability of the weather conditions.

Minkina et Dudzik [58] presented a thorough review of the factors affecting the

temperature measurements with an IR camera.

From this analysis the authors concluded that the parameter that produces the

largest error is the incorrect evaluation of the object emissivity, where a 30% un-

certainty on the object emissivity led to 7% uncertainty on the temperature value,

followed by the reflected ambient temperature, where a 3% uncertainty on ambient

temperature can lead up to 5% uncertainty in the temperature.

In a similar way, Fokaides et Kalogiru, [56], carried out a sensitivity analysis vary-

ing the average reflected temperature, emissivity of the surface, ambient temperature

and relative humidity and the distance between the thermographer and the target.

Their findings agree with the conclusions drawn by Minkina et Dudzik [58], indicat-

ing the average reflected temperature and the surface emissivity as the factors with

major impact on the measured temperature.

Due to the large number of parameters that require monitoring, the difficulties in

ascertaining the final uncertainty of the U-value obtained with this methodology and

45



1.5. Current U-value calculation methodologies Chapter 1. Literature Review

the strong dependence on external weather conditions at the time of measurements,

quantitative thermography was not pursued in this study for the determination of the

thermal transmittance.

1.5.2 Indirect methods

Besides the calculations proposed in the ISO standards and IR methodology, many

examples from the literature show approaches for estimating thermal transmittance

and thermal capacitance based on reduced/simplified models of building structures.

For the purpose of this thesis, these have been classified as indirect methods since

there is not a ready-made formula to calculate the U-value directly, instead they re-

quire the fitting of the experimental data on a case by case scenario. Indeed, reduced

models such as neural networks, autoregressive models and resistance-capacitance

RC networks (or lumped capacitance models) are very common for building thermal

modelling because (i) they often have a small number of input parameters that are

easy to calibrate with an inverse modelling approach and (ii) are computationally

inexpensive [59].

Neural networks are computational methods based on the same functioning princi-

ples of the human brains. In this setup networks can be trained to recognise patterns

in data and, later, make predictions on new data sets. In building simulations, neural

networks have been used to predict building indoor temperatures and relative humid-

ity [59]. The advantage of neural networks is that no knowledge is needed about the
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physical properties of the building, but, as a drawback, the building cannot be char-

acterised by its parameters. For this reason neural network models are often referred

to as black box models .

Autoregressive models can approximate the current state of a system as a linear

combination of past measurements with the addition of noise. In these models, the

parameters that need to be identified are the coefficients of the linear combination.

Similar to the case of neural network models, these have been used for the prediction of

indoor temperature, thermal comfort and optimisation of the building energy demand

[60, 59] and they are also referred to as black box or grey box models, since the

parameters of the model are not directly connected to the physical properties of the

problem studied. For this reason, neural networks and autoregressive models have

not been chosen as computational methods for this work.

1.5.2.1 RC Networks

Perhaps one of the most common simplified models to describe heat dynamics through

the walls of buildings is the RC network in which a building element is discretised

in a specified number of nodes associated with a capacitor, where, ideally, the heat

capacity of the building element is concentrated. The capacitors are then connected

by thermal resistances. A diagram of an RC thermal network with two resistors and

one capacitor, is displayed in Figure 1.5.1.

The heat equation can be discretised in the nodes forming the RC Network and,

the case of the RC network represented in figure 1.5.1, the discretized equation be-
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Figure 1.5.1: RC network and measurement configuration.

comes:

C
T i+1
mass − T imass

∆t
=
T i+1
int − T i+1

mass

R1

+
T i+1
ext − T i+1

mass

R2

(1.23)

where C is the heat capacity per unit of area (or thermal mass per unit of area), ∆t

is the time step and R1 and R2 are the resistances of the first and second element of

the discretized domain. T iint and T iext corresponds to the internal and external tem-

peratures at the ith time step.

Possibly, one of the most remarkable contributions in the implementations of the

RC network models was the introduction of the software package LORD LOgical

R-Determination [41, 61], developed under the PASLINK project [62]. LORD is a

software tool for the modelling and calculation of thermal systems. It infers the

thermal resistance of building elements from measures of temperature and heat flux.

As mentioned earlier, the wall (or more complex structure) is divided into a series
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of resistances and capacitors and to each node a heat balance equation similar to

equation (2.40) is assigned. At this point, an objective function is defined as the

difference between the model output and the measured data. It is assumed that the

combination of resistances and capacities that minimises the objective function will

give the best estimate of the thermal parameters and from this point onward, the

problem is treated as a minimisation problem.

In the software LORD, two different approaches are adopted for the minimisation

of the objective function: the Downhill Simplex Method and a Monte Carlo procedure.

The software LORD has been used in by different research groups in their data

analysis: as already mentioned Cesaratto and De Carli found it to be the most reliable

tool for the inference of thermal conductance [40], Wakili et al. [63], used LORD to

measure in situ U-values, finding it was able to characterise appropriately storage

effects.

Still, the implementation of the analysis with the software package LORD requires

the user to trial different configurations of the RC network, trying a variable num-

ber of resistors and capacitors according to what type of element is under observation.

A wide range of literature is available concerning model topology (number of

resistor and capacitors) and optimal parameter identification in RC models. Xu

and Wang, [64], for example, have shown that RC models with 3 resistances and

2 capacitors produce very accurate results for lightweight constructions but their

performance worsens for heavier constructions and in general, higher order network

models produce more accurate results.
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In a different study, Kircher and Zhang [65], investigated the limitations of RC

network models in building application, finding that these models may not be suitable

for walls that are thick or well insulated or have large convection coefficients at the

indoor surface.

While RC models have been shown to provide an accurate representation of build-

ing structures, the applicability has some limitations, such as the fact that RC models

still need to be tailored on a case by case basis and without knowing in advance the

suitable number of resistors and capacitors for different wall constructions.

In many cases, the RC network models are combined with an inverse modelling

optimisation scheme, where the model parameters are determined by minimising an

objective function matching the output of the model to measured data.

As mentioned before, the LORD software adopted two strategies, Downhill Sim-

plex Method and Monte Carlo procedure [41]. In many examples, parameter identi-

fication has been carried out in the frequency domain, based on the assumption that

the simplified model should reproduce the principal harmonics of the complete ideal

model [64, 66, 67].

A large variety of optimisation approaches has been adopted such as Genetic Al-

gorithms [68, 69] and Gauss-Newton. Still these methods offer a most likely estimate

of the model parameters obtained in a deterministic fashion from the best fit of the

experimental data but do not offer a characterisation of the uncertainty surrounding

those parameters. There are many examples of the application of Bayesian inference

used for handling and quantifying uncertainty [70, 71]. For this reason a Bayesian

50



Chapter 1. Literature Review 1.5. Current U-value calculation methodologies

approach has been adopted that, as explained in the following paragraph, 1.5.2.2,

provides a good characterisation of the uncertainty surrounding the model parame-

ters.

1.5.2.2 Bayesian Inference

The Bayesian framework involves in the definition of probability distributions that

can be interpreted as the dispersion of the prior knowledge that the researcher has

about the problem studied. In the case of the measurement of thermal transmittance,

this corresponds to the knowledge about the possible spread of thermal properties of

the building element considered.

The optimisation of the choice of the parameters, in this case, is obtained by max-

imising the likelihood function. The likelihood can be interpreted as an evaluation of

the probability of the observed data given a determined parameter.

A recent publication by Biddulph et al, [72], has showcased the potential appli-

cation of Bayesian techniques to infer thermal properties of walls given temperatures

and heat flux measurements. In this work, the authors are interested in inferring

the thermal transmittance of solid walls based on the collection of heat flux and air

temperature measurements. The data set used was collected by the Building Services

Research and Information Association (BSRIA) during the 2010 winter. The heat

transfer through the wall is described with an RC model with 2 resistances and 1

capacitor, as the model represented in figure 2.4.1. The four unknown parameters

associated with the model are inferred with a standard Bayesian framework.
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This approach suggests that an evaluation of the U-value could be possible within

3 days of monitored data but, as it will be shown in the following chapters it does

not offer an accurate characterisation of the uncertainty surrounding the heat flux

predictions, due to the coarse approximation of the heat diffusion equation provided

by the RC model with a single capacity (corresponding to the discretisation of the

heat equation in three points).

Gori et al. [73], compared the performance of an RC Network with a single thermal

mass to the performance of a model with two capacitors. Both models have been

implemented within a Bayesian framework, using measured surface temperatures as

boundary conditions and internal and external surface heat flux predictions as outputs

(measurements of the heat flux at both surfaces were available for comparison with

the model outputs).

The authors found that both methods provide an evaluation of the U-values within

the expected margins but the estimates of the thermal mass are lower than the esti-

mates obtained from literature values based on the expected wall structure. Further-

more, the authors demonstrate that the model with a single thermal mass is not able

to accurately predict the internal and external surface heat fluxes simultaneously,

while this is possible for the model with two capacitors.

These findings suggest that increasing the number of capacitors in an RC network

might provide a better characterisation of the heat transfer process through the wall,

ultimately leading to improved models of energy transfer through the building fabric.
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In the work published by Berger et al [74], the authors used a Metropolis-Hasings

Markov Chain Monte Carlo (MCMC) algorithm for the investigation of the thermal

properties of a three layered building wall, using surface temperatures and inner

structure temperature measurements. In this case, the model adopted was the 1D

heat equation discretised in 6 nodes.

Wang et Zabaras in [75] discuss the solution of two inverse heat conduction prob-

lems through a Bayesian inference approach, aiming to reconstruct the unknown heat

flux on part of the boundary from temperature measurements. The authors show that

the Bayesian approach is effective in producing smoother inverse solutions when com-

pared to deterministic approaches and it is able to provide quantification of system

uncertainties.

Orlande, [76], proposes a review of the current mathematical approaches to the

solution of the inverse heat transfer problems, reviewing both classical techniques

based on the minimisation of an objective function and techniques based on Bayesian

framework that make use of sampling methods.

In contrast to deterministic approaches, such as the Gauss Newton method and

Down hill simplex method, probabilistic approaches such as Bayesian inference pro-

vide a statistical framework that enables the quantification of uncertainty in the

inferred parameters, thanks to the formulation of the problem in terms of probability

distributions. As mentioned in the previous section, the quantification of uncertainty

associated with the determination of U-value is still an open issue in the context of

the built environment that is fundamental to overcome due to the impact of U-value

on the prediction of building energy performance.
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1.6 Contributions of this work

The literature reviewed shows that the heat transfer inverse problems are of growing

interest and, thanks to the increased computational power available to researchers,

sampling methods such as Markov Chain Monte Carlo are increasingly more common.

In this framework, the research carried out during this study, aims to extend the

flexibility of the RC networks presented in the previous section. In order to avoid

the limitations deriving from discretising the heat equation across only 2 or 3 nodes.

A continuous model was developed as an alternative so that, in principle, the same

tool can be applied to different types of walls without the necessity of modifying its

governing equations.

Besides the achievement of a “universal” tool applicable to diverse building el-

ements, the solution of the heat equation with continuous thermal properties will

provide a better characterisation of the heat transfer problem, thus providing a solid

basis for the improvement of whole building simulations.

It has been shown that RC Networks could be capable to infer the thermal trans-

mittance within three days of experimental measurements [72]. The present work

aims to expand from this result and individuate the shortest time window over which

the inference of thermal properties is possible, thus providing an important improve-

ment over the current in situ measurement practice.
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Finally, this study aims to obtain a full characterisation of the uncertainty sur-

rounding the measurement of the U-value as well as a quantification of the impact

that this uncertainty has on the final energy consumption predictions made by current

modelling tools. As mentioned in the previous section, a probabilistic approach, such

as Bayesian inference, offers the framework necessary to the uncertainty evaluation,

therefore this will be the structure adopted for the parameter optimisation.

In order to achieve the goals proposed, several alterations to the approaches found

in literature have to be carried out.

The choice of modelling the thermal properties as continuous functions gives rise,

upon discretisation, to a large number of parameters to be inferred. This cannot

be carried out in the classical Bayesian framework, as it generates instabilities and

convergence problems.

For instance, considering a fine discretisation grid where the wall thermal prop-

erties are discretised in 100 nodes, will give rise to 200 unknown parameters (100 for

the discretisation of the thermal conductivity and 100 for the discretisation of the

volumetric heat capacity). In the case of a simple RC network with 1 capacitor and

2 resistances the number of parameters to be inferred is 4 (2 resistances, 1 capacity

and the initial internal temperature), 50 times smaller.

Furthermore, as the thermal properties are assumed to be spatially varying across

the wall thickness, the parameters to be inferred cannot be totally independent but

are subject to correlation i.e. it is expected that in a (supposedly) homogeneous

layer, the thermal conductivity and volumetric heat capacity vary slowly and that
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the thermal properties of a node do not differ dramatically from its neighbours.

In other words, the problem corresponds to choosing functions with a suitable

“profile” across the wall thickness rather than choosing independent scalars.

To overcome this issue there was the need to resort to new sampling techniques

that extend the classic Bayesian framework to the case where it is required to sample

from a high dimensional domain. The details of this mathematical framework are

described in the following chapter.

Still, the large amount of parameters inferred allows for an accurate exploration

of the initial domain, thus providing a reliable method to characterise the uncertainty

on the parameters obtained. This will be discussed in Chapters 4 and 5, where the

results obtained with the model researched are presented.

The exploration of the domain is done by constructing a Markov Chain Monte

Carlo (MCMC). This can be seen as a succession of draws that will eventually con-

verge to samples of the posterior probability distribution sought. The advantage of

using MCMC methods is that, by construction, the chain is converging to the correct

distribution, but, as a drawback, this system is computationally expensive due to the

large number of iterations required to ascertain that the chain has converged.

Chapter 6 presents a possible answer to avoid this issue, by reformulating the

problem using more efficient methodologies for the characterisation of the posterior
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probability. The solution proposed in this study is a novel implementation of Ensem-

ble Kalman filters as explained by Iglesias et al. [77]. Ensemble Kalman filters have

already been used in the context of inverse heat transfer problems, [76], but have not

yet been applied to the specific field of U-value inference. Ensemble Kalman filters,

as opposed to Markov Chain Monte Carlo, are an approximation technique that rep-

resents a probability distribution with a finite number of samples. The advantage

of this method is that it will reduce the number of iterations necessary to charac-

terise the posterior distribution, thus reducing the computational costs attached to

the MCMC method.

The implementation of the Ensemble Kalman filter for the inference of the U-value

from heat flux and temperature measurements is illustrated in chapter 6 (paragraph

6.1).
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Chapter 2

Mathematical Background

In this chapter, a detailed description of the physical models adopted to analyse data

from heat transfer measures is given in section 2.1, followed by a thorough explanation

of the mathematical tools that have been employed to elaborate the experimental

data, section 2.2. In section 2.4, the Single Thermal Mass (STM) model is presented

and its implementation within this research project, for providing data for comparison

with the available literature, is described.

2.1 Heat conduction equation

Consider the situation of one dimensional heat transfer across a wall, and denote

the direction where the heat transfer occurs by x. Assuming that the wall thickness

is denoted by L, let x = 0 and x = L correspond to the internal and external

surfaces, respectively. Assuming that there are no internal sources/sinks of heat, the

temperature distribution within the wall, denoted by T (x, t) (x ∈ [0, L]), on a given
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time window (0, tf ] is the solution of the heat equation

c(x)
∂T

∂t
=

∂

∂x

[
κ(x)

∂T

∂x

]
, (x, t) ∈ [0, L]× (0, tf ] (2.1)

where κ(x) [W/m2] is the thermal conductivity of the wall c(x) [J/m3K] and the heat

capacity per unit of volume at each point within the wall (i.e. x ∈ [0, L]). Equation

(2.1) is supplied with the following initial condition

T (x, 0) = I(x), x ∈ [0, L] (2.2)

where I(x) is the initial temperature inside the wall. In addition, there is the need

to specify appropriate boundary conditions, that, in the case of fixed temperature

boundary conditions can be specified as Equations 2.3 - 2.4

T (0, t) = Tint(t) x ∈ [0, tf ] (2.3)

T (L, t) = Text(t), x ∈ [0, tf ] (2.4)

In the previous expressions, Tint(t) and Text(t) represent internal and external

surface temperature measurements at every time t. The heat flux at the internal and

external surfaces of the wall is given by the Fourier equation:

qint(t) = −
[
κ(x)

∂T

∂x

]∣∣∣∣∣
x=0

, qext(t) = −
[
κ(x)

∂T

∂x

]∣∣∣∣∣
x=L

(2.5)

And the conductance and heat capacity can be calculated from the values of κ(x)

60



Chapter 2. Mathematical Background 2.1. Heat conduction equation

and c(x) via equation (2.6):

K =

[∫ L

0

1

κ(x)
dx

]−1
[W/m2K], C =

∫ L

0

c(x)dx [J/m2K] (2.6)

Note, from expressions (2.1)-(2.5), that the heat transfer model has the following

set of parameters: (Tint(t), Text(t), κ(x), c(x), I(x)). As Tint(t), Text(t) are observed

measurements, once k(x), c(x) and I(x) are inferred, the U-value, as well as the heat

capacity per unit area (or thermal capacity,) can be calculated in terms of κ(x) and

c(x) via equations 2.6. As the surface measurements are considered, and according

to what specified in Annex F of the ISO 9869:2014, [48], it is reasonable to assume

that the initial temperature can be approximated as linear interpolation between the

two surface temperatures, equation (2.7). Therefore the only unknown parameters in

the problem described by equations (2.1)-(2.5) are the thermal conductivity k(x) and

the volumetric heat capacity c(x).

T (x, 0) = Text(0) +
(L− x)

L
(Tint(0)− Text(0)), x ∈ [0, L] (2.7)

Equations (2.1)-(2.5), define a simple Heat Diffusion Model and, for brevity, they will

be referred to as HDM in the remainder of this thesis. A diagram sketching the HDM,

with notional values for the distribution of κ(x) and c(x) through the wall thickness,

is displayed in figure 2.1.1
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heat flux and 
surface 
temperature

Air temperature 
sensor

x (thickness,[m])

k(x)

I (x)

c(x)

T_extT_int 𝑐(𝑥) 𝜕𝑇𝜕𝑡 = 𝜕𝑇
𝜕𝑥 𝑘(𝑥) 𝜕𝑇𝜕𝑥

Figure 2.1.1: Diagram showing the setup of the HDM

2.1.1 Problem notation

The mathematical models detailed above, constitute a map that associates to the

thermal properties of the building materials, the prediction of the heat flux profile at

different times. In practice, the prediction times correspond to the sequence of mea-

surement times at which the heat flux is observed. it is assumed that measurements

of heat flux will be available at 2N time steps denoted by (t1, t2, ..., t2N).

In the rest of this manuscript, the set of the unknown thermal properties charac-

terising the models will be referred to as u(x) and corresponds to

u(x) = (κ(x), c(x)) (2.8)

The data sample will be divided in to parts: the first part t1, t2, · · · , tN will be used

for the calculation of the unknowns, κ(x) and c(x). In this context, the map that
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associates to every unknown u, the sequence of heat flux predictions will be called

G(u). This will correspond to

G(u) = (Gint(u),Gext(u)) (2.9)

where

Gint = (qint(t1), qint(t2), ..., qint(tN)), Gext = (qext(t1), qext(t2), ..., qext(tN)) (2.10)

The second part of the data sample, tN+1, tN+2, · · · , t2N will be used for validation.

In this time window, the heat flux predictions obtained from the model described

in the previous section, using the inferred values of κ(x) and c(x), will be compared

against the real data. In this context, the map associating the heat flux predictions

to the inferred thermal properties will be called Ĝ(u) and is denoted by

Ĝ(u) = (Ĝint, Ĝext) (2.11)

where

Ĝint = (qint(tN+1), · · · , qint(t2N)), Ĝext = (qext(tN+1), · · · , qext(t2N)) (2.12)

A summary of the model notation is presented in figure 2.1.2
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Inference window Verification window

t1

Uses initial N data 
points to calculate

u(x) = ((x), c(x), I(x))

u(x)Uses to predict

the flux for the remaining N 
data points

t2NtN

G(u) = (qint(t1), qint(t2), ..., qint(tN )) Ĝ(u) = (qint(tN+1), · · · , qint(t2N ))

Figure 2.1.2: Diagram summarising the problem notation

2.1.1.1 Convective boundary conditions

In case of modelling the heat equation (2.1) with nearby air temperature measure-

ments denoted by T airint (t) and T airext (t), the boundary condition equations have to be

substituted by (2.13) -(2.14):

−
[
κ(x)

∂T (x, t)

∂x

]∣∣∣∣∣
x=0

= −hint[T (0, t)− T airint (t)] t ∈ [0, tf ] (2.13)

−
[
κ(x)

∂T (x, t)

∂x

]∣∣∣∣∣
x=L

= −hext[T airext (t)− T (L, t)], t ∈ [0, tf ] (2.14)

where hint and hext are the combined convection and radiation heat transfer coeffi-

cients of the internal and external surfaces, respectively. In this case, in accordance

to what is specified in CIBSE guide A,[8] it is assumed that

1

hint
= 0.13 [m2K/W ]

1

hext
= 0.04 [m2K/W ] (2.15)
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In a manner similar to the previous case, the heat flux can be obtained by the Fourier

equation (2.16):

qint(t) = −
[
κ(x)

∂T (x, t)

∂x

]∣∣∣∣∣
x=0

(2.16)

In contrast to the previous section where the internal temperature is known on the

surface of the wall, in this case it is not appropriate to assume that the internal

temperature is an interpolation between the nearby air temperatures, therefore I(x)

is an additional unknown in the problem considered. In a similar fashion to equation

(2.6), once κ(x), c(x), I(x)) are inferred, the thermal transmittance and wall resistance

can be calculated via (2.17).

U =

[
h−1int + h−1ext +

∫ L

0

1

κ(x)
dx

]−1
, C =

∫ L

0

c(x)dx, (2.17)

The rest of the problem notation will be modified accordingly to include the initial

temperature amongst the unknown variables:

u(x) = (κ(x), c(x), I(x), hint, hext) (2.18)

The forward maps denoted by G(u) and Ĝ(u) will correspond to

G(u) = (qint(t1), qint(t2), ..., qint(tN)) (2.19)
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and

Ĝ(u) = (qint(tN+1), · · · , qint(t2N)) (2.20)

2.2 The Bayesian framework

This section provides a description of the mathematical framework adopted in this

research that enabled the implementation of the heat transfer model described in

subsection 2.1. The algorithm is based on Bayesian inference, and the problem con-

sidered here is treated as an inverse problem.

An inverse problem refers to the calculation, from a set of observations, of the

causal factors that produced them. A simple example of an inverse problem is the

calculation of a car speed from its breaking distance. These problems are called in-

verse problems because they start from the results (i.e. the breaking distance) and

try to infer the causes that led to such results (i.e. the car speed). These problems

are the inverse of the forward problems, which proceed from the causes to the results

[78].

Within this framework, the heat transfer process can be seen as an inverse prob-

lem where the heat flux is the consequence of the particular thermal properties of the

wall considered under prescribed temperature conditions.

