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Abstract

This paper introduces a nonlinear feedback trading model at high
frequency. All price adjustment is endogenous, driven by asset return
and volatility in the previous trading period. There is no stochastic
uncertainty or asymmetric information. The dynamics of expected
returns display stable or unstable behavior–including the possibility
of turbulence and chaos–as a function of market liquidity (inverse
price impact) and the concentration of investor beliefs, which is pro-
portional to the intensity of positive feedback. The results highlight
the complementary role of investor diversity and market liquidity in
maintaining financial stability.
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1 Introduction

Can feedback trading sustain positive expected returns on financial assets?

According to the weak form of the efficient markets hypothesis (EMH), ex-

pected returns should be zero regardless of the trading frequency. The main

objective of this paper is to investigate the key premise of EMH in a nonlinear

(logistic) feedback trading model with no stochastic uncertainty. There are

two key trading parameters: asset liquidity, which is inversely related to the

price impact of net order flow, and the intensity of positive feedback trading,

which is inversely related to the diversity of investor opinion.

The intensity of high-frequency trading reflects the relative strength of

two feedback rules. First, investors display positive feedback, linked to

“momentum” trading strategies: they buy/sell the risky financial asset if

returns in the previous period were positive/negative. Second, investors

also exhibit risk feedback: their asset demand falls/rises following relatively

volatile/tranquil trading periods. Risk feedback amounts to a “buy low-sell

high” trading strategy in a mean-variance world where risk and expected

returns are positively related.

Positive feedback can destabilize financial markets while risk feedback

has a stabilizing influence. Thus, the interaction of the two types of feedback

matters for financial stability. I capture this interaction by assuming the

intensities of positive and risk feedback to be inversely related. There are

two possible justifications for this assumption. First, it is consistent with

the findings of Cohen and Shin (2003) on the high-frequency US Treasury

bond market. These authors report strong evidence of positive feedback in

high-frequency trading on US Treasury bonds: (a) returns tend to be more

positively autocorrelated when market conditions are more volatile; and (b)

price declines/rises elicit asset sales/purchases, and such feedback trading is

stronger in volatile market conditions. Arguably, this applies to positive feed-

back both during episodes of market euphoria–such as the dot.com bubble
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of 1999/2000–and during market turbulence. Risk feedback captures this

trading pattern: sales pressure is growing in the previous period’s volatility,

given the intensity of feedback trading. Second, Persaud (2001, 2003) argues

that momentum strategies may gather strength as investors’ beliefs become

more concentrated. Heterogeneity decreases during market euphoria as well

as during crises: in both cases, the market becomes one-sided and risk con-

siderations matter very little. To quote Alan Greenspan, during the Long

Term Capital Management liquidity crisis “...everyone wanted out” (October

7, 1998, quoted in Longstaff (2004)). Thus, a useful way of capturing sharp

falls in the diversity of investor opinion is to assume the relative intensity of

momentum and risk feedback to be inversely related. In the sequel, I use the

terms heterogeneity / diversity and concentration / uniformity of investor

opinion interchangeably.

The main features of the model are as follows. At the start of each trading

period, the risk-neutral market maker receives the net order flow and adjusts

the asset price level from the previous period using a linear pricing rule.

The return dynamics generated by the two feedback trading rules follow a

quadratic logistic map which is parametric in asset liquidity and investor

diversity. In turn, the logistic map has two fixed points, one of which is

always zero and the other generically non-zero. If stable, the zero fixed point

corresponding to zero expected returns is consistent with EMH. Similarly,

if the non-zero fixed point is stable then it violates EMH. The fixed points’

relative stability depends on the size of the two trading parameters.

There are three main findings. First, the zero fixed point is dynamically

stable for sufficiently diverse investor opinion (i.e. for sufficiently low inten-

sity of positive feedback) and sufficiently high asset liquidity (i.e., for suffi-

ciently small price impact coefficients). For such combinations of the trading

parameters the non-zero fixed point is dynamically unstable. Importantly, if

investor diversity and/or asset liquidity decline, the relative stability of the

two fixed points is reversed. Now the zero fixed point becomes unstable while
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the non-zero fixed point is stable.

