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Abstract

In this paper I study a nonlinear feedback trading model which can
generate stable, unstable, turbulent or chaotic asset returns depending
on market conditions. The dynamics are driven by the stochastic price
impact of net order flow (inverse market liquidity). If price impact
grows beyond exogenous threshold values, liquidity dries up and asset
returns become turbulent. In the absence of fundamental factors,
the occurence of turbulence and chaos is entirely endogenous. The
results highlight the critical role of maintaining stable market-making
conditions for averting “liquidity black holes”.
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“[There are] episodes in financial markets where liquidity in a financial

instrument vanishes temporarily before re-emerging”. Persaud (2001), xvi.

1 Introduction

Asset liquidity can evaporate in turbulent market conditions, a phenomenon

referred to as a “liquidity black hole” by Taleb (1997) and Persaud (2001,

2003). Sharp drops in liquidity associated with discontinuous rises in price

impact create market stress and undermine investor confidence.1 Negative

sentiment can, in turn, spread across financial markets and what starts as an

asset-specific crisis may end up having very costly systemic repercussions; see

Borio (2003), Cifuentes, Ferrucci and Shin (2004), Cohen and Shin (2003b),

Longstaff (2001), and Gennotte and Leland (1990).

Thus, research efforts to assess the likelihood of such catastrophic events

are important for practitioners and policymakers alike. Morris and Shin

(2004) make an important contribution in that regard. These authors show

that net selling pressure can arise endogenously from the strategic interaction

of long- and short-horizon traders. When the latter have exogenous and

privately known trading limits shortening their effective decision horizon,

their responses to a liquidity shock can get disproportionately large. Asset

sales among the short-horizon traders become mutually self-enforcing and

may produce a “liquidity black hole”, corresponding to the run outcome in

bank run models (Diamond and Dybvig (1984)). Typically, such models

have multiple equilibria under complete information. By relaxing common

knowledge of the short-horizon liquidity constraints, Morris and Shin obtain

the unique trigger point where a liquidity black hole emerges and predict

sharp (V-shaped) price reversals, consistent with the empirical findings of

1Such “news-headline” episodes include the 1987 stock market crash, the collapse of
the U.S. dollar against the yen on October 7, 1998, and distressed trading in certain fixed
income markets during the LTCM crisis in the summer of 1998.
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Campbell, Grossman and Wang (1993) and Pastor and Stambaugh (2003).

This paper complements the above global game-theoretic approach by

studying the onset of market turbulence in the absence of information asym-

metries and liquidity constraints. The theoretical basis is the feedback trad-

ing model of Tambakis (2006). In that framework, prices fluctuate determin-

istically with past returns generating asset demand according to two feedback

rules. First, investors buy (sell) the risky asset if returns in the last trading

period were positive (negative). Such “momentum” is a prominent feature of

portfolio insurance and stop-loss risk management strategies where traders

unwind their positions in response to price drops. Positive feedback tends to

reinforce price movements in either direction.2

Second, investors display risk feedback : their asset demand falls (rises)

following volatile (tranquil) trading periods. Risk feedback amounts to a buy

low-sell high trading rule in a mean-variance world where risk and expected

return are positively related. The motivation here is quite different. In a high-

frequency study of the U.S. Treasury market following Hasbrouck’s (1991)

VAR methodology, Cohen and Shin (2003a) report that sales pressure grows

in last period’s realized volatility. The impact of positive and risk feedback

trading on order flow is proportional to the level and square of last period’s

returns.

