
 

 

RVC OPEN ACCESS REPOSITORY – COPYRIGHT NOTICE 

 

This author’s accepted manuscript may be used for non-commercial purposes in accordance 

with Wiley Terms and Conditions for Self-Archiving. 

The full details of the published version of the article are as follows: 

 

TITLE: Quantification of the effect of instrumentation error in objective gait assessment in the 

horse on hindlimb symmetry parameters 

AUTHORS: F. M. Serra Bragança, M. Rhodin, T. Wiestner, E. Hernlund, T. Pfau, P.R. van   

Weeren, M. A. Weishaupt 

JOURNAL: Equine Veterinary Education  

PUBLISHER: Wiley 

PUBLICATION DATE: 15 October 2017 (online) 

DOI: http://dx.doi.org/10.1111/evj.12766  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RVC Research Online

https://core.ac.uk/display/132194038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://olabout.wiley.com/WileyCDA/Section/id-828039.html
http://dx.doi.org/10.1111/evj.12766


A
cc

ep
te

d
 A

rt
ic

le

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process, which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1111/evj.12766 

This article is protected by copyright. All rights reserved. 

MR. FILIPE MANUEL SERRA BRAGANÇA (Orcid ID : 0000-0001-8514-7949) 

DR. MARIE  RHODIN (Orcid ID : 0000-0003-0575-2765) 

DR. THILO  PFAU (Orcid ID : 0000-0002-0702-4289) 

 

Article type      : General Article 

 

Editorial reference code : EVJ-GA-17-145.R1 

 

Quantification of the effect of instrumentation error in objective gait 
assessment in the horse on hindlimb symmetry parameters 

 

F. M. Serra Bragança1, M. Rhodin2, T. Wiestner3, E. Hernlund2, T. Pfau4, P.R. van Weeren1 

and M. A. Weishaupt3 

 

1Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 

112-114, NL-3584 CM Utrecht, The Netherlands;  

2Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 

75007 Uppsala, Sweden; 

3Equine Department, Vetsuisse Faculty University of Zurich, Zurich, Switzerland; 

4Department of Clinical Science and Services, The Royal Veterinary College, Hawkshead 

Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

*Corresponding author email: f.m.serrabraganca@uu.nl  

 

Keywords: horse; gait analysis; lameness; symmetry; objective; marker placement 

 

Summary 

Background: Objective gait-analysis is becoming more popular as a tool assisting veterinarians 

during the clinical lameness exam. At present, there is only limited information on the effect of 

misplacement of markers/motion-sensors.  

Objectives: To investigate and describe the effect of marker misplacement on commonly calculated 

pelvic symmetry parameters.  

Study design: Experimental study.  

Methods: Each horse was equipped with custom-made devices consisting of several reflective 

markers arranged in a predefined manner with a reference marker correctly positioned regarding the 

anatomical landmark and several misplaced markers along the sagittal and transverse planes. Linear-

regression-analysis was used to estimate the effect of marker misplacement. 

Results: For the tubera sacrale, each cm of left/right misplacement led to a difference in minimum 

position of the pelvis (PDmin) of ± 1.67 mm (95% C.I 1.54-1.8 mm) (p<0.001); maximum position of 

the pelvis (PDmax) was affected by ± 0.2 mm (95% C.I 0.071-0.33 mm) (p = 0.003). With respect to 

cranial/caudal misplacement, each cm of misplacement resulted in a PDmin difference of ± 0.04 mm 

(95% C.I -0.09-0.16 mm) (p = 0.56) and a PDmax difference of ± 0.008 mm (95% C.I -0.13-0.12 

mm) (p = 0.9). For the tubera coxae, each cm of vertical misplacement led to a difference in the 

displacement amplitude between left and right tubera coxae (HipHike_Diff) of ± 1.56 mm (95% C.I 

1.35-1.77 mm) (p<0.001); for the cranial/caudal misplacement, this was ± 0.82 mm (95% C.I 0.66-

0.97 mm) (p<0.001).  
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Main limitations: Only three horses were used in this experiment and the study design did not permit 

to determine the influence of marker misplacement on the evaluation of different degrees of lameness.  

