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RESEARCH ARTICLE Open Access

ALK alteration is a frequent event in
aggressive breast cancers
Abdul K. Siraj1†, Shaham Beg1†, Zeenath Jehan1, Sarita Prabhakaran1, Maqbool Ahmed1, Azhar R.Hussain1,
Fouad Al-Dayel2, Asma Tulbah2, Dahish Ajarim3 and Khawla S. Al-Kuraya1,4*

Abstract

Introduction: Breast cancer is the most common female malignancy worldwide and, despite improvements in
treatment modalities, there are increased chances of recurrence and metastasis in a substantial number of cases
and it remains one of the major causes of mortality among female cancer patients. Anaplastic lymphoma kinase
(ALK) gene has been found to be altered in several solid and hematologic tumors. We aimed to comprehensively
study the prevalence of ALK expression, and changes in copy number and translocation in a large cohort of breast
cancer cases in a Middle Eastern population.

Methods: ALK protein expression was investigated by immunohistochemistry and numerical and structural variations of
the ALK gene were analyzed by fluorescence in situ hybridization (FISH) in a tissue microarray format in a cohort of more
than 1000 Middle Eastern breast cancers. The data were correlated with clinicopathologic parameters and other
important molecular biomarkers.

Results: Immunohistochemical analysis showed ALK overexpression in 36.0 % of the breast cancer patients and gene
amplification was present in 13.3 % of cases, seen by FISH analyses. ALK overexpression was significantly associated with
ALK gene amplification (p = 0.0031). ALK-overexpressing tumors showed significant association with high-grade tumors
(p = 0.0039), ductal histologic subtype (p = 0.0076), triple-negative phenotype (p = 0.0034), and high Ki-67 (p = 0.0001)
and p-AKT (p <0.0001).

Conclusions: Immunohistochemical analysis showed ALK is overexpressed in a substantial proportion of breast cancers
and possibly plays a significant role in the aggressive behavior of this cancer. Gene amplification is hypothesized to be a
possible cause for a significant proportion of this overexpression. Based on these findings, a potential role for an ALK
inhibitor, as a therapeutic agent targeting aggressive subtypes of breast cancer, merits further investigation.

Introduction
Breast cancer is a heterogeneous group of diseases based
on morphological features, molecular profiles, response
to treatment and clinical outcome [1]. Every year, ap-
proximately 1.5 million women around the world are di-
agnosed with breast cancer [2]. It is the most common
malignancy diagnosed among Saudi females [3] and is
found to have an advanced stage, high grade and tends

to affect a younger population as compared to the West
[4, 5]. Despite improvement in treatment protocols and
addition of new therapies, breast cancer continues to be
the second leading cause of cancer mortality in women
in the Western world [6]. Identification of new targeted
therapy that allows progress in the management of
breast cancer and improves survival is warranted.
Anaplastic lymphoma kinase (ALK), a tyrosine kinase

receptor residing on chromosome 2p23 was first de-
scribed in a subset of anaplastic large cell lymphoma
(ALCL) patients as part of a chromosomal rearrange-
ment with nucleophosmin as a fusion partner [7]. ALK
has been reported to be translocated with other fusion
partners, such as KIF5B [8], NPM1 [7], RET, ROS [9],
VCL [10], TFG [11], EML4 [12] and MYH9, demonstrat-
ing its role in the pathogenesis of various cancers. The

* Correspondence: kkuraya@kfshrc.edu.sa
†Equal contributors
1Department of Human Cancer Genomic Research, King Faisal Specialist
Hospital and Research Center, Makkah Al Mukarramah Branch Road, Riyadh
12713, Saudi Arabia
4Department of Pathology, Al-Faisal University, Al Zahrawi Street, Riyadh
11533, Saudi Arabia
Full list of author information is available at the end of the article

© 2015 Siraj et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this
article, unless otherwise stated.

Siraj et al. Breast Cancer Research  (2015) 17:127 
DOI 10.1186/s13058-015-0610-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13058-015-0610-3&domain=pdf
mailto:kkuraya@kfshrc.edu.sa
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


chimeric protein resulting from the fusion has lead to
constitutively activated ALK tyrosine kinase [9, 10, 13].
Furthermore, other reports demonstrate additional modes
of constitutively activated ALK kinase by mutations
[14–16] and ALK gene amplification [17–19]. It has been
suggested that the oncogenic role of ALK is most probably
mediated via activation of tyrosine kinases that promote
survival via activation of signaling pathways such as PI3-
kinase/AKT [20] or by inhibition of apoptosis, thus lead-
ing to proliferation of cells. It has been demonstrated that
inhibition of ALK inhibits growth of breast cancer cell
lines and also tumor xenografts in mouse models [21].
ALK alterations such as increased ALK copy number,