The problem of determining the thermal properties from heat flux measurements
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was approached with a Bayesian inference scheme. Bayesian inference is a branch

of probability that finds application in different subjects, often unusual for classical

statistics, due to its ability to redefine the probability of a hypothesis once some sort

of evidence is given, whereas this is not so common for other statistical approaches

[79].

Bayesian inference is used to combine prior experience about an event with ob-

served data to generate a posterior probability distribution that can then be inter-

preted [80].

Prior and posterior are linked by the likelihood. In common speech, likelihood

and probability are considered synonyms, but in statistical context, in particular

when solving an inverse problem, they refer to two different things. Probability is

used to indicate the possible future outcomes of a result, before any observations

are available, under determined hypothesises. Likelihood, instead, is used to indicate

the “credibility” of an hypothesis once experimental observations of the results are

available.

2.2.1 Problem Notation

Applying intuitively the framework described above to the heat transfer problem, the

prior probability is a distribution that summarises all the a priori knowledge regarding

the wall under observation: possible ranges of thermal conductivity and volumetric

heat capacity, (for this study the ranges assumed are those found in literature), and

initial temperature that in this work has been assumed similar to the possible range of
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initial temperatures specified in Annex F of ISO9869:2014 [48]. The prior is indicated

by P(u).

The posterior probability is the result of the inference process: it is a distribution

that describes the most probable values of u, (the thermal properties of the wall),

given the data collected [81]. The posterior is denoted by P(u|y).

The likelihood is denoted by P(y|u) and in this problem it represents the proba-

bility of the observed data y given a particular realisation of the unknown parameter

u [81].

In the case considered, it is assumed that the data (y) are corrupted by Gaussian

random noise (η) and are related to the model described in subsection 2.1 by equation

2.21.

y = G(u) + η, η ∼ N(0,Γ) (2.21)

As η is normally distributed with mean zero and variance Γ, it gives rise to a Gaussian

likelihood given by

P(y|u) ∝ exp(−φ(y, u)) (2.22)

where φ(y, u) represents the residuals between the model output and the data mea-

68



Chapter 2. Mathematical Background 2.2. The Bayesian framework

sured

φ(y, u) =
[
− 1

2
‖Γ−1/2(y − G(u))‖2

]
(2.23)

and ‖‖ refers to the euclidean norm between y and G(u). The prior and posterior

distributions and the likelihood are related via the Bayes’ rule:

P(u|y) =
1

P(y)
P(y|u)P(u) (2.24)

From equation 2.24 it can be seen that the posterior P(u|y) is known up to the normal-

isation constant P(y), as the likelihood and the prior can be defined mathematically

as explained in the paragraph above and further detailed in section 2.2.2. P(y) is

a normalisation constant, guaranteeing that the integral of the posterior probability

over the whole event space equals one. From equation (2.24), it can be seen that

P(y) =

∫
P(y|u)P(u)du (2.25)

but, as the likelihood is defined in (2.22) - (2.23), this integral cannot be computed

as in the case considered here, u is a function and, upon discretisation, it will re-

quire that the likelihood is integrated over a high dimensional space. This implies

that the posterior P(u|y) needs to be approximated by sampling methods such as the

Markov Chain Monte Carlo (MCMC), since it cannot be represented in a closed form.

Values for u are proposed randomly and are accepted directly when they minimise

equation (2.23). After an initial burn in period, the accepted values form a reliable
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sample of the posterior distribution, from which we can compute mean values E(u)

and standard deviations V(u). Figure 2.2.1 summarises the algorithm followed for

the inference process.

Figure 2.2.1: Flowchart summarising the inference scheme

It is important to note that the standard finite-dimensional Bayesian formalism

that leads to expression (2.24) does not apply in the case considered since, as it can

be seen from equations (2.1) -(2.6), the thermal properties are continuous functions

varying across the wall thickness and not scalars. Still, it is applicable in the case

of an RC Network with a small number of resistors and capacitors as described in

section 2.4.
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In practice, the heat conduction model (2.1)-(2.6) is discretized and so u(x) results

in a finite dimensional vector that contains nodal values of κ(x), c(x) and I(x) (in the

case of the model with convective boundary conditions). However, discretising gives

rise to a posterior distribution P(u|y) defined on a high dimensional space, leading to

stability problems in the scheme considered. The aforementioned issue is overcome

by adopting the functional analytical Bayesian framework for inverse problems in-

troduced in [82]. This framework provides a rigorous mathematical interpretation of

expression (2.24) in the case where the unknown u is a function. Moreover, within

this framework it is possible to use a state-of-the-art MCMC algorithm that has been

recently developed to sample posteriors defined on functional spaces [82]. The main

advantage of this method is that, upon discretisation, their efficiency is independent

of the dimension of the discretisation of u(x). A thorough review of the Bayesian

framework for functions and the corresponding MCMC methods can be found in

[82, 80]

In subsection 2.2.2, a detailed mathematical description of the definition of the

prior distribution and sampling algorithm adopted is given. In subsection 2.3 the

details of the numerical scheme implemented to solve equation (2.1) is explained.

2.2.2 Mathematical description of the Prior distributions

In this section the prior distribution P(u) for the unknown u(x) = (κ(x), c(x)) is

defined. The objective is to define priors that provide enough variability to reflect
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the lack of prior knowledge of the values assumed by κ(x) and c(x). First the priors

for each of the components of u(x) are defined. For the prior of κ(x) a lognormal

Gaussian distribution is considered. More precisely, it is assumed that

κ(x) = κ0 exp(ψκ(x)) (2.26)

where κ0 is a positive constants and ψk is a Gaussian random field with zero mean and

correlation function Ck. It must be stated here, that the choice of prior modelling dis-

tributions is arbitrary, as the investigation of the literature provided only an interval

of plausible values suitable to describe κ(x) and c(x), rather than a description of how

these values are distributed. The selection of lognormal distributions ensures that the

function κ(x) is always positive. Biddulph et al. in [72] adopted uniform distributions

as priors for the thermal properties. Both approaches are equally acceptable, as the

“real” or “true” distribution of κ(x) and c(x) is not known.

The specification of the prior covariance function has an important effect on the

regularity of the functions characterised by the prior. As mentioned in the previ-

ous section, appropriate specification of the prior covariance form is important to

help guaranteeing the physical representation of the thermal properties (i.e. ensuring

that the thermal properties vary smoothly, without presenting abrupt changes be-

tween neighbouring nodes). For the present work, a Mattern correlation function is

considered given by:

Ck(x) = σ2
k

(
1 +
√

3
|x|
λk

)
exp

(
−
√

3
|x|
λk

)
(2.27)
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where the constants σ2
k and λk are the variance and the correlation length of the

Gaussian random field ψk. The correlation length, λk represents the characteristic

length of the material. It reflects the distance up to which the values of the resistivity

have a high correlation with each other. This implies that the change in conductivity

for points close to each other will be smaller than for points further apart. In equation

(2.27) this is modelled with a decaying exponential. From (2.26)-(2.27) it follows, [77],

that the resulting log-normal prior distribution of κ has constant mean and constant

variance given by

E(κ) = κ0 exp

(
1

2
σ2
k

)
, V(κ) = κ20 exp(σ2

k)(exp(σ2
k)− 1) (2.28)

In a similar fashion, an analogous log-normal distribution with mean c and variance

σc is defined for the prior of the unknown function c(x). Figure 2.2.2 shows some

samples drawn from the prior distributions of the thermal conductivity and volumetric

heat capacity for different values of the correlation distance. From the three panels

presented, it can be seen that for larger correlation lengths, the samples generated

are smoother.

Assuming that the variables κ and c are independent, the prior on the joint variable

u(x) is then

P(u) = P(κ, c) ≡ κ0 exp(N(0, Ĉκ))× c0 exp(N(0, Ĉc)) (2.29)

where Ĉκ, Ĉc and ĈI are covariance operators that arise from the selection of our
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Samples from the prior of κ for different correlation lengths
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Figure 2.2.2: Samples from the priors of thermal conductivity with different corre-
lation lengths. The x axis represents the discretisation elements across the domain
thickness, the y axis represents the value of the thermal conductivity κ(x)

.

correlation functions Cr, Cc and CI respectively. The prior mean and prior variance

on the joint variable u are then given by

E(u) = (E(κ),E(c)), V(u) = (V(κ),V(c)) (2.30)

To better understand the the prior distributions described above in mathematical

terms, the following figures illustrate some of the concepts expressed in the previous

paragraphs. In Figure 2.2.3 the mean and the standard deviation of the prior dis-

tribution of k(x) and c(x) are shown; it can be seen that these values are constant,

in agreement with equation (2.28). The uncertainty band of two standard deviations

around the prior mean for each of the components of the unknown u are displayed.

The left panel of this figure, for example, shows the prior mean E(κ) alongside with
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the plots of E(κ) + [V(κ)]1/2 and E(κ)− [V(κ)]1/2.

Figure 2.2.4, displays 100 random samples from the prior for each of the compo-

nents of u(x). Even if, for the selection of the prior for κ and c, both the prior mean

and variance are constant functions (see expression (2.28) and figure 2.2.3), samples

of these prior distributions display a significant variability as a function of the wall

thickness, (showing diverse possible “profiles” of how the thermal properties may

vary through the wall thickness), thus incorporating a significant amount of variabil-

ity within the wall. The aim is to reduce such variability by means of conditioning

the prior to heat flux measurements.
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Figure 2.2.3: Mean and mean ± standard deviations of (from left to right)of κ(x)
and c(x) for the prior. The figures refer to the analysis of the data collected in an
environmental chamber (discussed in the next chapters) and are used here to illustrate
the concepts explained in this section.
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Figure 2.2.4: Left: samples from the prior of κ(x), right: samples from the prior
of c(x). The figures refer to the analysis of the data collected in an environmental
chamber (discussed in the next chapters) and are used here to illustrate the concepts
explained in this section.

2.2.2.1 Prior samples and Sampling algorithms

Drawing random numbers from a normal or uniform distribution is an easy and

established practice and many routine functions such as randn(n) or rand(n) are

available in nearly all software programming packages.

In the case considered here, there is the necessity to generate a random sample

for a function that is normally distributed with covariance C. This is not a common

procedure and there are no library functions available to perform the task requested.

For the present work, random samples from the prior can be produced by means

of Karhunen-Loeve expansion. This section introduces the algorithm implemented,

and more detailed technical descriptions of the generation of Gaussian (or log-normal)

random functions with a specified mean and correlation function can be found in [82].

Suppose that, as in the case of the thermal conductivity, the function κ(x) depends
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on a particular realisation of the Gaussian random field ψκ with mean zero and

correlation Cκ, (equations (2.26)-(2.27)). From the correlation function, equation

(2.27), the covariance matrix C can be constructed depending on the variance and

correlation length of the Gaussian random field. If the covariance matrix C can be

decomposed as

C = V DV T , (2.31)

then a random realisation ν of the Gaussian random field ψκ can be constructed from

the decomposition of the covariance matrix C

ν = V
√
Dξk (2.32)

Here ξk is a random vector drawn from a normal distribution N(0,1), V in the matrix

containing the eigenvectors of the covariance matrix, and D is the diagonal matrix

containing the eigenvalues of the covariance matrix.

To carry out the simulations in the Bayesian framework described in section 2.2,

several sampling schemes have been adopted. This section offers a brief description

of the algorithms employed: Markov Chain Monte Carlo (MCMC) and Metropolis

within Gibbs. The algorithm described above for drawing proposals from the priors

was integrated in the sampling schemes as illustrated in the flowchart in figure 2.2.5.

Markov Chain Monte Carlo, MCMC

77



2.2. The Bayesian framework Chapter 2. Mathematical Background

A Markov Chain is a stochastic process where, given the present state, past and

future states are independent [83]. An example of a Markov Chain sequence is the

succession of steps of a random walk. In the case of the random walk, a particle

can move left or right on a line with equal probability, independently of the pre-

vious steps. Markov Chains are used to build a sequence of random draws with a

prescribed transition probability P . Under certain conditions, it can be shown that,

for a large number of steps, a Markov chain will approach a stationary distribution,

or equilibrium distribution [83] denoted by π(x). Once the stationary distribution

has been reached, the chain retains this distribution for all the subsequent stages[83].

Stationary distributions have finite variance and constant mean.

A Markov Chain Monte Carlo is a sampling algorithm that exploits this property:

the aim is to design a Markov Chain that has the desired equilibrium distribution.

After an initial number of steps, called burn in period, the MCMC outcomes are

samples of the desired distribution, in the case considered here, this is the posterior

distribution of the thermal properties of the wall under consideration.

The MCMC presents some limitations and leaves some open questions, such as

“How many iterations are necessary to explore the posterior appropriately?” or “How

is it possible to determine whether convergence has been reached?”, “Are the sam-

ples chosen an appropriate representation of the posterior?”. These problems are

addressed by convergence diagnostics procedures. Convergence diagnostics is a wide

branch of research and a thorough review of MCMC convergence diagnostics has been

presented in [84]. Ultimately, convergence diagnostics cannot indicate whether the
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chain has converged but can clearly demonstrate if it has not.

For the purpose of the work carried out for this PhD research, convergence of

the chain has been assumed after 106 iterations. The strategy employed to verify

the convergence was the monitoring of the decay of residuals (2.33) as the iterations

increased: if the residuals stabilise on a constant value, it is assumed that the chain

has converged and the samples drawn after residual stabilisation are samples from

the target distribution.

|y − G(uj)|2 (2.33)

The appropriate characterisation of the posterior distribution is assessed by means

of trace plots. Trace plots are constructed by plotting the value of the sample draw

versus the iteration number. If the samples explore accurately the posterior distri-

bution (often referred to as the mixing of the chain), trace plots will tend towards

a constant mean and variance (i.e. it will resemble white noise) [84]. In the work

considered here, the trace plots given by the values of the thermal conductance and

heat capacity are considered to assess convergence. The assessment of the trace plots

is done visually and no further mathematical calculations are employed.

Metropolis within Gibbs

Metropolis within Gibbs indicates an algorithm to propose new samples. It stems

from the combination of the Gibbs scheme and the Metropolis-Hastings scheme. The

Gibbs algorithm can be applied when the unknown sought can be divided into com-

ponents and the distribution of the individual components are available. This is the
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example considered in this research, the unknown u(x) comprises two components

(κ(x), c(x)) and, as mentioned in section 2.2 and detailed further in 2.2.2, each com-

ponent is drawn from a separate distribution. The Gibbs sampler allows a single

component to be updated, for instance the thermal conductivity κ(x), while fixing

the remaining variables. Once the first component has been updated, the algorithm

proceeds to updating the remaining parameters, using the latest values of the previ-

ous components.

The Metropolis-Hastings scheme is an algorithm to design a Markov chain that

converges to a desired stationary distribution, π(x). The scheme involves design-

ing a symmetric transition probability from a given state x to a new state y, i.e.

P (x|y)π(y) = P (y|x)π(x). This takes place in two sub-steps: the proposal step and

the acceptance/rejection step. Suppose that the chain is the state x. A new state

y is proposed from a chosen proposal distribution r(y|x) and accepted with a prob-

ability α(y|x) so that P (y|x) = r(y|x)α(y|x), and similarly P (x|y) = r(x|y)α(x|y) .

Inserting theses expressions in the above transition probability yields the following

expression:

r(y|x)α(y|x)π(x) = r(x|y)α(x|y)π(y) (2.34)

The probability α is chosen to favour transitions to more probable states: if the

number of moves from x to y doesn’t have to be reduced, α(y|x) = 1 and similarly

α(x|y) = 1 if the number of transitions from y to x does not have to be reduced.

In the case where the number of transitions from x to y needs to be reduced then,
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α(y|x) = 1 as the transitions from y to x do not need to be reduced, and α(y|x)

is chosen as r(x|y)π(y)
r(y|x)π(x) . A similar argument can be made for α(x|y). In this way the

general formula for α is [79]:

α(y|x) = min

[
r(x|y)π(y)

r(y|x)π(x)
, 1

]
(2.35)

In practice, the Metropolis-Hastings scheme can be summarised as follows [79]:

1. Propose a candidate y from r(y|x)

2. Calculate

α(y|x) = min

[
r(x|y)π(y)

r(y|x)π(x)
, 1

]
(2.36)

3. Generate a random number v U(0, 1) from a uniform distribution on (0, 1)

4. If v 6 α(y|x), y becomes the next element in the chain, otherwise retain the

previous state x.

In the case considered in this work the proposal distribution r(y|x) is chosen as

equation (2.37) and the acceptance distribution is equation (2.38)

r(y|x) =
√

1− β2x+ βξ (2.37)

α(y|x) = exp

[
1

2
(φ(x)− φ(y))

]
(2.38)

In equation (2.37), x is the current state of the chain and ξ is a random draw from

the prior distribution, obtained following the procedure described an the beginning
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of this section and β is a positive value, 0 ≤ β ≤ 1 that determines the acceptance

rate of the new proposals.

In equation (2.38) the function φ is the residual function denoted by equation

(2.23).

Looking at equation (2.37), it can be seen that if β = 0, then the new proposal

is identical to the current state, and the chain does not evolve. If β = 1, the new

proposal is just a random sample from the prior, thus making it more difficult for the

chain to converge. In the work produced, β has been calibrated to maintain a healthy

acceptance rate of the new proposals of approximately 30% [77].

A direct consequence of generating new samples via equation (2.37), is the correla-

tion of nearby samples. This means that a set of outcomes close to each other do not

reflect the correct target distribution. In order to obtain a set of samples representa-

tive of the target distribution, it is necessary to select outcomes that are sufficiently

apart for each other to be considered uncorrelated. Such minimum distance is given

by the sample’s autocorrelation. This is further discussed in chapter 4, where the

MCMC results obtained are presented and analysed. A copy of the MCMC scheme

used for the data analysis described in chapters 4 and 5 is included in appendix A.
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Figure 2.2.5: Flowchart detailing the sampling schemes structure adopted in the
calculations

2.3 Numerical scheme

This section describes how the model presented in sections 2.1, 2.2 and 2.2 was im-

plemented numerically. All the simulations were carried out using MATLAB. For the

present example the domain (thickness of the wall) was discretized with 102 nodes

and cell-centred finite differences. This gives rise to the discretised heat equation
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form (2.39):

T i+1
m−1 − 2T i+1

m + T i+1
m+1 =

c∆x2

κ∆t
(T i+1

m − T i+1
m ) (2.39)

where m represents the mth spatial element, the script i the time step taken in con-

sideration, ∆x is the spatial element and ∆t the time step.

2.4 Single Thermal Mass model

The Single Thermal Mass model, from hereon defined STM, was named so by Bid-

dulph et al. [72]. It represents an RC network model with two resistors and one

capacitor, as sketched in Figure 2.4, with a single internal temperature node T imass.

Internal 
Environment

R2 R1
Tmass

C

Text
Tint

Internal heat 
flux meter

External air 
temperature

Internal air 
temperature

External 
Environment

Building 
Element

Figure 2.4.1: RC network and measurement configuration.

The discretised equation that describe the STM is

C
T i+1
mass − T imass

∆t
=
T i+1
int − T i+1

mass

R1

+
T i+1
ext − T i+1

mass

R2

(2.40)
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where C is the heat capacity per unit of area (or thermal mass per unit of area), ∆t

is the time step and R1 and R2 are the resistances per unit of area for the first and

second cell of the discretized domain. T nint and T next corresponds to the internal and

external temperatures. Note that for this model, the unknown/uncertain parameters

are represented by 4 scalar values:

u = (R1, R2, T
0
mass, C) (2.41)

If u is known T nmass can be computed via (2.21) and then heat fluxes can be obtained

using

qnint =
T nint − T nmass

R1

, qnext =
T nmass − T next

R2

(2.42)

Thus, for the STM model, the forward map is given in terms of the following expres-

sion

GSTM(u) = (q1int, · · · , qnint, q1ext, · · · , qnext) (2.43)

Similar to the previous subsection, the inverse problem is to find u given noisy mea-

surements of GSTM(u). Note that once u is obtained, the thermal mass C is automat-

ically known, while the resistance can be simply computed by means of R = R1 +R2

and then the U-value by finding the reciprocal of the resistance, U = 1/R. Also in
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this case, it was assumed that the data y and the unknown u are related by means of

y = GSTM(u) + η η ∼ N(0,Γ) (2.44)

where η, as before, is random noise and GSTM is the forward map defined by the

STM model from 2.40. Note that, in this case, u is a four dimensional vector rather

than a function, thus the computational problem arising from the need to compute

a large number of variables does not occur. This means that the priors describing

u = (R1, R2, C, T
0
mass) are represented by probability distributions on real intervals,

rather than by functional spaces. This implies that the sampling of the priors can be

performed using routine functions that generate random numbers such as randn.

The posterior is P(u|y) is characterised by conditioning the unknown parameter

u = (R1, R2, C, T
0
mass) to heat flux observations. This means that a new sample for

u = (R1, R2, T
0
mass, C) is accepted if it reduces the residuals between the model output

(2.42) and the heat flux data measured.
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Chapter 3

Experimental data collection

This chapter describes the method followed to collect the data necessary for the

validation of the HDM. Three sets of data were collected: one set was collected under

laboratory conditions in an environmental chamber (§3.2) available at the University

of Nottingham Innovation Park, one set was collected in a unoccupied solid walled

house (§3.3) and the last set in an inhabited office space (§3.4). For each study, details

of the construction and the experimental procedure is given.

In addition, the model was tested on a data set collected by BSRIA. This dataset

was previously employed by Biddulph et al, [72] to validate their RC network model

with a single capacitor. Their data are used here to trial the proposed model against

already published results that have been subject to an independent process of valida-

tion.
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3.1 Methodology

The method adopted in this research for the verification and validation of the model

was to utilise data collected in different environments, where the researcher has dif-

ferent levels of control on the experimental setup.

The data set collected in the environmental chamber offers ideal conditions for the

verification of the model, as the chamber allows to control the temperature profiles

of the internal and external environment and to exclude random effects dictated by

the weather conditions, thus outside the researcher’s control, such as solar radiation

and wind. In other words, in the environmental chamber it is possible to collect a set

of experimental data in a setting as close as possible to the physical model described

by equations (2.1) - (2.5).

In a second moment four other datasets have been collected in locations that offer

only the possibility of a partially controlled environment. These sets were necessary

for the validation of the model and to assess whether the model proposed is able to

reach the targets outlined in the aims and objectives in a realistic scenario, where the

researcher cannot exclude the influence of unexpected weather changes.

In the data collection, different wall constructions have been monitored, as one of

the aims of the model proposed is to be able to characterise different constructions

without prior knowledge of the construction details.
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3.2 Environmental chamber tests

Due to the nature of the problems investigated in the built environment, often fo-

cussing on the behaviour of building elements or whole building assessment, experi-

mental campaigns are often conducted in real buildings and thus affected by weather

dependent phenomena like wind, sunshine and rain. The purpose of conducting tests

in an environmental chamber, is to collect data from a controlled environment, thus

excluding the influence of parameters outside the researcher’s control that could affect

the experimental observations.

