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ABSTRACT Heterogeneity in host susceptibility is a key determinant of infectious
disease dynamics but is rarely accounted for in assessment of disease control mea-
sures. Understanding how susceptibility is distributed in populations, and how con-
trol measures change this distribution, is integral to predicting the course of epi-
demics with and without interventions. Using multiple experimental and modeling
approaches, we show that rainbow trout have relatively homogeneous susceptibility
to infection with infectious hematopoietic necrosis virus and that vaccination in-
creases heterogeneity in susceptibility in a nearly all-or-nothing fashion. In a simple
transmission model with an R0 of 2, the highly heterogeneous vaccine protection
would cause a 35 percentage-point reduction in outbreak size over an intervention
inducing homogenous protection at the same mean level. More broadly, these find-
ings provide validation of methodology that can help to reduce biases in predictions
of vaccine impact in natural settings and provide insight into how vaccination
shapes population susceptibility.

IMPORTANCE Differences among individuals influence transmission and spread of
infectious diseases as well as the effectiveness of control measures. Control mea-
sures, such as vaccines, may provide leaky protection, protecting all hosts to an
identical degree, or all-or-nothing protection, protecting some hosts completely
while leaving others completely unprotected. This distinction can have a dramatic
influence on disease dynamics, yet this distribution of protection is frequently unac-
counted for in epidemiological models and estimates of vaccine efficacy. Here, we
apply new methodology to experimentally examine host heterogeneity in suscepti-
bility and mode of vaccine action as distinct components influencing disease out-
come. Through multiple experiments and new modeling approaches, we show that
the distribution of vaccine effects can be robustly estimated. These results offer new
experimental and inferential methodology that can improve predictions of vaccine
effectiveness and have broad applicability to human, wildlife, and ecosystem health.

KEYWORDS all-or-nothing vaccines, heterogeneity, infectious disease dynamics,
mode of vaccine action, partially protective vaccine

Host heterogeneity influences infection dynamics and thereby the ability to predict
the impact of control measures (1, 2). While much attention has been given to host

heterogeneity in exposure (e.g., contact rates) (3–7), considerably less attention has
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been paid to heterogeneity in susceptibility to infection given exposure (8–10). Heter-
ogeneity in susceptibility is typically incorporated into model structure through in-
creased compartmentalization (11). Individuals in different compartments are assumed
to have different susceptibilities, while those in the same compartment are presumed
identical (12). In nature, heterogeneity in susceptibility is continuous (8, 13–17), and
factors influencing susceptibility may be unknown, making assessment of susceptibility
to infection a significant challenge in prediction of infectious disease epidemics.

Tools from the field of quantitative microbial risk assessment can aid in estimation
of heterogeneity in susceptibility. Dose-response relationships from this field posit that
increases in pathogen challenge dose result in an increasing probability of host
infection (18). Highly susceptible hosts are likely to become infected at low challenge
doses, and as dose increases, more-resistant hosts become increasingly likely to be-
come infected (8, 16). The shape of the relationship between challenge dose and
probability of infection allows for estimation of the extent of host heterogeneity in
susceptibility (19). A null hypothesis of complete homogeneity (no variation) in sus-
ceptibility implies that (i) the per-pathogen probability of establishing infection is the
same for each host and (ii) the probability that each host becomes infected through
challenge with a particular pathogen dose is independent in repeated challenges (18).

This null hypothesis makes two testable predictions. (i) The increase in the proba-
bility of infection with challenge dose will be steep, in accordance with the exponential
decline in the Poisson probability of escaping infection as dose increases. Departures
from this null hypothesis will result in a less-steep dose-response curve (18), in which
the probability of infection increases more slowly with challenge dose. (ii) Over a single
inoculation event with a fixed duration, if hosts could be challenged multiple times
with the same pathogen without having their immune status modified by each
exposure, the result of previous challenges should give no indication of what to expect
in a subsequent challenge. Put another way, the success of one challenge in a host is
uncorrelated with the success in a subsequent challenge when all hosts are equally
susceptible. Therefore, after two challenges, the number of hosts infected zero, one, or
two times should be geometrically distributed, with a single unknown parameter
corresponding to the probability of infection in a single challenge (20). In a continuous
challenge, the frequency of hosts infected over a longer challenge duration should be
equivalent to that after challenging hosts with a higher dose for a shorter time period.
For example, the fraction of hosts infected in a 1-h challenge at a high dose should be
the same as the fraction of hosts infected in a 2-h challenge at half that dose (21).

