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Abstract 

 

 

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that function 

as ligand activated transcription factors.  There are three identified isotypes: PPARα, 

PPARγ and PPARδ, together controlling the expression of genes involved in 

inflammation, cell differentiation, proliferation, lipid and carbohydrate metabolism and 

energy homeostasis.  The PPARs are potential targets for the treatment of dyslipidaemia, 

type II diabetes mellitus and the metabolic syndrome.  This thesis uses a multi-platform 

metabolomics approach, 13C-isotope substrate flux analysis, respirometry and 

transcriptomics to determine the role PPARδ and PPARγ play in metabolic control both 

in adipose tissue and systemically.  To achieve this, the metabolic phenotype of the 3T3-

L1 adipocyte cell line was defined to generate a metabolically phenotyped in vitro model 

of adipose tissue.  The importance of fatty acid α-oxidation in the differentiation of 

adipocytes was emphasised  The effects of PPARδ and PPARγ activation in white 

adipose tissue from the ob/ob mouse model of insulin resistance, and in the phenotyped 

3T3-L1 adipocyte model, were investigated.  PPARδ activation was distinguished by 

oxidative catabolism of fatty acids and citric acid cycle intermediates.  Conversely, 

PPARγ activation was identified by the sequestration of lipids into adipose tissue.  

Moreover, to address the systemic influence of PPAR activation, with a focus on the Cori 

cycle and the interactions of the liver and skeletal muscle, the metabolic changes that 

occur in these tissues following PPARδ and PPARγ activation in the ob/ob mouse were 

examined.  PPARδ activation was characterised by the mobilisation and release of 

triacylglycerols (TAGs) into circulation as an energy source for peripheral tissues 

whereas PPARγ activation was defined by a reduction and sequestration of circulating 

TAGs.  This thesis has better characterised the role of the PPARs as master regulators of 

metabolism and emphasised their potential as therapeutic targets for metabolic diseases 

of global importance. 
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Chapter 1 

 

Introduction 

 

 

1.1 Metabolomics 

 

1.1.1. The Omics Revolution and Metabolomics 

The central biochemical and molecular biological dogma declares that information flows 

directionally from the genomic DNA through mRNA transcripts, which are then 

translated to protein.  The protein products, amongst them enzymes, then influence the 

concentrations of their substrates and products which are integrated in tightly controlled 

metabolic pathways.  It is the flux of these small molecular weight metabolites within a 

cell, tissue or organism that generates the phenotype.  Whilst much of this holds true it is 

now understood that the movement of information is far from unidirectional.  Cellular 

communication is now known to occur via a complex system of interactions between 

DNA, RNA, protein and metabolite with feed forward and negative feed back loops in 

play (Figure 1.1); the new methodologies of the omics revolution of the 1980s and 

1990s, in particular genomics, provided invaluable tools for the study of these 

interactions on a global level and offered an alternative means of investigation to that of 

the more reductionist molecular biology approaches.   

 

Genomics, that is the determination of the entire genetic DNA sequence of organisms 

accounting for the often indefinite line between genetic and non-genetic regions of DNA, 

fine-scale genetic mapping, and intragenomic interactions between loci and alleles within 
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the genome of an organism, gave rise to the related field of functional genomics.  The 

fundamental goal of functional genomics is the exploration of gene function on a global 

scale by elucidating the functions of genes, their products and how they interact to 

translate into the complex organisation of cells, tissues and organisms.  The importance 

of such a stratagem becomes clear when it is considered that approximately 40% of all 

open reading frames have no known function1; functional genomics is an ideal device for 

mining these potential genes. A common approach in functional genomics involves gene 

modification which disturbs the system and generates an altered phenotype; the adapted 

phenotype can then be characterised and compared to that of the wild type.  Functional 

analysis at the gene expression level is known as transcriptomics and examines the 

expression level of mRNAs in a population of cells or tissue using high-throughput 

techniques often based on microarray technology.  Investigations at the level of protein 

translation, defined as proteomics aims to identify and localise proteins and determine 

protein pathways within an organelle, cell, or organism2, 3.  More recently study of 

metabolic network interactions have been designated as metabolomics.  When integrated, 

the variety of approaches in functional genomics can contribute to research in systems 

biology, which examines the interactions between the components of the central dogma, 

and how these interactions give rise to the function and behaviour of the biological 

systems to which they belong. 
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Figure 1.1: The central molecular biological dogma states information flows 
directionally from genomic DNA through mRNA transcripts, to 
protein.  However, each tier of organization is now known to 
depend on the other.  In addition, the environment has a vital 
impact on expression and concentrations of mRNA transcripts, 
proteins, metabolites and even affects the genome. 

 

1.1.2 Metabolomics 

Metabolomics was defined in the late 1990s as a term which describes techniques aimed 

at measuring the metabolites present within a cell, tissue or organism during a genetic 

alteration or physiological stimulus4, 5.  Measurement of time-related metabolic changes 

in animal models in response to genetic manipulation can be used to define the varying 

phenotypes6.  Through this methodology metabolomics has proved complementary to the 

other omic techniques; identifying so called silent phenotypes, genes that when perturbed 

have no influence on apparent physical characteristics or behaviour7.   
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The metabolome is the terminal downstream product of the genome and consists of the 

total complement of all the low molecular weight molecules (metabolites) in a cell, tissue 

or organism required for growth, maintenance or normal function in a specific 

physiological state8, 9.  However when the potential size of the metabolome is considered, 

it is often heavily disputed, with an estimated range from ~ 600 metabolites in S. 

Cerevisiae
10 to ~200,000 metabolites in the plant kingdom11.  Alongside the variety of 

chemical classes and physical properties (small polar volatiles through to large 

hydrophobic lipids) that constitute metabolites and the dynamic range of metabolite 

concentrations across large orders of magnitude (from picomolar to millimolar) it 

becomes clear why it is necessary to employ an extensive array of analytical techniques 

within metabolomics research.   

 

Analytical approaches used within metabolomics to identify the changes in the 

concentrations and fluxes of endogenous metabolites include, but are not limited to, 1H-

Nuclear Magnetic Resonance (1H-NMR) Spectroscopy, 13C-Nuclear Magnetic Resonance 

(13C-NMR) Spectroscopy, Gas Chromatography-Mass Spectrometry (GC-MS), Gas 

Chromatography-Flame Ionisation Detection (GC-FID), Direct Infusion-Mass 

Spectrometry (DI-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS).   

 

Given the extensive amount of raw data that is generated using these spectroscopic and 

spectrometric techniques, robust chemometric techniques and bioinformatic tools are a 

necessity.  Pattern recognition allows the description of inherent patterns of changing 

metabolites. Through multivariate techniques such as the unsupervised principal 

components analysis (PCA) and supervised techniques such as projection to latent 

structures through partial least squares discriminate analysis (PLS-DA) metabolites that 

vary between treatment groups can be identified12.   

 

Due to the wide array of metabolites and the dynamic nature of their concentrations 

within the cell, a complete analysis of the metabolome has thus far eluded description 

even when a range of analytical approaches have been employed.  Despite this 
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disadvantage metabolomics has been used successfully within the field of functional 

genomics to understand gene function in a range of model organisms.   

 

1.1.3 Lipidomics 

Although the lipidome is a sub fraction of the metabolome, the complexity of lipid 

classes and their distinct chemical properties has necessitated focused approaches to the 

study of these constituents of the metabolome.  Lipidomics has been defined as “the full 

characterisation of lipid molecular species and of their biological roles with respect to 

expression of proteins involved in lipid metabolism and function, including gene 

regulation”13.  A distinction is drawn between lipidomics and lipid profiling by some but 

the differences are subtle and the terms are extensively used interchangeably14, 15.  The 

interest in lipidomics has also been driven by the widening knowledge of the role of lipid 

species in the cell.  In the past the majority of lipids were considered to be either 

membrane components or an energy store.  However, these molecules are now known to 

have diverse roles in transcriptional and translational control, cellular signalling, cell-cell 

interactions, and as indicators of changes to the environs of a cell or organism over time.  

To study the various functions of lipids a multidisciplinary approach has been employed 

within lipidomics.  These have encompassed: profiling of the lipid species using a range 

of chromatographic and spectrometric techniques (many of which are well established 

metabolomic methods) and multivariate statistical data analysis16, use of traditional 

biochemical techniques to study lipid-lipid or lipid-protein interactions such as 

immobilised lipid assays17 and lipid-protein complex antibody assays18, and localisation 

of lipids using imaging methods, for instance fluorescently tagged lipids or optical probes 

for their detection19.  Lipidomics has also proved a powerful means of defining the part 

lipids play in pathological states, both for diseases where lipids are known to play a 

prominent role such as diabetes20 and where their roles are less well characterised such as 

Alzheimer’s disease21.  The development of the lipidomic field has composed an 

additional tier to data from proteomics and genomics and metabolomics of small 

molecules, furthering our knowledge of the function of lipids within the cell22. 
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1.1.4 Application of Metabolomics and Lipidomics 

In the interest of relevance to this thesis the applications discussed will primarily relate to 

the instances in which metabolomics has been utilised in the investigation of 

cardiovascular disease, the metabolic syndrome, pharmacological studies and 

phenotyping chemotaxonomy.  However, it is worthy of note that metabolomics has been 

employed in the investigation of a diverse range of other fields including neuroscience23, 

24, cancer biology25,  26, microbiology27 and cellular lipid signalling28. 

 

To a significant extent metabolomics has been an application driven discipline and much 

of the momentum within the field can be attributed to the study of diseases.    An early 

progression from single metabolite analysis was the attempted exploitation of 

metabolomics to find biomarkers of disease; the hope being that in finding valid 

biomarkers, metabolomics could be used as a viable diagnostic tool.  A prominent 

example of this premise has employed 1H-NMR spectroscopy analysis to blood serum, 

followed by pattern recognition analysis to examine the changes in lipoprotein 

metabolism associated with coronary artery disease and diabetes29.  The pattern 

recognition models generated from this study predicted that pre-diabetic serum is 

characteristic of a pro-atherogenic state in which there is a decrease in small high density 

lipoprotein (HDL) particles and an increase in very low density lipoproteins (VLDL).  

The authors continue to suggest that lipoprotein profiling may assist in diagnosing 

patients at an increased risk of developing diabetes.  In the study of clinical cardiology, a 

targeted mass spectrometry metabolomics investigation was utilised in the study of 

patients subjected to exercise stress testing with myocardial perfusion imaging30.  The 

study aimed to investigate whether metabolomics could be used to discriminate the 

occurrence of ischaemia in coronary artery disease; a goal that could aid the diagnosis, 

selection of therapy and understanding of disease mechanism. The study employed a 

control group of 18 patients with no evidence of ischaemia and a case group of 18 

patients with inducible ischaemia.  Plasma was analysed by LC-MS using a triple 

quadrupole mass spectrometer operating under selected reaction monitoring conditions.  

Metabolites involved in skeletal muscle AMP catabolism, lactic acid, as well as 



Chapter 1 

 
   

7 

hypoxanthine and inosine, increased in both the inducible ischaemic and non-ischaemic 

groups.  However there was a significant difference in a number of the metabolic changes 

between control and case groups.  The TCA cycle was profoundly effected and 6 of the 

23 most significantly changed metabolites were intermediates in this pathway.  Six 

metabolites displayed significant discordant changes in case and control groups, using 

these metabolites, case subjects could be distinguished from control subjects with a high 

degree of accuracy (p < 0.0001; c-statistic = 0.83).  Metabolomics has also been 

employed in the correlation of metabolite changes within blood plasma to measure blood 

pressure31.  

 

The applications of metabolomics in the study of disease are not limited to its diagnostic 

and biomarker identification properties; the metabolomic method has been employed in 

the study of a diverse range of diseases to elucidate mechanisms of pathology. Salek et al 

employed an NMR-based metabolomic analysis to examine urinary metabolic changes in 

the Zucker rat (fa/fa) and db/db mouse, models of type II diabetes mellitus (TIIDM), as 

well as in human diabetes patients32.  Disease dependent metabolic changes were 

identified in the subjects, demonstrating similarity in metabolic perturbation between the 

three species examined.  Of significance were metabolic disturbances related to systemic 

stress, the TCA cycle, nucleotide metabolism and methylamine metabolism.  Lipidomic 

analysis has also enabled new insights into biological disease processes33.  The potential 

application of LC-MS lipidomic analysis in both preclinical and clinical research has not 

gone unnoticed due to the importance of lipids in cardiovascular, TIIDM and related 

inflammatory disorders34.  For example, LC-MS analysis of liver tissue from the ob/ob 

mouse, a classic model of obese insulin resistance and hepatic steatosis, using reversed-

phase LC-MS revealed an increase of tri- and di-acylglycerols, diacylphosphoglycerols 

and certain ceramides and a decrease in the concentration of sphingomyelins35.  

Pietilainen et al used reversed phase LC-MS lipidomics to study the serum lipid profiles 

from monozygotic twins, determining that acquired obesity, independent of genetic 

influences, was linked with an increase in the concentration of 

lysophosphatidylcholines36.  These results were correlated and considered alongside 

clinical measurements revealing the propriety of LC-MS lipidomic analyses in human 
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studies.  Lipidomic investigation by normal phase LC-MS has also been exploited in the 

determination of lipid changes associated with the conversion of normal HDL to pro-

inflammatory HDL (acute-phase HDL) associated with cardiovascular disease.  

Phosphatidylcholine and sphingomyelin ratios were increased and diacyl and alkenylacyl 

glycerophosphatidylethanolamine and phosphatidylinositol were decreased, which may 

be indicative of proinflammatory and proatherogenic roles37.  In addition a LC-MS based 

lipidomics approach has been applied in a clinical study of TIIDM patients38.  The study 

identified over 100 phospholipids in the blood plasma and demonstrated changes in the 

plasma phospholipid profile that distinguished patients from control subjects.  An 

increased concentration of two phosphoethanolamine species (phosphoethanolamine 

C16:0/C22:6 and C18:0/C20:4) and a decrease in the concentration of two lyso-

phosphocholine species (lyso-phosphocholine C16:0 and C18:0) discriminated diabetic 

patients from controls.   

 

Metabolomics has also been successfully applied as a phenotyping device for laboratory 

model in vitro and in vivo biological mediums and chemotaxonomy, which is profiling 

for strain differences; this concept was initially proved in a 1H-NMR spectroscopy study 

of the metabolic changes induced in two yeast mutants of 6-phosphofructo-2-kinase 

which was capable of distinguishing between the silent phenotypes of the yeast39.  The 

phenotyping approach was then expanded upon by a study that demonstrated it could be 

applied to the media in which the yeast was grown, giving rise to the technique of 

metabolic footprinting40.  Plant biochemistry has also exploited the rigorous phenotyping 

capabilities of metabolomics; in a seminal paper Fiehn et al were able to use GC-MS to 

quantify 326 distinct metabolites from Arabidopsis using these to separate four 

genotypes41.  GC-MS metabolomic analysis has also been exploited to identify changes in 

lipid metabolism upon hormone induced differentiation of 3T3-L1 cells into mature 

adipocytes42.  A metabolic profiling approach has been utilised to phenotype mouse 

models of cardiac diseases43.  Analysis of cardiac tissue from mouse models of Duchenne 

muscular dystrophy, cardiac arrhythmia and cardiac hypertrophy using NMR 

spectroscopy in conjunction with multivariate statistics was capable of classifying mouse 

models of cardiac disease.  Strain background was identified as a substantial contributor 
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to the metabolic phenotype of the mouse models.  Independently of strain differences 

each mouse model could be separated from its control strain.  Numerous further examples 

of the application of metabolomics in this manner exist across a diverse range of species 

and include discrimination between different species of Ephedra
44, use of DI-MS to 

determine different species of fungal strains45 and selection of pathogenic and non-

pathogenic species of Bacillus cereus isolated from meningitis patients46. 

 

The potential for developing metabolomics within the pharmaceutical industry has also 

been realised, especially in preclinical compound toxicology screening; these screens 

generate thoroughly definable end-points that are usually monitored over a relatively 

short period of time, providing robust candidates for metabolomic analysis which can 

associate metabolites with the distinct end-points.  Toxicological studies conducted in 

this manner have implicated phenyl-acetyl glycine as a candidate biomarker for drug 

induced phospholipidosis47, 2-aminoadipate as a mechanism associated biomarker for 

hydrazine induced neurotoxicity48 and urinary D-β-hydroxybutyrate or trimethylamine 

and dimethylamine as region specific markers of nephrotoxicity in the proximal tubules 

and renal papilla respectively49, 50.  One of the most significant studies in the area of drug 

toxicity was the COMET project which aimed to construct databases of drug toxicity 

using approximately 100,000 1H-NMR spectra of biofluids from animals treated with 

model toxins51. The COMET project has since been expanded to include COMET II 

which aims to elucidate the biological mechanisms behind drug toxicity with a 

combination of omics techniques.    

 

1.1.5 Integrated Omics 

The integration of genomics, transcriptomics, proteomics and metabolomics is a key goal 

of systems biology.  The potential benefit for integrating the omics has been realised in 

the fields of disease research, where for some conditions conventional approaches have 

been inconclusive, and population, nutrition and toxicogenomic studies, where 

integration allows connections between environmental factors (for example diet), 

exposure to toxic compounds and environmentally induced diseases to be drawn.  The 
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potential to use an integrated methodology to identify genes whose functions are as yet 

unknown remains a tempting research approach. However, reaching definitive 

conclusions from integrated omics approaches can be challenging; the generation of 

multiple metabolites from a single gene set can result from translational control of 

mRNA, transcriptional and translational processes that produce isoenzymes, or poor 

enzyme specificity and lead to confounding results. 

 

In the area of disease research a combined transcriptomic and metabolomic approach has 

been used to investigate fatty liver disease induced by orotic acid in Kyoto rats, 

identifying uridine metabolism, choline turnover and the stearoyl-CoA desaturase as key 

to disease progression52.  Integration of transcriptomics, proteomics and metabolomics 

has been employed to investigate the ApoE*3-Leiden transgenic mouse53.  The mouse 

model over expresses the human ApoE protein that is involved in the transport of fats in 

blood plasma, preventing the clearance of lipid from the blood, resulting in the 

development of atherosclerotic plaques by 25 weeks of age.  LC-MS analysis identified 

perturbation of lipid metabolism characterised by a decrease in plasma 

lysophosphocholine and increase in Triacylglycerols (TAGs) occurring pre-

symptomatically at 9 weeks in the ApoE mouse.  Transcriptomics, proteomics and 

metabolomic analyses were then applied to the liver tissue from the ApoE mouse; a total 

of 21,000 components were measured using the three approaches and facilitated the 

development of correlation networks to highlight perturbed metabolic pathways.  The 

identification of new mechanisms in cardiovascular disease is being realised by 

exploitation of the complementarities of the omic techniques.  Metabolomics and 

proteomics in combination have been employed to characterise atrial tissue that 

predispose patients to the development of atrial fibrillation54.  In addition there is the 

hope that future genome-wide association studies will identify genomic sequence variants 

precipitating the further integration of the omics.  At the forefront several loci have 

already been identified, which are associated with early-onset myocardial infarction55, 56, 

57.  
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An example of the integration of omics techniques in a toxicological study is provided by 

research conducted by Coen et al which examined acetaminophen induced hepatotoxicity 

in the mouse using transcriptomics and metabolomics58. The results from both the 

transcriptomics and metabolomics indicated increases in glycolytic flux, highlighting the 

complementarities of the omics for the use in the evaluation of drug safety.   
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1.2 Analytical Techniques 

 

To verify changes in low molecular weight metabolites from complex biological samples, 

analytical methods which are sensitive to a range of sample components, well resolved, 

robust, relatively cheap on a per sample basis, suitable for application and offer high 

throughput capabilities are required.  Recent and rapid developments in the areas of NMR 

spectroscopy, mass spectrometry and chromatography have lead to significant advances 

within the fields of metabolomics and lipidomics.  As a result an extensive range of 

profiling technologies is now available and their applications have proven to be diverse. 

 

Metabolomic analysis is most commonly performed using 1H-NMR spectroscopy and 

mass spectrometry, often coupled to a prior chromatographic technique, most commonly 

liquid or gas chromatography.  However other analytical techniques such as Fourier 

transform infrared spectroscopy59, capillary electrophoresis60 and high-performance 

liquid chromatography ultra violet detection61 have been applied.  Through a combined 

analytical approach utilising a range of technologies a more inclusive picture of the 

metabolome can be acquired by overcoming the limitations of individual techniques, 

although, due to the extensive variety and complex nature of metabolite species a fully 

comprehensive metabolomic map remains an unattained goal.  It seems likely that to 

achieve this formidable objective will require a collective approach allying traditional 

biochemistry, metabolomic profiling and the swiftly evolving area of bioinformatics. The 

principles behind and effectiveness of the techniques used within this thesis will now be 

explored.  

 

1.2.1 Mass Spectrometry in Metabolomics and Lipidomics 

The field of metabolomics and lipidomics in particular has been strongly influenced by 

developments in mass spectrometry. Mass spectrometric analysis comprises three distinct 

events: analyte ionisation, mass dependent ion separation and ion detection.  Ionic 

separation can be achieved by a variety of mass analysers including time-of-flight (TOF), 
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quadrupoles, magnetic and / or electric sectors, ion trap and Fourier transform ion 

cyncotron resonance62. The analysers vary in their dynamic range, resolution, suitability 

for tandem-MS (MS/MS) experiments and mass accuracy.  The identification and 

separation of analytes by mass to charge ratio (m/z) can be improved with higher 

resolution and mass accuracy instruments.  However, there is a correlation between the 

resolution of an instrument and its relative cost!  To a degree, lower resolution and mass 

accuracy can be compensated for by MS/MS capability, and this has meant an extensive 

range of instruments are utilised in metabolomic studies.   

 

The most common methods of analyte ionisation in metabolomic and lipidomic mass 

spectrometry are electrospray ionisation (ESI), electron impact (EI) ionisation and to a 

lesser extent matrix assisted laser desorption/ionisation (MALDI); the last of these has 

not been exploited in this thesis and will not be discussed further. 

 

EI ionisation is used almost exclusively in combination with GC as it requires the analyte 

to be volatile.  In EI high energy electrons bombard the volatile analyte causing analytes 

to fragment and generate a reproducible pattern of signals, which can be matched to 

spectral databases for the purpose of identification.  GC-MS within the context of 

metabolomics and lipidomics will be discussed in greater detail later. 

 

The late 1980s saw the development of the, so called, soft ionisation technique ESI63, 

which allowed the mass spectrometric detection of non volatile and high mass analytes, 

such as peptides, proteins or intact lipids.  The principal advantages of the soft ionisation 

techniques are that they do not require chemical derivatisation, although derivatisation 

can be used to enhance or enable ionisation64, and they minimise analyte fragmentation, 

which can assist in the analytical interpretation of complex mixtures. 

 

Briefly, ESI elutes the analyte by spraying it through a highly charged needle tip.  The 

charged analyte spray droplets are heated, evaporating the solvent and resulting in 

ionisation and entry of analyte ions into the mass separation unit65.  ESI is by far the most 

commonly applied ionisation technique in lipidomics, partially due to the ease of 
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coupling the eluent of an analytical LC experiment to the mass spectrometer.  The use of 

ESI, in metabolomics, to analyse polar aqueous soluble metabolites has lagged behind 

that of lipid analysis, although it has been employed extensively in drug pharmacokinetic 

analysis66. However the analysis of polar metabolites by LC-MS in metabolomics is now 

experiencing a rapid period of growth67,68.  DI-MS, LC-MS and ESI are explored more 

extensively in sections 1.2.2 and 1.2.3 of this thesis. 

 

1.2.2 Electrospray Ionisation and Direct Infusion-Mass Spectrometry in Lipidomics 

The development of the ESI and closely related nano-spray technique in the 1980s 

resulted from pioneering work, conducted in the laboratory of John Fenn, producing a 

novel atmospheric pressure interface for the coupling of a liquid chromatograph and a 

mass spectrometer69.  The ESI source functions as an electrochemical cell, generating 

gas-phase ions.  Analytes are typically dissolved in a polar or volatile solvent and 

pumped into a fine capillary with a diameter ranging from 75-150 µm with a flow rate 

ranging from 1 µl min-1 to 1 ml min-1 70.  A voltage, generally in the region of 1-4 kV 

depending on the elution solvent (typically 2-3 kV for methanol/acetonitrile and 4 kV for 

water), is applied to the capillary tip and results in a charge migration of species in 

solution to the capillary/solution interface producing an electric double layer; a novel 

adaptation meaning in ESI the pre-organisation of charges occurs in solution71.  

 

A Taylor cone is produced when the electrostatic forces on the preformed ions in the 

electric double layer of the capillary counterbalance the surface tension.  The Taylor cone 

is destabilised by the increase in voltage resulting in the sample emerging from the 

capillary being dispersed as a fine spray of charged droplets; this process is enhanced by 

the co-axial nebulising gas, frequently nitrogen, which flows around the capillary.  

Solvent evaporation then reduces the size of the charged droplet causing an increase in 

the concentration of charge on the droplet surface up to the Rayleigh limit72; at this point 

“Coulombic explosion” occurs as the Coulombic repulsion surmounts the surface tension 

of the droplet and the droplet explodes forming smaller droplets of lesser charge.  Solvent 
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evaporation and Coulombic explosion continues eventually forming individually charged 

solvent free analyte ions, creating the spray of charged species (Figure 1.2). 

 

There are two competing theories as to how gaseous ions are formed in ESI during 

droplet desolvation73. The charge residual model states that successive droplet fissions 

occur until individual ions are formed in the gas phase.  The second model, known as the 

ion evaporation model, proposes that ions are expelled from droplets to the gas phase 

prior to total droplet fissions. 

 

The spray of the charged analyte species can be introduced into a sampling cone, then 

into an intermediate sampling vacuum before entering the mass analyser of the mass 

spectrometer, which is maintained under high vacuum, where they are analysed for m/z. 

The charges are distributed along charge sites on the analyte, under certain conditions, 

resulting in the formation of multiply charged ions.    

 

Figure 1.2:  Gas phase ion formation by ESI. 
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ESI has been used effectively in DI-MS, in which the analyte mixture is directly infused 

into the mass spectrometer. Direct infusion ESI has also been dubbed "shotgun" in 

reference to the more frequently known shotgun proteomics74.  

 

The attention of the reader is also drawn to the capabilities of the different ionisation 

modes to measure varying lipid species.  In negative mode there is a preference for 

anionic lipid species to ionise.  After addition of lithium hydroxide, ammonium acetate or 

formic acid, negative ion mode can detect the weak anionic lipids and positive mode 

detects the neutral and polar lipids. 

 

Direct infusion lipidomics has facilitated identification and relative quantification of over 

450 phospholipids from mammalian cells75.  By means of a triple quadrupole mass 

spectrometer, Milne et al, were able to measure four major lipid classes in positive mode 

and 7 in negative ion mode in directly infused lipid extract from approximately 3x106 

WEHI-231 cells75.     

 

Mass spectrometry provides significant analyte separation, is highly sensitive76 and 

extremely versatile.  As a consequence it is utilised in a range of experiments.  The mass 

spectrum of a mixture may be used in metabolic “fingerprinting” experiments.  

Fingerprinting is so called as it necessitates a rapid biochemical ‘fingerprint’ of a sample 

without the time consuming process of metabolite identification11.  Koulman et al 

exploited whole spectra from raw plant metabolite extractions as fingerprints before 

carrying out further experiments to identify the signals with MS/MS in a high throughput 

manner77.  MS/MS isolates individual m/z species for fragmentation.  In a process known 

as collision induced dissociation (CID), the molecular ions are accelerated by an 

electrical potential increasing their kinetic energy.  The ions then collide with neutral gas 

molecules such as helium or nitrogen within a collision cell in the mass spectrometer.  As 

the molecules collide the kinetic energy is converted into internal energy, resulting in the 

breakage of chemical bonds and the fragmentation of the molecular ion.  The fragments 

are then separated by m/z in a second mass analyser.  The m/z values of the fragments aid 

the identification of the isolated ions.  For instance, phospholipid headgroups often give 
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characteristic fragment signals either in the form of a neutral loss or a characteristic 

signal at a specific m/z value74. The speed, relative robustness and potential for 

automation of this technique have been extensively exploited.  

 

As mentioned previously there is an array of mass analysers engaged in metabolomic and 

lipidomic analysis.  The DI-MS investigation conducted in this study utilised a 

quadrupole linear ion trap mass spectrometer.  The Thermo Finnigan linear ion trap mass 

spectrometer employed in investigations conducted in this study consists of an ion beam 

generated at an ESI source, directed through a heated capillary and focused through two 

successive rod arrays.  Entry into the ion trap is gated by a lens which pulses from 

positive to negative voltages to repel and attract the ions into the aperture leading to the 

ion trap.  The allowed entry time of ions into the ion trap maximises signal whilst 

reducing the unwanted space-charge effects which would result from an excessive 

quantity of ions entering the trap.  Three hyperbolic quadrupole rod arrays constitute the 

ion trap itself; ions are restrained radially by a two-dimensional radio frequency trapping 

field in the centre section of the ion trap.  Axial confinement is by direct current 

potentials applied to the front and rear end electrodes. The ion trap is filled with helium to 

a pressure of ~1 mtorr, as collisions with helium reduce the kinetic energy of the ions, in 

a process known as kinetic cooling, and contract the trajectories of molecular ions to the 

centre of the trap.  The ion trap functions as a mass spectrometer when the field within 

the device is altered, by dipole excitation generated with auxiliary alternating current 

voltages on the X-rods, destabilising the trajectories of concurrently trapped ions of 

successive m/z ratio; consequentially the ions leave the trapping field in order of their m/z 

ratio78.  On leaving the ion trap the ions strike a detector, typically a conversion diode and 

electron multiplier (Figure 1.3).  
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Figure 1.3:  Schematic diagram of the Thermo Finnigan Linear Ion Trap Mass 
Spectrometer. Ions pass through the instrument from left to right. 

 

The MS/MS function of the quadrupole linear ion trap operates in a pulsed mode and so 

mass selected ions can be accumulated over time.  Fragment ions arising from 90% of 

isolated ions can be confined using the ion trap and as a consequence several mass-

selective operations can be performed; ion traps are capable of performing MS/MS to the 

nth degree79. 

 

ESI can suffer from a number of disadvantages.  The most prominent being strong ion 

suppression effects when analysing complex molecular mixtures80.  Ion suppression is 

generated by analytes competing for charge during the ionisation process, with an 

individual analytes’ ionisation efficiencies based on their chemical characteristics81.   

Therefore, the observed ion count for a particular ion can change, depending on what 

other analytes or contaminants are being co-ionised.  The problem is compounded in that 

ion suppression can occur even when the interfering compound is not seen in the mass 

spectrum. Thus, measurement must assume the mixtures are roughly the same between 

the groups of samples analysed.  The drawback may be circumvented, to a degree, by 

separating the analytes via one or more chromatographic techniques prior to mass 

spectrometric analysis82. 

 

1.2.3 Liquid Chromatography-Mass Spectrometry 

It was previously mentioned that a number of metabolomic and lipidomic studies have 

utilised DI-MS, introducing a sample directly into an ESI source83, 84, 85, 86.  However the 
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ion suppression phenomenon caused by certain metabolites including prominent 

phospholipids, especially when using positive ionisation, can affect both low and high 

concentration analytes87.  Detrimental ionisation properties can be minimised with an 

initial, either offline or online, high performance liquid chromatography (HPLC) 

separation.  The use of HPLC for lipid analysis is a well established approach; normal 

phase chromatography in the separation of lipid classes, particularly phospholipids, is 

well documented, though HPLC was originally, and often still is, coupled to either 

evaporative light scattering detection88, 89 or ultra-violet detection90.  These detectors are 

susceptible to serious constraints in lack of selectivity and the choice of mobile phase91.  

As a consequence, metabolomic and lipidomic applications of HPLC often interface the 

liquid chromatograph to an ESI-MS detector92. 

 

LC-MS is suitable for the analysis of thermally labile, polar or high molecular mass 

compounds but is disposed to certain constraints with respect to these; the temperatures 

used in ESI may be limiting when analysing particularly labile compounds and due to the 

intrinsic nature of ESI there must be a degree of innate polarity in analyte molecules.  To 

aid the subsequent ionisation of analytes ammonium acetate can be added to the mobile 

phase to produce ammonium adducts.  In addition the volatile organic acid, formic acid 

can be included in the mobile phase to improve ionisation of analytes from the eluent in 

mass spectrometric investigation.   

 

The sample is injected onto a LC column which consists of a narrow tube packed with 

chemically modified silica.  Separation of analytes occurs due to their interaction with the 

stationary phase (the column packing) and the mobile phase (the solvent passing through 

the column).  There is an extensive range of column chemistries available including 

partition, normal phase, ion exchange, size exclusion, displacement and reversed phase 

chromatography and their ability to separate chemical classes of analyte varies.  LC-MS 

conducted in the course of this thesis has extensively employed reversed phase 

chromatography (RPC). 
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RPC column chemistry exploits a non-polar stationary phase and a moderately polar, 

aqueous mobile phase.  The stationary phase utilised in the LC-MS investigations 

detailed in this thesis is a silica based surface which was subsequently treated with 

C8H17Me2SiCl.  RPC relies on the principles of electrostatic and hydrophobic forces.  The 

column chemistry functions in such a way that the binding of analytes to the stationary 

phase relies on the contact surface area around the non-polar segment of the analyte 

molecule with the chemistry of the stationary phase within the aqueous eluent and is 

described by the solvophobic theory.  Retention of molecules by the stationary phase can 

be decreased by reducing the polarity of the mobile phase solvent and so lessening the 

water surface tension.  Elution of analytes from the column is brought about by reducing 

the polarity and surface tension of the mobile phase over a gradient.  Therefore, in 

reversed phase analysis the retention time for larger non polar molecules is longer when 

compared to polar molecules93, 36.  The use of columns with sub-2 µm particle size along 

with elevated column temperature or temperature gradients is favoured for higher 

resolutions and faster separations94.  It is worthy of note that the elevated column 

temperature is necessary; as flow rates increase with smaller column packing particles, 

resolution is improved but the pressure is increased due to the reduced particle size; by  

increasing the temperature the effective pressure is reduced. 

 

Following chromatographic separation the analytes are then introduced into a mass 

spectrometer via an ionisation interface, the most common of which is Atmospheric 

Pressure Ionisation (API), which includes ESI and Atmospheric Pressure Chemical 

Ionisation.  The LC-MS analysis conducted in this study was performed using ESI and a 

quadrupole-time-of-flight (QToF) mass spectrometer.  The ESI interface introduces the 

ions generated to a radio frequency quadrupole lens which functions as an ion guide and 

collisional dampening cell.  The ions are then accelerated into the second mass analyser 

quadrupole, which for single mass spectrometry functions to transmit the ions through the 

machine. A quadrupole is formed of four parallel metal rods.  One set of opposing rods 

have the applied potential (U+Vcos(ϖt)).  The other pair of rods have the potential -

(U+Vcos(ϖt)).  U is a direct current voltage and Vcos(ϖt) an alternating current voltage. 

Voltages applied to the rods are used to control the course of ions as they move along the 
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ion flight path at the centre of the four rods. By altering the voltages ions of a particular 

m/z are allowed through the quadrupole filter (Figure 1.4).   

  

Figure 1.4: Schematic Diagram of a Quadrupole Mass Analyser.  Ionisation occurs at 
the source.  Ions are then accelerated and focussed by a lens into the 
quadrupole.  Opposing rods have the same applied potential.  Voltages 
applied to the rods are used to control the course of ions as they move 
along the ion flight path at the centre of the four rods.  The green arrow 
represents the flight path of a resonant ion. The red arrow is the flight path 
of a non-resonant ion. 

 

However, in MS/MS mode, the quadrupole functions as a mass filter transmitting the ion 

of interest.  The ions are accelerated into a hexapole collision cell, operated in radio-

frequency only mode when performing single mass spectrometry.  When performing 

MS/MS the ion of interest is accelerated before it enters the collision hexapole, where the 

ion is subjected to CID.  In both single mass spectrometry and MS/MS mode the ions are 

reaccelerated as they leave the collision cell and focused using ion optics into the ion 

modulator of the TOF analyser.  A pulsed electric field pushes ions into the accelerating 

column from here the ions enter the field free space.  A reflectron is then employed to 

correct the kinetic energy distribution of the ions.  A constant electrostatic field reflects 
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the ion beam towards the detector.  The greater the kinetic energy of an ion the deeper it 

penetrates the reflectrons electrostatic field and therefore the longer its flight path to the 

detector; in this way the energy distribution of ions with the same m/z is corrected 

resulting in the simultaneous arrival of ions of identical m/z at the detector, referred to as 

time-of-flight focus.  Ions are detected with two microchannel plates and mass spectra are 

recorded with a time-to-digital converter95. (Figure 1.5).  

 

 

Figure 1.5:  Schematic Diagram of the Micromass QToF Ultima Mass Spectrometer 
operating in V-mode.  When the mass spectrometer is operated in W-mode 
higher resolution is achieved but as a consequence there is a decrease in 
sensitivity due to ion loss. 

 

LC-MS has many advantages as a technique for metabolomic analysis; it is a relatively 

high throughput method that combines a good dynamic range with the potential for 

metabolite identification from the spectral data.  LC-MS can also be very sensitive with 

good mass accuracy and resolution96.  

 

Libraries to assist in sample identification for LC-MS lipidomic and metabolomic data 

are limited, partly because ESI-MS is affected by the instrument type, ion source, ion 

source potentials, mobile phases and other factors affecting fragmentation patterns97.  

However, a number of resources are available.  These provide pertinent reference 

material and structural information of MS/MS fragmentation.  Examples of these include 
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LIPID MAPS (www.lipidmaps.org98), The Lipid Library (http://www.lipidlibrary.co.uk/), 

Cyber Lipid Center (http://www.cyberlipid.org/), LIPIDAT (http://www.lipidat.ul.ie/,99) 

and LipidBank (http://lipidbank.jp/). 

 

1.2.4 Gas Chromatography-Mass Spectrometry 

Gas-chromatography was first proposed in a 1941 paper by Martin and Synge in which it 

was suggested that the mobile phase in a liquid-liquid chromatography system could be 

replaced with a vapour100.  Following advances in technology, it became possible to 

couple the chromatographic technique to mass spectrometry.  During the 1950s Gohlke 

and McLafferty united a gas chromatograph to a TOF mass spectrometer founding the 

technique of GC-MS101.  GC-MS has since become a key research technique in a vast 

array of fields and is a core tool in lipid biochemistry, lipidomics and metabolomics.  

  

Since GC-MS requires the analytes to be volatile and thermally stable, derivatisation is 

used to reduce unwanted absorption effects, increase the volatility of polar compounds, 

remove polar functional groups or generate derivatives as an aid to identification.  The 

derivatisation of aqueous soluble metabolites has been conducted using a variety of 

methods; however a two step protocol using methoxylamine hydrochloride followed by 

N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA) is most commonly used in 

metabolomic analysis102.   The initial methoxymation converts the keto group of 

monosaccharides to an oxime; limiting the monosaccharide to the syn and anti isomer 

reduces the tautomeric forms of monosaccharides from 5 to 2 and therefore reduces the 

complexity of a chromatogram and also improves subsequent derivatisation.  The 

subsequent silylation reaction using MSTFA diminishes the intrinsic dipole-dipole 

interactions of the analyte molecules by substituting the active hydrogens in hydroxyl 

(OH), amine (NH) and thiol (SH) groups with a silyl; thereby increasing the volatility of 

the metabolites. (Figure 1.6). 
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Figure 1.6: The reaction mechanisms for the derivatisation of aqueous phase 
metabolites. 1. Methoxymation of keto groups from monosaccharides. 2. 
Silylation of hydroxyls. 

 

The most frequent derivatisation of fatty acids is hydrolysis of complex lipids, to release 

esterified fatty acids, followed by the methylation of the fatty acids to form fatty acid 

methyl esters (FAMEs).  A range of methods have been described in the literature to 

perform methylation of fatty acids103, 104; research conducted in this thesis exploited 

acidic esterification using boron trifluoride and methanol.  Methylation increases the 

volatility of the fatty acids whilst masking their polar functional carboxyl group (Figure 

1.7). 
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Figure 1.7: The reaction mechanism for the methyl esterification of fatty acids. 
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The analyte mixture is injected, vaporised and introduced onto the GC column by a 

carrier gas.  The carrier gas, which functions as the mobile phase, pushes the sample 

through the heated column.  As different compounds dissolve to varying degrees in the 

stationary phase, a polymer layer bound to an inert solid (commonly a silicone liquid), 

they move through the column at differing rates which are dependent on the partition of 

the compounds between the stationary phase and the mobile carrier gas.  As separation is 

partially reliant on volatility, a programmed temperature gradient is applied.  The 

separation of compounds within the sample is dependent on carrier gas flow rate, column 

dimensions, stationary phase type, analyte chemistry and the temperature of the column. 

 

A key aspect of metabolomics and lipidomics is the ability to identify the metabolites 

once they have been detected.  The stationary phase of the GC column selected for 

analysis has a significant impact on the identification process.  For example non polar 

silicone phases separate fatty acid methyl esters based almost exclusively on molecular 

weight, whereas using high molecular weight hydrocarbons allow for separation of 

saturated and unsaturated components of the same chain length.  The use of polar 

polyester columns also permits the separation of esters of the same chain length to the 

extent that, using highly polar cyanoalkylpolysiloxane phases gives excellent 

discrimination of cis and trans isomers of monounsaturated fatty acids, albeit requiring 

relatively long chromatography times.  Given suitable chromatographic separation 

provisional identifications can be made using a comparison of the analyte retention times 

with those of commercially available standard mixtures.  However, these identifications 

must only be viewed as tentative and highlight the benefit of a combined 

chromatographic-spectrometric technique.  