Environmental chambers permit the control of parameters affecting the perfor-

mance of building elements (temperature difference, relative humidity, radiation) and

therefore offer an ideal scenario to test the behaviour of specific construction materi-

als.

The aim of the tests carried out in this environment were to study the behaviour

of solid wall and cavity wall construction (two extremely common building construc-

tions) under ideal conditions, thus producing a data set as close as possible to the

theoretical heat transfer model described in the previous chapter.

Two different tests were carried out with this setup: one simulating steady state

conditions and one replicating “real” temperature conditions. In the latter, the exter-

nal temperature profile was modelled on data collected from a local weather station

and the internal temperature was maintained constant.
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3.2.1 Environmental chamber preparation

The chamber available in Nottingham University is composed of two rooms separated

by a partition wall, with one room able to slide on a set of rails in order to modify

the composition of the partition wall, as indicated in Figure 3.2.1. The internal di-

mensions of the two rooms were 3.70 x 3.50 on plan with a height of 2.38m.

The partition wall was divided in two parts: the upper part comprised a timber

frame lined with mounted plasterboard, the lower part comprised four sections of

brickwork: three of a solid wall construction and one of cavity wall construction.

Figures 3.2.2-3.2.4 show the wall sections monitored and the measuring equipment

used.

The timber frame was filled with three layers of 7cm thick phenolic foam board

insulation. In order to encourage unidirectional heat flow through the individual sam-

ples of brick wall, each was thermally isolated from its neighbour and the chamber

using a 20 cm layer of insulation.

The face dimensions of each brick wall sample were 970x600x210 mm and each

section was separated from its neighbour by a layer of insulation material. The cavity

wall was filled with EPS, the insulating layer was 5 cm thick.
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Figure 3.2.1: Environmental Chamber

Temperature 
Probes 

Figure 3.2.2: Experimental equipment placed in front of each wall, details
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A B C D 

CAVITY WALL SOLID WALLS 

INDOOR 
ENVIRONMENT 

Figure 3.2.3: Brick walls in left room

Figure 3.2.4: First layer of insulation fitted into the cavity of the timber frame wall
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3.2.2 Experimental instrumentation

For the purpose of this experiment, the air temperature, surface temperature and

heat flux were monitored continuously during the observation period. This has been

carried out employing heat flux sensors, temperature probes, and temperature and

relative humidity sensors. This sections offers a description of the working principles

of the instruments used.

Platinum Resistance Thermometers

Platinum resistance thermometers are a common temperature sensor belonging

to the family of resistance temperature detectors (RTDs). Their working principle is

based on the measurement of the resistance of a platinum element. The relationship

between temperature and resistance is almost linear for small temperature variations.

Heat flux sensor

The heat flux plates used in this study are flat discs of ceramic-plastic composite

material of known thermal conductivity encasing the sensing element in the centre.

The sensing element comprises in a thermophile generating a voltage output propor-

tional to the temperature difference across the body of the heat flux sensor.

The heat flux through the sensor is proportional to the temperature difference

across the sensor divided by the effective thermal conductivity of the body [5]. Fig-

ure 3.2.5 shows an image of the Huksefluk HFP01 heat flux sensors used in the

experimental setup.
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Figure 3.2.5: Pictures of the heat flux sensors used in this study. Left: face in thermal
contact with the element studied, right: side in contact with the environment [5]

Temperature and Relative humidity sensors

The CS215 [6], is a Campbell Scientific temperature and relative humidity probe

uses a digital humidity and temperature sensor produced by Sensirion (SHT75)[85].

The sensor integrates sensor elements and signal processing to provide directly a fully

calibrated digital output. A picture of the probe and the sensor are displayed in figure

3.2.6

Thermocouples, T-type

Thermocouples are widely used temperature sensors based on the thermoelectric

principle, i.e. the generation of a voltage differential in a metal subject to a temper-

ature gradient.

In practice, thermocouples consist of a junction of two dissimilar conductors that

have a different response to the temperature gradient. In this way, at the opposite
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Figure 3.2.6: Pictures of the Temperature and Relative Humidity probe and its digital
sensor, [6]

Figure 3.2.7: Diagram explaining the configuration of a thermocouple

ends of the junction, a voltage difference can be measured and this is proportional to

the temperature differential experienced by the single metals.

From the voltage measured it is then possible to obtain the temperature of the

body observed. Figure 3.2.7 explains the functioning of a thermocouple.

Table 3.2.1: Summary of the measuring equipment, by function and accuracy
Name Function Accuracy
HFP01 Heat Flux measurement ± 5%
CS215 Relative humidity and temperature probe RH ± 1.8%, ◦C ± 0.3
PT100 Temperature measurement ◦C ± 0.1
T-type Temperature measurement ◦C ± 0.5
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3.2.3 Instrumentation set-up

The instrumentation employed in this experiment amounts to 16 heat flux sensors

(Hukseflux, HFP01 [5]) 18 temperature probes (PT100), 8 Temperature and relative

humidity sensors (CS215 temperature and relative humidity probe, [6]) one data log-

ger and expansion module (DataTaker, DT85 and CEM20, [47]).

For each brick section, two heat flux sensors (HFP01) were positioned vertically at

the centre of the wall, and next to each heat flux sensor a temperature probe (PT100)

was installed to measure the local surface temperature. The air temperature and

relative humidity sensors (CS215) were supported on a tripod situated 50 cm from

the surface of each wall sample and 70cm from the floor. This instrumental setup

was replicated on each side of the wall.

Figure 3.2.8 shows a schematic diagram of the positioning of the sensors on both

rooms and details on one of the wall samples are shown in Figure 3.2.2.

The room on the left, Room 1, was designated as the internal environment and the

room on the right, Room 2, designated as the external environment. All the measuring

equipment was numbered and connected to the data logger (DT85, CEM20). The

data were recorded once per minute. The wall sections were denoted using the letters

A,B,C,D, wall A being the cavity wall and B,C and D solid walls as indicated in

Figure 3.2.3.
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Figure 3.2.8: Diagram explaining the position of the sensors in Room 1

3.2.4 Steady state

The first test measured the heat flux through the wall samples under steady state

conditions. This was necessary to obtain reference values for the U-value of the

specimens tested.

The indoor temperature was set at 25◦C while the external temperature was set at

5◦C. The RH in Room 1 was fixed at 60 % and in Room 2 at 80% to represent notional

values found in practice, however it is assumed that RH does not influence measured

and predicted heat flux. The chamber was operated continuously for four days under

these conditions.

3.2.5 Non steady state

For the second test, the temperature in the indoor environment was kept constant

at 22 ◦C, with 50% relative humidity. The temperature of the outdoor environment

was modelled on hourly weather data collected from the weather station in the in the
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Department of Architecture and Built Environment. The data recorded were relative

to the week 8-15th February 2014. The minimum temperature was 1.4◦C, registered

at 9am on 10th of February and the maximum temperature was 10.8 ◦C, registered

at 6pm on 12th of February. The relative humidity in this test was kept constant at

55% in each room.

In order to generate suitable figures to program the environmental chamber, the

hourly data were fitted using a spline and the values of the fit were interpolated for

every minute of the week. The temperature profile was modified and smoothened

in order to achieve a variable but representative profile that excludes the peaks and

sharp variations that can be observed in hourly data. These data were fed into the

chamber, the temperature profile produced being displayed in Figure 3.2.9

The aim of this experiment was to study the specimen under more realistic condi-

tions, excluding the effect of solar radiation and unpredictable weather phenomena.

The data were recorded every minute for 7 days. Table 3.2.2 summarises the nature

and length of each test.

Table 3.2.2: Summary of all the tests carried out in the environmental chamber in
Jubilee

Test Length Description
Test 1 4 Days steady state 25-5 ◦C
Test 2 7 Days real outdoor data
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Figure 3.2.9: Final temperature profile obtained from the interpolation of the weather
data

3.3 Unoccupied solid wall property

This section describes the experimental set up followed to monitor 5 Wortley Hall

Close, a solid wall unoccupied property located in the University Park of the Univer-

sity of Nottingham. The data were collected during the period 12-19 March 2016.

The four bedroom property is a two floor, solid wall, detached house, representa-

tive of the UK hard to treat stock and it can be seen in the top of figure 3.3.1. The

room monitored was located on the ground floor, facing north east, with windows

facing north and south, see the bottom of figure 3.3.1.

The wall investigated in this experiment is the east facing wall as the north facing

wall was not suitable due to the small dimensions combined with the presence of a

window. Thermal images of the wall are presented in figures 3.3.1 - 3.3.2.
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Figure 3.3.1: A picture of the property studied taken during the day and an infrared
picture of the room under investigation
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Figure 3.3.2: Figure showing the external thermal image of the monitored wall.

Internally, the east wall presents a large central thermal non-uniformity that could

be attributed to a non-uniformity in the wall construction, such as a chimney or flue.

This inhomogeneity was identified with the infrared camera and the information was

used to obtain a clear image of the boundaries of the defect and optimise the position

of the sensors.

The infrared mapping of the internal wall was not as straightforward as in the

external case, as the small dimensions of the room did not allow the capture of the

whole wall in a single shot. To address this the wall was divided into six portions and

the final image was obtained by stitching together the six images.

As the cables and the equipment attached to the wall have a different emissivity

than the plaster finish, they reflect radiation differently, thus disturbing the final
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image. In order to obtain a clean image of the wall by itself, as a first step, the

brightest pixels have been substituted by a random pixel in their neighbourhood.

This first step was called dampening. Following this, the image has been filtered with

a median filter and finally with a gaussian filter. Figure 3.3.3 shows the different

stages of image elaboration: dampening, median filtering and gaussian filtering.

The presence of a non-visible defect in the wall, provides an opportunity to explore

whether the model developed is able to provide some insightful information that could

inform the experimenter about the non-standard construction lying under the surface

without having prior knowledge of it.
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Figure 3.3.3: Different stages of the thermal image elaboration. Top left: original
image. Top right: Dampening. Bottom left: Median Filter. Bottom right: Gaussian
filter
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3.3.1 Experimental setup

In a similar fashion to the monitoring setup carried out in the environmental chamber,

the east wall was monitored in 6 locations with 6 hukseflux heat flux plates (HFP01)

[5] and 6 platinum RTDs (PT100). The locations were chosen to be representative

of the wall, therefore 4 heat flux plates were placed on a uniform defect free part of

the wall and the other 2 heat flux meters were placed on the non uniformity. Figure

3.3.4 shows a diagram with the internal dimensions of the room and the position

of the equipment, and figure 3.3.5 shows the location of the heat flux sensors and

temperature sensors on the internal wall.

Figure 3.3.4: Diagram showing the dimensions of the room and the position of the
equipment.
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Figure 3.3.5: Figure showing the equipment setup on the north-east facing wall.

The internal room temperature was conditioned by means of electric heaters [86]

and thermostats, while the external temperature was determined by the weather con-

ditions. The internal air temperature was monitored with a separate RTD hanging

from the centre of the room at approximately 1.4 m from the floor.

Two electric heaters (1.3 kW each) were connected to a thermostat that was placed

in the centre of the room. The thermostat was bespoke and comprised a PT100 tem-

perature sensor connected to a chiller stat. The system thus set up constrained the

indoor temperature within 0.5◦C of the desired set point. An electric fan was em-

ployed to distribute the warm air uniformly through the space. A pyranometer was

added on the external side of north east facing wall to monitor the solar radiation

incident on the surface.
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The external surface of the wall was equipped with 6 RTDs (PT100) approximately

coinciding with the internal RTDs. The external air temperature was monitored with

an RTD placed in the porch in front of the front door, (see top part of figure 3.3.1),

a location shaded from the sun and reasonably well protected from wind and rain.

All the sensors were connected to a DT85 data logger with a CEM20 expansion. The

data were collected once per minute. The test started in the evening of 12/03/16.

For the first two days the temperature was set at 25.5 ◦C and it was then reduced

to 21◦C. At the end of the experiment the heaters were switched off and the internal

temperature was left to decay.

3.4 Occupied office space

Throughout the duration of this research, an external wall of an occupied office has

been subject to a monitoring process. The construction of the building element moni-

tored is a steel frame infilled with 75mm Polyisocyanurate (PIR) insulation boards and

covered with 120mm external cladding of graphite enhanced expanded polystyrene

(EPS) with white silicone render finish. The internal finish is plasterboard.

A preliminary investigation with an infrared camera revealed the position of the

steel-frame structure. Three heat flux meters (Hukseflux, [5]) were distributed hor-

izontally between two metal studs. Next to each heat flux meter a PT100 surface

temperature sensor was positioned. The external surface temperature was measured

by means of a single RTD and the external heat flux was measured at the centre of
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insulation (between the rafters of the steel frame structure) by means of a single heat

flux meter. External air temperature and internal air temperature were monitored

using two RTDs. A data logger DT85 was programmed to collect the data once

per minute. The installation and the monitoring were setup in accordance with the

method suggested by the standard ISO: 9869:2014.

The wall monitored faces north and it is heavily shaded by surrounding vegetation.

The office was occupied during the whole monitoring period with the exception

of the vacation periods. The internal temperature, therefore, was determined by the

heating pattern of the building and the preferences of the occupant, thus the office

room was subjected to natural ventilation, equipment and occupant gains and solar

gains. The data set used for the validation of the HDM correspond to the period 17

December 2015 to 14 January 2016. This period coincides with a vacation period,

when the occupant was not in the office and the building showed a low occupancy

profile. The data clearly show the impact of the ventilation due to the opening and

closing of the window and entrance door during the rest of the year, therefore this

particular period had been chosen since the temperature and heat flux profiles were

relatively smooth.

3.5 BSRIA data

A 7-day data set comprising measurements of heat flux and near-wall air temper-

atures, collected by the Building Services Research and Information Association
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(BSRIA) as part of an investigation into the U-values of solid walls of occupied UK

dwellings, was used to test the HDM model. The measurements were made at 5

minutes intervals over a 14 day period during the winter of 2010. The estimated

thickness of the building element investigated is L=0.310m, which includes a 0.01m

layer of plaster on its internal surface. Full details of the measurement methods and

outputs may be found in [72]. This set of data was initially used to compare the

results obtained by the HDM with the results of the STM proposed by Biddulph et

al. [72]. A full account of the results obtained is outlined in chapter 5.

3.6 Data analysis structure

The following two chapters will present the analysis of the experimental data collected.

Chapter 4 focusses on the verification of the model proposed, thus focussing on

synthetic data generated for this purpose, (further details on the generation process

and rationale of synthetic data are given in section 4.1), and the data collected in the

environmental chamber. At first, the experimental data are studied by means of the

“Average Method” and compared with the values found in literature, to provide a

benchmark against which comparing the results obtained with the model proposed.

Following this initial step, the experimental data are analysed by means of the HDM

with the MCMC sampling algorithm (the model described in sections 2.1 - 2.3) and

by means of the STM (described in section 2.4). The data analysis presented relates

to the data collected on one solid wall section and on the cavity wall.
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Chapter 5 focusses on the validation of the model proposed, thus aiming to verify

to which extent the conclusions based on the analysis of the synthetic data and

the experimental data collected in the chamber can be extended to a more realistic

scenario. For this purpose, this chapter focusses on the analysis of the data collected

by BSRIA, comparing the results obtained with the model proposed against the STM,

and on the data collected on the solid wall unoccupied property and the insulated steel

frame office. In total, beside the BSRIA data, four other experimental data sets have

been analysed to maximise the diversity of constructions monitored: two datasets

collected on the solid wall property (one in correspondence of the inhomogeneity and

one in correspondence of the defect free area) and two data sets collected on the

insulated steel frame construction (one in correspondence of the insulation and one

in correspondence of the steel frame).
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Analysis of the MCMC results

In this chapter, the results obtained by applying the MCMC to the solution of the Heat

Diffusion Model (HDM) described in sections 2.1-2.2 are presented and discussed. At

first, the MCMC is trialled on synthetic data, to quickly assess its strengths in an ideal

scenario. Secondly, the algorithm is validated on the data collected in the experiments

described in chapter 3.

Initially the standard calculations with the “Average Method” and the relevant

literature values are introduced to act as a benchmark for the model proposed (Section

4.2.1). Later on, the HDM and STM are tested and compared on the data set collected

in the environmental chamber, Sections 4.2 - 4.4.

4.1 Synthetic Experiments

The purpose of trialling a model on synthetic data is to verify its performance in

an ideal case scenario, where the experimenter has absolute knowledge of the system
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under investigation. In the case studied, this corresponds to the knowledge of the

“true values” of the functions describing the thermal conductivity and volumetric

heat capacity.

Furthermore, as the choice of such functions is completely arbitrary, it is possible

to test the performance of the MCMC technique in the case of a known discontinuous

function and explore whether the thermal properties inferred may be used to indicate

the presence of a non uniformity in a real case scenario.

The case proposed as a synthetic experiment corresponds to a wall construction

with 5 layers. The profile of the “true” thermal conductivity and of the “true” specific

heat capacity are displayed in figure 4.1.1. The thickness of the wall was considered to

be 0.3m and it was discretised in 100 elements for the numerical solution of the heat

equation. With such profiles for thermal conductivity and volumetric heat capacity,

the “true” K-value and C-value, calculated via equations (2.6), were

Ktrue = 3.62[W/m2K] Ctrue = 3.19× 105[J/m2K] (4.1)

The model adopted to solve the forward problem is the heat equation with fixed tem-

perature boundary conditions, described by equations (2.1) - (2.5). The boundary

conditions are based on sinusoidal variations in surface temperature and are shown in

the left panel of figure 4.1.2. The length of the synthetic test is equivalent to a week

of data with a 5 minute timestep. The heat flux is obtained via equation (2.5), and

for the purpose of the analysis it was corrupted with Gaussian noise η ∼ N(0, 0.5).
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Figure 4.1.1: Discontinuous thermal properties assumes as “true” profiles for the
synthetic experiments. Left: thermal conductivity. Right: volumetric heat capacity.

The heat flux thus obtained is displayed in the right panel of figure 4.1.2.

The priors were modelled to be representative of the uncertainty surrounding the

thermal properties. Referring to equations (2.26) - (2.27), the parameters defining

the prior of the thermal conductivity are λk = 0.5 and σk = 0.25 and, in a similar

fashion, the parameters for the volumetric heat capacity are λc = 0.1 and σc = 0.1.

Such distributions give rise, via equation (2.6) to the distributions of conductance

and heat capacity: the mean value of the conductance is Kmeanprior = 2.92 [W/m2K],

with the distribution taking values from 0.44 [W/m2K] to 13.22 [W/m2K] and the

mean value of the heat capacity is Cmeanprior = 3.12× 105, [J/m2K] with the distribution

taking values from 1.71 × 105 [J/m2K] to 5.47 × 105 [J/m2K]. Figure 4.1.3 shows

100 draws from the prior distributions of κ(x) and c(x), and figure 4.1.4 displays the

prior distributions of the conductance and heat capacity.
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Figure 4.1.2: Left: Surface temperature boundary conditions employed for the so-
lution of the forward problem. Right: Heat flux, obtained from the solution of the
forward problem, corrupted by Gaussian noise.
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Figure 4.1.3: Left panel: 100 samples from the thermal conductivity prior distribu-
tion, right panel: 100 samples from the volumetric heat capacity distribution
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distributions for the values of conductance and heat capacity.

113



4.1. Synthetic Experiments Chapter 4. Analysis of the MCMC results

It is now possible to evaluate how effectively the MCMC algorithm described in

chapter 2 is able to infer the thermal properties of the synthetic problem studied

and quantify the uncertainty surrounding these results. As explained in the previous

chapter, half of the time window available was employed for the inference process

while the second half was used for validating the results obtained.

Figure 4.1.5 shows the inferred thermal conductivity and volumetric heat capacity

against the true values. The prediction corresponds to the mean value of the posterior

of the thermal conductivity and volumetric heat capacity, and the uncertainty band

corresponds to one standard deviation from the mean value of each property. Given

the samples produced by the MCMC the posterior mean and variance of the thermal

conductivity can be calculated as

E(κ|y)(x) ≈ 1

J

J∑
j=1

κ(j)(x) (4.2)

V(κ|y)(x) ≈ 1

J − 1

N∑
j=1

(κ(j)(x)− E(κ|y)(x))2 (4.3)

and similarly for c(x):

E(c|y)(x) ≈ 1

J

J∑
j=1

c(j)(x) (4.4)

V(c|y)(x) ≈ 1

J − 1

N∑
j=1

(c(j)(x)− E(c|y)(x))2 (4.5)

Figure 4.1.6 shows the data fit obtained during the first 3.5 days and the pre-
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Figure 4.1.5: Comparison of the inferred thermal properties with the true values.
Left: Thermal conductivity, Right: Volumetric heat capacity

dictions of the model compared with the latter half of data. The uncertainty band

corresponds to the predictions obtained using, in the calculations of the heat flux,

one standard deviation from the mean value of thermal conductivity and volumetric

heat capacity displayed in figure 4.1.5.
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Figure 4.1.6: Predicted heat flux vs synthetic data. Left: inference window, Right:
prediction window.

Looking at figure 4.1.6, it is clear that the MCMC technique is a powerful tool
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for the solution of the HDM as it is able to reproduce accurately the synthetic data.

Furthermore, the uncertainty band encloses the data and the predictions through the

whole validation window, offering a demonstration of the reliability of the results ob-

tained.

Observing figure 4.1.5, it can be seen that the inferred thermal properties follow

the pattern of the true values, recognising step downs and increments without prior

information. Clearly, the inference of the thermal properties is not able to reconstruct

the exact number of strata and interface locations of the layers present in the wall

construction but it offers an indication of the presence of interfaces between different

materials. These limitations can be attributed to the model itself, as amongst the

postulates, it was chosen to assume continuous functions for the thermal properties,

but, in the case considered here, the thermal properties are clearly discontinuous as

in the case offered by a multi-layered construction.

Comparing the left and right panel of figure 4.1.5, the impact of the choice of the

prior, defined in equations (2.26) - (2.27), can be seen. The prior of the volumetric

heat capacity guarantees smoother functions due to the low values of σc and λc. As a

consequence, the inferred profile just shows the general trend of the volumetric heat

capacity but does not present the abrupt changes visible in the case of the thermal

conductivity. On the other hand, the inferred profile of the thermal conductivity

presents small irregularities that are a by-product of choosing a prior that allows for

sharper variations within the wall thickness.
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4.1.1 Uncertainty quantification

The biggest advantage of approaching the solution of inverse heat transfer problem

through probability distributions is the quantification of uncertainty around the values

obtained.

Given the samples of the thermal properties obtained from the MCMC algorithm,

the conductance and heat capacity can be calculated via equations (2.6) for each

sample, giving rise to the posterior distributions of the K-value and C-value, from

which the mean value and variance of both terms can be calculated.