One-period-ahead expected returns are set to zero at high frequency. This

is crucial because it transforms the market maker’s pricing rule to a logis-

tic first-order difference equation for actual returns. It also offers a check

of the model’s predictions by relating them to the efficient market hypoth-

esis (EMH). Specifically, the logistic map has two fixed points; the first is

always zero, corresponding to zero expected returns, while the second is

generically nonzero, indicating a violation of EMH. Fixed point stability is

2Positive feedback emerges as self-reinforcing equilibrium behavior in strategic models
with boundedly rational traders and short horizons; see Abreu and Brunnermeier (2003)
and Brunnermeier and Pedersen (2005).
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a function of market liquidity, proxied by inverse price impact, and investor

diversity, which is inversely related to the intensity of positive feedback. The

two feedback rules counteract each other as follows: more positive feedback

(risk feedback) tends to destabilize (stabilize) the zero fixed point. At the

same time, it stabilizes (destabilizes) the nonzero fixed point. More liquidity

and/or investor diversity improve financial stability; less liquidity has the

opposite effect.

In this paper I extend Tambakis (2006) with time-varying liquidity and

examine the implications for asset return dynamics. The price impact coef-

ficient is assumed to follow a stationary AR(1) process defined by its per-

sistence, proxied by the autoregressive coefficient, and noise, proxied by the

variance of price impact shocks. In order to investigate the role of market

liquidity in isolation, the intensity of feedback trading and, consequently,

investor diversity are constant throughout.

As stochastic price impact and market liquidity fluctuate, the dynamics of

the logistic map fall into four non-overlapping states: (i) Tranquil markets,

when the zero fixed point is stable and the nonzero fixed point is unsta-

ble; (ii) Market stress, when the reverse is the case; (iii) Market turbulence,

when both fixed points are unstable. (iv) If price impact grows beyond the

turbulence range, the dynamics become chaotic and a liquidity black hole

emerges. The price impact thresholds defining the four states are exogenous

and independent of the shock distribution function.

A clear policy implication of the stochastic framework is that stable

market-making conditions are necessary for maintaining financial stability.

However, they are not sufficient–market stress or turbulence can always arise

from an extreme price impact realization representing a statistical outlier.

Positive and risk feedback trading can generate market turbulence despite

the price impact coefficient being stationary and bounded. The occurence

of market turbulence does not require liquidity to “dry up”. Further, the

four market states are reversible because price impact can cross a dynamic
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threshold from either direction. Thus, episodes of market instability and tur-

bulence can be said to be intermittent, following Mandelbrot’s (1974) original

use of the term in fluid mechanics. In financial markets, the chaotic state

corresponding to a liquidity black hole may lead to a temporary suspension

of trading.

The paper draws on three research fronts. First, empirical evidence from

many financial markets suggests liquidity is time-varying, especially during

market stress; see Dufour and Engle (2000), Farmer et al. (2005), and Gol-

dreich et al. (2005). Plantin et al. (2004) find that less liquid asset markets

are more vulnerable to episodes of turbulence. For U.S. Treasury securities

in particular, Furfine and Remolona (2005) report that the market regains

composure quite rapidly after experiencing discontinuous price changes. In

electronic currency trading, Danielsson and Payne (2001) find that intermit-

tent “liquidity gaps” are a common feature of active markets. Second, the

paper relates to the literature on feedback trading rules. Models where as-

set prices are driven by nonfundamentals can be traced to Shiller (1984); see

also Cutler, Poterba and Summers (1990), DeLong et al. (1990), Sentana and

Wadhwani (1992), and Shiller (2005). Third, the logistic map is a workhorse

of nonlinear dynamical systems. Initially restricted to biological models of

population growth–where positive feedback (destabilizing) corresponds to

the reproduction tendency and risk feedback (stabilizing) to the inhibiting

factor–the logistic’s fame grew when its potential for complex dynamics was

realized (May (1973)). The seminal reference on chaos in low-dimensional

nonlinear systems is Li and Yorke (1975). The relevant applications to finan-

cial risk management are reviewed by Mandelbrot (1997).