Further, the threshold level of investor diversity triggering the transition

to dynamic instability increases in the asset’s liquidity. Equivalently, the

threshold level of positive feedback intensity at which the transition occurs

is decreasing in asset liquidity. This property indicates that if liquidity is

already low, then a small decline in investor diversity–equivalently, a small

rise in positive feedback intensity–can destabilize the zero fixed point. In-

deed, if price impact coefficient grows and asset liquidity falls below a certain

point, both fixed points become unstable for any level of investor diversity.

The dynamics of the logistic map then enter a range of period-doubling bi-

furcations. Eventually, as liquidity “dries up” equilibrium market dynamics

become completely unstable and chaos emerges. A deterministic nonlinear

dynamical system is chaotic if it is sensitively dependent on initial conditions

and produces random-looking dynamic paths.

The relative stability of the two fixed points also depends on the returns

distribution. If high-frequency returns are Gaussian, zero expected returns is

a stable equilibrium for all feasible values of the trading parameters. In turn,

non-Gaussian returns is a necessary, but not sufficient, condition for zero

expected returns to be unstable. It should be stressed that the dynamic pro-

gression from stable equilibrium to chaos is deterministic as it is completely

controlled by asset liquidity and investor diversity.

Second, the model yields several testable properties on short-term re-

turns persistence, proxied by the first-order autocorrelation coefficient. The

benchmark implication of the Shiller (1984)-Sentana and Wadwani (1992)

framework is that higher conditional volatility unambiguously increases re-

turn autocorrelation, consistent with the asymmetric GARCHmodels of Nel-

son (1991) and Glosten, Jagannathan and Runkle (1993). By contrast, in

this paper persistence can take either sign depending on the interaction of

the two trading parameters with the second and third conditional moments

of returns. In particular, positive and risk feedback respectively introduce
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conditional volatility and skewness to the autocorrelation coefficient.

In tranquil market conditions when skewness is negligible, autocorrela-

tion is always positive but independent of volatility, and its magnitude falls

with investor diversity (rises with positive feedback intensity). In order for

conditional volatility to affect persistence the returns distribution has to be

asymmetric. Specifically, higher volatility induces more persistence (raising

positive or lowering negative autocorrelation) only if conditional skewness

is positive. That is more likely to be the case during financial bubbles as-

sociated with investor euphoria. Higher volatility induces less persistence

à la Shiller-Sentana-Wadwani only if conditional skewness is negative, such

as in the aftermath of a market crash. Moreover, the model predicts that

bigger average order flow–a reasonable proxy of trading volume–induces

more persistence if skewness is negative. Conversely, with positive skewness,

bigger average order flow actually lowers persistence, as found by Campbell,

Grossman and Wang (1993) for stock returns. These results suggest that

distributional asymmetries may contribute to short term returns persistence

over and above the current level of asset risk.

The paper combines research on non-fundamental-based investor behav-

ior, driven from behavioral finance (see Barberis and Thaler (2003)) with

research on the potential for instability and chaos arising from the interac-

tion of financial market participants, driven by work on nonlinear dynamics.

Recent applications of chaos to economics include Benhabib, Schmitt-Grohe

and Uribe (2004), Brock et al. (1996), and Christiano and Harrison (1999).

Models where asset prices are driven by non-fundamentals can be traced to

Shiller (1984), Cutler, Poterba and Summers (1990) and Sentana and Wad-

hwani (1992). In the Sentana-Wadhwani model, positive feedback traders in-

teract with smart-money traders, who trade based on expected fundamentals.

In contrast, I assume both trading rules are based on non-fundamentals.1

1On the relationship between heterogeneity of investor beliefs and speculative bubbles
see Hong, Scheinkman and Xiong (2006), Scheinkman and Xiong (2003) and Shiller (2000).