As it may be seen from figure 4.1.4, the posterior distribution of the values of

conductance and heat capacity are considerably sharper; for instance the posterior of

the capacitance takes values from 2.96 [W/m2K] to 3.07 [W/m2K] while the posterior

of the heat capacity takes values from 2.92 × 105 [J/m2K] to 3.52 × 105 [J/m2K].

If we consider the mean value of the posterior as “best guess” and the spread of the

distribution as maximum uncertainty, this gives rise to 3.6% and 19% relative error

on the conductance and heat capacity respectively.

This is however a coarse estimation of uncertainty and it includes the extremes

of the distribution, i.e. values at the margin of the distribution that have a low

probability. A more representative way of characterising the uncertainty could be to

calculate the variances of the distribution and use them to calculate the relative error.

The results of these calculations are shown in table 4.1.1.
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Table 4.1.1: Mean, variance and relative error of the conductance and heat capacity
distributions obtained for the synthetic experiment analysis

Mean value Variance Relative error
Conductance [W/m2K] 3.62 2.82×10−6 0.05%
Heat Capacity [J/m2K] 3.07 ×105 4.46 ×107 2.17%

Figure 4.1.7 shows 100 draws from the posteriors of κ(x) and c(x), and it can be

seen how the samples obtained display a much smaller variability than that is seen

in the prior (Figure 4.1.3)
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Figure 4.1.7: Left panel: 100 samples from the thermal conductivity posterior distri-
bution, right panel: 100 samples from the volumetric heat capacity posterior distri-
bution

In order to visualise the reduction of uncertainty around the inference of the

thermal properties, the prior uncertainty (3 standard deviations) and the posterior

uncertainty have been plotted against the true value of the thermal conductivity and

volumetric heat capacity: this is displayed in figure 4.1.8. Observing the panel on the

left, the prior of the thermal conductivity is completely uninformative with respect

to the true value, and the prior of the volumetric heat capacity does not fully capture

the profile of the true value. From this picture, the reduction in uncertainty obtained

118



Chapter 4. Analysis of the MCMC results 4.1. Synthetic Experiments

through the inference process can be clearly observed, as the posterior distributions

are centred around the true values in both cases.

Further observations relative to the reduction of the uncertainty and the propa-

gation of the prior and posterior uncertainties are given in the following paragraphs,

in relation to the experimental data sets collected.

From the results presented in this section, it can be seen that the MCMC technique

proposed looks like a promising tool for the investigation of the thermal properties of

building elements using measurements of surface temperature and internal heat flux,

which is the current standard measurement procedure for the thermal transmittance

of building elements.

Furthermore, this analysis can be useful for providing general feedback on the

internal composition of a wall structure without a priori knowledge, such as in the

case where visual inspection fails to individuate a cavity construction or the presence

of insulation.
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Figure 4.1.8: Reduction of the uncertainty in the distributions of thermal conductivity
and volumetric heat capacity. Left: thermal conductivity, Right: volumetric heat
capacity

4.2 Environmental Chamber Data

This section presents the analysis of the experimental data collected in the environ-

mental chamber. Section 4.2.1 presents the benchmark results obtained by applying

the standard methods described in chapter 1. Section 4.2.2 investigates the surface

resistance in the environmental chamber. Section 4.2.3 applies the MCMC algorithm

proposed to the experimental data relative to the solid wall. Section 4.3 analyses

the performance on the STM on the same data set. Section 4.4 compares the per-

formance of the HDM and STM model using data collected on the cavity wall and

finally section 4.5 discusses the results obtained.

4.2.1 Benchmark results

Ballpark estimates of the conductance (K-value) were calculated using two methods:

the “Average Method”, equation (1.18), and, estimates made according to the values
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indicated in CIBSE Guide A. The values obtained from these procedures are shown

in table 4.2.1 and are used as a reference for the results obtained by implementing

the MCMC algorithm. The uncertainty shown on the “Average Method” value will

correspond to ±25%, as indicated by the ISO9869.

Table 4.2.1: Conductance values calculated via “Average Method” and reported on
the CIBSE Guide A [8]

Wall type and method Conductance
[W/m2K]

Heat Capacity per
unit area [J/m2K]

Solid wall (average
method)

3.17 ± 0.63 NA

Solid wall (CIBSE) 2.60 - 3.58 277200-440000
Cavity wall (average
method)

0.79 ± 0.16 NA

Cavity wall (CIBSE) 0.60 - 0.65 277200-440000

4.2.2 Investigation of the Surface Resistance

As both air and surface temperature measurements were available from the data

collected in the chamber, a brief investigation was conducted to estimate the values

of surface resistance in the environmental chamber.

As the environmental chamber is mechanically ventilated to obtain a uniform tem-

perature distribution within each room, it was considered that the standard values for

surface resistance, indicated by the CIBSE guide A, 0.13 m2K/W and 0.04 m2K/W ,

were not applicable for the conditions in the present chamber.

The values suggested by the CIBSE Guide A, represent a simplification of the

heat transfer process occurring at the surface, where the internal and external surface
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resistances depend only on the convective heat transfer coefficient and the radiative

heat transfer coefficient.

In literature, the convective heat transfer coefficients have been measured with

the use of Mayer ladder [87] or calculated from the total heat flux and temperature

by the fitting method [88] or by the difference between the heat flow through the

building element and the long-wave radiation [89].

The purpose of this research is not the investigation of surface resistances, there-

fore only a superficial examination was carried out on the data collected under steady

state conditions.

The method adopted consisted of comparing the difference between the resistance

obtained using the air temperature measurements and the resistance obtained us-

ing the surface temperature measurements. The rationale behind this choice is that,

when calculating the resistance using air temperature measurements, the value ob-

tained contains also the contributions from surface resistances, while the resistance

of the element alone can be calculated from surface temperatures.

The calculations were performed with the average method, equation (1.18), for

the 4 walls monitored in the chamber. Several attempts have been made to maximise

the information available from the data set.

At first, the wall resistance (Rwall) was calculated taking the mean between the

resistance values obtained using the internal flux and external flux and surface tem-

perature measurements, as the situation in the chamber is symmetric.
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Secondly, the total resistance (Rtot) was calculated using the air temperature mea-

surements and the mean surface resistance was calculated as Rs = (Rtot −Rwall)/2.

In an effort to characterise the internal and external surface resistances individu-

ally, further configurations were tried.

To infer the internal surface resistance, the resistance of the wall plus the internal

surface resistance (Rwall + Rsi) was calculated by using the temperature difference

between the internal air and external surface temperature. From this value, the

internal surface resistance was obtained by subtracting the wall resistance.

A similar procedure was used for the external surface difference. A diagram ex-

plaining the calculation procedure is displayed in figure 4.2.1. The results are sum-

marised in table 4.2.2.

RwallRsi Rse

Tairin

TairextTsurfin

TsurfextRwall + Rsi

Rwall + Rse

Figure 4.2.1: Diagram explaining the calculation procedure followed to obtain the
internal and external surface resistances

.

In the cases of wall B, C, and D the internal and external surface resistances are
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Table 4.2.2: Internal and external surface resistances calculated in the environmental
chamber

Wall type and method Wall A Wall B Wall C Wall D
Internal surface resis-
tance [m2K/W ]

0.11 0.10 0.10 0.06

External surface resis-
tance [m2K/W ]

0.06 0.08 0.08 0.05

Mean surface resis-
tance [m2K/W ]

0.08 0.09 0.09 0.05

quite similar, thus corroborating the hypothesis that the convective coefficients are

similar in both rooms of the chamber and supporting the hypothesis that the standard

values are not applicable in the case considered. Still this analysis is not conclusive

as this is not the case for wall A. At the same time, it can be observed that while the

values found for wall B and C are the same, the values found for wall A and D are

quite different. This could be seen as a consequence of the wall configuration in the

chamber: walls A and D are at the sides, thus they will feel the effect of the chamber

external walls, while for walls C and D this might not be the case as they are located

in the centre.

Nevertheless, this analysis is not conclusive for the determination of the walls

surface resistances. For this reason, a decision was made to continue the analysis

of this data set using the surface temperature measurements and thus consider the

thermal conductance rather than the thermal transmittance.

4.2.3 MCMC performance

This section investigates the performance of the MCMC algorithm on the experi-

mental data collected in the environmental chamber. At first a detailed analysis of
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the prior distributions is presented, using the same process as shown previously with

the synthetic data section 4.1. Later on, the performance of the MCMC algorithm

in inferring the effective thermal properties and in reducing the uncertainty in the

posterior distribution are discussed.

4.2.3.1 Investigation of the priors

The prior distributions of κ(x) and c(x) give rise to priors on the K-value and the heat

capacity defined in equation (2.17). The top of Figure 4.2.2 displays the histogram

of the resulting prior distributions of the K-value (right) and the heat capacity (left)

obtained from equation (2.17) by simple Monte Carlo sampling from the prior of k(x)

and c(x) defined in chapter 3.

Note that the resulting priors for the K-value and heat capacity of the wall show a

wide spread of values. The prior for the heat capacity takes values between 2.4× 104

[J/m2K] and 2 × 106 [J/m2K] while the prior for the K-value takes values between

0.25 [W/m2K] and 8.0 [W/m2K].

In summary, the priors provide substantial variability in κ(x) and c(x), which,

in turn, lead to a wide range of possible values for K and C. These wide ranges

and variability within the priors seek to characterise the large uncertainty associated

with the prior knowledge of these properties, as, for example, is evident in values

found in the literature. As stated before, the aim of the work implemented in this

research is to reduce such variability by means of Bayesian inversion to generate a

posterior distribution of values that are likely to be representative of the wall under
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examination. Figure 2.2.4 shows 100 draws from the prior distributions of thermal

conductivity and volumetric heat capacity.
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Figure 4.2.2: Top: Histogram of samples from the prior distribution of the heat
capacity (left) and K-value (right). Bottom: Chamber data: Histogram of samples
from the posterior distribution of the heat capacity (left) and K-value (right)

4.2.3.2 Heat Diffusion Model performance on the chamber data

In this section the results obtained from applying the model described by equation

(2.1), with fixed temperature boundary conditions, equations (2.3)-(2.4) to the data

set collected in the environmental chamber are presented. The initial temperature
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was assumed to be the interpolation between the internal and external surface tem-

perature given by equation (2.7). The heat flux obtained at the internal and external

facade is given by equation (2.5).

Figure 4.2.3 shows the sample of data used to perform the inference and validate

the results obtained. As mentioned in chapter 2, the first 3.5 days are used for the

inference while the last 3.5 days are used for the validation of the results obtained.

From this moment onward, only the data collected on wall C are analysed, for the

sake of brevity and avoiding repetition. the results from the remaining solid walls,

walls B and D, show similar trends.
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Figure 4.2.3: Chamber data set (Solid wall). Left: Internal and external heat flux.
Right: Internal and external surface temperatures.

4.2.3.3 Propagating the prior uncertainty

This subsection shows how the uncertainty in the prior knowledge affects the predic-

tions of the model, without conditioning the results with the data collected. This
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procedure also offers an insight into how accurately the data published in the litera-

ture fit the case study considered here.

If the prior mean of the unknown, E(u), represents an accurate estimate of the

thermal properties of the wall, the simulations of Gint(E(u)) and Gext(E(u))would

provide a close fit to the heat flux data y.

If, in addition, the prior uncertainty around E(u) (given by E(u) ± [V(u)]1/2)

was small, the uncertainty band given by Gint,ext(E(u) ± [V(u)]1/2) should enclose

Gint,ext(E(u)) and thus contain the observations of the heat flux. Note that E(u) and

V(u) refer to the mean and the variance of the functions of κ(x) and c(x), represented

in figure 2.2.3 , whose distributions, via equation (2.6), give rise to the priors of K

and C displayed in figure 4.2.2.

Figures 4.2.4 and 4.2.5 display the heat flux data alongside with the curves

Gint(E(u)), Gint(E(u)± [V(u)]1/2) and Gext(E(u)), Gext(E(u)± [V(u)]1/2).

It may be seen that, Gint,ext(E(u)± [V(u)]1/2) defines an uncertainty band around

Gint,ext(E(u)). However, it can be seen also that the predictions of the model (black

line) do not capture the data (red dots) at all. This clearly indicates that the prior

knowledge of u(x) is very poor at capturing the data. This situation can be easily

encountered in practice when, E(u) is based on values taken from the literature and

where the inspection does not reveal internal structures within the wall.

The right panel of Figures 4.2.4 and 4.2.5 displays the curves given by Ĝint(E(u)),

Ĝint(E(u) ± [V(u)]1/2) and Ĝext(E(u)) Ĝext(E(u) ± [V(u)]1/2). These curves repre-
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sent the propagation of the prior uncertainty under the prediction map Ĝ, which

corresponds to model predictions of heat flux within the subsequent time window

[3.5 days, 7 days]. While some of the measured heat flux data fall within the uncer-

tainty band determined by Ĝ(E(u) ± [V(u)]1/2), there is a large uncertainty around

Ĝ(E(u). Bayesian inversion makes it possible to reduce such uncertainty as will be

shown in the following subsection.
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Figure 4.2.4: Analysis of chamber data (solid wall). Propagation of the uncertainty
under Gint (left) and Ĝint (right) under the prior.
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Figure 4.2.5: Analysis of chamber data (solid wall). Propagation of the uncertainty
under Gext (left) and Ĝext (right) under the prior.

4.2.3.4 The posterior uncertainty

In this section, the results obtained from the analysis proposed for K-value and heat

capacity are compared with previous results and literature values. Furthermore it is

shown how the uncertainty in the predictions is reduced once the information con-

tained in the data has been included in the model, illustrating how the model output

and the uncertainty band capture the experimental measurements.

The MCMC method applied to produce J = 106 samples of the posterior P(u|y)

is described in section 2.2. These samples are denoted by u(j)(x) = (κ(j)(x), c(j)(x))

(j ∈ {1, . . . , J}). The Figure 4.2.6 displays 100 samples of the posterior for κ(x)

(left) and c(x) (right) obtained from the MCMC method from section 2.2. It can be

observed that the posterior samples exhibit a much smaller variability than the ones

from the prior (see Figure 2.2.4).
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Figure 4.2.6: Analysis of chamber data (solid wall). Samples from the posterior dis-
tribution. Left: posterior samples of the thermal conductivity κ(x). Right: posterior
samples of the volumetric heat capacity c(x)
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These posterior samples may be used to compute relevant information relating to

the unknown parameters, such as any statistical moments. In particular, from these

samples u(j)(x) = (κ(j)(x), c(j)(x)), the posterior mean and variance of κ(x) can be

approximated by means of

E(κ|y)(x) ≈ 1

J

J∑
j=1

κ(j)(x) (4.6)

V(κ|y)(x) ≈ 1

J − 1

N∑
j=1

(κ(j)(x)− E(κ|y)(x))2 (4.7)

with analogous definitions for the posterior mean and variance of the variables c(x):

E(c|y)(x) ≈ 1

J

J∑
j=1

c(j)(x) (4.8)

V(c|y)(x) ≈ 1

J − 1

N∑
j=1

(c(j)(x)− E(c|y)(x))2 (4.9)

Note that both the posterior mean and variance are spacial functions, i.e. depen-

dent on the variable x.

For each component of the unknown, u, an uncertainty band of two standard

deviations around the posterior mean is displayed in figure 4.2.7. comparing this fig-

ure with figure 2.2.3 the reduction of the prior uncertainty can be clearly appreciated.

The posterior distributions of the K-value as well as heat capacity defined in

equation (2.6) are investigated.
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Figure 4.2.7: Analysis of chamber data (solid wall). Mean and variance of the pos-
terior distributions. Left: posterior mean and variance of the thermal conductivity
κ(x). Right: posterior mean and variance of the volumetric heat capacity c(x)
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Figure 4.2.2 (bottom) displays the histogram of posterior samples of C (left) and

K(right). For each of the MCMC samples of κ(x) and c(x), the corresponding values

of K and C were computed via equation (2.6) and then the whole samples displayed in

histogram form. Note that the reduction of the variability of the posterior distribution

is further enlightened by the different scale on the abscissa of figure 4.2.2.

It can be observed, that the conditioning of u(x) on the heat flux data reduces

substantially the prior uncertainty in both the K-value and the heat capacity. The

posterior mean and posterior standard deviations determined from the results for K

and C are displayed in Table 4.2.3.

Table 4.2.3: Posterior mean and posterior standard deviation of the conductance
value K and the heat capacity C for the environmental chamber data.

Chamber E(K|y) [V(K|y)]1/2 E(C|y) [V(C|y)]1/2

[W/m2K] [W/m2K] [J/m2K] [J/m2K]
HDM (solid wall) 3.161 4.2× 10−3 3.41× 105 1.99× 103

STM (solid wall) 3.142 4.71× 10−4 1.81× 105 1.18× 103

HDM (cavity wall) 0.783 1.2× 10−3 3.75× 105 6.73× 103

STM (cavity wall) 0.768 4.1× 10−3 1.35× 105 2.01× 103

The propagation of the posterior uncertainty under the forward model G is now

examined. At this point, it is important to introduce an observation on the uncer-

tainty margin displayed in the following figures. It would be reasonable to assume

that the variability of the model outputs, i.e. V[G(P(u|y))], is sufficient to capture the

uncertainty surrounding the heat flux predictions. As may be seen from figure 4.2.8,

this variance is very small, and does not capture the full variability observed in the

data. For this reason, the propagation of the posterior expected value and variance

are displayed instead, i.e. G(E[P(u|y)] ±V[P(u|y)]), rather than the variance of the
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propagation of the posterior, i.e. E[G(P(u|y))]±V[G(P(u|y))].

Figure 4.2.8: Figure showing the difference between the propagation of the posterior
variance and the variance of the posterior propagation

As before, the propagation of the uncertainty band of two (posterior) standard

deviations around the posterior mean E(u|y)(x) is shown. The posterior mean and
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variance of the joint variable u(x) = (κ(x), c(x)) are given by

E(u|y) = (E(κ|y),E(c|y)) (4.10)

V(u|y) = (V(κ|y),V(c|y)) (4.11)

with E(κ|y) and V(u|y) computed from (4.6)-(4.9) and with analogous definitions

for E(c|y) and V(c|y). The curves given by Gint,ext(E(u|y)) and Gint,ext(E(u|y) ±

[V(u|y)]1/2) are displayed in figures 4.2.9 and 4.2.10. The posterior uncertainty under

G results in a considerable reduction of the prior uncertainty in the model predictions

of heat flux. In particular, at the beginning of the time window, the model prediction

is more concentrated around the heat flux data. It can be seen that the uncertainty

band encloses the data through the whole time window.

Similarly in Figures 4.2.9 and 4.2.10 data for the propagation of the posterior

uncertainty under the prediction map Ĝint and Ĝext are presented. It can be appreci-

ated from these figures that the HDM outcome captures the data fully, including the

observations in the posterior uncertainty band, thus providing a verification of the

model and calculation method investigated.
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Figure 4.2.9: Analysis of chamber internal heat flux data (solid wall). Propagation
of the uncertainty under Gint (left) and Ĝint (right) under the posterior. (HDM)
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Figure 4.2.10: Analysis of chamber external heat flux data (solid wall). Propagation
of the uncertainty under Gext (left) and Ĝext (right) under the posterior. (HDM)
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4.2.3.5 Convergence

This section presents the analysis of the convergence of the Markov Chain, in relation

to what was illustrated at the end of section 2.2.2.1.

Figure 4.2.11 shows the residuals calculated via equation 2.33 for the solid wall

in the environmental chamber. Looking at the right panel of figure 4.2.11, it can be

seen that the residuals drop sharply and stabilise within 500 iterations.
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Figure 4.2.11: Samples residuals for the solid wall in the environmental chamber. Left
panel: all samples. Right panel: first 1000 samples

This is in agreement with figures 4.2.12 and 4.2.13, which show the trace plots

for the thermal conductance and heat capacity calculated from the samples produced

with the MCMC algorithm. Looking at the right panels of figures 4.2.12 and 4.2.13,

it can be seen that the trace shows a good mixing of the Markov Chain from roughly

the 1500th iteration. From these graphs it was deduced that the burn-in period

(the number of the iterations that the Markov Chain needs to reach the stationary

distribution, as explained in section 2.2.2.1) corresponds approximately to the initial

2000 iterations.
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Figure 4.2.12: Trace plot of the thermal conductance values for the solid wall in the
environmental chamber. Left panel: all samples. Right panel: first 5000 samples
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Figure 4.2.13: Trace plot of the heat capacity values for the solid wall in the environ-
mental chamber. Left panel: all samples. Right panel: first 5000 samples
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Figures 4.2.11-4.2.13 seem to suggest that the number of samples specified for use

in the MCMC, i.e.106, is excessive given that within 2000 iterations the residuals have

converged and the trace shows that the chain is mixing well. Still, these figures alone

are not sufficient to understand the necessity of such a large number of iterations.

Figures 4.2.14-4.2.15, show the autocorrelation function of the values of the ther-

mal conductance and heat capacity for different lags. The autocorrelation of a time

series, in our case the sample series of the K-value or C-value, is the correlation of the

time series with a delayed copy of itself, as a function of the delay. In practice, the

autocorrelation is calculated via a number of computations. Initially the correlation

between the chosen time series and an exact copy of itself is calculated; this value cor-

responds to the autocorrelation at lag 0 and yields an autocorrelation of 1. Following

this, the copied vector is shifted by one timestep (lag 1) and a new correlation value is

calculated. This procedure is repeated until a sufficient number of correlation values

is produced, thus obtaining the autocorrelation function of the time series studied.

Looking at the right panel in these figures, it can be seen that the autocorrelation

decays really quickly as the lag increases, and, in the case of the thermal conductance,

it is nearly stable from the 100th point forward. This means that only 1 in every

100 samples can be considered sufficiently uncorrelated and therefore the number of

samples that can be considered for the characterisation of the posterior distribution is

automatically reduced by 100. For this reason even if 106 samples are produced, only

104 can be considered for the calculation of the statistical moments of the posterior

distributions.
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Figure 4.2.14: Autocorrelation of the samples of thermal conductance of the solid
wall in the environmental chamber, excluding the first 1000 (“burn in”) samples.
Left panel: 106 samples. Right panel: 103 samples.

The left panel in figures 4.2.14-4.2.15 shows that the autocorrelation of the samples

is always outside the uncertainty margin. This means that for the Markov Chain

considered, it is nearly impossible to obtain samples that are completely uncorrelated.

This is a consequence of the algorithm followed to construct the chain, equation (2.37),

for which every new sample is calculated as a linear combination of the previous

sample and a random element. In this way, every sample will bear some correlation

with the other samples of the series that cannot be completely eliminated.

For this reason it is reasonable to accept samples every 100th iteration, even if

they still show a small autocorrelation.

For the analysis of the posterior distributions carried out in this and in the fol-

lowing chapters, one sample every 100 was kept (after the “burn-in” period), based

on the autocorrelation function of the thermal conductance. This allows to make a

clarification on figure 4.1.4: while it is possible to obtain as many samples as desired

from the prior distribution, only 104 posterior samples are available, this explains the
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Figure 4.2.15: Autocorrelation of the samples of the heat capacity of the solid wall
in the environmental chamber, excluding the first 1000 samples. Left panel: 106

samples. Right panel: 103 samples.
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discrepancy between prior and posterior samples visible in figure 4.1.4.