 

In GC-MS analysis, the end of the GC column is interfaced with the mass spectrometer 

by passing the column through a heated transfer line to the ion source where the eluting 

compounds are ionised.  EI ionisation is most commonly used in GC-MS experimentation 

to ionise the analyte molecules (Figure 1.8).  The analyte is subjected to an energetic 

beam of electrons generated by a filament, which causes the analyte to lose an electron 

and a radical cation to be produced.  Ionised analytes can fragment as a relaxation 
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pathway removing the excess internal energy gained through ionisation and producing 

further smaller ions.  Fragmentation provides structural information in the form of a 

"finger print" which can then be used for identification62.  As a consequence of the 

amount of energy absorbed by the analytes and the low stability of the radical gas phase 

ions, fragmentation of analytes is extremely reproducible.  The ionisation energy 

typically used is 70 eV allowing standardisation of fragmentation libraries. There are a 

number of commercially available databases, for example the National Institute of 

Standards and Technology (NIST)/ Environmental Protection Agency (EPA)/ National 

Institutes of Health (NIH) mass spectral library, designed to aid the identification of 

metabolites from GC-MS analysis and are therefore well suited to metabolomic 

investigation. 

 

Figure 1.8: Schematic of Electron Impact Ionisation. 

 

The ions generated by EI are then repelled out of the ionisation chamber with a small 

positive charge.  The ions enter a mass analyser which functions to separate the ions 

based on their m/z.  Quadrupole mass analysers are the most commonly used and have 

been discussed previously.  Mass spectra are generated by examining the ions progressing 

through the quadrupole whilst the applied voltages are adjusted.  Once filtered, the ions 
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enter the detector where the electrical impulses are amplified and sent to a computer 

where the signal is converted into a visual display. 

    

GC-MS is a robust system that is highly sensitive and provides good resolution.  

Nevertheless, the technique is limited by its m/z range, preventing the analysis of larger 

metabolite species.  The technique also requires that compounds be thermally stable with 

high enough vapour pressure to volatilise during injection.  Chemical derivatisation for 

GC-MS has been used to overcome this problem but in itself can introduce variability to 

the samples and can mask metabolite structural information.  Chemical derivatisation also 

increases sample preparation and when combined with an extensive chromatographic run 

(as is often required in metabolomics to separate the variety of chemical classes of 

metabolites) reduces the throughput of GC-MS as an analytical technique.  The multiple 

procedures required prior to GC-MS analysis also increase the risk of contamination and 

recovery losses. However by using GC-MS in combination with other analytical 

techniques not only are these restrictions surmounted but the coverage of the metabolome 

can be significantly increased.   

 

1.2.5 
1
H-Nuclear Magnetic Resonance Spectroscopy 

Analysis of biofluids and tissue extracts using 1H-NMR spectroscopy is a well 

established technique that has diversified within the field of metabolomics105, 106.  The 

popularity of the technique arises partly from its application in the determination of the 

structures of small organic molecules allowing the identification of metabolites from 

biological samples, but also from its low cost per sample basis and, due to its 

spectroscopic, quantitative, robust and reproducible nature.  The technique is also non-

destructive allowing multiple analyses of samples.  The use of high-resolution NMR 

spectroscopy with field strengths greater than 9.4 Tesla are utilised to overcome some of 

the disadvantages of NMR due to low sensitivity and small chemical shift range for 1H-

NMR spectra.  The analysis of mouse tissue metabolite extracts using 1H-NMR typically 

detects 20-40 metabolites; when applied to urine the number of metabolites observed 

reaches 100-200107.  Despite the relatively low coverage of the metabolome 1H-NMR 
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analysis can be highly discriminatory; this arises because metabolic pathways are 

connected by a small number of metabolite nodes, which are observed using 1H-NMR 

analysis, whose concentrations are significant indicators of changes in the steady states of 

metabolic pathways43.  Much of the criticism directed at metabolomic studies using NMR 

spectroscopy has not been concentrated on the analysis itself but on biological 

discrepancy. However, within rodent studies variables such as diet, sex, choice of vehicle 

and strain can be controlled and therefore limit sources of variations. 

 

Nuclear magnetic resonance spectroscopy is reliant on magnetic nuclei having an 

intrinsic angular momentum called spin. Nuclei with non-zero spin are detectable by 

NMR; these include 1H, 13C and 31P. The magnitude of spin angular momentum is 

defined by the equation: [I(I+1)]1/2 ħ, where I is the spin quantum number of a nucleus.  

The nuclear spin quantum number of 1H is ½.  The spin angular momentum I is a vector 

that in a spin-I nucleus has 2I+1 projections onto an axis, this allows the quantisation of a 

particular axis component of I, known as Ix,y or z depending on the axis.  Therefore         

Ix,y or z= m ħ where the term m is the magnetic quantum number which has 2I+1 values at 

integral steps from +I to –I.  These parameters mean that for the 1H nucleus, which has 

I=½, the angular momentum has two allowed directions, Ix,y or z= ±½ ħ (Figure 1.9). 
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 Figure 1.9:  Space quantisation of spin-½ nuclei. 

 

2I+1 orientations of a spin-I nucleus have the same energy until a magnetic field is 

applied.  The energy of the nucleus is altered by an amount proportional to the strength of 

the magnetic field B, the gyromagnetic ratio and the axis component of the angular 

momentum.  Therefore the 2I+1 states for spin-I nuclei are spaced with an energy gap 

ħγB.  Since for NMR ∆m=±1 transitions occur between adjacent energy levels and 

therefore ∆E=hν= ħγB (Figure 1.10).  If electromagnetic radiation is applied at frequency 

ν the nuclei will move from the lower energy state to that of the higher energy state; this 

frequency is the Larmor frequency. 

 

 

 

 

 



Chapter 1 

 
   

30 

 

Figure 1.10:  A. The interaction between the magnetic field B, the nuclear magnetic 

moment µ and the projection of µ onto B, µx, y or z. B. Energy level for 1H 
nuclei in a magnetic field. 

 

In a magnetic field, magnetic nuclei are separated between the 2I+1 energy levels 

according to the Boltzmann distribution with the ratio of the two levels given by 

nupper/nlower=e-∆E/kT (where k is the Boltzmann’s constant) which is comparable to the 

thermal energy of the system at room temperature.  However, NMR signals are weak, 

with the intensity of the transition depending on the difference in the populations of the 

energy levels which are very small.  The population differences are often ≤0.001%, 

explaining the relative insensitivity of 1H-NMR.  By using stronger field strengths ∆E can 

be maximised and the sensitivity of NMR spectroscopy increased.   Regardless, the 

population difference between energy states is large enough to produce a net magnetic 

moment which aligns with the magnetic field.   

 

When a radiofrequency pulse is applied along the x-axis of the magnetisation its rotation 

can be moved away from its equilibrium position rotating about the z-axis so it is aligned 

by 90º into the x,y plane.  Short radiofrequency pulses, referred to as hard pulses, are 

large enough to excite a range of frequencies simultaneously, and therefore populations 

of all spin energy levels will be equalised.  Populations of higher spin levels will then 

resonantly emit energy as they slowly decay to their equilibrium positions.  The emission 
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of energy can be detected using a coil of wire that surrounds the sample and is mounted 

in the xy-plane; when the magnetisation precession intersects the wire it is detected as a 

current is induced.  This is known as the free induction decay (FID) which is Fourier 

transformed from the time to the frequency domain producing a spectrum (Figure 1.11).  

The chemical shift and coupling identified within the spectrum are used to assign 

resonances.      

 

 

Figure 1.11: A simple pulse sequence for a pulse-aquire experiment.  Post equilibration 
a 90º radiofrequency pulse is applied, rotating the magnetisation into the 
y-axis. The precession of the magnetisation generates the free induction 
decay signal.  

 

The resonance frequency of nuclei is dependent upon the position of the nucleus in a 

molecule.  This effect is known as the chemical shift and occurs because the external 

magnetic field causes electrons to circulate in their orbitals.  This motion generates a 

small magnetic field B’, in the opposite direction to B0 that shields the nucleus from the 

external field.  The magnetic field experienced by the nucleus (BN) is determined by the 

equation BN = B0 (1-σ), σ being the shielding constant.  For nuclei in molecules the 

motion of the electrons may induce fields that either augment or oppose the external field, 
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and so influence their resonant frequencies.  The frequency is presented as a shift in parts 

per million (ppm) from a reference nucleus. Besides the chemical shift additional data 

from NMR spectra can be obtained from magnetic interactions between nuclei which 

generate extra peaks in the spectra providing information on the arrangement of the 

nuclei in an analyte, known as spin-spin coupling.  Spin-spin coupling arises when non-

symmetrically equivalent adjacent nuclei interact, splitting the corresponding NMR 

signal.  The number of lines generated by a signal coupling is given by the equation 

(2nI+1), where n is the equivalent nuclei and I is spin of these nuclei.  The term J defines 

the difference between the components and is a measure of electronic overlap measured 

in Hz.  J aids in the identification of compounds analysed by NMR since it provides 

information about the bonds linking nuclei.  

 

1.2.6 Two-dimensional Heteronuclear Single-Quantum Coherence 
13
C-Nuclear 

Magnetic Resonance Spectroscopy 

Conventional one-dimensional NMR generates a spectrum which plots intensity against 

frequency; however two-dimensional NMR plots intensity against two frequency axes, 

meaning each peak in a two-dimensional spectrum has intensity and two frequency co-

ordinates, aiding greatly the separation of different resonances.  Two-dimensional NMR 

experiments start with a preparation period in which the equilibrium magnetisation is 

transformed into a coherence which evolves during the evolution period, t1.  The 

preparation period involves a 90º pulse generating a single-quantum coherence 

(transverse magnetisation).  The evolution, t1, is systematically incremented in a series of 

experiments.  During the mixing period the coherence present at the end of t1 is 

manipulated into an observable signal which is then recorded in the detection period, 

known as t2.  In the mixing period the magnetisation is transferred from one spin nuclei to 

another.  In a two dimensional NMR experiment the FID is detected at regular time 

intervals in t1 and t2 generating a series of data points representing the time-domain 

function.  Initially t1 is set to 0, the pulse sequence is run and the FID detected and 

recorded as a function of t2 (Figure 1.12).  The process is then repeated for ∆1 and then 



Chapter 1 

 
   

33 

2∆1 and so on.  Free inductions are generated for both t1 and t2 which are then Fourier 

transformed for both dimensions. 

 

Figure 1.12: General scheme for two-dimensional NMR. The preparation and mixing 
periods can be a single radiofrequency pulse.  Coherence generated during 
the preparation phase evolves for time t1, the signal is detected during t2. 

 

In a Heteronuclear Single-Quantum Coherence (HSQC) experiment one frequency co-

ordinate gives the 13C chemical shift, whilst the second frequency co-ordinate is that of 

the attached proton, the observed nuclei in this case is the proton.  Cross peaks in a 

heteronuclear correlation spectrum arise as a result of transfer through one bond 

heteronuclear coupling, identifying shifts of directly attached nuclei and aiding 

assignment (Figure 1.13).  The HSQC pulse sequence functions by first transferring 

magnetisation from the proton to the 13C nuclei making the approach more sensitive than 

NMR pulse sequences that detect 13C resonances directly.  The 13C spin magnetisation 

evolves for t1, acquiring a frequency label according to the offset of 13C.  Magnetisation is 

then transferred back to 1H and observed.  The spectra produced have peaks centred at the 

offset of the 13C spin and at the offset of the 1H spin. 
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Figure 1.13: An example 1H-13C  HSQC spectrum recorded at 500 MHz.    

 

13C NMR spectroscopy has been used extensively to measure concentrations of 13C 

labelled metabolites and for mapping flux through metabolic pathways in biological 

systems both in vitro and in vivo.  Pioneering research using 13C NMR to track metabolic 

pathways using labelled substrates such as glucose tagged with the stable 13C isotope was 

first conducted in the 1970s108; these experiments were initially performed in 

microorganisms and perfused organs and determined rates of metabolic pathways by 

measuring the label appearance in pathway products as a function of time109.  The 1980s 

saw an expansion of the technique when it was first applied in animal models110 and with 

in vivo NMR spectroscopy in humans111.  13C labelled metabolite tracing studies provide 

a bridge between the distinct scientific approaches of reductionist molecular biochemistry 

and global systems biology, contributing to the elucidation of the mechanisms of 

metabolic regulation. 
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1.3 Multivariate Statistical Techniques 

1.3.1 Multivariate Statistics in Metabolomics 

As metabolomic analysis evolves the number of metabolites measured and the coverage 

of the metabolome will continue to increase.  The result is the generation of extensive 

amounts of raw data, containing the concentrations of a large array of metabolites, which 

must be contained in intricate data tables.  In order to mine these vast resources for 

statistically relevant variation in metabolism requires potent statistical techniques 

proficient in data reduction and simplification. 

 

Multivariate statistics, and especially pattern recognition processes, examine the 

relationships between multiple variables simultaneously permitting visualisation of the 

prominent trends within complex data sets.  In analysing large data sets, where the 

number of variables often exceeds the number of samples, especially when the variables 

are co-linear as is the case in metabolomic analysis, multivariate statistics becomes a 

superior tool to more traditional univariate analysis.  Multivariate analysis has a number 

of advantages over univariate techniques in that it concurrently analyses all variables, 

taking into account their co-linear nature, it can manage with omitted data and is robust to 

noise112; overcoming the risk of generating ambiguous results from monitoring and 

assessing each variable independently as is the case in univariate statistics.  

 

Multivariate statistical methods are commonly classed as either unsupervised or 

supervised.  Methods such as PCA and hierarchical cluster analysis (HCA) are classified 

as unsupervised techniques as they do not assume a priori knowledge of classification in 

the data set and so examine intrinsic variation of the data set.  Supervised methods 

include partial least squares (PLS), orthogonal signal correction (OSC) and PLS-DA; 

these statistical analyses exploit information on classification to distinguish the intrinsic 

variation from variation generated by class membership, optimising discrimination 

between classes113.  Within a metabolomics setting, where the variance of interest may 

not essentially be the greatest variance in the dataset, the supervised techniques can be 

valuable in distinguishing particular biological queries; particular illustrative examples 
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include differentiating drug treatment doses or severity of disease.  The principles behind 

multivariate statistical techniques used within this thesis are explored in further detail in 

Chapter 2 Materials and Methods (section 2.11 Data Handling for Metabolomics).  
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1.4 The Metabolic Syndrome 

1.4.1 Regulation of Metabolism, Insulin Resistance and the Metabolic Syndrome 

Insulin is the primary hormone regulator of intermediary metabolism in mammals, 

controlling the utilisation of fuels for storage or oxidation.  Insulin exerts its influence 

over carbohydrate and lipid metabolism, as well as on protein and mineral metabolism. 

As a consequence, perturbations in the systemic insulin signalling network will have 

severe detrimental effects, not only on specific target organs but also on the whole 

organism. 

 

The release of insulin, from the β-cells in the islets of Langerhans found in the pancreas, 

as a result of elevated levels of blood glucose facilitates uptake, utilisation and storage of 

glucose in a range of tissues.  Activation of the insulin receptor in muscle and adipose 

tissue leads to an increase in the recruitment of the GLUT 4 transporter on the surface of 

cells in these tissues and therefore increases the rate of entry of glucose into the cells114.  

Insulin also has a profound effect on liver metabolism; the hormone stimulates the uptake 

of glucose into hepatocytes and its conversion to glycogen, once glycogen stores are full, 

insulin also promotes the de novo synthesis of fatty acids from glucose in the liver.  The 

exposure of adipose tissue to insulin inhibits the intracellular lipase and therefore 

prevents the hydrolysis and release of fatty acids from TAGs, concomitantly the synthesis 

of glycerol from glucose is enhanced.  These processes lead to further accumulation of 

TAGs in the adipocytes. 

 

There is a distinctive variation in the concentration of insulin required to arbitrate the 

metabolic responses in tissues between individuals in a population115.  In the case of 

insulin insensitivity, referred to as insulin resistance, peripheral metabolic tissues fail to 

respond effectively to increases in the concentration of insulin in circulation116.  This can 

lead to hyperglycaemia. In some individuals the ability to produce enough insulin to 

negate insulin resistance is impaired and this gives rise to TIIDM.  Increased insulin 

resistance, when combined with hyperinsulinaemia and obesity, increases an individual’s 
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risk of associated disorders such as dyslipidaemia and microalbuminuria which in turn 

increase the prevalence of atherosclerosis and hypertension leading to cardiovascular 

morbidity and mortality117.  The increased risk of cardiovascular disease as a direct result 

of perturbed insulin pathway function in non-type I diabetics was first defined as 

metabolic syndrome in 1988118.  A number of biomarkers have been identified that 

decidedly correlate with the degree of insulin resistance; these include low density 

lipoprotein (LDL) particle size119 and fibrinogen120.  

 

1.4.2 Aetiology of the Metabolic Syndrome  

The aetiology of the metabolic syndrome is complex and poorly understood with roots 

likely to lie in both environmental and polygenic factors.  The theory that 

hyperinsulinaemia caused by a loss of insulin sensitivity is a primary contributing factor 

to the development of metabolic syndrome has become widely established121.  The 

syndrome associates insulin resistance, visceral obesity, dyslipidaemia and hypertension, 

which are known to be interrelated.  However there is continued controversy as to 

whether the condition is a homogeneous disorder or disease and whether it can be truly 

recognised as a syndrome122.  The pathophysiology is further complicated by the 

recognition that individuals with a lone component of the metabolic syndrome are not at 

as high a risk of cardiovascular disease or TIIDM demonstrating the individual 

components are more than additive. 

 

The principal contributing factors of the metabolic syndrome have been grouped together 

in four main categories: insulin resistance, visceral obesity, atherogenic dyslipidaemia 

and endothelial dysfunction.  The first two factors seem to be central and metabolic 

predisposition to insulin resistance and obesity appear to be necessary for the metabolic 

syndrome phenotype.  Dyslipidaemia often arises from the insulin resistance and obesity 

and is further broken down to include high serum TAG concentrations and decreased 

HDL particle concentrations.  Endothelial dysfunction is thought to come from 

adipokines and free fatty acids (FFAs) released by adipose tissue in the obese phenotype.  

Endothelial dysfunction manifests symptomatically as hypertension.  Together the 
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dyslipidaemia and hypertension contribute to the emergence of cardiovascular disease.  

Candidate genetic factors that may combine to the pathology of the metabolic syndrome 

have been identified in a number of large cohort patient studies123.  

 

1.4.3 Diagnosis and Current Definitions of Metabolic Syndrome 

As previously mentioned the etiology of the metabolic syndrome is complex and this has 

meant that the diagnosis and definitions of the disorder have controversially varied.  The 

most commonly used definitions for diagnosis come from the World Health Organisation 

(WHO), first developed in 1998, the European Group for the Study of Insulin Resistance 

(EGIR), who proposed an amendment to the WHO definition in 1999, the National 

Cholesterol Education Program (NCEP), who devised their definition in 2001 and which 

has since been amended by the National Heart Lung and Blood Institute in 2005, and the 

International Diabetes Foundation (IDF) whose definition was first published in 2005.  

These definitions are summarised in Table 1.1. 

 

Given the multiple definitions arising from the variation of emphasis, for example the 

WHO definition classifies individuals at risk of developing TIIDM whereas the IDF 

definition focuses on adiposity, the Food and Drug Administration, the European 

Association for the Study of Diabetes and the American Diabetes Association have 

questioned diagnosing patients as suffering from metabolic syndrome and instead called 

for the identification and treatment of individual risk factors124. 
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 NCEP 

(2005) 

WHO (1998) EGIR (1999) IDF 

(2005) 

Essential N/a Insulin Resistance 
(IGT or TIIDM) 

Hyperinsulinaemia 
(plasma insulin 
>75th percentile) 

Central 
obesity 
(waist 
>94cm 

male, >80 
cm female) 

Criteria Three of the 
five criteria 

defined 
below 

Insulin resistance 
or TIIDM and two 
of the five criteria 

below 

Hyperinsulinaemia 
and two of the four 

criteria below 

Obesity and 
two of the 

four criteria 
below 

Obesity 

Definition 

Waist >101 
cm male 

and >89 cm 
female 

Waist/hip ratio 
>0.9 Male and 

>0.85 Female or 
BMI >30 kg/m2 

Waist >94 cm 
Male and >80 cm 

Female 

Central 
Obesity 
required 

Hyperglycaemia Fasting 
glucose 

>5.6 mmol/l 

Insulin resistance 
required 

Insulin resistance 
required 

Fasting 
glucose 

>5.6 mmol/l 

Dyslipidaemia TAG >1.7 
mmol/l and 

HDL-
Cholesterol 
<1 mmol/l 
male and 

<1.3 mmol/l 
Female 

TAG >1.7 mmol/l 
or HDL-

Cholesterol <0.9 
mmol/l Male and 

<1 mmol/l Female 

TAG >2 mmol/l or 
HDL-Cholesterol 

<1 mmol/l 

TAG > 1.7 
mmol/l and 

HDL-
Cholesterol 
<1 mmol/l 
Male and 

<1.3 mmol/l 
Female 

Hypertension >130 
mmHg 

systolic of 
>85 mmHg 

diastolic 

>140/90 mmHg >140/90 mmHg >130 
mmHg 

systolic of 
>85 mmHg 

diastolic 

Additional  Microalbuminuria   

Table 1.1: Definitions of the metabolic syndrome. Impaired Glucose Tolerance 
(IGT). Microalbuminuria, >20 mg/min urinary albumin excretion or 
albumin-to-creatinine ratio of >30 mg/g. Adapted from Huang, P.L., 2009 
125. 
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1.5 Peroxisome Proliferator-Activated Receptors 

In 1990 a novel murine orphan receptor was cloned and characterised that was activated 

by a range of peroxisome proliferators126; this was the first peroxisome proliferator-

activated receptor (PPAR) isoform to be characterised and was named PPARα.  

Peroxisomes are cellular organelles involved in the β-oxidation of long-chain fatty acids 

and catabolism of cholesterol in the formation of bile acids.  The PPARs are a subgroup 

of the nuclear receptor superfamily and ligand-activated transcription factors that control 

the expression of genes involved in a range of vital biological processes127.  Since the 

discovery of PPARα further PPAR isoforms have been identified and named PPARγ and 

PPARδ, each demonstrating its own specific tissue distribution and ligand preference128.  

As opposed to PPARα neither PPARδ nor PPARγ are activated by peroxisome 

proliferators or increase the number or size of peroxisomes in rodent tissues129.  PPARδ is 

also known as PPARβ, a complexity resulting from the initial isolation of PPARβ in 

Xenopus oocytes130.  The mammalian PPARβ appeared to have little homology with that 

identified in amphibians and so was named PPARδ.  The mammalian genome was later 

revealed to only contain three PPAR isoforms; PPARδ was recognised as the mammalian 

ortholog of PPARβ
131. 

 

The PPARs share a great deal of structural homology with other members of the nuclear 

receptor superfamily.  The DNA binding domain of the receptors is comprised of an 

approximately 70 amino acid binding domain containing two highly conserved zinc 

fingers.  The receptors also include a more variable ligand binding domain of 

approximately 250 amino acids which besides its ligand binding capacities includes 

dimerisation and transcriptional activation domains as well as the extensively studied 

transcriptional activation function 2 domain at the extreme C-terminal section of the 

receptor. 

 

Ongoing research into the physiological role of PPARs has revealed that they have a 

primary role as master regulators of metabolism and as nutritional sensors.  The three 
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PPAR isoforms are activated by a range of unsaturated fatty acids and essential fatty acid 

metabolic pathway products and their derivatives, the eicosanoid and prostaglandin 

classes.  As PPARs have been implicated in the metabolic control of pathways involving 

a number of their ligands it has been suggested that the ability of PPARs to act as 

nutritional sensors comes from their ability to function through these positive and 

negative feed back loops132.  However it has also been postulated that activation of the 

PPARs is less specific; a theory emanating from the discovery that the binding affinity 

fatty acids have for the PPARs is relatively low when compared to other hormone-

receptor couplings133 and from the elucidation of the structure of the binding domain of 

the receptor class which is large in comparison to other members of the nuclear receptor 

superfamily, and so binds promiscuously to a diverse range of heterogenic compounds134. 

 

1.5.1 PPAR Ligand Activated Transcription Factors 

The PPARs form obligate heterodimers with the 9-cis-retinoic acid receptor (RXR) and 

bind to two half sites of the direct repeat of the hexameric DNA consensus sequence, 

AGGTCA separated by one nucleotide135 (Figure 1.14).  The consensus binding 

sequences are known as Peroxisome Proliferator Response Elements (PPREs) and have 

been identified in numerous genes involved in organogenesis, inflammation, cell 

differentiation and proliferation and carbohydrate and lipid metabolism.  In the absence 

of ligand binding, the PPAR-RXR complex recruits co-repressors, associated histone 

deacetylases and chromatin-modifying enzymes that silence transcription by active 

repression136,137.  Upon ligand binding a conformational change occurs in the PPAR-RXR 

complex releasing transcriptional repressors in exchange for co-activators; these 

complexes function to recruit the basal transcriptional machinery enhancing the 

expression of target genes.  There is mounting evidence that the different functional 

properties of the three PPAR subtypes arises from subtle differences in binding site 

preference, tissue distribution and their ability to bind different co-repressors and co-

activators138.  
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Figure 1.14: The peroxisome proliferator-activated receptor mechanism for the 
activation of gene transcription. 

 

1.5.2 Peroxisome Proliferator-Activated Receptor αααα 

PPARα is primarily expressed in highly catabolic tissues such as the heart, liver, 

macrophages, intestines, kidneys and skeletal muscle139.  The receptor is bound by a 

range of saturated and unsaturated fatty acids including palmitoleate and oleate138, as well 

as polyunsaturated fatty acids and leukotriene B4140.  PPARα plays a crucial role in the 

regulation of FFA transport, uptake and catabolism141. 

 

The response to hypoglycaemic conditions is partially co-ordinated by PPARα.  The 

nuclear receptor increases the expression of a panel of genes including the fatty acid 

transporter, fatty acid transport protein, acyl-CoA oxidase, and keto-acyl-CoA thiolase.  

The result is an increase in uptake of fatty acids into the liver accompanied by 

upregulation of peroxisomal β-oxidation of these fatty acids, shortening their chain length 

and facilitating entry into the mitochondria.  The mitochondrial β-oxidation pathways 

also come under PPARα transcriptional control with increased expression of carnitine 
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palmitoyltransferase I142 and medium-chain-acyl-CoA dehydrogenase143.  As a 

consequence circulating TAG concentrations are reduced and lipidaemic profiles 

normalised by PPARα activation. 

 

Due to the low levels of expression of PPARα in white adipose tissue the receptor is 

thought to play a limited role in adipogenesis.  Activation of PPARα in 3T3-L1 

preadipocytes fails to stimulate their differentiation144; however when the receptor is co-

expressed with the transcriptional co-activator PPARγ-coactivator 1 in this cell line the 

expression of enzymes participating in the β-oxidation pathway is increased145.  Rat 

primary adipocytes were also found to respond in a similar way to PPARα activation by 

fibrates in a process involving the upregulation of fatty acid uptake and β-oxidation146. In 

vivo mice lacking the PPARα gene appear to have normal white adipose tissue; however 

they are susceptible to spontaneous late onset obesity and adipocyte hypertrophy147.  

 

It is worthy of note that PPARα is also the target for the fibrate pharmacological 

compound class used in the treatment of hypercholesterolaemia and hyperlipidaemia.  

Members of this class include fenofibrate and bezafibrate.  Activation of PPARα by 

fibrates results in a decrease in very low-density lipoprotein-cholesterol, chylomicrons 

and circulating TAGs through a mechanism involving increased expression of lipoprotein 

lipase and apolipoprotein A-V148.  HDL-Cholesterol concentrations also increase 

following fibrate treatment, a result of increased transcription and subsequent translation 

of apoA-I and apoA-II149 and ABC binding cassette transporter A1 induction, which 

stimulates macrophage cholesterol efflux150; since macrophages containing high 

concentrations of lipids are primary facilitators of inflammation and atherosclerotic 

plaque formation in the vasculature these processes contribute to a reduction in the risk of 

cardiovascular disease151. 
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1.5.3 Peroxisome Proliferator-Activated Receptor γγγγ  

PPARγ was initially identified using homology cloning in Xenopus
130 and then mice152, 

before it was isolated by identification and cloning of the ARF6 factor controlling the 

function of the adipose-specific enhancer of the aP2 gene153.  ARF6 was discovered to be 

PPARγ associated with its heterodimeric partner RXR153.  The PPARγ gene is transcribed 

to give three mRNAs, termed PPARγ1, PPARγ2 and PPAR γ3, which are generated by 

alternative splicing and differential promoter utilisation.  Only the PPAR γ1 and PPARγ2 

isoforms are expressed as proteins in mice and humans.  The PPARγ2 protein is larger 

than PPARγ1, comprising of an additional 30 amino acids located at the N-terminus.  The 

function of the extended N-terminus in PPARγ2 is as yet unknown but several studies 

have suggested that it may play a role in adipogenesis154, 155.  The tissue expression of the 

two isoforms also differs; PPARγ2 is primarily expressed in the white and brown adipose 

tissue whereas PPARγ1 is more ubiquitously expressed with higher concentrations of the 

mRNA found in kidneys, pancreas, heart, intestines and adipose tissue139, 156.  

 

PPARγ has been established as the master regulator of adipogenesis; no other 

transcriptional regulator has yet been shown to promote adipogenesis in the absence of 

the nuclear receptor.  However, in vivo study of PPARγ null mice has proven difficult due 

to embryonic lethality arising from placental insufficiency157.  The generation of chimeric 

mice containing PPARγ null cells demonstrated that these cells do not contribute to 

adipocyte formation158.  Later research has shown that inactivation of PPARγ specifically 

in embryonic cells rather than trophoblasts lead to the production of mice with PPARγ 

deficiency that demonstrated lipodystrophy, insulin resistance and hypotension.  In 

addition PPARγ selective ablation in adipose tissue verified the nuclear receptor’s 

importance for post-differentiation adipocyte survival159.  In vitro studies have also 

emphasised the importance of PPARγ for adipogenic processes; PPARγ knock out 

fibroblasts and embryonic stem cells have been shown to be differentiation 

incompetent158 whilst pre-adipocytes carrying a dominant negative PPARγ mutation 

failed to undergo adipogenesis160.   
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Besides PPARγ’s critical role in adipogenesis, the nuclear receptor is also a principle 

regulator of fatty acid metabolism in white adipose tissue.  The receptor promotes FFA 

uptake and consequent storage as TAGs.  Activation of PPARγ increases expression of an 

array of genes required for a range of lipid metabolic pathways in adipocytes; the genes 

regulated by PPARγ include fatty acid transport protein 1, crucial for FFA uptake, 

lipoprotein lipase, necessary for the release of FFA from TAGs, fatty acid binding protein 

4, required for intra-cellular FFA transport, as well as acyl-CoA synthase and 

phosphoenolpyruvate carboxykinase 1, essential for FFA activation and esterification, via 

glyceroneogenesis, respectively161.  The active nuclear receptor also promotes storage of 

TAGs in unilocular lipid vesicles within adipocytes162. 

 

PPARγ activation is of clinical importance in the treatment of TIIDM and the metabolic 

syndrome; the thiazolidinedione (TZD) class of antidiabetic drugs are PPARγ agonists.  

Two members of the TZD pharmacological compound class, rosiglitazone and 

pioglitazone are currently utilised in the clinic.  TZDs were of interest initially due to 

their ability to lower blood glucose levels in rodents and later in humans163; subsequently 

it was discovered that the TZDs were direct pharmacological agonists for PPARγ
164.  The 

mechanism by which activation of PPARγ by TZDs brings about insulin sensitisation and 

normalisation of hyperglycaemia has been the focus of a great deal of research over the 

last decade.  Evidence thus far supports the conviction that adipose tissue is the primary 

target and mediator for the systemic effects of TZD treatment, a theory described by the 

“lipid steal” hypothesis165,166.  The hypothesis states that PPARγ activation in white 

adipose tissue enhances dietary fatty acid storage.  TIIDM is characterised by increased 

plasma FFA concentrations and inappropriate deposition of lipids in peripheral and 

metabolic tissues such as liver and skeletal muscle, which is associated with insulin 

resistance and impaired glucose utilisation167.  Therefore PPARγ activation in the adipose 

tissue is thought to facilitate sequestration of the FFAs into the white adipose tissue, as a 

safe storage depot, and away from the peripheral tissues where their deposition is 

deleterious.  However, the theory is less than comprehensive since the insulin sensitising 

effects of TZDs are not shared by alternative drug classes that also lower circulating 
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plasma FFA concentrations, suggesting additional mechanisms are involved in the 

antidiabetic processes initiated by PPARγ activation.     

 

1.5.4 Peroxisome Proliferator-Activated Receptor δδδδ  

In comparison to PPARα and PPARγ, the third member of the family, PPARδ has come 

under a lesser degree of scrutiny.  However, the research that has been conducted thus far 

indicates PPARδ may be a potential clinical target for the treatment of obesity, the 

metabolic syndrome and TIIDM.  PPARδ is expressed almost ubiquitously, though some 

tissues express higher concentrations of the mRNA including the brain, adipose tissue, 

skin, liver and skeletal muscle139.  In addition PPARδ protein expression has recently 

been shown to be high in liver, colon, small intestine and keratinocytes168.  PPARδ is 

activated by several 14 to 18 carbon containing polyunsaturated fatty acids, including 

eicosanoids such as prostaglandin A1, iloprost and carbaprostacyclin, in the micromolar 

range132. Nevertheless, the physiological ligands of PPARδ remain undefined.   

 

In vivo studies using PPARδ null rodents have proven difficult since deficiency of the 

receptor results in embryonic lethality of over 90% due to placental defects.  However, 

the surviving animals have been found to expend less energy than the wild type and 

consequently are more susceptible to weight gain169.  The development of a number of 

high affinity synthetic PPARδ ligands has identified the receptor as a potential 

therapeutic target for the metabolic syndrome; PPARδ ligands retard weight gain in 

models of high-fat diet induced obesity.  Insulin resistant obese rhesus monkeys treated 

with the selective PPARδ agonist GW501516 demonstrated significant increases in HDL-

cholesterol with concomitant decreases in TAGs and LDL-cholesterol170.  PPARδ is 

expressed at 10 and 50 times the concentrations of PPARα and PPARγ, respectively, in 

skeletal muscle and administration of PPARδ agonists to rodents results in an increase in 

expression of genes involved in fatty acid oxidation, mitochondrial respiration, oxidative 

metabolism and slow twitch contractile apparatus171. These changes would be expected to 

bring about a decrease in muscle fatigability and positively impact fatty acid homeostasis.   
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The role of PPARδ in adipose tissue appears to be that of a regulator of tissue metabolism 

and energy homeostasis.  In vitro investigation has shown that expression of PPARδ is 

induced early in the differentiation of the 3T3-L1 murine clonal white preadipocyte cell 

line172 and during early brown adipogenesis173.  PPARδ is also implicated in the 

stimulation of adipogenesis via the induction of PPARγ expression and mitotic clonal 

expansion174, 175.  In vivo targeted activation of PPARδ in white adipose tissue results in 

increased expression of genes involved in FFA oxidation and the electron transport chain 

uncoupling protein 1; these transcriptional changes coincided with a reduction in 

adiposity through reduced intracellular TAG accumulation and improved lipid profiles169. 

   

However, the ubiquitous expression of PPARδ may result in diverse and unwanted side 

effects upon activation of this receptor.  PPARδ has been the subject of contrasting 

studies relating to its role in carcinogenesis.  The nuclear receptor has been implicated in 

the acceleration of intestinal adenoma growth and increased growth in breast and prostate 

cancer cell lines, but contradictory to these studies PPARδ has also been shown to 

attenuate colon cancer176, 177, 178. The role of PPARδ in development and carcinogenesis is 

complex and has been extensively reviewed elsewhere179.  Given the ubiquity of 

expression of PPARδ and its apparent diverse effects, an unambiguous comprehension of 

the global effects of activation of the nuclear receptor is necessary before it can be 

considered as a therapeutic target. 

 

1.5.5 The Application of Metabolomics to the Study of the PPARs 

Metabolomics has been employed to study mouse models of PPAR function.  13C isotope 

labelling strategies identified hypoglycaemia and impaired liver fatty acid β-oxidation in 

fasting PPARα null mice, demonstrating that the receptor regulates hepatic 

gluconeogenesis in both fed and fasted mice180, 181.  Atherton and colleagues used a 

combined 1H-NMR spectroscopy and GC-MS metabolomics strategy to analyse the effect 

of the ageing process on metabolism in the liver, heart, skeletal muscle and adipose tissue 

of PPARα null mice and wild-type mice between 3 and 13 months of age182.  The 
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PPARα null mouse was characterised by hepatic steatosis and reduced glucose and 

glycogen liver and muscle concentrations.  The hepatic concentrations of glucose and 

glycogen also decreased in an age dependent manner in both mouse genotypes.  The 

study highlighted the role the receptor plays in the ageing process and provides a model 

for the investigation of the interaction between age and genotype.  

 

The functions of the PPARs have also been investigated using synthetic agonist 

compound treatment studies of model organisms.  PPARγ activation by rosiglitazone in 

the heart, adipose tissue, liver and plasma of the NZO x NON mouse, a model of TIIDM, 

has also been investigated using a lipidomics platform183.  The mass spectrometry based 

study employed thin layer chromatography to separate lipids into their chemical classes 

followed by GC-MS to investigate constituent fatty acids that were esterified to each 

complex lipid class.  There was a detected decrease in several lipid classes in the serum, 

alterations in cardiolipin, and an accumulation of polyunsaturated fatty acids in adipose 

tissue.  The metabolomic changes were also correlated with transcriptional changes 

analysed by reverse transcriptase polymerase chain reaction.  The metabolic effect on 

exposure of rats to two PPARα agonists, a PPARγ agonist and a PPARδ agonist has been 

studied using a 1H-NMR spectroscopy based metabolomics investigation of urine184.  

Two biomarkers from the tryptophan-NAD+ pathway, N-methyl-4nicotinamide and N-

methyl-4-pyridone-3-carboxamide, were found to correlate with peroxisome proliferation 

measured by electron microscopy of liver tissue.  

 

1.5.6 Selective Pharmacological PPAR Agonists 

The research conducted within this thesis employs two high affinity, specific and 

extensively characterised PPAR agonists.  GW347845 is a specific PPARγ agonist with 

an EC50 value of 1.2 nM for murine PPARγ.  GW610742 is a PPARδ agonist with an  

EC50 value of 28 nM for murine PPARδ compared to 8900 nM and >10,000 nM for 

PPARα and PPARγ respectively185. 
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1.6 Project Aims 

Given the crucial role of both PPARδ and PPARγ in white adipose tissue, it is the aim of 

this thesis to use a metabolomics approach to investigate and define the metabolic effects 

of PPARδ and PPARγ activation in both in vivo adipose tissue and in an in vitro model of 

adipose tissue. 

 

To achieve the outlined aim the metabolic phenotype of the adipose tissue specific cell 

line, differentiating 3T3-L1 preadipocytes, as they mature into adipocyte cells will be 

defined and compared to differentiating murine primary cells using metabolomics to 

generate a metabolically phenotyped in vitro model of adipose tissue.  

 

The effects of PPARδ and PPARγ activation in white adipose tissue from a mouse model 

of insulin resistance, and in the adipose tissue specific cell line within a cell culture 

system, will then be investigated in order to generate an in vivo and an in vitro model of 

adipose tissue specific PPAR activation.  In addition the thesis aims to deconvolute the 

metabolic mechanisms by which PPARδ and PPARγ alter the metabolism of the adipose 

tissue specific cell line using stable isotope labelling, transcriptomics and additional 

complementary methodologies.   

 

Further to these aims it is intended to use a metabolomics approach to investigate and 

define the global physiological and pharmacological effects of PPARδ and PPARγ 

activation through the characterisation of a range of tissues from a pharmacological 

compound treatment study performed in a mouse model of insulin resistance.   
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AIM  

To metabolically phenotype the 3T3-L1 adipocyte model of 
differentiation and compare the model to differentiating murine 
primary preadipocytes using metabolomic techniques. 

Chapter 3 

To investigate the metabolic effects of pharmacological PPARδ 
activation in white adipose tissue from the ob/ob mouse model of 
insulin resistance, and in the 3T3-L1 adipose tissue specific cell line 
within a cell culture system, to generate an in vivo and an in vitro 

model of adipose tissue specific PPARδ activation.  

Chapter 4 

To deconvolute the metabolic mechanisms by which PPARδ activation 
alters the metabolism of the 3T3-L1 adipose tissue specific cell line 
using stable isotope labelling, transcriptomics and respirometry.   

Chapter 4 

To investigate the metabolic effects of pharmacological PPARγ 
activation in white adipose tissue from the ob/ob mouse model of 
insulin resistance, and in the 3T3-L1 adipose tissue specific cell line 
within a cell culture system, to generate an in vivo and an in vitro 

model of adipose tissue specific PPARγ activation.  

Chapter 5 

To deconvolute the metabolic mechanisms by which PPARγ activation 
alters the metabolism of the 3T3-L1 adipose tissue specific cell line 
using stable isotope labelling and transcriptomics.   

Chapter 5 

To use a metabolomics approach to investigate and define the global 

physiological and pharmacological effects of PPARδ and PPARγ 
activation through the metabolic characterisation of blood serum, 
skeletal muscle and liver tissue from a pharmacological compound 
treatment study performed in the ob/ob mouse model of insulin 
resistance.   