4



On the empirical front, there is strong evidence that liquidity is time-

varying especially during market stress; see Farmer et al. (2005). Liquidity

risk is being integrated in asset pricing models (Acharya and Pedersen (2004),

Cochrane (2001) and Engle and Lange (1997)) and financial risk management

(Bangia et al. (2002)). The direction of causation from signed order flow to

asset prices is well documented by Hasbrouck (1991) for the stock market

and Evans and Lyons (2002) for foreign exchange. On the reverse causation,

Watanabe (2002) finds that daily Japanese stock returns exhibit positive

autocorrelation when volatility is low and negative autocorrelation when it

is high. Also, returns tend to be more negatively autocorrelated after price

declines than after price rises. Kim and Wei (2001) use panel data to show

that Korean off-shore funds displayed less positive feedback than their on-

shore counterparts during the Asian crises of 1997-98. Finally, Bohl and

Siklos (2004) using daily stock index data report that feedback trading is

more pronounced in emerging than in mature financial markets.

In the remainder of the paper, Section 2 presents the feedback trading

rules; Section 3 derives returns autocorrelation; Section 4 studies the exis-

tence and stability of equilibrium market dynamics as fixed points of a para-

metric logistic map; Section 5 classifies fixed point stability in terms of asset

liquidity (inverse price impact), investor diversity, and the conditional vari-

ance and skewness of returns; Section 6 shows that (non-) Gaussian returns

are a sufficient (necessary) condition for financial (in)stability, and highlights

the policy implications for financial regulators; and Section 7 concludes. All

fixed point definitions are in the Appendix.

2 Asset demand and order flow

All trading on the single risky asset is at high frequency, so time intervals

between trades are small but discretized; typically, sampling is at 5-minute

frequency or higher. Letting period t denote the interval between times t−1
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and t, the asset return in period t is rt ≡ ∆ logPt, where logPt is the log price

level at time t. By the weak form of the EMH, the conditional expectation of

returns h-periods-ahead is zero: Et−1rt+h = 0 for all h ≥ 0. When expected
returns are zero, actual and excess returns coincide. Defining excess returns

in period t as xt ≡ rt − Et−1rt implies rt = xt, σ2xt = var[rt] = Et−1x2t , and

sxt = skew[rt] = Et−1x3t . Conditional variance and skewness then are the

second and third centered moment of xt.

Investors employ two feedback trading rules. Following positive feedback,

they buy/sell the risky asset in period t if they observe positive/negative

returns in t−1, a characteristic of momentum strategies. Following risk feed-
back, traders react to conditional volatility in period t− 1 by buying/selling
the asset at time t if they observe lower/higher volatility in period t − 1,
consistent with buy low-sell high strategies.

Relative asset demand is assumed to be different for each rule. I de-

fine the intensity of positive and risk feedback trading to be f and 1 − f

respectively, where 0 ≤ f ≤ 1. The two trading rules have equal inten-

sity iff f = 0.5.2 As argued in Section 1, the inverse relationship between

positive and risk feedback captures the time-varying diversity of investor

opinion. As investor diversity declines, positive feedback gathers momentum

and risk considerations matter relatively less. By contrast, with sufficient

heterogeneity of investor beliefs positive feedback becomes less intense and

risk considerations gain in importance.

Let the net order flow from positive feedback be ω+t = fγxt−1. The

constant feedback intensity f is decreasing in investor diversity (increasing

in the uniformity of investor opinion), and γ is a scalar mapping actual

returns in period t − 1 to asset units demanded at time t. The sign of

ω+t depends on last period’s return. In contrast, Sentana and Wadhwani

2Kim and Wei (2001) also model trading intensity, proxied by time-varying portfolio
weights on individual stocks. An alternative interpretation of trading intensity, motivated
from game theory, is that there are two types of trader in the market at any time, a
proportion f% of positive feedback and (1− f)% of risk feedback traders.
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(1992) allow both positive and negative feedback by assuming γ > 0 or

γ < 0, respectively. Similarly, let the net order flow from risk feedback be

ω−t = −(1− f)γx2t−1 < 0. In this case, the intensity of risk feedback trading

1 − f is increasing in investor diversity. Risk feedback corresponds to the

risk component of smart money traders (driven by mean-variance) in the

Shiller-Sentana-Wadwani framework. By generating less/more asset demand

as conditional volatility x2t−1 grows/declines, it acts as an automatic stabilizer

on the market.