Conclusions: Marker misplacement significantly affects calculated symmetry parameters of the 

pelvis. The observed errors are overall small but significant. In cases of mildly asymmetrical horses, 

this error might influence the decision-making process whereas in more severe asymmetries, the 

influence of the error effect may become less significant.  

 

Introduction 

Kinematic gait analysis has the potential to provide clinicians with accurate and unbiased information 

that can be used during orthopaedic examinations of horses. This technique is also routinely used in 

equine research as a method of objective quantification of locomotion and to quantify gait changes 

due to orthopaedic pain. Its clinical application helps overcoming the inherent limitations of 

subjective lameness assessment, mainly the low inter-observer agreement [1–4] and human 

limitations of visual asymmetry perception [5,6]. In recent years, several clinically applicable 

methods have become available and these are in general based on the evaluation of asymmetries of 

the vertical displacement of head, withers and pelvis [7–12] during unridden trot.  

Kinematic gait analysis relies on the placement of sensors or markers attached to the skin 

over predetermined anatomical landmarks. Although the repeatability of most symmetry parameters 

has been evaluated to a certain extent [7], there is only limited information [13,14] about how 

misplacement of markers might affect the measured symmetry parameters and ultimately influence 

the decision-making process. Previous research demonstrated that marker placement is crucial when 

assessing locomotion asymmetries using limb mounted markers [15] and that small differences in 

marker placement can indeed create artificial asymmetries in the measured outcome. Skin 

displacement artefacts due to the displacement of the skin are also a known issue in equine gait 

analysis and can have a major effect on kinematic measurements of the limbs [16,17] and to a certain 

extent also of the tubera coxae and sacrale [18].  
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The objectives of this study were to investigate to what extent misplacement of markers for 

kinematic gait analysis might influence the commonly calculated symmetry parameters used for 

hindlimb lameness quantification. Our hypotheses were that: 1) marker misplacement will have a 

significant effect on all measured symmetry parameters and 2) such effect will be more important 

when the misplacement is out of the sagittal plane.  

 

Material and methods  

Animals: Three riding school horses (Horse ID: 1, 2 and 3) were used in this study (one German 

Warmblood, one German Riding pony and one Fjord horse) with a height at withers of 1.70 m, 1.48 m 

and 1.44 m, respectively, a body mass of 640 kg, 410 kg and 520 kg, respectively and ages of 7, 11 

and 15 years, respectively. Horses had been accustomed beforehand to treadmill locomotion as 

previously described [19]. Horses were in regular use and known to be mildly asymmetrical. 

Measurements for objective lameness assessment can be found in Table 1.  

Marker placement: 121 spherical reflective markers were used, with a cluster of 3 markers placed on 

the head (20 mm∅), a cluster of 4 markers (15 mm∅) on the mid-lateral aspect of each 

metacarpal/metatarsal bone aligned with the bone longitudinal axis, and star clusters of 17 markers 

(12 mm∅) each on the left tubera coxae (LTC), right tubera coxae (RTC), sacrum, withers and left 

and right tubera of the spina scapulae, respectively (Fig 1). For this investigation, only the sacrum, 

LTC and RTC cluster markers were analysed. The central marker of each cluster was positioned over 

the correct anatomical landmark (sacrum, centrally between the cranial aspects of the tubera sacrale; 

LTC/RTC, dorso-cranial aspect of the tubera coxae) and one of the arms of the star-shaped figure was 

aligned with the transverse plane of the horse at that position. The label name of each marker can be 

found in Table 2.  
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Data collection:  

Kinematic data were collected at trot at 3.6 m/s (treadmill belt speed) using 10 infra-red 3D motion 

capture (MoCap) cameras (Oqus 700+/300+ and 400a). Force data were recorded with an 

instrumented treadmillb [20]. Sampling frequency was 400 Hz for force and 200 Hz for MoCap data. 