In the remainder of the paper, Section 2 reviews Tambakis (2006) and

extends the feedback trading model with time-varying price impact; Section

3 discusses the Monte Carlo methodology; Section 4 explores the stochastic

transition from stability to instability and turbulence with two numerical

experiments; and Section 5 concludes.
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2 The model

In Tambakis (2006) a single risky asset is traded at high frequency. Denote

the actual return at time t by rt = r(t,∆t) = logP (t+∆t)− logP (t), where
P (t) is the log price level. Empirical applications usually fix the time scale to

∆t = 5min. Under a weak martingale property, the conditional expectation

at t− 1 of returns h-intervals-ahead is zero: Et−1rt+h = 0 for all h ≥ 0. For
h = 0, defining excess returns at t as xt ≡ rt − Et−1rt implies rt = xt, so

actual and excess returns (price increments) coincide.

Asset demand is driven by two feedback trading rules, applied under

perfect and complete information. Under positive feedback, investors buy

(sell) the asset at time t if they observe positive (negative) returns at t− 1.

With risk feedback, they buy (sell) the asset at t if they observe lower (higher)

conditional volatility at t−1. Let γ > 0 be a constant scalar mapping returns

at t−1 to asset units demanded at t. The order flow generated from feedback
trading then is

ωt = γxt−1 − γx2t−1 (1)

The sign of ωt depends on the realized return and its volatility in the

previous trading period, respectively proxied by the level and square of xt−1.

Tambakis (2006) models the case where the feedback intensity, γ, mapping

t − 1-returns to period-t asset demand is different for each feedback rule.

In particular, the intensity of positive (risk) feedback is assumed to be de-

creasing (increasing) in the heterogeneity or diversity of investor opinion.

By contrast, in this paper positive and risk feedback intensity are fixed at

γ = 1, wlog, and the focus is on time-varying liquidity. Upon receiving ωt,

a risk-neutral market maker adjusts prices from t − 1 to t according to the

linear pricing rule

xt = rt = λt ωt (2)

The sign of xt depends on the aggregate volume imbalance: it is positive

(negative) if there is net buying (selling) pressure. Price impact coefficient
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λt > 0 measures the effect on price of a unit change in order flow. It proxies

for market depth and is inversely related to asset liquidity.3

Let price impact follow the AR(1) process

λt = λ+ θλt−1 + ηt , ηt ∼ N(0, σ) (3)

where λ > 0 is a positive constant. Price impact dynamics are driven by

the magnitude of λ, the sign and magnitude of θ, and the distribution of the

innovation term η. Normality is not essential to the results. The properties

of λt are straightforward: it is covariance-stationary if | θ |< 1 and nonsta-

tionary otherwise; its unconditional mean and variance are λ and σ2/1− θ2;

the conditional mean and variance are λ + θλt−1 and σ2; and persistence at

lag k equals the relevant autocorrelation coefficient, ρ(k) = θk. Combining

equations (1), (2) and (3) yields

xt+1 = hλ(xt) = λtxt(1− xt) (4)

Stochastic difference equation (4) summarizes the returns’ nonlinear de-

pendence. Adjacent returns are deterministically linked by logistic (quadratic)

map hλ. Its fixed points, defined as x = hλ(xt) = xt+1, are just

x1 = 0 , x2t = 1− 1

λt

6= 0 (5)

x1 is always zero so its time-subscript can be omitted. The zero fixed

point corresponds to zero actual and excess returns; it is consistent with

the (weak form) efficient market hypothesis that high-frequency expected re-

turns should be (linearly and nonlinearly) unpredictable. By contrast, fixed

point x2t decreases with market liquidity. The magnitude of x
2
t ranges from

infinitely negative when price impact tends to zero, to one as λt →∞. It is
nonzero unless λt = 1.4

3Following Kyle (1985), depth is one of three dimensions of liquidity. The others are
tightness, which is proportional to the bid-ask spread, and resiliency, that is the speed at
which prices adjust back to equilibrium following a large trade.

4Note that the two fixed points coincide when λt = 1. However, if price impact is
continuously distributed then λt = 1 has zero measure, so x

2
t
is generically nonzero.
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Asset return dynamics turn on fixed point stability. A fixed point is

stable, or attracting (unstable, or repelling) if and only if the absolute value

of the slope of (4) evaluated at that fixed point is smaller (greater) than one.