gene amplification and translocation have been shown to
be present in 80 % of inflammatory breast cancer and 25
% of triple-negative breast cancers (TNBC), which are
considered to be the most aggressive subtypes of breast
cancers [21–23]. Moreover data generated from The
Cancer Genome Atlas (TCGA) database on 479 breast
cancer cases has also confirmed ALK deletions and copy
number variations in breast tumors [21].
These known dysregulations in the ALK gene and their

potential usefulness as biomarkers in many solid tumors,
like inflammatory myofibroblastic tumors [24], esophageal
squamous cell carcinoma [25] breast carcinoma [18] lung
adenocarcinoma [9, 26] pediatric renal cell carcinoma [10]
and neuroblastoma [27], have led to the development of
ALK inhibitors and highlighted their therapeutic role in
early clinical trials [18, 28, 29]. Crizotinib, an orally bio-
available tyrosine kinase inhibitor, has been shown to act
against ALK kinase domain and is active against ALK-
expressing tumors [24, 30, 31]. These recent studies have
provided evidence for the emerging role of ALK as a po-
tential molecular marker of diagnostic and therapeutic
value in breast cancer.
Thus we attempted to investigate the structural and

numerical alterations of ALK by fluorescence in situ
hybridization (FISH) and protein expression by immuno-
histochemistry (IHC) in a large cohort of Middle Eastern
breast cancers. We further correlated ALK alterations
with clinical data including survival analysis, pathological
parameters and other molecular markers in breast can-
cer patients.

Methods
Patient samples and data collection
One thousand and nine patients with breast cancer diag-
nosed between1990 and 2011 were selected from the
files of the King Faisal Specialist Hospital and Research
Centre (KFSHRC). The patients included in this study
had their diagnosis, treatment and follow-up care in the
Department of Surgical Oncology at KFSHRC. The
histologic subtype of each breast tumor sample was deter-
mined according to World Health Organization (WHO)

criteria. Waiver of consent was obtained for the study
from the Institutional Review Board (IRB) and Research
Ethics Committee (REC) of KFSHRC under Project RAC
number 2040004 on breast cancer archival clinical sam-
ples. All samples were analyzed in a tissue microarray
(TMA) format.

Tissue microarray (TMA) construction
For each tumor, representative areas were selected
mapped and a TMA was constructed using these
mapped slides as a reference. The tissue microarrayer
(Semiautomated Arrayer, CM1 Mirlacher, Neuenburg,
Germany) was used and 0.6 mm diameter punches were
obtained from the donor blocks. A map of the recipient
block was prepared with coordinates and a number for
each sample to correctly identify the tumor. The
punched-out tissue cores from the donor block were
inserted in the recipient block. The array blocks were
incubated at 45 °C for 10 minutes to improve adhesion
between cores and paraffin of the recipient block. They
were cut at room temperature with a standard micro-
tome (Thermo Shandon, Runcorn, UK) and slides were
prepared using a tape-sectioning system (Instrumedics,
Inc., St. Louis, MO, USA).
IHC and FISH staining were done on TMA slides cut

from two replicas of TMA blocks for scoring to reduce
the number of non-interpretable spots. Both the ALK
IHC and ALK FISH non-interpretable spots were within
the range of 10 % and the rest of the TMA spots were
scored in concordance with earlier biomarker studies on
TMAs [32].

Fluorescence in situ hybridization (FISH)
FISH assay for ALK amplification and rearrangement was
performed on a TMA format. The probe (BAC clone)
corresponding to the ALK gene was selected by browsing
Ensembl Genome Browser [33] and were purchased
from the Children’s Hospital Oakland Research Insti-
tute (Oakland, CA USA). The BAC clone was cultured,
DNA isolated and was labeled with digoxygenin (DIG)
utilizing a DNA labeling kit from Roche (Roche,
Hamburg, Germany). A commercially available centro-
meric probe for chromosome 2; CEP2 (Abbott Molecu-
lar, Abbott Park, IL, USA) was utilized as an internal
control. FISH on a breast cancer TMA was performed
as previously described [32]. Tissue samples were clas-
sified with an ALK/CEP2 ratio of 1.0 as normal; be-
tween 1.0 and 2.5 as having ALK gains; 2.5 and above
as amplified [17]. A minimum of 25 cells were scored
in a single microarray spot for the presence of both
CEP2 and ALK signals. ALK gene amplifications and
gains identified by the BAC clone RP11-328L16 were
also further confirmed by the break-apart probe from
Vysis (Abbott Molecular, Abbott Park, IL, USA)
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according to the manufacturer’s instructions using a
BX51 Olympus fluorescence microscope (Olympus,
Richardson, TX, USA). Briefly, in a normal cell with no
gain or amplification, two fused red and green signals
were observed. Increase in the number of red and green
fused signals were considered to be amplifications and
gains. An ALK break-apart probe set was also used to
check for ALK gene rearrangement on breast cancer
TMA slides. ALK rearrangement was termed as posi-
tive if >15 % of tumor cells showed split red and green
signals and/or single red signals in addition to a single
fused signal; otherwise, the specimen was classified as
ALK FISH negative [26].
FISH analysis using the ALK probe was also performed

on eight breast cancer cell lines (Cal-120, HCC-1937,
EFM-19, HDQ-PI, CAL-51, MT-3, MDA-MB231 and
MCF-10).