Chapter 6 



 

52 

 

Chapter 2 

 

Materials and Methods 
 

 

2.1 3T3-L1 and Primary Murine Adipocyte Cell Culture Techniques 

 

2.1.1. 3T3-L1 Cell Culture and Adipocyte Differentiation 

3T3-L1 preadipocytes were grown in T75 flasks and maintained in Dulbecco’s modified 

Eagles media (DMEM) (high glucose 4.5 g/l; Sigma-Aldrich) supplemented with 10% 

(v/v) new born calf serum (Sigma-Aldrich), 50 units/ml penicillin, and 50 µg/ml 

streptomycin (Sigma-Aldrich) in a humidified 5% CO2 incubator at 37ºC.  At 2 days 

post-confluence cells were induced to differentiate with DMEM supplemented with 10% 

v/v FBS, 1 µM dexamethasone (Sigma-Aldrich), 0.5 mM isobutylmethylxanthine 

(Sigma-Aldrich), 100 nM insulin (Sigma-Aldrich), 50 units/ml penicillin, and 50 µg/ml 

streptomycin. The cells were maintained in this media for 72 h as this was found to 

improve the reproducibility of differentiation between flasks. After 72 h the media was 

replaced with DMEM supplemented with 10% FBS, 100 nM insulin, 50 units/ml 

penicillin, and 50 µg/ml streptomycin. The media was subsequently changed for DMEM 

supplemented with 10% FBS, 50 units/ml penicillin, and 50 µg/ml streptomycin every 48 

h. 

 

2.1.2. Primary Adipocyte Cell Isolation and Differentiation 

The gonadal fat pad was isolated from four week old mice post mortem.  Four mice were 

required per primary adipocyte culture.  The adipose tissue was finely ground and then 
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digested in a solution of Hanks Balanced Salt Solution (7 ml) containing collagenase type 

II  (10 mg; Sigma-Aldrich) and Bovine Serum Albumin (BSA 7.5% w/v 3 ml) in an 

incubator for 35 min at 37 ºC.  Following digestion, the solution was filtered through a 

250 µm mesh (BD Biosciences, San Jose, CA.).  The solution was left to settle on ice for 

20 min.  The upper white adipose tissue layer, containing mature adipocytes, was 

removed.  The next stratum, which contains the preadipocytes, was then filtered through 

a 100 µm mesh.  The filtered digest media was diluted 1:1 with 10% FBS media.  The 

cells were centrifuged at 700 g for 10 min.  The cell pellet was re-suspended in plating 

media constituting DMEM supplemented with 10% v/v NCS (newborn calf serum), 50 

units/ml penicillin, 50 µg/ml streptomycin, 2.4 nM insulin and 250 µΜ sodium ascorbate 

(Sigma-Aldrich).  The cells were then centrifuged at 700 g for 10 min and once again 

resuspended in plating media.  Cells were plated on four well plates.  The media was 

changed every 24 h for the first three days and subsequently every 48 h up to day 7. 

 

2.1.3. Activation of PPARδδδδ in 3T3-L1 Adipocytes 

At day 11 post differentiation induction the media on the cells was replaced with DMEM 

supplemented with 10% FBS, 100 nM insulin, 50 units/ml penicillin, and 50 µg/ml 

streptomycin containing either dimethylsulphoxide DMSO (Sigma-Aldrich) (control, 

n=6) or GW610742 PPARδ selective agonist (GlaxoSmithKline plc.) (n=6 at 100 nM and 

1 µM) for 2 days prior to cell collection and metabolite extraction described in sections 

2.1.6 and 2.3. 

 

2.1.4. Activation of PPARγγγγ in 3T3-L1 Adipocytes 

At day 11 post differentiation induction the media on the cells was replaced with DMEM 

supplemented with 10% FBS, 100 nM insulin, 50 units/ml penicillin, and 50 µg/ml 

streptomycin containing either DMSO (control, n=7) or GW GW347845 PPARγ 

selective agonist (GlaxoSmithKline plc.) (n=7 at 10 nM and 100 nM) for 2 days prior to 

cell collection and metabolite extraction described in sections 2.1.6 and 2.3. 
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2.1.5. Oil Red O Staining and Intracytoplasmic Lipid Accumulation 

Cell cultures were washed with phosphate buffered saline (PBS; Severn Biotech Ltd) and 

fixed overnight with 10% formalin in PBS at 4 °C. The cultures were then incubated for 

1 h with 0.3% Oil Red O (Sigma-Aldrich) in 60% isopropanol at room temperature and 

washed with PBS. Digital images of the cells were taken using a Nikon D100 camera.  

The stain was extracted from the cells with 60% isopropyl alcohol for 1 h (10 mL/flask) 

and 1 ml measured at 510 nm in a spectrophotometer.  

 

2.1.6. Adipocyte Cell Collection 

Cells were collected by removing the media and washing each T75 flask with 10 ml of 

PBS.  Cells were then washed with 1.5 ml trypsin-EDTA solution (5 BAEE units 

trypsin/ml, 1.8 µg EDTA/ml; Sigma-Aldrich) for 2 min at 37ºC to remove the cells from 

the surface of the flask. 8.5 ml DMEM supplemented with 10% (v/v) new born calf 

serum, 50 units/ml penicillin, and 50 µg/ml streptomycin was added to each flask. The 

DMEM containing the cells was transferred to a falcon tube and centrifuged at 200 g for 

2 min to pellet the cells. The remaining media was removed and the cells washed with 

physiological saline (0.9% NaCl) solution. 

 

2.2 Animal and Tissue Handling 

2.2.1. Animal Handling 

All animal studies were performed by GlaxoSmithKline (Research Triangle Park, N.C., 

U.S.A) within the relevant local legislation.  Two month old male ob/ob mice (Jackson 

Labs, Bar Harbor, ME),  were fed standard laboratory chow ad libitum and housed 4 per 

cage on alpha-dri bedding under controlled temperature, lighting and humidity (20-22 ºC, 

12-h light/dark cycle, Humidity 48-50%). Prior to selection for the study, all mice were 

examined ensuring they were physically normal and exhibited normal activity.  During 

the studies, body weight and food consumption (cage average) were recorded. 
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The ob/ob mice were assigned to six groups of eight and dosed orally daily at 8 am with 

0.5% Hydroxypropylmethylcellulose/0.1% Tween80 vehicle control, a PPARδ agonist, 

GW610742 (30 mg/kg) and a PPARγ agonist GW347845 (5 mg/kg).  Injection volume 

was adjusted daily according to body weight at 10 ml/kg.   

 

2.2.2. Clinical Chemistry 

All clinical chemistry measurements were performed using an Olympus AU 400e 

analyser at GlaxoSmithKline (Research Triangle Park, N.C., U.S.A)186.  Plasma was 

analysed for the following parameters: alkaline phosphatase, alanine transaminase, total 

bilirubin, thymidine phosphorylase, albumin, blood urea nitrogen, creatine, glucose, 

cholesterol, high density lipoprotein-cholesterol, triacylglycerides, non-esterified fatty 

acids, creatine kinase, lactate dehydrogenase, sodium, potassium and β-hydroxybutyrate.  

Insulin measurements were performed by ELISA (Millipore Mouse Insulin ELISA kit).  

 

2.2.3. Oral Glucose Tolerance Test (OGTT) 

The OGTT was performed at GlaxoSmithKline (Research Triangle Park, N.C., U.S.A). 

Animals were fasted overnight prior to the OGTT (day 12). Glucose concentrations were 

measured using the FreeStyle Blood Glucose Monitoring System (TheraSense, U.K.). 

Animals were dosed orally with 1 g/kg glucose. Baseline fasted glucose values were 

collected at the 0 min time point. Glucose concentrations were collected at 15, 30, 60 and 

90 min intervals. All samples were collected via tail snips. 

 

2.2.4. Tissue Handling 

Serum was collected via cardiac stick under isofluorane anaesthesia at completion of the 

study (day 15).  Skeletal muscle (gastrocnemius) white adipose and liver tissue were 

rapidly dissected (<60 s post mortem), snap frozen in liquid nitrogen and stored at -80 ºC 

until extraction. 
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2.3 3T3-L1 Cell, Primary Adipocyte and Tissue Metabolite Extraction 

Metabolites were extracted from serum, liver, skeletal muscle, white adipose tissue, 3T3-

L1 cells and primary adipocyte cells using a modified Bligh and Dyer method187.  Frozen 

tissue was pulverised with liquid nitrogen.  Methanol-chloroform (2:1 600 µl) was added 

to the tissues (100 mg for NMR and 50 mg for GC-MS analysis), serum (50 µl), 5 mg cell 

pellets (3T3-L1 cells) or 1 mg cell pellets (primary cells) and the samples were sonicated 

for 15 min. Chloroform-water (1:1) was then added (200 µl of each). Samples were 

centrifuged (16,100 g, 20 min) and the organic and aqueous phases were separated and 

stored at -80°C until analysis. Of these fractions, 100 µl of the organic phase was used for 

LC-MS, and the remaining organic phase was used for GC-MS. Prior to analysis the 

organic fractions were dried in a fume hood. For the aqueous phase, 100 µl of the 

aqueous phase was taken for GC-MS analysis, and the remaining aqueous phase sample 

was used for 1H-NMR spectroscopy. Prior to further analysis the aqueous fractions were 

dried in an evacuated centrifuge overnight (Eppendorf, Hamburg, Germany). 

 

2.4. 
13
C Substrate Labelling Studies 

2.4.1 
13
C-glucose Substrate Labelling Study in PPARδδδδ Activated Cells  

At 2 days post differentiation media was removed from the T75 flasks and replaced with 

DMEM (10% (v/v) FBS, 50 units/ml penicillin, and 50 µg/ml streptomycin) and either 

4.5 g/l 12C unlabelled glucose with DMSO (control, n=6) or with 1µM GW610742 

PPARδ selective agonist (n=7) or 4.5 g/l 1-13C-glucose with (DMSO control, n=7) or 

with 1 µM GW610742 PPARδ selective agonist (n=7).  After 2 days cells were collected 

and metabolites extracted as previously described in sections 2.1.6 and 2.3.  

 

2.4.2. 
13
C-glucose Substrate Labelling Study in PPARγγγγ Activated Cells 

At 2 days post differentiation media was removed from the T75 flasks and replaced with 

DMEM (10% (v/v) FBS, 50 units/ml penicillin, and 50 µg/ml streptomycin) and either 

4.5 g/l 12C unlabelled glucose with DMSO (control, n=6) or with 1 µM GW347845 
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PPARγ selective agonist (n=7) or 4.5 g/l 1-13C-glucose (Cambridge Isotope Laboratories, 

Andover, MA) with DMSO (control, n=7) or with 1 µM GW347845 PPARγ selective 

agonist (n=7).  After 2 days cells were collected and metabolites extracted as previously 

described in sections 2.1.6 and 2.3.  

 

2.4.3. Preparation of 
13
C and 

12
C-palmitate Solution 

75 ml of PBS was heated to 37 ºC. BSA (20g) was added to the PBS.  Separately 

deionised water (15 ml), 95% ethanol solution (10 ml) and Na2CO3 (0.106 g) (Sigma-

Aldrich) were mixed under nitrogen. Either unlabelled palmitate (0.2115 g) or U-13C 

labelled palmitate (0.2247 g) (Cambridge Isotope Laboratories, Andover, MA) was 

added, and then heated to ~78 ºC to evaporate the ethanol. The fatty acid solution was 

added to the albumin solution and well mixed. The palmitate/albumin mixture was 

dialysed (Spectra/Por dialysis tubing; Molecular weight cut off 6000-8000) in deionised 

water at 4 ºC overnight.  

 

2.4.4. 
13
C-palmitate Substrate Labelling Study in PPARδδδδ Activated Cells 

At 2 days post-differentiation media was removed from the T75 flasks and replaced with 

DMEM (serum free, 50 units/ml penicillin, and 50 µg/ml streptomycin) and either 70 µM 

unlabelled palmitate (n=6) with DMSO (control, n=6) or with 1 µM GW610742 PPARδ 

selective agonist (n=7)  or 70 µM U-13C labelled palmitate (n=7) with DMSO (control, 

n=6) or with 1 µM GW610742 PPARδ selective agonist (n=7). After 2 days cells were 

collected and metabolites extracted as previously described in sections 2.1.6 and 2.3. 

 

2.4.5. 
13
C-palmitate Substrate Labelling Study in PPARγγγγ Activated Cells 

At 2 days post-differentiation media was removed from the T75 flasks and replaced with 

DMEM (serum free, 50 units/ml penicillin, and 50 µg/ml streptomycin) and either 70 µM 

12C-U-palmitate (n=6) with DMSO (control, n=6) or with 1 µM GW347845 PPARγ 

selective agonist (n=7) or 70 µM U-13C labelled palmitate (n=7) with DMSO (control, 
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n=6) or with 1 µM GW347845 PPARγ selective agonist (n=7). After 2 days cells were 

collected and metabolites extracted as previously described in sections 2.1.6 and 2.3. 

 

2.5. Respirometric Analysis of PPARδδδδ Agonist Treated 3T3-L1 Cells 

Cells were grown, treated with GW610742 PPARδ agonist and collected as has already 

been described in sections 2.1.1, 2.1.3 and 2.1.7 with the exception that they were 

collected into respiration medium (100 mM KCl, 50 mM MOPS, 1.0 mM KH2PO4, 

1.0 mg/ml defatted BSA, pH 7.4). Respiratory rates of in situ permeabilised control and 

PPARδ agonist treated 3T3-L1 cells were measured using a Clark-type oxygen electrode 

(Strathkelvin Instruments Ltd, Glasgow, UK) with methods developed by Kuznetsov et 

al
188

. Respiration rates were recorded and quantified using 782 Oxygen System v3.0 

software (Strathkelvin Instruments). Oxygen concentrations were measured continuously 

in 0.5 ml respiration medium containing 250,000 cells in a respiration chamber 

maintained at 37 °C.  The cells were initially permeabilised with the addition of digitonin 

(25 µg/ml), before malate (5 mM) plus palmitoyl-carnitine (0.04 mM) were added as 

respiratory substrates to measure the fatty acid oxidation rates. Respiration was 

stimulated by the addition of a saturating concentration of ADP (2 mM) plus MgCl2 (0.6 

mM) and subsequently measured.  Antimycin (5 µM) was then added to inhibit complex 

III of the electron transport chain, and respiration ceased. Complex IV respiration was 

stimulated by addition of the artificial substrates TMPD (N,N,N’,N’-tetramethyl-p-

phenylenediamine dihydrochloride, 0.5 mM) and ascorbate (2 mM).  Finally respiration 

was terminated by addition of the complex IV inhibitor, sodium azide (3 mM). 

 

2.6. Metabolomic Analysis by Nuclear Magnetic Resonance 

2.6.1. Spectrometer 

All samples were analysed using a Bruker AVANCE II+ spectrometer operating at 

500.13 MHz for the 1H frequency (Bruker BioSpin GmbH, Rheinstetten, Germany) using 

a 5mm Broadband TXI Inverse Automatic Tuning and Matching (ATMA) probe. 
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2.6.2. Sample Preparation 

Dried extracts were dissolved in 600 µl of D2O and buffered in 0.24 M sodium phosphate 

(pH 7.4) containing 1 mM sodium-3-(trimethylsilyl)-2,2,3,3-tetradeuteriopropionate 

(TSP; Cambridge Isotope Laboratories, Andover, MA) and 0.02 M sodium azide. 

 

2.6.3. 1-dimensional 
1
H-Nuclear Magnetic Resonance Spectroscopy Experimental 

Method 

A presaturation pulse sequence for water suppression based on a one-dimensional nuclear 

Overhauser effect spectroscopy pulse sequence was used to saturate the residual water 

proton signal (relaxation delay = 2 s, t1 = 4 µs, mixing time = 50 ms, presaturation applied 

during the relaxation time and mixing time).  128 and 256 transients were collected for 

tissue extracts and 3T3-L1 cell extracts, respectively, into 64k data points over a spectral 

width of 8000 Hz at 300K.   

 

2.6.4. Processing 1-dimensional 
1
H-Nuclear Magnetic Resonance Data 

NMR spectra were processed in ACD 1D NMR Manager (version 8; Advanced 

Chemistry Development Inc, Toronto, Canada), multiplied by an exponential weighting 

function of 1 Hz, Fourier transformed, phased, baseline corrected and referenced to TSP 

at 0.0 ppm.  The NMR spectra were integrated using 0.04-ppm integral regions between 

0.2 and 9.56 ppm (excluding water resonance between 4.20 and 5.08 ppm). Spectra were 

normalised to total integrated area to account for differences in concentration between 

samples and assigned by comparison with previous literature and, in the case of 3T3-L1 

cells, Chenomx NMR suite 5.0 libraries.  

 

2.6.5. 2-dimensional Heteronuclear Single-Quantum Coherence 
13
C-Nuclear 

Magnetic Resonance Experimental Method 

Dried 3T3-L1 adipocyte cell organic phase extracts from 13C-labelling studies were 

dissolved in 600 µl of deuterated Chloroform. Samples were analyzed using a DRX 
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Avance II+ spectrometer interfaced to a 5-mm TXI ATMA probe.  Analysis was 

performed using 2D H-1/X correlation via double inept transfer with sensitivity 

improvement. Phase sensitive using Echo/Antiecho-TPPI and gradient selection with 

decoupling during acquisition. Trim pulses in inept transfer using shaped pulses for all 

180 degree pulses on f2-channel with gradients in back-inept.  Spectral widths of 10.00 

ppm and 160 ppm were used in the F2 (1H) and F1 (13C) dimensions respectively with 

an offset of 75.00 ppm. Spectra were acquired using 96 scans with a relaxation delay of 

1.0 s. Datasets were zero-filled and multiplied by sine bell squared functions prior to 

fourier transformation. 

 

2.6.6. Processing 2-dimensional Heteronuclear Single-Quantum Coherence
 13
C-

Nuclear Magnetic Resonance Data 

2D-NMR spectra were processed in Bruker TOPSPIN (version 2.0, Bruker BioSpin 

GmbH, Rheinstetten, Germany).  Peaks were selected using the automated peak picking 

algorithm with the sensitivity set to lowest contour level.  The peaks were then integrated 

and normalised to total integrated area and assigned by comparison with previous 

literature. 

 

2.7. Analysis by Gas Chromatography-Mass Spectrometry 

2.7.1. Derivatisation of Aqueous Phase Metabolites 

Dried aqueous phase samples were derivatised by adding 30 µl of methoxyamine 

hydrochloride solution (20 mg/ml in pyridine, Sigma-Aldrich Ltd), vortex mixed for 1 

min then incubated at 25 ºC for 17 h.  Samples were silylated with 30 µL of N-methyl-N-

trimethylsilyltrifluoroacetamide (MSTFA; Macherey-Nagel, Germany) for 1 h at 25 

ºC189. The tissue samples were diluted by addition of 200 µL of analytical grade hexane 

prior to GC-MS analysis.  
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2.7.2. Derivatisation of Organic Phase Metabolites 

Acid-catalysed esterification was used to derivatise the organic phase samples.  

Chloroform-methanol (1:1, 0.25 ml) and BF3-methanol (10%; 0.125 ml) (Sigma-Aldrich) 

was added to the organic phase and incubated at 90 ºC for 90 min. Water (0.15 ml; mQ) 

and hexane (0.3 ml) were added and the samples vortex mixed for 1 min and left to form 

a bilayer.  The aqueous phase was discarded and the organic layer evaporated to dryness 

prior to reconstitution in analytical grade hexane (200 µl) before GC-MS analysis. 

 

2.7.3. Gas Chromatography-Mass Spectrometry Methods 

All GC-MS analyses were made using a Trace GC Ultra coupled to a Trace DSQ II 

single-quadrupole mass spectrometer (Thermo Scientific, Cheshire, UK).   

 

2.7.3.1 Gas Chromatography-Mass Spectrometry methods for aqueous phase samples 

Derivatised aqueous samples were injected splitless onto a ZB-5ms column (30 m x 0.25 

mm, 0.25 µm 5%-Phenyl-Arylene - 95% Dimethylpolysiloxane stationary phase, with an 

integral 5 m Guardian guard column; Phenomenex).  The injector temperature was 230 ºC 

and the helium carrier gas was used at a flow rate of 1.2 mL/min. The initial column 

temperature of 70 ºC was increased by 10 ºC/min to 130 ºC and then increased at a rate of 

5 ºC/min to 230 ºC followed by an increase of 20 ºC/min to 310 ºC and held for 5 min 

(transfer line temperature = 250 ºC;  ion source = 250 ºC; electron ionisation = 70 eV).  

The detector was turned on after 240 s and full-scan spectra were collected using 3 

scans/s over a range of 50-650 m/z.   

 

2.7.3.2 Gas Chromatography-Mass Spectrometry methods for organic phase samples 

The derivatised organic samples were injected with a split ratio of 60 for white adipose 

tissue and 8 for 3T3-L1 cells, liver, skeletal muscle and serum onto a 30 m × 0.25 mm 

70% cyanopropyl polysilphenylene-siloxane 0.25 µm TR-FAME stationary phase 

column (Thermo Electron).  The injector temperature was set to 230 ºC and the helium 

carrier gas was at a flow rate of 1.2 mL/min.  The column temperature was 60 ºC for 2 

min, increased by 15 ºC/min to 150 ºC and then increased at a rate of 4 ºC/min to 230 ºC 
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(transfer line = 240 ºC; ion source = 250 ºC, EI = 70 eV).  The detector was set as above 

for the ZB-5ms column. 

 

2.7.4. Gas Chromatography-Mass Spectrometry Analysis, Processing and Data 

Handling for 3T3-L1 Adipocyte 
13
C-labelled Substrate Studies. 

Analysis of organic and aqueous phases was carried out as previously described in 

sections 2.7.1, 2.7.2 and 2.7.3.  Enrichment of metabolites was identified by calculating 

isotope ratios of the M and M+1 ions for the parent ion of the fragmentation pattern in the 

case of 13C-Glucose metabolism analysis and TCA cycle intermediates originating from 

13C-Palmitate oxidation.  For fatty acid synthesis and desaturation products from 13C-

labelled palmitate an ion ratio of M+16/M was used and for fatty acids originating from 

oxidation of 13C-labelled palmitate an ion ratio of M+n/M, where n = the carbon chain 

length of the fatty acid was used.  Statistical analysis was performed using a univariate 

Student’s t-test. 

 

2.7.5. Processing Gas Chromatography-Mass Spectrometry Data 

GC-MS chromatograms were processed using Xcaliber (version 2.0; Thermo Electron).  

Each individual peak was integrated and then normalised so that the total sum of peaks in 

a chromatogram was set to 10000.  Overlapping peaks were separated using traces of 

single ions.  Peak assignment was based on mass fragmentation patterns matched to the 

NIST/ EPA/NIH mass spectral library and to previously reported literature.  Identification 

of metabolites from organic phase GC-MS analysis was supported by comparison with a 

FAME standard mix (Supelco 37 Component FAME Mix; Sigma Aldrich). 

  



Chapter 2 

 
 

63 

2.8. Analysis by Ultra Performance Liquid Chromatography-Mass 

Spectrometry 

2.8.1. Chromatography and Mass Spectrometry Parameters 

Chromatography was performed using an ACQUITY UPLC® system (Waters 

Corporation, Centennial Park, Elstree, Hertfordshire) equipped with an Acquity UPLC 

1.7 µm Bridged Ethyl Hybrid (BEH) C8 column (2.1×100 mm Waters) which was kept at 

65 ºC and coupled to a Micromass QTof-Ultima™ with a Z-spray™ electrospray source.  

The electrospray source was operated in positive ion mode with the source temperature 

set at 100 ºC and a cone gas flow of 50 L/h.  The desolvation gas temperature was 300 ºC 

and the nebuliser gas flow rate was set at 600 L/h.  The capillary voltage was 3 kV and 

the cone voltage was 50 V.  Reserpine was used as the lock reference and was introduced 

into the LockSpray interface at a concentration of 50 µM in 1:1 methanol-water 0.1% 

formic acid (Fluka). Centroid mode was used for data collection. The lock reference 

sampling frequency was 10 s and the lock mass data was averaged over 10 scans.  The 

binary solvent system used was solvent A: HPLC grade water (chromosolv plus Sigma-

Aldrich), 1% 1 M ammonium acetate (NH4Ac; Fluka), 0.1% formic acid and solvent B: 

HPLC grade acetonitrile (chromosolv Sigma-Aldrich)/isopropanol (Fisher Scientific) 5:2, 

1% 1 M NH4Ac, 0.1% formic acid190.  The temperature of the sample organiser was set at 

4 °C. Mass spectrometric data was collected in full scan mode from 100-1350 m/z for 

tissue and 100-1500 m/z for 3T3-L1 cells from 0-14 min with a scan duration of 0.5 s and 

an interscan delay of 0.1 s. 

 

2.8.2. Sample Preparation and Chromatographic Gradient 

2.8.2.1 Adipose tissue preparation and chromatographic gradient 

The organic phase of adipose tissue extracts was reconstituted in methanol-chloroform 

(2:1, 500 µl).  This was further diluted 10-fold prior to injection onto the C8 column (5 

µl).  The column mobile phase was held at 85% solvent B for 0.5 min followed by an 

increase from 85%-100% solvent B over 0.5-8 min.  The mobile phase was then held at 

100% B for 4 min.  Between 12 and 12.25 min the mobile phase was returned to 85% B 
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held for 1.75 min to re-equilibrate the column.  The total UPLC cycle was 14 min and the 

eluent flow rate was 600 µl/min. 

 

2.8.2.2 Liver tissue preparation and chromatographic gradient 

The organic phase of liver was reconstituted in methanol-chloroform (2:1, 500 µl).  This 

was further diluted 7.5-fold prior to injection onto the C8 column (5 µl).  The column 

mobile phase was held at 70% solvent B for 0.5 min followed by an increase from 70%-

100% solvent B over 0.5-6.5 min.  The mobile phase was then held at 100% B for 3.5 

min.  Between 10 and 10.25 min the mobile phase was returned to 70% B held for 3.75 

min to re-equilibrate the column.  The total UPLC cycle was 14 min.  The eluent flow 

rate was 600 µl/min.   

 

2.8.2.3 Serum preparation and chromatographic gradient 

The organic phase of serum was reconstituted in methanol-chloroform (2:1, 500 µl).  This 

was further diluted 4 fold prior to injection onto the C8 column (10 µl).  The column 

mobile phase was held at 70% solvent B for 0.5 min followed by an increase from 70%-

100% solvent B over 0.5-6.5 min.  The mobile phase was then held at 100% B for 3.5 

min.  Between 10 and 10.25 min the mobile phase was returned to 70% B held for 3.75 

min to re-equilibrate the column.  The total UPLC cycle was 14 min.  The eluent flow 

rate was 600 µl/min.   

 

2.8.2.4 3T3-L1 adipocyte preparation and chromatographic gradient 

3T3-L1 Cell Organic phase metabolites were reconstituted in methanol-chloroform (2:1, 

1 ml).  Aliquots of diluted organic phase sample (5 µl) were injected onto the C8 column.  

The column mobile phase was held at 50% solvent B for 0.5 min followed by an increase 

from 50%-100% solvent B over 0.5-6.5 min.  The mobile phase was then held at 100% B 

for 3.5 min.  Between 10 and 10.25 min the mobile phase was returned to 50% B held for 

3.75 min to re-equilibrate the column.    The total UPLC cycle was 14 min and the eluent 

flow rate was 600 µl/min.  



Chapter 2 

 
 

65 

2.8.3 Tandem Mass Spectrometry Method 

Tandem mass spectrometry was used for the identification of selected lipids. MS/MS runs 

were performed using ESI+ mode and collision energies of 16, 18, 20, 25, 28 V and a 

mass range of 80-1500 m/z. Other conditions were as described in section 2.8.1. 

 

2.8.4. Processing Liquid Chromatography-Mass Spectrometry Data 

Data was processed using Micromass Markerlynx Applications Manager (Waters 

Corporation).  Each peak was detected, deconvoluted, noise-reduced and integrated. The 

ion-intensities for each peak are detected and normalised. Individual peaks were 

normalised to the total integrated area of the sample.  Lipids were identified using the 

tandem mass spectrometry data.  

 

2.9. Analysis by Direct Infusion-Mass Spectrometry 

Direct infusion mass spectrometric analysis was performed using a Thermo Finnigan 

LTQ linear ion trap mass spectrometer equipped with a Finnigan Surveyor pump and 

Finnigan Micro AS Autosampler (Thermo Scientific, Waltham, MA). 

 

2.9.1. Sample Preparation 

2.9.1.1 3T3-L1 adipocytes 

The 3T3-L1 organic phase samples for DI-MS were reconstituted in 500 µl 

methanol:tetrahydrofuran (THF) (2:1 v/v). 100 µl of each sample was added to a 96 well 

plate.  

 

2.9.1.2 Liver tissue 

The liver organic phase samples for DI-MS were reconstituted in 500 µl methanol:THF 

(2:1 v/v). 50 µl of each sample was aliquoted into a 96 well plate where the samples were 

diluted by the addition of a further 150 µl methanol:THF (2:1 v/v).  
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2.9.1.2 White adipose tissue 

The white adipose tissue organic phase samples for DI-MS were reconstituted in 1 ml 

methanol:THF (2:1 v/v). 60 µl of each sample was aliquoted into a 96 well plate where 

the samples were diluted by the addition of a further 600 µl methanol:THF (2:1 v/v). 

 

2.9.2. Direct Infusion and Mass Spectrometry Parameters 

The infusion solvent (methanol-THF, 2:1 v/v) was initially pumped at 50 µl/min.  The 

sample (10 µl) was introduced via infusion and the flow rate maintained at 50 µl/min for 

1.2 min.  Flow rate was then increased to 300 µl/min for 0.8 min and returned to 50 

µl/min prior to the next injection.  Infused sample was introduced to, and ionised in, a 

standard electrospray source with sheath gas flow of 12 units, auxiliary gas flow of 1 unit 

and sweep gas flow of 1 unit, capillary temperature of 290 °C, and spray voltage of 5 kV. 

The capillary and tube lens voltages for positive mode analysis were set to 40 and 80 V, 

respectively. In negative mode the capillary voltage was -50 V; the tube lens voltage was 

set to -200 V. The scan range was set at 100-1100 m/z in profile mode.  To ensure 

analytical reproducibility samples were analyzed either in triplicate or duplicate using 

both positive and negative ionisation modes, a pooled sample and a blank sample were 

also analysed every 6 injections. 

 

2.9.3. Processing of Direct Infusion Mass Spectrometry Data 

DI-MS chromatograms were processed using Xcaliber (version 2.0; Thermo Electron).  

The mass data was averaged from the chromatogram for the period of sample injection 

and the “exact masses” were exported; the data points summed between M and M+1, to 

give variables which corresponded to individual peaks, normalised to total spectral area 

and integrated.   
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2.9.4. MS/MS Method 

MS/MS data was utilised for lipid identification.  MS/MS data was collected by infusing 

a pooled sample by syringe pump at a flow rate of 15 µl/min.  Centroid mode was used 

with a scan width of 100 m/z to 1000 m/z and a parent mass step value of 1 m/z.  The 

isolation width was 1.5 m/z and the collision energy was 35 eV; all other parameters were 

as outlined in section 2.9.2. 

 

2.10 Transcriptomic Analysis 

2.10.1. RNA Extraction 

Cells were grown, treated with PPARδ agonist or PPARγ agonist and collected as has 

already been described in sections 2.1.1, 2.1.3, 2.1.4 and 2.1.6.  An RNeasy RNA 

extraction and purification kit was used to extract total RNA from 3T3-L1 adipocytes 

(Qiagen GmbH, Hilden, Germany).  Approximately 5mg of cells was used per sample for 

RNA isolation.  Procedures were carried out according to the manufacturer’s instructions.  

Extracted RNA was quantified using a Nanodrop ND-1000 Spectrometer (Nanodrop 

Technologies Inc., Wilmington, USA) to measure the absorbance at 260 nm.  Sample 

purity was assessed using the A260/A280 ratio.  Samples with an A260/A280 ratio above 1.8 

were considered sufficiently pure.   

 

2.10.2. Microarray Analysis 

Transcriptomic analysis was conducted by Cambridge Genomic Centre for Microarray 

Resources (Cambridge Genomic Services, Department of Pathology, University of 

Cambridge).  An automated Illumina Infinium Gene Expression BeadArray (Illumina Inc, 

San Diego, CA) was used to perform mRNA transcriptional profiling.  A mouse WG6 

array platform was used with 45281 probes. 
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2.10.3. Processing Microarray Data 

Quality control was carried out using the arrayQualityMetrics R package and no samples 

failed or were identified as outliers to their replicates. Statistical selection was performed 

using the detection p-value provided by Illumina. This value represents the confidence 

that a given transcript is expressed above the background defined by the negative control 

probe.  The R package lumi was used for this analysis 191.  The detection p-value 

threshold was set to 0.01.  Probes were required to be successfully detected (p-value<0.01 

in Lumi) in at least one sample to pass the selection. The data is transformed using 

variance stabilisation and then normalised using quantile normalisation192. Gene 

expression was compared between PPARδ agonist treated, PPARγ agonist treated and 

control 3T3-L1 cells using the R package limma193. The threshold utilised in this analysis 

was the 5% confidence interval.  The selected and normalised data was then analysed 

using the multivariate statistics in the Simca-P+ package as is described in section 2.11.  

The 6% of transcripts most responsible for separation in the multivariate models were 

then examined (3% most increased and 3% most decreased in PPARδ agonist treated 

cells as identified in the multivariate models). 

 

The Reactome Skypainter tool (www.reactome.org) was used to determine which 

biological pathways were statistically significant in the 3% of genes most increased and 

most decreased in transcription in PPAR agonist treated cells. From a given set of genes 

known to participate in a pathway, the total genes for mus musculus and the submitted 

list of genes (the genes increased or decreased in expression in PPAR activated cells) of 

which N genes participate in the given pathway, the probability of observing at least N 

genes from a pathway if that pathway is not overrepresented in the submitted list of genes 

is calculated using the one-tailed version of Fisher's exact test. Therefore a p-value 

smaller than or equal to the significance level suggests that the pathway is statistically 

significant in the submitted list of genes. 
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2.11 Data Handling for Metabolomics 

2.11.1. Pretreatment of Metabolomic Data for Multivariate Analysis 

Pretreatment is often applied to metabolomic data preceding multivariate analysis.  The 

pretreatment of the data usually takes the form of mean centring and scaling.  Mean 

centring involves the calculation of the mean of each variable, which is then subtracted 

from the variable values for each observation; centring all variables to a mean value of 0.  

The manipulation is employed in the majority of chemometrics to centre data in scores 

plots.   

 

Scaling ensures models are not excessively influenced by variables with large ranges as 

these typically have larger degrees of variance relative to variables possessing smaller 

ranges and functions by multiplying the data by a specific scaling weighting.  The scaling 

weighting utilised is dependent upon the nature of the data being analysed.   

 

Pareto scaling is used when there is some knowledge of the relative importance of 

variables within a dataset, for example when analytical noise has been included in a data 

set and lower weighting needs to be given to these variables; a scaling weight of 1/(Sk)
1/2, 

Sk being the standard deviation of the variable k, is used in this instance and therefore 

scales each variable k to the variable’s standard deviation.  Within metabolomic studies 

Pareto scaling increases the importance of low concentration metabolites without greatly 

magnifying the contribution of noise in the subsequent multivariate model. 

 

Univariant scaling is used in the case of data where little is known about the importance 

of the variables within the data; the variance of each variable is standardised to 1 by 

multiplying each variable by the scaling weight 1/Sk.  Thus, the influence of any one 

variable is limited by the scaling and in metabolomic study prevents a single metabolite 

dominating a data set. 
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The multivariate analysis in this thesis was conducted by importing the normalised data 

generated from the analytical platforms into SIMCA-P+ version 11 (Umetrics, Umeå, 

Sweden). Data was mean centred and scaled.  GC-MS data in this thesis was scaled 

utilising unit variance, ensuring all peaks contribute to the multivariate models generated, 

as only identified peaks were incorporated into the data sets.  Since the bucketing routine 

used in the processing of NMR data incorporates baseline noise in the data set, Pareto 

scaling was used for the analysis of 1-dimensional 1H-NMR data; this assigns a lesser 

weighting to the noise variables.  Pareto scaling was also employed for the analysis of 

LC-MS and DI-MS data. 

 

2.11.2. Multivariate Statistical Analysis: Principal Component Analysis 

PCA is a multivariate projection method and an unsupervised technique where a single 

covariance matrix contains the values for all the variables measured.   PCA reduces the 

dimensionality of multidimensional data sets while the characteristics of the data that are 

most responsible for variance are retained; via a transformation a data set of dimension N 

is reduced to dimension M.  In PCA correlated variables are transformed into 

uncorrelated variables called principal components (PCs).  Each observation is plotted in 

k-dimensional space, each dimension corresponding to an individual variable.  Each 

principal component represents a vector within k-dimensional space.  PC 1 would 

represent the greatest variance in the dataset, PC 2 the second most variance, and so forth.  

The principal components must intercept the origin and have the minimal square of the 

distance between each observation and itself.  The observations are projected onto the 

principal components to generate a coordinate; this value is the score, t1, for PC 1 or t2 for 

PC 2.  PC 1 and PC 2 are orthogonal and so define a plane in the data (Figure 2.1).  

Clustering of observations can be seen when their scores are plotted.   

 



Chapter 2 

 
 

71 

 

 

Figure 2.1: A. Mean centered observations in the data matrix are plotted in the 
variable (k-dimensional) space. B. The first principal component, PC1, 
represents the maximum variance direction in the data.  Each observation 
is projected onto the PC to obtain a co-ordinate.  The co-ordinate value is 
the score. C. A second principal co-ordinate, PC2 is oriented through the 
average point and orthogonal to PC1 to represent the second largest 
variation in the data set. D. Two PCs generate a plane in the variable 
space. By projecting each observation onto the plane the scores can be 
visualised graphically in a scores plot. 

 

Clustering of data is shown in the scores plots but in order to examine which variables 

generate the differences in clustered groups a loadings plot is needed.  Loadings are 

Eigenvectors generated from an Eigen transformation of the variables in the original 

covariance matrix.  Loadings describe the orientation of the PCs in the multidimensional 

space, and thus the contribution of a variable to the separation of clusters depends on its 

distance from the origin of the loadings plot. Directionality of PC can therefore be 
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explained by the cosine of the angle between PC 1 and each variable and loadings 

coefficients can be generated for each PC (Figure 2.2). An alternative means of viewing 

loadings is with coefficient column plots in which the contribution of each variable to a 

model is represented by the size of the bar and error bars indicate the significance of 

changes to a set confidence limit.  

 

 

Figure 2.2: PC loadings express the orientation of the model plane in k-dimensional 

space.  The cosine of the angles α1, α2, and α3 gives the direction of PC1 in 
relation to the original variables.  These values demonstrate how the 
variables X1, X2 and X3 contribute to PC1.  An additional set of loading 
coefficients express the direction of PC2 in relation to the original 
variables.  Therefore, six loading values (cosine of angles) describe the 
model planes orientation in the k-dimensional space. 

 

2.11.3 Multivariate Statistical Analysis:  Projection to Latent Structures by Partial 

Least Squares 

PLS constitutes a regression analysis of PCA, modelling the covariance of a relationship 

between two sets of variables termed X and Y.  Each observation corresponds to a point 
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in X-space and a point in Y-space.  A PLS component represents a line in the X-space 

which describes maximum variance while concurrently correlating with the Y-vector.  

The scores in the X-space are attained by projection onto the PLS components; for PLS 

component 1 the vector t1 is generated, for PLS component 2 the vector t2 is generated.  

The scores are latent variables used to explain the Y variable. 

 

During metabolomics studies it is important to establish which variables, and therefore 

metabolites, are most significantly contributing to the model; this is achieved by cross-

examining both the X-variable weight vectors, known as w* , which describe how x-

variables are linearly combined forming the X score vectors and the Y-variable weight 

vectors, c. 

 

Traditionally the contribution of a variable to a PLS model is summarised using two 

methods.  The variable influence on projection (VIP) parameter is a weighted sum of 

squares of PLS weights (w*), taking account of the residual variation in Y, per 

dimension.  The second method involves plotting the regression coefficients, indicating 

how the X variables influence Y.  A variable with a coefficient that has a confidence limit 

above 95% is statistically significant in explaining Y.   
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Figure 2.3: PLS analysis. A. Observations are plotted in x-dimensional space B. The 
observations are simultaneously plotted in y-dimensional space, which is 
reduced to a 1-dimensional y-vector. C. PLS component 1 is calculated, 
modelling the distribution of the observations in the x-dimensional space 
whilst providing correlation with the y-vector.  When observations are 
projected onto the PLS component they receive a t-score; the t-scores 
taken together give the score vector t1 D. Multiplying t1 by the weight of 
the y vector, c1 gives an estimate of y.  The difference in the y values and 
the estimated y values can be modelled by employing additional PLS 
components.   

 

2.11.4 Multivariate Statistical Analysis: Partial Least Squares-Discriminant 

Analysis 

PLS-DA is a supervised extension of PCA which uses prior knowledge of class 

membership and regression trends to augment the separation between groups.  Class 

membership is assigned using an artificial Y matrix with N columns, where N is the 
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number of classes. The column corresponding to a particular class contains ones whilst 

all other columns contain zeros for observations that belong to that specific class.  PLS-

DA components represent projections in the X-space that optimise separation between the 

projected observations based on class.  Metabolomic investigation establishes which 

metabolites contribute most significantly to separation in the models by concurrently 

investigating the corresponding weights for the X-matrix (w*) and Y matrix (c). 

 

2.11.5 Validation of Multivariate Models 

Validation of multivariate models requires examination of the model dimensionality.  

This is calculated by the degree of variation described by a model, and by the accuracy 

with which a model can predict the X data. 