Heterogeneity in susceptibility to infection, or departure from this null hypothesis,
may be present among unvaccinated individuals, vaccinated individuals, or both.
Heterogeneity in susceptibility is particularly important when considering vaccine
efficacy, because the mode of vaccine action can influence disease dynamics (9) and
pathogen evolution (22). Vaccines protecting hosts in a so-called “all-or-nothing”
fashion will afford complete protection to some fraction of hosts while leaving other
hosts completely unprotected, producing heterogeneous susceptibility in vaccinated
hosts. The other extreme is a “leaky” vaccine, which partially protects each host to an
equal degree (9). Of course, intermediates between the all-or-nothing and leaky
extremes are also possible. Distinguishing the epidemiological mode of action of
vaccination is important because an all-or-nothing vaccine has a greater impact in
reducing population-wide pathogen transmission than a leaky vaccine of the same
overall efficacy (9, 23–25). This is in part because under a given force of infection, the
all-or-nothing vaccinated population will experience a susceptibility reduction over
time due to cohort selection (more susceptible individuals are infected first and
removed from the susceptibility pool). This effect is weaker when susceptibility is more
homogeneous (8, 16, 26–28). Despite the importance of the leaky and all-or-nothing
distinction, the incorporation of mode of vaccine action into epidemiological models is
frequently determined by convenience rather than accuracy criteria.

Infectious hematopoietic necrosis virus (IHNV) is a single-stranded RNA virus en-
demic to salmonid fishes in the Pacific Northwest of North America (29, 30). The virus
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is a significant pathogen of wild, farmed, and hatchery salmonids, including rainbow
trout (Oncorhynchus mykiss) (30, 31). The pathogen causes acute mortality due to
necrosis of the host kidney and spleen (30). Due to the economic importance of
rainbow trout, vaccines for IHNV have been developed that reduce mortality from
disease and are cross-protective against multiple IHNV strains (32–39). In addition,
selective breeding of fish for resistance to the virus has also been pursued (40–42).
Multiple genotypes of the virus have also been found to circulate simultaneously (43,
44), and fitness differences among several viral strains have been previously charac-
terized (45, 46). Several pathogen strains (genotypes B and C, described in detail below)
have been shown to have nearly equivalent fitnesses with no evidence for strain
interference effects (46). Because of the manipulability of rainbow trout, the ability to
breed large numbers of pathogen-free individuals in captivity, knowledge of IHNV viral
strain fitness, and the range of disease interventions against IHNV, this is an ideal model
system for studying heterogeneity in innate and vaccine-induced susceptibility.

Here, we examine the distribution of host susceptibility to IHNV infection in unvac-
cinated and vaccinated fish using two experimental approaches motivated by the two
predictions of the null model listed above. First, we investigate how increases in
pathogen concentration influence infection in unvaccinated and vaccinated hosts,
testing the first prediction of the null model of homogeneous susceptibility. Second, we
test the second prediction of the null model by simultaneously challenging fish with
two IHNV strains with similar fitnesses and compare single and dual infection frequen-
cies to independently estimate susceptibility distributions and the mode of vaccine
action. We use simultaneous challenge instead of repeated challenges to circumvent
development of immunity following a primary exposure. Finally, we examine the
impact of excluding vaccine-induced changes in heterogeneity in susceptibility on
disease dynamics using a simple transmission model.

RESULTS

We first exposed groups of unvaccinated and vaccinated lab-reared juvenile rain-
bow trout to increasing concentrations of IHNV through immersion challenge. The
probability of infection for unvaccinated fish increased steeply with exposure concen-
tration (proportional to dose), consistent with relatively homogeneous susceptibility
(Fig. 1), although a model with modest gamma-distributed heterogeneity in suscepti-