DNA isolation
A Gentra DNA isolation kit (Gentra, Minneapolis, MN,
USA) was utilized to extract DNA from paraffin-embedded
breast cancer tissues using the manufacturer’s recommen-
dations as described previously [34].

Quantitative real-time PCR
The quantitative PCR (qPCR) technique was utilized to
validate the copy number variation of the ALK gene ob-
served by FISH. A few representatives DNA samples
from formalin-fixed paraffin-embedded samples (FFPE)
of breast cancer with normal and increased ALK copy
number by FISH were selected for validation by quanti-
tative real-time (qRT) PCR. DNA content was normal-
ized to that of long interspersed element 1 (LINE1), a
repetitive element for which copy number per haploid
genome is similar in both the normal DNA sample and
DNA from cancer cells. Primers were designed by Pri-
mer Express software v3.0 (Applied Biosystems, Foster
City, CA) to hybridize to sequences of genomic DNA for
ALK. The primers to the genomic sequences for ALK
and LINE1 are as follows:

ALK forward: CTT TGA CTT CCC CTG TGA GC
ALK reverse: GCA GCC TCT CCC TTA CCT C
LINE1 forward: CCG CTC AAC TAC ATG GAAACT G
LINE1 reverse: GCG TCC CAG AGATTC TGG TAT G

The PCR conditions and Light Cycler PCR protocol
were used as previously described [35]. The Pfaffl
method for relative quantification was used to calcu-
late the fold change for breast cancer samples that
showed normal copy number and amplification of ALK
gene [36].

Immunohistochemistry
For IHC staining, TMA slides were processed and
stained manually as described earlier [36]. A list of
antibodies and their dilutions are listed in Table S1 in
Additional file 1. For ALK IHC, primary ALK antibody
(cloneD5F3; CST; 1:100 dilutions; Dako Target Retrieval
pH9) was applied and incubated overnight. Visualization
of the antigen antibody reaction was done using an en-
hanced polymer-based detection system, Envision Plus
Dual Link System-HRP for 1 hour. Diaminobenzidene
(Dako, Glostrup, Denmark) was employed for 5 minutes
as the chromogen. A known CD30-positive ALCL case
was utilized as a positive control and the negative
control used was a mouse immunoglobulin G1 serum
substitution for the primary antibody (ALK) [37]. The
cutoff for estrogen receptor (ER) and progesterone re-
ceptor (PR) was taken as 1 % nuclear staining. Human
epidermal growth factor receptor 2 (HER2) overexpres-
sion was assessed according to American Society of
Clinical Oncology/College of American Pathologists
(ASCO/CAP) guidelines [38]. The cutoff for high Ki67
was taken as more than 10 % nuclear staining [39]. For
p-AKT immunoscoring only intensity scores were con-
sidered. Tumors with intensity 2+/3+ were considered
positive and intensity 0/1+ were taken as negative [40].
For ALK IHC H-score (range 0–300) was obtained by

adding the sum of scores obtained for each intensity and
proportion of area stained [35]. X-tile plots were con-
structed for assessment of biomarker and optimization
of cutoff points based on outcome as has been described
earlier [41]. Breast cancers were categorized into two
groups based on X-tile plots: one with complete absence
(H score = 0) and the other with ALK expression
(H score >0).
Two pathologists (SB and SP) independently performed

IHC scoring for biomarkers and for discrepant scores con-
sensus was established by reviewing the slides together.

Cell lysis and immunoblotting
Proteins from MDA-MB231 and MCF-12A cells were
isolated as described previously [42]. Twenty micro-
grams of isolated proteins were separated by SDS-PAGE
and transferred to polyvinylidene difluoride (PVDF)
membrane (Immobilon, EMD Millipore, Billerica, MA,
USA). Immunoblotting was performed using ALK (Santa
Cruz Biotechnology Inc., Dallas, TX, USA) and beta-
actin (Cell Signaling Technology, Boston, MA, USA)
antibodies and visualized by the enhanced chemilumin-
escence (Amersham, Pittsburg, PA, USA) method.