The aggregate order flow to the market maker at time t is given by

ωt ≡ ω+t + ω−t = fγxt−1 − (1− f)γx2t−1 , (1)

where the sign of ωt depends on the previous period’s trend and risk–proxied

by the level and square of returns at t − 1–and the diversity of investor
opinion, captured by 1 − f . It follows that the expected net order flow for

period t is always negative

Et−1ωt = −λ(1− f)γσ2x < 0 (2)

At time t, the risk-neutral market maker receives ωt and adjusts the asset

price from period t− 1 to t using a linear pricing rule3

xt = rt = λ ωt, λ > 0 (3)

The price impact of a unit change in order flow measures market depth.

An asset’s liquidity is then proxied simply by inverse price impact, 1/λ.

Substituting equation (1) into (3) yields

xt = λfγxt−1 − λ(1− f)γx2t−1 (4)

As λ > 0 always, the risky asset’s return in period t is positive (negative) iff

ωt > (<)0.

3Holden and Subrahmanyam (1996) list the full set of assumptions for the pricing rule
to be linear.
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3 Short term returns persistence

As returns dependence is limited to adjacent time periods, the first autocor-

relation coefficient of xt captures short term persistence. From equation (4),

the first autocovariance of xt+1 is

cov(xt+1, xt) = cov[λfγxt − λ(1− f)γx2t , xt]

= λfγσ2xt − λ(1− f)γsxt

σ2xt and sxt denote conditional volatility and skewness of returns at time t.

Dividing through by σ2xt yields the first-order autocorrelation

ρ1t(xt+1, xt) = λfγ − λ(1− f)γ
sxt
σ2xt

, (5)

where −1 ≤ ρ1t ≤ 1.4 Note that the first term is always positive and its

magnitude increases with f , the concentration of investor opinion. Therefore,

ρ1t = λfγ > 0 iff sxt = 0. The second term is negative (positive) iff sxt > 0

(sxt < 0). Higher volatility will then generate more positive, or less negative

autocorrelation: ∂ρ1t/∂σ
2
xt > 0 when sxt > 0.

This comparative static result differs from Sentana andWadhwani (1992).

There, positive feedback dominates in periods of high volatility and gener-

ates negative autocorrelation, while negative feedback (γ < 0) prevails at low

volatility and induces positive autocorrelation. In this paper I rule out the

possibility of negative feedback to focus on the convenient analytical prop-

erties of the logistic map in Section 4. Also, note that ∂ρ1t/∂σ
2
xt > 0 when

sx > 0, consistent with Cohen and Shin’s (2003) finding that short term

persistence in the US Treasury bond market is stronger when volatility is

higher.

Short term persistence is constrained by requring that −1 ≤ ρ1t ≤ 1 in
equation (5). Expressed in terms of the concentration (uniformity) of investor

4Note that conditional kurtosis would also enter in expression (5) if conditional skewness
affected trading decisions. For evidence of nonlinear dependence in stock returns see
LeBaron (1992) and Campbell, Lo and MacKinlay (1997).
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investor opinion, proxied by f , the inequalities become

0 ≤ fL =
sxtλγ − σ2xt
λγ(sxt + σ2xt)

≤ f ≤ sxtλγ + σ2xt
λγ(sxt + σ2xt)

= fU ≤ 1 , (6)

where fL < fU for all σx 6= 0. Assuming that sxt + σ2xt > 0 to combine

conditional volatility with all positive and some negative skewness values

(sxt > −σ2xt) suggests fU ≤ 1 iff λγ ≥ 1. The price impact coefficient λ is

then bounded below by 1/γ. Similarly, fL ≥ 0 iff sxtλγ ≥ σ2xt. Combining

the two inequalities yields

λ ≥ max{ σ2xt
sxtγ

,
1

γ
} ≥ 0

(7)

0 ≤ 1

λ
≤ min{sxtγ

σ2xt
, γ}

Inequalities (7) yield testable implications for the admissible range of asset

liquidity in terms of the second and third conditional moments of returns;

discussing these is beyond the scope of the present paper.