The slope of hλ with respect to x is h0λ(xt) = λt(1 − 2xt), and its absolute

value at x1 and x2t is

| h0λ(x
1) |=| λt | (6)

| h0λ(x
2
t ) |=| 2− λt |

Note that at most one fixed point is stable for any parameter value and

at any point in time. Specifically, if x1 = 0 is stable then x2t 6= 0 is unstable,
and vice versa. In the first case, expected returns are zero so the initial

assumption is confirmed. The relevant price impact range is 0 < λt < 1, from

equations (6). In the second case, occuring when 1 < λt < 3, x1 is unstable

and x2t is stable. Note that in that price impact range x2t > 0 so expected

returns are nonzero, indicating EMH is violated. Further, ∂x2t/∂λt = 1/λ2t >

0, thus higher λt (less liquidity) implies a bigger violation.

When λt > 3, h0λ(·) exceeds one at both fixed points. In that case,

both fixed points are unstable and the dynamics become turbulent. Finally,

if λt > 4 the logistic map can be shown to display sensitivity to initial

conditions, there are periodic points (return trajectories) of all orders and

the dynamics become chaotic. An analytic proof of the emergence of chaos

lies beyond the scope of this paper; see Devaney (1989) and Holmgren (1997).

To summarize, smaller price impact (more market liquidity) improves

the stability of x1 = 0 while bigger price impact (less liquidity) tends to

destabilize it, and conversely for x2t 6= 0. The next two Sections demonstrate
the complex dynamics resulting from feedback trading applying Monte Carlo

methods.
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3 Monte Carlo design

There are two numerical experiments, in the time and price impact domains.

First, the parameters of the AR(1) process for price impact (λ, θ, σ) are set

for four possible “market states” in a one-to-one correspondence with the

range of λt. The states are:

(i) Tranquil markets, where 1-period-ahead expected returns are zero and

weak-form EMH holds, corresponding to the price impact range 0 < λt ≤ 1.

(ii)Market stress, where 1-period-ahead expected returns are positive and

EMH is violated (1 < λt ≤ 3).
(iii) Market turbulence, where feedback trading generates unstable return

dynamics (3 < λt < 4).

(iv) A liquidity black hole, when asset returns become chaotic (λt ≥ 4).
Given the extreme computational intensity involved in visualizing chaotic

dynamics, the simulations focus on the transition between states (i)-(iii); the

onset of chaos is discussed in Section 4.3. For the same reason, the simulations

use zero-mean, constant-variance Gaussian price impact shocks. Simulations

using the uniform and other nonnormal shock distributions did not affect the

essence of the results; they are available from the author upon request.

The unconditional mean of price impact is fixed at λ = 0.5 throughout,

i.e. at the midpoint of the tranquil market range (0, 1), and {λt} is initialized
at λ0 = λ. The time series of returns {xt} is initialized at x0 = 0.5, i.e. at
the unique critical pointof the logistic map.5 The two starting values are

fed to logistic equation (4) mapping net order flow to asset returns to yield

x1. In turn, the price impact coefficient for the next trading interval (λ1)

is computed from (3). The values of x1 and λ1 are then fed to the logistic

map to determine x2, etc. In this way, feedback trading generates t = 1, ..., T

observations for {xt}, each using a different price impact realization {λt}.
5This choice is justified by Fatou’s Theorem, which states that if the trajectories of a

quadratic polynomial have an attracting fixed or periodic point, then the critical point is
in the stable set of one of the points in each trajectory; see Holmgren (1997).
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Figures 1, 3, and 5 present t = 1, ..., T = 500 price impact and return real-