Preparation of cytosolic and nuclear extract
MDA-MB231 and MCF12A cells were suspended in buffer
A containing 10mM HEPES, 10mM KCl, 0.1mM EDTA,
0.1mM EGTA, 1mM DTT and the recommended amount
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of protease inhibitors and incubated on ice for 15 minutes.
After incubation, cells were lysed with 10 % NP-40 and
vortexed for 10 seconds. Cells were spun for 30 seconds at
14,000 rpm and supernatants containing nuclear-free cyto-
solic extracts were isolated. The remaining pellet was lysed
in protein lysis buffer containing 0.4mM NaCl and nuclear
extracts were isolated. Twenty micrograms of isolated pro-
teins were separated by SDS-PAGE and transferred to
polyvinylidene difluoride (PVDF) membrane (Immobilon,
EMD Millipore, Billerica, MA, USA). Immunoblotting
were performed using ALK and alpha-tubulin (Cell Signal-
ing Technology, Boston, MA, USA) antibodies and visual-
ized by the enhanced chemiluminescence (Amersham,
Pittsburg, PA, USA) method.

Statistical analysis
The JMP 10.0 (SAS Institute Inc., Cary, NC, USA) soft-
ware package was used for data analyses. We examined
the association of TNBC with clinicopathologic parame-
ters, biomarker expression and also performed survival
analysis. Survival curves were generated using the Kaplan-
Meier method with significance evaluated using the
Mantel-Cox log-rank test. Risk ratio was calculated using
the Cox proportional hazard model. Values of p <0.05
were considered statistically significant.

Results
Clinicopathologic data
The clinicopathologic characteristics of the 1009 breast
cancer patients are summarized in Table 1. The median
age at the time of surgery was 46 years (interquartile
range [IQR], 39.0–54.0 years). The median length of
follow-up available for surviving patients was 53.0
months (IQR, 30–77 months). The 5-year overall sur-
vival for the study population was 80 %. The distribution
of tumors by histologic type was as follows: 918 infiltrat-
ing ductal carcinomas (91.0 %), 46 infiltrating lobular
carcinomas (4.6 %), 16 mucinous cancers (1.6 %) and 29
(2.9 %) others. TNM staging was performed as per
WHO criteria. The majority of the patients were in stage
II (37.7 %) at time of diagnosis followed by stage III
(30.8 %), stage IV (9.1 %) and stage 1 (7.5 %).

ALK protein expression by IHC and correlation with
clinicopathologic features
Of the 1009 breast cancer cases investigated, 36.0 %
(350/972) of cases showed positive staining of ALK by
IHC. Thirty-seven cases were non-interpretable due to
loss of tissue cores or absent tumor cells in the core.
The staining pattern ranged from an intense 3+ staining
in the cytoplasm and/or membrane to 2+ moderate
cytoplasmic staining and no cytoplasmic staining. A
small subset of breast tumors (3.2 %) showed punctate
coarse granular cytoplasmic staining (Fig. 1a–d). ALK

expression was found to be significantly associated with
poorly differentiated tumor (p = 0.0039), infiltrating ductal
carcinoma subtype (p = 0.0076) and triple-negative breast
cancer (p = 0.0034); however, no association was seen with
age, lymph node involvement, distant metastasis and
tumor stage. ALK expression was also found to be signifi-
cantly associated with Ki-67 expression (p = 0.0001) and
p-AKT (p <0.0001). (Table 2, Fig. 1e,f ).
We also performed biochemical fractionation in breast

cancer cell lines using nuclear and cytoplasmic extracts
and found ALK expression to be more pronounced in
cytosolic fraction (Figure S1 in Additional file 2) and
had comparatively more expression in the triple-negative
cell line compared to the non-tumorigenic epithelial
breast cell line; MCF12A (Figure S2 in Additional file 3).

ALK copy number alterations and translocations
Numerical and structural abnormalities were analyzed
by FISH in our cohort of 1009 breast cancer patients. A
total of 980 spots out of 1009 showed interpretable re-
sults and 29 spots were non-interpretable due to absence
of interpretable signals or loss of tissue spots. A total of
13.3 % cases (130/980) showed amplification of ALK

Table 1 Clinicopathologic variables for the breast cancer
patient cohort (n = 1009)

Age

Median 46.0

Range (IQR)^ 39.0–54.0

Histologic type

Infiltrating ductal carcinoma 918 (91.0)

Infiltrating lobular carcinoma 46 (4.6)

Mucinous carcinoma 16 (1.6)

Other subtype carcinoma 29 (2.9)

Histologic grade

Well differentiated 73 (7.2)

Moderately differentiated 484 (48.0)

Poorly differentiated 397 (39.3)

