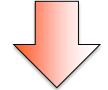


Jason Tee

Twitter: @JasonCTee

Functional Movement Screen (FMS) predicts severe injuries in professional rugby union players


The Functional Movement Screen

Professional Rugby Union – High Injury Risk

- Full contact sport defined by repetitive bouts of short duration high intensity work during which <u>players collide</u>, sometimes while running <u>at full speed</u>.
- **81** injuries per 1000 match hours and 3 injuries per 1000 practice hours (Williams et al., Sports Med 2013)

Need strategies that reduce injury risk

Functional Movement Screen

- Cook et al., N Am J Sports Phys Ther 2006

Tests balance, strength and range of motion simultaneously; providing a holistic, integrative assessment of the players' quality of movement.

FMS as an injury predictor

FMS predicts injury in

- American football players (Kiesel et al., N Am J Sports Phys Ther 2007)
- Female collegiate athletes (Chorba et al., N Am J Sports Phys Ther 2010)
- Military recruits (Lisman et al., Med Sci Sports Exerc 2013)
- General population (Letafatkar et al., Int J Sports Phys Ther 2014)

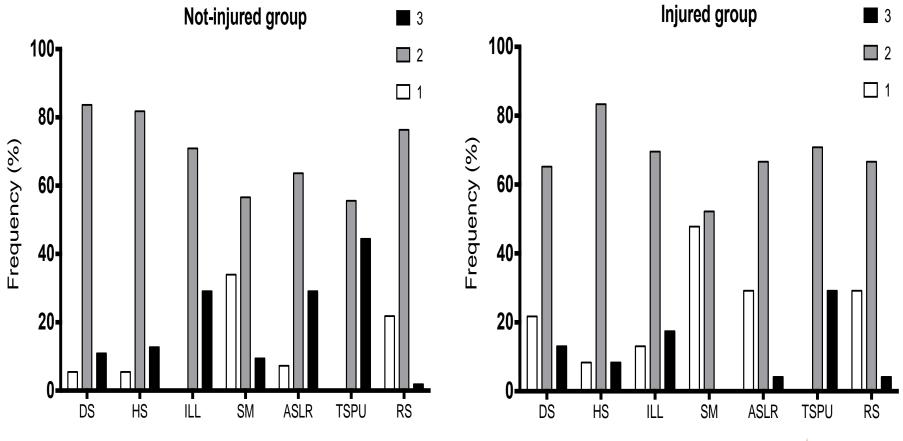
Review - "moderate scientific evidence" to support the use of FMS as a predictor of injury (Kraus et al., J Strength Cond Res, 2014)

Research Questions

- Can FMS predict severe injury in professional rugby players?
- What FMS score is the best predictor of injury risk?
- Is any individual or combination of component tests a better predictor of injury than the FMS composite score?
- Does FMS predict contact/non-contact injuries?

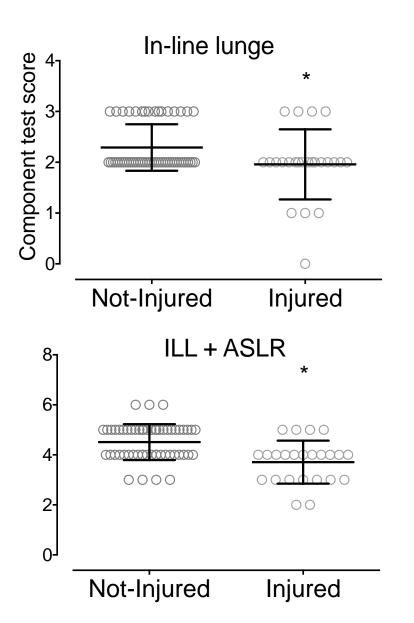
Methods

- Professional rugby players (Stature 1.87 ± 0.08m, body mass 103.1 ± 13.1kg) completed FMS tests prior to the start of competition.
- 62 players completed 90 FMS tests over 4 preseason periods between 2011 and 2013.
- Injuries were recorded by team medical staff for 6 months (180 days) after each FMS test classified contact/non-contact.
- <u>Severe Injury</u> exclusion >28 days (IRB Consensus Statement on Injury definitions, 2007)
- A receiver operated characteristic (ROC) curve and 2x2 contingency table were used to calculate odds and likelihood ratios, sensitivity and specificity.
- Survival analysis

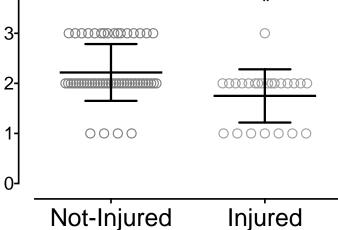

Results

20-* 19-0 18-Composite FMS total 17-0000 16-000 15- $\cap \cap$ 14-00000 13-0000 0000 12-0 00000 11. 00 0 10-0 9-0 8-Not-Injured Injured Figure 1 - Composite FMS scores of players not injured and

players who suffered severe injury >28 days.