Equation (5) can also be used to assess the empirical finding of Camp-

bell, Grossman and Wang (1993) that stock returns persistence is negatively

related to trading volume. Proxying the latter by net order flow, substitute

equation (2) into (5)

ρ1t = λfγ − λ
£
(1− f)γσ2xt

¤ sxt
σ4xt

=

= λfγ − λsxt
σ4xt

[Et−1ωt] (8)

Hence, average order flow and autocorrelation are negatively related iff skew-

ness is positive. In contrast, if skewness is negative then higher average order

flow actually contributes to short term returns persistence.
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4 Equilibrium expected returns

4.1 Fixed point existence

I propose solving first-order difference equation (4) as a parametric logistic

map hf,λ(·) from xt to xt+1

xt+1 = hf,λ(xt) ≡ pxt(1− qxt) (9)

p = fλγ > 0 , q =
1− f

f
> 0

Given γ > 0, logistic parameter p is monotonically decreasing in asset liq-

uidity 1/λ and investor diversity 1− f . In turn, logistic parameter q reflects

the feedback rules’ relative strength; ∂q/∂p > 0 and q = 1 iff f = 0.5.

The logistic map has two fixed points, defined as x = hf,λ(xt) = xt+1

x1 = 0

x2 =
p− 1
pq

=
fλγ − 1
λγ(1− f)

(10)

Note that f 6= 1 is required for x2 and q to be finite, so not all market activity

can be driven by positive feedback trading–some risk feedback must exist

at any time. Equations (10) also imply ∂x2

∂λ
= 1

λ2γ(1−f) > 0 always, while
∂x2

∂f
= λγ−1

λγ(1−f)2 > 0 iff λγ > 1. Further, check that

hf,λ

µ
1

q
=

f

1− f

¶
= x1 (11)

and

hf,λ

µ
1

pq
=

1

λγ(1− f)

¶
= x2 , (12)

so x10 = f

1−f > 0 and x20 = 1
λγ(1−f) > 0 map onto fixed points x1 and

x2, respectively after one iteration of h
f,λ
. The two eventually fixed points of

the logistic function are important in the classification of dynamic stability in

Section 5. Setting γ = 1, without loss of generality, Figure 1 below illustrates

the behavior of xt+1 = hf,λ(xt) for different f and λ combinations.5 Fixed

points x1 and x2 lie at the intersections of hf,λ with the 45o line.

5The analysis can accommodate γ 6= 1 without changing the essence of the results.
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FIGURE 1 HERE

Clockwise from the top left, in Panel A investor diversity is set at 1−f =

0.8 and asset liquidity at λ = 1.6. In the population view of feedback trading,

20% of market participants are positive feedback traders and 80% are risk

feedback traders. For these trading parameters p = 0.60 and q = 1, hence

x2 = −0.53 and x20 = 0.78. In Panel B f = 0.5 and λ = 2, so 50% of

investors are positive feedback traders. Then p = q = 1 and the two fixed

points collapse to x1 = x2 = 0. In Panel C f = 0.1 and λ = 15, implying

p = 1.5 and x2 = 0.04. Lastly, in Panel D f = 0.2 and λ = 20, hence p = 4

and x2 = 0.19. Figure 1 indicates that the location of the non-zero fixed

point is sensitive to the trading parameters.

4.2 Fixed point stability

A fixed point is stable (unstable) if the absolute value of the slope of hf,λ at

that fixed point is smaller (greater) than one; see Appendix. At this point,

note that expected returns must be zero–defined as a stable zero fixed point

corresponding to Et−xt = 0–in order to be consistent with EMH. In other

words, asset returns must be (linearly) unpredictable at any forecast horizon.

It follows that fixed point x1 = 0 always satisfies Et−xt = 0. However, the

second fixed point is generically non-zero: x2 < (>)0 iff p = fλγ < (>)1. It

thus violates Et−1xt = 0 unless p = 1.

To determine the range of asset liquidity and investor diversity such that

x1 is stable and x2 unstable, differentiate equation (9) with respect to x

h0f,λ(x) = p− 2pqx = fλγ − 2(1− f)λγx (13)

The absolute value of (13) at x1 and x2 is

| h0f,λ(x
1 = 0) |=| fλγ |=| p | (14)

| h0f,λ(x
2 6= 0) |=| 2− fλγ |=| 2− p | ,
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which depends only on p. Note that for γ = 1, any λ > 1 implies p > 1

for some 0 < f < 1. Equations (14) suggest that in order for | fλγ |< 1

the value of f cannot exceed 1/λγ given λ > 0–similarly, the price impact

measure cannot exceed 1/fγ given f ∈ (0, 1). Thus, for any level of asset
liquidity, a more diverse investor opinion has a stabilizing influence on the

zero fixed point while lower diversity is destabilizing, and vice versa for the

non-zero fixed point.