Unknown 55 (5.5)

Lymph node status

Positive 627 (62.1)

Negative 306(30.3)

Unknown 76(7.5)

TNM stage

I 76 (7.5)

II 378 (37.7)

III 314 (30.8)

IV 91 (9.1)

Unknown 150 (14.9)

^Interquartile range (IQR)
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gene (Fig. 2a–d). Amplification was observed in at least
30 % of the cells analyzed. We found ALK copy number
gains in 70/980 (7.1 %) cases analyzed. In the majority
of these cases, gains were seen in at least 30 % of the
tumor cells. We also investigated the presence of

EML4-ALK fusion by FISH and found no translocation
of these two genes. In addition, we also did not observe
any ALK gene amplification in six breast cancer cell
lines (Cal-120, EFM-19, HDQ-PI, CAL-51, MT-3, and
MCF-10) analyzed, however, two cell lines (HCC-1937

Fig. 1 Tissue microarray-based immunohistochemical analysis of ALK in breast cancer patients. a Normal breast tissue showing negative ALK
expression. b Breast cancer TMA spot showing ALK overexpression in cytoplasmic compartment. Inset is higher magnification (40×) view showing
absence of nuclear staining. c Breast cancer TMA spot showing granular dot-like ALK staining in cytoplasmic compartment. d Breast cancer TMA
spot showing membranous ALK staining in cancer tissue. e Breast cancer tissue array spots showing high proliferative index of Ki-67. f Breast
cancer TMA spot showing p-AKT overexpression. 20 ×/0.70 objective on an Olympus BX 51 microscope (Olympus America Inc, Center Valley, PA,
USA) with the inset showing a 40× 0.85 aperture magnified view of the same. ALK anaplastic lymphoma kinase, TMA tissue microarray
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Table 2 Correlation of ALK IHC with clinicopathologic parameters in breast cancer

Total ALK present ALK absent P value

N % N % N %

Total number of cases 972 350 36.0 622 64.0

Age groups

<50 663 68.2 250 37.7 413 62.3 0.1044

≥50 309 31.8 100 32.4 209 67.6

Lymph nodes

N0 300 32.9 108 36.0 192 64.0 0.5832

N1 294 32.3 105 35.7 189 64.3

N2 192 21.1 69 35.9 123 64.1

N3 125 13.7 53 42.4 72 57.6

Metastasis

M0 785 90.1 292 37.2 493 62.8 0.8336

M1 86 9.9 31 36.0 55 64.0

Tumor stage

I 75 8.9 20 26.7 55 73.3 0.0829

II 372 44.1 135 36.3 237 63.7

III 311 36.8 130 41.8 181 58.2

IV 86 10.2 31 36.0 55 64.0

Histologic grade

Well differentiated 74 7.7 21 28.4 53 71.6 0.0039

Moderately differentiated 493 51.2 159 32.2 334 67.8

Poorly differentiated 395 41.1 156 42.0 229 58.0

Histology

Infiltrating ductal carcinoma 890 94.4 329 37.0 561 63.0 0.0076

Infiltrating lobular 40 4.2 7 17.5 33 82.5

Mucinous 13 1.4 2 15.4 11 84.6

Recurrence

Yes 256 29.8 104 40.6 152 59.4 0.1225

No 602 70.2 211 35.1 391 64.9

ER

Negative 333 34.3 150 45.1 183 54.9 <0.0001

Positive 638 65.7 200 31.3 438 68.7

PR

Negative 412 42.5 178 43.2 234 56.8 0.0001

Positive 558 57.5 172 30.8 386 69.2

Triple-negative

Yes 147 15.2 69 46.9 78 53.1 0.0034

No 822 84.8 281 34.2 541 65.8

HER2 FISH

Amplified 275 29.0 108 39.3 167 60.7 0.2647

Normal/gain 672 71.0 238 35.4 434 64.6

ALK FISH

Amplified 126 13.3 61 48.4 65 51.6 0.0031

Normal/gain 821 86.7 284 34.6 537 65.4

Siraj et al. Breast Cancer Research  (2015) 17:127 Page 6 of 12



and MDA-MB231) showed amplification of the ALK
gene.
The FISH data on breast cancer cases were further

confirmed by qPCR analysis on few selected amplified
and non-amplified breast cancer samples (Fig. 2e).

Correlation of ALK gene copy number alteration and
clinicopathologic features
Both ALK FISH and IHC data were available for 947/
1009 cases. ALK gene amplification had a significant
correlation with ALK protein expression (p = 0.0031)
(Table 3). ALK gene amplification did not show any as-
sociation with age, lymph node involvement, distant me-
tastasis, molecular subtype of breast cancer and tumor
stage. ALK gene amplification was significantly associ-
ated with mucinous histology (p = 0.0194) and Ki67 ex-
pression (p = 0.0129).