FIG 1 Best-fitting models (lines) for infection response of vaccinated and unvaccinated fish challenged
with escalating concentrations of IHNV in PFU (plaque forming units) per microliter (points � standard
errors). Dashed lines show model fit where all unvaccinated individuals were equally susceptible
(homogeneous) and vaccinated individuals had heterogeneous susceptibility distributed according to a
beta distribution. Solid lines show model fit allowing for gamma-distributed heterogeneity in suscepti-
bility in unvaccinated fish. Vaccinated fish have gamma-beta-distributed heterogeneity in susceptibility
where parameters of the gamma distribution are determined by heterogeneity in susceptibility of the
unvaccinated fish.
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bility in unvaccinated fish (mean � 0.979, variance � 0.656, shape � 1.53, rate � 1.56)
(Fig. 2A) received slightly higher support (ΔBIC [Bayesian information criterion] � 2.47)
(Fig. 1). The probability of infection at a given exposure concentration was consistently
lower for vaccinated fish and increased more slowly with concentration, implying
greater heterogeneity in susceptibility (18). There was no support for homogeneous
susceptibility among vaccinated individuals (ΔBIC � 59.27) (see Table S1 in the sup-
plemental material).

Assuming that the distribution of vaccine effects in reducing susceptibility was
gamma distributed and independent of baseline susceptibility, we obtained the beta
distribution for vaccine action that produced the best-fitting combined beta-gamma
distribution of susceptibilities for vaccinated hosts (Fig. 2B). The resulting beta distri-
bution indicated a highly heterogeneous and polarized mode of vaccine action that
conferred almost total protection on a majority of fish while a smaller fraction of
individuals were nearly completely unprotected (� � 0.12, � � 0.45) (Fig. 2B). The
estimated beta distribution assuming homogeneity of unvaccinated fish was nearly
identical to the estimated beta distribution with gamma-distributed baseline suscep-
tibility (Fig. 2B, black-dashed line). The resulting combined distribution assuming that
the vaccine acts multiplicatively and independently on the innate susceptibilities of
unvaccinated fish is unimodal with the mass of the distribution centered close to 0. This
is due to the much larger mode of the estimated beta distribution of vaccine suscep-
tibility multipliers near 0, as the majority of hosts were nearly completely protected by
vaccination (Fig. 2C).

To test the second prediction of the homogeneity model, we designed an experi-
ment to determine whether hosts challenged twice with the same pathogen had
independent probabilities of infection among challenges. If hosts were identical, the
result of a single pathogen challenge should provide no information about the relative

FIG 2 Estimated IHNV susceptibility distributions from models in Fig. 1. Solid lines show estimated distributions allowing heterogeneity in unvaccinated and
vaccinated fish. Dashed lines show model fits allowing heterogeneity in the vaccine group only, with homogeneous controls. (A) Gamma-distributed
susceptibility (microliters per PFU-hour) of unvaccinated fish challenged with IHNV. (Inset) Estimated gamma distribution showing full confidence interval range.
(B) Beta-distributed susceptibility multiplier of vaccination, obtained under the assumption that a vaccinated fish’s susceptibility was the product of a random
draw from the gamma distribution obtained from unvaccinated fish, multiplied by an independent random draw from this beta distribution. We obtained 95%
confidence regions by bootstrapping chi-squared residuals to create 1,000 pseudoreplicates of infection data and then refitting the model to pseudoreplicates
to determine the 95% confidence regions of parameters as described in reference 18. The dashed curve, almost indistinguishable from the solid blue one, is
the pure beta distribution under the assumption of heterogeneity only in vaccinated hosts. (C) Histogram of the product of 1,000 random draws from a beta
distribution multiplied by 1,000 random draws from a gamma distribution with parameters defined by distributions (colored lines) in panels B and C.
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susceptibilities of individual hosts. To assess this, we challenged vaccinated and un-
vaccinated hosts with two viral strains with similar fitnesses at a single dose sufficient
to infect approximately 50% of all vaccinated hosts in a single strain challenge. This was
meant to simulate multiple sequential challenges (47) that could distinguish between
leaky and all-or-nothing modes of vaccine action (10, 27, 48, 49), such that leaky
protection would independently reduce susceptibility of a fish to each challenge while
an all-or-nothing vaccine would protect a fish either completely against both chal-
lenges or not at all against either. Because challenge with IHNV induces a nonspecific
immune response that makes a fish temporarily refractory to further infection (50), we
used simultaneous challenges rather than sequential ones. Under a strictly leaky mode
of action at a dose where 50% of vaccinated individuals become infected in a dose-
response challenge, we would expect that 25% of vaccinated hosts would have no
infections, 50% would have single infections, and 25% would have double infections, if
the vaccine was exactly 50% effective against each strain. A strictly all-or-nothing mode
of action would result in 50% of the hosts with no infections and 50% of hosts with
double infections. We found that 48.0% of vaccinated hosts in the simultaneous
challenge had no infections, 25.3% had single infections, and 26.7% had double
infections (Fig. 3). In unvaccinated fish, 26% had no infections, 41% had single infec-
tions, and 34% had double infections. In unvaccinated fish, we found that the homo-
geneous model had slightly more support (ΔBIC � 0.498) (Fig. 4A; Table S2) than the
heterogeneous model. This is consistent with the independent sorting of pathogen
strains among identical individuals, although population probabilities were not per-
fectly leaky (e.g., 25% uninfected, 50% singly infected, and 25% double infected;
chi-squared goodness-of-fit test, P � 0.15). Vaccinated fish were more heterogeneous
(� � 0.27, � � 0.49, variance � 0.13) (Fig. 4B), and there was no support for
homogeneous susceptibility (Table S2). Parameter estimates were within the 95%
confidence interval of the distribution of vaccine effects estimated from the first
experiment.