As h0f,λ is smoothly decreasing in x given λ and f , the solutions of |
h0f,λ(x) |= 1 constitute bounds for the stable range of either fixed point. The
bounds are

xmin =
fλγ − 1
2λγ(1− f)

, xmax =
fλγ + 1

2λγ(1− f)
(15)

Comparing (10) and (15) indicates xmin = x2/2. If x2 < 0 then xmin > x2 ,

so x2 is unstable. Conversely, if x2 > 0 then xmin < x2 and x2 is stable.

5 A taxonomy of fixed point dynamics

For notational convenience, I illustrate the route from stability to chaos

numerically in terms of f . Market dynamics change as positive feedback

intensity–growing in the concentration of investor opinion–and asset liq-

uidity affect logistic parameter p. Fixing the liquidity parameter at 1/λ,

positive feedback intensity is increased from f = 0.001 to 0.999 in steps of

size 0.001. Starting at x0 = 0.00001, corresponding to zero expected returns,

Figure 2 below plots the evolution of the fixed point(s) of hf,λ(x) as f varies.

In Panels A, B and C the price impact coefficient is respectively fixed at

λ = 4, 5 and 6

FIGURE 2 HERE

Figure 2 suggests the following taxonomy for the dynamic stability of

hf,λ(x) in terms of trading parameters λ and f :
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(i) When p ∈ (0, 1) clearly | fλγ |< 1 and | 2 − fλγ |> 1. Therefore,

x1 = 0 is a stable (attracting) fixed point while x2 6= 0 is unstable (repelling).
The stable set of x1 is the open interval bounded from below by x2, which is

negative, and from above by its eventually fixed point x20, which is positive:

W (x1) =
³

fλγ−1
λγ(1−f) , 1

λγ(1−f)
´
. Then, paths of xt starting from any point

in W (x1) will converge to x1 after finitely many iterations of hf,λ(xt). In

contrast, the stable set of x2 includes only itself and x20, that is W (x2) =

{x2, x20}. Paths of xt at any point other than x2 or x20 will diverge to infinity

(the stable set of infnity is the remainder of the real line).

(ii) At p = 1, the absolute value of hf,λ at the fixed points equals one

(| h0f,λ(x
1) |=| hf,λ(x

2) |= 1) and the logistic map displays a transcritical

bifurcation. From (10), x1 = x2 = 0 and the two fixed points coincide as

shown in Figure 1, Panel B. The positive feedback intensity corresponding

to each value of λ constitutes a stability threshold. These are located at

fmin = 0.25, 0.20 and 0.17 when λ = 4, 5 and 6, and highlighted with dashed

vertical lines in Figure 2. The stable set of the single (zero) fixed point is

W (x = 0) = [0, x10].

(iii) When p ∈ (1, 3), | fλ |> 1 and 0 <| 2 − fλ |< 1 so the stability

properties are reversed. In this logistic parameter range, x1 becomes unstable

and x2 stable. The stable set of x1 contains only itself and its eventually

fixed point, W (x1) = {0, x10}, while the stable set of x2 is the open interval
W (x2) = (0, x20). In the range p ≥ 1 the stable set of infinity includes the
intervals (−∞, x1 = 0) and (x20,∞). Figure 2 clearly shows that the steady-
state path of xt exhibits a discontinuity at approximately f = 0.68, 0.55 and

0.47 in Panels A, B and C respectively. The jump from the unstable zero

fixed point to the stable non-zero fixed point is located at x2 = 1.38, 0.77

and 0.55% when λ = 4, 5 and 6. Note that the steady-state path encounters

the non-zero fixed point at p ' 2.74 and | h0f,λ(x2) |' 0.74 < 1 in all three

cases, so the dynamics are within the attracting range of x2.
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(iv) At p = 3, | fλ |= 3 and | 2 − fλ |= 1. Similar to (ii) above, the

intensity of positive feedback for each value of λ is an instability threshold,

located at fmax = 0.75, 0.60 and 0.50 when λ = 4, 5 and 6 respectively and

highlighted with dashed vertical lines in Figure 2.