 

For both PLS-DA and PCA the variation in the model given by a component is known as 

R2.  The term R2 is defined as R2=1-RSS/SXXtot.corr. where RSS is the residual sum of 

squares of the data from the component and SXX tot.corr. is the total variation in the X 

matrix post mean centring.  If the R2 was 1 that would indicate the total variation in the 

data matrix had been explained by the model.   

 

Validation of PLS models generates two R2 values defined as R2X and R2Y, describing 

the variation the model explains in the X matrix and the Y matrix.  By increasing the 

components in a model, the R2 can be increased though this risks over-fitting the model 

making it statistically insignificant; this can be avoided by cross validating the model.  

 

The term Q2, defined as Q2=1-PRESS/SXXtot.corr., where PRESS is the sum of the squared 

differences between the predicted and real values (predictive residual sum of squares) is 

used as an indicator of the predictive nature of the model.  For every successive 

component built for a model the cross validation is calculated up to the point where 

generation of new components no longer improves the model’s predictive power.  

Significantly predictive models are considered to have Q2 values greater than 0.4. 
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Outliers are readily identified in multivariate analysis; significantly deviant observations 

will be obvious in scores plots as the plots contain an ellipse which indicates the 95% 

confidence interval established using a multivariate generalisation of the Student’s t-test 

known a Hotelling’s T
2.  The outliers can also be identified using the distance to model in 

X space defined as DModX; this equals the residual standard deviation of an observation.  

When DModX is larger than the Dcrit (>95%) then the observation is a moderate outlier. 

 

2.11.6 Multivariate Statistical Analysis Methodology 

PCA models within this thesis were generated in SIMCA-P+11.0 (Umetrics AB, Umeå, 

Sweden) to indentify the major trends and outliers in the datasets.  The supervised 

techniques PLS-DA and, where appropriate, PLS were utilised to examine differences 

between specific groups and probe the metabolic changes producing the separation 

between groups.  Metabolites identified in the VIP/coefficients plots were deemed to 

have changed globally if they contributed to separation in the models with a confidence 

limit of 95% or greater as determined by a jack-knifing routine within the SIMCA 

package.  To assess the variation explained by each model the R2 values were used.  In 

order to assess the robustness of the predictive nature of the models, Q2 values were used.  

The SIMCA-P+ validation function was also employed to monitor that PLS-DA and PLS 

models were not over fitted.   

 

2.11.7 Univariate Statistical Analysis Methodology 

Gas Chromatography-Mass Spectrometry 13C labelled substrate, clinical chemistry data 

and selected microarray transcriptomic data was analysed by univariate techniques.  

Univariate analysis was performed using an unpaired Student’s t-test with a significance 

level set to p<0.05.  An F-test was also utilised to compare the variance of two 

distributions. All univariate analysis was conducted in the GraphPad Prism package 

(version 4). 
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Chapter 3 

 

Metabolic Phenotyping of a Model of Adipocyte Differentiation 

 

3.1 Introduction 

 

The 3T3-L1 murine cell line was developed by Green and co-workers and is a derivative 

of the 3T3 mouse fibroblast cell line194, 195.  It was found that, if 3T3-L1 cells were 

allowed to reach a resting condition in a confluent state the cells develop an adipocyte 

phenotype.  This cell-line has become a well established and widely used model for the 

study of the biochemical processes undergone during mammalian adipogenesis.  In the 

preconfluent state 3T3-L1 cells morphologically and biochemically resemble 

fibroblasts196, 197. However, once the cells reach 100% confluency they can be 

differentiated into mature adipocytes by initial treatment with insulin, which activates the 

IGF-1 receptor, dexamethasone, a synthetic glucocorticoid, and 1-methyl-3-

isobutylxanthine a cyclic nucleotide phosphodiesterase inhibitor increasing cAMP and 

cGMP, activating cyclic nucleotide dependent protein kinases198.  The process is robust 

and relatively uniform with 70-90% of cells differentiating and mirroring reactions to 

lipogenic/lytic hormones, morphological changes and metabolic processes observed 

during mammalian adipocyte development199.  The cells accumulate TAG, acquire the 

rounded morphology of adipocytes and lose the ability to revert to a growth state. 

 

A recent resurgence in the use of the 3T3-L1 adipose tissue differentiation model has 

accompanied expansion of research into the developing global obesity crisis.  The 

adipocyte is not merely a lipid depository, as it was once viewed, but a key metabolic
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regulator responsible for the production of cytokines, metabolic substrates and 

adipokines; wielding influence over metabolism both locally and on a systemic level.  

Adipocytes function as a secure fatty acid storage depot, capable of accumulating 

extensive lipid concentrations without toxic side effects to the cell itself or on the level of 

the whole organism.  The adipocyte is now regarded as a key player in the aetiology of 

insulin resistance and the resultant metabolic syndrome.  Once the fatty acid storage 

capacity of white adipose tissue is exceeded, as occurs in the obese state and certain 

lipodystrophies, lipid can accumulate in peripheral tissues, including the muscle and 

liver; a phenomenon highly correlated with lipotoxicity and insulin resistance200.  

Therefore, research has concentrated on the deregulation of metabolism within adipose 

tissue, which may contribute to the wider effects of TIIDM, the metabolic syndrome and 

obesity201, 202, 203.  

 

The differentiation of preadipocyte cells into mature adipocytes requires a complex 

interaction of metabolic pathways that as yet remain to be fully defined.  A diverse range 

of pathways have been implicated as vital to the differentiation process including 

polyamine biosynthesis204, essential fatty acid pathways205, eicosanoid biosynthesis206, 

fatty acid desaturation207  as well as fatty acid synthesis208 and the TCA cycle209.  Many 

of these pathways may be critical to differentiation at specific points during the process, 

either being perturbed by a process associated with differentiation or alternatively 

providing metabolic cues to induce other processes.   
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3.2 Aims and Objectives 

 
In this study, the metabolic changes associated with adipocyte differentiation of the 3T3-

L1 cell line have been studied using combined GC-MS, 1H-NMR spectroscopy, LC-MS, 

DI-MS and 13C substrate labelling detected by HSQC NMR and GC-MS in conjunction 

with multivariate statistics.  The metabolic changes identified were then compared and 

contrasted to the metabolic differences between pre- and post-differentiation primary 

adipocytes observed using GC-MS and LC-MS.  The changes in metabolite 

concentrations at distinct periods during differentiation have been defined including 

alterations in the TCA cycle, glycolysis, the production of odd chain fatty acids by α-

oxidation, fatty acid synthesis, fatty acid desaturation, polyamine biosynthesis and trans-

esterification to produce complex lipids.  These metabolic alterations reflect the changing 

role of the 3T3-L1 cells during differentiation, as well as possibly providing metabolic 

triggers to stimulate the processes which occur during differentiation.  Defining the 

metabolic phenotype of differentiating 3T3-L1 preadipocytes, as they mature into 

adipocyte cells and comparing this to differentiating murine primary cells using 

metabolomics has generated a metabolically phenotyped in vitro model of adipose tissue. 
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3.3 Materials and Methods 

3.3.1. 3T3-L1 Adipocyte Cell Culture 

3T3-L1 preadipocytes were grown and differentiated as described in Chapter 2 

Materials and Methods (section 2.1.1 3T3-L1 cell culture and adipocyte 

differentiation).  The T75 flasks were assigned to groups of 3 flasks each corresponding 

to 0 h, 2 h, 4 h, 8 h, 16 h, 24 h, 72 h, 120 h and 216 h time points during the 

differentiation process.   

 

3.3.2. Primary Adipocyte Cell Isolation and Differentiation 

Primary preadipocytes were isolated from the gonadal fat pad of mice and differentiated 

as described in Chapter 2 Materials and Methods (section 2.1.2 Primary adipocyte cell 

isolation and differentiation).  One mouse was used per 28 cm2 well. Five wells were 

collected as undifferentiated preadipocytes. Three wells were fully differentiated up to 

day 7. 

 

3.3.3. Oil Red O Staining and Intracytoplasmic Lipid Accumulation 

Three additional T75 flasks of 3T3-L1 adipocytes were grown per 0 h, 2 h, 4 h, 8 h, 16 h, 

24 h, 72 h, 120 h and 216 h time point group (as in section 3.3.1).  The cells were stained 

and the intracytoplasmic lipid accumulation assessed as in Chapter 2 Materials and 

Methods (section 2.1.5 Oil Red O staining and intracytoplasmic lipid accumulation). 

 

3.3.4. 3T3-L1 and Primary Adipocyte Cell Collection and Metabolite Extraction 

3T3-L1 cells were collected at 0 h, 2 h, 4 h, 8 h, 16 h, 24 h, 72 h, 120 h and 216 h time 

points following the initiation of differentiation.  Primary cells were collected at 0 h and 

168 h. 5 mg 3T3-L1 cell pellets and 1 mg primary cell pellets were used for the extraction 

process.  The cells were collected and their metabolites extracted as described in Chapter 
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2 Materials and Methods (sections 2.1.6 and 2.3 Adipocyte cell collection and 3T3-L1 

cell, primary adipocyte and tissue metabolite extraction).  

 

3.3.5. 
1
H-NMR Spectroscopy Analysis 

All samples were analysed using a Bruker AVANCE II+ spectrometer operating at 

500.13 MHz for the 1H frequency using a 5 mm Broadband TXI Inverse ATMA probe.  

All procedures are as depicted in Chapter 2 Materials and Methods (sections 2.6.1. 

Spectrometer, 2.6.2. Sample preparation, 2.6.3. 1-dimensional 
1
H-Nuclear Magnetic 

Resonance experimental method and 2.6.4. Processing 1-dimensional 1H-Nuclear 

Magnetic Resonance data). 

 

3.3.6. GC-MS Analysis 

The aqueous phase of extracts were derivatised as described in Chapter 2 Materials and 

Methods (section 2.7.1). 

 

The organic phase of extracts were derivatised as described in Chapter 2 Materials and 

Methods (section 2.7.2).   

 

GC-MS analyses were made using a Trace GC Ultra coupled to a Trace DSQ II single-

quadrupole mass spectrometer.  Parameters for the GC-MS analysis of aqueous phase 

metabolites and organic phase metabolites were as described in Chapter 2 Materials 

and Methods (sections 2.7.3.1 Gas Chromatography-Mass Spectrometry methods for 

aqueous phase samples and 2.7.3.2 Gas Chromatography-Mass Spectrometry methods 

for organic phase samples).  Derivatised aqueous phase samples were injected splitless 

and organic phase samples were injected with a split ratio of 25.  

 

GC-MS chromatograms were processed using Xcaliber (version 2.0; Thermo Electron) as 

outlined in Chapter 2 Materials and Methods (2.7.5. Processing Gas Chromatography-

Mass Spectrometry data). 
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3.3.7. UPLC-MS Analysis 

Chromatography was performed using an ACQUITY UPLC® system equipped with an 

Acquity UPLC 1.7 µm BEH C8 column (2.1×100 mm) coupled to a Micromass QTof-

Ultima with a Z-spray electrospray source.  All chromatography and mass spectrometric 

parameters were as outlined in Chapter 2 Materials and Methods (section 2.8.1. 

Chromatography and mass Spectrometry parameters) 

 

The organic phase of the extracts were reconstituted in methanol-chloroform (2:1, 1 ml).  

Aliquots of diluted organic phase sample (5 µl) were injected onto the C8 column.  The 

column mobile phase was held at 50% solvent B for 0.5 min followed by an increase 

from 50%-100% solvent B over 0.5-6.5 min.  The mobile phase was then held at 100% B 

for 3.5 min.  Between 10 and 10.25 min the mobile phase was returned to 50% B and 

held for 3.75 min to re-equilibrate the column.  The total UPLC cycle was 14 min.  The 

eluent flow rate was 600 µl/min. 

 

Tandem mass spectrometry procedures were as described in Chapter 2 Materials and 

Methods (2.8.3 Tandem mass spectrometry method). 

 

Data was processed using Micromass MarkerLynx Applications Manager as depicted in 

Chapter 2 Materials and Methods (2.8.4. Processing Liquid Chromatography-Mass 

Spectrometry data). 

 

3.3.8. Direct Infusion Mass Spectrometry 

Direct infusion mass spectrometric analysis was performed using a Thermo Finnigan 

LTQ equipped with a Finnigan Surveyor pump and Finnigan Micro AS Autosampler. 

 

The organic phase samples for DI-MS were reconstituted in 500 µl methanol:THF (2:1 

v/v). 100 µl of each sample was added to a 96 well plate. Samples were analyzed in 

duplicate using both positive and negative mode.  All other direct infusion and mass 
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spectrometric parameters were as described in Chapter 2 Materials and Methods 

(section 2.9.2. Direct infusion and mass spectrometry parameters). 

  

 DI-MS chromatograms were processed using Xcaliber as outlined in Chapter 2 

Materials and Methods (2.9.3. Processing of direct infusion mass spectrometry data). 

 

3.3.9. Multivariate Analysis 

Multivariate data analysis was performed using SIMCA-P+ 11.0 (Umetrics AB, Umeå, 

Sweden).  NMR, DI-MS and UPLC-MS data sets were mean-centered and Pareto-scaled 

prior to analysis.  GC-MS data sets were scaled to UV. Data sets were analyzed using 

PCA, PLS and PLS-DA. Further details are summarised in Chapter 2 Materials and 

Methods (section 2.11.6 Multivariate Statistical Analysis Methodology). 

 

3.3.10. 
13
C-glucose Substrate Labelling Study 

At 2 days post differentiation media was removed from the T75 flasks and replaced with 

DMEM (10% (v/v) FBS, 50 units/ml penicillin, and 50 µg/ml streptomycin) and either 

4.5 g/l 12C unlabelled glucose (n=6) or 4.5 g/l 1-13C-glucose (n=7). 

 

After 2 days cells were collected and metabolites extracted as previously described in 

Chapter 2 Materials and Methods (sections 2.1.6 and 2.3 Adipocyte cell collection and 

3T3-L1 cell, primary adipocyte and tissue metabolite extraction).  Two-dimensional 

HSQC 13C-Nuclear Magnetic Resonance spectroscopy was performed on the samples 

using the methodology in Chapter 2 Materials and Methods (2.6.5. 2-dimensional 

Heteronuclear Single-Quantum Coherence 
13

C-Nuclear Magnetic Resonance 

experimental method). 

 

GC-MS analysis of organic and aqueous phases, processing and analysis was also carried 

out as previously described in Chapter 2 Materials and Methods (section 2.7.4. Gas 
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Chromatography-Mass Spectrometry analysis, processing and data handling for 3T3-L1 

adipocyte 13C labelled substrate studies). 

 

3.3.11. 
13
C-palmitate Substrate Labelling Study 

13C labelled and unlabelled palmitate solutions were prepared as is summarised in 

Chapter 2 Materials and Methods (section 2.4.3. Preparation of 
13

C and 
12

C palmitate 

solution). 

 

At 2 days post-differentiation media was removed from the T75 flasks and replaced with 

DMEM (serum free, 50 units/ml penicillin, and 50 µg/ml streptomycin) and either 70 µM  

unenriched palmitate (n=6) or 70 µM U-13C labelled palmitate (n=6). 

 

After 2 days cells were collected and metabolites extracted as previously described in 

Chapter 2 Materials and Methods (sections 2.1.6 and 2.3 Adipocyte cell collection and 

3T3-L1 cell, primary adipocyte and tissue metabolite extraction).   

 

GC-MS analysis of organic and aqueous phases was also carried out as previously 

described in Chapter 2 Materials and Methods (section 2.7.4. Gas Chromatography-

Mass Spectrometry analysis, processing and data handling for 3T3-L1 adipocyte 13C 

labelled substrate studies). 
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3.4 Results 

3.4.1. 3T3-L1 Adipocytes 

High resolution 1H-NMR spectroscopy, GC-MS, LC-MS and DI-MS analysis, combined 

with multivariate pattern recognition were used to profile metabolism within 

differentiating 3T3-L1 murine cells.  The combination of these analytical tools was used 

in order to maximise the coverage of the metabolome within the cells. High resolution 

1H-NMR spectroscopy detected 25 identifiable metabolites.  GC-MS detected 100-150 

defined peaks from aqueous phase samples and 60-70 defined peaks from organic phase 

samples.  Matching the mass spectra detected with those held in the NIST/ EPA/ NIH 

mass spectral library identified 60% of metabolites for aqueous extracts and 65% for 

lipids. Of the species detected using DI-MS negative mode ionisation that contribute to 

separation in the multivariate models 40% (~150) were identified both in terms of lipid 

class and their fatty acyl moieties.  Of the species detected using LC-MS that contribute 

to separation in the multivariate models 60% were identified using MS/MS.   

 

Across all multivariate models used to examine the individual spectra/chromatograms a 

similar trend in the separation of time points was detected where by the earliest time 

points showed only subtle variation before diverging steadily up to 24 h.  This trend for 

the first 24 h was along PC 2 which represents the second most amount of correlated 

variation detected in the dataset. Significant separation then occurs for the latter time 

points (24-120 h) along PC 1, which represents the most amount of correlated variation 

detected in the dataset. By 216 h clustering along component 2 has returned to a position 

similar to the earliest time points; however separation along component 1 remained 

altered (Figure 3.1).  
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Figure 3.1:  A. PLS scores plot showing clustering of aqueous phase metabolites 
analyzed by GC-MS extracted from 3T3-L1 cells at 0 h, 2 h, 4 h, 8 h, 16 h, 
24 h, 72 h, 120 h and 216 h time points during the differentiation process. 
(R2=0.63, Q2=0.97). The PLS model was formed by cross correlating the 
metabolic profile (X variables) against the time of differentiation (Y 
variable).  B. PLS scores plot showing clustering of aqueous phase 
metabolites analyzed by 1H-NMR extracted from 3T3-L1 cells at 0 h, 2 h, 
4 h, 8 h, 16 h, 24 h, 72 h, 120 h and 216 h time points during the 
differentiation process. (R2=0.99, Q2=0.97). The PLS model was formed 
by regressing against time.  C. PLS scores plot showing clustering of 
organic phase metabolites analyzed by GC-MS extracted from 3T3-L1 
cells at 0 h, 2 h, 4 h, 8 h, 16 h, 24 h, 72 h, 120 h and 216 h time points 
during the differentiation process. (R2=0.99, Q2=0.98). The PLS model 
was formed by regressing against time.  D. PCA scores plot showing 
clustering of metabolites analyzed by LC-MS extracted from 3T3-L1 cells 
at 0 h, 2 h, 4 h, 8 h, 16 h, 24 h, 72 h, 120 h and 216 h time points during 
the differentiation process. (R2=0.73, Q2=0.61). 

 

3.4.1.1 3T3-L1 preadipocyte differentiation and intracytoplasmic lipid accumulation   

Oil red O stained images of the differentiating cells demonstrated that the cells 

maintained a fibroblastic like morphology for the early time points.  By 16 h a number of 
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cells had altered their morphology to a more rounded phenotype.  By 120 h the cells were 

beginning to resemble adipocytes and accumulate lipid as indicated by the stain. The 

staining for the final time point showed mature 3T3-L1 cells with a rounded morphology 

and lipid containing vesicles; 75 percent of the total number of cells differentiated 

(Figure 3.2).  Spectrophotometric measurement at 510 nm of the eluted Oil Red O from 

the stained cells confirmed that the cells had begun to accumulate lipid by 120 h and had 

significantly differentiated by 216 h (Figure 3.3). 
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Figure 3.2: A. Oil Red O stained images of differentiating 3T3-L1 adipocytes at time 
points 0-216 h. B. Graph showing cell counts and the percentage of 
differentiating cells at time points 0-216 h.  
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Figure 3.3: Spectrophotometric measurement at 510 nm of Oil Red O eluted from the 
stained cells at 0-216 h. 

 
 

3.4.1.2 Total fatty acid metabolism   

To establish the fatty acid content of the cell differentiation media prior to addition to the 

cell cultures the media was extracted and the organic phase fatty acids derivatised and 

analysed using GCMS (Figure 3.4). The media was found to contain relatively high 

concentrations of palmitate and stearate, however the concentrations of other even chain 

fatty acids was relatively low. The concentrations of odd chain fatty acids were low with 

only pentadecanoate and heptadecanoate detectable. Also low in concentration were the 

∆9 desaturated fatty acids with only C16:1 and C18:1 detected. The media was also 

established as a source of the essential fatty acid linoleic acid.   
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Figure 3.4: A typical GC-MS total ion chromatogram (TIC) from the analysis of methyl 
esterification-derivatised organic extracts from fresh media.  Metabolites are 
identified from exact retention times and comparison of corresponding mass 
spectrum with the NIST database and a FAME standard mix. 

  

The total fatty acid concentrations in 3T3-L1 cells were measured using GC-MS analysis 

of their methyl esterified derivatives from the organic phase of the cell extracts.  Between 

24-72 h, the even chained fatty acids (C8:0, 10:0, 12:0, 14:0) and the ∆9 desaturase 

products C14:1, C16:1 and C18:1 increased in concentration as detected by their 

contribution to PC 2 of the PCA model used to analyze the fatty acid methyl ester dataset.  
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In addition pantothenate, a key constituent of Co-Enzyme A, was detected at 72 h 

(Figure 3.5 A.) and was accompanied by a decrease in the concentration of acetate which 

is in part produced from the β-oxidation product acetyl-CoA.  Also increased in 

concentration was carnitine, a key metabolite involved in fatty acid transport across the 

membrane of several cellular organelles.  Accumulation of even chained fatty acids 

continued 72-120 h (C8:0, C10:0, C14:0) as detected in the loading coefficients for PC 1. 

In addition this increase was accompanied by an increase in odd chain fatty acids (C9:0, 

C11:0, C13:0, C15:0, C17:0) (Figure 3.5 B).  The increase in the concentration of these 

odd chain fatty acids also pre-empted an increase in the concentration of their 

desaturation products (C11:1, C15:1, C17:1, C19:1) (Figure 3.5 C).  Pantothenate and 

carnitine concentrations continued to increase up to 216 h whilst acetate concentrations 

decreased by 120 h.  At 216 h a decrease in the concentration of all omega-6 fatty acid 

pathway intermediates and a decrease in the end products of the omega-3 pathway 

(5,8,11,14,17-20:5 and 4,7,10,13,16,19-22:6) were detected.  At this time point there was 

also a continued increase in the even chain fatty acids (C8:0, 10:0, 12:0 14:0), their 

monounsaturated products and palmitoleate, accompanied by continued increases in odd 

chain fatty acids (C9:0, 11:0, 13:0, 15:0 and 17:0) and monounsaturated odd chain fatty 

acids (C11:1, 15:1, 17:1).  The concentration of larger chain fatty acids decreased (20:0, 

24:0, 24:1) across the time course.  The concentration of palmitate increases between 16-

24 h before decreasing, alongside stearate for the remainder of the differentiation process 

(Figure 3.5 D and 3.5 E).  Accompanying the changes observed in the concentrations of 

the essential fatty acid pathway intermediates, the concentration of arachidonic acid 

esterified to phospholipids increased at 24 h and again at the 216 h time point. 
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Figure 3.5: A. Bar graph showing the average integrated area of the pantothenate peak 
at 24 h, 72 h, 120 h and 216 h time points as measured by 1H-NMR 
spectroscopy. Standard error bars are shown. .* P < 0.05 calculated 
between adjacent time points. B. Graph showing the average integrated 

area of the pentadecanoate peak (C15:0) peak at 24 h, 72 h, 120 h and 216 
h time points as measured by GC-MS of fatty acid methyl esters. Standard 
error bars are shown.  * P < 0.05 calculated between adjacent time points.  
C. Bar graph showing the average integrated area of the cis-10-
heptadecanoate peak at 24 h, 72 h, 120 h and 216 h time points. Standard 
error bars are shown. * P < 0.05 calculated between adjacent time points. 
D. A typical GC-MS total ion chromatogram (TIC) from the analysis of 
methyl esterification-derivatised 3T3-L1 cell organic extracts from the 0 h 
time point.  Metabolites are identified from exact retention times and 
comparison of corresponding mass spectrum with the NIST database and a 
FAME standard mix. E. A typical GC-MS total ion chromatogram (TIC) 
from the analysis of methyl esterification-derivatised 3T3-L1 cell organic 
extracts from the 216 h time point.  Metabolites are identified from exact 
retention times and comparison of corresponding mass spectrum with the 
NIST database and a FAME standard mix. 
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3.4.1.3 Carbohydrate metabolism  

Concentrations of glycolytic and TCA cycle intermediates were measured using 1H-NMR 

and GC-MS analysis of their methoximated and silylated derivatives from the aqueous 

phase of the cell metabolite extraction.  During the first 4 h of differentiation a number of 

TCA cycle intermediates increased in concentration including succinate, fumarate and 

malate. For the first 2 h of the differentiation process this was also accompanied by an 

increase in glycolysis as indicated by increases in lactate and pyruvate and a decrease in 

glucose-6-phosphate. Both changes were accompanied by an increase in the 

concentration of ATP.  Between 8 h and 16 h the concentrations of the latter 

intermediates (succinate, fumarate and malate) in the TCA cycle decreased as the 

concentrations of the early intermediates isocitrate and citrate increased indicating the 

change in steady state for the two halves of the cycle. At the same time the concentrations 

of glucose and galactose increased and lactate decreased suggestive of a decrease in 

glycolytic flux consistent with greater coupling between glycolytic flux and the TCA 

cycle.  By 72 h, corresponding to the identified initiation of lipid accumulation, the 

concentration of the TCA cycle intermediates fumarate, malate, isocitrate and citrate 

increased; a corresponding increase in ATP concentrations suggests that the flux of the 

TCA cycle was also increased. The concentration of glucose was also reduced at this time 

point. The TCA cycle intermediates continued to increase at 120 h, with the 

concentrations of succinate, fumarate, malate and citrate all increasing across this time 

period.  Accompanying upregulation of glycolytic flux was established with observed 

decreases in the concentrations of glucose, fructose and galactose and increases in 

pyruvate and lactate between 24 h and 120 h.  At 216 h TCA cycle and glycolytic 

intermediates were decreased in concentration as the cells reached terminal 

differentiation – at this time point the concentrations of glucose, galactose and fructose 

were increased and those of pyruvate, lactate, succinate, fumarate, malate, isocitrate and 

citrate were decreased compared to 120 h.  

 

3.4.1.4 Amino acid metabolism   

Concentrations of amino acids and polyamine biosynthesis intermediates were measured 

using 1H-NMR spectroscopy and GC-MS analysis.  The concentration of glutamine 
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increased after 4 h and again after 16 h with a concomitant decrease in the concentration 

of glutamate. Polyamine metabolism was also altered during differentiation with an 

increase in the concentration of the putrescine precursors aspartate and ornithine detected 

prior to an increase in the concentration of putrescine detected after 24 h. The levels of 

the polyamine pathway metabolites, including putrescine, then decreased by 216 h.   

 

3.4.1.5 Complex lipids and free fatty acids   

Concentrations of FFAs and glycerophospholipids were measured using DI-MS (Figure 

3.6).  LC-MS was used to measure the concentrations of glycerophospholipids and 

TAGs.  

 

 

Figure 3.6:  Direct infusion of 3T3-L1 cell lipid extraction in negative mode using an 
LTQ ion trap. A. Direct infusion mass spectrum of 3T3-L1 cell lipid 
extraction fraction. B. MS/MS spectrum of an ion at 701 m/z. Daughter 
ions are labelled. 
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At 24 h an increase in even chain saturated and unsaturated FFAs was detected as was an 

increase in the intermediates and end products of the omega-3 and omega-6 fatty acid 

pathways. By 72 h there was an increase in the concentrations of even chain unsaturated 

fatty acids accompanied by an increase in the concentrations of odd chain saturated and 

unsaturated fatty acids which continued to the 216 h time point. The concentrations of the 

longer chain unsaturated even chain fatty acids were decreased by 120 h as were the 

concentrations of the omega-6 fatty acid pathway intermediates.  At the conclusion of the 

study there was a detected increase in the concentration of α-linolenic acid and 

concomitant decrease in the essential fatty acid pathway intermediates and end products. 

A continued decrease in the longer, even chain fatty acids was also detected at 216 h.  

The composition of TAGs was also altered with an increase in the incorporation of odd 

chain saturated and unsaturated fatty acids and a concomitant decrease in the 

concentration of even chain fatty acids at 72 h.  Accumulation of odd chain fatty acids 

continued at 120 h with a concomitant decrease in even long chain fatty acids.  By 216 h 

the concentration of TAGs esterified with odd chain fatty acids continued to increase 

while an associated decrease in the concentration of TAGs incorporating C16:0 and 

C18:0 was detected (Table 3.1). 
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Table 3.1: The changes in TAG concentrations during the differentiation of 3T3-L1 
preadipocytes into mature adipocytes at the 72 h, 120 h and 216 h time 
points. TAGs were detected by LC-MS and identified using MS/MS.    

 

3.4.2. 3T3-L1 Adipocyte 
13
C-labelled Substrate Study  

To investigate the mechanisms generating the changes in the steady state concentrations 

of metabolites identified in the metabolomic studies 13C stable isotope labelled substrate 

studies were conducted.  Given that the most significant changes were found to occur in 

the lipid composition of the differentiating cells and especially considering the unusual 

concentration of odd chain fatty acids we elected to investigate synthesis and metabolic 

processing of fatty acids directly using stable isotope techniques. 
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3.4.2.1 
13

C-glucose labelling study  
 

13C enrichment of a number of key metabolites was measured using HSQC NMR 

analysis of the organic phase metabolites and GC-MS analysis of the organic and 

aqueous phases.  When using 1-13C-glucose as a substrate lactate, succinate and 

glutamate were all found to be enriched when analysed by GC-MS (Figure 3.7), as were 

the lipid resonances in HSQC spectra corresponding to ω 1-3 resonances, allylic carbons, 

terminal lipid resonances (CH3 resonances), the methylene envelope and esterified and 

non-esterified glycerol (Figure 3.8). Further investigation, by GC-MS, of the enrichment 

of individual fatty acid species demonstrated that both C14:0 and C16:0 had clearly 

incorporated 13C from glucose (Figure 3.9 A,B).    
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Figure 3.7:  A. Graph showing GC-MS M+1/M ion ratio for lactate when using 1-13C-
glucose and unlabelled glucose.  Enrichment of lactate is shown. B. Graph 
showing GC-MS M+1/M ion ratio for succinate when using 1-13C-glucose 
and unlabelled glucose, showing enrichment of succinate. C. Graph 
showing GC-MS M+1/M ion ratio for glutamate when using 1-13C-
glucose and unlabelled glucose, showing enrichment of glutamate.  *P < 
0.05, **P < 0.01, ***P < 0.005. 12C is unenriched glucose, 13C is 1-13C 
enriched glucose. Parent ions were used to calculate ion ratio. 
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Figure 3.8: HSQC NMR spectra of organic extraction phase of 3T3-L1 cells exposed 
to unlabelled (A) or 1-13C-glucose (B). Key: ω 1-3 Carbon signals, allylic 
carbons, C1-3 signals, the methylene envelope and esterified and non-
esterified glycerol 13C cross peaks are labelled. 
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3.4.2.2 
13

C-palmitate labelling study 

13C enrichment of a range of metabolites was identified using GC-MS analysis of the 

organic and aqueous phases (the possibility remains that there were small amounts of 

13C labelled fatty acid impurities in the 13C labelled palmitate).  Pentadecanoate was 

found to be enriched confirming the observed increase in odd chain fatty acid abundance 

detected by analysis of the total pool of FFAs (Figure 3.9 C). The palmitate desaturation 

product palmitoleate was also found to be enriched with 13C in accordance with the 

observed activity of the ∆9 desaturase from the metabolomic studies (Figure 3.9 D). 

 

 

Figure 3.9:  A. Graph showing GC-MS M+1/M ion ratio for myristate when using 1-
13C-glucose and unlabelled glucose. Enrichment of myristate is shown. B. 
Graph showing GC-MS M+1/M ion ratio for palmitate when using 1-13C-
glucose and unlabelled glucose, showing enrichment of palmitate. C. 
Graph showing GC-MS M+1/M ion ratio for pentadecanoate when using 
U-13C-palmitate and unlabelled palmitate, showing enrichment of 
pentadecanoate. D. Graph showing GC-MS M+1/M ion ratio for 
palmitoleate when using U-13C-palmitate and unlabelled palmitate, 
showing enrichment of palmitoleate. *P < 0.05, ***P < 0.005. 
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3.4.3. Primary Adipocytes  

To examine the relevance of the 3T3-L1 adipocyte model to mature adipocytes and to 

investigate how the 3T3-L1 cells recapitulate metabolic changes that occur in adipocytes, 

the differentiation of primary adipocytes was investigated.  As less primary cell material 

was available for analysis when compared with that available for the 3T3-L1 cells, the 

decision was taken to focus the investigation on the lipid changes occurring within the 

primary adipocytes during differentiation.  Therefore GC-MS and LC-MS, combined 

with multivariate pattern recognition were used to compare metabolic differences 

between primary preadipocytes and differentiated primary adipocytes (Figure 3.10).  
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Figure 3.10:  A. PLS-DA scores plot showing clustering of organic phase metabolites 
analyzed by GC-MS extracted from ■ primary preadipocytes and ● 
differentiated primary adipocytes. (R2=0.76, Q2=0.97) B. PLS-DA scores 
plot showing clustering of aqueous phase metabolites analyzed by GC-MS 
extracted from ■ primary preadipocytes and ● differentiated primary 
adipocytes. (R2=0.71, Q2=0.96) C. PLS-DA scores plot showing clustering 
of organic phase metabolites analyzed by LC-MS extracted from ■ 
primary preadipocytes and ● differentiated primary adipocytes. (R2=0.443, 
Q2=0.99). Two technical replicates were analysed. 
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3.4.3.1 Total fatty acid metabolism   

The total fatty acid concentrations were measured using GC-MS analysis of their methyl 

esterified derivatives from the organic phase of the cell extracts.  An increase in the 

concentrations of the shorter chain fatty acids (C12:0 and C14:0) and concomitant 

decrease in the concentrations of the longer chain fatty acids (C16:0, C18:0, C20:0, C 

22:0 and C24:0) were observed in the differentiated primary adipocytes when compared 

to the primary preadipocytes.  The odd chain length fatty acids (C13:0 and C15:0) and the 

∆9 desaturase products (C14:1, C16:1, C18:1, C19:1, C20:1 and C24:1) were also 

identified as increased in concentration in the differentiated primary adipocytes.  

 

3.4.3.2 Carbohydrate metabolism   

Concentrations of glycolytic and TCA cycle intermediates were measured using GC-MS 

analysis of their methoximated and silylated derivatives from the aqueous phase of the 

cell metabolite extraction.  The concentrations of glucose-6-phosphate, lactate, fumarate 

and malate were all found to be increased in the differentiated primary adipocytes 

compared to the primary preadipocytes.  This was a comparable result to the changes 

identified in the 3T3-L1 cell line.  

 

3.4.3.1 Triacylglycerols   

The composition of TAGs was altered during differentiation of the primary adipocytes. 

There was an increase in the accumulation of odd chain length fatty acids into TAGs. In 

addition the concentration of desaturated fatty acid constituents of the TAGs was 

increased (Table 3.2).  
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Table 3.2: The TAG species increased in concentration during the differentiation of 
primary preadipocytes into primary adipocytes. TAGs were detected by 
LC-MS.   
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3.5 Discussion 

 

During 3T3-L1 adipocyte development the commitment to differentiate occurs between 

24-48 h and is followed by the process of lipid accumulation210.  In the study described in 

this chapter these processes are reflected in the multivariate models of the various 

analytical assays. One of the earliest changes in the process of differentiation was 

associated with upregulation of the TCA cycle, as represented by an increase in the pool 

sizes of a number of the intermediates, possibly to increase ATP for the differentiation 

process. By 72 h, corresponding to the identified initiation of lipid accumulation, the 

intermediates of the TCA cycle again increase in concentration, but at this time point it is 

dominated by increases in citrate and isocitrate as fatty acid synthesis increases, with 

citrate being used to supply cytosolic acetyl-CoA, a key intermediate of fatty acid 

synthesis. Finally at 216 h the metabolite concentrations of the glycolytic pathway and 

the TCA cycle are such that it would suggest decreased need for these pathways, possibly 

as the energy demand of the cell decreases following differentiation. Alternatively, it 

could be viewed that now the dominant pathways involve fatty acid metabolism rather 

than pathways involving glucose (Figure 3.11). 
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Figure 3.11: Glycolysis and TCA cycle metabolic pathways altered during the initiation 
phase of 3T3-L1 adipocyte differentiation (0-48 h). Metabolites increased 
in concentration are marked Red; metabolites decreased in concentration 
are marked with Blue. 

 

The increase in the concentration of glutamine detected during differentiation has 

previously been observed and is caused by induction of glutamine synthase as a result of 

glucocorticoid stimulation during the commitment to differentiate211. Furthermore, the 

detected changes in polyamine biosynthesis are known to be essential for differentiation 

of 3T3-L1 cells into adipocytes204.  The observed increase in concentration again 

corresponds to the induction of lipid accumulation and commitment to differentiate and a 
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reduction in polyamine biosynthesis intermediates at 216 h also suggest the cells return to 

a resting state at this time point; an observation which correlates with changes in 

transcription of ornithine decarboxylase during adipocyte differentiation, with this 

enzyme producing putrescine from ornithine212.  

 

From 72 h onwards there is a significant increase in the majority of fatty acids as the 

process of lipid accumulation occurs following the preadipocytes commitment to 

differentiate.  Accompanying the increase in fatty acids there was also an increase in 

desaturation and especially of the monounsaturated forms of fatty acids.  Stearoyl-CoA 

desaturase 2 has recently been identified as essential for differentiation. Considering there 

is a predominance of saturated fatty acids in the growth media and the transcription of the 

enzyme is upregulated during differentiation213, it is likely the desaturation observed is 

carried out by this enzyme207.  Sequential peroxisomal fatty acid α-oxidation and ∆-9 

desaturation of fatty acids has been shown to occur in differentiating 3T3-L1 adipocytes, 

explaining the detected increase in odd chain fatty acids, their desaturation and 

accumulation into complex lipids214.  Analysis of the media eliminated this as the source 

of the odd chain fatty acids; the highest concentration fatty acids present in the media 

were palmitate and stearate, and odd chain fatty acids were only detected at low levels.  A 

concomitant increase in the concentration of the CoA constituent pantothenate was 

detected alongside the lipid changes. CoA is necessary for fatty acid synthesis, transport 

of fatty acids into peroxisomes and both α and β fatty acid oxidation.  Therefore, it 

appears CoA is increased in response to demand for fatty acid synthesis and α-oxidation.  

The increase in the concentration of the fatty acid transport molecule carnitine at 72 h, 

continuing to 216 h, may indicate the requirement for export of odd chain fatty acids 

from peroxisomes following α-oxidation, since peroxisomes contain short- and medium-

chain carnitine acyltransferases functioning to esterify carnitine to fatty acids in order to 

cross the peroxisomal membrane215.  The transcription of propionyl CoA carboxylase, an 

enzyme involved in fatty acid α-oxidation, and the enzyme carnitine acyl transferase 

have previously been reported as upregulated during 3T3-L1 differentiation213.  
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Furthermore the utilisation of glucose to generate fatty acids during 3T3-L1 metabolism 

has been confirmed through the use of 13C-labelled glucose to monitor the metabolic flux 

through glycolysis, the TCA cycle and into fatty acid synthesis. Once the fatty acids are 

synthesised they are subjected to desaturation by the ∆9 desaturase or to α-oxidation, 

forming odd chain fatty acids as indicated by the metabolomic data and confirmed 

through the use of U-13C labelled palmitate.   

 

The observed decrease in the end products of the omega-3 essential fatty acid pathway, 

5,8,11,14,17-eicosapentaenoic acid and 4,7,10,13,16,19-docosahexaenoic acid, may be 

necessary for the regulation of differentiation in the 3T3-L1 cell line.  Docosahexaenoic 

acid has been shown to inhibit differentiation and promote lipolysis in the adipocytes216.   

 

The concentration of arachidonic acid acyl groups in phospholipids appears to increase 

from 24 h with a decrease in its concentration as a FFA detected by 120 h.  

Glucocorticoids block release of arachidonic acid from intracellular phospholipid 

pools217.  Given arachidonic acid is the initial substrate for the omega-6 essential fatty 

acid pathway this will lead to the decrease in the intermediates and products of this 

pathway, as observed in this study.  The control of flux through this pathway is vital to 

differentiation since arachidonic acid as a substrate for cyclooxygenase-2, strongly 

inhibits adipocyte differentiation via a prostaglandin synthesis pathway218.  In addition 

eicosapentaenoic acid represses the expression of peroxisome proliferator-activated 

receptor-γ, a nuclear receptor vital to adipocyte differentiation205 (Figure 3.12).  
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Figure 3.12:  A. Metabolic pathways altered during the lipid accumulation phase of 
3T3-L1 adipocyte differentiation (72-120 h). Metabolites increased in 
concentration are marked in Red; metabolites decreased in concentration 
are marked in Blue. B. Metabolic pathways altered at terminal 
differentiation of 3T3-L1 adipocytes (216 h). Metabolites increased in 
concentration are marked in Red; metabolites decreased in concentration 
are marked with Blue. 

 

Metabolomic analysis of the differentiation of primary adipocytes was conducted to 

allow comparison of the metabolic changes that occur during differentiation of the 

primary cells with those identified in the differentiation of the 3T3-L1 adipocyte model, 

from which the relevance of applying metabolomic investigation to the 3T3-L1 cell line 

for the study of adipocytes could be assessed.  Primary adipocyte metabolomic 

investigation focused on the lipid changes occurring within the primary adipocytes during 

differentiation as the composition of this metabolite class was found to be most 

significantly altered during the differentiation of the 3T3-L1 cells.  The availability of 

primary adipocyte material was also limited. 