We used the estimated distribution of vaccine effects to examine the influence of
experimentally estimated heterogeneity in susceptibility on disease dynamics, com-
pared to models where the reduction in susceptibility due to vaccination was either
homogeneous or discretely all-or-nothing (Fig. 5). At an R0 of 2, we found that in an
epidemic of a vaccinated population, the experimentally estimated polarized distribu-
tion of vaccine effects reduced the total number of hosts infected by 35 percentage-

FIG 3 Fraction of vaccinated and unvaccinated fish with 0, 1, or 2 IHNV strains in a single-dose
immersion challenge with 74 unvaccinated and 75 vaccinated fish. Numbers indicate the number of
hosts infected in each group.
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points over a model where all individuals were assumed to be homogeneously pro-
tected to the same extent by vaccination (e.g., 45% of hosts became infected if vaccine
protection was heterogeneous and 80% became infected if protection was homoge-
neous). However, this reduction was far less than the discrete all-or-nothing model,
where only 36% of hosts became infected. The highly polarized mode of vaccine action
caused the most susceptible individuals to become infected first and resulted in a
reduction in mean susceptibility over the course of the epidemic (Fig. S1). At R0 values
of �6, homogeneous vaccine protection resulted in 100% of individuals becoming
infected (e.g., a final outbreak size of 100), whereas at an R0 of 25, heterogeneous
protection, as estimated by our experiments, still prevented infection in 17% of
vaccinated individuals (Fig. S2).

DISCUSSION

Heterogeneity in host susceptibility to infection is an often overlooked but impor-
tant determinant of infectious disease dynamics (8, 9). In this study, we show that
vaccination of rainbow trout increases heterogeneity in susceptibility to infection in a
highly polarized fashion. Our findings of nearly identical susceptibility distributions
using two independent methodologies affirm the utility of tools from quantitative
microbial risk assessment in describing host heterogeneity and provide biological
support for some polarized, nearly all-or-nothing modes of vaccine action, as found in
this case. Furthermore, we provide evidence that a null model of homogeneous
susceptibility does not adequately describe vaccinated host populations. However,
unvaccinated hosts had more homogeneous susceptibility, with probability of infection
increasing sharply with pathogen dose. We also found that two viral strains of equiv-
alent fitnesses nearly independently sorted among unvaccinated hosts, confirming the
null model of primarily homogeneous susceptibility in this group.

The robust estimation of susceptibility distributions using multiple methods pro-
vides several potential avenues for including heterogeneity in epidemic models and
estimating vaccine effects across disease systems. Frequently, heterogeneity in suscep-
tibility among hosts is unknown or is incorporated into model structure through
numerous classes representing factors thought to be important determinants of sus-
ceptibility (e.g., age or sex) (51). Models may also incorporate heterogeneity in suscep-

FIG 4 Estimated IHNV susceptibility distributions from simultaneous challenge of unvaccinated and
vaccinated fish with two strains of IHNV. (A) Homogeneously distributed susceptibility (microliters per
PFU-hour) of unvaccinated fish challenged with IHNV. (B) Beta-distributed susceptibility effect of vacci-
nation. We obtained 95% confidence regions by bootstrapping observations to create 1,000 pseudorep-
licates of infection data and then refitted the model to pseudoreplicates to determine the 95%
confidence regions of parameters as described in reference 18.
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tibility based on risk factors identified in previous studies (e.g., tuberculosis infection in
HIV susceptibility). However, even the most rigorously designed studies may overlook
important underlying risks that influence host susceptibility. The tools presented here
allow for assessment of all underlying variation in susceptibility and do not require
understanding of individual risks or a mechanistic understanding of the causes of
heterogeneity.