Results – Distribution of component test scores



Results - FMS component tests

Active straight leg raise

4-

Differences in FMS scores between injured and not-injured players appear to be due to differences in ASLR and ILL scores

Results

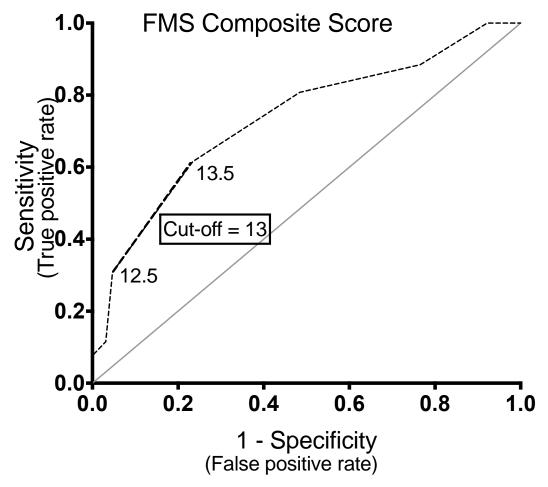


Figure 2 - ROC curves for the FMS composite test relating to injured or non-injured status.

Results – All injuries

2 x 2 contingency table for FMS score of ≤ 13

	Severe	Non-Severe
	Injured	Injured
FMS	16	15
≤ 13	True	False
	Positives	Positives
FMS	10	49
≥ 14	False	True
	Negatives	Negatives

Sensitivity 0.61
(95% CI = 0.41 to 0.80)61%61% of players with FMS \leq 13 will
sustain severe injury

Specificity 0.77
(95% CI = 0.64 to 0.86)77%77% of players with FMS > 13 will not
sustain severe injury

Odds Ratio = 5.2 (95% CI = 2.0-13.9) Players with FMS \leq 13 are 5.2 times more likely to sustain a severe injury

Results

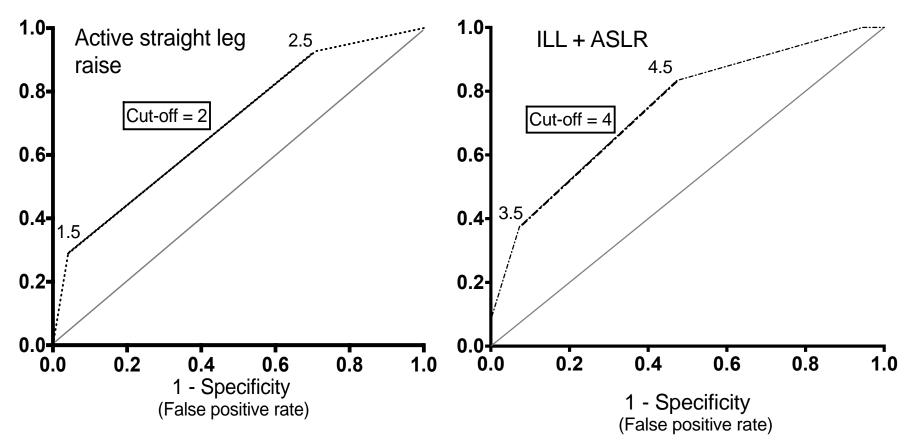


Figure 3 - ROC curves for the FMS composite test relating to injured or non-injured status.

Other component tests "no better than chance" at predicting severe injury

Results – Active straight leg raise and in-line lunge

ASLR score ≤ 2 predicts injuries

Sensitivity 0.96 96% (95%CI = 0.92 to 43) Specificity 0.29 29% (95%CI = 0.18 to 0.43) Odds ratio 9.4

(95% CI = 1.2 to 76)

ILL + ASLR score ≤ 4 predicts injuries

Sensitivity 0.83 83% (95%Cl = 0.63 to 0.95)

Specificity 0.53 53% (95%Cl = 0.39 to 0.66)

Odds ratio 5.6

(95% CI = 1.7 to 18)

	Severe Injured	Non-Severe Injured
ASLR ≤ 2	23 True Positives	39 False Positives
ASLR ≥ 3	1 False Negatives	16 True Negatives

Non-Contact and Contact Injuries

	Contact Injuries			Non-contact injuries		
	Injured	Not injured	Effect size	Injured	Not injured	Effect size
	N=14	N=76		N=12	N=78	
FMS Composite Score	13.1 ± 2.0*	14.3 ± 1.5	medium	13.3 ± 1.4	14.3 ± 1.7	medium
Deep Squat	1.6 ± 0.8*	2.1 ± 0.4	large	2.1 ± 0.5	2.0 ± 0.5	small
Hurdle Step	2.1 ± 0.3	2.1 ± 0.4	trivial	1.9 ± 0.5	2.1 ± 0.4	small
In-Line Lunge	1.8 ± 0.7*	2.3 ± 0.5	large	2.1 ± 0.7	2.2 ± 0.5	trivial
Shoulder Mobility	1.5 ± 0.7	1.6 ± 0.7	trivial	1.4 ± 0.5	1.7 ± 0.7	small
Active Straight Leg Raise	1.8 ± 0.6*	2.1 ± 0.6	> medium	1.8 ± 0.5*	2.1 ± 0.6	medium
Trunk Stability Push Up	2.2 ± 0.4	2.4 ± 0.6	small	2.4 ± 0.5	2.4 ± 0.6	trivial
Rotary Stability	1.9 ± 0.5	1.8 ± 0.5	small	1.6 ± 0.5	1.8 ± 0.5 🔪	medium
@JasonCTee #SA	SMA2015				J	

