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Abstract

Background: One strategy for improving population vitamin D status is consumption of fortified foods. However, the

effects of dairy products fortified with different vitamin D isoforms on postprandial vitamin D status and metabolic

outcomes have not been addressed.

Objective:We investigated whether consumption of dairy drinks fortified with either 25-hydroxycholecalciferol [25(OH)D3] or

cholecalciferol (vitamin D3) had differential effects on 24-h circulating plasma 25(OH)D3 concentration (a marker of vitamin

D status) and cardiometabolic risk markers.

Methods: A randomized, controlled, 3-way crossover, double-blind, postprandial study was conducted in 17 men with

suboptimal vitamin D status [mean 6 SEM age: 49 6 3 y; body mass index (in kg/m2): 26.4 6 0.6; and plasma 25(OH)D3

concentration: 31.7 6 3.4 nmol/L]. They were randomly assigned to consume 3 different test meals (4.54 MJ, 51 g fat, 125 g

carbohydrate, and 23 g protein), which contained either a nonfortified dairy drink (control), 20mg 25(OH)D3-fortified (+HyD3) dairy

drink, or 20 mg vitamin D3–fortified (+D3) dairy drink with toasted bread and jam on different occasions, separated by a 2-wk

washout. Plasma 25(OH)D3 concentrations and cardiometabolic risk markers, including vascular stiffness, serum lipids, and

inflammatory markers, were measured frequently within 8 h postprandially and 24 h after the dairy drink was consumed.

Results: Plasma 25(OH)D3 concentrations (the primary outcome) were significantly higher after the +HyD3 dairy drink was

consumed comparedwith +D3 and control (P = 0.019), which was reflected in the 1.5-fold and 1.8-fold greater incremental

area under the curve for the 0–8 h response, respectively. The change in plasma 25(OH)D3 concentrations from baseline to

24 h for the +HyD3 dairy drink was also 0.9-fold higher than the +D3 dairy drink and 4.4-fold higher than the control

(P < 0.0001), which were not significantly different from each other.

Conclusion: The dairy drink fortified with 25(OH)D3 was more effective at raising plasma 25(OH)D3 concentrations

postprandially than was the dairy drink fortified with vitamin D3 in men with suboptimal vitamin D status. This trial was

registered at clinicaltrials.gov as NCT02535910. J Nutr 2017;147:2076–82.

Keywords: vitamin D3, 25(OH)D3, dairy drink, milk, butter, vascular function, augmentation index, vitamin D status

Introduction

Vitamin D deficiency has been reported to be associated with an
increased risk of many common and chronic diseases, including

cardiovascular diseases (CVDs), some cancers, and diabetes (1).
Circulating plasma 25-hydroxyvitamin D concentration is com-
monly used as the measure of vitamin D status (2). The Institute of
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Medicine has reported circulating concentrations of $50 nmol/L
as adequate for sustaining musculoskeletal health outcomes (3).
Hypovitaminosis D is now increasingly common in the general
European population (4), with 23% of UK adults presenting
with a vitamin D status <25 nmol/L (5). Due to diet and lifestyle
changes and the frequent use of sunscreen, many individuals do
not endogenously synthesize sufficient vitamin D from sunlight
exposure (6). Therefore, vitamin D from dietary sources has
become more important for maintenance of adequate vitamin D
status. However, there are only a few foods that are naturally rich
in vitamin D, such as egg yolk and oily fish (7). Thus, one strategy
used in some countries, including the United States and Canada,
to improve population vitamin D status is the fortification of milk
with vitamin D, which has resulted in milk being the major
contributor to vitamin D intake in these countries (8).

The relative efficacy of 25-hydroxycholecalciferol [25(OH)D3]
and cholecalciferol (vitamin D3) for improving vitamin D status
is inconsistent between studies (9–15), yet it has generally been
found that 25(OH)D3 supplementation can increase vitamin D
status more efficiently than vitamin D3 after a single dose (15)
or after longer-term supplementation from 1 mo to 1 y (9–14).
In addition, Jetter et al. (15) have studied both the pharmaco-
kinetics of a single dose and chronic supplementation for
15 wk with vitamin D3 and 25(OH)D3. Their data showed that
longer-term 25(OH)D3 supplementation was superior to vita-
min D3 for increasing vitamin D status. Moreover, Bischoff-
Ferrari et al. (10) showed that 20 mg 25(OH)D3/d over 4 mo had
significant benefits for lowering systolic blood pressure (SBP)
compared with vitaminD3 in 20 healthy postmenopausal women.