Both measurement systems were synchronised using hardware synchronisation. Each recording lasted 

20 s.  

 

Data processing:  

During the measurements, the three-dimensional coordinates of each marker were automatically 

tracked by the motion capture software (QTM, version 2.13a). After each measurement, visual 

inspection of the 3D tracked data confirmed that all markers were properly tracked and data was 

suitable for analysis. Measurements with poor marker tracking or irregular gait patterns were 

discarded and repeated. All data were exported into a Matlabc file. Custom made Matlab scriptsc were 

used to process all data and calculate symmetry parameters for each marker of each cluster. Stride 

split was performed using hoof contact timings based on the kinetic data. The vertical displacement of 

each marker was high-pass filtered using a 4th order zero-phase Butterworth filter with the cut-off 

frequency (frequencies used: 1.1, 1.0, 0.95 Hz) adjusted to the stride frequency of each trial/horse 

(stride frequency: 1.6, 1.5, 1.4 Hz, respectively). For each marker, the calculated symmetry 

parameters were the pelvis PDmin/PDmax, PD_SIup/PD_SIdown and Hip-Hike difference as described 

in Table 3. All parameters were calculated for each stride as previously described [21].  
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Data analysis:  

Open software (R-Studiod, version 3.3.1) was used for statistical analysis of the calculated symmetry 

parameters. For the sacrum, LTC and RTC clusters, a generalised linear model (function: glm) was 

used with the position of each cluster marker in the volume as an explanatory variable and the tested 

symmetry parameters (per stride) used as a response variable. To determine the position of each 

marker in relation to the treadmill coordinate system (x: left/right, y: cranial/caudal, z: vertical), the 

horizontal coordinates (i.e. x, y) were used to determine cranial/caudal and left/right misplacement. 

For LTC and RTC, the vertical plane (i.e. y, z) coordinates were used for determining cranial/caudal 

and proximal/distal misplacement. Since all horses had a baseline motion asymmetry measured at the 

reference marker, all the measured symmetry variables (response variable) were normalised to the 

baseline measured asymmetry, thus defining the reference symmetry for each parameter at the 

reference marker as zero. All models were also tested for a non-linear relation between outcome and 

explanatory variables. The Akaike’s information criterion was used to select the best model. Best fit 

of each model was evaluated by plotting the residuals versus fitted values to ensure homoscedasticity. 

Normal distribution of the residuals was verified using Q-Q plots. Model plots were generated using 

the package ggplot2. Linear regression lines were also generated (function: geom_smooth) for model 

outcome visualisation.  

Since the hip-hike difference needs both LTC and RTC markers for its calculation, the analysis was 

performed by testing misplacement on one side while on the opposite only the central reference 

marker was used.  
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Results  

Per horse a total of 30, 28 and 27 valid strides were analysed, respectively. None of the models 

improved significantly by using polynomial (i.e. non-linear) relations and therefore all results are 

presented using linear models.  

 

Sacrum  

Figure 2 represents the timing of events between left/right displacement of the sacrum markers, limb-

midstance, pelvis roll and yaw, and hoof-on/off events for one horse.  

 

The baseline asymmetry calculated for each subject can be found in Table 1. Descriptive statistics of 

the symmetry parameters calculated for each marker are presented in Figures 3 and 4 for one horse 

(ID: 1). The model estimates including all horses indicated that for each cm the marker was misplaced 

to the left or right from the reference anatomical landmark, PDmin was affected by ± 1.67 mm (95% 

C.I 1.54-1.8 mm; p<0.001), PDmax by ± 0.2 mm (95% C.I 0.071-0.33 mm; p = 0.003) (Fig 4), 

PD_SIup by ± 0.019 (95% C.I 0.017-0.022; p<0.001) and PD_SIdown by ± 0.026 (95% C.I 0.023-0.029; 

p<0.001) (Fig 5), depending on to which side the marker was misplaced (to the left or to the right).  