These results build on a large body of literature underscoring the importance of
heterogeneity in infectious disease systems, including contact structure heterogeneity

0

25

50

75

100

0 40 80 12
0

N
um

be
r 

of
 in

di
vi

du
al

s

V I R

0

25

50

75

100

0 40 80

12
0

N
um

be
r 

of
 in

di
vi

du
al

s

0

25

50

75

100

0 40 80 12
0

Time

N
um

be
r 

of
 in

di
vi

du
al

s

A

B

C

FIG 5 Disease dynamics of a susceptible-infected-recovered pathogen with disease-caused mortality, where R0 equals 2,
without heterogeneity in susceptibility (A), with beta-distributed heterogeneity in susceptibility from experimental estimates
(B), and with discrete all-or-nothing heterogeneity in susceptibility (C) (pale green dashed line, no vaccine protection; dark
green dashed line, complete vaccine protection). The model is formally represented as the rates of change in a population of
vaccinated (V), infected (I), and recovered (R) individuals. Susceptibility and vaccine protection parameters were determined
by estimates of the beta distribution from the two-strain challenge experiment. Transmission, recovery, and disease-caused
mortality parameters were not estimated from data. See Fig. S2 for the full range of R0 values explored in model simulations.
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and variation in infectiousness (52, 53). Heterogeneity in infectiousness can modify
disease dynamics, but importantly must be correlated with susceptibility, contacts, or
other parameters (e.g., mortality from disease) to influence the size of epidemics. This
is because the mean of the distribution will be identical among infected cohorts unless
other model parameters preferentially remove or add individuals that change this
mean (e.g., individuals that are more infectious die before they transmit). Conversely,
like heterogeneity in susceptibility, heterogeneity in contacts will change dynamically
over an epidemic as the individuals with the highest numbers of contacts become
infected early in the epidemic and continue to infect others during their infectious
period but then exit the infected pool as they recover (for pathogens with a recovered
class). Therefore, adding heterogeneity in the encounter rate should further reduce the
size of outbreaks, dependent on correlations between model parameters and the
relative importance of each host trait in determining infection and mortality (54).

Rectifying diverse estimates of vaccine efficacy across studies is a significant chal-
lenge in public health (26). Our study further affirms that heterogeneous susceptibility
among groups is a potential explanation for variation in these estimates. As expected,
excluding heterogeneity in susceptibility from epidemic models had a significant
impact on disease dynamics. Using a polarized mode of vaccine action resulted in fewer
infected individuals under a wide range of R0 values, whereas homogeneous protection
led to all hosts becoming infected for R0 values of �6. While the fraction of hosts
infected will depend on particular parameter estimates, and we have not exhausted all
parameter combinations and shape possibilities, this study provides further evidence
that heterogeneous susceptibility decreases the size of epidemics. This is because the
polarized mode of vaccine action greatly reduced the susceptibility of a fraction of
individuals, nearly completely protecting them against infection. Transitions of suscep-
tible individuals into the infected class occurred nonuniformly, with the most suscep-
tible individuals first becoming infected, leaving increasingly resistant individuals in the
susceptible class as the epidemic progressed. Conversely, the homogeneous model
assumed that the susceptibility of all individuals was identical and therefore did not
allow for the effect of cohort selection (55). The discrete all-or-nothing model overes-
timated vaccine protection compared to the experimentally derived distribution of
vaccine protection. This further emphasizes that empirical estimates of vaccine protec-
tion can vastly improve epidemiological predictions and provide insight into vaccine
programs (56).

In considering the design and interpretation of vaccine trials, it is important to
understand the influence that variation in vaccine effects (9) and variation in natural
susceptibility (57) will have on vaccine efficacy. In a vaccine trial, there will be a faster
reduction in susceptibility in the control group relative to those individuals receiving
vaccination, if the vaccine reduces susceptibility and prevents infection. This reduction
in susceptibility will result in a reduction in incidence over time in the control group,
and this effect can be misconstrued as waning vaccine efficacy (26). Therefore, it is
important to consider that variation in susceptibility within and among both vaccinated
and unvaccinated populations may contribute to perceived changes in vaccine efficacy
over space and time, which highlights the necessity to consider alternative metrics for
calculating vaccine efficacy (26, 58). Examination of vaccine study efficacy with epide-
miological models can aid in reducing biases that may be overlooked using more static
measures of vaccine efficacy (49).