4.3 STM performance

In this section, the STM described in Section 2.4 is implemented on the environmental

chamber data set explored in section 4.2. The posterior distributions of the inferred

thermal capacitance and heat capacity are shown in Figure 4.3.1, alongside the results

of the HDM.

From figure 4.3.1, it can be seen that for both conductance and heat capacity the

models produce different distributions. However, while in the case of the K-value both

results are acceptable when compared with values in the literature, the heat capacity

suggested by the STM, is far too low to be representative of a solid wall construction

(compare results in figure 4.3.1 with values inTable 4.2.1 and Table 4.2.3).

Figures 4.3.2 and 4.3.3 (left panel) show the propagation of the uncertainty in

G(int,STM) and G(ext,STM). Figure 4.3.2 shows that the parameters inferred by the

STM model poorly reproduce the measurements of the heat flux. In fact looking at

the inference window of the internal heat flux it can be seen that the model predictions

(black line) do not follow the data collected (red dots). Looking at figure 4.3.3 alone

could be misleading, as the STM model seems to reproduce the external flux faithfully.

However, looking more closely, it can be seen that, as well as for the internal flux, the

uncertainty band collapses on the model predictions and excludes the experimental

data from the error band. This suggests that the STM is overfitting the data and,
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Figure 4.3.1: Analysis of chamber data (solid wall). Posterior densities of thermal
mass (left) and K-value (right) obtained with the proposed methodology based on
the Heat Equation and the STM model

.

consequently, its predictive capacities are poor, as can be seen from the right panel of

figure 4.3.2. Conversely, if the model prediction was not presenting such a “good fit”

to the data, but the uncertainty band was including the experimental data, it could

have been concluded that the STM was capable of reproducing the heat flux profiles.

Summarising, it can be seen that the shortcomings of the STM, compared to

the HDM, are the improper evaluation of the heat capacity, and consequent poorer

ability at replicating the heat flux profiles, and the inappropriate characterisation of

the uncertainty surrounding the model parameters.
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Figure 4.3.2: Analysis of chamber internal heat flux data (solid wall): Propagation of
the uncertainty under Gint,STM (left) and Ĝint,STM (right) under the posterior. (STM).
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Ĝext,STM (E(u))

Ĝext,STM (E(u)± [V(u)]1/2)

Figure 4.3.3: Analysis of chamber external heat flux data (solid wall): Propagation of
the uncertainty under Gext,STM (left) and Ĝext,STM (right) under the posterior. (STM).
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4.4 Cavity wall

The HDM uses a Bayesian approach with a continuous heat transfer model of walls

that has heterogeneous thermal properties. Section 1.6 proposes that a significant

advantage of the HDM is that no a priori assumptions of the internal structure of the

wall are needed to successfully infer the unknown parameters. To test this assertion,

the HDM is used to infer κ(x) and c(x) for a cavity wall using internal and external

heat flux measurements y = (yext, yint). This corresponds to the data set collected on

wall A in the environmental chamber. The prior distributions applied are the same

as those used in the previous case, described in Section 2.2.2 and figures 2.2.3 - 2.2.4

and figure 4.2.2 (top). This tests the practical situation where the cavity within the

wall is overlooked by a visual inspection and the internal heterogeneity is unknown.

Figures 4.4.1 and 4.4.2 show the propagation of prior uncertainty under the for-

ward and predictive maps. They show that the uncertainty band does not capture

the data and highlights how a lack of knowledge of wall structure can lead to poor

model characterisation.

By applying the MCMC method discussed in Section 2.2, it is possible to sample

from the posterior u(x) = (κ(x), c(x)). Figure 4.4.4 gives the posterior uncertainty

bands for the cavity wall and shows that the thermal conductivity is considerably

lower than the value assumed in the prior, as we would expect from a wall of this

type, where the insulation in the cavity offers additional thermal resistance.

The inferred value of conductance (0.78 W/(m2K)) is very close to that estimated
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Figure 4.4.1: Analysis of chamber internal heat flux data (cavity wall). Top and
Middle: Propagation of the uncertainty under Gint (left) and Ĝint (right) under the
prior (top) and the posterior (middle). Bottom: Propagation of the uncertainty under
Gint,STM (left) and Ĝint,STM (right) under the posterior

147



4.4. Cavity wall Chapter 4. Analysis of the MCMC results

0 0.5 1 1.5 2 2.5 3 3.5

Time [days]

0

20

40

60

80

100

120

140

H
ea
t
fl
u
x
[W

/m
2
]

Prior propagated under Gext

data
Gext (E(u))

Gext (E(u)± [V(u)]1/2)

3.5 4 4.5 5 5.5 6 6.5 7

Time [days]

0

20

40

60

80

100

120

140

H
ea
t
fl
u
x
[W

/m
2
]

Prior propagated under Ĝext
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Figure 4.4.2: Analysis of chamber external heat flux data (cavity wall). Top and
Middle: Propagation of the uncertainty under Gext (left) and Ĝext (right) under the
prior (top) and the posterior (middle). Bottom: Propagation of the uncertainty under
Gext,STM (left) and Ĝext,STM (right) under the posterior
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Figure 4.4.3: Analysis of chamber data (cavity wall). Prior uncertainty band of the
thermal conductivity and volumetric heat capacity.
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Figure 4.4.4: Analysis of chamber data (cavity wall). Posterior uncertainty band of
the thermal conductivity and volumetric heat capacity.
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using the “Average Method” (0.79 W/(m2K)) , as it can be seen by comparing tables

4.2.3 and 4.2.1.

Looking at the results presented in the same tables, it can be seen that also in this

case, the HDM is able to infer the heat capacity of the cavity wall and, furthermore,

looking at figure 4.4.4, it can be seen that the heat capacity is considerably lower

at the centre of the construction, as it is expected, since the capacity of insulation

is considerably lower than the heat capacity of the brick layers. However, the spa-

tial distribution of κ(x), displayed on the left panel of figure 4.4.4, is quite constant

through the wall thickness, as opposed to the expectations, as the thermal conductiv-

ity of the insulation layer is much lower than the thermal conductivity of the bricks,

as in the case of the volumetric heat capacity.

From all the HDM results, summarised in table 4.2.3, it can be noted that the

uncertainty in the heat capacity is always higher than the uncertainty in the conduc-

tance. This may be because, in order to obtain an appreciable change in the amount

of energy stored in this wall, the construction should be subjected to large fluctua-

tions in temperature. However, this is not possible by simulating realistic indoor and

outdoor conditions, where temperature fluctuations are small.

Table 4.2.3 also displays the values for conductance and heat capacity obtained

with the STM for the cavity wall. Comparing these values with those displayed in

table 4.2.1, it can be seen that while the conductance value may be considered to

sit within an acceptable range, the heat capacity calculated by the STM model is
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far too low to be indicative of a cavity wall. The inability of the STM to capture

the dynamic thermal behaviour is further demonstrated by the heat flux prediction

graphs as detailed in the next paragraphs.

Figures 4.4.1 and 4.4.2 (middle) give the propagation of posterior uncertainties

for the HDM. They show an appreciable reduction in the uncertainty of the posterior

mean, which provides a reasonable characterisation of the heat flux behaviour in the

predictions of the HDM.

Figures 4.4.1 and 4.4.2 (bottom) give the propagation of the posterior for the

STM. It can be seen that the uncertainty band collapses on the model prediction and

does not capture the data. Looking at Figure 4.4.1 (bottom, right) in particular, (the

internal heat flux profile for days 3.5 - 4.5), it can be observed that the behaviour

predicted by the STM is quite different from the recorded measurements and it looks

as if the prediction is “delayed” with respect to the data measured. This discrepancy

in the internal environment is indicative of the fact that the STM is not able to ac-

curately characterise the heat capacity of the wall considered.

Also in this case, the performance of the HDM in capturing the uncertainty around

the heat flux predictions in the cavity wall is not optimal, as it may be seen from

the middle parts in figures 4.4.1 and 4.4.2. This is because the prior distributions

assumed were not representative of a cavity wall. Still, the model is able to determine

realistic values of the thermal conductance and heat capacity of the construction. The

uncertainty characterisation can be optimised by rearranging the priors, as will be
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shown in chapter 5.

4.5 Discussion of results

As may be seen from figures 4.2.4 - 4.2.5 the thermal properties values found in

literature do not reproduce the heat flux profile measured experimentally for the

wall samples used in this study. The wide range of values found in the literature, is

reflected in the wide uncertainty band displayed in the analysis, that, as can be seen

in figures 4.2.4 - 4.2.5 not always include the experimental data. This means that the

assumptions made on the thermal properties based on values found in literature are

completely unrepresentative of the actual wall constructions considered in this study.

This underlines the necessity of measuring the thermal properties experimentally

and developing a reliable model to reduce the uncertainty on the thermal properties

and obtain more accurate heat transfer predictions, able to match the data collected

in situ. The HDM provides greater insight into the heat transfer process occurring in

the building fabric, as may be seen by its ability to predict time varying behaviour,

and to produce reasonable estimates of the thermal properties sought.

Comparing the results displayed in figures 4.2.9 and 4.2.10, against figures 4.3.2

and 4.3.3 it is clear that the HDM offers significant improvements over the STM for

the characterisation of dynamic thermal behaviour. The posterior uncertainty for the

forward map GSTM collapses into GSTM(E(u|y)), which is a sign that the STM is over-

fitting the data and consequently that it does not offer the ability to yield accurate

predictions outside of the inference time window. This undermines the confidence in
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the results produced with this model.

Having investigated the performance of the STM and HDM using a 3.5 day win-

dow, under laboratory conditions, it is now interesting to verify the performance of

the model under real life conditions and, possibly, determine the minimum amount

of data necessary for the HDM to produce acceptable results in terms of conduc-

tance evaluation and heat transfer modelling. In the following chapter, the HDM is

validated against the other data sets collected and described in chapter 3.
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Chapter 5

Validation against other data sets

This chapter describes the validation of the HDM carried out on different experimental

data sets.

Initially, in section 5.1, the HDM and STM are tested on the data collected by

BSRIA and previously analysed by Biddulph et. al [72].

Following this, in section 5.2, the HDM is validated against the other data sets

described in chapter 3, comprising different wall structures and experimental condi-

tions.

Finally, the model is stress-tested in order to evaluate its limits and validate its

strengths by exploring its performance using experimental data gathered over different

time windows.

Section 5.3 discusses the results obtained, identifying the advantages of the HDM

compared with the standard practice, and future work on this topic is suggested.
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5.1 BSRIA data

In this section, the data set collected by the Building Services Research and Infor-

mation Association (BSRIA) is considered. The sample of data used in this analysis

is shown in Figure 5.1.1. The data are first analysed by implementing the MCMC

algorithm with the HDM, section 5.1.1, and then the same data are analysed with

the STM, section 5.1.2.
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Figure 5.1.1: BSRIA data. Left: Heat flux measurements at the internal surface.
Right: Internal and external nearby air measurements. The vertical line divides the
inference time window [0, 3.5 days] from the validation time window [3.5 days, 7 days]

As adopted in chapter 4, the first 3.5 days are used for the inference of the thermal

properties of the wall under consideration and a subsequent time window of the same

length is used for validation purposes.

5.1.1 Analysis of BSRIA data by means of the HDM

For the analysis of this data set, the air temperatures, denoted by T airint and T airext , as

opposed to the surface temperatures, are used in the boundary conditions of the heat

transfer model introduced in subsection 2.1, equations (2.1), (2.13),(2.14) and (2.16).
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This corresponds to the heat transfer problem with convective boundary conditions

and, as illustrated in section 2.1.1.1, in this case the Bayesian formulation includes

also the initial temperature amongst the unknown parameters.

As the boundary conditions include experimental measurements of the nearby air

temperature, T airint (t) and T airext (t), in this case the final values inferred relate to the

thermal transmittance (as opposed to conductance) and heat capacity, calculated via

equation (2.17).

The values of the scalars hint and hext shown in equations (2.13) - (2.14) are given

by h−1int = 0.13 [m2K/W ] and h−1ext = 0.04 [m2K/W ] as suggested in CIBSE guide A [8].

As the structure of the wall observed is of solid single leaf construction with

plaster finish, the prior distributions of the thermal properties were based on the

same literature values as used in the case of the environmental chamber analysis, in

section 4.2.

Figure 5.1.2, top panel left, shows the predictions obtained from the prior knowl-

edge, without conditioning the prior distribution with the experimental data. Again,

it can be seen that prior knowledge based only on values of κ and c taken from the

literature is insufficient to produce reliable estimates of heat flux predictions and,

therefore, these are inappropriate estimators of the thermal properties of the wall

considered. In particular, even if the uncertainty band contains the model predic-

tions, it can be seen that during the first two days the prediction does not capture

the measured data. Consequently, for the prediction window (top panel right in figure
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5.1.2) there is a large uncertainty around the model predictions.

On the other hand, the bottom panels of figure 5.1.2 show that the HDM model

fully captures the measured data in both in the inference and validation window. The

uncertainty surrounding the model predictions is greatly reduced and it includes the

experimental data thorougout the whole 7 day window. Figure 5.1.3 clearly shows

the reduction in uncertainty between the prior and the posterior as already indicated

for the previous data sets.
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Ĝ(E(u))
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Figure 5.1.2: Analysis of BSRIA data. Propagation of the uncertainty under G (left)
and Ĝ (right) under the prior (top) and the posterior (bottom).
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Figure 5.1.3: Analysis of BSRIA data. Comparison of prior and posterior for the
probability densities of heat capacity (left) and U-value (right)

The results obtained for the U -value and heat capacity per unit area are displayed

in table 5.1.1. It might be seen that the U -value obtained agrees with the results

obtained by Biddulph et al. [72] (1.153 ± 0.002 W/(m2K)), but the specific heat

capacity obtained is considerably different than the value reported by [72] (2.24 ×105

± 0.19 ×105 J/(m2K)). Considering that the value reported in [72] is quite low to be

representative of the heat capacity of a solid wall, this might indicate that a simple

RC network with one capacitor, such as the STM model, does not offer an appropriate

characterisation of the thermal capacity of the construction investigated. The value

obtained with the HDM instead is in agreement with the literature data on the heat

capacity, as it can be seen from table 4.2.1 thus remarking how this model provides

a better characterisation of the thermal properties of the wall studied.

Table 5.1.1: Posterior mean and posterior standard deviation of the U-value U and
the heat capacity C for the BSRIA.
BSRIA data E(U|y)

[W/m2K]
[V(U|y)]1/2

[W/m2K]
E(C|y) [J/m2K] [V(C|y)]1/2

[J/m2K]
HDM 1.128 6.8× 10−3 3.79× 105 2.58× 104

STM 1.17 4.4× 10−3 1.98× 105 5.73× 103
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5.1.2 Analysis of BSRIA data by means of the STM

In this subsection the results obtained using the STM model, are presented.

While these results are similar to those presented by Biddulph et al. [72], some

differences in the estimates presented in this work are expected because the time

window used is shorter.

In Figure 5.1.4 the empirical posterior densities of the U-value (right) and heat

capacity (left) obtained with the Bayesian inference for the STM are compared against

the distributions obtained with the HDM from section 5.1.1.

While the distribution of the U-value obtained with the STM seems be slightly

shifted to the left and have a small variance, the distribution of the heat capacity

is substantially different. In this case, the value obtained with the STM, 1.98 ×

105± 5.73× 103[J/m2K], is much closer to the value reported by Biddulph et al. i.e.

2.24× 105J/m2K [72], but again is too far from the literature values to be represen-

tative for a solid wall.

Figure 5.1.5 shows the propagation of uncertainty of two standard deviations

with respect to the mean of the posterior distribution, E(u|y), under the forward

map GSTM and the prediction map ĜSTM . The results from Figure 5.1.5 (left) agree

with those from [72]. The STM model provides a good fit to the data; however,

it can be observed that, under the map GSTM , the posterior uncertainty collapses

into GSTM(E(u|y)), which compromises the confidence in the uncertainty in model

predictions. It is of course, clear that GSTM(E(u|y)) would provide a reasonable fit

160



Chapter 5. Validation against other data sets 5.1. BSRIA data

to the data since those very same observations were used for the inference of the

unknown. However, inspecting Figure 5.1.5 (right) it can be appreciated that, in the

prediction window, the data fit provided by the posterior mean E(u|y) propagated

under ĜSTM clearly deteriorates, (see the discrepancies between day 3.5 and 4 and

between 4.5 and 5). Furthermore as noted in section 4.3, it can be seen that the

uncertainty band collapses on the model predictions thus excluding the experimental

data from the model posterior uncertainty. These facts are symptomatic that the

STM might be overfitting the data and, therefore, it does not provide a reliable

inference tool.
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Figure 5.1.4: Analysis of BSRIA data. Posterior densities of heat capacity (left) and
U-value (right) obtained with the HDM and STM model.
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Figure 5.1.5: Analysis of BSRIA data. Propagation of the uncertainty under GSTM
(left) and ĜSTM (right) under the posterior.

5.2 Short time window performance

In this section, the model is tested to determine the shortest appropriate time window

required to produce reliable results. Besides the BSRIA data set presented above, the

HDM is also tested on the other data sets collected during this research and described

in sections 3.3 and 3.4.

5.2.1 Different time windows performance

Having investigated the performance of the STM and HDM on a 3.5 day window,

it is now interesting to determine the minimum amount of data necessary for the

HDM to produce acceptable results in terms of conductance evaluation and heat

transfer modelling. The data set utilized for the window length investigation is the

one collected in the environmental chamber on the solid wall (wall C), which has

been presented in section 4.2.1. A 7 day time window is considered in all cases, with

different amounts of data used for the inference process (3.5 days, 2 days, 12 hours
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etc). The performance of the model was evaluated based on the residuals between

the model prediction and measured data on the second part of the time window (3.5

days, 5 days, 6.5 days etc). The following definition of residuals is introduced:

Res =

√∑
(y − Ĝ(u))2

N
(5.1)

Where y are the measured data and Ĝ(u) are the model predictions and N is the

number of data points in the prediction window. At this point, it is necessary to

specify that for the shorter time windows (1 day and less) the sampling frequency

was increased from 5 minutes to 3 minutes. It is worth noting that the residuals

are independent of the number of data points used as the differences between model

prediction and experimental data are divided by the total number of points used, as

it may be seen in equation (5.1).

Table 5.2.1 shows the outcomes of the different inference processes with the rele-

vant uncertainty. As was to be expected, the uncertainty in the thermal properties

increases as the length of time window decreases, but all the values are found to be

in good agreement with values found in the literature (Table 4.2.1). The algorithm

developed cannot cope with time windows shorter that 1.5 hours: when the HDM was

tested on a 45 min window it failed to produce any result. This may be attributed

to the fact that 45 minutes are not sufficient to record the heat storage effects that

naturally occur inside the wall and therefore the model does not have enough data

to characterise the thermal properties of the construction investigated. Table 5.2.2

shows the residuals calculated via equation (5.1).
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Table 5.2.1: Conductance and volumetric heat capacity and statistical uncertainty
for different time windows

E(K|y)
[W/(m2K)]

[V(K|y)]1/2

[W/(m2K)]
Relative
uncer-
tainty

E(C|y)
[J/(m2K)]

[V(C|y)]1/2

[J/(m2K)]
Relative
uncer-
tainty

3.5 days 3.16 1.3 × 10−3 0.04 % 3.41 × 105 2.00 × 103 0.59 %
2 days 3.17 3.4 × 10−3 0.11 % 3.61 × 105 5.61 × 103 1.56 %
12 hours 3.17 9.5 × 10−3 0.30 % 3.72 × 105 2.16 × 104 5.80 %
6 hours 3.15 1.8 × 10−2 0.58 % 4.07 × 105 5.05 × 104 12.41%
3 hours 3.13 3.4 × 10−2 1.08 % 4.36 × 105 7.23 × 104 16.58%
1.5 hours 3.07 5.6 × 10−2 1.81 % 4.70 × 105 9.54 × 104 20.33%
45 minutes NA NA NA NA NA NA

Table 5.2.2: Residuals for internal and external heat flux for different time windows
Time window 3.5

Days
2 Days 0.5

Days
6 hours 3 hours 1.5

hours
45 min-
utes

Internal
residual
[W/(m2K)]

0.74 1.42 1.40 1.39 1.40 1.61 NA

External
residual
[W/(m2K)]

0.69 0.76 0.93 1.37 1.44 2.00 NA

Figure 5.2.1 shows the variance in the K-value, C-value and the internal and

external residuals against the time window length. In both graphs, especially for the

K-value variance and external residuals, it is clear that shortening the inference time

window produces a larger uncertainty in the values obtained and larger residuals.

All figures show that there is a sharp decrease in uncertainty and residuals when

extending the time window to 0.5 days. This suggests therefore that 12 hours is the

optimal window frame to minimise both the uncertainty and the data collection time.

The uncertainty in the heat capacity per unit area is larger than that in the K-

value, still, the estimates found appear to be in agreement when compared with values

found in literature. Even if the data suggest that a 12 hour window is optimal for the
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calculation of the K-value and heat flux predictions, the K-value found using just 1.5

hours of observations is still in an acceptable range with the variance estimated with

the MCMC algorithm being only 1.8%, (table 5.2.1). In light of this observation, if

the focus of the research performed is simply to obtain an estimate of the K-value and

then U -value of a construction, 1.5 hours of data, coupled with the HDM presented

in this thesis, could be sufficient. This shows that the HDM is a powerful tool for

large scale performance monitoring of building fabric.

These conclusions are drawn from the results obtained in the environmental cham-

ber and might not be therefore representative of a real, in-situ application. For this

reason, the same analysis was performed on the dataset collected in the unoccupied

solid wall property described in section 3.3 and an insulated steel frame construction

part of an office space described in section 3.4.
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Figure 5.2.1: Analysis of the HDM on short time windows. Left: variance in the
K-value. Middle: variance in the heat capacity per unit area Right: Internal and
External heat flux residuals
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5.2.2 Analysis on the unoccupied solid wall property

The construction investigated in this case is an unoccupied solid wall property. The

wall monitored appears to exhibit a defect area in the centre of the construction. As no

other visual elements or design construction drawings were available, it was supposed

that this could be the result of a chimney or flue present in the wall thickness.

This areas is included in the analysis as it represents a practical scenario where,

from visual inspection only, the experimenter cannot distinguish the wall construction

and the defect could be overlooked.

The air temperature profiles and heat flux data collected during the monitoring

period are displayed in figure 5.2.2. Surface temperature measurements were also

available for each location monitored, therefore the model adopted for the inversion

is the heat equation with surface temperature boundary conditions, described by

equations (2.1) - (2.5).
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Figure 5.2.2: Air temperatures and heat flux profiles of the data collected in the
unoccupied solid wall property

As in the case of the data collected in the environmental chamber, at first the
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data were analysed via the “Average Method”, equation (1.18) to provide a bench-

mark for future comparison. The K-value/ resistance results are displayed in Figure

5.2.3, along with a schematic representation of the sensor locations. The full time

window available for the calculations is 6 days, and, in the case of the calculation via

the “Average Method”, the whole time window was necessary to meet the stability

criteria described in ISO 9896:2014.

