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Prenatal Chromosomal Diversification of Leukemia
in Monozygotic Twins

Helena Kempski,1,2* Karen A. Mensa-Bonsu,1 Lyndal Kearney,3 G. Reza Jalali,4 Ian Hann,2 Mohammed Khurshid,5

and Mel Greaves3

1Molecular Haematology Unit, Institute of Child Health, London, United Kingdom
2Great Ormond Street Children’s Hospital, London, United Kingdom
3Leukaemia Research Fund Centre, Institute of Cancer Research, London, United Kingdom
4Cancer Sciences Division, Southampton General Hospital, Southampton, United Kingdom
5Aga Khan University Hospital, Karachi, Pakistan

Previous studies on concordant acute lymphoblastic leukemia (ALL) in identical twins have identified the leukemia as
monoclonal with MLL or ETV6-RUNX1 gene fusion as early or initiating events in utero. In the latter case, postnatal latency
is associated with secondary genetic events such as ETV6 deletion. We describe here a pair of infant twins with concordant
acute monoblastic leukemia (AML). They are a unique pair in that their leukemia blasts display extensive intraclonal
chromosomal diversity. Comparison of the leukemic cells between the two twins by karyotype and fluorescence in situ
hybridization identifies a common or shared stem line and extensive subclonal diversity for which the twins’ leukemic
populations are divergent. This case of leukemia illustrates in utero initiation with early imposition of chromosomal instability,
the progressively divergent evolution of which can be mapped in the twins into pre- and postnatal periods.
© 2003 Wiley-Liss, Inc.

The concordance rate of acute leukemia in infant
identical or monozygotic twins has long been recog-
nized to be extraordinarily high (MacMahon and
Levy, 1964; Zuelzer and Cox, 1969; Keith et al.,
1973). Several of such twin pairs, as well as older twin
children with leukemia, have been shown to share
non-constitutive clonotypic gene rearrangements, in-
dicating that they have a common clonal origin (Ford
et al., 1993, 1998; Gill Super et al., 1994; Megonigal et
al., 1998; Wiemels et al., 1999a,b). The likely expla-
nation for monoclonality in this context is blood cell
chimerism: an initiation of leukemia in one twin in
utero, followed by spread of clonal progeny to the
co-twin by the vascular anastomoses that commonly
exist within monochorionic placentas (Clarkson and
Boyse, 1971; Ford et al., 1993). The prenatal origin of
leukemia and the intraplacental “metastasis” expla-
nation is endorsed, for both twins and singletons with
leukemia, by the demonstration of the presence of
clonotypic fusion gene sequences in archived neona-
tal blood spots or Guthrie cards (Gale et al., 1997;
Wiemels et al., 1999a). The clonal markers used in
twin leukemia studies have been gene fusions gen-
erated by chromosome translocations (Ford et al.,
1993, 1998; Wiemels et al., 1999a) and IGH/TCR re-
arrangements (Ford et al., 1997).

Before these molecular studies, some earlier re-
ports of leukemic karyotypes also provided support
for a common clonal origin of concordant leukemia

in twin pairs (Hilton et al., 1970; Chaganti et al.,
1979; Hartley and Sainsbury, 1981), although these
were equivocal because of the quality of karyo-
types and because it was not then appreciated that
clonally unrelated leukemias from different indi-
viduals can share similar chromosomal abnormali-
ties. Chromosome markers can provide evidence of
clonal identity in the twin context only if they are
very unusual or complex. Shared complexity might
seem unlikely, given that this would require that
such a chromosomal status was rapidly acquired
during a pre-leukemic prenatal phase, for example,
by chromosomal instability. Richkind et al. (1998)
described a pair of twins (ages 3 and 4 years at
diagnosis) with an apparently identical karyotype:
inv(16)(p13q22),�8,�21. We now describe such a
twin pair in whom the leukemic cells have exten-
sive diversity of chromosomal abnormalities that
nonetheless can be dissected into components that
are shared and therefore early and prenatal in ori-
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gin. This twin pair provides an unusual insight into
the timing and course of chromosomal instability
underpinning pediatric leukemia.

The twins, identical boys, were born in Pakistan,
after an uncomplicated pregnancy, with a single or
monochorionic placenta. There was no family his-
tory of leukemia. Twin one (T1) was diagnosed
with M5 acute monoblastic leukemia (AML) at 6
months and twin two (T2), with the same diagnosis
at 13 months. GTG-banded karyotype analysis was
carried out on T1 at the Aga Khan University
Hospital, Karachi. Twin 2 was diagnosed in Lon-
don, where diagnostic material from both twins was
assessed by GTG banding and fluorescence in situ
hybridization (FISH) by use of whole chromosome
paints (WCPs) and locus-specific (LSI) probes. Be-
tween 51 and 80 metaphase cells from each twin
sample were examined by GTG-band analysis and
confirmed by appropriate WCPs and LSI probes,
where possible.