To our knowledge, there are no human studies that have
compared the efficacy of foods fortified with these 2 forms of
vitamin D3 to increase postprandial circulating 25(OH)D3

concentrations or their differential effects on chronic disease
risk markers in the short term. Therefore, our study aimed to
address this knowledge gap by comparing the acute effect of
consuming test meals containing dairy drinks that were fortified
with either 20 mg vitamin D3 (+D3) or 20 mg 25(OH)D3

(+HyD3) with a nonfortified dairy drink (control) on changes in
postprandial plasma vitamin D3 and 25(OH)D3 concentrations
and cardiometabolic risk markers, including vascular reactivity,
blood pressure (BP), lipid profile, indexes of insulin resistance,
and inflammatory and vascular biomarkers. In addition, ex vivo
whole blood culture cytokine production was examined as a
real-time measure of inflammatory status. Our hypothesis was
that a +HyD3 dairy drink would be more effective at raising
vitamin D status than would a +D3 dairy drink and would have
beneficial effects on cardiometabolic risk markers.

Methods

Subjects. The study was conducted according to the Declaration of

Helsinki and approved by the University of Reading Research Ethics
Committee (approval no. 15/15) and was registered at www.clinical-

trials.gov (NCT02535910). Nonsmoking men (n = 18) aged 30–65 y

with a BMI (in kg/m2) between 20 and 35 with suboptimal vitamin D

status (plasma 25-hydroxyvitamin D concentration #50 nmol/L) were
recruited from the population in Reading, United Kingdom, and the

surrounding areas fromMay to October 2015 by e-mail, internet, poster,

or newspaper advertisements. Subjects who expressed an interest in

the study were asked to complete a medical, lifestyle, and ethnicity ques-
tionnaire. The key exclusion criteria included: female sex (to avoid

the potential impact of the menstrual cycle on the study outcomes);

cardiovascular, renal, gastrointestinal, respiratory, and endocrine dis-

eases, diabetes, or cancer; hypertension; use of nutritional supplements;

use of long-term medication; milk allergy or intolerance or lactose in-

tolerance; outdoor workers and those who used tanning beds; overseas

vacation 2 mo before or during the study period; vigorous exercise

(>3 instances of 30 min aerobic exercise/wk); and excessive alcohol

intake (>14 U/wk). Those who complied with the inclusion criteria were

invited to attend a screening visit after a 12-h overnight fast during which

nothing but water was consumed. All subjects provided written informed

consent. Blood samples were taken by venipuncture for determination of

the full blood count at the Royal Berkshire Hospital (Reading, United

Kingdom), and men who had anemia (hemoglobin <125 g/L) were

excluded. Blood samples were also collected for measuring vitamin D

status [plasma 25(OH)D3 concentration, performed at the Royal

Berkshire Hospital] and fasting serum glucose concentration, total

cholesterol, TGs, and markers of liver and kidney function through the

use of an automated clinical chemistry analyzer (ILAB 600; Werfen UK

Ltd.). Furthermore, clinical BP was measured during the screening visit

to exclude subjects with abnormal BP. Normal BP was considered to

be a SBP of 90–120 mm Hg and a diastolic blood pressure (DBP) of

60–80 mm Hg.

Study design. This study was a short-term, randomized, controlled, 3-
way crossover, double-blinded study conducted between October 2015

and February 2016. Men were randomly assigned to 1 of 3 treatments

(control, +HyD3 dairy drink, or +D3 dairy drink) at each visit by using a

Web-based random letter sequence generator (https://www.randomizer.

org/) by JG. A dose of 20 mg HyD3 or D3 (in a dairy drink) was used

because it represented achievable vitamin D intake from a single meal

containing vitamin D–fortified foods at the approximate fortification

amount used in the United States and Canada. Furthermore, a single

supplement of 20 mg 25(OH)D3 or vitamin D3 was previously shown to

have a significant differential impact on circulating plasma 25(OH)D3

concentrations (15).
After participants were accepted into the study, they were invited to

the clinical unit of the Hugh Sinclair Unit of Human Nutrition at the

University of Reading for a familiarization visit to become acquainted

with the clinical facilities and vascular function study measurements.