Few studies have sought to investigate the mode of protection of control measures,
as separating natural host heterogeneity from control-induced changes in susceptibility
is a significant challenge (17). We provide a method for separating natural heteroge-
neity in susceptibility from changes in susceptibility due to vaccination, assuming that
natural and vaccine-induced susceptibilities are independent. It is important to note
that we did not explore all possible probability distributions, and the fit of different
probability distributions is difficult to distinguish from our data (see Table S1 in the
supplemental material). Future studies with larger sample sizes and greater dose ranges
may be better able to assess the suitability of specific probability distributions, includ-
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ing the exploration of scaled distributions, or multiple distributions, which would allow
for bimodal susceptibility without constraining the values to fall between 0 and 1.
Future experiments should also be conducted to help determine whether natural and
control measure susceptibility distributions should be treated independently and the
influence that this may have on control measure efficacy.

Susceptibility of the unvaccinated hosts was very homogenous relative to those
vaccinated. Rainbow trout lines used in this experiment have been selectively bred for
disease resistance, among other traits, due to the importance of IHNV in disease
outbreaks in aquaculture (42, 59, 60). It is possible that selective breeding may have
contributed to decreased variation in susceptibility if hosts with lower susceptibility
were selected from a population with greater variance. If selection is strongly direc-
tional and uncorrelated with other traits, susceptibility to a specific pathogen would be
predicted to decrease and become more homogeneous over time, just as mean
susceptibility decreases over the course of an epidemic (Fig. S1). Genetic variation is an
important determinant of pathogen transmission and spread (61), and our results offer
potential insight into the mechanism by which pathogens may spread more easily
through homogeneous host populations. However, more research is needed to deter-
mine whether natural selection by pathogens might also select for relatively homoge-
neous susceptibility, given that hosts naturally exposed to pathogens likely experience
more significant tradeoffs than hosts that have undergone purifying artificial selection
(62, 63). Nonetheless, if selective breeding for disease resistance reduces variation in
susceptibility, this will result in larger epidemics than if mean susceptibility is reduced
by the same amount while preserving trait variance, as demonstrated in Fig. 5.

Heterogeneity in susceptibility is a key determinant of disease dynamics and im-
pacts (8, 9, 14, 16, 17, 62). Although the importance of interindividual variation in
susceptibility and risk response to disease is widely recognized (51), epidemiological
models frequently fail to account for this variation. Our data emphasize the importance
of incorporating heterogeneity in susceptibility in estimates of control measure efficacy.
Inclusion of this variance will help to improve prediction and allow for better manage-
ment of infectious diseases of humans and wildlife.

MATERIALS AND METHODS
Experimental methods. Hosts used for all experiments were 1- to 3-g research-grade rainbow trout

(Oncorhynchus mykiss) fry obtained from Clear Springs Foods Inc. Fish were maintained on specific-
pathogen-free, sand-filtered, UV-irradiated water at 15 � 2°C and fed 1.0-mm salmon feed (Skretting)
daily at 1 to 2% per body weight. Viruses used in the experiments were IHNV genotypes HV, B, and C,
previously referred to as 220:90, FF020-91, and FF030-91, respectively (46, 64). Genotype HV has
previously been shown to have high in vivo fitness and virulence (45, 64, 65), and genotypes B and C have
been shown to have equal in vivo fitnesses as measured by infectivity and in-host replication and
virulence as measured by host mortality (46), in rainbow trout. Virus stocks were generated by culture
on epithelioma papulosum cyprini (EPC) cells as previously described (38, 66), measured for infectious
virus titer using plaque assays (46, 67), and stored at �80°C until experimental challenges. Prior to
vaccination, fish were anesthetized briefly by immersion in 100 mg tricaine methanesulfonate buffered
with 300 mg sodium bicarbonate in 1 liter H2O. Fish were vaccinated by intramuscular injection of
0.05 �g of the DNA vaccine pIHNwG, delivered in 25 �l of phosphate-buffered saline (PBS), as previously
described (38). Sham-vaccinated fish received an injection of 25 �l of PBS. After vaccination, fish were
allowed to fully recover before distribution into holding tanks. Fish were then held for 28 to 30 days prior
to experimental exposure to virus to allow for immunity to fully develop (39) and weighed 1 to 3 g at
the initiation of pathogen challenge experiments. Previous studies have shown that this vaccination
regime is highly protective against IHN disease (38, 68, 69). The dose-response challenge experiment was
conducted at the USGS Western Fisheries Research Center, Seattle, WA. The multiple-strain experiment
was conducted at the Virginia Institute of Marine Science, Gloucester Point, VA.