 

The changes observed in the total fatty acid composition of the primary adipocytes as the 

cells differentiated was comparable with those seen in the 3T3-L1 cells.  In both cell 

types there was an increase in the concentration of the short and mid chain fatty acids, 

odd chain fatty acids and the monounsaturated products of the ∆9 desaturase.  As with the 

3T3-L1 cells an increase in the incorporation of odd chain and monounsaturated fatty 

acids into TAGs was also detected    An increase in the concentration of glycolytic and 

TCA cycle intermediates, analogous to the metabolic changes observed in the 3T3-L1 

cells during differentiation, was also observed in differentiated primary adipocytes and 

may correspond to the utilisation of glucose to generate fatty acids as was confirmed in 

the 3T3-L1 cells using 13C-labelled glucose. 
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3.6 Conclusions 

 

Although the 3T3-L1 cell line is a robust and extensively used tool for the investigation 

of adipocyte biology it is worthy of note that, as with all immortalised cell lines, they do 

not behave identically to their primary cell line counterparts.  However, the metabolic 

differences found between primary preadipocytes and primary differentiated adipocytes 

matched many of the findings observed in the 3T3-L1 cell line. Therefore it is hoped the 

current study will provide invaluable cues for research conducted in the 3T3-L1 cell line, 

primary cell lines and even white adipose tissue when following the changes in 

metabolism associated with differentiation.    

 

In conclusion, global metabolic profiling has been used to study the changes in 

metabolism required to bring about differentiation of fibroblastic like cells into mature 

adipocytes.  A diverse number of interacting metabolic pathways essential to 

differentiation have been highlighted as altered at key points in this process.  The changes 

in metabolite concentrations during commitment to differentiate, lipid accumulation and 

the return to a resting state have been studied and the TCA cycle, glycolysis, fatty acid α-

oxidation, synthesis and desaturation, polyamine biosynthesis and esterification of acyl 

groups to complex lipids have been identified as implicit to 3T3-L1 maturation.  
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Chapter 4 

 

PPARδδδδ Activation in White Adipose Tissue: Burning Fat by 

Upregulation of the TCA Cycle 

 
 

4.1 Introduction 

 

The WHO estimates over 180 million people worldwide suffer from TIIDM.  The 

incidence of obesity, a major risk factor for the development of TIIDM, is also increasing 

globally.  While a number of anti-diabetic treatments have been produced they rarely 

address the related obese state and consequently fail to confront this underlying risk 

factor.  Therefore it becomes imperative that new treatment approaches with both anti-

diabetic and anti-obesity properties are found. 

 

The PPARs have already yielded viable targets for the treatment of TIIDM and 

dyslipidaemia; TZDs, PPARγ agonists, are currently used in the clinic for the treatment 

of TIIDM and fibrates, PPARα agonists, are routinely used to treat dyslipidaemia.  

Treatment with TZDs results in the recruitment of new metabolically active adipocytes 

causing an increase in lipid storage capacity and normalisation of adipocytokine levels219; 

whereas activation of PPARα by fibrates results in an increase in fatty acid catabolism in 

the heart and liver and decreases low-density lipoprotein-cholesterol concentrations128. 

 

A pharmacological agonist for PPARδ is yet to make it into the clinic, the receptor 

remains to be functionally defined and the physiological ligand for PPARδ is still to be 
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described.  Nevertheless, the receptor has been shown to be activated by several 14 to 18 

carbon containing polyunsaturated fatty acids, including eicosanoids such as 

prostaglandin A1, iloprost and carbaprostacyclin, in the micromolar range132.  The 

development of a number of high affinity synthetic ligands for PPARδ has shown the 

receptor holds considerable promise for the treatment of TIIDM, the metabolic syndrome, 

dyslipidaemia and obesity.  Insulin resistant obese rhesus monkeys treated with the 

selective PPARδ agonist GW501516 demonstrated significant increases in HDL-

cholesterol with concomitant decreases in TAGs and LDL-cholesterol170.  PPARδ 

activation has also shown efficacy in reducing adiposity by decreasing intracellular TAG 

accumulation in mouse brown adipose tissue and liver169 . 

 

Investigation into the function of PPARδ in white adipose tissue has, thus far, 

demonstrated that the receptor has an important role in the regulation of metabolism and 

energy homeostasis.  In vitro investigation has shown that expression of PPARδ is 

induced early in the differentiation of the 3T3-L1 murine adipocyte cell line172 and during 

early brown adipogenesis173.  PPARδ is also implicated in the stimulation of adipogenesis 

via the induction of PPARγ expression and mitotic clonal expansion174, 175. Tissue 

specific over-expression of PPARδ in the white adipose tissue of transgenic mice resulted 

in decreases in body weight, adipocyte TAG accumulation, circulating FFAs and 

circulating TAG169.  The same transgenic mice were also protected against weight gain, 

adipocyte hypertrophy, hypertriglyceridaemia, and steatosis.  PPARδ activation also 

leads to elevated expression of Uncoupling protein-1 in white adipose tissue169. 
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4.2 Aims and Objectives 

 

In order to deconvolute the effect of PPARδ activation on the control of metabolism in 

white adipose tissue we have performed a metabolomics study using both in vivo analysis 

in the ob/ob mouse and in vitro analysis using the murine 3T3-L1 adipocyte cell line.  A 

synthetic, high affinity pharmacological agonist, GW610742, was used to activate 

PPARδ in both the mice and the adipocyte cell line (GW610742 EC50 for murine PPARδ 

is 28 nM compared to 8,900 nM for PPARα and >10,000 nM for PPARγ)185.  A 

combined GC-MS, 1H-NMR, LC-MS and DI-MS approach was used in conjunction with 

multivariate statistics to probe the metabolic phenotype resulting from PPARδ activation.  

To unambiguously define the mechanisms by which PPARδ alters the metabolism of 

adipose tissue we then carried out 13C-stable isotope substrate labelling studies using 1-

13C glucose and U-13C palmitate, respirometric analysis using a Clark-type oxygen 

electrode and transcriptomic microarray analysis. 

 

It was found that PPARδ activation was not only characterised by increased fatty acid 

oxidative metabolism as previously observed but also by glucose oxidation. This 

implicates PPARδ as a control for global oxidative energy metabolism and suggests a 

mechanism by which activation of the nuclear receptor, in part, brings about its anti-

diabetic and anti-obesity properties by simultaneously reducing the quantity of TAGs and 

glucose in white adipose tissue.   
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4.3 Materials and Methods 

 

4.3.1 Ob/Ob Mouse Study Tissue Collection and Extraction 

Animals were kept as is outlined in Chapter 2 Materials and Methods (section 2.2.1. 

Animal handling).  Briefly, the ob/ob mice were dosed orally daily at 8 am with 0.5% 

Hydroxypropylmethylcellulose/0.1% Tween80 vehicle control (n=8) or a PPARδ agonist, 

GW610742 (n=8 at 30 mg/kg).  Injection volume was adjusted daily according to body 

weight at 10 ml/kg.  White adipose tissue was collected as summarised in Chapter 2 

Materials and Methods (section 2.2.4. Tissue handling). 

 

4.3.2 3T3-L1 Cell Culture 

3T3-L1 preadipocytes were grown and differentiated as described in Chapter 2 

Materials and Methods (section 2.1.1 3T3-L1 cell culture and adipocyte 

differentiation).   

 

4.3.3 3T3-L1 PPARδδδδ Activation 

3T3-L1 adipocytes were treated with the selective PPARδ agonist GW610742 as is 

outlined in Chapter 2 Materials and Methods (2.1.3. Activation of PPARδ in 3T3-L1 

adipocytes). Briefly, adipocytes were treated with either DMSO (control n=6 T75 flasks) 

or GW610742 PPARδ selective agonist (n=6 T75 flasks at 100 nM and 1 µM) for 2 days. 

 

4.3.4. Oil Red O Staining and Intracytoplasmic Lipid Accumulation 

Six additional T75 flasks of 3T3-L1 adipocytes were grown per control, 100 nM and 1 

µM treatment groups. Three flasks per group were stained prior to PPARδ agonist 

treatment to assess levels of differentiation; three flasks per groups were stained post 

PPARδ agonist treatment to assess the effects of PPARδ activation on the concentration 

of neutral lipid stored within the adipocytes.  The cells were stained and the 
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intracytoplasmic lipid accumulation assessed as in Chapter 2 Materials and Methods 

(section 2.1.5 Oil Red O staining and intracytoplasmic lipid accumulation). 

 

4.3.5 3T3-L1 Cell Collection  

The cells were collected and their metabolites extracted as described in Chapter 2 

Materials and Methods (sections 2.1.6 and 2.3 Adipocyte cell collection).  

 

4.3.6 Tissue and 3T3-L1 Metabolite Extraction  

Metabolites were extracted from white adipose tissue and 3T3-L1 cells using the 

modified Bligh and Dyer method187.  The details are as in Chapter 2 Materials and 

Methods (section 2.3 3T3-L1 Cell, Primary Adipocyte and Tissue Metabolite 

Extraction). 

 

4.3.7 
1
H-NMR Spectroscopy 

All samples were analysed using a Bruker AVANCE II+ spectrometer operating at 

500.13 MHz for the 1H frequency using a 5 mm Broadband TXI Inverse ATMA probe.  

All procedures are as depicted in Chapter 2 Materials and Methods (sections 2.6.1. 

Spectrometer, 2.6.2. Sample preparation, 2.6.3. 1-dimensional 1H-Nuclear Magnetic 

Resonance experimental method and 2.6.4. Processing 1-dimensional 
1
H-Nuclear 

Magnetic Resonance data). 

 

4.3.8 GC-MS Analysis 

The aqueous phase of extracts was derivatised as described in Chapter 2 Materials and 

Methods (section 2.7.1 Derivatisation of aqueous phase metabolites). 

 

The organic phase of extracts was derivatised as described in Chapter 2 Materials and 

Methods (section 2.7.2 Derivatisation of organic phase metabolites).   
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GC-MS analyses were made using a Trace GC Ultra coupled to a Trace DSQ II single-

quadrupole mass spectrometer.  Parameters for the GC-MS analysis of aqueous phase 

metabolites and organic phase metabolites were as outlined in Chapter 2 Materials and 

Methods (sections 2.7.3.1 Gas Chromatography-Mass Spectrometry methods for 

aqueous phase samples and 2.7.3.2 Gas Chromatography-Mass Spectrometry methods 

for organic phase samples).  Derivatised organic samples were injected with a split ratio 

of 60 for white adipose tissue and 8 for 3T3-L1 cells. 

 

GC-MS chromatograms were processed using Xcaliber (version 2.0; Thermo Electron) as 

outlined in Chapter 2 Materials and Methods (2.7.5. Processing Gas Chromatography-

Mass Spectrometry data). 

 

4.3.9 UPLC-MS Analysis 

Chromatography was performed using an ACQUITY UPLC® system equipped with an 

Acquity UPLC 1.7 µm BEH C8 column (2.1×100 mm) coupled to a Micromass QTof-

Ultima with a Z-spray electrospray source.  All chromatography and mass spectrometric 

parameters were as outlined in Chapter 2 Materials and Methods (section 2.8.1. 

Chromatography and mass Spectrometry parameters) 

 

The organic phase of adipose tissue extracts was reconstituted in methanol-chloroform 

(2:1, 500 µl).  This was further diluted 10-fold prior to injection onto the C8 column (5 

µl).  The column mobile phase was held at 85% solvent B for 0.5 min followed by an 

increase from 85%-100% solvent B over 0.5-8 min.  The mobile phase was then held at 

100% B for 4 min.  Between 12 and 12.25 min the mobile phase was returned to 85% B 

and held for 1.75 min to re-equilibrate the column. 

 

3T3-L1 Cell Organic phase metabolites were reconstituted in methanol-chloroform (2:1, 

1 ml).  Aliquots of diluted organic phase sample (5 µl) were injected onto the C8 column.  

The column mobile phase was held at 50% solvent B for 0.5 min followed by an increase 

from 50%-100% solvent B over 0.5-6.5 min.  The mobile phase was then held at 100% B 
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for 3.5 min.  Between 10 and 10.25 min the mobile phase was returned to 50% B and 

held for 3.75 min to re-equilibrate the column.    The total UPLC cycle was 14 min and 

the eluent flow rate was 600 µl/min for both methods.    

 

Tandem mass spectrometry procedures were as described in Chapter 2 Materials and 

Methods (2.8.3 Tandem mass spectrometry method). 

 

Data was processed using Micromass MarkerLynx Applications Manager as depicted in 

Chapter 2 Materials and Methods (2.8.4. Processing Liquid Chromatography-Mass 

Spectrometry data). 

 

4.3.10 DI-MS Analysis 

Mass spectrometric analysis was performed using a Thermo Finnigan LTQ equipped with 

a Finnigan Surveyor pump and Finnigan Micro AS Autosampler. 

 

The white adipose tissue organic phase samples for DI-MS were reconstituted in 1 ml 

methanol:THF (2:1 v/v). 60 µl of each sample was aliquoted into a 96 well plate where 

the samples were diluted by the addition of a further 600 µl methanol:THF (2:1 v/v). 

 

The 3T3-L1 organic phase samples for DI-MS were reconstituted in 500 µl 

methanol:THF (2:1 v/v). 100 µl of each sample was added to a 96 well plate. Samples 

were analyzed in triplicate using both positive and negative mode.   

 

All other direct infusion and mass spectrometric parameters were as described in 

Chapter 2 Materials and Methods (section 2.9.2. Direct infusion and mass 

spectrometry parameters). 

 

DI-MS chromatograms were processed using Xcaliber as outlined in Chapter 2 

Materials and Methods (2.9.3. Processing of direct infusion mass spectrometry data). 
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4.3.11 
13
C-glucose Substrate Labelling Study  

At 2 days post differentiation media was removed from the T75 flasks and replaced with 

DMEM (10% (v/v) FBS, 50 units/ml penicillin, and 50 µg/ml streptomycin) and either 

4.5 g/l unlabelled glucose with DMSO control (n=6) or with 1µM GW610742 PPARδ 

selective agonist (n=7) or 4.5 g/l 1-13C-glucose with DMSO control (n=7) or with 1 µM 

GW610742 PPARδ selective agonist (n=7).  After 2 days cells were collected and 

metabolites extracted as described in Chapter 2 Materials and Methods (sections 2.1.6 

and 2.3 Adipocyte cell collection).  

 

4.3.12 
13
C-palmitate Substrate Labelling Study 

Preparation of 13C labelled and unenriched palmitate solution is defined in Chapter 2 

Materials and Methods (2.4.3. Preparation of 
13

C and 
12

C palmitate solution). 

  

At 2 days post-differentiation media was removed from the T75 flasks and replaced with 

DMEM (serum free, 50 units/ml penicillin, and 50 µg/ml streptomycin) and either 70 µM 

unlabelled palmitate (n=6) with DMSO control (n=6) or with 1 µM GW610742 PPARδ 

selective agonist (n=7)  or 70 µM U-13C labelled palmitate (n=7) with DMSO control 

(n=6) or with 1 µM GW610742 PPARδ selective agonist (n=7). After 2 days cells were 

collected and metabolites extracted as previously described in Chapter 2 Materials and 

Methods (sections 2.1.6 Adipocyte cell collection and 2.3 Adipocyte cell collection). 

 

4.3.13 
13
C-HSQC NMR Spectroscopy 

Dried organic phase extracts were dissolved in 600 µl of deuterated chloroform. Samples 

were analyzed using a DRX Avance II+ spectrometer interfaced to a 5-mm TXI ATMA 

probe.  All procedures are as depicted in Chapter 2 Materials and Methods (sections 

2.6.5. 2-dimensional Heteronuclear Single-Quantum Coherence 
13

C-Nuclear Magnetic 

Resonance experimental method and 2.6.6. Processing 2-dimensional Heteronuclear 

Single-Quantum Coherence
 13

C-Nuclear Magnetic Resonance data). 
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4.3.14 
13
C-labelled Substrate GC-MS Analysis  

Analysis of organic and aqueous phases was carried out as previously described in 

Chapter 2 Materials and Methods (section 2.7.1 Derivatisation of aqueous phase 

metabolites, 2.7.2. Derivatisation of organic phase metabolites, 2.7.3.1 Gas 

Chromatography-Mass Spectrometry methods for aqueous phase samples and 2.7.3.2 

Gas Chromatography-Mass Spectrometry methods for organic phase samples). 

 

Enrichment of metabolites was identified by calculating isotope ratios of the M and M+1 

ions for the parent ion of the fragmentation pattern in the case of 13C-glucose metabolism 

analysis and TCA cycle intermediates originating from 13C-palmitate oxidation.  For fatty 

acid synthesis and desaturation products from 13C-labelled palmitate an ion ratio of 

M+16/M was used and for fatty acids originating from oxidation of U-13C-labelled 

palmitate an ion ratio of M+n/M, where n = the carbon chain length of the fatty acid was 

used.  Statistical analysis was performed using a univariate t-test. 

 

4.3.15 Multivariate Analysis 

Multivariate data analysis was performed using SIMCA-P+ 11.0 (Umetrics AB, Umeå, 

Sweden).  NMR, DI-MS and UPLC-MS data sets were mean-centered and Pareto-scaled 

prior to analysis.  GC-MS data sets were scaled to UV. Data sets were analyzed using 

PCA, PLS and PLS-DA. Further details are summarised in Chapter 2 Materials and 

Methods (section 2.11.6 Multivariate Statistical Analysis Methodology). 

 

4.3.16 Respirometric Analysis of PPARδδδδ Agonist Treated 3T3-L1 Cells  

Cells were grown, treated with PPARδ agonist and collected as is outlined in Chapter 2 

Materials and Methods (section 2.1.1 3T3-L1 cell culture and adipocyte differentiation, 

2.1.3. Activation of PPARδ in 3T3-L1 adipocytes, 2.1.6 and 2.3 Adipocyte cell collection)   

with the exception that they were collected into respiration medium (100 mM KCl, 

50 mM MOPS, 1.0 mM KH2PO4, 1.0 mg/ml defatted BSA, pH 7.4). Respiratory rates of 

in situ permeabilised control and PPARδ agonist treated 3T3-L1 cells were measured 
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using a Clark-type oxygen electrode (Strathkelvin Instruments Ltd, Glasgow, UK) with 

methods developed by Kuznetsov et al
188. Respiration rates were recorded and quantified 

using 782 Oxygen System v3.0 software (Strathkelvin Instruments). Procedures are 

defined in Chapter 2 Materials and Methods (section 2.5 Respirometric analysis of 

PPARδ agonist treated 3T3-L1 cells). 

  

4.3.17 Microarray Analysis of PPARδδδδ Agonist Treated 3T3-L1 Cells  

Cells were grown, treated with PPARδ agonist and collected as is outlined in Chapter 2 

Materials and Methods (section 2.1.1 3T3-L1 cell culture and adipocyte differentiation, 

2.1.3. Activation of PPARδ in 3T3-L1 adipocytes, 2.1.6 and 2.3 Adipocyte cell collection)     

An RNeasy RNA extraction and purification kit was used to extract total RNA from 3T3-

L1 adipocytes (Qiagen GmbH, Hilden, Germany). RNA extraction procedures were 

carried out according to the methods outlined in Chapter 2 Materials and Methods 

(section 2.10.1. RNA extraction). 

 

Transcriptomic analysis was conducted by Cambridge Genomic Centre for Microarray 

Resources (Cambridge Genomic Services, Department of Pathology, University of 

Cambridge). An automated Illumina Infinium Gene Expression BeadArray (Illumina Inc, 

San Diego, CA) was used to perform mRNA transcriptional profiling.  A mouse WG6 

array platform was used with 45281 probes.  

 

Quality control was carried out using the arrayQualityMetrics R package and no samples 

failed or were identified as outliers to their replicates. Statistical selection was performed 

using the detection p-value provided by Illumina. This value represents the confidence 

that a given transcript is expressed above the background defined by the negative control 

probe.  The R package lumi was used for this analysis191 .  The detection p-value 

threshold was set to 0.01.  Probes were required to be successfully detected (p-value<0.01 

in lumi) in at least one sample to pass the selection. The data is transformed using 

variance stabilisation and then normalised using quantile normalisation192. Gene 

expression was compared between PPARδ agonist treated and control 3T3-L1 cells using 
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the R package limma193. The threshold utilised in this analysis was the 5% confidence 

interval with false discovery rate.  The selected and normalised data was then analysed 

using the multivariate statistics in the Simca-P+ package as has been described.  The 6% 

of transcripts most responsible for separation in the multivariate models were then 

examined (3% most increased and 3% most decreased in PPARδ agonist treated cells as 

identified in the multivariate models). 

 

The Reactome Skypainter tool (www.reactome.org) was used to determine which 

pathways were statistically significant in the 3% of genes most increased and most 

decreased in transcription in PPARδ agonist treated cells.  From a given set of genes 

known to participate in a pathway, the total genes for mus musculus and the submitted list 

of genes (the genes increased or decreased in expression in PPARδ activated cells) of 

which N genes participate in the given pathway, the probability of observing at least N 

genes from a pathway if that pathway is not overrepresented in the submitted list of genes 

is calculated using the one-tailed version of Fisher's exact test. Therefore a p-value 

smaller than or equal to the significance level suggests that the pathway is statistically 

significant in the submitted list of genes. 

 

4.3.18 Univariate Statistical Analysis Methodology 

Selected microarray transcriptomic data was analysed by univariate techniques.  

Univariate analysis was performed using an unpaired Student’s t-test with a significance 

level set to p<0.05.  An F-test was also utilised to compare the variance of two 

distributions. All univariate analysis was conducted in the GraphPad Prism package 

(version 4). 
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4.4 Results 

4.4.1 Metabolomic Analysis 

1H-NMR spectroscopy, GC-MS, LC-MS and DI-MS analysis, combined with 

multivariate pattern recognition were used to profile metabolism within the white adipose 

tissue of ob/ob mice and 3T3-L1 murine cultured adipocytes treated with a PPARδ 

agonist.  The different analytical techniques had varying sensitivities. High resolution 1H-

NMR spectroscopy detected ~15 metabolites in white adipose tissue and 25 identifiable 

metabolites in 3T3-L1 cells. GC-MS detected 100-150 defined peaks from aqueous phase 

samples in both cultured cells and tissue and 30-40 defined peaks from tissue organic 

phase samples and 60-70 metabolites from 3T3-L1 cells.  Matching the mass spectra 

detected with those held in the NIST library identified 40-60% metabolites for aqueous 

extracts and ~70% for lipids.  Phospholipid targeted UPLC-MS detected ~600 unique 

metabolite species in positive mode.  Identification of metabolite species was performed 

using MS/MS. 

 

To assess metabolic changes in the dataset a common processing strategy was adopted 

throughout the analysis. To investigate metabolite perturbations common to PPARδ 

activation PCA and PLS-DA models were built for both the white adipose tissue and the 

3T3-L1 adipocytes.  PCA and PLS-DA models were generated for the white adipose 

tissue and the cultured cells, comparing the control group with the PPARδ agonist treated 

groups.  Metabolites identified in the VIP/coefficients plots as significantly contributing 

to separation in the models were then considered to have changed globally.  The 

metabolite changes in the white adipose tissue and 3T3-L1 adipocytes are considered 

below. 

 

4.4.1.1 White adipose tissue  

The most robust multivariate model generated from the profiling of white adipose tissue 

was from the analysis of GC-MS FAME data (Figure 4.1A) where significant changes in 

fatty acid metabolism were detected.  The concentration of longer chain fatty acids 

(pentadecanoic acid and palmitic acid) was decreased with a concomitant increase in the 
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concentration of the shorter chain fatty acids (caprylic acid C8:0, capric acid C10:0, 

lauric acid C12:0 and myristic Acid C14:0).  Analysis of DI-MS negative mode 

ionisation data of the organic phase metabolites also generated robust multivariate 

models (Figure 4.1B), which indicated that the composition of the FFAs in the white 

adipose tissue of the ob/ob mice was altered upon PPARδ activation.  A decrease in the 

concentration of the saturated long chain fatty acids (nonadecanoic acid C19:0, arachidic 

acid C20:0, henicosanoic acid C21:0 and behenic acid C22:0) was detected alongside an 

increase in the concentrations of the ω-6 fatty acid pathway intermediates (γ-linolenic 

acid C18:3, dihomo-γ-linolenic acid C20:3 and arachidonic acid C20:4). The 

concentration of free stearic acid and palmitic acid also increased, as did the desaturation 

products C18:1 and C18:2. One problem with investigating metabolic changes in whole 

animals is that changes in tissue metabolism are also influenced by alterations in systemic 

metabolism across the animal. This is particularly true for a PPARδ agonist which will 

profoundly influence a number of tissues. Hence, to address these metabolic changes 

were investigated in a tissue specific cell culture system. 
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Figure 4.1: A. PLS-DA scores plot showing the clustering of GC-MS chromatograms 
from the organic fraction of the white adipose tissue from ob/ob mice 

treated with a PPARδ agonist compared with the control group. ●, PPARδ 
agonist treated, ■, control (R2=0.321, Q2=0.685). B. PLS-DA scores plot 
showing the clustering of DI-MS negative ionisation mode chromatograms 
from the organic phase of white adipose tissue extracts from ob/ob mice 

treated with a PPARδ agonist compared with control animals ●, PPARδ 
agonist treated, ■, control (R2=0.724, Q2=0.584). Two technical replicates 
were analysed. 
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4.4.1.2 3T3-L1 adipocytes  

Investigation of the effects of PPARδ activation on the metabolism of the 3T3-L1 

adipocyte tissue specific cell line within a cell culture system was conducted to generate 

an in vitro model of adipose tissue specific PPARδ activation.  Oil red O staining for 

neutral lipids in the differentiated cells prior to treatment with the PPARδ agonist 

demonstrated that there were comparable levels of differentiation in the treatment groups 

(Figure 4.2A).  Spectrophotometric measurement at 510 nm of eluted Oil Red O from 

stained cells post PPARδ agonist treatment determined that activation of PPARδ 

decreased the concentration of neutral lipid accumulated in the 3T3-L1 adipocytes 

(Figure 4.2B). 

 

Figure 4.2: A. Graph showing cell counts and the percentage of differentiating cells 

prior to treatment with PPARδ agonist. B. Spectrophotometric 
measurement at 510 nm of Oil Red O eluted from stained 3T3-L1 cells 

treated with DMSO control, 100 nM and 1 µM GW610742 PPARδ 
agonist. 
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Global analysis of the 3T3-L1 metabolic response to PPARδ activation using the 

analytical platforms of GC-MS, LC-MS, DI-MS and 1H-NMR spectroscopy and 

multivariate pattern recognition implicated a number of key pathways as being altered 

(Figure 4.3).  A decrease in the concentration of a range of sugars including galactose, 

maltose and glucose and polyol pathway intermediates, glucitol and fructose was detected 

alongside an increase in the concentration of the TCA cycle intermediate isocitrate and 

glutamate, which is readily converted to 2-oxoglutarate. Also increased were the 

concentrations of the glucuronate and pentose interconversion pathway intermediates D-

glucuronate-1-phosphate, myo-inositol and arabitol. 
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Figure 4.3: A. PLS-DA scores plot showing the clustering of GC-MS chromatograms 

from the organic fraction of 3T3-L1 adipocytes treated with 1 µM PPARδ 

agonist GW610742 compared with the control group. ◊, 1 µM PPARδ 
agonist dose, ■, control (R2=0.82, Q2=0.815). B. PLS-DA scores plot 
showing the clustering of GC-MS chromatograms from the aqueous 

fraction of 3T3-L1 adipocytes treated with 100 nM and 1 µM PPARδ 

agonist GW610742 compared with the control group. ◊, 1 µM PPARδ 

agonist dose,  ●, 100 nM PPARδ agonist dose, ■, control (R2=0.771, 
Q2=0.746). C. PLS-DA scores plot showing the clustering of 1H-NMR 

spectra from the aqueous fraction of 3T3-L1 adipocytes treated with 1 µM 

PPARδ agonist GW610742 compared with the control group. ◊, 1 µM 

PPARδ agonist dose, ■, control (R2=0.871, Q2=0.845). D. PLS-DA scores 
plot showing the clustering of DI-MS negative mode ionisation 
chromatograms from the organic fraction of 3T3-L1 adipocytes treated 

with 100 nM and 1 µM PPARδ agonist GW610742 compared with the 

control group. ◊, 1 µM PPARδ agonist dose, ●, 100 nM PPARδ agonist 
dose, ■, control (R2=0.696, Q2=0.853). Three technical replicates were 
analysed for DI-MS.  

 

The high energy phosphate buffering capacity of the adipocytes was altered by PPARδ 

activation with a detected increase in the concentrations of both creatine and creatinine.  
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The essential fatty acid metabolism of the 3T3-L1 adipocytes was significantly affected 

by PPARδ activation.  The concentration of the ω-6 fatty acid pathway intermediates and 

end products (dihomo-γ-linoleic acid C20:3, arachidonic acid C20:4 and docosatetraenoic 

acid C22:4) were increased as were the intermediates and end products of the ω-3 fatty 

acid pathway (eicosapentaenoic acid C20:5, docosapentaenoic acid C22:5 and 

docosahexaenoic acid C22:6).   

 

The fatty acid oxidation/synthesis pathways were also altered by PPARδ activation.  A 

range of fatty acids (undecanoic acid C11:0, tridecanoic acid C13:0, myristic acid C14:0, 

myristoleaic acid C14:1, 12-methyl myristic acid 12-methyl C14:0, pentadecanoic acid 

C15:0, pentadecenoic acid C15:1, palmitic acid C16:0, 14-methyl palmitic acid 14-

methyl C16:0, palmitoleic acid C16:1, ethyl-9-palmitoleic acid ethyl-9-C16:1, margaric 

acid C17:0, heptadecenoic acid C17:1 and Oleate C18:1) were all identified as decreased 

in concentration with a concomitant increase in the concentration of the peroxisomal 

oxidation product, adipic acid.  

 

Changes in the composition of complex lipids was observed in the PPARδ activated 3T3-

L1 adipocytes.  An increase in the concentration of a number of glycerophosphocholine 

(GPCho) species was ascertained (C34:1 GPCho, C32:0 16:0/16:0 GPCho, C36:1 

GPCho, C34:1 GPCho, C36:2 GPCho, C36:3 GPCho, C35:5 GPCho, C34:0 GPCho). 

There was also a decrease in the concentration of specific TAGs (TAG 

C18:3/C17:0/C19:0), TAG C18:1/C17:1/C19:1, TAG C20:1/C17:1/C17:1, TAG 

C20:1/C15:0:C19:2, TAG C20:1/C15:1/C19:1, TAG C52:1, TAG C53:2, TAG C52:5, 

TAG C52:6). 

 

4.4.2 
13
C-labelled Substrate Studies 

In order to identify the metabolic mechanisms associated with PPARδ activation in 3T3-

L1 adipocytes the 13C-labelled substrates 1-13C glucose and U-13C-palmitate were used to 

monitor flux through glycolytic and fatty acid oxidative pathways. 
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4.4.2.1 1-
13

C-glucose  

Analysis by HSQC-NMR spectroscopy of the organic fraction of control and PPARδ 

agonist treated adipocytes incubated in media containing 1-13C glucose showed that 

glycerol and esterified glycerol from PPARδ treated cells had reduced enrichment 

compared with the control group (Figure 4.4).  Examination of the aqueous phase by 

GC-MS revealed that lactate, glutamate (readily labelled from the TCA cycle from 

labelled 2-oxoglutarate) and succinate from PPARδ agonist treated cells were enriched 

with 13C when compared to control (Figure 4.5).  GC-MS investigation of the organic 

fraction showed that palmitic acid from control adipocytes incubated in 1-13C glucose had 

a greater concentration of 13C enrichment than that of PPARδ agonist treated cells. 



Chapter 4 

 

 131 

 

Figure 4.4: A. A graph of the average integrated area of the 2D-HSQC-NMR organic 

fraction glycerol peak (13C Chemical shift 62.04) from control and 1 µM 

PPARδ agonist treated 3T3-L1 adipocytes incubated in 1-13C-glucose. B. 
A graph of the average integrated area of the 2D-HSQC-NMR organic 

fraction glycerol peak (13C Chemical shift 62.17) from control and 1 µM 

PPARδ agonist treated 3T3-L1 adipocytes incubated in 1-13C-glucose. C. 
A graph of the average integrated area of the 2D-HSQC-NMR organic 

fraction esterified glycerol peak from control and 1 µM PPARδ agonist 
treated 3T3-L1 adipocytes incubated in 1-13C-glucose. *P < 0.05, ***P < 
0.005. Parent ions were used to calculate ion ratio. 
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Figure 4.5: A. Graphs showing the M+1/M isotope ratio 13C enrichment of lactate, 
glutamate and succinate analysed by GC-MS of the aqueous fraction from 

control and PPARδ agonist dosed 3T3-L1 cells incubated with 1-13C-
glucose. *P < 0.05, **P < 0.01. The metabolites have been mapped to the 
glycolysis and TCA cycle metabolic pathways. ↑ indicates a metabolite 

increased in 13C enrichment by PPARδ activation. B. Graph showing the 
M+1/M isotope ratio 13C enrichment of palmitic acid analysed by GC-MS 

of the organic fraction from control and PPARδ agonist dosed 3T3-L1 
cells incubated with 1-13C-glucose. *P < 0.05. Parent ions were used to 
calculate ion ratio. 
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4.4.2.2 U-
13

C-palmitate   

Assessment of the aqueous phase by GC-MS indicated that the TCA cycle intermediates 

malate, fumarate, succinate and glutamate from PPARδ agonist treated adipocytes were 

enriched compared to control cells (Figure 4.6A).  Investigation of the organic phase by 

GC-MS demonstrated that the fatty acids downstream of palmitic acid in the β-oxidation 

pathway, myristic acid and lauric acid, showed greater 13C enrichment in PPARδ agonist 

treated cells; as did palmitoleic acid, the ∆-9 desaturation product of palmitic acid.  

Simultaneously the enrichment of stearic acid and arachidic acid, which are upstream of 

palmitic acid in the fatty acid synthesis pathway, was reduced in PPARδ agonist treated 

cells (Figure 4.6B). 
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Figure 4.6: A. Graphs showing the M+1/M isotope ratio 13C enrichment of malate, 
glutamate, fumarate and succinate analysed by GC-MS of the aqueous 

fraction from control and PPARδ agonist dosed 3T3-L1 cells incubated 
with U-13C-palmitate. *P < 0.05, **P < 0.01,***P < 0.005. The 
metabolites have been mapped to the TCA cycle metabolic pathway. ↑ 

indicates a metabolite increased in 13C enrichment by PPARδ activation. 
B. Graphs showing the isotope ratio 13C enrichment of arachidic acid, 
stearic acid, palmitoleic acid, myristic acid and lauric acid analysed by 

GC-MS of the organic fraction from control and PPARδ agonist dosed 
3T3-L1 cells incubated with U-13C-palmitate. *P < 0.05, **P < 0.01. The 

metabolites have been mapped to the fatty acid synthesis/β-oxidation 
pathway. ↑ indicates a metabolite increased, and ↓ indicates a metabolite 

decreased in 13C enrichment by PPARδ activation. Parent ions were used 
to calculate ion ratio. 



Chapter 4 

 

 135 

4.4.3 Respirometric Analysis  

Following the identification of increased flux through the glycolytic, TCA cycle and β-

oxidation metabolic pathways in 3T3-L1 adipocytes treated with PPARδ agonist, 

respirometric analysis was conducted to investigate the influence of PPARδ activation on 

the rate of oxygen consumption of the cells.  The oxygen consumption of PPARδ agonist 

treated and control 3T3-L1 cells was measured both when using fatty acid as substrate 

and isolated electron transport chain complex IV oxidation using in situ studies in a 

Clarke type oxygen electrode.  Both complex IV and fatty acid oxidation were 

significantly increased in the adipocytes exposed to the PPARδ agonist when compared 

to control adipocytes (Figure 4.7A and Figure 4.7B). 

 

Figure 4.7: A. Graph showing the respiratory rates of in situ permeabilised control and 

PPARδ agonist treated 3T3-L1 cells performing β-oxidation using 
palmitoyl-carnitine measured using a Clark-type oxygen electrode. *P = 
0.05. B. Graph showing the respiratory rates of the electron transport chain 

complex IV of in situ permeabilised control and PPARδ agonist treated 
3T3-L1 cells measured using a Clark-type oxygen electrode. *P < 0.05. 
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4.4.4 Microarray Transcriptomic Analysis   

The combination of steady state metabolomic changes in adipose tissue and adipocytes 

and isotope labelling studies indicated a profound upregulation of β-oxidation following 

PPARδ activation. These changes were investigated in further detail by scrutinising the 

transcriptome using microarray analysis of PPARδ activation in adipocytes. Of the 45281 

probes utilised 13718 were expressed above the background defined by the negative 

control probe.  From these 2349 were determined to be differentially expressed (P < 0.05) 

between PPARδ agonist treated and control 3T3-L1 adipocytes, with 117 estimated false 

positives using a threshold of 5% of differentially expressed probes.  Multivariate models 

were built using the normalised data from the 13718 transcripts measured (Figure 4.8).   

 

Figure 4.8:  PLS-DA scores plot showing the clustering of gene transcription in control 

and PPARδ agonist treated 3T3-L1 adipocytes as measured with 

microarray analysis. ●, PPARδ agonist treated, ■, control (R2=0.35, 
Q2=0.9). 

 

The 6% of transcripts most responsible for separation in the multivariate models were 

then examined (3% most increased and 3% most decreased in PPARδ agonist treated 

cells as identified in the multivariate models).  The multivariate analysis indicated that 

the mRNA of genes involved in a number of key metabolic pathways was altered 

following PPARδ activation.  The reactome skypainter tool was then utilised to 
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determine which pathways and reactions were statistically overrepresented by the 3% 

most increased (Table 4.1) and 3% most decreased transcripts in PPARδ agonist treated 

cells identified in the multivariate models. 

P-value Pathway 
Transcripts increased in PPARδδδδ agonist treated cells 

mapping to the pathway 

6.3e-08 Glucose regulation of insulin secretion 
Cycs, Etfa, Mdh2, Aldoa, Dld, Ndufb10, Ndufb9, Atp5a1, Ndufb5, Gpi1, 

Tpi1, Pgk1, mt-Co2, Sdhb, Sdhd, mt-Atp6, Cox7b, Ndufb2 

1.3e-06 Integration of energy metabolism 
Cycs, Etfa, Mdh2, Aldoa, Dld, Ndufb10, Ndufb9, Atp5a1, Cpt2, Ndufb5, 

Gpi1, Tpi1, Pgk1, mt-Co2, Sdhb, Sdhd, mt-Atp6, Cox7b, Ndufb2 

1.3e-06 Diabetes pathways 
Hspa8, Cycs, Wdr89, Etfa, Mdh2, Aldoa, Dld, Ndufb10, Myo5a, Ndufb9, 
Atp5a1, Rps21, Rps3a, Sec11c, Ndufb5, Gpi1, Tpi1, Pgk1, Sdhb, mt-Co2, 

Dnajb9, Sdhd, mt-Atp6, Cox7b, 2900062L11Rik, Ndufb2 

8.5e-06 Electron transport chain 
Cycs, Ndufb5, Etfa, mt-Co2, Ndufb10, Sdhb, Sdhd, Ndufb9, Cox7b, 

Ndufb2 

3.4e-05 
H2AX in recruitment of repair factors for DNA 

damage and double strand breaks  
Hist1h2ah, Hist2h2ac, Hist1h2ao, Hist1h2af 

7.1e-04 Citric acid cycle (TCA cycle) Dld, Sdhb, Sdhd, Mdh2 

1.4e-03 
Mitochondrial fatty acid β-oxidation of 

saturated and unsaturated fatty acids 
Hadhb, Acadl, Acadvl 

1.6e-03 Glycolysis Aldoa, Tpi1, Pgk1, Gpi1 

1.7e-03 G1/S DNA damage checkpoints Cdc25a, Rfwd2, Psmd12, Cdk2, Psmd14, Psmd11 

2.1e-03 Gluconeogenesis Aldoa, Tpi1, Pgk1, Mdh2, Gpi1 

3.2e-03 
Transfer of electrons through the succinate 

dehydrogenase complex 
Sdhb, Sdhd 

4.3e-03 Glucose metabolism Pgm2, Aldoa, Tpi1, Pgk1, Dld, Mdh2, Gpi1 

4.5e-03 Metabolism of lipids and lipoproteins 
Agpat3, Hadhb, Ppp1cc, Slc27a1, Lass2, Angptl4, Cpt2, Akr1b3, Abcd3, 

Acadl, Sgpl1, Acaa2, Acadvl, Mod1, Hmgcs2, Adfp 

5.3e-03 Metabolism of carbohydrates Prps2, Mdh2, Gpi1, Aldoa, Pgm2, Pgk1, Tpi1, Dld 

7.8e-03 
Cdc25A mediated dephosphorylation of Cyclin 

A:phospho-Cdk2 
Cdc25a, Cdk2 

7.8e-03 Cleavage of the signal peptide of preproghrelin Sec11c, 2900062L11Rik 

7.8e-03 Notch 1 traffic and signalling Notch1, Fbn1 
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7.8e-03 
PEX-19 docks ABCD1/ABCD3 to peroximal 

membrane 
Abcd3, Pex19 

7.8e-03 
Formation of acetoacetic acid in synthesis of 

ketone bodies 
Hmgcs2, Acaa2 

1.1e-02 
Dephosphorylation of Cyclin:phospho-Cdc 

complexes in cell cycle regulation 
Cdc25a, Cdk2 

1.5e-02 
Activation of the mRNA upon binding of the 

cap-binding complex and eIFs, and subsequent 
binding to 43S 

Rps3a, Eif4b, Pabpc1, Eif4ebp1, Rps21 

1.8e-02 
Cyclin:Cdk-associated events at G1/S phase 

DNA damage checkpoint transition in the cell 
cycle 

Cdc25a, Psmd12, Cdk2, Psmd14, Psmd11 

2.0e-02 Proteasome mediated degradation of COP1 Rfwd2, Psmd12, Psmd14, Psmd11 

2.0e-02 DARPP-32 events Ppp1cc, Cdk2, Pde1b 

2.2e-02 
Synthesis of deoxyribonucleoside 5'-
diphosphates from ribonucleoside 5'-

diphosphates 

Glrx2, Txn1 

3.2e-02 Additional cell cycle checkpoints Cdc25a, Cdc20, Rfwd2, Psmd12, Cdk2, Psmd14, Psmd11 

Table 4.1: Table of the pathways and reactions statistically significant in the 3% most 

increased transcripts in PPARδ agonist treated cells identified in the 
multivariate models. From a given set of genes known to participate in a 
pathway, the total genes for mus musculus and the submitted list of genes 

(the genes increased in PPARδ activated cells) of which N genes 
participate in the given pathway, the probability of observing at least N 
genes from a pathway if that pathway is not overrepresented in the 
submitted list of genes is calculated using the one-tailed version of Fisher's 
exact test.  A p-value smaller than or equal to the significance level 
suggests that the pathway is significantly represented.  The genes 
increased in expression and contributing to each pathway are shown. 