Before the first study visit, the participants were asked to complete a 4-d

diet diary (including 3 weekdays and 1 weekend day within the same

week), and Dietplan version 6.6 software was used to assess habitual

dietary intake, including dietary vitamin D. The first study day was 2 wk

after the familiarization visit, and there was a 2-wk washout period

between the 3 study visits (Supplemental Figure 1). A double-blinded

protocol was maintained throughout the study until all of the statistical

analysis was completed. Throughout the study, participants were asked

to maintain their normal diet and lifestyle, to avoid taking any dietary

supplements, and to minimize sun exposure. The participant flow chart

is shown in Figure 1.

Participants were asked to avoid alcohol, caffeine, or any vigorous
physical activity for 24 h before each visit and to consume a standard

low-fat evening meal (<10 g fat) provided by the researchers. In addition,

no foods that were fortified with or high in vitamin D (such as egg yolk or

oily fish) were permitted for the 24-h study period, and low-nitrate water

(Buxton Mineral Water Company Ltd.) was provided to the subjects to

consume the day before the study visit and throughout the postprandial

day until the 24-h time point.

For each study visit, participants arrived at the clinical unit of the

Hugh Sinclair Unit of Human Nutrition at;0800 after a 12-h overnight

fast. Height, weight, and waist and hip circumferences were measured

before a cannula was inserted into the antecubital vein of the dominant

arm. BP and vascular reactivity measurements were performed after a

30-min rest in a temperature-controlled (23�C 6 1�C) clinical room

before a fasting blood sample was taken. After the baseline measure-

ments were completed, the test meal was provided and consumed within

15 min. Ten postprandial blood samples were collected and 4 BP and 4

vascular reactivity measurements were performed #8 h after the test

meal (Supplemental Figure 1). Subjects remained in the clinical unit for

the duration of the 8-h study visit, and no additional food was consumed

during the postprandial study period. A standard controlled evening

meal (Marks and Spencer Ltd.) was consumed at the end of the study

visit (no vitamin D–enriched or –fortified foods), after which the
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participants fasted overnight. The following morning, they returned to
the clinical unit for their 24-h assessment, during which a fasting blood

sample was collected, and BP and vascular reactivity were measured.

Acute test meals. The 3 treatment drinks were control, +HyD3, and
+D3 dairy drinks. The manufactured crystalline vitamin D3 and 25(OH)D3

were supplied by Dishman Netherlands BV, both of which were packed

in glass vials under a nitrogen atmosphere. Vitamin D3 and 25(OH)D3

were dissolved in refined olive oil (Sainsbury�s Supermarkets Ltd.) to
achieve a concentration of 1 mg/100 mL vitamin D3 or 25(OH)D3 stock

fortified oil. Aliquots of vitamin D3 test oil (containing 20 mg vitamin

D3), 25(OH)D3 test oil [containing 20 mg 25(OH)D3], and control (olive

oil only) were assigned a random code and stored at 220�C.
On the morning of each study visit, the dairy drink was preparedwith

the use of 300 mL full-fat, nonfortified milk (Co-operative Ltd.), 32 g

unsalted butter (Co-operative Ltd.), and 25 g Askeys Treat Strawberry
Sauce (The Silver Spoon Ltd.). Milk and strawberry sauce were warmed

and mixed with melted butter through the use of a hand blender

(Sainsbury�s Supermarkets Ltd.) before 2 mL of the defrosted test or

control oil was added into the warm dairy drink and well homogenized.
Subjects were given a test breakfast that included the dairy drink, 3

slices (120 g) of toasted white bread (Hovis Ltd.) with 40 g strawberry

jam (Sainsbury�s Supermarkets Ltd.), and 15 g unsalted butter (Co-

operative Ltd.). Each of the test meals contained 51 g fat, 125 g
carbohydrate, 23 g protein, and 4.54 MJ. The nutrient composition of

the foods was obtained from the product labels.