 

For cranial/caudal misplacement each cm away from the anatomical landmark affected PDmin by ± 

0.04 mm (95% C.I -0.09-0.16 mm; p = 0.6), PDmax by ± 0.008 mm (95% C.I -0.13-0.12 mm; p = 

0.9), PD_SIup by ± 0.0004 (95% C.I -0.002-0.003; p = 0.8) and PD_SIdown by ± 0.001 (95% C.I -

0.002-0.004; p = 0.5), depending on the direction in which the marker was misplaced (cranially or 

caudally).  
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HipHike  

For proximal-distal misplacement, each cm away from the reference anatomial landmark (LTC/RTC) 

HipHike_Diff was affected by ± 1.56 mm (95% C.I 1.35-1.77 mm; p<0.001) (Fig 6). For 

cranial/caudal misplacement, each cm away from the reference anatomical landmark (LTC/RTC) 

HipHike_Diff was affected by ± 0.82 mm (95% C.I 0.66-0.97 mm; p<0.001). 

 

Discussion  

The hypotheses that marker misplacement would affect symmetry parameters and this effect would be 

more pronounced when the misplacement is out of the sagittal plane are supported by the outcome of 

this study. We did not observe a considerable timing difference (on visual inspection of the signals) of 

peaks and valleys in the measured sacrum marker signals. We did observe a difference in amplitude 

of the signals and a difference in maximum and minimum vertical position when compared to the 

reference marker (Fig 5). This can be explained by the fact that the pelvis behaves like a rigid body 

[22]; therefore, when using markers attached to the same rigid structure, vertical displacement events 

happen synchronously through the whole structure. For the calculated symmetry parameters of the 

sacrum, left/right misplacement had a considerably greater effect when compared to cranial/caudal 

misplacement. This is in line with previous research using sensors mounted along the midline of the 

horse, (between T6 and S3) [23], where small differences between locations of the sensor along the 

sagittal midline were reported for the calculated asymmetry parameters in most of the tested horses. In 

our study the left/right misplacement PDmin was substantially more affected by misplacement than 

PDmax, as observed by the different model estimates ± 1.67 mm for PDmin and ± 0.2 mm for PDmax 

and as described for misplacement when using a pelvis mounted uni-axial accelerometer [14].   
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We hypothesise that this difference between PDmin and PDmax is mainly due to the soft 

tissue artefacts underneath the markers combined with the effect of pelvis roll. Functional surface 

EMG studies indicate that the gluteus medius muscle, located underneath the left/right misplaced 

markers, is active during the stride cycle, between the end of the swing phase until midstance during 

trot [24,25]. PDmin occurs during midstance. At this moment, the pelvis is most often slightly tilted 

(rolls) so that the tuber coxae of the stance limb is higher than that of the swinging limb (Fig 5). 

Hence, we argue that a sacral marker, misplaced to the right, would in right limb stance achieve its 

higher vertical position. This is possibly due to the combined effect of the roll of the pelvis and the 

upward push from the actively contracting gluteus medius of the stance limb.  

PDmax is calculated at the pelvis’ maximum vertical position, which is the moment when the 

hoof is just about to strike the ground at the end of the swing phase. At this moment the pelvis vertical 

position and roll is at its maximum with a clearly higher position of the tubera coxae of the protracting 

hindlimb. One might expect that this tilt would result in differences in vertical position between the 

several left/right misplaced markers, but in fact the difference between the markers is small (Fig 5). 

We hypothesise that during the maximum vertical position of the pelvis, even though electrical 

activity in the gluteal muscle is low, in the limb that has just pushed the body forward (i.e. the limb 

that is at the end of stance phase) [24,25] there is a maximum extension of the hip joint [25] that 

passively compresses the gluteal muscle (and fat) on that side. This soft tissue movement will 

counteract the tilt created by the maximum pelvis roll and therefore result in only small vertical 

position differences across the markers observed (Fig 5).  