For this validation, the sensors in the locations bottom centre and top right of the

wall were utilised (locations 4 and 5). Location 4 is representative of the defect within

the wall whereas location 5 is a defect free area of the wall and is therefore expected

to yield measured data that are representative of a solid wall. As the wall considered

was supposedly a solid wall, the priors do not require adjustment and are the same as

those used for the analysis of the data collected in the chamber as detailed in section

4.2.

5.2.2.1 Location 5

From the results displayed in table 5.2.3, it can be seen that the HDM is able to

produce reliable estimates of the conductance and heat capacity for the building

structure considered, as the figures obtained (especially when using 3 and 2 days

data windows) agree with the ““Average Method”” measurement (2.86 [W/m2K])

and the values found in literature (K-value 2.60 - 3.58 W/m2K and C-value 2.77 ×105-

4.40 ×105 J/m2K, as displayed in table 4.2.1) as the uncertainty on the ““Average

Method”” includes all the values obtained with the HDM.
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Figure 5.2.3: Wortley Hall Close data. Sensor location, resistance and U-value calcu-
lated with the “Average Method”.

Table 5.2.3: Conductance, volumetric heat capacity and statistical uncertainty in-
ferred for different time windows from data collected from Wortley Hall Close. Loca-
tion 5

E(K|y)
[W/(m2K)]

[V(K|y)]1/2

[W/(m2K)]
Relative
uncer-
tainty

E(C|y)
[J/(m2K)]

[V(C|y)]1/2

[J/(m2K)]
Relative
uncer-
tainty

3 days 2.95 5.30 x 10−3 0.18% 3.87 x 105 1.07 x 104 2.77 %
2 days 2.94 7.40 x 10−3 0.25 % 3.94 x 105 1.33 x 104 3.39 %
1 day 2.65 4.62 x 10−2 1.75 % 5.47 x 105 4.65 x 104 8.50 %
12 hours 2.67 5.31 x 10−2 1.98 % 2.74 x 105 4.27 x 104 15.58 %
6 hours 3.19 1.84 x 10−1 5.75 % 2.10 x 105 3.17 x 104 15.12 %

Table 5.2.4: Residuals for internal and external heat flux for different time windows,
location 5

Days used for the in-
ference

3 Days 2 Days 1Day 0.5 Days 6 hours

Residuals for internal
flux [W/(m2K)]

1.60 1.47 3.41 2.43 5.45

Looking at the residuals and uncertainty plots shown in figure 5.2.4, it can be

seen that the general trend follows those for the data collected in the environmental
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chamber, figure 5.2.1: by decreasing the time window used for the inference, the

confidence in the results obtained decreases. Still, in this specific case, looking at

the residual plot and scrutinising the values displayed in table 5.2.3, it can be seen

that the results obtained from the 12 hour window look more reliable that the results

obtained using a whole day’s worth of data, as the heat capacity inferred over 24

hours is too high to be representative of a solid wall.

This behaviour could be attributed to the fact that, for this peculiar data set, the

indoor air temperature is highly unstable and, as can be seen from figure 5.2.2, the

1 day temperature profile includes a sharp jump in temperature, which is excluded

from the 12 hour time window.

The prediction profiles obtained with the HDM model are displayed in figure

5.2.5. In this figure, also the predictions obtained from the inference on the 6 hour

data have been included, to show that after the 12 hour window the quality of the fit

deteriorates.
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Figure 5.2.4: Analysis of the HDM performance on solid wall construction, unoccupied
property, location 5. Left: variance on the conductance. Right: variance on the heat
capacity. Bottom: Residuals.
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Figure 5.2.5: Heat flux predictions obtained from the HDM with different inference
windows in location 5. Top: 1 day inference window, middle: 12 hours inference
window, bottom: 6 hours inference window
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5.2.2.2 Location 4

The analysis carried out for location 5 was also carried out for location 4, investi-

gating the performance of the HDM on different inference windows. The values of

the conductance and heat capacity obtained are displayed in Figure 5.2.5 and the

residuals, calculated via equation (5.1) are summarised in table 5.2.6.

Table 5.2.5: Conductance, volumetric heat capacity and statistical uncertainty for
different time windows on Wortley Hall Close data, location 4

E(K|y)
[W/(m2K)]

[V(K|y)]1/2

[W/(m2K)]
Relative
uncer-
tainty

E(C|y)
[J/(m2K)]

[V(C|y)]1/2

[J/(m2K)]
Relative
uncer-
tainty

3 days 2.38 4.10×10−3 0.17 % 2.51×105 7.23×103 2.88 %
2 days 2.40 5.80×10−3 0.24 % 2.58×105 9.48×103 3.68 %
1 day 2.19 3.24×10−2 1.48 % 3.84×105 2.45×104 6.38 %
12 hours 2.23 2.95×10−2 1.32 % 2.31×105 4.49×104 19.43 %
6 hours 2.48 9.71×10−2 3.91 % 1.53×105 2.60×104 17.00 %

Table 5.2.6: Residuals for internal and external heat flux for different time windows
Days used for the in-
ference

3 Days 2 Days 1Day 0.5 Days 6 hours

Residuals for internal
flux [W/(m2K)]

1.35 1.54 2.61 1.67 3.28

Looking at the values shown in table 5.2.5, it can be seen that also in this case the

HDM successfully characterises the value of the conductance, if the results obtained

from the ““Average Method”” are used as a benchmark. The results obtained for the

heat capacity are clearly different from those obtained in location 5, the lower value

supporting the hypothesis that the construction in location 4 differs from a solid wall

construction, possibly as the result of a void being present in the wall thickness.

This finding shows that, unless the researcher is aware of the presence of a defect
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Figure 5.2.6: Analysis of the HDM performance on solid wall construction, unoccupied
property, location 4. Left: Variance on the conductance. Right: Variance on the heat
capacity. Bottom: Residuals.

in that particular area of the construction, an analysis that does not include suffi-

cient variability in the thermal properties might lead to misleading results. In the

case reported here, if location 4 was considered as representative of the whole wall

construction in combination with the ““Average Method”” alone, the wall construc-

tion thermal performance would be overestimated, without further indicators that

the construction might differ from the expectations.

Also in this case, the residuals and the uncertainty plots, displayed in figure 5.2.6,
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confirm the finding from the previous cases: reducing the inference time window

increases the uncertainty and the residuals. Additionally, as was found in location

5, for location 4 too, the residual plot shows a worsening in the performance when

the 1 day data window with the 12 hours inference window are compared. Again

this behaviour could potentially be attributed to the fact that there is a jump in the

indoor air temperature profile, as discussed in the previous subsection.

As well as in the previous case, it can be seen that the fit using 1 day’s worth

of data as an inference window worsens compared with the fit produced by inferring

the thermal properties using 12 hours of data. Looking at the results displayed in

table 5.2.5, it can be seen that this may be attributed to the inferred value of the

heat capacity, which is considerably higher than the values inferred during the other

time windows. In turn, this supports the hypothesis that the cause leading to the

overestimation of the heat capacity may be the sudden jump in internal temperature

observed in day 2 of the data set. As discussed in the previous sections, to measure

the heat capacity of a building element, it may be necessary to expose the construc-

tion to large variations in heat flux to produce a change in the amount of heat stored

in its body.

Looking at the results obtained from the data collected on the unoccupied solid

wall property, it can be stated that 1.5 hour of inference data is insufficient for the

characterisation of the building element behaviour as the heat capacity value obtained

using 6 hour inference window presents approximately 15% uncertainty for the solid

part of the wall tested (and nearly 17% for the test performed over an area of thermal
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Figure 5.2.7: Heat flux predictions obtained from the HDM with different inference
windows in location 4. Top: 1 day inference window, Middle: 12 hour inference
window, Bottom: 6 hour inference window.
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inhomogeneity). Despite uncertainty over the estimate in heat capacity, the expected

conductance value, based on the ““Average Method”” estimate, is well within the

uncertainty band found in both cases.

Based on the results presented, it is reasonable to assume that 2 day’s of data could

be sufficient to characterise of the thermal properties of a wall of solid construction.

In spite of the fact that in this case the 1 day predictions are suspicious, especially

regarding the heat capacity, the properties inferred with 12 hours are reasonable and

the data fit obtained is of good quality. Based on these grounds, it is reasonable to

assume that the predictions based on 1 day’s worth of data are spoiled by the presence

of a sudden discontinuity in the temperature boundary conditions, and that, under

undisturbed boundary conditions, the 1 day window could be an optimal compromise

between accuracy of the results obtained and measurement time.

In order to confirm this point, further investigations have been carried out on the

insulated steel frame construction described in section 3.4, the findings for which are

presented in section 5.2.3.

Looking at the profiles of the thermal properties found in location 4 and displayed

in figure 5.2.9, it can be seen that both the thermal conductivity and the volumetric

heat capacity profile suggest the presence of a strata with low thermal conductivity

and low volumetric heat capacity in the centre of the construction. In contrast, this

is not the case for the thermal properties profiles inferred for location 5, figure 5.2.8.

As mentioned in section 4.1, this assessment can be only used as a qualitative tool as
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Figure 5.2.8: Thermal properties inferred from the 3 day inference window for location
5 in the unoccupied solid wall property.

the model is not able to give exact information on the location and number of layers

comprising the wall structure. Still, the thermal properties profiles found corroborate

the hypothesis of a chimney or a flue as an explanation to the defect area found in

the solid wall construction.
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Figure 5.2.9: Thermal properties inferred from the 3 day inference window for location
4 in the unoccupied solid wall property.

5.2.3 Analysis of the insulated steel frame construction

The data collected from the insulated steel frame construction were initially analysed

using the ““Average Method”” according to equation (1.18). Due to the nature of

the wall construction, the heat flux sensors were distributed so as to capture the

different thermal behaviour of the steel frame and the insulation. Therefore two sets

of calculations are presented: one for the sensor placed between the structural studs

i.e. over the insulation and one for the sensor placed on a stud i.e. over the steel

frame. The data analysed correspond to the period 21st December 2015 - 3rd January

2016. Table 5.2.7 shows the values of conductance and wall resistance calculated with

the “Average Method”. Figure 5.2.12 displays the air temperatures and surface heat

fluxes during the monitoring period.

The heat capacity of the construction was estimated based on the design wall

structure. The steel frame construction is filled by 75mm thick PIR board and covered

with an external cladding of 120mm thick of graphite enhanced EPS as shown in figure
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5.2.10. The internal finish comprises 10 mm plasterboard and approximately 2 mm of

plaster. The thermal properties of the insulation, steel frame and plaster board were

taken from CIBSE Guide A, appendix 3.A7 [8]. Still, due to the shape of the steel

studs, some adjustment must be made to the calculation of the total heat capacity:

the studs employed in the construction are an I section, and the cavities between

neighbouring studs are filled with PIR insulation as indicated in figure 5.2.11. This

is a highly inhomogeneous construction layer and considering only the steel heat

capacity (or only the capacity of the insulation layers) displayed in table 5.2.8 as

indicative heat capacity of the whole construction would disregard the inhomogeneity.

The volume ratio between the steel and the insulation is approximately 20% to 80%,

in favour of the latter therefore the effective heat capacity of such a construction is

expected to be the weighted average of the steel and insulation heat capacity, in this

case:

Ceff = 272550× 0.2 + 2208× 0.8 ' 56276 [J/m2K] (5.2)

The following subsections, will present the analysis carried out with the MCMC algo-

rithm with the HDM on the data collected from the insulated steel frame construction.

Section 5.2.3.1 describes the analysis of the data collected from the sensor located over

the insulation and section 5.2.3.2 relates to the data collected from the position over

the steel frame.
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Figure 5.2.10: Diagram illustrating the insulated steel frame construction

Figure 5.2.11: Diagram illustrating section of the steel beam filled with PIR
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Figure 5.2.12: Air temperatures and heat flux profiles of the data collected in the
insulated steel frame office
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Table 5.2.7: Thermal characteristics of the insulated steel frame construction calcu-
lated with the “Average Method”

Resistance [m2K/W ] Conductance [W/m2K]
Insulation 10.30 0.10
Steel frame 2.23 0.45

Table 5.2.8: Thermal properties of the construction materials according to CIBSE
Guide A [8].

Specific heat ca-
pacity [J/kgK]

Density
[kg/m3]

Thermal
conductivity
[W/mK]

Thickness
[m]

Heat Capac-
ity per unit
area[J/m2K]

PIR 920 32 0.02 0.075 2208
EPS 1470 35 0.027 0.120 6174
Gypsum
Plaster

960 1120 0.51 0.010 10752

Steel
frame

460 7900 45 0.075 272550

5.2.3.1 Insulation

To reflect the a priori knowledge relative to the wall construction, the priors were

modified to account for the different expected values of thermal conductance and

heat capacity of the insulated steel frame. The mean value of the prior of thermal

conductance was set to 0.83 [W/m2K] and the mean value of the prior of the ca-

pacitance was set to 1.98x104 [J/m2K]. The priors were wide enough to reflect the

variability of the thermal properties of the construction taken in consideration, as in

the previous cases.

As, surface temperature measurements were available in each of the locations

monitored, the model adopted is the same as in section 5.2.2, namely equations (2.1)

- (2.5). It is important to note that the model adopted for the calculation remains

the same, independently of the wall construction investigated and that only the dis-
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tributions of the priors are modified.

Table 5.2.9: Conductance, volumetric heat capacity and statistical uncertainty in-
ferred for different time windows from the measurements made over the insulation

E(K|y)
[W/(m2K)]

[V(K|y)]1/2

[W/(m2K)]
Relative
uncer-
tainty

E(C|y)
[J/(m2K)]

[V(C|y)]1/2

[J/(m2K)]
Relative
uncer-
tainty

3 days 0.10 1.33 x 10−4 0.13 % 4.18 x 104 0.87 x 103 2.08 %
2 days 0.10 2.14 x 10−4 0.21 % 3.64 x 104 0.70 x 103 1.91 %
1 day 0.11 5.18 x 10−4 0.49 % 3.74 x 104 0.71 x 103 1.91 %
12 hours 0.12 6.40 x 10−3 5.41 % 5.42 x 104 4.84 x 103 8.94 %
6 hours 0.09 5.50 x 10−3 5.89 % 2.87 x 104 4.29 x 103 14.94 %

Table 5.2.10: Residuals for internal heat flux for different time windows, insulated
steel frame construction for measurements made over the insulation

Days used for the in-
ference

3 Days 2 Days 1 Day 0.5 Days 6 hours

Residuals for internal
flux [W/(m2K)]

0.07 0.12 0.13 0.30 0.34

Observing the values displayed in table 5.2.9, it can be seen that the conductance

inferred with the HDM is extremely close to the value measured with the ““Average

Method”” shown in table 5.2.7. The estimate of the heat capacity of the structure

is approximately 4x104 J/m2K. This value is considerably higher than the heat ca-

pacity of insulation only and considerably lower than the heat capacity of the steel

beams, but it is similar to the effective heat capacity of the steel beam and insulation

combined. This finding suggests that it is reasonable to suppose that the overall heat

capacity of the insulated steel frame structure will be an average between the capacity

of the insulation and the capacity of the steel, in favour of the former, due to the

small volume of steel present in the construction compared with the volume of the

insulation.
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Figure 5.2.13: Analysis of the HDM performance on insulated steel frame construc-
tion: insulation. Left: Variance on the conductance. Right: Variance on the heat
capacity. Bottom: Residuals
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Analysing the results obtained as in the previous case (section 5.2.2), it can be

seen that the residuals, (obtained using equation (5.1)), and the uncertainty follow a

similar pattern to that observed in the environmental chamber data: as the length of

the data window used for the inference decreases, the errors increase.

In this case, looking at figure 5.2.13, it can be seen that the point at which errors

drop to a constant level occurs at 1 day and that time windows shorter that one day

produce higher uncertainties and residuals.

Even if, in absolute values, the uncertainties and the residuals look small, the im-

pact can be seen on the prediction of the heat flux behaviour. Figure 5.2.14 compares

the heat flux predictions obtained with 1 day’s worth of data and those obtained with

12 hour’s worth of data. The black dashed lines represent two standard deviations

from the mean value and, in the left panel, it can be seen that this contains the model

prediction and wraps around the experimental data points. As it can be seen from the

right panel of figure 5.2.14, the prediction produced by the inference window based

on 12 hours of measurements deteriorates and the uncertainty band does not capture

all of the data points.

5.2.3.2 Steel frame

For this measurement position, the prior mean of the heat capacity was also mod-

ified to account for the different expected values and was increased to 1.58 x 105
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Figure 5.2.14: Comparison of model output and measured data, insulated steel frame:
insulation. Top: calculations using 1 day inference time window, bottom: calculations
using 12 hour inference time window
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[J/m2K] to reflect the presence of the steel structure. Table 5.2.11 shows the results

obtained with the HDM for the position located over the steel frame on the insu-

lated steel frame construction. As may be seen by comparing these results with those

displayed in table 5.2.7, the value of the conductance is compatible with the value

calculated with the “Average Method”. The heat capacity inferred, is of the order 7

x 104 J/m2K. In this case, it can be seen that the value is considerably higher than

the estimate obtained from the measurements made over the insulation, reflecting

the influence of the steel beam on the properties determined at this sensor location.

Again, the value is not indicative of the heat capacity of the insulation alone or of

the steel alone, but it is in agreement with the effective heat capacity calculated with

the weighted average between the steel frame and insulation.

Once more, looking at the residuals and uncertainty plots, displayed in figure

5.2.15, it can be seen that the uncertainty and residuals increase when the time

window for the data analysed decreases, showing the point at which errors stabilise

occurring at 1 day. Observing figure 5.2.16, it can be seen that the model predictions

made using 1 day of experimental measurements still produce a reliable data fit, while

the fit deteriorates using just 12 hour of measured data.

The validation of the HDM model proposed in these sections is important be-

cause, here, the measurement conditions were not as controlled as in the case of the

environmental chamber results from section 4.2, thus including the impact of external

weather conditions. Furthermore, the availability of 14 day’s of measured data makes

it possible to understand the ability of the method to predict performance up to 13
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Figure 5.2.15: Analysis of the HDM performance for insulated steel frame construc-
tion for measurement position over steel frame. Left: Variance of the conductance.
Middle: Variance of the heat capacity. Right: Residuals
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Table 5.2.11: Conductance, volumetric heat capacity and statistical uncertainty in-
ferred for different time windows from measurements made over the steel frame in
the occupied office space.

E(K|y)
[W/(m2K)]

[V(K|y)]1/2

[W/(m2K)]
Relative
uncer-
tainty

E(C|y)
[J/(m3K)]

[V(C|y)]1/2

[J/(m3K)]
Relative
uncer-
tainty

3 days 0.46 1.33 x 10−4 0.03 % 6.76 x 104 0.56 x 103 0.82 %
2 days 0.46 1.90 x 10−4 0.04 % 7.18 x 104 1.87 x 103 2.60 %
1 day 0.47 4.87 x 10−4 0.10 % 7.94 x 104 1.91 x 103 2.40 %
12 hours 0.47 5.60 x 10−3 1.20 % 1.73 x 105 2.57 x 104 14.92 %
6 hours 0.53 1.38 x 10−2 2.58 % 1.75 x 105 2.56 x 104 14.67 %

Table 5.2.12: Residuals for internal heat flux for different time windows, for measure-
ments made over the steel frame

Days used for the in-
ference

3 Days 2 Days 1 Day 0.5 Days 6 hours

Residuals for internal
flux [W/(m2K)]

0.19 0.24 0.29 0.67 1.27

days in the future, thus providing stronger evidence in support of the reliability of

the thermal properties inferred. Moreover, it proves the effectiveness of the model in

modelling different structures: the case under investigation is a lightweight structure,

as opposed to the previous cases consisting of heavyweight structures. The results

obtained showed that the HDM can be applied in both cases, without the need to

modify the governing model.

In addition, looking at the spatial variation in thermal properties inferred from

the 3 day data window, displayed in figures 5.2.17 - 5.2.18, it can be seen that the

model is able to infer the presence of a discontinuity in the construction. This may

be seen from the panels on the right of each figure: in both, the thermal conductivity

and in the heat capacity, there is a peak at approximately one third of the thickness

of the wall. This is indicative of the presence of the steel stud in the construction,
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as it is known from the design that the steel studs are located towards the internal

facade of the building.

In both cases, the heat capacity exhibits a sharp peak at the beginning, corre-

sponding to the internal surface of the wall. This corresponds to the presence of

the gypsum plasterboard, that, as may be seen from table 5.2.8, has a high heat

capacity compared with the insulation materials themselves. As already explained in

the synthetic experiment, section 4.1, this is not to be considered as a tool to infer

the exact thermal properties of the separate layers, but it can still be useful to gain

information about the structure of the wall and the presence of material layers with

different thermal properties.

The thermal conductivity from the measurement made over the insulation (left

panel in figure 5.2.17) exhibits a peak in the second half of the wall, corresponding

to the external half of the construction. Looking at the thermal properties of the

building materials in table 5.2.8, it can be seen that the external half of the wall

is made of EPS which has a higher conductivity than the PIR used to fill the gaps

between the steel studs.

192



Chapter 5. Validation against other data sets 5.2. Short time window performance

0 20 40 60 80 100

Discretisation Elements

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03
[W

/
m
K
]

Thermal conductivity, insulation

0 20 40 60 80 100

Discretisation Elements

0.07

0.08

0.09

0.1

0.11

0.12

0.13

[W
/
m
K
]

Thermal conductivity, steel frame

Figure 5.2.17: Inferred thermal properties for the steel frame construction, obtained
from the 3 day data window inference. Left: thermal conductivity for the position
over the insulation, right thermal conductivity for the position over the steel frame
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5.3 Discussion

The validation carried out in this chapter confirms the value of the MCMC as a tool

for the inference of thermal properties on opaque building elements.

Section 5.1.2 replicates the analysis carried out by Biddulph et. al [72], analysing

the BSRIA data set with a single capacitor RC network model (referred to as STM in

this thesis). In this case, the results obtained for the thermal transmittance, heat ca-

pacity and heat flux predictions are in complete agreement with the values published

in [72]. This comparison is extremely important for validating the results produced

by this analysis and by the further development of the model, as it shows agreement

with published material.

Section 5.1.1 evaluates the performance of the HDM on the same data set obtaining

compatible values for the inference of thermal transmittance but different values for

the evaluation of heat capacity.

Comparing the HDM and STM heat flux predictions, it can be seen that the HDM

offers improved prediction abilities over the simple RC network model.