Assessment of vascular function, BP, and anthropometric measures.
Height and weight were measured with the use of a wall-mounted

stadiometer and a Tanita BC-418 digital scale (Tanita Europe BV),

respectively. Clinical BP was measured on the upper left arm with the
use of a BP monitor (TM-2430; A&D Ltd.) in triplicate after a

minimum of 10 min of rest in a supine position at baseline (0 h), at 1.5,

3, 6, and 8 h after breakfast, and at the 24-h visit. An Endo-PAT 2000

device (Itamar Medical Ltd.) was used to assess the peripheral artery
tonometry at baseline (before breakfast) and at the 24-h visit, as

described elsewhere (16, 17). In addition, digital volume pulse

photoplethysmography (Pulse Trace; Micro Medical) was measured at
baseline (0 h), at 1.5, 3, 6, and 8 h after breakfast, and at the 24-h visit

to determine the arterial stiffness index, reflection index, peak-to-peak

time, and heart rate; the method of the assessment is described else-

where (18).

Plasma and serum collection and analysis. Blood samples collected

from the cannula were placed into serum-separating tubes [for the

analysis of serum lipids, apoB, C-reactive protein (CRP), glucose, and

insulin], lithium heparin tubes (for the analysis of plasma total nitrates

and nitrites), and tripotassium-EDTA–coated tubes [for the analysis of

plasma TNF-a, IL-6, vitamin D3, and 25(OH)D3]. After blood collec-

tion, the serum-separating tubes were stored at room temperature for

15 min, whereas those containing anticoagulant were stored on ice. All

blood samples were centrifuged within 30 min at 17003 g for 15 min at

room temperature (serum) or 4�C (plasma). After centrifugation, the

serum or plasma were aliquoted and stored at 220�C [280�C for the

25(OH)D3 and vitamin D3] until analysis.
Plasma vitamin D3 and 25(OH)D3 [as the sum of 25(OH)D3 and

3-epi-25(OH)D3] were analyzed by DSMNutritional Products Ltd. with

the use of a method validated according to FDA (19) and European

Medicines Agency (20) bioanalytical guidelines. In brief, after the

addition of a deuterated internal standard solution [d6-25(OH)D3 and

d3-vitamin D3], a protein precipitation was performed with a mixture of

tetrahydrofuran (50%), acetonitrile (40%), and methanol (10%). After

centrifugation, the supernatant was evaporated, and the residue was

reconstituted with an acetonitrile–methanol solution. An aliquot was

then injected into an LC-MS/MS system (Agilent 1290, C18 column) with

an APPI source (ABSciex 4000), and the detection of the specific

fragment ions was performed with the use of the multiple reactions

monitoring mode. To assess the daily and long-term laboratory perfor-

mances of the method, dedicated standard and quality control samples

were analyzed daily with the unknown samples to ensure the accuracy

and precision of the method. Data acquisition of the extracted ion

chromatograms, integration, and quantification were performed with

the use of Analyst software from ABSciex.

Serum total cholesterol, HDL-cholesterol, nonesterified FAs (NEFAs),

TGs, apoB, and CRP were determined with the use of the ILAB 600

autoanalyzer with standard kits and appropriate quality controls (reagents

and analyzer: Werfen UK Ltd.; NEFA reagent: Alpha Laboratories; and

apoB reagent: Randox Laboratories). The fasting LDL-cholesterol con-

centration was calculated from total cholesterol, HDL-cholesterol, and

TGs by using the Friedewald formula (21). ELISA kits were used to

measure plasma TNF-a (R&D Systems Europe Ltd.), IL-6 (R&D Systems

Europe Ltd.), and serum insulin (Dako Ltd.). Insulin resistance markers,

quantitative insulin sensitivity check index, revised quantitative insulin

sensitivity check index, and homeostasis for insulin resistance, were

calculated by using standard equations (22). Plasma samples were

analyzed for nitrites and nitrates with the use of the Eicom NOx Analyzer

(ENO-30), as described elsewhere (23).

Blood was collected into dipotassium-EDTA tubes (Greiner BioOne

Ltd.) at baseline and at 8 and 24 h after the consumption of the test meal

to measure ex vivo LPS–stimulated whole blood culture cytokine

production, as previously described (24). The cytokines TNF-a and

IL-6 were measured in whole-blood culture supernatants with the use of

ELISA kits (R&D Systems Europe Ltd.). The data were normalized for

monocyte numbers, and only samples stimulated for 24 h with LPS

(0.5 mg/mL) were used in the final analysis.