For the dose-response experiment, we challenged subgroups of 20 pIHNwG-vaccinated and 20
sham-vaccinated fish with each of seven concentrations (0, 0.01, 0.1, 1, 101, 102, and 103 PFU/�l) of IHNV
genotype HV, creating a total of 14 treatment groups. Inocula were prepared in minimal essential
medium with 10% fetal bovine serum (Gibco), such that virus was delivered as a 5-ml volume to each
group. Fish were exposed to virus in batch, using a 1-h immersion in 1 liter of water containing virus,
followed by a 1-h rinse in flowing water to remove exposure virus, as previously described (46). We then
isolated fish into 1-liter beakers containing 400 ml of water and held fish under static conditions at 15°C
for 3 days, the time period in which previous studies have demonstrated peak viral loads in infected fish
(46, 70). Fish were then euthanized with 300 mg of tricaine methanesulfonate buffered with 900 mg of
sodium bicarbonate in 1 liter of H2O and stored individually until RNA extraction as outlined below.
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For the multiple-strain experiment, 75 vaccinated and 74 unvaccinated fish were simultaneously
exposed to IHNV genotypes B and C at a concentration of 2 PFU/�l of each genotype, through an
immersion challenge as described above except that the immersion volume was 4 liters and isolation
tanks were 0.8 liter. On day 3 postexposure, fish were harvested and stored at �80°C as described above
until viral load quantification.

Viral RNA was extracted from whole fish using the QIAamp Cador pathogen minikit (Qiagen)
according to the manufacturer’s specifications, with the following modifications. Whole fish were
homogenized by placing them in 4.5-ml Tallprep lysing matrix D tubes (MP Bio) with 1 ml guanidinium-
thiocyanate solution (45) per gram of fish and then sonicated three times at 4.0 m/s for 20 s on a FastPrep
24 homogenizer (MP Bio) until completely liquefied. Homogenized fish were then centrifuged at
2,000 rpm and 20°C for 3 min, and 200 �l of the supernatant was combined with buffer VXL (Qiagen) and
then run through the Cador kit protocol, with 100 �l buffer AVE used for elution. Extracted RNA was
stored at �80°C until reverse transcription as previously described (45). Fish infection status was then
determined by real-time quantitative PCR targeting the virus nucleoprotein (N) gene with primers IHNV
N 796F and IHNV N 875R and TaqMan probe (Applied Biosystems) IHNV N 818MGB as previously
described (71). All studies and protocols were approved under Virginia Institute of Marine Science
IACUC-2013-02-11-8458-arwargo. This is in compliance with federal regulations (Department of Agricul-
ture 9 CFR parts 1 and 2; Public Health Service 99-158).

Inferential framework. We modified dose-response models to describe the susceptibility of vacci-
nated and unvaccinated fish challenged with IHNV (18, 19, 72). We expanded the inferential framework
from the conventional dose-response experiment to incorporate multiple viral strains. We fitted the
models to data by either minimizing the deviance between the data and the model (dose-response
experiment) (18) or minimizing the negative log likelihood using the multinomial distribution with
classes zero-strain infections, single-strain infections, and two-strain infection (multiple-strain challenge).
We jointly fitted the control and vaccine data by optimizing the parameters to minimize the sum of the
deviance or of the negative log likelihood across both groups. We assumed that the baseline suscepti-
bility in unvaccinated hosts followed a gamma distribution (19) and a beta distribution of vaccine effects
to allow for bimodal (polarized) distributions (9, 17).

In equation 1, we allowed the unvaccinated control group to have homogeneous susceptibility, and
susceptibility of the vaccinated group follows a beta distribution.

IChom
� 1 � e�pd

IVhet
� 1 � �0

1
e�xpd f(x) dx (1)

Here, d (dose) is the exposure concentration over a 1-h immersion challenge, and Ic or IV is the proportion
of individuals infected in either the unvaccinated control group or the vaccine group, respectively. The
subscript “hom” denotes a model assuming homogenous susceptibility, where “het” assumes that
individuals have susceptibility (x) that is distributed according to a beta distribution. p is the per-virus
particle concentration rate of host infection in microliters per PFU-hour.