Both PD_SIup and PD_SIdown were affected by left/right marker misplacement, but to a 

different extent. Since these parameters are calculated based on the vertical range of motion 

difference between sides [21], both the upwards and the downwards pelvis movement ranges depend 

on the minimum position of the pelvis and, therefore, are affected by left/right marker misplacement.  
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The magnitude of the observed error remained small for small misplacements. Nevertheless, 

if the misplacement was big enough, the calculated symmetry parameters exceeded previously 

reported threshold values for PDmin (± 3 mm [3]) and hence led to a classification as lame. From our 

model estimates (Fig 4) a left/right misplacement of 3 cm resulted indeed in a false PDmin of ± 5.01 

mm, hence resulting in a type 1 error false positive result. 

Misplacement of tuber coxae markers affects Hip-Hike difference calculations and the effect 

is greater for the proximal-distal misplacement. The observed artefact for proximal-distal 

misplacement occurs on the tubera coxae peak just before hoof-on on the misplaced side, which 

corresponds to the maximum pelvis roll towards that side (max tuber coxae elevation on the 

misplaced side) Also, during midstance on the misplaced side, the marker will achieve a lower 

position when compared to the reference marker, resulting in a systematic error of the calculated 

parameter. As there are yet no reference threshold levels for the pelvis Hip-Hike difference, we 

cannot determine if the effect we measured might affect the clinical decision making. Nevertheless, 

attention should be given to properly place the markers in the correct anatomical location and in cases 

of horses with an asymmetrical pelvis conformation. In this situation marker placement should be 

performed in a way that the distance to the tuber sacrale from each marker/sensor placed at the LTC 

and RTC is equal, avoiding any possible misplacement. This can be performed by measuring with a 

tape the distance between the sacrum marker/sensor and the LTC/RTC marker/senor.     

In the present study, we used a small but diverse population of horses to avoid bias by any specific 

breed-related morphological characteristics. It is unknown if different degrees of lameness that 

ultimately may alter the motion pattern of the pelvis [22,26] could affect the model estimates we 

describe, but, as previously described, the horses included in this study were mildly asymmetrical 

(Table 1) and one of the horses even had a consistent pelvis movement asymmetry (PDmin = 13.3(± 

6.0) mm and Hip-Hike Diff = 21.4(± 8) mm). Further studies are needed to better understand the 

effect of marker misplacement on our investigated symmetry parameters in lame horses. 
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Although markers attached to the skin and moving relatively to the underlying bony 

structures do affect sensor orientation angle (Euler angles) [18], this effect was not yet tested for 

vertical displacement calculations. We believe that this orientation error effect would be more 

relevant for measurements using uniaxial accelerometer sensors [8,14]. Uniaxial accelerometers must 

be aligned with gravity to accurately measure displacement along the vertical axis. If incorrectly 

positioned, they will only measure a fraction of the total vertical acceleration, depending on their 

instantaneous orientation. This could in part explain the bigger effect of sensor misplacement 

described in another study using a uni-axial accelerometer [14]. However, in that study the 

researchers used lame horses and sensors were misplaced between consecutive trials. Therefore, one 

cannot establish whether some of the observed differences may be related to between-trial variation 

[8] or lameness related asymmetry.  

More advanced sensor units such as an inertial measurements unit (IMU) sensor might be less 

prone to the orientation error, since their vertical orientation is corrected using 3 gyroscope sensors 

and 3 accelerometers [27]. They therefore maintain the estimated vertical displacement in relation to 

the global coordinate system, resulting in the same vertical displacement as when measured using a 

3D motion capture system. Therefore, the results presented here are also valid for sensors measuring 

vertical displacement in a global-coordinate system [27], as long as the displacement estimated by the 

sensor is not under or over estimated. Thus, prior to the development of a sensor based system for 

objective lameness assessment, a validation study including agreement analysis with a 3D motion 

capture based system is imperative  [27].  