(v) Finally, if p ∈ (3,∞) then | fλ |> 1 and | 2− fλ |> 1, so both fixed

points are unstable. At p ' 3.3, occuring at about f = 0.83, 0.65 and 0.54

in Panels A, B and C, the steady-state path displays a cascade of period-

doubling bifurcations (every period-2 attracting orbit splits into a period-4

attracting orbit and a period-2 repelling orbit). When the logistic paramer

is in the interval 3.45 < p ≤ 4 the dynamics begin to change very rapidly.
For p > 3.6 it can be shown that there are periodic points of all orders if a

period-3 periodic point exists.6

Finally, beyond p > 4 the dynamics of hf,λ become chaotic; the orbits

of xt are period-k for all k > 0 and display sensitive dependence to initial

conditions; see Appendix. It should be stressed that all market dynamics are

deterministic, i.e. endogenous. Tambakis (2006) extends the present model

with a stationary stochastic process driving the price impact coefficient.

6 Financial (in)stability

6.1 Gaussian versus non-Gaussian returns

The distributional properties of returns impact upon fixed point stability.

If returns are standard normal, xt ∼ N(0, 1) so that σx = 1 and sx = 0,

autocorrelation inequalities (6) reduce to

− 1

λγ
≤ f ≤ 1

λγ
(16)

Given f ∈ (0, 1), the relevant inequality is fλγ ≤ 1 so investor uniformity
(positive feedback intensity) is bounded above by 1/λγ. From equation (14),

6The proof lies beyond the scope of this paper, for a sketch see Holmgren (1997). The
seminal paper on chaos in low-dimensional non-linear systems is Li and Yorke (1975).
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the two fixed points are on opposite sides of one: | h0f,λ(x
1) |≤ 1 and |

h0f,λ(x
2) |≥ 1. The zero fixed point is then stable while the non-zero fixed

point is unstable. Hence, if returns are standard normal there is no feasible

combination of the trading parameters such that the non-zero fixed point is

stable. Put differently, xt ∼ N(0, 1) is a sufficient condition for zero expected

returns to be a stable steady state.

These observations suggest that the unstable logistic range of Section 5

(1 < p < 3, shown in Figure 1, Panel C) cannot arise unless returns are

non-Gaussian. The presence of skewness and/or excess kurtosis (fat tails)

is a necessary condition for p > 1. It is clearly not a sufficient condition,

as one can always select f and λ so that fλγ < 1 regardless of the returns

distribution. Thus, zero expected returns may be unstable only if the returns

pdf is non-Gaussian.

Further, setting γ = 1 and defining (pmin, pmax) to be an open interval

for p implies λ > pmin/f . As f < 1, it follows pmin is the minimum feasible

price impact. Note well that the converse does not hold: the upper bound

on liquidity (λ < pmax/f) is infinite as f can be arbitrarily close to zero.

6.2 Implications for financial regulators

For comparison purposes, fix the concentration of investor opinion to f and

consider a negative liquidity shock (positive shock to the price impact co-

efficient). Figure 2, Panels A-C then indicate that the threshold level of

investor concentration at which the zero expected returns become unstable

increases in asset liquidity. Hence, trading in more liquid assets is stable

for a wider range of investor diversity than trading in less liquid assets. It

also follows that, if an asset suddenly becomes illiquid for exogenous reasons

(such that 1/λ falls), then investor opinion must become more diverse (so

1−f should rise) if zero expected returns are to remain stable. Equivalently,

the intensity of risk feedback must increase to compensate for the instability
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induced by the adverse liquidity movement. In the game-theoretic “popula-

tion” interpretation of investor diversity, there must be more risk feedback

traders to exert a compensating stabilizing influence on the dynamics. The

converse situation is also instructive. If herding behavior grips the market

and investor diversity drops sharply, then asset liquidity needs to increase

(the price impact coefficient to fall) for zero expected returns to remain sta-

ble. This compensating function of asset liquidity and investor diversity is

apparent from comparing Figure 2, Panels A and C.