Survival analysis
The 5-year overall survival of our patient cohort show-
ing ALK overexpression was lower than patients lacking
this overexpression, however this survival difference
could not reach significant statistical value (p = 0.1212,
Figure S3 in Additional file 4). Recurrence-free survival
was significantly lower for patients with ALK protein
overexpression compared to tumors showing low ALK
expression (p = 0.0090) (Fig. 3). ALK amplification was
also not associated with any significant survival
difference.

Discussion
Breast cancer is one of the most extensively studied ma-
lignancies in the world and, despite improvement in the

management of this cancer, it still remains a major cause
of mortality and morbidity among female cancer patients
[42]. Previously, reports have shown that ALK tyrosine
kinase receptor is a strong biomarker and a good thera-
peutic target for a significant number of cancer patients
[43, 44]. Therefore, in order to learn more on the preva-
lence and clinical significance of ALK overexpression and
its association with clinical parameters in Middle Eastern
breast cancer, we comprehensively investigated protein
expression of ALK and numerical and structural alter-
ations by FISH in a large cohort of breast cancer cases.
There is a wide variation in overexpression of ALK

that has been reported in different subtypes of breast
cancer. In this study, ALK overexpression was seen in
36 % of Middle Eastern breast cancer cases and this ob-
servation is in concordance with an earlier published
study showing 47 % of ALK overexpression in a cohort
of 100 breast cancer cases [45]. However, ALK overex-
pression as high as 75 % in infiltrating ductal carcinoma
has been reported in a small cohort representing 63
samples from 22 patients [46]. Previously, Perez-Pinera
et al. showed ALK overexpression in 50 % of the lobular
subtype, whereby, we found ALK overexpression in only
17.5 % of lobular cases in our cohort [46]. Contrarily,
Mehrjardi et al. could not find ALK overexpression in
any case of lobular subtype in his patient cohort [45].
Significant association of ALK overexpression was

seen with triple negative breast cancers (TNBCs). ALK
protein was overexpressed in 47 % of TNBC cases,
which was significantly higher than in non-TNBC cases.
Our results show that the ALK signaling pathway pos-
sibly is more common in TNBC. Since TNBC is a poor
prognosis breast cancer lacking any molecular target, so

Table 2 Correlation of ALK IHC with clinicopathologic parameters in breast cancer (Continued)

Ki-67 IHC

High 818 85.8 318 38.9 500 61.1 0.0001

Low 135 14.2 30 22.2 105 77.8

p-AKT

Positive 212 22.6 132 62.3 80 37.7 <0.0001

Negative 725 77.4 211 29.1 514 70.9

Molecular subtype

HR+Her2- 460 47.4 142 30.9 318 69.1 0.0018

HR+Her2+ 232 23.9 83 35.8 149 64.2

TNBC 147 15.1 69 46.9 78 53.1

HR-Her2+ 132 13.6 56 42.4 76 57.6

Survival

OS 5 years 77.0 82.4 0.1212

ALK anaplastic lymphoma kinase, IHC immunohistochemistry, ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2,
FISH fluorescence in situ hybridization, TNBC triple-negative breast cancer, HR hormone receptor, OS overall survival
*Data was not available (NA) for some cases: Age (NA = 19), Lymph nodes (NA = 74), Metastasis (NA = 101), Stage (NA = 145), Grade (NA = 50), Histology
(NA = 29), ER (NA = 1), PR (NA = 2), Triple-negative (NA = 3), HER2 FISH (NA = 25), ALK FISH (NA = 24), Ki-67 (NA = 19), and p-AKT (NA = 35)
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ALK overexpression can be exploited as a possible thera-
peutic target. ALK overexpression was also seen to be
associated with poorly differentiated tumors (p = 0.0039)
and tumors with a high proliferation index in our patient
cohort, showing Ki-67 overexpression to be 42 %
(p = <0.0001). The proliferation marker Ki-67 has re-
peatedly been confirmed as an independent predictive
and prognostic factor in early breast cancer [47]. It has

been shown that breast cancer with high Ki-67 expres-
sion responds better to chemotherapy [48], but is associ-
ated with poor prognosis [49]. This phenomenon is
similar to the triple-negative paradox, which shows that
TNBC had a poorer survival rate, despite a higher
response rate to neoadjuvant chemotherapy [50]. In
addition, TNBC has been shown to be associated with a
higher expression of Ki-67 than non-TNBC [51]. These