 

Conclusion 

Marker placement is important and due attention should be given to the instrumentation 

before performing objective gait assessment ensuring no markers/sensors are misplaced. For the 

sacrum and tubera coxae, left/right misplacement affected the measured symmetry parameters in a 

much greater magnitude in comparison to cranial/caudal misplacement. Overall, the observed error 
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magnitude due to marker misplacement was small emphasising the repeatability of this technique. 

Nonetheless, if the left/right marker misplacement for the sacrum is for example greater than 3 cm, 

the observed error might exceed the previously described thresholds for lame horses and therefore 

result in a false positive or negative result. Since this study was carried out in a small population and 

using mildly asymmetrical horses, we cannot conclude that our results will hold true in clinically lame 

horses. where a greater or smaller effect of marker misplacement might exist. As shown by our 

results, this could be due to changes in the pelvis rotation pattern. Nevertheless the effect of lameness 

in pelvis rotation is known to be small [22]. To study this, a kind of dose-effect study would have to 

be conducted in a larger population of horses. However, this was beyond the scope of our study and 

here we aim to create awareness of the importance of correct marker placement. 
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Tables 

Table 1: Baseline symmetry parameters calculated for each of the study subjects for head and pelvis. 

HDmin/HDmax: Head minimum/maximum position difference, PDmin/PDmax: Pelvis 

minimum/maximum position difference, HD_SI_up/ HD_SI_down: Head upwards/downwards vertical 

displacement difference index. PD_SI_up / PD_SI_down: Pelvis upwards/downwards vertical 

displacement difference index. Values are mean and ± standard deviation in brackets. 

Horse:  Warmblood horse  Riding pony  Fjord horse  

HDmin -6.1 (25.7) mm -16.5 (19.5) mm 1.6 (10.9) mm 

HDmax 12.7 (15.4) mm 11.5 (16.1) mm 9.9 (7.9) mm 

HD_SI_up 0.06 (0.37) -0.1 (0.5) 0.1 (0.2) 

HD_SI_down -0.3 (0.4) -0.5 (0.3) -0.1 (0.1) 

PDmin 13.3 (6.0) mm -5.2 (5.7) mm -6.2 (5.4) mm 

PDmax -0.1 (3.9) mm 4.1 (7.2) mm -8.2 (5.7) mm 

PD_SI_up 0.2 (0.1) -0.01 (0.1) -0.2 (0.1) 

PD_SI_down 0.2 (0.1) -0.1 (0.1) 0.03 (0.1)  

Hip-Hike Diff  21.4 (8) mm 0.6 (9.5) mm -11.5 (10.9) mm 
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Table 2: Naming of the different markers for each cluster location in relation to the horse, relative to 

global coordinate system (treadmill):  

Location / 

Naming  

Sacrum  LTC/RTC 

0  Reference marker  Reference marker

a / -a  ± 3 cm displacement. Left (+), Right (-) ± 3 cm displacement. Proximal (+), Distal (-) 

b/ -b ± 6 cm displacement. Left (+), Right (-) ± 6 cm displacement. Proximal (+), Distal (-) 

1 /-1 ± 3 cm displacement. Cranial (+), Caudal (-) ± 3 cm displacement. Cranial (+), Caudal (-) 

2 /-2 ± 6 cm displacement. Cranial (+), Caudal (-) ± 6 cm displacement. Cranial (+), Caudal (-) 

I/-I ± 3 cm displacement. Left/Caudal (+), 

Right/Cranial (-) 

± 3 cm displacement. Cranial/Distal (+), 

Caudal/Proximal (-) 

II/-II ± 6 cm displacement. Left/Caudal (+), 

Right/Cranial (-) 

± 6 cm displacement. Cranial/Distal (+), 

Caudal/Proximal (-) 

α / -α   ± 3 cm displacement. Left/Cranial (+), 

Right/Caudal (-) 

± 3 cm displacement. Cranial/Vertical (+), 

Caudal/Distal (-) 

β / -β ± 6 cm displacement. Left/Cranial (+), 

Right/Caudal (-) 

± 3 cm displacement. Cranial/Vertical (+), 

Caudal/Distal (-) 
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Table 3: Detailed description of the calculated asymmetry parameters used in this study.  