 

Key pathways of homeostatic regulation identified as statistically affected from the 

transcripts increased in expression by PPARδ activation as can be seen in table 1 include 

regulation of insulin secretion, integration of energy metabolism and pathways implicated 

in diabetes.  Specific metabolic pathways and reactions were also influenced by PPARδ 

activation. 

 

The expression of genes coding proteins involved in the mitochondrial β-oxidation 

pathway was increased.  Transcription of several of the core enzymes including carnitine 



Chapter 4 

 

 139 

palmitoyltransferase II, very long chain acyl-Coenzyme A dehydrogenase, long chain 

acyl-Coenzyme A dehydrogenase, hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-

Coenzyme A thiolase/enoyl-Coenzyme A hydratase trifunctional enzyme and acetyl-CoA 

acyltransferases 2 were increased in PPARδ agonist treated cells.  An increase in the 

expression of a number of genes functioning in peroxisomal fatty acid β-oxidation was 

also detected and includes peroxisomal D3,D2-enoyl-CoA isomerase, peroxisomal enoyl 

Coenzyme A hydratase 1 and ATP-binding cassette, sub-family D, member 3.  Alongside 

these changes were an increase in the transcription of genes involved in both 

mitochondrial and peroxisomal biogenesis and maintenance (mitochondrial specific 

Single stranded DNA binding protein 1, mitochondrial ribosomal proteins S6 and S12 

and peroxisomal biogenesis factors 14 and 19). 

 

The transcription of several genes whose products play a role in the glycolytic metabolic 

pathway was also upregulated in PPARδ agonist treated cells. Affected transcripts 

include those for phosphoglucomutase 2, glucose phosphate isomerise 1, aldolase A, 

fructose-bisphosphate and phosphoglycerate kinase 1.  The expression of genes encoding 

enzymes responsible for the catalysis of the reactions of the TCA cycle, malate 

dehydrogenase, components of the succinate dehydrogenase complex and 

dihydrolipoamide dehydrogenase, was also upregulated.   

 

There was a detected increase in the expressed mRNA concentrations of components of 

the electron transport chain. Amongst the increased transcripts were NADH 

dehydrogenase and several of its accessory subunits, cytochrome c, cytochrome c oxidase 

II and ATP synthase. 

 

The metabolomic data indicated that the ∆-9 desaturation of fatty acids was a key point in 

the PPARδ regulated processing of fatty acids.  However, the transcripts coding for the 

fatty acid desaturase 3 and the stearoyl-CoA desaturase, enzymes responsible for the 

desaturation of fatty acids were not found in the 3% most increased transcripts from 

PPARδ agonist treated cells.  Therefore the normalised data for these transcripts was 

selected for univariate statistical analysis.  Using an unpaired Student’s t-test with a 
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significance level set to p<0.05 and an F-test, utilised to compare the variance of two 

distributions, the transcription of both fatty acid desaturase 3 and stearoyl-CoA 

desaturase was found to be significantly increased in PPARδ agonist treated adipocytes 

(Figure 4.9). 

 

Figure 4.9 Graphs of the microarray normalised data for the transcripts of A. fatty 

acid desaturase 3 and B. stearoyl-CoA desaturase 2 in control and PPARδ 
agonist treated 3T3-L1 adipocytes analysed using an unpaired Student’s t-
test. The transcription of both fatty acid desaturase 3 and stearoyl-CoA 

desaturase was found to be significantly increased in PPARδ agonist 
treated adipocytes. *P < 0.05, **P < 0.01. 
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4.5 Discussion 

 

A comprehensive array of analytical techniques were used in a metabolomic investigation 

to study the metabolic changes occurring in white adipose tissue from ob/ob mice 

following PPARδ activation and to understand the role of PPARδ in treating the 

combined effects of type II diabetes and obesity.  Experimentation was then progressed 

into a tissue specific cell line (3T3-L1 adipocytes) within a cell culture system to generate 

an in vitro model of PPARδ activation in adipose tissue, and in particular to investigate 

the upregulation of fatty acid oxidation in isolation from changes induced by PPARδ 

activation in other tissues, and systemic metabolism as a whole.  However, steady state 

metabolite concentrations cannot fully define changes in flux. To elucidate the metabolic 

mechanisms responsible for the observed changes in metabolite concentrations, within 

adipose tissue, a 13C stable isotope substrate labelling study, respirometric study and 

transcriptomic microarray study were employed. 

 

PPARδ activation in white adipose tissue generated changes in the fatty acid composition 

whereby there was a decrease in the concentration of the longer chain fatty acids and a 

concomitant increase in the shorter chain fatty acids.  The detected alterations in the 

constituent fatty acids were indicative of an increase in fatty acid β-oxidation resulting 

from PPARδ activation.  When examining PPARδ activation in the 3T3-L1 adipocyte 

cell line it was again found that there was a decrease in the concentration of a range of 

fatty acids alongside an increase in the concentration of TCA cycle intermediates and 

adipic acid, the main end product of peroxisomal β-oxidation220.   

 

The mechanism by which PPARδ activation brought about the alterations in fatty acid 

composition was confirmed using U-13C-palmitate and 1-13C-glucose.  The U-13C-

palmitate labelling study established that PPARδ activation resulted in an increase in flux 

through the β-oxidation pathway, as 13C-enrichment was increased in shorter chain fatty 

acids from PPARδ treated adipocytes, found downstream of palmitate in the β-oxidation 

pathway, relative to the control group.  The 13C-enrichment of TCA cycle intermediates 
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was increased in adipocytes incubated in U-13C-palmitate and treated with the PPARδ 

agonist relative to the enrichment in the control adipocytes, confirming increased 

oxidative breakdown of fatty acids.  Concomitantly the fatty acid synthesis pathway was 

confirmed as downregulated; longer chain fatty acids found upstream in the synthesis 

pathway showed decreased 13C-enrichment in 3T3-L1 adipocytes incubated in labelled 

palmitate and treated with the PPARδ agonist compared with the control group. A result 

reciprocated by the decreased 13C-enrichment detected in palmitate from cells incubated 

with 1-13C-glucose and treated with the PPAR agonist when compared to control 

adipocytes.  This conclusion was supported by the respirometric data which confirmed 

that adipocytes treated with PPARδ had a higher oxidative rate when using fatty acids as 

a fuel source.  Transcriptomic analysis supported the findings from the metabolic studies 

with identified increases in the transcription of genes involved in fatty acid mitochondrial 

and peroxisomal β-oxidation including carnitine palmitoyltransferase II, very long chain 

acyl-Coenzyme A dehydrogenase, long chain acyl-Coenzyme A dehydrogenase, 

hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-

Coenzyme A hydratase trifunctional enzyme, acetyl-CoA acyltransferases 2, D3,D2-

enoyl-CoA isomerase, peroxisomal enoyl Coenzyme A hydratase 1 and ATP-binding 

cassette, sub-family D, member 3).   

 

A further key finding was that PPARδ activation lead to an increase in the oxidation of 

glucose. The metabolomic studies demonstrated that upon PPARδ activation the steady 

state concentration of several sugars, including glucose was decreased and accompanied 

by an increase in several TCA cycle intermediates.  An increase in the catabolism of 

glucose resulting from PPARδ activation was confirmed using 1-13C-glucose with the 

observation that the enrichment of lactate, succinate and glutamate in cells treated with 

PPARδ agonist was greater than that of control adipocytes. Transcriptomic analysis 

substantiated this finding with the identification that the expression of genes with roles in 

glycolysis and the TCA cycle was significantly increased upon PPARδ activation.  Genes 

affected include those for phosphoglucomutase 2, glucose phosphate isomerise 1, 

aldolase A, fructose-bisphosphate, phosphoglycerate kinase 1, malate dehydrogenase, 
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components of the succinate dehydrogenase complex and dihydrolipoamide 

dehydrogenase.   

 

Additional evidence for an increase in global oxidative metabolism, over a view of 

exclusive fatty acid oxidation, comes from the respirometric studies, in which it was 

ascertained that independently of fatty acid oxidation the oxidative rate of electron 

transport chain complex IV was increased with PPARδ activation.  An increase in global 

oxidation resulting from PPARδ activation is supported by transcriptomic analysis which 

shows that the receptor is responsible for increases in mitochondrial biogenesis and 

expression of key electron transport chain components such as cytochrome c, cytochrome 

c oxidase, complex II and ATP synthase. 

 

Supporting the evidence for increased global oxidative metabolism is the finding that 

PPARδ activation increased the concentration of creatine and creatinine within the 3T3-

L1 adipocytes and so altered the high energy phosphate buffering capacity of the cells.  

These findings are consistent with previously reported observations in skeletal muscle.  A 

decrease in the intramyocellular lipid-to-total creatine ratio in the soleus and tibialis 

anterior muscles from Sprague-Dawley rats treated with selective PPARδ agonist 

GW610742 has been discerned using in vivo 1H-MRS221.  In addition an increase in the 

concentration of creatine and phosphocreatine was detected in the gastrocnemius of ob/ob 

mice following pharmacological activation of PPARδ
222.    

 

The ω-6 essential fatty pathway and both the ω-3 and ω-6 essential fatty acid pathways 

were upregulated in PPARδ agonist treated ob/ob mice white adipose tissue and 3T3-L1 

adipocytes, respectively.  The ∆ 6-desaturase is integral to both pathways; the enzyme 

introduces the initial double bond to linoleate forming γ-linolenate in the  ω-6 pathway 

and introduces the double bond to linolenate forming stearidonic acid.  The ∆ 6-

desaturase gene is known to contain a PPRE and is under PPAR transcriptional control223 

and therefore appears to be the point of PPARδ transcriptional control within the 

essential fatty acid pathways. 



Chapter 4 

 

 144 

Using U-13C-palmitate it was shown that when PPARδ is activated in 3T3-L1 adipocytes 

the enrichment of palmitoleate is increased relative to control and therefore desaturation 

of palmitate to palmitoleate is increased.  Stearoyl-CoA desaturase, the enzyme 

responsible for the ∆-9 desaturation of saturated fatty acids to the monounsaturated form, 

is known to be under PPAR expressional control224. Univariate analysis of the normalised 

microarray data for stearoyl-CoA desaturase and fatty acid desaturase 3, an additional 

enzyme responsible for the ∆-9 desaturation of fatty acids, demonstrated that the 

expression of these enzymes was increased in the PPARδ agonist treated adipocytes. 

 

A decrease in the concentration of a number of TAGs was observed in the 3T3-L1 

adipocytes. Within white adipose tissue a number of FFAs, such as palmitic acid, were 

increased in concentration despite their total concentration within the tissue decreasing.  

These metabolic alterations are complicit with previously observed changes indicating 

that PPARδ activation in white adipose tissue results in an increase in lipolysis in the 

tissue225.  The results are corroborated by our observation, made using HSQC-NMR, that 

there was a decrease in the enrichment of glycerol in adipocytes incubated with 1-13C-

glucose and treated with PPARδ agonist when compared to control cells; indicating 

reduced synthesis of glycerol from glucose on activation of PPARδ. This, in part, could 

also explain the decrease in the concentration of TAGs due to reduced synthesis.  It is 

reasonable to conclude that PPARδ activation leads to a mobilisation of lipid stores and 

concomitant decrease in the synthesis of the complex lipids such as TAGs required for 

fatty acid storage.       

 

It is worthy of note that the concentrations of several metabolites in the polyol pathway 

were decreased in concentration following PPARδ activation; a finding likely to be more 

attributable to increased glucose catabolism than direct control of the pathway by the 

receptor.  However, given the role that the polyol pathway and aldose reductase have in 

the formation of toxic advance glycation end-products and resultant diabetic 

complications such as neuropathy, nephropathy and retinopathy, a decrease in the activity 

of this pathway may prove a significant anti-diabetic effect of PPARδ activation226. 
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The increased concentrations of the glucuronate and pentose phosphate pathway 

intermediates can be explained by previous studies which demonstrate that PPARδ 

increases glucose flux through the pentose phosphate pathway contributing to the nuclear 

receptors ability to ameliorate hyperglycaemia; it has been suggested that the 

glyceraldehyde-3-phosphate, formed from the 5-carbon sugar phosphates during the 

pentose phosphate shunt, can then enter glycolysis227. 
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4.6 Conclusions 

 

To summarise, it has been shown that the anti-diabetic and anti-obesity effects of PPARδ 

activation are brought about, in part, by a decrease in fatty acid synthesis and fat storage 

within synthesised TAG depots and a concomitant mobilisation of complex lipid fat 

stores.  The mobilisation of lipid energy stores is accompanied by upregulation of not 

only fatty acid oxidation but also by carbohydrate oxidative metabolism in white adipose 

tissue, a tissue not traditionally thought of as being energetic and oxidative.  Essential to 

this process is the integration and co-ordination of the energy metabolism pathways, 

which PPARδ accomplishes by upregulating the transcription of a series of genes 

involved in glycolysis, the TCA cycle, the electron transport chain and fatty acyl β-

oxidation (Figure 4.10) (Table 4.1).  
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Figure 4.10: Diagram showing the effect of PPARδ activation on the integration of the 
energy metabolism pathways of 3T3-L1 adipocytes based on the 
combination of results from the metabolomic, transcriptomic and stable 
isotope labelling studies.  Red indicates an increase in concentration or 

expression in cells treated with the GW610742 PPARδ selective agonist. 
Blue indicates a decrease in concentration in cells treated with the 

GW610742 PPARδ selective agonist. 
 

In conclusion PPARδ activation in white adipose tissue does not exclusively stimulate 

either fatty acid oxidation or carbohydrate oxidation but rather global oxidative 

metabolism; activation of the nuclear receptor burns fatty acids by stoking the 

carbohydrate fire. 
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Chapter 5 

 

Tissue Specific PPARγγγγ Activation Sequesters Glucose and 

Lipid into the White Adipose Tissue Storage Depot 

 
 

5.1 Introduction 

 

PPARγ is a ligand activated transcription factor belonging to the PPAR nuclear receptor 

family.  Upon binding its ligand the receptor heterodimerises with the RXR and binds to 

specific sequences in target genes known as PPRE135.  Once bound to ligand the PPARs 

undergo a conformational change, facilitating the release of corepressors and allowing the 

binding of transcriptional coactivators228.   The receptor exists in two distinct protein 

isoforms, PPARγ1 and PPARγ2, which exhibit specific tissue expression patterns229.  

PPARγ1 is found almost ubiquitously whereas the PPARγ2 isoform is definitively 

expressed in adipose tissue230. 

 

White adipose tissue is vital to the control of energy metabolism and global lipid 

homeostasis.  PPARγ plays an essential role within adipose tissue, where it is the master 

regulator of adipogenesis and key to mature adipocyte survival158, 159.  The receptor is 

also a crucial regulator of lipid metabolism in mature adipocytes.  Activation of PPARγ 

regulates expression of several lipid metabolism genes including oxidized LDL receptor 

1, lipoprotein lipase, the glycerol transporter aquaporin 7, phosphoenolpyruvate 

carboxykinase and fatty-acid transport protein231, 232, 233, 234.  Upregulation of these genes 

results in an increase in the uptake of circulating fatty acids and consequentially an 

enhancement of adipocyte lipid storage.  PPARγ activation also inhibits lipolysis235, 
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upregulates the expression of GLUT4 glucose transporter mRNA levels and increases 

glucose uptake in adipocytes236. 

 

Despite its role in adipose tissue formation, PPARγ is also a target for insulin sensitising 

drugs for the treatment of TIIDM164.  The TZD class of compounds are PPARγ ligands 

currently available in the clinic that bring about insulin sensitisation163.  Nevertheless, the 

use of TZDs for the treatment of TIIDM has not been without controversy.  In 2007 

meta-analyses of two TZDs, rosiglitazone and pioglitazone were published, suggesting 

that both drugs were associated with increased risk of heart failure (rosiglitazone 109% 

increase P < 0.001, pioglitazone 41% increase P = 0.02)237, 238.   Although rosiglitazone 

was not found to increase cardiovascular mortality and pioglitazone was shown to reduce 

the risk of myocardial infarction, stroke and death in TIIDM patients.  The world wide 

sales for the TZDs were significantly affected by these findings with the revenue 

generated by rosiglitazone dropping from $3.2 billion in 2006 to $1.49 billion in 2008.  

Pioglitazone sales were more stable and in 2008 generated $2.4 billion world wide. In 

spite of the contention over the use of TZDs they continue to share a substantial amount 

of the anti-diabetic drug market.     

 

The insulin sensitising mode of action of PPARγ activation is thought to be a result of the 

fatty acid sequestration into TAGs and storage in adipocytes; lowering plasma FFA 

concentrations239 and partitioning the lipids away from other peripheral tissues, such as 

skeletal muscle, where their accumulation is deleterious and may cause lipotoxicity240.  

However, other plasma lipid concentration lowering drugs do not share this insulin 

sensitising effect, suggesting additional mechanisms are at play. 



Chapter 5 

 

 151 

5.2 Aims and Objectives 

 

With the aim of identifying metabolic effects of PPARγ activation in adipose tissue that 

may be contributing to the nuclear receptor’s anti-diabetic potential a metabolomics study 

using both in vivo analysis in the ob/ob mouse and in vitro analysis using the murine 3T3-

L1 adipocyte cell line has been performed.  A synthetic, high affinity, non-TZD, PPARγ 

agonist, GW347845, was used to activate the nuclear receptor in both the mice and the 

adipocyte cell line.  To increase the coverage of the metabolome a combination of 

multiple analytical techniques was used.  GC-MS, 1H-NMR, LC-MS and DI-MS in 

conjunction with multivariate statistics were employed to probe the metabolic phenotype 

of PPARγ activated adipose tissue.  Mechanistic analysis was then performed with 13C-

stable isotope substrate labelling studies, using 1-13C-glucose and U-13C-palmitate, and 

transcriptomic microarray analysis to explicitly define the pathways, as identified in the 

metabolomic analysis, by which PPARγ activation alters the metabolism of adipose 

tissue. 

 

It was discovered that PPARγ activation in white adipose tissue not only resulted in the 

increased uptake, elongation and sequestration of circulating fatty acids into TAG pools 

and a decrease in fatty acid breakdown by β-oxidation but also an increase in de novo 

fatty acid synthesis directly from glucose.  In addition PPARγ activation is implicated in 

the augmentation of calcium cellular signalling; a signalling pathway associated with 

insulin signalling and downstream metabolic effects.  Providing additional mechanisms 

for the observed normalisation of blood glucose and dyslipidaemia in both human 

patients and murine subjects with the metabolic syndrome and TIIDM when treated with 

PPARγ agonists.  
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5.3 Materials and Methods 

 

5.3.1 Ob/Ob Mouse Study Tissue Collection and Extraction 

Animals were kept as is outlined in Chapter 2 Materials and Methods (section 2.2.1. 

Animal handling).  Briefly, the ob/ob mice were dosed orally daily at 8 am with 0.5% 

Hydroxypropylmethylcellulose/0.1% Tween80 vehicle control (n=8) or a PPARγ agonist, 

GW347845 (n=8 at 5 mg/kg).  Injection volume was adjusted daily according to body 

weight at 10 ml/kg.  White adipose tissue was collected as summarised in Chapter 2 

Materials and Methods (section 2.2.4. Tissue handling). 

 

5.3.2 3T3-L1 Cell Culture 

3T3-L1 preadipocytes were grown and differentiated as described in Chapter 2 

Materials and Methods (section 2.1.1 3T3-L1 cell culture and adipocyte 

differentiation).   

 

5.3.3 3T3-L1 PPARγγγγ Activation 

3T3-L1 adipocytes were treated with the selective PPARγ agonist GW347845 as is 

outlined in Chapter 2 Materials and Methods (2.1.4. Activation of PPARγ in 3T3-L1 

adipocytes). Briefly, adipocytes were treated with either DMSO (control n=6; T75 flasks) 

or GW347845 PPARγ selective agonist (n=6; T75 flasks at 10 nM and 100 nM) for 2 

days. 

 

5.3.4. Oil Red O Staining and Intracytoplasmic Lipid Accumulation 

Three additional T75 flasks of 3T3-L1 adipocytes were grown per control, 10 nM and 

100 nM treatment groups. Three flasks per group were stained prior to PPARγ agonist 

treatment to assess levels of differentiation.  The cells were stained and the 
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intracytoplasmic lipid accumulation assessed as in Chapter 2 Materials and Methods 

(section 2.1.5 Oil Red O staining and intracytoplasmic lipid accumulation). 

 

5.3.5 3T3-L1 Cell Collection  

The cells were collected and their metabolites extracted as described in Chapter 2 

Materials and Methods (sections 2.1.6 and 2.3 Adipocyte cell collection).  

 

5.3.6 Tissue and 3T3-L1 Metabolite Extraction  

Metabolites were extracted from white adipose tissue and 3T3-L1 cells using the 

modified Bligh and Dyer method187.  The details are as in Chapter 2 Materials and 

Methods (section 2.3 3T3-L1 Cell, Primary Adipocyte and Tissue Metabolite Extraction). 

 

5.3.7 
1
H-NMR Spectroscopy  

All samples were analysed using a Bruker AVANCE II+ spectrometer operating at 

500.13 MHz for the 1H frequency using a 5 mm Broadband TXI Inverse ATMA probe.  

All procedures are as depicted in Chapter 2 Materials and Methods (sections 2.6.1. 

Spectrometer, 2.6.2. Sample preparation, 2.6.3. 1-dimensional 
1
H-Nuclear Magnetic 

Resonance experimental method and 2.6.4. Processing 1-dimensional 1H-Nuclear 

Magnetic Resonance data). 

 

5.3.8 GC-MS Analysis 

The aqueous phase of extracts was derivatised as described in Chapter 2 Materials and 

Methods (section 2.7.1 Derivatisation of aqueous phase metabolites). 

 

The organic phase of extracts was derivatised as described in Chapter 2 Materials and 

Methods (section 2.7.2 Derivatisation of organic phase metabolites).   
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GC-MS analyses were made using a Trace GC Ultra coupled to a Trace DSQ II single-

quadrupole mass spectrometer.  Parameters for the GC-MS analysis of aqueous phase 

metabolites and organic phase metabolites were as outlined in Chapter 2 Materials and 

Methods (sections 2.7.3.1 Gas Chromatography-Mass Spectrometry methods for 

aqueous phase samples and 2.7.3.2 Gas Chromatography-Mass Spectrometry methods 

for organic phase samples).  Derivatised organic samples were injected with a split ratio 

of 60 for white adipose tissue and 8 for 3T3-L1 cells. 

 

GC-MS chromatograms were processed using Xcaliber (version 2.0; Thermo Electron) as 

outlined in Chapter 2 Materials and Methods (2.7.5. Processing Gas Chromatography-

Mass Spectrometry data). 

 

5.3.9 UPLC-MS Analysis 

Chromatography was performed using an ACQUITY UPLC® system equipped with an 

Acquity UPLC 1.7 µm BEH C8 column (2.1×100 mm) coupled to a Micromass QTof-

Ultima with a Z-spray electrospray source.  All chromatography and mass spectrometric 

parameters were as outlined in Chapter 2 Materials and Methods (section 2.8.1. 

Chromatography and mass Spectrometry parameters) 

 

The organic phase of adipose tissue extracts was reconstituted in methanol-chloroform 

(2:1, 500 µl).  This was further diluted 10-fold prior to injection onto the C8 column (5 

µl).  The column mobile phase was held at 85% solvent B for 0.5 min followed by an 

increase from 85%-100% solvent B over 0.5-8 min.  The mobile phase was then held at 

100% B for 4 min.  Between 12 and 12.25 min the mobile phase was returned to 85% B 

and held for 1.75 min to re-equilibrate the column. 

 

3T3-L1 Cell Organic phase metabolites were reconstituted in methanol-chloroform (2:1, 

1 ml).  Aliquots of diluted organic phase sample (5 µl) were injected onto the C8 column.  

The column mobile phase was held at 50% solvent B for 0.5 min followed by an increase 

from 50%-100% solvent B over 0.5-6.5 min.  The mobile phase was then held at 100% B 
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for 3.5 min.  Between 10 and 10.25 min the mobile phase was returned to 50% B and 

held for 3.75 min to re-equilibrate the column.    The total UPLC cycle was 14 min and 

the eluent flow rate was 600 µl/min for both methods.    

 

Tandem mass spectrometry procedures were as described in Chapter 2 Materials and 

Methods (2.8.3 Tandem mass spectrometry method). 

 

Data was processed using Micromass MarkerLynx Applications Manager as depicted in 

Chapter 2 Materials and Methods (2.8.4. Processing Liquid Chromatography-Mass 

Spectrometry data). 

 

5.3.10 DI-MS Analysis 

Mass spectrometric analysis was performed using a Thermo Finnigan LTQ equipped with 

a Finnigan Surveyor pump and Finnigan Micro AS Autosampler. 

 

The white adipose tissue organic phase samples for DI-MS were reconstituted in 1 ml 

methanol:THF (2:1 v/v). 60 µl of each sample was aliquoted into a 96 well plate where 

the samples were diluted by the addition of a further 600 µl methanol:THF (2:1 v/v). 

 

The 3T3-L1 organic phase samples for DI-MS were reconstituted in 500 µl 

methanol:THF (2:1 v/v). 100 µl of each sample was added to a 96 well plate. Samples 

were analyzed in triplicate for negative mode and duplicate for positive mode ionisation.   

 

All other direct infusion and mass spectrometric parameters were as described in 

Chapter 2 Materials and Methods (section 2.9.2. Direct infusion and mass 

spectrometry parameters). 

 

DI-MS chromatograms were processed using Xcaliber as outlined in Chapter 2 

Materials and Methods (2.9.3. Processing of direct infusion mass spectrometry data). 
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5.3.11 
13
C-glucose Substrate Labelling Study  

At 2 days post differentiation media was removed from the T75 flasks and replaced with 

DMEM (10% (v/v) FBS, 50 units/ml penicillin, and 50 µg/ml streptomycin) and either 

4.5 g/l unlabelled glucose with DMSO control (n=6) or with 1 µM GW347845 PPARγ 

selective agonist (n=7) or 4.5 g/l 1-13C-glucose with DMSO control (n=7) or with 1 µM 

GW347845 PPARγ selective agonist (n=7).  After 2 days cells were collected and 

metabolites extracted as described in Chapter 2 Materials and Methods (sections 2.1.6 

and 2.3 Adipocyte cell collection).  

 

5.3.12 
13
C-palmitate Substrate Labelling Study 

Preparation of 13C labelled and unenriched palmitate solution is defined in Chapter 2 

Materials and Methods (2.4.3. Preparation of 
13

C and 
12

C palmitate solution). 

 

At 2 days post-differentiation media was removed from the T75 flasks and replaced with 

DMEM (serum free, 50 units/ml penicillin, and 50 µg/ml streptomycin) and either 70 µM 

unlabelled palmitate (n=6) with DMSO control (n=6) or with 1 µM GW347845 PPARγ 

selective agonist (n=7)  or 70 µM U-13C labelled palmitate (n=7) with DMSO control 

(n=6) or with 1 µM GW347845 PPARγ selective agonist (n=7). After 2 days cells were 

collected and metabolites extracted as previously described in Chapter 2 Materials and 

Methods (sections 2.1.6 Adipocyte cell collection and 2.3 Adipocyte cell collection). 

 

5.3.13 
13
C-labelled Substrate GC-MS Analysis  

Analysis of organic and aqueous phases was carried out as previously described in 

Chapter 2 Materials and Methods (section 2.7.1 Derivatisation of aqueous phase 

metabolites, 2.7.2. Derivatisation of organic phase metabolites, 2.7.3.1 Gas 

Chromatography-Mass Spectrometry methods for aqueous phase samples and 2.7.3.2 

Gas Chromatography-Mass Spectrometry methods for organic phase samples). 
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Enrichment of metabolites was identified by calculating isotope ratios of the M and M+1 

ions for the parent ion of the fragmentation pattern in the case of 13C-glucose metabolism 

analysis and TCA cycle intermediates originating from 13C-palmitate oxidation.  For fatty 

acid synthesis and desaturation products from 13C-labelled palmitate an ion ratio of 

M+16/M was used and for fatty acids originating from oxidation of 13C-labelled 

palmitate an ion ratio of M+n/M, where n = the carbon chain length of the fatty acid was 

used.  Statistical analysis was performed using a univariate t-test. 

 

5.3.14 Multivariate Analysis 

Multivariate data analysis was performed using SIMCA-P+ 11.0 (Umetrics AB, Umeå, 

Sweden).  NMR, DI-MS and UPLC-MS data sets were mean-centered and Pareto-scaled 

prior to analysis.  GC-MS data sets were scaled to UV. Data sets were analyzed using 

PCA, PLS and PLS-DA. Further details are summarised in Chapter 2 Materials and 

Methods (section 2.11.6 Multivariate Statistical Analysis Methodology). 

 

5.3.15 Microarray Analysis of PPARγγγγ Agonist Treated 3T3-L1 Cells  

Cells were grown, treated with PPARγ agonist and collected as is outlined in Chapter 2 

Materials and Methods (section 2.1.1 3T3-L1 cell culture and adipocyte differentiation, 

2.1.4 Activation of PPARγ in 3T3-L1 adipocytes, 2.1.6 and 2.3 Adipocyte cell collection)     

An RNeasy RNA extraction and purification kit was used to extract total RNA from 3T3-

L1 adipocytes (Qiagen GmbH, Hilden, Germany). RNA extraction procedures were 

carried out according to the methods outlined in Chapter 2 Materials and Methods 

(section 2.10.1. RNA extraction). 

 

Transcriptomic analysis was conducted by Cambridge Genomic Centre for Microarray 

Resources (Cambridge Genomic Services, Department of Pathology, University of 

Cambridge). An automated Illumina Infinium Gene Expression BeadArray (Illumina Inc, 

San Diego, CA) was used to perform mRNA transcriptional profiling.  A mouse WG6 

array platform was used with 45281 probes.  



Chapter 5 

 

 158 

Quality control was carried out using the arrayQualityMetrics R package and no samples 

failed or were identified as outliers to their replicates. Statistical selection was performed 

using the detection p-value provided by Illumina. This value represents the confidence 

that a given transcript is expressed above the background defined by the negative control 

probe.  The R package lumi was used for this analysis191.  The detection p-value 

threshold was set to 0.01.  Probes were required to be successfully detected (p-value<0.01 

in lumi) in at least one sample to pass the selection. The data is transformed using 

variance stabilisation and then normalised using quantile normalisation192. Gene 

expression was compared between PPARγ agonist treated and control 3T3-L1 cells using 

the R package limma193. The threshold utilised in this analysis was the 5% confidence 

interval.  The selected and normalised data was then analysed using the multivariate 

statistics in the Simca-P+ package as has been described.  The 6% of transcripts most 

responsible for separation in the multivariate models were then examined (3% most 

increased and 3% most decreased in PPARδ agonist treated cells as identified in the 

multivariate models). 

 

The Reactome Skypainter tool (www.reactome.org) was used to determine which 

pathways were statistically significant in the 3% of genes most increased and most 

decreased in transcription in PPARγ agonist treated cells. From a given set of genes 

known to participate in a pathway, the total genes for mus musculus and the submitted list 

of genes (the genes increased or decreased in expression in PPARγ activated cells) of 

which N genes participate in the given pathway, the probability of observing at least N 

genes from a pathway if that pathway is not overrepresented in the submitted list of genes 

is calculated using the one-tailed version of Fisher's exact test. Therefore a p-value 

smaller than or equal to the significance level suggests that the pathway is statistically 

significant in the submitted list of genes. 
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5.4 Results 

5.4.1 Metabolomic Analysis 

1H-NMR spectroscopy, GC-MS, LC-MS and DI-MS analysis, combined with 

multivariate pattern recognition were used to examine metabolism within the white 

adipose tissue of ob/ob mice and 3T3-L1 murine cultured adipocytes treated with a 

PPARγ agonist. To assess metabolic changes in the dataset a common processing strategy 

was adopted throughout the analysis. To investigate metabolite perturbations mutual to 

PPARγ activation PCA and PLS-DA models were built for both the white adipose tissue 

and the 3T3-L1 adipocytes.  PCA and PLS-DA models were generated for the white 

adipose tissue and the cultured cells, comparing the control group with the PPARγ 

agonist treated groups.  Metabolites identified in the VIP/coefficients plots as 

significantly contributing to separation in the models were then considered to have 

changed globally.  The metabolite changes in the white adipose tissue and 3T3-L1 

adipocytes are considered below. 

 

5.4.1.1 White adipose tissue  

Robust multivariate models were generated to describe the metabolic influence of PPARγ 

activation in the white adipose tissue of ob/ob mice from data collected by DI-MS 

analysis of the organic extracts and GC-MS analysis of both the aqueous and organic 

metabolite extracts (Figure 5.1). 
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Figure 5.1: A. PLS-DA scores plot showing the clustering of DI-MS positive 

ionisation mode chromatograms from the organic phase of white adipose 

tissue extracts from ob/ob mice treated with a PPARγ agonist compared 

with control animals ◊, PPARγ agonist treated, ■, control (R2=0.887, 
Q2=0.949). Two technical replicates were analysed.  B. PLS-DA scores plot 
showing the clustering of DI-MS negative ionisation mode chromatograms 
from the organic phase of white adipose tissue extracts from ob/ob mice 

treated with a PPARγ agonist compared with control animals ◊, PPARγ 
agonist treated, ■, control (R2=0.926, Q2=0.949). Two technical replicates 
were analysed. C. PLS-DA scores plot showing the clustering of GC-MS 
chromatograms from the aqueous fraction of white adipose tissue extracts 

from ob/ob mice treated with a PPARγ agonist compared with control 

animals ◊, PPARγ agonist treated, ■, control (R2=0.499, Q2=0.786). D. 
PLS-DA scores plot showing the clustering of GC-MS chromatograms 
from the organic fraction of white adipose extracts from ob/ob mice treated 

with a PPARγ agonist compared with control animals ◊, PPARγ agonist 
treated, ■, control (R2=0.305, Q2=0.738). 

 

Activation of PPARγ in the white adipose tissue of ob/ob mice resulted in a decrease in 

the concentration of several carbohydrate and sugar species including galactose and 

glucose. Concomitantly acetic acid concentrations were observed to decrease. These 

changes in the glycolytic pathway are accompanied by a change in the steady state 

equilibrium of the TCA cycle and oxidative metabolism. The concentration of the early 
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TCA cycle intermediates isocitrate and succinate were increased whilst latter 

intermediates fumarate and malate were decreased in concentration.  

 

Amino acid metabolism in the white adipose tissue was modified by the activation of 

PPARγ; the concentrations of threonine, glycine, serine, isoleucine, phenylalanine, 

valine, alanine, aspartate and proline were increased, whilst the concentration of β-

alanine was decreased. 

 

The fatty acid metabolic pathways of the adipose tissue were also modified by activation 

of the nuclear receptor.  There was a detected increase in the concentrations of the ∆-9 

desaturation products, myristoleate C14:1, cis-10-pentadecanoate C15:1, and palmitoleate 

C16:1. Also increased in concentration were the fatty acid myristate C14:0 and the long 

chain fatty acid arachidate C20:0.  

 

DI-MS detected increases in the concentrations of free arachidonic acid C20:4 and 

docosahexaenoic acid 22:6, respectively, the ω-6 and ω-3 essential fatty acid pathway 

products. 

 

The complex lipid metabolic pathways were altered upon PPARγ activation; the 

concentrations of a number of glycerophosphoinositols were decreased as was the 

concentration of their constituent, myo-inositol.  Cholesterol ester concentrations were 

also increased in the white adipose tissue of PPARγ agonist treated animals. 

 

5.4.1.2 3T3-L1 adipocytes 

Investigation of the effects of PPARγ activation on the metabolism of the 3T3-L1 

adipocyte tissue specific cell line within a cell culture system was conducted to generate 

an in vitro model of adipose tissue specific PPARγ activation.  Oil red O staining for 

neutral lipids in the differentiated cells prior to treatment with the PPARγ agonist 

demonstrated that there were comparable levels of differentiation in the treatment groups 

(Figure 5.2). 
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Figure 5.2:  Graph showing cell counts and the percentage of differentiating cells prior 

to treatment with PPARγ agonist. 
 

The metabolic effect of activation of PPARγ in 3T3-L1 adipocytes was investigated using 

a range of analytical platforms, including GC-MS, DI-MS, LC-MS and 1H-NMR 

spectroscopy enabling extensive coverage of the metabolome; the data obtained from 

analysis was used in chemometric processing to create multivariate statistical models 

designating the metabolites that were altered upon stimulation of the nuclear receptor 

(Figure 5.3). 
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Figure 5.3:  A. PLS-DA scores plot showing the clustering of GC-MS chromatograms 

from the aqueous fraction of 3T3-L1 adipocytes treated with 10 nM 

PPARγ agonist GW347845 and 100 nM PPARγ agonist GW347845 

compared with the control group.�, 10 nM PPARγ agonist dose ◊, 100 

nM PPARγ agonist dose, ■, control (R2=0.765, Q2=0.735). B. PLS-DA 
scores plot showing the clustering of GC-MS chromatograms from the 

organic fraction of 3T3-L1 adipocytes treated with 10 nM PPARγ agonist 

GW347845 and 100 nM PPARγ agonist GW347845 compared with the 

control group.�, 10 nM PPARγ agonist dose ◊, 100 nM PPARγ agonist 
dose, ■, control (R2=0.87, Q2=0.895). C. PLS-DA scores plot showing the 
clustering of LC-MS chromatograms from the organic fraction of 3T3-L1 

adipocytes treated with 10 nM PPARγ agonist GW347845 and 100 nM 

PPARγ agonist GW347845 compared with the control group.�, 10 nM 

PPARγ agonist dose ◊, 100 nM PPARγ agonist dose, ■, control (R2=0.778, 
Q2=0.564).  D. PLS-DA scores plot showing the clustering of DI-MS 
positive mode ionisation chromatograms from the organic fraction of 3T3-

L1 adipocytes treated with 10 nM PPARγ agonist GW347845 and 100 nM 

PPARγ agonist GW347845 compared with the control group.�, 10 nM 

PPARγ agonist dose ◊, 100 nM PPARγ agonist dose, ■, control (R2=0.781, 
Q2=0.873). Two technical replicates were analysed. E. PLS-DA scores 
plot showing the clustering of DI-MS negative mode ionisation 
chromatograms from the organic fraction of 3T3-L1 adipocytes treated 

with 10 nM PPARγ agonist GW347845 and 100 nM PPARγ agonist 
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GW347845 compared with the control group.�, 10 nM PPARγ agonist 

dose ◊, 100 nM PPARγ agonist dose, ■, control (R2=0.856, Q2=0.882). 
Three technical replicates were analysed. F. PLS-DA scores plot showing 
the clustering of 1H-NMR spectra from the aqueous fraction of 3T3-L1 

adipocytes treated with 100 nM PPARγ agonist GW347845 compared 

with the control group. ◊, 100 nM PPARγ agonist dose, ■, control 
(R2=0.819, Q2=0.978). 

 

The 3T3-L1 adipocytes exposed to the PPARγ agonist were found to have reduced 

concentrations of glycolytic pathway intermediates including glucose, gluconic acid, 

pyruvate and lactate. 

 

The polyol pathway is also profoundly affected by the activation of the ligand-gated 

receptor; the steady state concentrations of both glucitol and fructose were observed to be 

increased in the adipocytes treated with the PPARγ agonist. 

 

Steady state concentrations of a number of TCA cycle intermediates, glutamate (a 

surrogate for α-ketoglutarate), succinate, fumarate and malate were decreased in PPARγ 

activated adipocytes indicating a role in oxidative metabolic control for the nuclear 

receptor. 

 

The cells treated with PPARγ agonist also displayed altered amino acid metabolism with 

detected decreases in the concentration of aspartate, asparagine, glutamine, threonine and 

β-alanine.  

 

Activation of PPARγ altered the metabolism of the fatty acid synthesis and oxidation 

pathways within the 3T3-L1 adipocytes; there was an observed decrease in the shorter 

chain fatty acids (tridecanoate C13:0, myristate C14:0, isomyristate, 12-methyl 

tetradecanoate, pentadecanoate C15:0, 10-pentadecanoate C15:1, palmitoleate C16:1, 

margaric acid C17:0, cis-10-heptadecenoic acid C17:1, isostearate and elaidate and oleate 

C18:1) and a concomitant increase in the steady state concentrations of the long chain 

fatty acids, arachidate C20:0 and behenic acid C22:0.  The concentration of carnitine was 

also decreased in adipocytes treated with the PPARγ agonist.  The ω-6 essential fatty acid 
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pathway was also perturbed as a consequence of PPARγ stimulation; the steady state 

concentration of γ-linolenate was decreased, concurrently the concentration of the 

consecutive pathway intermediate, dihomo-γ-linolenate was increased, again implicating 

the fatty acid elongase.   