Fig. 2 Determination of ALK gene copy number by fluorescence in situ hybridization. Copy number variation was further validated by an
independent method of quantitative PCR in ALK amplified and non-amplified breast cancer samples. Tissues were screened on an Olympus
BX 51 microscope (Olympus America Inc, Center Valley, PA, USA) under 100× magnification. a Breast cancer ALK amplified sample hybridized
with ALK break-apart probe showing ten red and green fused signals. b Breast cancer ALK non-amplified sample hybridized with ALK break-
apart probe showing normal tissue with two red and green fused signals. c Breast cancer ALK amplified sample hybridized with BAC probe
RP11-328L16 and CEP2 probe showing two red CEP2 signals and seven to eight green signals representing the ALK gene amplification.
d Breast cancer ALK non-amplified sample hybridized with BAC probe RP11-328L16 and CEP2 probe showing two red CEP2 signals and two
green signals representing normal ALK copy number. e Verification of the ALK gene copy number by real-time quantitative PCR. Histogram
showing ALK gene copy number obtained from normal breast samples 1–3 with two normal copies of ALK gene and samples 4–8 are
amplified breast cancer samples. ALK anaplastic lymphoma kinase, PCR polymerase chain reaction
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Table 3 Correlation of ALK FISH with clinicopathologic parameters in breast cancer

Total Amplified Non-amplified P value

N % N % N %

Total number of cases 980 130 13.3 850 86.7

Age groups

<50 666 68.0 85 12.8 581 87.2 0.5018

≥50 314 32.0 45 14.3 269 85.7

Lymph nodes

N0 305 33.1 38 12.5 267 87.5 0.2010

N1 295 32.1 47 15.9 248 84.1

N2 192 20.8 25 13.0 167 87.0

N3 128 13.9 11 8.6 117 91.4

Metastasis

M0 789 89.7 111 14.1 678 85.9 0.5986

M1 91 10.3 11 12.1 80 87.9

Tumor stage

I 77 9.0 9 11.7 68 88.3 0.7588

II 374 43.8 57 15.2 317 84.8

III 311 36.5 42 13.5 269 86.5

IV 91 10.7 11 12.1 80 87.9

Histologic grade

Well differentiated 74 7.6 7 9.5 67 90.5 0.3393

Moderately differentiated 498 51.4 62 12.4 436 87.6

Poorly differentiated 397 41.0 59 14.9 338 85.1

Histology

Infiltrating ductal 896 94.0 124 13.8 772 86.2 0.0194

Infiltrating lobular 44 4.6 1 2.3 43 97.7

Mucinous 13 1.4 3 23.1 10 76.9

Recurrence

Yes 257 29.7 42 16.3 215 83.7 0.1569

No 308 70.3 77 12.7 531 87.3

ER*

Negative 332 33.9 48 14.5 284 85.5 0.4388

Positive 647 66.1 82 12.6 565 87.4

PR*

Negative 408 41.9 58 14.2 350 75.8 0.4010

Positive 566 58.1 70 12.4 496 87.6

Triple-negative*

Yes 141 14.5 16 11.3 125 88.7 0.4848

No 832 85.5 112 13.5 720 86.5

HER2 FISH*

Amplified 282 29.5 48 17.0 234 83.0 0.0418

Normal/gain 675 70.5 81 12.0 594 88.0

ALK IHC*

Present 345 36.4 61 17.7 284 82.3 0.0031
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findings suggest that targeting ALK with its inhibitors
might have promising therapeutic implications in treat-
ing such aggressive breast cancer subtypes especially
TNBC, which has increased chances of recurrence and
metastasis and poor clinical outcome due to absence of
known hormonal and molecular targets.
ALK amplification was seen in 13.3 % of our breast

cancer cohort. Previously, Tuma et al. had shown ALK
amplification in 75 % of inflammatory breast cancer,
however, the study was performed on a very small co-
hort of 12 cases [18]. The Cancer Genome Atlas
(TCGA) dataset has also shown ALK amplification in
9 % of the breast cancer cases [52]. In addition we also

sought for EML4-ALK translocation, which has been ex-
tensively reported in lung cancer [53]. Interestingly, we
were not able to detect any translocation of ALK with
the EML4 gene. Similar to our study, Fukuyoshi et al.
also could not find this translocation in any of his 90
breast cancer cases tested for this translocation [54].
However, Lin et al. had shown the presence of EML
4-ALK translocation in 2.4 % (5/209) of breast cancer
cases [12]. Similarly, Robertson et al. had also found this
translocation in one case out of 25 inflammatory breast
cancer cases studied [21]. The exact cause of this dis-
crepancy is not known, however, one possible reason
could be the differences in ethnic population between
studies as these authors had studied breast cancers from
a Caucasian population while our study was conducted
on Middle Eastern breast cancer cases.
ALK protein overexpression was significantly associated

with ALK gene amplification in our study (p = 0.0031).
Even though, there was significant association between
ALK IHC and ALK FISH data but there was predomin-
ance in cases with protein overexpression compared to
gene amplification (36 % versus 13.3 %). This difference
could be partially attributed to the dependence of ALK
expression on other signaling pathways, which had been
previously hypothesized [55]. An alternative reason could
be the presence of other translocation fusion partners with
the ALK gene leading to ALK overexpression [56]. More-
over, the role of ALK mutations in causing protein overex-
pression cannot be ruled out as one of the possible
mechanisms, as previously documented in neuroblastoma
[57]. However, further studies are needed to explain these
observations.