Parameter Description 

PDmin Difference between left and right stride half-cycle in minimum vertical 

displacement/position of the sacrum in mm. §.  

PDmax Difference between left and right stride half-cycle in maximum vertical 

displacement/position of the sacrum in mm. §  

PD_SIup Symmetry index of the upward pelvis vertical displacement as a proportion of the 

absolute pelvis vertical range of motion of each stride.±  

PD_SIdown Symmetry index of the downwards pelvis vertical displacement as a proportion of the 

absolute pelvis vertical range of motion of each stride.±  

Hip-Hike difference The difference in the upwards amplitude of the vertical displacement between the left 

tubera coxae and the right tubera coxae in mm..§  

 

§ A value of 0 indicates perfect symmetry; increasing values indicate an increased asymmetry. Positive 

values indicate an asymmetry towards the right limb lameness and a negative value indicates an 

asymmetry towards the left limb lameness. 

± A value of 0 indicates perfect symmetry, a value of 1 indicates maximum asymmetry towards the right 

limb and a value of -1 indicates maximum asymmetry towards the left limb. 
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Figure legends:  

Fig 1: Marker experimental setup. (a: Reflective marker cluster construction) (b: marker placement 

in one of the study subjects) (c: Example of left lateral view of all 121 markers as depicted by the 3D 

tracking software). 

 

Fig 2: Tubera sacrale marker vertical displacement, pelvis roll and pitch angle related to left 

hind limb midstance (vertical dotted blue line) for the Warmblood Horse. Midstance is 

defined as the moment of peak vertical ground reaction force. Pelvis roll (-): Left tubera 

coxae is below horizontal. Pelvis roll (+): Right tubera coxae is below horizontal. Pelvis Pitch 

(+): Lumbosacral extension. Pelvis Pitch (-): Lumbosacral flexion.  

 

Fig 3: Plot of the symmetry parameters PDmin, PDmax, PD_SI_up and PD_SI_down for the Warmblood 

horse (30 strides). The red box indicates the standard deviation, the blue line the 95% SEM, the red 

line indicates the mean and all data points are scattered along each plot. Please refer to Table 2 and 

Figure 1 for marker names and corresponding orientation with respect to the central reference 

marker.  

 

Fig 4: Change in PDmin (Z axis) for the different marker placements for the tubera coxae.  X 

and Y axis represent the position of each marker in the global coordinate system (Y positive 

to cranial and x positive to right). Each blue point represents one marker of the cluster as 

the average of all collected strides for the Warmblood horse (30 strides). The horizontal red 

plane represents the PDmin value of the central reference marker. The plane fitted along 

the different markers was generated using a thin-plate smoothing spline method.  Please 
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refer to Table 2 and Figure 1 for marker names and corresponding orientation with respect 

to the central reference marker. 

 

Fig 5: Left: Linear regression line with 95% confidence interval for PDmax and PDmin when markers 

are misplaced to the left or right. Right: Linear regression lines with 95% confidence interval for 

PD_SI_up and PD_SI_down when markers are misplaced to the left or right 

 

Fig 6: Plot of the symmetry parameter Hip-Hike Difference when markers are misplaced on 

the LTC or RTC. The red box indicates the s.d., the blue line the 95% SEM, the red line 

indicates the mean and all data points are scattered along each plot. Please refer to Table 2 

and Figure 1 for marker names and corresponding orientation with respect to the central 

reference of each marker.  
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