izations for each state. The choice of T conforms to high-frequency trading in

the U.S. Treasury market. Daily trading in U.S. Treasuries opens at 7:00am

and closes at 5:00pm. Assuming, wlog, that each minute in this 8-hour period

contains one trade yields 480 trading intervals.6 Thus, the simulated asset

returns can be viewed as “snapshots” of a particular trading day and state of

the market. To assess the characteristics of the simulated return probability

density functions, the above 1-day process is run n = 1, ..., N = 100 times,

yielding over 3 months of artificial high-frequency data. For each state, Ta-

bles 1, 2, and 3 report the simulated pdf’s first four moments averaged over

all N simulated 1-day paths. Following standard practice in nonlinear dy-

namic simulations, the first 200 feedback returns of each path {xt}200t=1 are

discarded to ensure convergence has occured. The simulated moments are

then computed from {xT=500
t=201 }N=1001 return realizations.

The second numerical study is in the price impact domain. It employs

bifurcation diagrams, a powerful nonlinear dynamics tool for assessing the

evolution of fixed point stability. Starting with λ0 = 0.5 as before, Figures 2,

4, and 6 are based on i = 1, ..., 400 price impact realizations {λi} drawn from
equation (3). For every λi, each asset return trajectory (orbit of iterations) is

initialized at xi0 = 0.5. This value is justified by Fatou’s Theorem (see foot-

note 5 above) stating that an attracting periodic trajectory always includes

the critical point. Each single λi is fed to logistic map (4) and produces

j = 1, ..., 300 return trajectories (λi, h
i
λ(0.5)

300
j=1)

400
i=1 under combined positive

and risk feedback trading.

6Cohen and Shin (2003a) and Fleming (2001) provide extensive background on the
microstructure of the U.S. Treasury market.
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4 Feedback return dynamics

4.1 Tranquil markets: 0 < λt ≤ 1

When 0 < λt ≤ 1, return dynamics are tranquil. To illustrate this state of

the market, the persistence of price impact is set to θ = 0.2, and shocks ηt
are iid normal with zero mean and 0.05 standard deviation. The simulated

{λt} and {xt} data are shown in Figure 1.

FIGURE 1 HERE

Note that price impact is always less than one so the asset market is firmly

in the tranquil state. As described above, 100 return paths each containing

500 trading periods are simulated–over 3 months of artificial 1min price

increments–for the same λ, θ and σ values. The risk-adjusted mean (sample

mean/standard deviation), skewness and kurtosis of high-frequency returns

averaged over all {xT=500
t=201 }N=1001 return distributions are reported in Table 1.

Table 1: Tranquil markets

Simulated moments
µ/s 0.000
Skewness 8.82
Kurtosis 87

Risk-adjusted expected returns are zero, upto 8 decimal places. High-frequency

returns for an average day are very right-skewed and fat-tailed. The reason

for the asymmetric distribution is that x2t = 1 − 1
λt

≤ 0 for all λt ∈ (0, 1].
As the (unstable) nonzero fixed point is always negative, actual returns lie

between that and zero hence skewness is positive. High excess kurtosis is

broadly consistent with the empirical evidence, though it exceeds the values

reported by Cont (2001) for the S&P 500 (15.95), U.S. dollar/Deutschmark

(74) and U.S. dollar/Swiss Frank (60) futures markets.
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Figure 2 is a bifurcation diagram showing the behavior of asset return

trajectories, (λi, h
i
λ(0.5)

300
j=1)

400
i=1, arising in tranquil market conditions.

FIGURE 2 HERE

Stochastic price impact λi (i = 1, ...100) ranges from 0.45 to around 0.75,

thus the logistic map hλ is firmly in the stable (unstable) range of x1 = 0

(x2t 6= 0). The key feature of Figure 2 is that, at each λi, the feedback return

trajectories xij (j = 1, ..., 300) become more dense towards zero. Clearly,

there also trajectories corresponding to positive asset returns. They are un-

stable, however, in the sense that continued feedback trading–i.e., continued

iteration of {xij} given i–tends to attract them back to zero. This prop-

erty of tranquil markets confirms the model’s assumption of zero expected

returns. A second interesting feature is that, as price impact grows and mar-

ket liquidity drops, the unstable trajectories slope upwards. This reflects

the nonzero fixed point’s growing attraction as the logistic dynamics edge

towards the market stress threshold.