Table 3 Correlation of ALK FISH with clinicopathologic parameters in breast cancer (Continued)

Absent 602 63.6 65 10.8 537 89.2

Ki-67 IHC

High 825 86.3 117 14.2 708 85.8 0.0569

Low 131 13.7 11 8.4 120 91.6

p-AKT

Positive 210 22.4 31 14.8 179 85.2 0.4232

Negative 729 77.6 92 12.6 637 87.4

Molecular subtype

HR+Her2- 461 47.2 58 12.6 403 87.4 0.6418

HR+Her2+ 238 24.4 33 13.9 205 86.1

TNBC 141 14.4 16 11.4 125 88.6

HR-Her2+ 139 13.9 22 16.2 114 83.8

Survival

OS 5 years 77.3 80.3 0.3303

ALK anaplastic lymphoma kinase, FISH fluorescence in situ hybridization, ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor
receptor 2, IHC immunohistochemistry, HR hormone receptor, TNBC triple-negative breast cancer, OS overall survival
*Data was not available (NA) for some cases: Age (NA = 27), Lymph nodes (NA = 72), Metastasis (NA = 100), Stage (NA = 144), Grade (NA = 53), Histology
(NA = 27), ER (NA = 1), PR (NA = 6),Triple-negative (NA = 7), HER-2 FISH (NA = 23), ALK FISH (NA = 33), Ki-67 (NA = 24)

Fig. 3 Kaplan-Meier survival analysis for the prognostic significance
of ALK expression in breast cancer. Breast cancer patients with
overexpression of ALK had reduced 5-year recurrence-free survival
compared with those showing low expression of ALK (p = 0.0090).
ALK anaplastic lymphoma kinase
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Another interesting observation was the strong associ-
ation between ALK overexpression and p-AKT in our
study (p <0.0001). The p-AKT signaling pathway is acti-
vated in different types of cancers [58]. This molecular
correlation with the AKT pathway has also been shown
previously in ALK-expressing ALCL [59]. The use of
mTOR/AKT inhibitors along with ALK inhibitors have
also been recently justified in ALK-altered neuroblast-
oma [60]. Therefore, it is hypothesized that ALK has a
possible role in breast carcinogenesis via the AKT signal-
ing pathway.

Conclusions
In conclusion, we have comprehensively investigated the
ALK alterations in a large cohort of breast cancer cases.
ALK overexpression is present in a substantial propor-
tion of breast cancer cases and is significantly associated
with aggressive tumor parameters. ALK gene amplifica-
tion accounts for a significant proportion of this protein
overexpression and the role of other possible mecha-
nisms are hypothesized. ALK inhibitors alone or in com-
bination can be exploited as a novel therapeutic agent in
aggressive subtypes of breast cancers. Further studies are
required to validate these observations.
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Additional file 1: Table S1. Details of primary antibodies used in the
study. Details of primary antibodies used in the study including antibody
clone, manufacturer and dilution used for each antibody.

Additional file 2: Figure S1. Biochemical fractionation of ALK
expression in breast cancer cell lines. (A) Nuclear-free cytosolic and
nuclear extracts were isolated from MDA-MB231 and MCF12A cells and
immunoblotted with antibodies against ALK and tubulin. (B) Relative
expression of ALK was calculated using spot densitometry on cytosolic
and nuclear immunoblots of MDA-MB231 and MCF12A cells. Expression
of ALK was normalized with tubulin.

Additional file 3: Figure S2. ALK expression in triple-negative breast
cancer cell line versus normal cell line. (A) Total proteins isolated from
MDA-MB231 and MCF12A cells were immunoblotted with antibodies
against ALK and beta-actin. (B) Relative expression of ALK was calculated
using spot densitometry on total protein immunoblots of MDA-MB231
and MCF12A cells. Expression of ALK was normalized with beta-actin.

Additional file 4: Figure S3. Kaplan-Meier survival analysis for overall
survival of ALK expression in breast cancer. Breast cancer patients with
overexpression of ALK had reduced overall survival at 5 years compared
with low expression of ALK, although not significant (p = 0.1212).
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