Results – Non-contact injuries

FMS composite score ≤ 14 predicts non-contact injuries

 Sensitivity 0.83
 83%

 (95%CI = 0.52 to 0.98)
 83%

 Specificity 0.46
 46%

 (95%CI = 0.35 to 0.58)
 46%

 Odds ratio 4.3
 95% CI = 0.9 to 21)

ASLR was **"no better than chance"** at predicting severe non-contact injury

Results – Contact Injuries

	FMS Composite Score ≤ 13	Deep Squat + In-line lunge	Deep Squat + In-line lunge + Active straight leg raise
Sensitivity	0.71	0.92	0.83 (0.52 to
(95%CI)	(0.42 to 0.92)	(0.62 to 1.0)	0.98)
Specificity	0.72	0.37	0.52
(95%CI)	(0.61 to 0.82)	(0.26 to 0.50)	(0.40 to 0.65)
Odds Ratio	6.5	6.5	5.5
(95%CI)	(1.8 to 23.0)	(0.8 to 54)	(1.1 to 27)
X ² Test	p = 0.003	P = 0.049	p = 0.023
@ JasonCToo #SASMA2015			

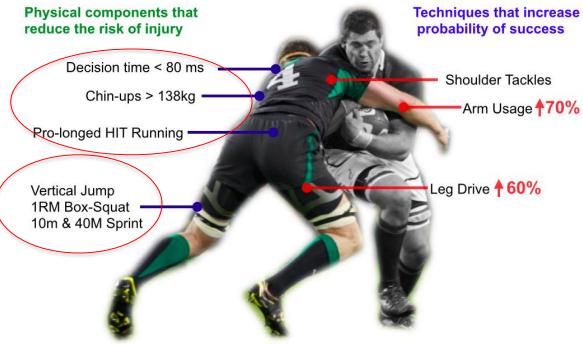
JOHANNESBURG

How does FMS predict contact injuries?

Model 1: Disadvantageous tackle positions

Poor tackle technique = **A** Risk of injury (Burger et al., 2015)

Dysfunctional movement patterns (low-FMS) may make it more difficult for players to get into the "ideal" tackle position



How does FMS predict contact injuries?

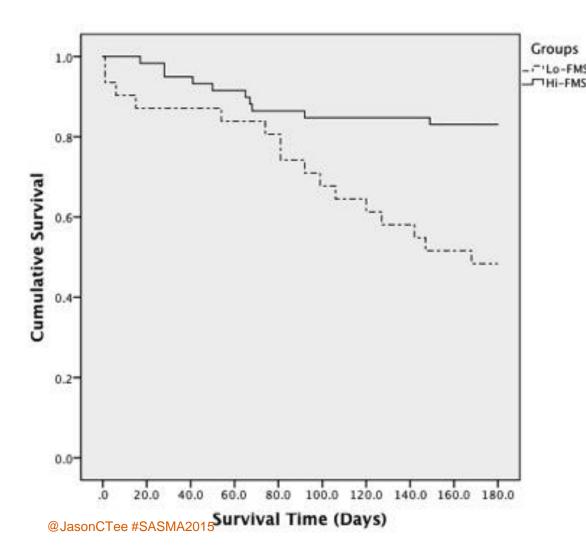
Model 2: Fatigue

Fatigue is a risk factor for injury

- Highest injury incidence in final quarter of matches (Brooks et al, 2005, Br J Sports Med)
- Well-developed physical characteristics prevent injury

Safe and Effective Tackler Contact Requirements

Technically skilled players attempts more tackles, execute more dominant tackles, miss fewer tackles.


Dysfunctional movement patterns (Low-FMS) may be **inefficient**, and \uparrow rate of fatigue

· Fatigue reduces tackle technique and force

Survival analysis

High-FMS (≥14) vs. Low-FMS (≤13)

Mean survival time is <u>**31 days</u>** greater for High-FMS vs. Low-FMS groups (160 \pm 6 vs. 129 \pm 11 days)</u>

Significant difference in survival time for <u>contact</u>, but not for <u>non-contact</u> injuries

Conclusion

FMS is a **predictor** of severe contact and non-contact injury in professional rugby union players.

ASLR ≤ 2 predicts injury with a sensitivity of 96%

An FMS score of ≤ 13 predicts severe injury with the <u>highest specificity</u>.

FMS will assist in the management of players, improving team performance and reducing cost of injury

Implications

- Professional rugby union players should perform regular FMS screens.
- Players who attain low FMS scores should be placed on exercise programs to correct their movement dysfunction.

Future research

FMS scores can be improved by corrective training programs (Kiesel et al., Scand J Med Sci Sports 2011)

Determine whether corrective training programs improve player's resilience and reduces the time spent off the field due to injury