The leukemic cells had extensive chromosomal
abnormalities, and these are summarized in Table
1. Cytogenetic analysis showed a complex karyo-
type characterized by aneuploidy and characteristic
structural changes. In addition to chromosomal
gains of 8, 10, and 19, common structural changes
involving chromosomes 2, 7, and 9 were discovered
in both twins (Fig. 1). A del(7)(p15) was found in
both children. The dup(2) and der(9) marker chro-
mosomes were karyotypically indistinguishable in
both twins. The der(9) was further defined by
FISH, and was found to contain an insertion from
chromosome 2, which was microscopically identi-
fied as a light-staining region sandwiched between
chromosome 9 and terminal chromosome 7 mate-
rial in the translocation [Fig. 2(i)A and (ii)A].
Through use of a locus-specific probe for ABL, we
were able to demonstrate the retention of ABL on
the der(9), confirming that the breakpoint was dis-
tal to this gene [Fig. 2(i)B and (ii)B]. A candidate
gene distal to ABL, and associated with AML, is
CAN (CAIN, NUP214). This gene has been de-
scribed as a fusion partner with DEK in the t(6;
9)(p23;q34) in a subset of patients with AML (von
Lindern et al., 1992). However, because of the very
limited amount of material remaining from T2 and
no further material from T1, the possible involve-
ment of CAN was not pursued.

The abnormalities present in both twins were de-
fined as: dup(2)(q35q31),del(7)(p15),�8,der(9)t(7;9)
ins(9;2;7)(9pter39q34::2q?3132q?31::7p1537pter),
�10,�19. The insertion of chromosome 2 material
into the t(7;9) was thought to originate from the
proximal breakpoint region at 2q?31 from the dup(2).

The rationale behind this was based on most of the
metaphase chromosomes available for analysis being
at �400 band resolution and, because band 2q31 is a
larger, more prominent, light-staining region com-
pared to that of band 2q35, the second breakpoint
region identified in the duplication, the material was
deduced to be of 2q?31 origin. The size of the inser-
tion from chromosome 2 into der(9) was comparable
to that of the 2q31 band found in the normal chro-
mosome 2 homolog. The identification of these
breakpoint regions was made at the GTG-band level
during standard analysis. We were unable to obtain
suitable probes that mapped to either of the esti-
mated breakpoint regions on chromosome 2, and
were therefore unable to confirm or characterize
these rearrangements further. Whole chromosome
paints for chromosomes 7 and 9 established that the
t(7;9) was not reciprocal. Beyond these common
changes, T1 showed a deletion of chromosome 15
between bands q12 and q24 and subsequent gain of
an additional del(15q) and one further copy each of
chromosomes 19 and 21; T2 showed additional gains
of chromosomes del(7p) and 8. T1 showed two main
clones, lines 2a and 4a (Table 1), with 23/51 (45.2%)
and 9/51 (17.7%) of cells involved, respectively; 4/51
(7.8%) of cells showed dup(2) as a sole change, 4/51
(7.8%) of cells were normal, and of the remainder of
the cells analyzed, 11/51 (21.5%) showed diverse sub-
clonal changes. Twin 2 also revealed two main clones,
lines 3b and 6b (Table 1), with 22/80 (27.5%) and
33/80 (41.2%) of cells involved, respectively; 2/80
(2.5%) of cells showed dup(2) as a single change,
12/80 (15%) of cells were normal, and of the remain-
der of the cells analyzed, 11/80 (13.8%) showed varied
subclonal changes.

Comparison of the abnormalities in the paired
twin samples therefore revealed that some major
changes were common or shared, whereas several
more minor, subclonal alterations were unique to
each twin. A key clonal marker is der(9). In addi-
tion, the leukemias had in common trisomy of
chromosomes 8, 10, and 19 and dup(2). The shar-
ing of markers indicates that in this twin pair, as in
others previously analyzed with molecular markers
(Ford et al., 1993, 1998; Megonigal et al., 1998;
Wiemels et al., 1999b), there was a clonal origin in
one twin in utero. By comparing the intraclonal
frequency of markers and their concordance or dis-
cordance in the twin pair, we can align a putative
sequence of chromosomal events in this twin pair
(Fig. 3). We assume that all shared markers must
have been generated prenatally in one twin,
whereas the extensive subclonal changes unique to
each twin reflect independent, postnatal chromo-
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some diversification. In a previous twin pair with a
common, clonotypic ETV6-RUNX1 fusion, it was
found that associated chromosomal deletions (in-
cluding ETV6) were distinct and therefore, as in
the present case, probably independently acquired
as postnatal, secondary events (Maia et al., 2001).