4.2 Market stress: 1 < λt ≤ 3
When 1 < λt ≤ 3 the relative stability of the two fixed points is reversed:
x1 = 0 (x2t 6= 0) becomes unstable (stable). The combination of positive and
risk feedback trading can then be said to create market stress. To generate

asset returns under market stress, λ = 0.5, the AR(1) coefficient is raised to

θ = 0.5, and the standard deviation of price impact shocks is doubled, ηt ∼
N(0, 0.10). More persistent and/or more volatile price impact is more likely

to exceed the market stress threshold. Figure 3 below shows the artificial

{λt} and {xt} series.

FIGURE 3 HERE

In the bottom panel, the threshold is indicated with a horizontal line at λ = 1.

Price impact is less than one 45.2 percent of time (500 trading periods over
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100 1-day paths), and above one for the remaining 54.8 percent. The nonzero

fixed point is now positive and stable, attracting neighbouring points towards

it and away from zero, which is unstable. Asset returns are still close to zero

(notice the 10−8 scale on the vertical axis) but are much more volatile than

when the market is tranquil.

The risk-adjusted mean, skewness and kurtosis of returns averaged over

all {xT=500
t=201 }N=1001 return distributions are reported in Table 2.

Table 2: Market stress

Simulated moments
µ/s 0.0011
Skewness 1.52
Kurtosis 5.21

Now risk-adjusted returns are positive, reflecting the fact that when λt ∈
(1, 3] the nonzero fixed point attracts nearby points. However, returns are

much less right-skewed and leptokurtic than in the tranquil market state.

To the right of λ = 1, the nonzero fixed point abruptly switches from being

unstable (repelling) to being stable (attracting). The bifurcation diagram in

Figure 4 displays feedback return trajectories, (λi, h
i
λ(0.5)

300
j=1)

400
i=1, undergoing

this discontinuous dynamic transition.

FIGURE 4 HERE

The price impact coefficient now ranges from 0.75 to 1.30. Here, also,

at each λi (i = 1, ...100) the return trajectories become more dense towards

zero. However, unlike the tranquil market state, the logistic’s dynamics shift

if stochastic price impact crosses one. The dynamics enter the range of

market stress and 1-period-ahead expected returns become positive. Recall

that x2t > 0 increases in λt (decreases in market liquidity); this is indicated

in Figure 2 by the return trajectories sloping upwards beyond λ = 1.
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4.3 Market turbulence: 3 < λt < 4

If both fixed points become unstable, asset returns enter the turbulence re-

gion. From Section 2 this occurs when | h0λ(·) |> 1 at both fixed points, that

is when price impact is in the range λt > 3. To illustrate, consider main-

taining λ = 0.5 and ηt ∼ N(0, 0.10), and increasing the AR(1) coefficient to

θ = 0.85. The simulated {λt} and {xt} series are shown in Figure 5.

FIGURE 5 HERE

Now only 0.4 percent of price impact realizations fall in the “tranquil” (0, 1]

region; 6.8 percent are in the “stress” range (1, 3]; and 92.8 percent are in

the turbulent range 3 < λt < 4. There are no outcomes in the chaotic region

λt ≥ 4. Average (not risk-adjusted) 1-period-ahead expected returns is

about 0.65%, and there is strong volatility clustering even at this very high

frequency.

To prevent feedback returns from diverging, the number of daily paths is

now reduced from N = 100 to 20, and the first 300 returns of each day are

discarded. The average risk-adjusted mean, skewness and kurtosis of returns

over all {xT=500
t=301 }N=201 return distributions are reported in Table 3.

Table 3: Market turbulence

Simulated moments
µ/s 0.0064
Skewness −0.258
Kurtosis 1.837

High-frequency risk-adusted returns are now very high, the artificial re-

turn distributions are left-skewed and there is negative excess kurtosis. A

bifurcation diagram of feedback return trajectories, (λi, h
i
λ(0.5)

300
j=1)

400
i=1, aris-

ing in market turbulence is presented in Figure 6.