The progression of the two trading parameters from stability to instability

and chaos has clear implications for policy makers charged with maintain-

ing financial stability. Given the level of asset liquidity, if investor diversity

gets sufficiently low the market dynamics will become unstable and progres-

sively turbulent and chaotic. The analysis also suggests that, depending on

the starting level of parameter values, very small perturbations in asset liq-

uidity and/or investor diversity can cause large jumps in expected returns.

Given pervasive uncertainty regarding investor diversity and positive feed-

back intensity–indeed, both could be said to be intractable, especially at

high-frequency–the model suggests policy makers’ responsibility should be

to ensure adequate liquidity, i.e. preventing the price impact coefficient from

blowing up. The critical role of liquidity provision and stable market-making

is supported by recent arguments that asset liquidity can evaporate in tur-

bulent periods of market stress. Persaud (2001, 2003) and Taleb (1997) have

referred to such crisis episodes as liquidity black holes.

7 Concluding remarks

In this paper I presented a nonlinear model of feedback trading at high fre-

quency. The dynamics of asset returns displayed stable or unstable behavior–

including the possibility of market turbulence and chaos–depending on the

diversity (heterogeneity) of investor opinion and the level of asset liquidity.
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There was no stochastic uncertainty or asymmetric information and all price

adjustment was deterministic, driven by last previous trading period’s actual

return and volatility. Potential applications of this framework include simu-

lating market dynamics using a stochastic liquidity parameter to explore the

relative likelihood of financial turbulence and chaos. Also, the comparative

static results relating autocorrelation to returns’ second and third moments

suggest the need to test for conditional skewness in high-frequency data. As-

sessing the presence of time-varying return asymmetries seems important for

understanding non-fundamental trading patterns. These extensions are the

subject of current research.
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APPENDIX

Fixed point existence and stability

Let h : I → I be a continuous function on I, where I = [a, b] is a closed

interval on R. Then point c is a fixed point of h if h(c) = c.

The point p is a periodic point of h with period k if hk(p) = p. Then p is

also a fixed point of hk, the k-iteration of h.

The point p is eventually periodic with period k if there exists N such

that fn+k(p) = fn(p) for all n ≥ N .

Fixed point c of continuous function h is stable (unstable) if all points

in the neighborhood of c approach (leave) the neighborhood under repeated

iteration of h. Let h : I → I be a continuously differentiable function, denote

its derivative at a ∈ I as h0(a), and let p be a periodic point of h with (prime)

period k. If | (hk)0(p) |< 1, then p is a stable (or attracting) fixed or periodic

point of h. If | (hk)0(p) |> 1 then p is an unstable (or repelling) fixed or

periodic point.

If | (hk)0(p) |6= 1 then p is a hyperbolic periodic point of hk, while if

| (hk)0(p) |= 1 then p is non-hyperbolic. Non-hyperbolic periodic points do

not have predictable behavior in any local neighborhood.

Let p be a periodic point of h with period k. The point x is forward

asymptotic to p if the sequence {x, hk(x), h2k(x), h3k(x), ...} converges to p,

that is if limn→∞ hnk(x) = p. The stable set of p, denoted W (p), is the set of

all points which are forward asymptotic to p.

Bifurcations and chaos

Let fc(x) be a parametric family of functions. There is a bifurcation at

c0 if there exists an ε > 0 such that, if a and b satisfy c0 − ε < α < c0 and

c0 < b < c0 + ε, then the dynamics of fa(x) are different from the dynamics

of fb(x).
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Transcritical bifurcations occur when two hyperbolic periodic points merge

into a single non-hyperbolic fixed point.

Period-doubling bifurcations occur when a period-2k periodic orbit is

added to the orbit of a period-k periodic point. There are two more types of

bifurcation, saddle-point and pitchfork, which do not appear in the logistic

map.

Let D be a subset of a metric space with metric d. Function h : D → D

then exhibits sensitive dependence on initial conditions if there exists a δ > 0

such that, for any x ∈ D and any ε > 0, there is a y ∈ D and some number

n ∈ N such that d[x, y] < ε and d[hn(x), hn(y)] > δ. The function h : D→ D

is chaotic if it satisfies the following three conditions:

(a) the periodic points of h are dense in D,

(b) h is topologically transitive, and

(c) h displays sensitive dependence on initial conditions.
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