Multiple trisomies such as those described here
are a relatively uncommon finding in AML, and are
more usually found in association with recognized
structural rearrangements such as t(8;21)(q22;q22),
t(9;22)(q34;q11), or 11q23 rearrangements (Mitel-

man et al., 2002). More than 50% of newly diag-
nosed cases of AML do display karyotypic abnor-
malities, but these are predominantly single
cytogenetic abnormalities (Mrozek et al., 2001).
However, highly complex chromosomal changes
have been described in infant AML (Chessells et
al., 2002). The latter study describes complex
karyotypic changes that were found in 12/57 (21%)
infants with AML, of whom 5/12 (42%) were diag-
nosed with FAB type M5, a diagnosis similar to
that of the twins described here. The infant leu-

Figure 2. (i) A: Partial metaphase
cell from clonal line 6b of Twin 2 (T2),
hybridized with WCPs for chromo-
some 2 (green signal) and chromo-
some 7 (red signal), showing struc-
tural clonal changes detected. The
derivative 9 is arrowed. B: Partial meta-
phase cell, hybridized with a probe
spanning ABL, demonstrating that ABL is
retained in both the normal chromo-
some 9 and the derivative chromo-
some 9 (arrowed). (ii) A, B: DAPI-
banded images of (i) showing (a) normal
chromosome 2, (b) dup(2)(q31q35), (c)
normal chromosome 7, (d) del(7)(p15),
(e) normal chromosome 9, and (f)
der(9)t(7;9)ins(9;2;7).

Figure 1. G-banded partial karyotype of the shared chromosome abnormalities in the twins’ leukemic
cells. Both the dup(2) and der(9) were distinctive and could be easily distinguished by G-banding. FISH
characterization of these structural abnormalities was carried out on leukemic metaphases from Twin 2.
Nomenclature based on banded karyotype and FISH data (see text).

409CHROMOSOMAL DIVERSIFICATION OF LEUKEMIA IN TWINS



kemias with gain of chromosomes, in addition to
structural changes, were predominantly found in
the group without 11q23 MLL gene abnormalities.
Neither twin in the current study had abnormali-
ties of 11q23. A sizeable fraction of infant AML,
without MLL gene fusion, have the translocation
t(7;12)(q36;p13), strongly associated with trisomy
19 (Tosi et al., 2000). However, despite the pres-
ence of trisomy 19, our twin pair did not have the
t(7;12)(q36;p13). This was confirmed by FISH in-
vestigation by use of WCPs for chromosomes 7 and
12 and also by use of a locus-specific probe for the
ETV6 gene, which is invariably rearranged in the
recurrent t(7;12) translocation (Tosi et al., 2000;
Simmons et al., 2002). No translocation was dis-
closed by the WCPs; and ETV6 remained intact in
both chromosome 12 homologs.

The features of the twin pair reported here and
other infants with AML are clearly indicative of
chromosome instability (CIN). The distinction be-
tween these infant leukemias (in both twins and
singletons) with MLL gene fusions and those with
chromosome instability is likely to have etiological
implications. Balanced chromosome translocations,

particularly those involving 11q23/MLL, have been
associated in secondary leukemias with prior expo-
sure to topoisomerase II (topo II)–inhibiting epi-
dophyllotoxins or anthracyclins (Felix, 1998). It has
been proposed that infant de novo leukemias with
MLL gene fusions may involve a unique causal
pathway in utero involving transplacental exposure
to substances that similarly interfere with topo II
(Ross et al., 1996; Greaves, 1997). Some experi-
mental (Strick et al., 2000), epidemiological (Ross
et al., 1996; Alexander et al., 2001), and genetic
(Wiemels et al., 1999c) data support this conten-
tion. Breivik and Gaudernack (1999) proposed that
chromosome instability, in cancer in general, might
reflect the selective pressure exerted by particular
genotoxic chemicals. They predicted that bulky
adduct-forming agents might represent such a
class, and experimental evidence in favor of this
has recently been produced by use of 2-amino-1-
methyl-6-phenylimidazol[4,5-b]pyridine exposure
of cell lines (Bardelli et al., 2001). In secondary
AML, complex karyotypes have been found to be
associated with prior exposure to alkylating agents
(Pedersen-Bjergaard, 2002). The molecular mech-

Figure 3. Schematic representation of a proposed prenatal and
postnatal sequence of cytogenetic events: Prenatal events 1 and 2
involve the acquisition of complex structural and numerical chromo-
somal changes, in either Twin 1 (T1) or Twin 2 (T2). Post-natal

divergence in T1 is identified by the deletion of one copy of chromo-
some 15 (event 3), followed by diverse subclonal changes (event 4�).
T2 shows variant subclonal changes without a perceptible (and distinct)
antecedent cytogenetic change.
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anisms involved in generating CIN are unclear but
could involve direct induction of chromosome
changes by bulky adducts themselves or incisions
generated by nucleotide excision repair (Breivik
and Gaudernack, 1999). Alternatively, abnormali-
ties involving telomerase dysfunction (Gisselsson et
al., 2001), centrosome abnormalities (Ghadimi et al.,
2000), or mitotic spindle checkpoints (Cahill et al.,
1998) could be important. We have no evidence im-
plicating possible in utero chemical exposure of the
twins reported here, although such exposure could
have been inadvertent. This twin pair adds to the
evidence for in utero initiation of pediatric leukemia,
showing that not only balanced translocations but
CIN may be very early or initiating events.
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