 

The concentrations of FFAs altered by PPARγ activation closely matched the detected 

changes in the total fatty acid population.  Longer chain FFAs were increased in 

concentration (C22:0, C20:0, C22:6, C22:5, C22:3, C22:7, C22:4) whilst the 

concentration of shorter chain FFAs was observed to decrease (C15:0, C17:0, C18:0, 

C16:1, C18:1, C17:1, C19:1, C19:3, C18:2). 

 

The substituent complex lipids of the 3T3-L1 adipocytes were also modified by 

activation of PPARγ.  The TAG pool was restructured as a consequence of stimulation of 

the nuclear receptor; there was a detected increase in the desaturation and length of the 

acyl chains esterified to the TAGs (Table 5.1).  The glycerophospholipids were observed 

to have changed upon stimulation of the ligand activated transcription factor; a decrease 

in the concentration of a number of phospholipid species including 

glycerophosphocholines, glycerophosphoethanolamines and glycerophosphoinositols 

were accompanied by a decrease in their constituents, α-glycerophosphoric acid and 

myo-inositol phosphate.  In addition, 3T3-L1 adipocytes incubated with the PPARγ 

agonist had elevated concentrations of a number of cholesterol ester species.      
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Table 5.1:  TAG species altered in concentration in 3T3-L1 adipocytes treated with 

GW347845 PPARγ agonist.  TAGs were detected using LC-MS.  Lipids 
identified in the VIP/coefficients plots as significantly contributing to 
separation in the PCA and PLS-DA models built for the LC-MS analysis 
of the organic metabolite fraction. The control group was compared with 

the PPARγ agonist treated group. 

 

5.4.2 
13
C-labelled Substrate Studies 

The metabolic mechanisms of PPARγ activation in 3T3-L1 adipocytes were elucidated 

using the 13C-labelled substrates 1-13C glucose and U-13C-palmitate to monitor flux 

through glycolytic, oxidative and fatty acid synthesis pathways.   

 

5.4.2.1 1-13C-glucose 

Analysis by GC-MS of the aqueous fraction of control and PPARγ agonist treated 

adipocytes incubated in media containing 1-13C glucose revealed that when treated with 

the PPARγ agonist, the glycolytic pathway product, lactate had reduced 13C enrichment 

(Figure 5.4A.). The enrichment of the TCA cycle intermediates succinate and glutamate 
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was also decreased in adipocytes with activated PPARγ (Figure 5.4B.C.). In addition, the 

polyol pathway intermediate, glucitol, was increased in 13C-enrichment when the 

adipocytes were treated with the PPARγ agonist.  Investigation, by GC-MS, of the 

organic fraction from control and PPARγ agonist treated adipocytes incubated in 1-13C 

glucose demonstrated that the long chain fatty acid arachidate had a greater concentration 

of 13C enrichment in PPARγ agonist treated cells (Figure 5.4D.). 
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Figure 5.4:  Graphs showing the M+1/M isotope ratio 13C enrichment of A. lactate, B. 
succinate and C. glutamate analysed by GC-MS of the aqueous fraction 

from control and PPARγ agonist dosed 3T3-L1 cells incubated with 1-13C-
glucose. D. Graph showing the M+1/M isotope ratio 13C enrichment of 
arachidate analysed by GC-MS of the organic fraction from control and 

PPARγ agonist dosed 3T3-L1 cells incubated with 1-13C-glucose.  *P < 
0.05. The metabolites have been mapped to the glycolysis, TCA cycle and 
fatty acid synthesis metabolic pathways. ↑ indicates a metabolite increased 

in 13C enrichment by PPARγ activation. ↓ indicates a metabolite decreased 

in 13C enrichment by PPARγ activation. Parent ions were used to calculate 
ion ratio. 
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5.4.2.2 U-
13

C-palmitate    

GC-MS analysis of the aqueous phase of cells incubated in U-13C-palmitate indicated that 

the early TCA cycle intermediates glutamate and isocitrate exhibited decreased 13C 

enrichment in PPARγ agonist treated adipocytes when compared to control adipocytes 

(Figure 5.5A.B.). Assessment of the organic phase by GC-MS indicated that the 13C-

enrichment of the long chain fatty acid arachidate was increased in the PPARγ agonist 

treated cells when compared to control (Figure 5.5C.).  Concurrently the 13C-enrichment 

of the shorter chain fatty acid, myristate was detected by GC-MS to have decreased in the 

adipocytes treated with PPARγ agonist in comparison to control 3T3-L1 cells (Figure 

5.5D.).  An increase in the 13C enrichment of palmitate in cells treated with PPARγ 

agonist, when compared to control adipocytes was also observed. (Figure 5.5E.). 
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Figure 5.5: Graphs showing the M+1/M isotope ratio 13C enrichment of A. glutamate 
and B. isocitrate analysed by GC-MS of the aqueous fraction from control 

and PPARγ agonist dosed 3T3-L1 cells incubated with 13C-U-palmitate. 
Graphs showing the isotope ratio 13C enrichment of C. myristate, D. 
arachidate and E. palmitate analysed by GC-MS of the organic fraction 

from control and PPARγ agonist dosed 3T3-L1 cells incubated with 13C-
U-palmitate. The metabolites have been mapped to the TCA cycle and 

fatty acid β-oxidation/synthesis metabolic pathways. Red indicates a 

metabolite increased in 13C enrichment by PPARγ activation. Blue 

indicates a metabolite decreased in 13C enrichment by PPARγ activation. 
*P < 0.05, **P < 0.01,***P < 0.005. Parent ions were used to calculate ion 
ratio. 
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5.4.3 Microarray Transcriptomic Analysis 

The results from the steady state metabolomic experiments in adipose tissue and 

adipocytes and isotope labelling studies suggest PPARγ activation has a pronounced 

effect on glucose utilisation and fatty acid metabolism in adipocytes. To define these 

changes the focus of investigation was moved to the transcriptome using microarray 

analysis of PPARγ activation in adipocytes.  Of the 45281 probes utilised 13755 were 

expressed above the background defined by the negative control probe.  From these 3282 

were determined to be differentially expressed (P < 0.05) with 164 estimated false 

positives using a threshold of 5% of differentially expressed probes. Multivariate models 

were built using the normalised data from the 13755 transcripts measured (Figure 5.6).  

 

Figure 5.6:  PLS-DA scores plot showing the clustering of gene transcription in control 

and PPARγ agonist treated 3T3-L1 adipocytes as measured with 

microarray analysis. ●, PPARγ agonist treated, ■, control (R2=0.42, 
Q2=0.84). 

 

The 6% of transcripts most responsible for separation in the multivariate models were 

then examined (3% most increased and 3% most decreased in PPARγ agonist treated 

cells as identified in the multivariate models).  The multivariate analysis indicated that 

the mRNA of genes involved in a number of key metabolic pathways was altered 

following PPARγ activation.  The reactome skypainter tool was then utilised to determine 

which pathways and reactions were statistically overrepresented by the 3% most 
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increased (Table 5.2) and 3% most decreased transcripts in PPARγ agonist treated cells 

identified in the multivariate models. 

P-value Pathway 
Transcripts increased in PPARγγγγ 

agonist treated cells mapping to the 

pathway 

6.4e-05 Glycolysis Aldoa, Pgam1, Pfkl, Gapdh, Gpi1 

1.1e-03 Gluconeogenesis Aldoa, Slc25a11, Pgam1, Gapdh, Gpi1 

1.2e-03 
Ca2+ signalling via IP3 binding to the IP3 receptor, opening the 

endoplasmic reticulum Ca2+ channel 
Itpr2, Itpr1 

1.2e-03 Sar1p activation and membrane binding Preb, Sar1b 

1.8e-03 PLC mediated signalling events Prkaca, Itpr2, Itpr1, Adcy6, Pde1b 

2.5e-03 
Hormone-sensitive lipase (HSL)-mediated triacylglycerol 

hydrolysis 
Prkaca, Abhd5, Ppp1ca 

2.6e-03 Metabolism of lipids and lipoproteins 
Prkaca, Abhd5, Abcd3, Ppp1ca, Ncor1, 
Chd9, Slc27a1, Hsd17b4, Acaa2, Sin3b, 
Scd2, Hmgcl, Fads3, Csnk1g2, Angptl4 

3.2e-03 Regulation of insulin secretion 
Prkaca, Dlst, Ndufb6, Itpr1, Gpi1, Aldoa, 

Ndufs6, Pgam1, Itpr2, Pfkl, Gapdh 

5.8e-03 Formation of acetoacetic acid in the synthesis of ketone bodies  Hmgcl, Acaa2 

8.2e-03 Additional metabolism of carbohydrates 
Aldoa, Slc25a11, Pgam1, Pfkl, Gapdh, 

Gpi1, G6pdx 

1.1e-02 PKA mediated events Prkaca, Pde1b 

1.1e-02 
Regulation of lipid metabolism by peroxisome proliferator-

activated receptor alpha (PPARalpha) 
Sin3b, Scd2, Fads3, Ncor1, Chd9, Slc27a1, 

Angptl4 

1.4e-02 DARPP-32 events Prkaca, Ppp1ca, Pde1b 

1.7e-02 STAT signalling Stat5a, Stat6 

1.7e-02 Integration of energy metabolism 
Prkaca, Dlst, Ndufb6, Gpi1, Aldoa, Ndufs6, 

Pgam1, Pfkl, Adcy6, Gapdh 

2.0e-02 β-oxidation of very long chain fatty acids Abcd3, Hsd17b4 
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2.4e-02 Adenylate cyclise mediated CREB phosphorylation Prkaca, Adcy6 

2.6e-02 Signalling by NGF/TRKA 
Prkaca, Itpr1, Gbl, Arhgef11, Pde1b, 
Bcl2l11, Foxo1, Itpr2, Adcy6, Araf 

3.1e-02 Peroxisomal lipid metabolism Abcd3, Slc27a1, Hsd17b4 

Table 5.2: The pathways statistically significant in the 3% most increased transcripts 

in PPARγ agonist treated cells identified in the multivariate models. From 
a given set of genes participating in a pathway, the total genes for mus 

musculus and the submitted genes (genes increased in PPARγ activated 
cells) of which N genes participate in a pathway, the probability of 
observing at least N genes from a pathway if that pathway is not 
overrepresented in the submitted list of genes is calculated using Fisher's 
exact test.  A p-value smaller than the significance level suggests the 
pathway is significantly represented.   

 

A number of primary cellular signalling pathways were identified as statistically affected 

from the transcripts increased in expression by PPARγ activation including inositol 

triphosphate, calcium, calmodulin and G-protein signalling.  PPARγ activation also 

affected the expression of genes involved in specific metabolic energy pathways and 

reactions as well as the integration of energy metabolism. 

 

The expression of genes encoding proteins involved in the glycolytic metabolic pathway 

was also upregulated in PPARγ agonist treated cells.  Transcription of several of the key 

enzymes including glucose phosphate isomerise, phosphofructokinase, aldolase A 

fructose-bisphosphate, phosphoglycerate mutase 1 and glyceraldehyde-3-phosphate 

dehydrogenase was upregulated.  Consistent with the metabolic changes observed in the 

polyol pathway the expression of sorbitol dehydrogenase, which catalyses the conversion 

of glucitol to fructose, was increased in PPARγ agonist treated 3T3-L1 cells.  In addition, 

the expression of the gene encoding the TCA cycle enzyme isocitrate dehydrogenase was 

identified as decreased.  

 

PPARγ activation was also discerned to significantly affect the transcription of genes 

responsible for the remodelling and metabolism of lipids.  The fatty acid desaturases 

stearoyl-CoA desaturase 2 and fatty acid desaturase 3, a possible ∆-9 fatty acid 
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desaturase, were increased in expression following PPARγ activation (P < 0.005 for both 

stearoyl-CoA desaturase 2 and fatty acid desaturase 3).  The transcripts of a number of 

genes that favour conditions of fatty acid synthesis are also increased in concentration in 

the adipocytes following treatment with the PPARγ agonist; these genes include sterol 

regulatory element binding transcription factor 2, a transcription factor required for lipid 

homeostasis that regulates the LDL receptor gene as well as the cholesterol and fatty acid 

synthesis pathways241, holocarboxylase synthetase, which activates acetyl-CoA-

carboxylase (and pyruvate carboxylase) by conjugating biotin to these enzymes242, NAD 

kinase, which transfers a phosphate group of ATP to NAD generating NADP for use as 

an electron donor in biosynthetic reactions including fatty acid synthesis and malonyl 

CoA:ACP acyltransferase which catalyses the transfer of a malonyl moiety from 

malonyl-CoA to the phosphopantethenate moiety of the acyl carrier peptide in the first 

step of fatty acid synthesis.  Concomitantly the expression of acyl-CoA thioesterase 7 and 

nudix-type motif 19 Coenzyme A diphosphatase, enzymes which catalyse the hydrolysis 

of medium and long chain acyl-CoAs to FFA and CoA243, was upregulated in the treated 

adipocytes. In addition the transcription of solute carrier family 27a1 mRNA was 

increased in PPARγ agonist treated cells; this protein is an insulin responsive fatty acid 

transporter responsible for the import of long chain fatty acids into adipose tissue 

undergoing high levels of TAG synthesis244. 

 

Genes involved in the restructuring and remodelling of complex lipids were also affected 

by PPARγ activation. Lysophosphatidylcholine acyltransferases 3 acyltransferase 

expression was increased in adipocytes treated with PPARγ; this enzyme catalyses the 

conversion of lysophosphocholines, lysophosphoserines and lysophosphoethanolamines 

into phosphocholines, phosphoserines and phosphoethanolamines, respectively and 

favours polyunsaturated fatty acyl-CoAs as acyl donors245.  Transcription of the platelet 

activating factor acetylhydrolase 2 lipase was also increased in the PPARγ activated 

adipocytes.  Expression of angiopoietin-related protein 4, a protein regulating 

extracellular lipolysis through lipoprotein lipase, was increased in the agonist treated 

3T3-L1 cells246.    

 



Chapter 5 

 

 175 

PPARγ activation also increased the expression of nuclear receptor corepressor 1 in the 

3T3-L1 adipocytes. Nuclear receptor corepressor 1 is a transcriptional repressor 

responsible for the downregulation of gluconeogenesis, lipolysis and fatty acid β-

oxidation247. Additionally transcription of the PPAR transcriptional coactivator, 

Chromodomain-helicase-DNA-binding protein 9, was upregulated in the PPARγ agonist 

treated adipocytes.     
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5.5 Discussion 

 

A comprehensive metabolomics investigation was performed using a diverse range of 

analytical and chemometric techniques.  The primary aim of this study was to probe the 

metabolic effects of PPARγ activation within the white adipose tissue of ob/ob mice to 

elucidate the metabolic influence stimulus of this receptor has on a tissue perceived to be 

the primary target for synthetic PPARγ ligands in their use as anti-diabetic agents.  A 

3T3-L1 adipocyte cell culture system was then employed to generate an in vitro model of 

PPARγ activation in adipose tissue, which was subsequently analysed using metabolomic 

methods.  The metabolomic data was then complemented with investigations in 3T3-L1 

adipocytes using 13C-labelled substrates to monitor flux through glycolytic, oxidative and 

fatty acid synthesis pathways and RNA microarray analysis to explain alterations in gene 

transcription; these additional techniques were utilised to explicate the mechanisms by 

which PPARγ activation generates its metabolic properties. 

 

Transcriptomic analysis highlighted the significant upregulation in the expression of 

genes involved in calcium and calmodulin signalling within adipocytes treated with the 

PPARγ agonist, GW347845.  The calcium signalling pathway is implicated in the insulin 

responsive signalling pathway and influences many metabolic targets248, 249.  Calcium 

signalling increases GLUT4 translocation to the plasma membrane, possibly through a 

phosphatidic acid lipid signalling mechanism mediated by phospholipase D250, and 

increases glucose transportation into adipocytes251. PPARγ activation has previously been 

linked to an increase in glucose uptake and glycolysis in white adipose tissue236, 252.  A 

consistent observation from both the white adipose tissue and 3T3-L1 adipocytes exposed 

to PPARγ agonist was a decrease in the concentration of glucose and other carbohydrate 

species.  Transcriptomic analysis indicated that expression of a number of key enzymes 

catalysing the events of glycolysis was increased in PPARγ activated adipocytes.  The 

glycolytic enzymes affected were glucose phosphate isomerase, phosphofructokinase, 

aldolase A fructose-bisphosphate, phosphoglycerate mutase 1 and glyceraldehyde-3-

phosphate dehydrogenase.  It would appear however that the utilisation of the 
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carbohydrates is not limited to glycolysis. The concentration of the end products of 

glycolysis, acetic acid in white adipose tissue and pyruvate and lactate in the 3T3-L1 

cells decreased when PPARγ was activated.  The decrease in 13C-labelling of lactate from 

1-13C-glucose confirms this observation.  Further to this, calcium signalling is known to 

activate pyruvate dehydrogenase253, leading to examination of the TCA cycle, the 

consecutive step in oxidative breakdown of carbohydrate.   

 

TCA cycle metabolism in both white adipose tissue and cultured adipocytes is modified 

by PPARγ activation to favour a reduction in oxidation of carbohydrates and an increase 

in fatty acid synthesis.  In white adipose tissue the equilibrium of the cycle is altered in 

favour of the earlier intermediates (oxidation substrates), at the expense of the latter 

intermediates (oxidation products) and appears to occur at the electron transport chain 

complex II intersect with increases in the concentrations of isocitrate and succinate while 

the concentrations of fumarate and malate were decreased . The effect in adipocytes is 

even more pronounced with a decrease in the concentration of a range of latter 

intermediates. Analysis with 13C-labelled glucose showed a reduction in 13C-enrichment 

of TCA cycle intermediates and substantiated the reduction in oxidative metabolism.  

Augmenting these findings were the results of the transcriptomic analysis which 

identified a decrease in the concentration of the mRNA of the gene coding for the TCA 

cycle enzyme isocitrate dehydrogenase, which catalyses the oxidative decarboxylation of 

isocitrate to 2-oxoglutarate.   

 

Alternative pathways of carbohydrate metabolism were also observed to be altered by 

activation of PPARγ.  Intermediates of the polyol pathway, glucitol and fructose, were 

identified as increased in concentration in the 3T3-L1 adipocytes analysed by 

metabolomics.  Further investigation using 1-13C-glucose established increased flux 

through this pathway.  Corroborating findings were detected in the transcriptomic 

analysis which verified an increase in the expression of sorbitol dehydrogenase, a polyol 

pathway enzyme that catalyses the conversion of glucitol to fructose.  The polyol 

pathway has been implicated in the formation of advanced glycation end-products 

(AGEs)254.  AGEs are formed by a reaction between carbohydrates and the free amino 
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groups of proteins, lipids and DNA.  These glycation products are often found in excess 

with pathologies such as diabetes, where they are thought to contribute to macro- and 

micro-vascular complications via several deleterious mechanisms including the 

accumulation in circulatory vessel walls, the in situ glycation of substrates and direct 

binding to cellular receptors255.  Therefore the implication that PPARγ activation 

increases activity of the polyol pathway in adipocytes potentially complicates the use of 

TZDs and other PPARγ agonists in the treatment of diabetes and the metabolic syndrome.  

 

The activation of PPARγ in both the white adipose tissue and cultured cells generated 

changes in the composition of the cellular fatty acid pool.  The effect of PPARγ 

activation on fatty acid metabolism, although more distinct in cultured cells, where there 

was a defined decrease in the concentrations of shorter chain fatty acids and an increase 

in the concentration of longer chain fatty acids as opposed to white adipose tissue where 

there was an increase in the long chain fatty acid arachidate, was indicative of fatty acid 

synthesis and elongation.  The increased 13C-enrichment of arachidate in adipocytes 

incubated in 1-13C-glucose and treated with the PPARγ agonist verified an increase in 

fatty acid synthesis as a result of PPARγ activation; a finding further corroborated by the 

observed increase in 13C-enrichment of arachidate in PPARγ activated adipocytes 

incubated in U-13C -palmitate.  Activation of PPARγ in white adipose tissue is known to 

upregulate the expression of a number of genes involved in fatty acid lipogenesis and 

elongation 233, 256, together with the results of the microarray analysis which show an 

increase in the concentration of mRNA for genes that promote fatty acid synthesis there 

is an indication of a switch to a lipogenic metabolic state upon receptor activation.  An 

upregulation of transcription, in response to PPARγ activation, affected sterol regulatory 

element binding transcription factor 2, a transcription factor required for lipid 

homeostasis that regulates the LDL receptor gene as well as the cholesterol and fatty acid 

synthesis pathways241, holocarboxylase synthetase, which activates acetyl-CoA-

carboxylase (and pyruvate carboxylase) by conjugating biotin to these enzymes242, NAD 

kinase, which catalyses the transfer of a phosphate group from ATP to NAD generating 

NADP forming an electron donor for biosynthetic reactions and malonyl CoA:ACP 

acyltransferase which catalyses the transfer of a malonyl moiety from malonyl-CoA to 
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the phosphopantethenate moiety of the acyl carrier peptide in the first step of fatty acid 

synthesis.   

 

PPARγ activation also increases the uptake of fatty acids by adipocytes257.  Evidence for 

the influence of PPARγ on fatty acid uptake can be seen within the U-13C-palmitate 

study; where an increase in the 13C-enrichment of palmitate in the PPARγ agonist treated 

3T3-L1 adipocytes compared to control 3T3-L1 cells was detected.  Increased expression 

of the insulin responsive fatty acid transporter solute carrier family 27 in PPARγ agonist 

treated cells is a further indication of the import of long chain fatty acids into adipose 

tissue undergoing high levels of TAG synthesis as a consequence of the activation of the 

nuclear receptor244. 

 

Evidence demonstrating decreased 13C-enrichment of TCA cycle intermediates and 

shorter chain fatty acids in U-13C-palmitate studies also suggests that PPARγ activation 

concurrently decreases flux through the fatty acid β-oxidation pathway alongside the 

upregulation of fatty acid synthesis.  Supporting this finding was the decreased 

concentration of carnitine in PPARγ agonist treated adipocytes.  Carnitine is required for 

the transport of fatty acids, in the form of acyl-carnitine from the cytosol to the 

mitochondrial matrix during β-oxidation. Transcriptomic analysis provides additional 

mechanisms by which activation of PPARγ may bring about the observed decrease in β-

oxidation.  The expression of acyl-CoA thioesterase 7 and nudix-type motif 19 

Coenzyme A diphosphatase, enzymes which catalyse the hydrolysis of medium and long 

chain acyl-CoAs to FFA and CoA and therefore prevent the β-oxidation of medium and 

long chain fatty acids once they are formed243, was upregulated in the treated adipocytes.  

Transcription of nuclear receptor corepressor (Ncor1) was also increased in the 

adipocytes treated with PPARγ agonist.  Ncor1 is a transcriptional repressor indicated in 

the repression of gluconeogenesis, oxidative and ketotic metabolism and lipolysis247.  

 

A distinct restructuring of the TAG pool occurred as a consequence of PPARγ activation; 

the length and desaturation of fatty acids esterified to TAGs in cultured adipocytes was 
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increased, reinforcing the data substantiating increased activity of the fatty acid elongase 

and the observed increases in the ∆-9 desaturase products in white adipose tissue.  This 

observation is consistent with previous studies that demonstrate that the gene for stearoyl-

CoA desaturase, the enzyme responsible for ∆-9 desaturation of fatty acids, is under 

PPARγ transcriptional control258, a finding supported by the microarray analysis 

conducted which found that the expression of the stearoyl-CoA desaturase 2 gene was 

upregulated in PPARγ agonist treated 3T3-L1 genes.  PPARγ also directly regulates the 

glycerol kinase promoter and therefore is expected to promote the esterification of fatty 

acids into TAGs259.  Microarray analysis indicated that lysophosphatidylcholine 

acyltransferases 3 acyltransferase expression was increased in adipocytes treated with 

PPARγ.  The enzyme catalyses the conversion of lysophosphocholines, 

lysophosphoserines and lysophosphoethanolamines into phosphocholines, 

phosphoserines and phosphoethanolamines, respectively245.  The protein favours 

polyunsaturated fatty acyl-CoAs as acyl donors.  Platelet activating factor 

acetylhydrolase 2 lipase transcription was also increased in the PPARγ activated 

adipocytes. This lipase is selective for phospholipids with short acyl chains at the sn-2 

position260.  The concentration of angiopoietin-related protein 4 mRNA was increased in 

the agonist treated 3T3-L1 cells; the protein product of which inhibits lipoprotein lipase 

and therefore inhibits lipolysis246.  Furthermore, the upregulation of the transcription of 

genes involved in calcium signalling as a consequence of PPARγ activation may play a 

role in defining the constituents of the complex lipid pool within the adipocytes.  An 

increase in intracellular calcium stimulates the activity of fatty acid synthase, stimulates 

lipogenesis, inhibits basal lipolysis, and promotes TAG accumulation within murine and 

human adipocytes261.    

 

Essential fatty acid metabolism was identified as altered following activation of the 

nuclear transcription factor.  The ω-3 and ω-6 fatty acid pathways are under the influence 

of PPARγ control, a result that not only corresponds to the previously discussed effect of 

activation of the nuclear receptor on fatty acid synthesis but also to the identification of a 

PPRE in the gene for the ∆-6 desaturase262, an enzyme intrinsic to both essential fatty 
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acid pathways.  Transcriptomic analysis further identified the increased expression of the 

∆-6 desaturase in adipocytes upon PPARγ activation. 

 

PPARγ activation was found to increase the cholesterol content of both white adipose 

tissue from ob/ob mice and cultured 3T3-L1 adipocytes.  Given that PPARγ activity 

upregulates the expression of oxidized LDL receptor 1 in adipocytes263; it appears that 

increasing cholesterol concentrations are brought about by stimulation of the uptake of 

oxidized LDL into adipocytes, a process that may be mediated through the sterol 

regulatory element binding transcription factor 2, so sequestering potentially harmful 

circulating cholesterol into the adipose tissue depository. 
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5.6 Conclusions 

In conclusion, it is proposed that PPARγ activation, in part, brings about its anti-diabetic 

effects on white adipose tissue via transcriptional control of an array of direct metabolic 

responses and indirect signalling mechanisms.  PPARγ activation in white adipose tissue 

leads to an upregulation of glycolysis and catabolism of other carbohydrate species. 

Subsequently the TCA cycle is downregulated, an effect especially apparent by the 

disparity between the decreases in concentration of the latter intermediates compared 

with an increase in concentration of intermediates at the start of the cycle, demonstrating 

fatty acid synthesis rather than oxidative catabolism.  In combination with de novo fatty 

acid synthesis, the cellular uptake of FFAs is increased; generating a pool of longer chain 

fatty acids which are incorporated into TAGs directly or else desaturated and 

incorporated into TAGs.  Concomitantly fatty acid breakdown via β-oxidation is 

downregulated upon nuclear receptor activation (Figure 5.7).   
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Figure 5.7: Diagram showing the effect of PPARγ activation on the integration of the 
energy metabolism pathways of 3T3-L1 adipocytes based on the 
combination of results from the metabolomic, transcriptomic and stable 
isotope labelling studies.  Red indicates an increase in concentration or 

expression in cells treated with the GW347845 PPARγ selective agonist. 
Blue indicates a decrease in concentration in cells treated with the 

GW347845 PPARγ selective agonist. 
 

The extensive metabolic pathway regulation found to be under PPARγ control in white 

adipose tissue identifies a mechanism that contributes to the observed normalisation of 

blood glucose levels and dyslipidaemia264, increase in glucose utilisation 236,252, and 

increase in body weight and subcutaneous adiposity previously reported in both human 

patients and rodent subjects treated with selective PPARγ agonists265,266.  This 

sequestration of glucose and lipid into the white adipose tissue, as a safely contained 

storage depot, may reduce the damaging potential of increased levels of circulating 

glucose and lipid, whilst reducing lipid and cholesterol accumulation in peripheral 

tissues267.  Given white adipose tissue appears to be the primary target for PPARγ agonist 

mediated insulin sensitisation268 these findings provide a possible means by which 

PPARγ activation influences peripheral tissue insulin sensitivity, by reducing the 

accumulation of fat in peripheral tissue and therefore lipotoxicity through increased 

storage of lipid in adipose tissue, in accordance with the adipose tissue expandability 

model269.  Through the dual mechanisms of augmenting facets of the calcium signalling 

pathway associated with insulin action and direct transcriptional regulation of metabolic 

enzymes PPARγ activation brings about metabolic changes that function to reinforce 

insulin sensitisation. 
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Chapter 6 

 

The Effects of PPARδδδδ and PPARγγγγ Activation on the Cori Cycle 

and Systemic Metabolism in the ob/ob Mouse  

 

 

6.1 Introduction 

 

The role of PPARδ in hepatic metabolism remains to be fully elucidated and relatively 

little research has focussed on the effects of activation of the nuclear receptor in the liver.  

Nevertheless, it has been shown that treatment of db/db mice with a selective PPARδ 

agonist resulted in suppression of hepatic glucose production and release227.  In addition 

PPARδ activation was found to increase hepatic glucose disposal, flux through the 

pentose phosphate pathway and to inhibit VLDL secretion from the livers of treated 

mice227.  The disparity of research conducted into the function of PPARδ in the liver in 

comparison to peripheral tissues, and especially skeletal muscle, may have occurred 

because PPARα is known to act primarily in the liver, whereas PPARδ mRNA is 

expressed at 10 and 50 times the concentrations of PPARα and PPARγ mRNA139
, 

respectively, in skeletal muscle.  Administration of PPARδ agonists to rodents results in 

an increase in expression of genes involved in fatty acid oxidation, mitochondrial 

respiration, oxidative metabolism and slow twitch contractile apparatus, decreasing 

muscle fatigability171.  Treatment of L6 myotubes with GW610742, a PPARδ agonist, 

was shown to increase fatty acid oxidation whilst overexpression of PPARδ in C2C12 

myotubes induced genes involved in fatty acid uptake and catabolism including 

lipoprotein lipase, FAT and carnitine palmitoyl transferase I270.  Further to this, 
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an animal model of muscle specific PPARδ overexpression has been developed in which 

a remodelling of the soleus and tibialis anterior muscles in favour of oxidative fibres was 

observed271.  The activity of several oxidative enzymes was also increased in the mice; 

enzymes affected include citrate synthase and β-hydroxyacyl-CoA dehydrogenase.  

Together these findings are suggestive of a regulatory role for PPARδ in the control of 

the Cori cycle and the metabolic interactions of the liver and skeletal muscle.  Research 

conducted in this thesis, thus far, has been directed at the effects of both PPARδ and 

PPARγ activation in adipose tissue.  However, it is likely that the observed increases in 

glucose tolerance and insulin sensitivity upon PPARδ and PPARγ activation in vivo may 

crucially involve combined hepatic and peripheral metabolic effects.    

 

However, the ubiquitous expression of PPARδ may result in diverse and unwanted side 

effects upon activation of this receptor.  PPARδ activation has been implicated as a cause 

of muscle atrophy272.  The nuclear receptor has also been implicated in the acceleration of 

intestinal adenoma growth and increased growth in breast and prostate cancer cell lines, 

but conversely it also attenuates colon cancer176, 177, 178.  The role of PPARδ in 

development and carcinogenesis is complex and has been extensively reviewed179.   

 

It is hypothesized that the insulin sensitising effects of PPARδ activation are brought 

about, in part, by changes in systemic metabolism.  Given that TAG in liver contributes 

to insulin resistance it has been suggested that increased TAG oxidation in the liver, 

caused by PPARδ activation, may contribute to this improvement227.  In this chapter the 

effect of both the selective PPARδ agonist GW610742 and PPARγ agonist GW347845 

on the systemic metabolism of the ob/ob mouse is examined with specific focus directed 

at hepatic and skeletal muscle metabolism.  The ob/ob mouse model of insulin resistance 

is robust, well characterised and used extensively to study TIIDM and its therapies.  

However, it is worthy of note that it is a monogenic paradigm of leptin deletion, whereas 

TIIDM is a polygenic disorder. 
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6.2 Aims and Objectives 

 

This study aims to use metabolomics to examine the changes that occur in hepatic 

metabolism following PPARδ activation and the impact detected systemically through 

metabolite changes in blood serum and skeletal muscle in the ob/ob mouse. 1H-NMR 

spectroscopy, GC-MS, UPLC-MS and DI-MS were used to examine metabolites from 

tissue extracts.  This study has used a metabolomics approach in conjunction with 

traditional clinical chemistry end points to investigate and define the global physiological 

and pharmacological effects of PPARδ and PPARγ activation through the metabolic 

characterisation of blood serum, skeletal muscle and liver tissue from a pharmacological 

compound treatment study performed in the ob/ob mouse model of insulin resistance.   

 

Analysis by multivariate statistics demonstrated that PPARδ activation profoundly 

affected glycolysis, gluconeogenesis, the TCA cycle and linoleic acid and α-linolenic 

acid essential fatty acid pathways. Although activation of both PPARδ and PPARγ led to 

increased insulin sensitivity and glucose tolerance; PPARδ activation was functionally 

distinct from PPARγ activation, and was characterised by increased hepatic and 

peripheral fatty acid oxidative metabolism, demonstrating the distinctive catabolic role of 

this receptor compared with PPARγ. 
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6.3 Materials and Methods 

6.3.1. Clinical Chemistry 

All clinical chemistry measurements were performed using an Olympus AU 400e 

analyser186.  Insulin measurements were performed by ELISA as described in Chapter 2 

Materials and Methods (section 2.2.2. Clinical Chemistry).   

 

6.3.2. Oral Glucose Tolerance Test 

OGTT was performed as stated in Chapter 2 Materials and Methods (section 

2.2.3.Oral Glucose Tolerance Test). 

 

6.3.3. Animal and Tissue Handling 

Animals were kept as is outlined in Chapter 2 Materials and Methods (section 2.2.1. 

Animal handling).  Briefly, the ob/ob mice were assigned to three groups of eight and 

dosed orally daily at 8 am with 0.5% Hydroxypropylmethylcellulose/0.1% Tween80 

vehicle control, a PPARδ agonist, GW610742 (30 mg/kg) and a PPARγ agonist, 

GW347845 (5 mg/kg).  Injection volume was adjusted daily according to body weight at 

10 ml/kg.   

 

Liver, skeletal muscle and serum were collected as summarised in Chapter 2 Materials 

and Methods (section 2.2.4. Tissue handling). 

 

6.3.4. Metabolite Extraction 

Metabolites were extracted from tissues using the modified Bligh and Dyer method187.  

The details are as in Chapter 2 Materials and Methods (section 2.3 3T3-L1 Cell, Primary 

Adipocyte and Tissue Metabolite Extraction). 
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6.3.5. 
1
H-NMR Spectroscopy Analysis 

All samples were analysed using a Bruker AVANCE II+ spectrometer operating at 

500.13 MHz for the 1H frequency using a 5mm Broadband TXI Inverse ATMA probe.  

All procedures are as depicted in Chapter 2 Materials and Methods (sections 2.6.1. 

Spectrometer, 2.6.2. Sample preparation, 2.6.3. 1-dimensional 
1
H-Nuclear Magnetic 

Resonance experimental method and 2.6.4. Processing 1-dimensional 
1
H-Nuclear 

Magnetic Resonance data). 

 

6.3.6. GC-MS Analysis 

Aqueous phase samples were derivatised as described in Chapter 2 Materials and 

Methods (section 2.7.1). 

 

Organic phase samples were derivatised as described in Chapter 2 Materials and 

Methods (section 2.7.2).   

 

GC-MS analyses were made using a Trace GC Ultra coupled to a Trace DSQ II single-

quadrupole mass spectrometer.  Parameters for the GC-MS analysis of aqueous phase 

metabolites and organic phase metabolites were as described in Chapter 2 Materials 

and Methods (sections 2.7.3.1 Gas Chromatography-Mass Spectrometry methods for 

aqueous phase samples and 2.7.3.2 Gas Chromatography-Mass Spectrometry methods 

for organic phase samples).  Derivatised aqueous phase samples were injected splitless 

and organic phase samples were injected with a split ratio of 8.  

 

GC-MS chromatograms were processed using Xcaliber (version 2.0; Thermo Electron) as 

outlined in Chapter 2 Materials and Methods (2.7.5. Processing Gas Chromatography-

Mass Spectrometry data). 

 

6.3.7. UPLC-MS Analysis 

Chromatography was performed using an ACQUITY UPLC® system  equipped with an 

Acquity UPLC 1.7 µm BEH C8 column (2.1×100 mm) coupled to a Micromass QTof-
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Ultima with a Z-spray electrospray source.  All chromatography and mass spectrometric 

parameters were as outlined in Chapter 2 Materials and Methods (section 2.8.1. 

Chromatography and mass Spectrometry parameters) 

 

6.3.7.1 Liver tissue preparation and chromatographic gradient 

The organic phase of liver was reconstituted in methanol-chloroform (2:1, 500 µl).  This 

was further diluted 7.5-fold prior to injection onto the C8 column (5 µl).  The column 

mobile phase was held at 70% solvent B for 0.5 min followed by an increase from 70%-

100% solvent B over 0.5-6.5 min.  The mobile phase was then held at 100% B for 3.5 

min.  Between 10 and 10.25 min the mobile phase was returned to 70% B and held for 

3.75 min to re-equilibrate the column.  The total UPLC cycle was 14 min.  The eluent 

flow rate was 600 µl/min.   

 

6.3.7.2 Serum preparation and chromatographic gradient 

The organic phase of serum was reconstituted in methanol-chloroform (2:1, 500 µl).  This 

was further diluted 4 fold prior to injection onto the C8 column (10 µl).  The column 

mobile phase was held at 70% solvent B for 0.5 min followed by an increase from 70%-

100% solvent B over 0.5-6.5 min.  The mobile phase was then held at 100% B for 3.5 

min.  Between 10 and 10.25 min the mobile phase was returned to 70% B and held for 

3.75 min to re-equilibrate the column.  The total UPLC cycle was 14 min.  The eluent 

flow rate was 600 µl/min.   

 

Tandem mass spectrometry procedures were as described in Chapter 2 Materials and 

Methods (2.8.3 Tandem mass spectrometry method). 

 

Data was processed using Micromass MarkerLynx Applications Manager as depicted in 

Chapter 2 Materials and Methods (2.8.4. Processing Liquid Chromatography-Mass 

Spectrometry data). 
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6.3.8. Direct Infusion Mass Spectrometry 

Mass spectrometric analysis was performed using a Thermo Finnigan LTQ equipped with 

a Finnigan Surveyor pump and Finnigan Micro AS Autosampler. 

 

6.3.8.1 Liver tissue 

The liver organic phase samples for DI-MS were reconstituted in 500 µl methanol:THF 

(2:1 v/v). 50 µl of each sample was aliquoted into a 96 well plate where the samples were 

diluted by the addition of a further 150 µl methanol:THF (2:1 v/v).  

 

Analysis was performed in negative ionisation mode.  All other direct infusion and mass 

spectrometric parameters were as described in Chapter 2 Materials and Methods 

(section 2.9.2. Direct infusion and mass spectrometry parameters). 

  

DI-MS chromatograms were processed using Xcaliber as outlined in Chapter 2 

Materials and Methods (2.9.3. Processing of direct infusion mass spectrometry data). 

 

6.3.9. Multivariate Analysis 

Multivariate data analysis was performed using SIMCA-P+ 11.0 (Umetrics AB, Umeå, 

Sweden).  NMR, DI-MS and UPLC-MS data sets were mean-centered and Pareto-scaled 

prior to analysis.  GC-MS data sets were scaled to univariate scaling. Data sets were 

analyzed using PCA, PLS and PLS-DA. Further details are summarised in Chapter 2 

Materials and Methods (section 2.11.6 Multivariate Statistical Analysis Methodology). 
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6.4 Results 

6.4.1. Clinical Chemistry 

All mice were examined ensuring they were physically normal and exhibited normal 

activity prior to both commencement and termination of the study.  The concentrations of 

both insulin and glucose were found to be significantly decreased in both PPARδ and 

PPARγ agonist treated serum, indicating that the insulin resistant status of the ob/ob mice 

is improved by PPARδ and γ activation. This was also confirmed by the OGTT.  The 

concentrations of β-hydroxybutyrate, total cholesterol and HDL-cholesterol were 

increased in the serum of PPARδ agonist treated mice, while non esterified fatty acids 

were decreased in concentration. While, serum TAG concentrations were increased in 

PPARδ agonist treated mice, this metabolite class decreased in PPARγ agonist treated 

mice (Figure 6.1).     
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Figure 6.1: Clinical chemistry measurements from the serum of control, GW610742 

PPARδ agonist and GW347845 PPARγ agonist treated ob/ob mice. A. 

Serum Insulin B. Glucose C. β-hydroxybutyrate D. TAG E. Non Esterified 
Fatty Acids F. HDL-Cholesterol G. Oral Glucose Tolerance Test H. Area 
Under Curve Oral Glucose Tolerance Test.* P < 0.05 with respect to 
vehicle control treated animals. 

 

6.4.2. Metabolomics 

1H-NMR spectroscopy and GC-MS analysis, combined with multivariate pattern 

recognition were used to profile metabolism within the liver, serum and skeletal muscle 

of ob/ob mice treated with a PPARδ agonist and a PPARγ agonist.  The different 

analytical techniques had varying sensitivities. High resolution 1H-NMR spectroscopy 

detected 20-25 metabolites in both liver and skeletal muscle. GC-MS detected 100-150 

defined peaks from aqueous phase samples and 30-40 defined peaks from organic phase 

samples.  Matching the mass spectra detected with those held in the NIST library 

identified 40-60% metabolites for aqueous extracts and ~70% for lipids from the GC-MS 

datasets. 
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Phospholipid targeted UPLC-MS detected 100-150 unique metabolite species in positive 

mode.  Identification of metabolite species was performed using MS/MS. 