This, in addition to the fact that the heat capacity estimate lies in the range found

in literature, indicates that the continuous model extends the capabilities of a dis-

crete RC network and, looking at the results obtained on lightweight structures, also

overcomes the limitations related to model topology, ([64, 65]), as the same model can

be applied to different structures without need of changing the number of resistances

and capacitances.
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The results obtained on the unoccupied solid wall property indicate that a reliable

estimate of the conductance can be obtained within two monitoring days. Shorter

time windows suffer from the presence of sharp fluctuations in the boundary condi-

tions, displaying a worsening in the predictions when a 1 day inference window is

used. As shorter inference time windows seem to improve on the results obtained,

it is reasonable to attribute this worsening to the boundary conditions particular to

this experiment.

The results obtained from the analysis of the insulated steel frame construction,

where there were no step changes in internal temperature, seem to indicate that 1

day of observations is sufficient to obtain a reliable estimate of the thermal properties

sought.

Here, for measurements made over the insulation and over the steel frame, a sharp

increase in the residuals and the uncertainty for windows shorter than 1 day is ob-

served. As the results obtained using the 24 hour window are still in agreement with

those found in the literature and with those obtained from the “Average Method”

calculations, 1 day seems to be the optimal time window to minimise uncertainty and

data collection time.

Summarising the results obtained from the analysis of short time windows, it

can be stated that this MCMC method can, under moderately controlled conditions,

infer the thermal properties based on only one day’s data. Moderately controlled
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conditions are necessary, as, as shown in the unoccupied solid wall property data set,

strong shocks in the internal temperatures lead to longer monitoring periods. Still,

these conditions seem reasonably achievable in real life situations as it corresponds

to a room with closed windows and doors and no occupants for 24 hours only.

Special attention should be dedicated to the question of the evaluation of the

uncertainty on the U-value. The analysis performed with the MCMC offers the ad-

vantage of simultaneously evaluating the K-value and its corresponding experimental

error. The statistical error indicated in this body of work cannot be considered as the

final uncertainty, as this is representative of the instrumentation uncertainty alone,

still, the following observations can be made:

• The statistical error found shows that the effect of the accuracy of the instru-

mentation is well below the 5% error indicated by the ISO9869:2014

• The 10% error caused by the variations over time of the temperatures and

heat flow, indicated by the ISO 9869:2014, does not apply in this case as the

model used does not make any assumptions about the energy stored in the wall.

Instead, as it uses the full 1D heat equation, it is able to simulate the change

in energy storage.

The only other sources of error are due to the differences between air and radiant

temperature (5% according to ISO 9869) and to random variations in the thermal

contact between the sensors and the wall surface temperature (5% according to ISO

9869). ISO 9869:2014 states that “ If the heat flux meter is very thin and its thermal
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resistance low enough, [...] the corrections for the thermal resistance and finite dimen-

sions of the heat flux meter are not required” [48]. Accordingly, the manual for the

Hukseflux HFP01, the heat flux meter used during the experimental data collection,

discourages corrections for the operational error as it relies on too many assumed

values that lie outside the researcher’s control [5]. For these reasons, in addition to

the fact that the sensor resistance (71×10−3m2K/W [5]) is approximately 5 times

smaller that the resistance of the solid wall constructions considered, the uncertainty

related to the sensor resistance and operative error have been neglected.

Assuming the uncertainty values indicated by the ISO standard, the final uncer-

tainty is expected to be less than the combined effect of instrumentation and air/radi-

ant remperature differences, i.e. between 10% and
√

(52 + 52)% ≈ 7%. Overall, using

a more accurate model such as the HDM, the uncertainty was halved with respect to

the value prescribed by the ISO 9869.

5.3.1 Limitations of the model

As indicated in sections 5.2.2 and 5.2.3 the HDM can be used to obtain an indica-

tion of the internal wall construction without detailed prior knowledge. This is only

a qualitative tool as the model cannot predict the exact position and thickness of

the various strata. This limitation is strictly connected to the definition of the prior

distributions, as these were chosen to restrict the model to continuous functions. Fur-

thermore, as shown in section 4.1 using synthetic data, the parameters adopted in the
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definition of the covariance (equation (2.27)) play a key role in dictating the flexibility

allowed in the inference of thermal conductivity and volumetric heat capacity.

As a general guideline, it is not recommended to use this tool for the detection of

internal layers. If this scope of detecting internal layers were to be pursued, further

amendments to the model would have to be performed, such as developing priors that

include discontinuous functions.

Currently the model is computationally expensive to run as, for the inversion

based on the 3 days inference window it, takes more than 5 hours on on an Intel

Core i3-4130 at 3.40 GHz. The computation based on a single day of monitored

data reduces the computational time by 66%, but as it takes nearly 2 hours, it still

yet carries high computational overheads. Table 5.3.1 shows the computation times

required for different experiments and different time windows.

Table 5.3.1: Computation time needed for the inference of the thermal properties for
different experiments

Experiment Computational time
Synthetic 2.70 hours
Solid wall, 3.5 days 5.24 hours
Solid wall, 1 Day 1.75 hours
Solid wall, 12 hours 1.43 hours

This shows that even if the model developed introduces an improvement in the

current U-value measurement procedure, reducing its monitoring time and producing

a more accurate estimation of the uncertainty, the computational time necessary to

implement the model is a drawback to the use of this model as a practical tool. It is
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therefore useful to explore methods by which its computational performance may be

improved if the HDM is to be adopted in practice.

Based on the experience gained of implementing the model with fixed temper-

ature boundary conditions and convective boundary conditions, it was found that

the former is computationally more efficient as it does not require the inference of

the initial internal temperature of the structure considered. The latter requires a

computational time longer than 12 hours thus undoing the benefits of reducing the

monitoring period. For this reason it is advisable to collect surface temperature

measurements, as opposed to air temperature measurements and use the model with

surface temperature boundary conditions.

5.4 Conclusions

The last two chapters presented a model based on the heat conduction equation that,

coupled with a Bayesian inference algorithm, is able to calculate the K-value of a

building element using 24 hours of experimental data. This is an enormous improve-

ment compared to the time required to calculate the U-value using the “Average

Method”: 3 days minimum according to the ISO 9869 but reaching up to two weeks

[45]. In summary the main outcomes of the HDM are that it:

1. Is able to quantify the K-value and thermal capacity of building element con-

structions in a very short period of time (1 day vs a week or more [45])

2. Is able to distinguish between different wall constructions, such as solid wall
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and cavity wall, without prior knowledge

3. Offers the quantification of uncertainty associated with the value found, and

considerably reduces the uncertainty associated with the current measurement

standard, from 14%-28% suggested by the ISO 9869:2014 to 7%-10% as ex-

plained in section 5.3.

4. Offers a spatial representation of the heat transfer behaviour whitin a building

element.

While the first three outcomes are very interesting for large scale monitoring, new

build quality control and existing building performance assessment, the last point

proves that this model offers a deeper understanding of the heat transfer through the

building elements. This, therefore, opens the possibility to improve whole building

energy simulations, which, as explained in the literature review section, currently

hinge mostly on the U-value or the assumed values of thermal properties of the single

construction layers.

Still the algorithm presented has high computational costs. There is value in

exploring alternative approaches to enhance the prediction of the HDM as an analysis

tool. The following chapter investigates the performance of a new computational

algorithm, able to implement the HDM model with reduced computational costs.
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Ensemble Kalman filter

As mentioned in sections 5.3-5.4, the MCMC technique presents the drawback of high

computational costs for the inference of U-value. This chapter describes an alternative

method for the solution of the heat transfer problem within the Bayesian framework

described in chapter 2. The algorithm chosen in the Ensemble Kalman Filter (EnKF)

technique.

The new solution technique is based on particle filters that offer the possibility to

approximate the posterior probability by a set of samples. This reduces the number

of computations required by tackling several issues: i) in the application of MCMC to

determine the thermal properties of walls there was shown in this work to be a need

to compute 1 million iterations to ensure the convergence of the Markov chain, ii) for

each iteration the heat equation has to simulate the whole data window considered (3

days, 1 day ...). The Kalman filter algorithm instead “self regulates” the number of

iterations between one time step and the other thus not imposing a need to specify a

fixed number of iterations a priori addressing issue (i), and for each of these iterations
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the heat equation has to simulate only a single time step, rather than the whole data

window addressing issue (ii).

For these reasons, it is expected that the Ensemble Kalman Filter algorithm is

able to produce significant reductions in computational cost, thus making the HDM

a viable practical tool for the calculation of the thermal conductance.

Ensemble Kalman Filters have applications in various fields, such as the predic-

tion of soil moisture content based on temperature measurements [90], and estimation

of transient temperature field in oil pipelines, [76]. In the context of the built en-

vironment, Lin et Wang [91], proposed a method to forecast the dispersion of air

contaminants using an Ensemble Kalman Filter methodology. Huchuk et al [92] used

EnKF to train a simple RC network to be used as a foundation for a model-based

predictive control (MPC) to regulate window shades to minimise energy consumption

in an office room. In the context of this research, the Ensemble Kalman Filters will

be used for the inference of effective thermal properties of building elements.

This chapter offers a brief introduction to the Ensemble Kalman Filter technique

adopted, and displays the results obtained during the experimental validation.

In an analogous fashion to that adopted in chapter 4, the algorithm has been

trialled on the same synthetic experiment used in the original verification of the

HDM to verify that the EnKF technique maintains the same abilities to retrieve the

profiles of thermal conductivity and volumetric heat capacity.

Later, the performance on different data sets has been investigated, in order to
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ascertain that, also the EnKF technique proposed is also able to distinguish different

structures without prior knowledge.

6.1 Ensemble Kalman Filters

Ensemble Kalman filters, and in general particle filters, are mathematical techniques

used to estimate the future state of a dynamical system from sensor measurements

and knowledge of the previous state [93]. Particle filters are a different methodology

to characterise the posterior distribution within the Bayesian framework.

The general concept behind particle filters, is that every probability distribution

can be represented by a set of N samples, also called particles. For instance, to

represent the two humped probability distribution depicted in figure 6.1.1, one can

draw more particles from the regions with higher probability and fewer particles from

the region with lower probability, (figure 6.1.1, bottom), so that higher densities of

particles represent the regions with higher probability. The advantage of this repre-

sentation is that it is suitable for all kinds of probability distribution, thus offering

an approximation of any arbitrary distribution.

This is particularly convenient for the case considered here as, as explained in the

sections above, an explicit representation of the posterior p(u|y) is not available, but,

it is known, from Bayes’ theorem, that

p(u|y) ∝ p(y|u)p(u) (6.1)

203



6.1. Ensemble Kalman Filters Chapter 6. Ensemble Kalman filter

Figure 6.1.1: Diagram explaining the characterisation of probability distributions by
sampling

and, therefore, it is still possible to evaluate if a sample belongs to a high probability

region or a low probability region.

Consider the example shown in figure 6.1.1. Even if there is no prior informa-

tion on the target distribution, it is still possible to draw samples from the uniform

distribution (figure 6.1.1, top), evaluate the posterior probability of the samples via

equation 6.1, and thus construct a new sample population that is representative of

the posterior distribution.

In practice, the characterisation of the posterior is done by implementing a recur-

sive feedback control system. In other words, the update step can be divided into two

sub-steps: the time update, where a new prediction is made implementing the model

based upon the knowledge of the previous state, and the measurements incorporated

up to this point, and the feedback stage, where the value of the new prediction is

adjusted when new measurements are available [94]. Figure 6.1.2, shows a diagram

illustrating this concept.
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At the first time step, the prior is given just by the a priori knowledge that the

researcher can dispose of, and, for the heat transfer problem considered, this has

been summarised in the distributions of thermal conductivity and volumetric heat

capacity described in section 2.2.2. Sampling from this prior distribution can be

obtained following the procedure described in appendix A, thus obtaining the first

sample population.

The time update step consists of running the model for every particle i.e. making

a prediction of the heat flux value for the first time step for each sample (or particle).

Later, this is compared with the first measurement available, (feedback), and the like-

lihood of each particle is evaluated using equation 2.22. The particles that maximise

the likelihood are selected while the particles that do not produce acceptable results

are discarded. The subset of remaining particles form the posterior distribution, and

will be used as prior distribution for the next time step.

As it can be seen, the particle filters approximate the posterior distribution “on-

line”, i.e. as the data are being collected. This offers significant reduction in compu-

tational costs, as it doesn’t require the simulation of the full data set every time that

the likelihood is evaluated. The algorithm incorporates the information contained in

the data as it becomes available.

The creation of the posterior distribution by selecting only the particles that max-

imise the likelihood is called importance sampling. This is achieved by assigning a
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Figure 6.1.2: Diagram explaining the Kalman filtering algorithm

weight to each particle representing the probability distribution. Initially, all the

particles are assigned identical weights. These weights are modified following the

feedback step, and the newly assigned weights are proportional to the likelihood.

A well-known shortcoming of the importance sampling algorithm is the weight

degeneracy problem. After a certain number of iterations, only a few samples will

remain with non-negligible weights, and this is problematic for an accurate approx-

imation of a probability distribution. Weight degeneracy is particularly pronounced

when the posterior distribution is substantially different from the prior, as in the

problem considered here, since the priors have been chosen to be wide and uninfor-

mative, and thus quite different from the sought posterior. A suitable measure of

degeneracy is the effective sample size, 1 ≤ ESS ≤ N : in the case of uniform weights

ESS = N and, in the case of only one particle with non-zero weight, ESS = 1 [94].

A common practice to solve the degeneracy problem is resampling. Resampling

eliminates the particles with lowest weights and multiplies particles with higher

weights. This, in turn, can lead to a sample composed only by identical particles,
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again an outcome that is detrimental for the appropriate characterisation of the prob-

ability distribution and the calculation of any estimate.

To solve this sample impoverishment issue, in this work, the procedure explained

by Iglesias et al. [77] was adopted. The authors propose to smooth the transition

between the prior and the posterior by introducing a number of intermediate artificial

distributions, regulated by a tempering parameter. The methodology suggested by

Iglesias et al.[77] is a subclass of particle filters, that provides an approximation of the

moments of the target distribution (for the case considered here mean and variance).

The mathematical description of the procedure can be found in [77], as a detailed

outline of this algorithm is beyond the scope of this thesis.

For both the synthetic experiment and experimental data over which this algo-

rithm has been validated, the ensemble size amounted to 300 particles, and, for better

computational efficiency, at every iteration 15 measurements are assimilated at once,

so that the total number of iterations can be reduced by a factor of 15.

6.2 Synthetic Experiments

The experiment proposed in this section, is the same as the experiment described in

section 4.1. The situation examined corresponds to a wall construction with 5 layers.

The profile of the “true” thermal conductivity and of the “true” specific heat capacity

are displayed in figure 6.2.1. The thickness of the wall was considered to be 0.3 m and

it was discretised into 100 elements for the numerical solution of the heat equation.
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With such profiles for thermal conductivity and volumetric heat capacity, the “true”

K-value and C-value, calculated via equations (2.6), were

Ktrue = 3.62 [W/m2K] Ctrue = 3.19× 105 [J/m2K] (6.2)

The boundary conditions are shown in the left panel of figure 4.1.2, the heat flux

thus obtained is displayed in figure 4.1.2, right panel, which, for the purpose of the

analysis, was corrupted with gaussian noise η ∼ N(0, 0.5).

The thermal conductance and heat capacity inferred from implementing the model

with the Kalman filter were:

Kinferred = 3.62± 0.14 [W/m2K]

Cinferred = 3.17× 105 ± 2.68× 104 [J/m2K]

The parameters defining the prior of the thermal conductivity are λk = 0.5 and

σk = 0.25 and, in a similar fashion, the parameters for the volumetric heat capacity

are λc = 0.1 and σc = 0.1. Figure 4.1.4 displays the prior distributions of the

conductance and heat capacity.

Figure 6.2.2 shows the reduction of the uncertainty in the determination of the

thermal properties characterising the construction considered. The results are similar

to the results obtained by implementing the MCMC described in section 4.1.1. The

prior distribution is uninformative in the case of the thermal conductivity, and, in
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Figure 6.2.1: Synthetic experiment: true value of thermal conductivity and volumetric
heat capacity and the profiles inferred by the HDM with the Kalman algorithm

the case of the volumetric heat capacity, it does not capture the “true capacity” at

all.

After conditioning the model to the data, the uncertainty band is reduced in both

cases and the mean of the posterior distributions follow the behaviour of the “true”

thermal properties.

In both cases, both for the prior and the posterior distributions, the uncertainty

represents three standard deviations from the mean value.
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Figure 6.2.2: Synthetic experiment: Uncertainty reduction in the determination of
the thermal conductivity and volumetric heat capacity
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6.3 Validation experimental data

Following the investigation performed with the MCMC model, it was found that,

with the model developed, it is possible to retrieve the thermal properties of a con-

struction with just one day of experimental observations. As this is one of the most

advantageous results guaranteed by the model developed, it was decided to trial the

performance of the Ensemble Kalman filter on a single day data set, to ascertain

whether this is still achievable with the new solution algorithm.

The results obtained are then compared with the output obtained by implement-

ing the HDM with the MCMC algorithm.

Looking at figures 6.3.1 - 6.3.3, showing the heat flux predictions for the ex-

perimental data collected in the environmental chamber, the unoccupied solid wall

property and the steel frame office, it can be seen that the predictions obtained in

the validation windows are of good quality, as in the case of the model predictions

obtained implementing the HDM model with the MCMC algorithm.

This is confirmed by the residuals calculated via equation (5.1), which, as may be

seen from table 6.3.1, are similar to the residuals obtained with the MCMC algorithm.

This suggests that Ensemble Kalman filters, even if they offer just an approximation

of the posterior distribution, are effective in characterising the posterior of the ther-

mal properties sought and are suitable for the solution of the inverse heat problem

investigated in this study.
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Figure 6.3.1: Environmental chamber, solid wall (top), cavity wall (bottom): heat
flux predictions obtained with the Ensemble Kalman filter HDM
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Figure 6.3.2: Unoccupied solid wall property, location 4 (top), location 5 (bottom):
heat flux predictions obtained with the Ensemble Kalman filter HDM
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Figure 6.3.3: Insulated steel frame construction, insulation (top), steelframe (bot-
tom): heat flux predictions obtained with the Ensemble Kalman filter HDM
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Table 6.3.1: Residuals from experimental data for 1 day simulations for the Ensemble
Kalman filter and MCMC algorithms.

Experiment Residual KF Residual MCMC
Environmental chamber,
solid

1.47 1.40

Environmental chamber,
cavity

0.75 1.79

Office, Insulation 0.13 0.13
Office, Steel frame 0.31 0.29
Wortley, location 4 1.99 2.61
Wortley, location 5 2.02 3.41

An interesting observation may be made in relation to the internal flux collected in

the environmental chamber for the cavity wall. Looking at figure 4.4.1, it can be seen

that the experimental data are affected by noise, and that the model predictions and

uncertainty obtained with the MCMC model are also affected by the noise, making

the picture difficult to interpret.

For the implementation of the model with the Ensemble Kalman filter, the exper-

imental measurements have been previously smoothed with a gaussian low pass filter

to reduce the noise present in the data. In this way, it is possible to obtain a clearer

figure, as may be seen in Figure 6.3.1, bottom.

Looking at tables 6.3.2 - 6.3.4, comparing the values of the thermal conductance

and heat capacity inferred with the Ensemble Kalman filtering technique, with the

values obtained with the MCMC algorithm, it can be seen that the figures obtained

with the two methods are in agreement, thus confirming that Ensemble Kalman fil-

ters, in the case considered, can provide a representation as good as the Markov Chain
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Monte Carlo.

In most of the cases presented (environmental chamber experiments and insu-

lated steel frame construction), the results inferred with the Ensemble Kalman filter

algorithm and the values inferred with the MCMC are included in each other’s error

band.

The values inferred for the solid wall of the unoccupied property instead are not

compatible as the error bands exclude each other. This was to be expected as, as

mentioned in the previous analysis, the data collected on the solid wall property

shows a step change in the temperature boundary conditions that might impact on

the performance of the model.

Still, the values obtained fall within the expected range of thermal conductance

and heat capacity for a solid wall construction.

Comparing the relative uncertainty obtained from both algorithms, displayed in

tables 6.3.3 - 6.3.5, it can be seen that it is of similar magnitude, supporting the

possibility that the distribution found by the Ensemble Kalman filter technique is

a good approximation of the posterior defined from the Markov Chain Monte Carlo

process.
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Table 6.3.2: Values of the conductance obtained with the Ensemble Kalman filter and
MCMC algorithm from 24 hours of experimental data.

Experiment Conductance KF
[W/m2K]

Conductance MCMC
[W/m2K]

Environmental chamber,
solid

3.15 ± 2.7 ×10−2 3.17 ± 9.5 ×10−3

Environmental chamber,
cavity

0.76 ± 3.1 ×10−3 0.77 ± 9.7×10−3

Office, Insulation 0.10 ± 5.5 ×10−4 0.11 ± 5.2×10−4

Office, Steel frame 0.47 ± 2.0 ×10−3 0.47 ± 4.9×10−4

Wortley, location 4 2.31 ± 5.2 ×10−2 2.19 ± 3.2×10−2

Wortley, location 5 2.80 ± 1.1 ×10−1 2.65 ± 4.6×10−2

Table 6.3.3: Relative uncertainty on the conductance obtained with the Ensemble
Kalman filter and MCMC algorithm from 24 hours of experimental data.

Experiment Relative uncertainty,
KF

Relative uncertainty,
MCMC

Environmental chamber,
solid

0.9% 0.3%

Environmental chamber,
cavity

0.4% 1.3%

Office, Insulation 0.6% 0.5%
Office, Steel frame 0.4% 0.1%
Wortley, location 4 2.3% 1.5%
Wortley, location 5 3.9% 1.7%

Table 6.3.4: Values of the Heat capacity obtained with the Ensemble Kalman filter
and MCMC algorithm from 24 hours of experimental data.

Experiment Heat Capacity KF
[J/m2K]

Heat capacity MCMC
[J/m2K]

Environmental chamber,
solid

4.08×105± 1.1×105 3.80×105± 5.1×104

Environmental chamber,
cavity

2.30×105± 8.2×104 4.40×105± 1.0×105

Office, Insulation 3.74×104± 1.5×103 3.74×104± 0.7×103

Office, Steel frame 7.62×104± 4.1×103 7.94×104± 1.9×103

Wortley, location 4 2.60×105± 2.0×104 3.84×105± 2.5×104

Wortley, location 5 3.33×105± 2.8×104 5.47×105± 4.7×104
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Table 6.3.5: Relative uncertainty on the heat capacity obtained with the Ensemble
Kalman filter and MCMC algorithm from 24 hours of experimental data. (∗ refers to 12
hours time window)

Experiment Relative uncertainty,
KF

Relative uncertainty,
MCMC

Environmental chamber,
solid

27.0 % 13.4%

Environmental chamber,
cavity

35.7% 22.7 %

Office, Insulation 4.01% 1.9 %
Office, Steel frame 5.4% 2.4%
Wortley, location 4 7.7% 6.5%
Wortley, location 5 8.4% 8.6%
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6.4 Computational cost reduction

As mentioned in section 6.1, Ensemble Kalman filters can provide a significant reduc-

tion in the computational costs associated with the implementation of the inference

process. A representative quantification of the computational costs associated with

each algorithm is offered by the number of times the forward map G(u) is evaluated.