We also fitted models that allowed heterogeneity in susceptibility in the unvaccinated control group.

IChet
� 1 � �0

�
e�pd f(p) dp � 1 � � 1

1 � b�dv
�1

v

IV � 1 � �0

� �0

1
e�xpd g(x) f(p)dx dp � 1 � �0

1 � 1

1 � b�xdv
�1

v
g(x) dx (2)

Here, unvaccinated fish have a baseline susceptibility that is distributed according to a gamma distri-

bution. The Laplace transform simplifies the integral in the control (Ic) group (19, 72), where v is the
inverse of the shape parameter and b is the mean of the gamma distribution parameterized as shape
divided by rate.

For the two-strain challenge experiment, we modified the above equations to reflect differences in
the probability of infection with two strains (2), one strain (1), and zero strains (0).

IC2
� (1 � e�pd)2

IC1
� 2(e�pd) (1 � e�pd)

IC0
� e�2pd

IV2
� �0

1
(1 � e�xpd)2 f(x) dx

IV1
� �0

1
2(e�xpd) (1 � e�xpd) f(x) dx

IV0
� �0

1
(e�2xpd) f(x) dx

Here, there was no support for unvaccinated fish having any variation in susceptibility, and so we
assumed a homogeneous susceptibility constant (p). Vaccinated fish followed a beta distribution f (x),
determined by shape parameters � and �.

To evaluate the influence of heterogeneity in susceptibility due to vaccination on disease dynamics,
we formulated a hypothetical epidemic through a closed population with similar attributes as IHNV using
a simple susceptible-infected-recovered transmission model with disease-induced death and where
surviving infected individuals recover with sterilizing immunity. We arbitrarily selected values for the
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transmission rate, recovery rate, and disease-induced mortality rates and varied the transmission rate to
explore the influence of R0 on the size of the outbreak for homogeneous, heterogeneous, and all-or-
nothing susceptibility (Fig. S2).

To model this, we assumed that susceptibility lies between 0 and 1. For homogeneous susceptibility,
we modeled a vaccinated population where vaccine effectiveness was represented by 	, equal to the
mean susceptibility of vaccinated fish from the two-strain experiment.

dV

dt
� �	vVI

dI

dt
� 	
VI � �I � �I

dR

dt
� �I

Here, 
 is the per capita rate of infection, � is disease-induced mortality, and � is the rate at which
infected individuals recover from infection. V, I, and R represent the population sizes of vaccinated,
infected, and recovered individuals, respectively. For initial conditions, we arbitrarily set the number of
vaccinated individuals to 100 and assumed a single infected individual.

To model continuous heterogeneous susceptibility using susceptibility estimates from our experi-
ments, we discretized susceptibility into 300 bins and used the midpoint xi of the bin to represent the
susceptibility of the hosts. By integrating over the lower and upper bounds of each bin, we determined
the frequency of individuals in each susceptibility bin or group.

dV(x)

dt
� �xvV(x)�I(u) du

dI(x)

dt
� xvV(x)�I(u)du � �I(x) � �I(x)

dR(x)

dt
� �I(x)

Here, x is susceptibility distributed according to a beta distribution with parameters � � 0.27 and � �
0.49, and each moment of exposure is x times more or less likely to infect a fish of susceptibility equal
to 1 because each particle to which it is exposed is x times as infectious.

To model all-or-nothing susceptibility, the vaccine group was composed of two discrete susceptibility
states representing an all-or-nothing mode of vaccine action, V1 (individuals with no vaccine protection,
	1 � 1) and V2 (individuals with complete vaccine protection, 	2 � 0). The number of individuals in each
vaccine group was determined from the estimate of mean susceptibility from the two-strain experiment.

dV1

dt
� �	1vV1I

dV2

dt
� �	2vV2I

dI

dt
� (	1vV1I � 	2vV2I) � �I � �I

dR

dt
� �I

All models were simulated in continuous time using package deSolve (73) in RStudio v.0.99.484 (74).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00796-17.
FIG S1, PDF file, 0.1 MB.
FIG S2, PDF file, 0.01 MB.
TABLE S1, DOCX file, 0.05 MB.
TABLE S2, DOCX file, 0.05 MB.
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