FIGURE 6 HERE

13



The dynamics clearly begin to change very rapidly beyond the turbu-

lence threshold (λ = 3). In the range 3 < λt ≤ 3.45 there are period-

doubling bifurcations. From λ ' 3.3, the return trajectories display a “cas-
cade” of period-doubling bifurcations. Every period-2 attracting orbit splits

into an attracting period-4 trajectory (orbit) and a repelling period-2 tra-

jectory. Note that when price impact is slightly less than λ = 3.5, another

period-doubling bifurcation occurs: period-4 trajectories split into period-8

and period-16 trajectories, and so on. For λ > 3.6 it can be shown that there

are periodic points of all orders if a period-3 periodic point exists (Li and

Yorke (1975)). From λt = 4 and beyond, the dynamics of hλ become chaotic.

The orbits of xt are period-k for all k > 0 and display sensitive dependence

to initial conditions. A bifurcation diagram is not computationally feasible

when λ ≥ 4; Figure 6 offers a geometric case for the onset of chaos.
The Monte Carlo evidence clearly suggests there is a positive relationship

between the values of θ and σ and the likelihood of a stochastic transition

from tranquil markets to turbulence and chaos. In the chaotic state (λ ≥ 4),
actual trading may temporarily be suspended to prevent a market break-

down. Finally, note that the unconditional mean of price impact was fixed

at λ = 0.5 throughout. This confirms Persaud’s (2001) observation that, as

the average level of market liquidity tends to be quite stable–and improving

in recent years–it may be that the high uncertainty (volatility) of liquidity

is increasingly responsible for episodes of market turbulence.

5 Concluding remarks

This paper investigated a nonlinear feedback trading model generating sta-

ble, unstable, turbulent or chaotic return dynamics depending on market

conditions. The dynamics were driven by the price impact of net order flow

(inverse market liquidity) on actual returns, suggesting a natural correspon-

dence between fixed point stability and the state of the market. It was found
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that the link between feedback trading and asset returns can change qual-

itatively despite the absence of fundamentals driving the asset price, and

the change is affected by stochastic price impact. If the latter grows beyond

exogenous thresholds, asset returns may become turbulent and even chaotic.

The results highlight the critical role of market-making conditions for

safeguarding financial stability. Market liquidity should be sufficiently high

and stable at each point in time, in the sense of weak persistence and small

variance of the price impact process. In particular, financial policy makers

and regulators should monitor liquidity fluctuations to keep the price impact

coefficient away from the chaos threshold. In the chaotic range (λ ≥ 4),

financial distress on the part of market participants may cause a “liquidity

black hole” and prompt a temporary suspension of trading.

The results also suggest that the transition between any two dynamic

states can go in both directions. Therefore, episodes of market turbulence

are shown to be intermittent in the sense of Mandelbrot (1974). To quote

Shin (2004, p.150), ‘occasionally, financial markets experience episodes of

turbulence of such an extreme kind that they appear to stop functioning’

[italics added]. In that regard, an interpretation of the high-frequency evi-

dence offered by Morris and Shin (2004) is that active markets can experience

“mini” liquidity gaps several times in a day.

Possible applications of the theoretical framework include cumulating the

high-frequency returns implied by the model and comparing them to realized

volatility estimates (Andersen, Bollerslev and Diebold (2005)). Answers to

the question of what intra-day volatility is “typical” could then be traced

to the underlying state of market liquidity, which in itself constitutes a key

fundamental. The artificial return time series could also be formally tested

for chaos by estimating the sign of its Lyapunov exponents (Eckmann et

al. (1986)) or more recent binary tests (Gottwald and Melbourne (2005)).

More generally, market turbulence and chaos are endogenous so their relative

likelihood can be assessed in terms of the price impact distribution.
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