Phosphatidylcholines were identified using the phosphocholine head group ion (detection 

of ion at 184 m/z). 

 

To assess metabolic changes in the dataset a common processing strategy was adopted 

throughout the analysis. To investigate metabolite perturbations common to PPARδ and 

PPARγ activation PCA and PLS-DA models were built for the individual tissues treating 

the δ and γ agonists as part of a common group.  Although the groups were shown to co-

cluster and separate from the control group in this supervised analysis, the majority of the 

Q2 values (testing model statistical robustness) were low, despite the δ and γ agonist 

treatment groups separating along the same scores plot axis.  While similar changes were 

detected in the concentration of a large number of metabolites for both treatments, these 

occurred with different magnitudes (Figure 6.2).  Activation of PPARδ in the liver and 

skeletal muscle caused a greater magnitude of changes compared to activation of PPARγ.  

These findings correspond to known tissue distribution of the PPAR subtypes and that the 

two receptors share a number of common metabolic effects.   
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Figure 6.2:  A. PLS-DA scores plot showing the clustering of GC-MS chromatograms 
from the organic fraction of the liver from mice treated with either a 

PPARδ or a PPARγ agonist compared with the control group. ●, PPARδ 

agonist treated, ◊, PPARγ agonist treated, ■, control (R2=0.59, Q2=0.82). 
B. PLS-DA scores plot showing the clustering of GC-MS chromatograms 
from the aqueous phase of skeletal muscle extracts from mice treated with 

either a PPARδ agonist or a PPARγ agonist compared with control 

animals. ●, PPARδ agonist treated, ◊, PPARγ agonist treated, ■, control 
(R2=0.24, Q2=0.32). C. PLS-DA scores plot showing clustering of GC-MS 

chromatograms from PPARδ agonist and PPARγ agonist treated mice 

serum aqueous phase metabolites following GC-MS analysis. ●, PPARδ 

agonist treated, ◊, PPARγ agonist treated, ■, control (R2=0.563, 
Q2=0.631). 
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Visual inspection of the 1H-NMR spectra and GC-MS chromatograms indicated 

differences between the control and treated groups. PCA and PLS-DA models were built 

for the individual tissues comparing the control group with the PPARδ agonist treated 

group and the control group with the PPARγ agonist treated groups.  Metabolites 

identified in the VIP/coefficients plots as significantly contributing to separation in the 

models were then considered to have changed globally.  Metabolite changes were then 

compared between agonists (Table 6.1). The metabolite changes in the individual tissues 

are considered below. 
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Table 6.1: Metabolite changes detected by GC-MS and 1H-NMR spectroscopy in 

liver, serum and skeletal muscle of control, PPARδ agonist and PPARγ 
agonist treated ob/ob mice.  Metabolites identified in the VIP/coefficients 
plots as significantly contributing to separation in the PCA and PLS-DA 
models built for the individual tissues.  The control group was compared 

with the combined PPARδ agonist and PPARγ agonist treated groups.  
The R2 and Q2 values for the individual models are shown. ↑, indicates a 
detected increase in metabolite concentration. ↓, indicates a detected 
decrease in metabolite concentration. 

 

6.4.3. Liver 

6.4.3.1 Metabolite changes common to PPARδ and PPARγ activation 

Activation of both PPARδ and γ caused increases in the concentrations of many amino 

acids including alanine, β-alanine, glutamate, glutamine, glycine, phenylalanine, proline, 

threonine, tyrosine and valine in liver tissue relative to tissue from control animals.  Fatty 

acid metabolism was also affected in the liver with an observed increase in the 

concentration of lauric acid and palmitoleic acid accompanied by a decrease in the 

concentration of cis-11,14-eicosadienoic acid in the PPARδ and γ treated mice.  The 

essential fatty acid pathways were altered by PPARδ and γ activation with an increase in 

the concentration of arachidonic acid and a concomitant decrease in linoleic acid and 

linolenic acid. In addition carbohydrate catabolism, anabolism and energy metabolism 

was influenced by the activation of both PPARδ and γ.  An increase in the concentration 

of acetic acid, β-hydroxybutyrate, galactonic acid, lactate and succinate and a decrease in 

fructose, galactose, glucose and glycerol were detected in the livers of treated mice. 

UPLC-MS analysis identified a decrease in the concentration of a number of TAGs and a 

concomitant increase in phosphatidylcholine species in both PPARδ and PPARγ agonist 

treated livers (Figure 6.3), (Table 6.2). Of the 14 species identified as increased in 

concentration following PPARδ activation 12 were identified as phosphatidylcholines.  

Twelve species of TAG were observed to decrease in concentration following PPARδ 

activation. 
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Figure 6.3: A. PLS-DA scores plot showing the clustering of the UPLC-MS 
chromatograms from the organic fraction of liver tissue from mice treated 

with a PPARδ agonist compared with control mice. ●, PPARδ agonist 
treated. ■, control (R2=0.877, Q2=0.574) B. PLS-DA scores plot showing 
the clustering of the UPLC-MS chromatograms from the organic fraction 

of liver tissue from mice treated with a PPARγ agonist compared with 

control mice. ◊, PPARγ agonist treated. ■, control (R2=0.996, Q2=0.852). 
C. PLS-DA scores plot showing the clustering of the UPLC-MS 
chromatograms from the organic fraction of serum from mice treated with 

a PPARδ agonist compared with control mice. ●, PPARδ agonist treated. 
■, control (R2=0.948, Q2=0.821) D. PLS-DA scores plot showing the 
clustering of the UPLC-MS chromatograms from the organic fraction of 

serum from mice treated with a PPARγ agonist compared with control 

mice. ◊, PPARγ agonist treated. ■, control (R2=0.985, Q2=0.864). 
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Table 6.2:  Complex lipid changes detected in liver of control, PPARδ agonist and 

PPARγ agonist treated ob/ob mice using UPLC-MS.  Lipids identified in 
the VIP/coefficients plots as significantly contributing to separation in the 
PCA and PLS-DA models built for the UPLC-MS analysis of the organic 

metabolite fraction. The control group was compared with the PPARδ 

agonist and PPARγ agonist treated groups from liver. 
(Glycerophosphatidylcholine PC) 
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DI-MS analysis of livers from PPARδ and PPARγ agonist treated ob/ob mice 

demonstrated an increase in the concentration of a range of glycerophosphoinositol 

species.  Several of the species increased in concentration were common to both the 

PPARδ and PPARγ treated animals (Table 6.3).  The increase in glycerophosphoinositols 

also coincided with the decrease in the free concentration of myoinositol in the livers of 

both treatment groups and may be indicative of the increased synthesis of the 

phospholipids. 

 

 

Table 6.3:  Glycerophosphoinositol (GPIns) species increased in concentration in the 

livers of PPARδ agonist and PPARγ agonist treated ob/ob mice detected 
using DI-MS.  Lipids identified in the VIP/coefficients plots as 
significantly contributing to separation in the PCA and PLS-DA models 
built for the DI-MS analysis of the organic metabolite fraction. The 

control group was compared with the PPARδ agonist and PPARγ agonist 
treated groups from liver.  GPIns species increased in concentration in 
both treatment groups are highlighted in red. 
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6.4.3.2 Metabolite changes unique to PPARδ activation 

While only a decrease in the concentration of the ketogenic amino acid, lysine 

distinguished the animals treated with the PPARδ agonist from the other groups for 

aqueous soluble metabolites, this group was more readily distinguished by lipid 

metabolites.  The PPARδ agonist produced an increase in the –CH3 and -(CH2)n lipid 

moieties, detected by 1H-NMR spectroscopy. A decrease was detected in the 

concentrations of 8,11-eicosadienoic acid, cis-10-heptadecanoic acid, myristic acid, 

myristoleic acid, oleic acid, palmitic acid, pentadecanoic acid and trans-11-eicosenoic 

acid.  The essential fatty acid pathways were also targeted with increases in arachidonic 

acid, dihomo-γ-linolenic acid, cis-4,7,10,13,16,19-docosahexaenoic acid and a decrease 

in γ-linolenic acid (Figure 6.4). 

 

 

Figure 6.4: PLS-DA scores plot showing the clustering of the GC-MS chromatograms 

from the organic fraction of liver tissue from mice treated with a PPARδ 

agonist compared with control mice. ●, PPARδ agonist treated. ■, control 
(R2=0.43, Q2=0.82). 
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The FFA composition of the liver, as detected by DI-MS, was also altered in livers from 

mice treated with PPARδ agonist.  There was an increase in the intermediates of the ϖ-6 

fatty acid pathway (dihomo-γ-linolenic acid and adrenic acid) and an increase in the 

intermediates and end products of the ϖ-3 essential fatty acid pathway (cis-

7,10,13,16,19-docosapentaenoic acid and cis-4,7,10,13,16,19-docosahexaenoic acid).  In 

addition there was an increase in incorporation of the ϖ-6 fatty acid pathway end product, 

arachidonic acid, into phospholipids and a concomitant decrease in the free concentration 

of this fatty acid.   

 

Given the increased ketogenesis and reduction in TAGs observed in the liver for both 

agonists it was deemed important to examine how these metabolic changes were 

influencing the metabolism systemically by analysing the serum. 

 

6.4.4. Serum  

6.4.4.1 Metabolite changes common to PPARδ and PPARγ activation 

Treatment with either of the two PPAR agonists induced changes in amino acid 

metabolism (increases in proline, tryptophan and tyrosine) and glycolysis/TCA cycle 

intermediates (increases in acetic acid, glyceric acid and succinate; decreases in fructose, 

galactose and glucose) reflecting those detected in the liver.  Also, in a similar manner to 

the liver, the largest changes occurred in lipid metabolism. The agonists caused increases 

in monopalmitin, bis-monostearin, myristic acid, palmitic acid, stearic acid, trans-9-

octadecanoic acid and trans-11-eicosanoic acid and decreases in cis-4,7,10,13,16,19-

docosahexaenoic acid and erucate.  Arachidonic acid from the ϖ-6 essential fatty acid 

pathway was decreased in the serum of treated animals.   

 

6.4.4.2 Metabolite changes unique to PPARδ activation 

Amino acids increased in the PPARδ agonist treated mice serum relative to control were 

aspartate and isoleucine. The concentration of the ketone body, β-hydroxybutyrate was 

increased as were the concentration of the TCA cycle metabolite fumarate and the 

glycolytic product lactate. Fatty acid metabolism was also affected in the serum with 
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increases in the concentration of 2-monostearin, palmitelaidic acid, palmitoleic acid and 

tetradecanoic acid.  The ϖ-6 essential fatty acid pathway intermediate, dihomo-γ-

linolenic acid was also increased in PPARδ agonist treated mice serum.  UPLC-MS 

analysis highlighted that the concentration of a range of TAGs was found to be elevated 

in PPARδ treated serum; this was the reverse of the observation upon PPARγ activation 

where the concentration of the same TAGs was found to be decreased (Table 6.4). 
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Table 6.4:  Complex lipid changes detected in serum of control, PPARδ agonist and 

PPARγ agonist treated ob/ob mice using UPLC-MS.  Lipids identified in 
the VIP/coefficients plots as significantly contributing to separation in the 
PCA and PLS-DA models built for the UPLC-MS analysis of the organic 

metabolite fraction. The control group was compared with the PPARδ 

agonist and PPARγ agonist treated groups from serum. The TAGs 

increased in the PPARδ agonist treated mice marked in red are equivalent 

to those decreased in the PPARγ agonist treated mice marked in blue.  
 

To examine the fate of the increased serum β-hydroxybutyrate produced by the liver 

through increased fatty acid oxidation following exposure to the PPARδ agonist and 

investigate the causes for the decrease in glucose in the blood serum of both agonist 

treated groups, the metabolome of skeletal muscle was examined. 
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6.4.5. Skeletal Muscle  

6.4.5.1 Metabolite changes common to PPARδ and PPARγ activation 

Amino acid metabolism was also altered in the skeletal muscle of PPARδ and γ agonist 

treated mice; concentrations of proline and threonine were increased and alanine and 

valine concentrations were decreased in treated mice relative to tissue from control 

animals.  Cis-10-heptadecanoic acid, cis-11,14-eicosadienoic acid, myristoleic acid, oleic 

acid and palmitoleic acid were increased and stearic acid was decreased in the skeletal 

muscle of the PPARδ and γ agonist treated mice.  The ϖ-6 essential fatty acid pathway 

was also altered with a decrease in linoleic acid and arachidonic acid. 

 

6.4.5.2 Metabolite changes unique to PPARδ activation 

In contrast to liver tissue amino acid metabolism, glycolysis and the TCA cycle were 

profoundly affected in the skeletal muscle of PPARδ agonist treated mice. Increases in 

the concentration of aspartate and α-glycerophosphoric acid and decreases in arginine, 

glutamine, glycine, methionine, norvaline, serine, glucose, lactate and succinate were 

detected (Figure 6.5). Fatty acid metabolism was changed in the skeletal muscle of 

PPARδ agonist treated mice, with an increase in the -CH3, COCH2 and -(CH2)n lipid 

moieties and cis-5,8,11,14,17-eicosapentaenoic acid, elaidic acid and margaric acid. 

There was a concomitant decrease in palmitic acid.  The ϖ-6 essential fatty acid pathway 

intermediate, dihomo-γ-linolenic acid was also increased.  
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Figure 6.5: A. PLS-DA scores plot showing the clustering of the GC-MS 
chromatograms from the aqueous extracts from skeletal muscle from mice 

treated with a PPARδ agonist compared with control mice. ●, PPARδ 
agonist treated. ■, control (R2=0.69, Q2=0.73). B. Comparison of the 
region of typical GC-MS chromatograms of control skeletal muscle tissue 

(black) and skeletal muscle tissue from mice treated with a PPARδ agonist 
(grey) containing the serine peak. C. Bar graph demonstrating the 
difference in the average integrated area of the Serine peak from control 

and PPARδ agonist treated liver. Standard error bars are shown. * P < 0.05 
with respect to vehicle control animals. 
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6.5 Discussion 

 

A range of complementary metabolic profiling approaches were used to study key tissues 

involved in type II diabetes from ob/ob mice treated with a PPARδ or a PPARγ agonist to 

understand the role of PPARδ in regulating systemic metabolism with a particular focus 

on hepatic and skeletal muscle metabolism.  In particular we investigated the core 

components of the Cori cycle to understand the implications altered liver metabolism has 

on muscle tissue.  While similarities were present between the two agonists, and in 

particular activation of both PPARδ and PPARγ resulted in an increase in the insulin 

sensitivity and glucose tolerance of the ob/ob mice, PPARδ induced a number of unique 

responses particularly in liver and skeletal muscle. These findings are consistent with the 

high level of PPARδ protein expression in these tissues273.  A decrease was detected in 

glucose and galactose in all tissues, and fructose in serum and liver from PPARδ agonist 

treated mice; the decrease in glucose in serum was confirmed by clinical chemistry.  

Concomitantly an increase in lactate was detected in the liver and serum of the treated 

mice, indicating a decrease in hepatic glucose production which has previously been 

observed following PPARδ activation227. It has been suggested that PPARδ activation 

increases glyceraldehyde-3-phosphate, formed from the 5-carbon sugar phosphates 

during the pentose phosphate shunt, which can then enter glycolysis227, explaining the 

observed reduction of glucose, galactose and fructose in the serum and skeletal muscle.   

 

During prolonged β-oxidation of fatty acids in the liver the production of acetyl-CoA can 

exceed the capacity of the TCA cycle.  The excess acetyl-CoA is converted to β-

hydroxybutyrate through ketogenesis in liver mitochondria.  The increased liver and 

blood serum concentrations of β-hydroxybutyrate indicate the PPARδ agonist stimulates 

ketone body formation for the peripheral tissue, a change which is also observed by 

clinical chemistry assays.  In addition acetic acid was increased in the treated livers; 

whilst a decrease in concentrations of non esterified fatty acids in the serum of PPARδ 

was indicative of increased tissue oxidative breakdown of fatty acids.  The concentration 
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of serum TAGs was increased in PPARδ agonist treated mice, as they are mobilised for 

catabolism in muscle. These observations are consistent with previous studies showing 

activation of PPARδ increases fatty acid β-oxidation274.  Furthermore activation of 

PPARγ lead to the reverse effect with a decrease in serum TAGs, consistent with this 

receptor being involved in regulating white adipose tissue storage of TAGs and adipocyte 

expandability275. The glucogenic amino acids (those that are precursors of glucose in 

gluconeogenesis), glycine, glutamate, glutamine, alanine, proline and valine and the 

amino acids which are glucogenic and ketogenic, threonine, tyrosine and phenylalanine 

were increased in the PPARδ agonist treated livers.  In contrast the concentration of the 

ketogenic amino acid (those that are broken down to acetyl-CoA and converted to ketone 

bodies), lysine was decreased.  These changes within the livers of PPARδ agonist treated 

mice indicate a decrease in gluconeogenesis and an increase in fatty acid oxidation and 

ketogenesis (Figure 6.6).  

 

Figure 6.6:  Metabolic pathways altered in PPARδ agonist treated liver from ob/ob 
mice. Metabolites increased relative to control tissue are red; metabolites 
decreased relative to control tissue are blue. 
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PPARδ agonist treated liver contained decreased linoleate and increased linoleate 

pathway intermediates, γ-linolenate and dihomo-γ-linolenate, and the pathway end 

product arachidonate (Figure 6.7).  The ∆ 6-desaturase introduces the initial double bond 

to linoleate forming γ-linolenate.  The ∆ 6-desaturase gene contains a PPRE and is known 

to be under PPARα transcriptional control223.  From this study the desaturase also 

appears to be under PPARδ transcriptional control.  Whilst it is worth considering that all 

pharmacological agonists are likely to exhibit some “off target” effects, this study has 

taken into account the high affinity, specificity and extensive characterisation of 

GW610742 for PPARδ, even over the highly related PPARα, which make the compound 

a very selective tool for the activation of the PPARδ nuclear receptor185. Van der Veen et 

al demonstrated that a dose of 20 mg/kg/day of GW610742 in mice gave an average 

plasma concentration of 1µM, given that the specificity of GW610742 for PPARδ is 28 

nM compared to 8900 nM for PPARα and >10,000 nM for PPARγ then the dose used in 

the current study saturates the PPARδ receptor whilst only minimally activating the other 

PPAR isotypes185.  Within the skeletal muscle linoleate was also decreased and dihomo-

γ-linolenate increased but arachidonate was decreased.  However, increased arachidonic 

acid metabolism is not necessary a contradictory result when PPARδ is activated.  The 

exact balance between the concentrations of these pathways presumably arise from the 

balance between increased β-oxidation and the actual activity of the synthetic pathway 

across the different tissues, as well as potential cross-talk between the three different 

PPARs. Thus, while synthesis of polyunsaturated fatty acids may be increased by PPARδ 

stimulation, increased β-oxidation will also deplete intermediates, and a new steady state 

will be achieved. 

 

 

Figure 6.7:  Linoleate pathway altered in PPARδ agonist treated liver from ob/ob 
mice. Metabolites increased relative to control tissue are red; metabolites 
decreased relative to control tissue are blue. 
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The α-linolenic acid essential fatty acid pathway was also altered in the liver of PPARδ 

agonist treated mice (Figure 6.8).  There was a decrease in the initial metabolite in the 

pathway, α-linolenic acid and a concurrent increase in the pathways product 

4,7,10,13,16,19-docosahexaenoic acid.  Two steps in the pathway are again catalysed by 

the ∆ 6-desaturase.  Also the final step in the pathway, the formation of 4,7,10,13,16,19-

docosahexaenoic acid from 6,9,12,15,18,21-C24:6, occurs via β-oxidation, which is 

upregulated in the livers of PPARδ treated mice.  Nevertheless as the intermediates in the 

pathway were not detected, the exact target of PPARδ cannot be identified 

unambiguously from this data. 

 

 

Figure 6.8:  Linolenate pathway altered in PPARδ agonist treated liver from ob/ob 
mice. Metabolites increased relative to control tissue are red; metabolites 
decreased relative to control tissue are blue. 

 

PPARδ mRNA is expressed in skeletal muscle at 10-fold higher levels than PPAR α and 

50-fold higher levels compared with PPARγ mRNA139.  The receptor is preferentially 

found in oxidative rather than glycolytic myofibers139.  A major metabolic change 

exhibited by the PPARδ treated skeletal muscle was a decrease in the concentration of the 

majority of the observed amino acids (Figure 6.9).  Since skeletal muscle lacks glucose-

6-phosphatase the amino acids will not have been used as substrates in gluconeogenesis.  

An alternative fate for the amino acids is as substrates for the TCA cycle, which was also 

affected.  The increased demand for TCA cycle substrates was also apparent from the 

decrease in succinate and concomitant increase in fumarate and malate.  Succinate is the 

substrate for complex II of the electron-transport chain which catalyses the formation of 

fumarate and reduces coenzyme Q.  PPARδ activation increases mitochondrial 

biogenesis, expression of electron transport chain components such as cytochrome c, 

cytochrome c oxidase and complex II and induces muscle fibre type switching to type I 
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fibres171. Within the treated skeletal muscle the concentrations of adenine were decreased 

and those of adenosines and ribose sugars from the adenosines were increased.  

Therefore, the decrease in amino acids may relate to increased oxidative metabolism 

occurring in this tissue. In addition we detected an increase in the concentration of 

creatine and phosphocreatine in muscle tissue which reflects an increase in the high 

energy phosphate buffering capacity of the cell in addition to the increase in ATP also 

detected.  These changes are accompanied by a decrease in lactate concentration and 

increased β-oxidation, indicating a reduction in glycolysis and a switch to more oxidative 

metabolism.  PPARδ activation has been implicated as a cause of skeletal muscle 

atrophy272.  As demand for amino acids increases one mechanism indicated by our results 

is that proteins are broken down to supply substrates to the TCA cycle. 

 

 

Figure 6.9:  Metabolic pathways altered in PPARδ agonist treated skeletal muscle 
from ob/ob mice. Metabolites increased relative to control tissue are red; 
metabolites decreased relative to control tissue are blue. 

 



Chapter 6 

 

 213 

PPARδ activation also reduced the degree of saturation of fatty acids in the skeletal 

muscle of the treated ob/ob mice.  Palmitate and stearate concentrations were found to be 

decreased and their monounsaturated forms palmitoleate and oleate concentrations were 

increased.  The enzyme catalysing these reactions, stearoyl-CoA desaturase, is under 

PPAR expressional control224. 

 

Activation of PPARδ further improved the dyslipidaemic state in the ob/ob mice by 

increasing the serum HDL cholesterol concentrations.  Activation of PPARδ increases the 

expression of the cholesterol efflux pump ATP-binding cassette transporter1, promoting 

the efflux of cholesterol from peripheral tissues which may lead to the observed increase 

in HDL cholesterol170.   
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6.6 Conclusions 

 

A global summary of the observed changes leads to the conclusion that PPARδ activation 

generates a systemic change in energy balance in which the Cori cycle is profoundly 

affected. A decrease in hepatic glucose production produces an increase in hepatic and 

circulating lactate concentrations and a drop in circulating blood glucose; hepatic 

metabolism begins to favour fatty acid β-oxidation and ketogenesis, in order to maintain 

energy supply to peripheral tissues the ketone bodies are released into circulation.  

Furthermore glucose is decreased within skeletal muscle alongside increased TCA cycle 

intermediates but without an observed increase in lactate, correlating with the observed 

increase in oxidative metabolism.  Therefore, the activation of PPARδ produces a marked 

switch from the Cori cycle to ketone and fatty acid metabolism between the liver and 

oxidative skeletal muscle which may contribute to the observed improvement in insulin 

sensitivity.  

 

In conclusion, to understand the global physiological and pharmacological effects of 

PPARδ activation, which may give rise to further applications for PPARδ agonists, 

compound treatment studies have been performed on an ob/ob mouse background.  The 

combined metabolomic study of liver, skeletal muscle and serum identified multiple 

changes in metabolism in the PPARδ agonist treated mice.  These changes showed that 

PPARδ activation profoundly affected glycolysis, gluconeogenesis, the TCA cycle and 

linoleic acid and α-linolenic acid essential fatty acid pathways, many of the changes were 

found to correlate well with known PPAR controlled gene expression. While some of 

these metabolic perturbations could be induced by a selective PPARγ agonist, there were 

also specific changes associated with PPARδ, demonstrating the complexity of the PPAR 

system and cross-talk between different receptors when considering systemic 

metabolism.



 

 215 

 

Chapter 7 

 

Summary and Discussion 

 
 

7.1 General Discussion 

 

The PPARs are orphan nuclear receptors that function as transcriptional regulators in a 

ligand dependent manner.  They have been implicated in the expressional control of a 

plethora of genes vital to organogenesis, inflammation, cell differentiation and 

proliferation.  The receptors have also been recognised as master regulators of lipid and 

carbohydrate metabolism and as such have been identified as targets for the treatment of 

metabolic diseases and in particular dyslipidaemia, obesity, TIIDM and the metabolic 

syndrome.  Several classes of pharmacological agents currently available in the clinic 

function through PPAR agonism and include the fibrates, activators of PPARα used to 

treat dyslipidaemia, and thiazolidinediones, PPARγ agonists employed in the treatment of 

TIIDM.  Thus far a clinically available therapeutic directed at PPARδ has eluded full 

development and clinical release despite implications that the receptor has potential as a 

treatment for obesity, TIIDM and the associated metabolic syndrome.   In spite of their 

potential and widespread use as medication the mechanisms by which PPAR agonists can 

alleviate metabolic perturbations and bring about normalisation remain to be fully 

defined.  Both PPARδ and PPARγ are crucially implicated in the regulation of 

metabolism within white adipose tissue; consequently it was the aim of this thesis to use 

a metabolomics approach to investigate and define the metabolic effects of PPARδ and 

PPARγ activation in both in vivo adipose tissue and in an in vitro model of adipose tissue.
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To generate a metabolically phenotyped in vitro model of adipocyte differentiation and 

metabolism the metabolic changes occurring during differentiation of 3T3-L1 

preadipocytes as they develop into mature adipocytes was defined using a multiplatform 

metabolomic and 13C-isotope substrate labelling technique. The metabolic changes 

identified were then compared and contrasted to the metabolic differences between pre- 

and post-differentiation primary adipocytes.  Distinct periods in the differentiation 

process could be defined by changes in metabolite concentrations.  Alterations in 

metabolism, affecting a range of pathways, were ascertained to occur during adipocyte 

differentiation.  Affected pathways included the TCA cycle, glycolysis, the production of 

odd chain fatty acids by α-oxidation, fatty acid synthesis, fatty acid desaturation, 

polyamine biosynthesis and trans-esterification to produce complex lipids.  Moreover the 

usage of glucose in the generation of fatty acids during 3T3-L1 metabolism was 

confirmed utilising 13C-labelled glucose to monitor the metabolic flux through glycolysis, 

the TCA cycle and into fatty acid synthesis.  It was shown that upon synthesis, the fatty 

acids are subjected to desaturation by the ∆-9 desaturase or to α-oxidation, forming odd 

chain fatty acids as was confirmed through the use of U-13C-labelled palmitate.  Although 

the 3T3-L1 cell line is a widely utilised tool for the investigation of adipocyte biology it 

was found that, as with all immortalised cell lines, they do not behave identically to their 

primary cell line counterparts.  Nevertheless, the modifications in metabolism discovered 

between primary preadipocytes and primary differentiated adipocytes equated to many of 

the findings observed in the 3T3-L1 adipocytes.  Therefore it is hoped that alongside 

metabolically phenotyping an adipocyte model for use in the investigation of tissue 

specific PPARδ and PPARγ activation, the work conducted in this thesis will provide 

invaluable information for research conducted in the 3T3-L1 cell line, primary cell lines 

and even white adipose tissue when following the changes in metabolism associated with 

differentiation.   

 

To evaluate and characterise the systemic and tissue specific metabolic effects of PPARδ 

activation in adipose tissue, a multifaceted metabolomic method was used to examine the 

effects of PPARδ activation, using a high affinity pharmacological agonist, in white 

adipose tissue from the ob/ob mouse model of insulin resistance, and the 3T3-L1 
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adipocyte cell line within a cell culture system, generating an in vivo and an in vitro 

model of adipose tissue specific PPARδ activation.  In addition, to unambiguously define 

the mechanisms by which PPARδ alters the metabolism of adipose tissue, 13C-stable 

isotope substrate labelling studies using 1-13C-glucose and U-13C-palmitate, respirometric 

analysis using a Clark-type oxygen electrode and transcriptomic microarray analysis were 

performed on PPARδ agonist treated 3T3-L1 adipocytes.  In summary, possible 

metabolic mechanisms by which PPARδ activation actualises its observed anti-diabetic 

and anti-obesity effects were identified; activation of the nuclear receptor decreases fatty 

acid synthesis and fat storage within synthesised TAG depots and concomitantly 

mobilises complex lipid fatty acid stores.  Mobilisation of the TAG lipid energy stores 

was found to be accompanied by upregulation of not only fatty acid oxidation but also by 

carbohydrate oxidative metabolism in the white adipose tissue, a tissue not 

conventionally thought of as being energetic or oxidative.  Fundamental to this process is 

the consolidation and systematisation of the energy metabolism pathways, which PPARδ 

was identified as accomplishing by upregulating the transcription of a series of genes 

involved in glycolysis, the TCA cycle, the electron transport chain and fatty acyl β-

oxidation.  PPARδ activation in white adipose tissue was found to neither bring about 

exclusive stimulation of either fatty acid oxidation or carbohydrate oxidation but rather 

global oxidative metabolism; simultaneously reducing the quantity of TAGs and glucose 

in white adipose tissue.  Therefore, despite the absence of PPARδ agonists in the clinic, 

the nuclear receptor may still prove a powerful target for the treatment of the metabolic 

syndrome. 

 

It was an additional aim of this thesis to identify the potential metabolic effects of PPARγ 

activation in adipose tissue that may be contributing to the nuclear receptor’s anti-

diabetic potential.  Consequently a metabolomics study of PPARγ activation both in vivo 

in the ob/ob mouse, to determine the systemic effect of PPARγ activation on adipose 

tissue, and in vitro using the murine 3T3-L1 adipocyte cell line, to independently 

establish adipose tissue specific activation of the nuclear receptor, was conducted.  To 

delineate the metabolic changes established as associated with PPARγ activation in the 
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metabolomic analysis and to explicitly define the pathways by which activation of the 

ligand binding transcription factor influences the metabolism of adipose tissue, 

mechanistic analyses were performed using 13C-stable isotope substrate labelling, 

employing 1-13C-glucose and U-13C-palmitate, and transcriptomic microarray analysis.  

Investigations led to the discovery that activation of the nuclear receptor in adipocytes 

leads to an upregulation of glycolysis and catabolism of other carbohydrate species. 

Correspondingly activity of the TCA cycle is decreased, an effect especially obvious in 

the later oxidative stages of the cycle as they are downregulated in preference of fatty 

acid synthesis from the early TCA cycle substrates.  In addition to de novo fatty acid 

synthesis, cellular FFA uptake is increased; propagating a pool of longer chain fatty acids 

which are integrated into TAGs or desaturated and incorporated into TAG’s.  

Preservation of the complex lipid pool is subsequently achieved via an inhibition of 

lipolysis.  Concurrently the breakdown of fatty acids via β-oxidation is reduced.  

Furthermore, PPARγ activation was implicated in the augmentation of calcium cellular 

signalling. The calcium signalling pathway is associated with insulin signalling and its 

downstream metabolic effectors; identifying a potential accessory mechanism for PPARγ 

activation mediated normalisation of blood glucose and dyslipidaemia in both human 

patients and murine subjects with the metabolic syndrome and TIIDM.  However, it was 

also discovered that PPARγ activation increases activity of the polyol pathway in 3T3-L1 

adipocytes; a pathway in which increased flux has been associated with the development 

of diabetic complications.  This finding casts a shadow over the use of thiazolidinediones 

and other PPARγ agonists in the clinic for the treatment of diabetes and the metabolic 

syndrome.  Nevertheless, the observed sequestration of glucose and lipid into the white 

adipose tissue, as a safely contained storage depot, was described as a possible 

mechanism by which PPARγ activation reduces the damaging potential of increased 

levels of circulating glucose and lipid, whilst simultaneously reducing lipid and 

cholesterol accumulation in peripheral tissues; demonstrating a means by which PPARγ 

activation may initiate insulin sensitisation, not only in the white adipose tissue but also 

in the peripheral tissue.  This thesis has proposed that through the dual mechanisms of 

augmenting facets of the calcium signalling pathway associated with insulin action and 
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direct transcriptional regulation of metabolic enzymes PPARγ activation brings about 

metabolic changes that function to reinforce insulin sensitisation. 

 
Further to these aims, this thesis was intended to use a metabolomics approach to 

investigate and characterise the systemic physiological effects of PPARδ and PPARγ 

activation by definition of the hepatic and peripheral metabolic changes that occur in the 

ob/ob mouse following activation of the nuclear receptors.  Consistent with many of the 

results from the studies of PPAR activation in adipocytes conducted in this thesis, a 

number of key metabolic pathways in liver and skeletal muscle were identified as 

affected by PPARδ agonism including glycolysis, gluconeogenesis, the TCA cycle and 

linoleic acid and α-linolenic acid essential fatty acid pathways.  Moreover, through 

systemic analysis, it was discovered that PPARδ activation generates a system wide 

change in energy balance, profoundly impacting on the Cori cycle.  Decreased hepatic 

gluconeogenesis was found to cause an increase in the concentration of hepatic and 

circulating lactate and a concomitant reduction in circulating blood glucose; to sustain 

energy balance hepatic metabolism switched to favour fatty acid β-oxidation and 

ketogenesis, the ketones were then released into circulation as a source of energy for the 

peripheral tissues.  Furthermore the concentration of glucose within skeletal muscle was 

found to decrease upon PPARδ activation.  Coinciding with this observation was a 

detected increase in TCA cycle intermediates, correlating with the increase in oxidative 

metabolism.  It was concluded that the activation of PPARδ produced a significant 

modification in energy metabolism from the Cori cycle to ketone and fatty acid 

metabolism between the liver and oxidative skeletal muscle.  Whilst some of these 

metabolic perturbations were also found to be induced by PPARγ activation and both 

activation of PPARδ and PPARγ lead to increased insulin sensitivity and glucose 

tolerance, activation of both nuclear receptors were identified as functionally distinct.  

Characterisation of PPARδ activation demonstrated the specific catabolic role of this 

receptor relative to PPARγ. 
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7.2 Future Directions 

 

The research described in this thesis could be expanded upon using various experimental 

approaches to further the characterisation and understanding of the physiological role 

played by the PPARs in the control of metabolism and consequentially to assess their 

potential as a therapeutic target for the treatment of a myriad of metabolic diseases 

including TIIDM, dyslipidaemia and the metabolic syndrome.  One such approach would 

be the development of additional tissue specific models of PPAR activation using cell 

lines, or even primary cells, derived from alternative metabolic tissues such as skeletal 

muscle, hepatic and cardiac tissue to complement that of the 3T3-L1 adipocytes studied 

in Chapter 4 and Chapter 5 of this thesis and to expand upon the observations made 

regarding systemic metabolism in Chapter 6 of this thesis. Although there are a number 

of robust cell lines available for the study of hepatocytes and skeletal and cardiac 

myocytes, it is worthy of note that, as with all immortalised cell lines, they do not behave 

identically to their primary cell line or in vivo counterparts. Extensively used skeletal 

muscle cell lines include the rat L6 and mouse C2C12 cell lines that are easy to cultivate 

and can be induced to differentiate forming multinucleated myotubes in culture dishes.  

However, the differentiation of these cells is halted and they fail to recapitulate their 

contractile function, or generate different fibre types276.  The Huh-7 and HepG2 cell lines 

have been widely employed for hepatocyte research, nevertheless these cells are derived 

from neoplastic tissues and are therefore de-differentiated from mature hepatocytes.  To 

surmount the disadvantages in the hepatocyte cell lines available primary human 

hepatocytes have also been utilised in the study of liver functions.  Even so primary 

hepatocytes can suffer from a rarity of supply, lack of homogeneity, mortality and 

intransigency to growth in culture277. Human hepatocyte lines have recently been 

developed that now retain a primary hepatocyte phenotype and may prove valuable for 

research into the metabolic processes that occur in the liver278.  Immortalised 

cardiomyocyte cell lines capable of proliferation in culture include the AT-1279 and 

MC29280 cell lines.  Alternative methods have been employed to generate cardiomyocyte 

cell lines including harvesting cells from transgenic mice expressing SV40 T-ag281 and 
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transformation of foetal cardiomyocytes with the SV40 oncogene282.  Again, these cell 

lines suffer from similar deficiencies the most common being a limited capacity to be 

passaged, de-differentiating in long term culture and deviation from a typical 

cardiomyocyte phenotype.  To circumvent these inadequacies, a mouse atrial 

cardiomyocyte cell line, HL-1 a derivative of the AT-1 line, has been developed which 

maintains the phenotype of adult mouse atrial cardiomyocytes whilst obtaining the 

capacity for serial passage283. Through the use of a selection of these cell lines and the 

application of metabolomic techniques employed in combination with 13C stable isotope 

substrate labelling, respirometry and transcriptomics, as detailed in Chapter 4 and 

Chapter 5 of this thesis, several tissue specific metabolic models of PPAR activation 

could be generated and studied. 

 

To further define the physiological role of PPAR activation metabolomic investigations 

of in vivo models of tissue specific PPAR activation and ablation would be a pertinent 

approach.  Although PPARδ knockout mice are viable they suffer from several 

developmental defects and homeostatic perturbations including placental abnormalities 

generating embryonic lethality, myelination defects, unusual skin inflammatory responses 

and reduced adipose tissue mass284,285.  In addition, tissue dependent metabolic effects are 

convoluted due to systemic changes.  However, tissue specific animal models of PPAR 

overexpression, activation and ablation have been developed.  Rodent models of 

overexpression of PPARδ in both adipose tissue, under the control of the enhancer-

promoter region of the adipocyte fatty acid binding protein (aP2) gene169, and in skeletal 

muscle171 have been developed to investigate the role that the nuclear receptor plays in 

these tissues. 

 

To elaborate on future research possibilities, an approach whereby the exact points of 

PPAR directed control in metabolic pathways can be identified is provided by the RNAi 

techniques.  Following on from the identification of pathways affected by PPAR 

activation in adipocytes, as outlined in this thesis, RNAi could be used to perturb the 

system and test potential PPAR control points in pathways highlighted by the 

metabolomic and transcriptomic analysis conducted in Chapter 4 and Chapter 5.  RNAi 
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provides a versatile tool, allowing knock-down of gene transcripts as opposed to knock-

out and high selectivity when compared to a variety of metabolic inhibitors.  The RNAi 

analysis could also be expanded to investigate PPAR control of metabolism in additional 

tissue specific cell lines as previously discussed.  

 

The research conducted in Chapter 3, Chapter 4 and Chapter 5 of this thesis 

demonstrated the potential of 13C labelled substrate studies to characterise the effect of 

PPAR activation on the spatio-temporal flux of metabolites through metabolic pathway 

networks.  In addition to the investigation of glycolysis, the TCA cycle, fatty acid β-

oxidation and fatty acid synthesis reported, the potential remains to investigate other 

metabolic pathways identified as affected by PPAR activation; a pertinent example would 

be to establish the fate of amino acids as likely substrates for the TCA cycle using 

myocytes incubated with 13C-labelled amino acids, this would substantiate speculation 

made in Chapter 6 regarding PPARδ activation in skeletal muscle.   

 

Finally, an extra dimension of metabolomic analysis could be achieved through LC-MS 

profiling of the polar, aqueous soluble metabolites to further define PPAR activation in 

adipose tissue culture and animal studies.  LC-MS conducted within this thesis has 

focussed on the more established lipidomic analysis.  However, studies of the polar 

metabolites using LC-MS are becoming more widespread within metabolomics with the 

technique under continual development286.  Currently many of the methods are targeted 

to biofluids, with the analysis of blood and urine most common287.  Although advances 

are being made in the analysis of tissue extracts288, the use of LC-MS investigation of 

polar metabolites would be advantageous in enlarging the coverage of the metabolome.   
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7.3 Conclusions 

 

The research conducted within this thesis emphasises the benefit of combining omic 

methods with mechanistic studies to further characterise metabolic changes observed 

within metabolomic experiments.  Moreover a multi-omic approach has been exploited, 

increasing the coverage of the strata defined by the central biochemical and molecular 

biological dogma to constitute a biological network; in doing so, the complex interactions 

between metabolites and genes can be further characterised, improving our understanding 

of the systems properties of biological networks and their perturbation. 

 

In conclusion, through the use of a multi-platform metabolomic technique, employed in 

conjunction with transcriptomic, metabolite flux and respirometric techniques, the 

metabolic influence of both PPARδ and PPARγ in adipose tissue has been further 

defined.  Although the metabolic effects of both PPARδ and PPARγ activation were 

indicative of an effective therapeutic target for the treatment of the metabolic syndrome, 

improving insulin sensitisation and glucose tolerance, the metabolic mechanisms initiated 

by receptor activation profoundly deviated.  PPARδ activation was distinguished by 

oxidative catabolism of metabolites identified as potentially deleterious in the diabetic 

state.  Conversely, PPARγ activation was identified by the sequestration of the same 

metabolites into safe storage depots.  The role of the PPARs as master regulators of 

metabolism has been accentuated and their latent capacity as targets for the treatment of 

metabolic diseases of global consequence inferred. 
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