In the implementation of the MCMC, G(u) is evaluated a million times for each

of the unknowns plus one for the evaluation of the initial proposal, i.e. 2 × 106 + 1

times in the case of the problem with surface boundary conditions and 3×106 + 1 for

the problem with convective boundary conditions. In each case, the output of G(u)

has to be calculated for all the time steps of the simulation: 1008 time points (3.5

days with 5 minutes sampling).

The estimation of the computational cost associated with the Ensemble Kalman

filter algorithm is not so accurate as in the MCMC case, due to the presence of the

tempering parameter, which for every iteration, will prescribe a different number of

intermediate artificial distributions to smooth the transition between the prior and

posterior. None the less, it is possible to obtain a good estimation of evaluations of

the model G(u). Monitoring the number of internal iterations necessary to create the

artificial distribution chains at each assimilation step, it can be seen that the first

step is the most expensive, and that the number of iterations drastically decreases

for the following steps.
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Figure 6.4.1: Internal iteration for each assimilation step, chamber data, solid wall

Figure 6.4.1 displays the number of internal iterations required to infer the thermal

properties of the solid wall in the environmental chamber using 3.5 days of data. The

first step requires 589 internal iterations but from the fifth step forward, the number of

iterations required oscillates between 2 and 5. The average number of iterations over

the total assimilation steps is ∼ 13, therefore this has been chosen as a representative

number of iterations per step.

In the solution algorithm with the Ensemble Kalman filters, G(u) is evaluated for

every particle of the ensemble (300, in the case considered), and, for each particle, in

each assimilation step, the algorithm evaluates G(u) at every internal iteration, there-

fore, in total, G(u) is evaluated 245.700 times ∼ 2.5 × 105, approximately 10 times

less than with the Markov Chain Monte Carlo. Furthermore, instead of calculating

the heat flux predictions for the whole time window considered, at each iteration G(u)
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evaluates the heat flux up to that point only, reducing the computational costs further.

The reduction in computational costs is clearly visible from the computational

time requested to implement the 1 day simulations for the different data sets, sum-

marised in table 6.4.1. From the table, it can be seen that the filtering tecnique offers

a significant improvement on the computational times necessary for the convergence

of the MCMC, displayed in table 5.3.1.

Table 6.4.1: Computational time required for the implementation of the HDM model
with the Ensemble Kalman Filter on an Intel Core i3-4130 at 3.40 GHz

Experiment Length Computational time
Environmental chamber,
solid

3.5 days 215 sec

Environmental chamber,
solid

1 day 50 sec

Office, Insulation 1 day 70 sec
Office, Steel frame 1 day 130 sec
Wortley, location 4 1 day 42 sec
Wortley, location 5 1 day 37 sec

6.5 Conclusions

From the results presented in the sections above, it can be seen that the approxi-

mation method offered by the Ensemble Kalman filter is suitable for the application

considered in this study as, with a small ensemble size of 300 particles, it is able to

replicate the results obtained with the MCMC method.

The synthetic experiments show that the Ensemble Kalman filter algorithm is still

able to reproduce the general trend of the “true” thermal properties, with the same
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limitations as in the case of the MCMC.

The validation made using the experimental data sets show that with one day

of experimental data, the Ensemble Kalman filter algorithm is also able to infer the

conductance and heat capacity of the construction investigated, with similar error

margins to those retrieved with the MCMC.

The general agreement between the values and relative uncertainties inferred with

the Ensemble Kalman filter and the MCMC suggest that, in this case, the Ensemble

Kalman filter approximation is reliable in describing the posterior sought and that,

considering the valuable computational costs reductions achievable with this method,

it is a very promising tool for this application in the built environment.
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Chapter 7

Research impact and conclusions

This chapter shows the impact of the accomplished work in the field of the built

environment and draws the conclusions from the results obtained and described in

chapters 4, 5 and 6.

Section 7.1 shows how the uncertainty in the U-value leads to a large variability on

the predicted energy consumption and payback period, associated to energy retrofit

interventions of a case study research building located at the University of Notting-

ham. Utilising the same case study, it is demonstrated how the reduced uncertainty

obtainable with the model proposed in chapter 2 can lead to a reduced spread in the

predictions of energy consumption and payback period.

Section 7.2 summarises the research results obtained, detailed in Chapter 4, 5 and

6 and draws the conclusions in relation to the aims and objectives outlined in the

introduction.

Finally, section 7.3 indicates possible future research avenues for extending the

work reported here.
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7.1 Research Impact

This section demonstrates the relevance of the work carried out in the context of the

built environment. In particular, it concentrates on the practical impact of U-value

uncertainty on the final domestic energy consumption, dwelling carbon emissions and

financial evaluation of retrofit intervention, showing why it is essential to consider

the uncertainty on the thermal transmittance parameter rather than assuming just

an absolute value.

For the purpose of this analysis, the software DesignBuilder v.5.0.3.007 was em-

ployed [29]. The dwelling studied is the Eon house, a retrofit research project, located

at the University Park, Nottingham [25].

The dwelling was built within the CALEBRE research project (www.calebre.org.uk/)

whitch aims to investigate the effectiveness of energy efficient retrofit in existing build-

ings. The E.on house was built in 2007 following a traditional 1930 design, including

uninsulated cavity walls, second hand inefficient boiler and single glazing windows

and doors. The dwelling was retrofitted in different stages, in order to assess the

impact of each intervention on the reduction of energy consumption. Further infor-

mation on the outcomes of this research project can be found in [22, 25, 95] and in

the outputs section of the CALEBRE website.

In particular, Gillott et al. in [22] focus on the reduction of air permeability by

conventional draft proofing interventions, such as silicon sealing of windows and door
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frames, and more targeted interventions such as floor sealing at skirting boards level

and sealing at the junctions of walls and ceiling.

Even if the initial air permeability of the E.on house was 15.57 m3/hm2, their

results show that the accurate application of conventional draught proofing interven-

tions, such as the application of sealant to windows and door frames and fitting of

covers on key locks, were found to be the most effective measures, providing reduc-

tions in air permeability by approximately 29%.

For the purpose of this demonstration, the building dimensions, openings, venti-

lation strategy and heating system have been modelled to replicate the E.on house

at its Phase 2 retrofit stage indicated in [22]. The building fabric instead was set to

a solid wall construction with an internal plaster layer. The U-value of the external

walls, has been originally set to 1.92 W/m2K (as measured on the unisulated solid

wall property described in section 3.3) and later, the uncertainty margin of 25% was

applied to the thermal transmittance.

The building air permeability was set to 10 m3/hm2. This is consistent with a

solid walled property that has had previous draught proofing interventions (such as

double glazing and sealing of windows and door frames) and ceiling insulation, and

it is consistent with the findings described by Gillott et al. [22] for the case study

considered.

As mentioned earlier, the aim of this simulation is to quantify the impact of the
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Table 7.1.1: Summary of the simulation options for Design Builder simulations
Simulation parameters
Simulation period 1-Jan to 31-Dec
Time steps per hour 6
Weather data Birmingham weather data
Heating system
Bolier type Condensing boiler
Boiler Efficiency 0.75%
Heating fuel Natural gas
Fabric details
Glazing Double glazing, U-value 2.66 W/m2K
Roof Insulated at ceiling level, U-value 0.15 W/m2K
External walls Solid brick with internal plaster, U-value see table 7.1.2
Ground floor Suspended ground floor, U-value 1.38 W/m2K

uncertainty of the U-value on the final space heating energy consumption and, con-

sequently, the carbon emissions related to this consumption.

Table 7.1.2 shows the energy consumption associated to different values of the

thermal transmittance, keeping the rest of the simulation parameters unchanged, as

detailed in the previous paragraph. The simulation results relate to a yearly simula-

tion with a weather data file relative to Birmingham as provided by the DesignBuilder

software package.

The simulation options are summarised in table 7.1.1. The internal gains due to

occupants, lights and equipment were determined based on the standard occupancy

and activity schedules for domestic buildings available in Design Builder.

As it can be seen from table 7.1.2, a 25% difference on the assumed U-value of the

external walls leads to a large variability in the predicted space heating consumption,

producing a shift of ±16% from the baseline prediction. In comparison, the same cal-
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Table 7.1.2: Yearly energy consumption for space heating associated with different
external wall U-values and % difference with baseline case.

U-value [W/m2K] Space heating con-
sumption [kWh/y]

Difference
[%]

1.92 17149 Baseline
2.40 (+25%) 19884 +15.9%
1.44 (– 25%) 14402 – 16.0%
2.11 (+10%) 18223 +6.3%
1.73 (– 10%) 16077 – 6.3%

culations have been performed applying an uncertainty margin of 10% on the external

walls thermal transmittance, corresponding to the maximum U-value uncertainty ob-

tained with the model developed in this thesis. Confronting the results displayed in

table 7.1.2, it can be seen that the smaller uncertainty leads to a significantly reduced

variability in fuel consumption, of approximately ±6.3%.

The corresponding carbon emissions, relative to the heating fuel consumption, are

affected in the same measure, as the latter are obtained by multiplying the energy

consumption by the relevant green house gas conversion factor. In the case of natural

gas, the 2016 gross and net calorific value (CV) published by the Department for

Business Energy & Industrial Strategy are 0.18 kgCO2/kWh and 0.20 kgCO2/kWh

respectively [96]. These values lead to the CO2 emissions displayed in table 7.1.3.

The same analysis has been performed in the case of an externally insulated solid

wall construction, comparing the impact of the standard uncertainty (25%) and the

smaller uncertainty (10%), achieved with the methodology investigated, on walls with

a low U-value. An external layer of EPS with render finish has been applied to the ex-
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Table 7.1.3: Yearly CO2 emissions associated with space heating energy consumption
U-value [W/m2K] Gross CO2 Emissions

[kg/y]
Net CO2 Emissions
[kg/y]

Difference
[%]

1.92 3087 3430 Baseline
2.40 (+25%) 3579 3977 +15.9%
1.44 (– 25%) 2592 2880 – 16.0%
2.11 (+10%) 3280 3645 +6.3%
1.73 (– 10%) 2894 3215 – 6.3%

Table 7.1.4: Yearly energy consumption for space heating associated with different
external wall U-values and % difference with baseline case.

U-value [W/m2K] Space heating con-
sumption [kWh/y]

Difference
[%]

0.3 6912 Baseline
0.375 (+25%) 7432 +7.5%
0.225 (– 25%) 6388 – 7.6%
0.33 (+10%) 7118 +3%
0.27 (– 10%) 6702 – 3%

ternal solid wall construction, the thickness of the insulating layer has been adjusted

to achieve the different U-values displayed in table 7.1.4. From this table, it can be

seen that the same uncertainty levels on walls with better (smaller) U-values, lead

to reduced uncertainty margins on the final energy predictions. This is reasonable

because the space heating load will be less affected by the heat losses through the

building fabric in a dwelling with lower U-values. Nevertheless, it is still evident that

the smaller U-value uncertainty produces significantly more accurate results in the

predicted fuel consumption, approximately halving the original uncertainty.

It is clear from the analysis presented that the uncertainty on the thermal trans-

mittance leads to an important variability in the final dwelling energy prediction,

especially in dwellings affected by external walls with larger U-values. In turn, this
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influences the payback period as the cost savings are based on the predicted fuel

savings. For example, assuming an upfront cost for the installation of external wall

insulation of £10,000, as suggested by the energy saving trust [97], and a standard

natural gas price of 0.043£/kWh [98], the payback period in the worst case scenario

(underestimated initial U-value and overestimated final U-value) and best case sce-

nario (overestimated initial U-value and underestimated final U-value) are reported

in table 7.1.5, under the assumption of 25% U-vlaue uncertainty. From the data

displayed in this table, it can be seen that the energy savings associated with the

same intervention have an extremely wide variability, as the savings in the best case

scenario are nearly the double than in the worst case scenario.

Table 7.1.5: Payback period associated with different energy consumption scenarios,
assuming 25% uncertainty on the external wall U-value

Pre-retrofit U-
value [W/m2K]

Post-retrofit U-
value [W/m2K]

Annual Savings
[£/y]

Payback
[y]

Worst case scenario 1.44 0.375 300 33
Best case scenario 2.40 0.22 580 17

The U-value uncertainty reduction achievable with the model proposed, offers

already significant diminution of the variability seen on the final energy consump-

tion predictions, (as demonstrated in the previous paragraphs), thus ensuring fairer

payback estimation as it can be seen in table 7.1.6.

Table 7.1.6: Payback period associated with different energy consumption scenarios,
assuming 10% uncertainty on the external wall U-value

Pre-retrofit U-
value [W/m2K]

Post-retrofit U-
value [W/m2K]

Annual Savings
[£/y]

Payback
[y]

Worst case scenario 1.73 0.33 385 26
Best case scenario 2.11 0.27 495 20

The simulations carried out in this section, clearly show the benefits associated
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with the U-value uncertainty reduction achieved with the inference methodology pro-

posed, demonstrating the practical impacts of the research carried out in this study.

7.2 Conclusions

The aim of this study was to achieve a faster and more accurate process for the

evaluation of the thermal transmittance in buildings from in situ measurements of

temperature and surface heat flux. As discussed in chapters 4, 5 and 6, the HDM in

combination with MCMC or EnKF sampling methods is able to obtain the thermal

transmittance value within 24 hours. The investigation of the uncertainty associated

with the thermal transmittance, calculated with the method proposed in chapter 2,

is greatly reduced when compared with ISO9869:2014, decreasing from 28-14% to

10-7%.

Based on these figures it can be stated that the general aim of this thesis has been

achieved.

Some of the objectives outlined in the introduction were functional to the con-

struction of the model described in chapter 2 and do not present innovative aspects

in the field of the built environment. These are discussed briefly here:

Objective i: Literature review. The literature survey shows that the U-value plays

an important role in the performance of a dwelling and, due to the current

pressure on improving dwelling efficiency and reducing carbon emissions, it is

essential to obtain a quick and reliable U-value measurement procedure.
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The current ISO9896:2014 standard requires a minimum monitoring period of

3 days (in ideal conditions) and the uncertainty associated with the calculation

method adopted equates to 25% [48].

Objective ii: The numerical solution of the heat transfer equation has been obtained

by means of a cell centred finite difference method.

Objective vi: The experimental data collection has been described in Chapter 3.

The measurement procedure was carried out utilising standard equipment adopted

in monitoring campaigns in the built environment. The data collected were of

good quality and allowed the verification and the validation of the HDM.

The remaining objectives required the introduction of innovative methods in the

field of the built environment. This lead, in some cases, to arbitrary choices made

by the researcher, with consequences on the interpretation and validity of the results

obtained. These are discussed here:

Objectives iii - iv: The introduction of spatially varying thermal properties re-

quired the introduction of a new Bayesian framework (as described in [82]) able

to deal with the large number of parameters arising from the discretisation of

the heat equation. The framework described in [82] has never been used before

in the context of the inference of U-value. This choice allows the researcher to

determine the nature of the functions describing the thermal properties sought.

As discussed in section 2.2.2, in this study, continuous thermal properties sub-

ject to the Mattern correlation, equation (2.27), were assumed. Note that the
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choice of parameters characterising the covariance function lead to important

differences in the appearance of the thermal properties sought, as discussed in

sections 2.2.2 and 4.1. Furthermore the choice of the type of prior distribution

is arbitrary as well. In this work, lognormal distributions were assumed for the

distribution of κ(x) and c(x), but as discussed in section 2.2.2, these are at the

discretion of the researcher.

Objective v: The characterisation of the posterior distribution is achieved following

two different procedures: Markov Chain Monte Carlo (MCMC) and Ensemble

Kalman Filters (EnKF). The MCMC algorithm, by construction, leads to the

correct posterior distribution and, therefore, is an essential step in the imple-

mentation of the Bayesian framework. On the other side, this algorithm requires

a large number of iterations to ensure that convergence is achieved, translating

in high computational costs and long computation times.

The Ensemble Kalman filter instead is an approximation method and offers

the benefit of a significant reduction in the computational costs (and times)

associated with the inference of the thermal properties from the measured data

sets. From the tests performed on synthetic and experimental data outlined

in chapter 6, it can be seen that the EnKF is able to replicate the results

obtained with the MCMC using only one day of experimental data. This may

be seen from the heat flux predictions displayed in figures 6.3.1, 6.3.2, 6.3.3

and the figures obtained relative to the thermal conductance and heat capacity

displayed in tables 6.3.2, 6.3.4. The uncertainty surrounding the values found
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is similar to the values found with the MCMC, as it may be seen from the data

displayed in tables 6.3.3, 6.3.5.

This evidence suggests that, in the case considered, the EnKF is providing a

good approximation of the posterior distribution sought and that, therefore, it

is reasonable to use such an algorithm for the inference of the fabric thermal

properties in future developments of the model proposed.

Objective vii: The practical impact of the uncertainty reduction provided by the

model proposed is assessed by means of Design Builder simulations in section

7.1. This objective could be further pursued by monitoring pre and post retrofit

energy consumption of a case study building in order to validate the results

obtained by using a building simulation software.

In conclusion it can be stated that the aim and objectives outlined in the intro-

duction have been achieved and it can be stated that the HDM with MCMC or EnKF

algorithm is a promising tool for the inference of the U-value and heat capacity of

building constructions. Still, further improvements can be made on its ability to infer

the exact profile of the thermal properties across the building element thickness. As

has been shown from the data on the synthetic experiments, the model developed is

able to retrieve qualitative information regarding the construction of the wall consid-

ered, but as detailed in section 4.1, this feature cannot be used to retrieve the exact

number of layers in a wall construction or the precise location of the interface. This,

alongside other suggestions for future research are discussed in section 7.3.
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7.3 Future work

7.3.1 Extension of the model performance

The methodology proposed in this thesis presents a great potential for the calcula-

tion of experimental uncertainty and reduction in monitoring times. Still, it requires

further investigation before it can be safely promoted for the application in large

monitoring campaigns as a standardised method.

Firstly the relationship between the definition of the prior probability distribution

and the inferred thermal properties profiles has to be studied in more depth, as it

is here where an essential assumption is being made by the researcher: the a priori

determination of the “smoothness” of the thermal properties of the case considered,

as discussed in sections 2.2.2 and 4.1.

Secondly it is essential to examine the impact of the discretisation level in the

solution of the forward problem (the heat equation). This can be compared to a

mesh refinement problem: discretising the heat equation in a small number of nodes

(3-7 in the case of the most common RC network models) leads to a model that is

not able to fully characterise the heat capacity of the element considered, but on the

other hand, an over discretised model might lead to unnecessary computational costs,

as might be the case for the models proposed in this work (100 nodes discretisation).

Finding the minimum number of nodes that guarantees results independent from

the discretisation level is an essential step for the optimisation of the HDM in terms
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of the reduction of computational costs and times and finding a physically correct

solution. This issue is addressed in a publication currently in progress during the

writing of this thesis.

Still, the model proposed is flexible and could be further extended to overcome

other restrictions that are currently a barrier to a quick and convenient U-value mea-

surement procedure. It is possible to include a heat source term in the heat equation

to model the impact of solar radiation in the building structure considered. This

can be used to extend the monitoring periods of the building fabric to the summer

season, as the impact of radiation on the energy stored in the wall is currently the

main reason for reducing the monitoring periods to the winter season.

The Bayesian framework developed, would allow the estimation of the solar radi-

ation as a new unknown parameter of the model, without the necessity of including

other experimental equipment during the monitoring period (such as a pyranometer).

In a similar way, it could be possible to include the estimate of the convective heat

transfer coefficients in the inference process, for the cases where the standard values

are not applicable.

7.3.2 Other applications in the built environment

Possibly, the most pressing future research avenue based on the work carried out

in this thesis is the investigation of the uncertainty on the predicted final figures of
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building energy consumption.

In the case study described in section 7.1, it has been shown that the uncertainty

currently accepted on the thermal transmittance parameter can lead to ±15.4% un-

certainty in the final space heating energy consumption figures.

This number is extremely large when considering that it is generated by the un-

certainty in a single parameter, without considering the error margin associated with

other important variables that impact the energy performance of a building, such as

air infiltration, roof U-value, glazing characteristics and heating system efficiency.

The author believes that the framework developed during this research project

could be extended to other areas in the built environment, such as the measurement

of air tightness or whole building heat loss coefficient, as these are essentially inverse

problems where, from measured data, the researchers are inferring building envelope

properties.

Better characterisation of the uncertainty of the most influential building param-

eters will, in turn, lead to a better reformulation of the performance gap problem,

introducing a margin of uncertainty on the predictions obtained and on the experi-

mental data collected.
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Appendix A

MCMC scheme

The algorithm below illustrates the steps to implement the MCMC scheme defined in

chapter 2, considering the heat transfer problem with surface temperature boundary

conditions. Algorithm 1, describes how to generate samples from the prior distribu-

tions as described in section . Algorithm 2 explains how to implement the Metropolis

within Gibbs scheme inside the Markov Chain Monte Carlo.

Algorithm 1 (Sampling from the prior)

(1) Define the values of σκ and λκ defining the variance of the correlation length of

the Gaussian random field ψκ, as per equations (2.26)-(2.27).

(2) Calculate the covariance function, equation (2.27).

(3) Perform the single value decomposition of the covariance matrix (Cκ) obtained,

so that

Cκ = V DV T , (A.1)

251



Appendix A. MCMC scheme

(4) Generate a random sample with covariance Cκ

νκ = V
√
Dξk (A.2)

Where ξk is a random vector drawn from a normal distribution ∼ N(0, 1)

(5) Define the mean of the prior distribution as mκ

(6) A random sample of the thermal conductivity prior distribution P(κ) is given by

µκ = exp(mκ + νκ) (A.3)

(7) Repeat operations (1)-(6) for the generation of samples belonging to the prior

of the volumetric heat capacity P(c).

Algorithm 2 (MCMC: Metropolis-within-Gibbs)

Draw the initial proposal: u(0) = (κ(0), c(0)) ∼ P(u).

For m = 0, . . .

(1) Generate a new proposal vr defined by

vκ = E(κ) +
√

1− β2
r (κ

(m) − E(κ)) + βκξ, ξ ∼ N(0, Cκ), βr ∈ [0, 1], (A.4)

(2) Accept or reject v = (vr, u
(m)
c )

(u(m+1)
r , u(m)

c , u
(m)
I ) =


v with probability a(u(m), v)

u(m) otherwise

.
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where u(m) ≡ (u
(m)
r , u

(m)
c ) with a(u, v) defined by (2.38).

(3) Let vc defined by

vc = E(c) +
√

1− β2
c (u

(m)
c − E(c)) + βcξ, ξ ∼ N(0, Cc), βc ∈ [0, 1], (A.5)

(4) Accept or reject v = (u
(m+1)
κ , vc)

(u(m+1)
κ , u(m+1)

c ) =


v with probability a(û(m), v)

û(m) otherwise

.

where û(m) ≡ (u
(m+1)
κ , u

(m)
c ) with a(u, v) defined by (2.38).
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