Study power. According to earlier research by Jetter et al. (15), the

expected difference between the treatments [i.e., a single dose of 20 mg

vitamin D3 or 20 mg 25(OH)D3] for plasma 25(OH)D3 is 3.7 ng/mL

(peak concentration within the 24 h) with an SD of 13.2 ng/mL. Thus, it

was estimated that 15 subjects were required to detect a significant

change in this primary outcome measurement with a power of 80%

and a 5% significance level. A total of 18 subjects were recruited to allow

for a drop-out rate of 15%.

Statistical analysis. All data analyses were conducted with the use of

STATA (version 13.0; STATA Corporation, 2014). The results are

expressed as means6 SEs (SEMs). Data were checked for normality, and

natural logarithm transformation was performed if needed. The primary

FIGURE 1 Participant flow chart. 25(OH)D3, 25-hydroxycholecalciferol.
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analysis of the time courses from baseline to 8 h for outcome variables

were analyzed by 2-factor repeated measures ANOVA to assess the effect

of treatment, time, and treatment by time interactions with Bonferroni
correction to control for multiple pairwise comparisons.

For the secondary data analysis, postprandial summary measures

were calculated, which included AUC, incremental AUC (iAUC),

maximum concentration (maxC), increment from baseline to maximal
concentration [imaxC (imaxC = maxC – fasting value)], and the time to

reach maxC. These measures were analyzed by one-way ANOVA, and

subsequently, Bonferroni correction was applied if post hoc multiple

pairwise comparisons were performed. The Kruskal-Wallis equality-of-
populations rank test was applied to data that could not be normalized.

For NEFAs, the postprandial summary measures AUC, iAUC, maxC,

imaxC, and time to reach the maxC were calculated from the mean
minimum concentration (;2 h) to 8 h (25).

Results

Of the 18 men who completed the study, the data for 1 subject,
whose baseline plasma 25(OH)D3 concentration (indicator of
vitamin D status) on the study visit was >50 nmol/L, was
excluded from the statistical analysis. Therefore, 17 men were
included in the current study data set (Table 1) with a mean 6
SEM plasma 25(OH)D3 concentration of 31.7 63.4 nmol/L
and a low dietary vitamin D intake of 4.4 61.5 mg/d assessed
from the 4-d diet diary.

There were no differences in fasting (0 h) 25(OH)D3

concentration, lipids, indexes of insulin resistance and glycemia,
vascular biomarkers, SBP, stimulated whole-blood culture cyto-
kine production, or vascular function measurements between
study visits (Supplemental Tables 1–4, Table 2). However, the
fasting DBP and pulse pressure (PP) were significantly different
between study visits (Supplemental Table 1). Thus, only the
iAUC was calculated to determine the effects of the fortified and
control dairy drinks on DBP and PP.

Postprandial response of plasma vitamin D3 and 25(OH)D3.
Following the test dairy drinks, there was a significant time-by-
treatment interaction for the postprandial plasma 25(OH)D3

concentrations (P < 0.0001) (Figure 2). After the consumption of
the +HyD3 dairy drink, imaxC (0–8 h) was 1.2-fold higher than
after the control and 1.7-fold higher than after the +D3 dairy
drink (P = 0.0001) (Table 2). Furthermore, the iAUC (0–8 h) for

the +HyD3 dairy drink was 1.5-fold higher than the +D3 dairy
drink and 1.8-fold higher than the control (P = 0.019), whereas
the iAUC (0–8 h) for the +D3 dairy drinkwas not different than the
control. The change in plasma 25(OH)D3 concentration calcu-
lated from baseline to 24 h after the +HyD3 dairy drink was also
0.9-fold higher than after the +D3 dairy drink and 4.4-fold
higher than after the control (P < 0.0001) (Table 2).

Statistical analysis of the plasma vitamin D3 responses was
not conducted because only 42 of 648 plasma samples had
vitamin D3 concentrations above the limit of detection of the
LC-MS/MS technique (2.5 nmol/L).

Vascular function and postprandial BP. The treatment
effects on vascular function and postprandial BP are presented
in Supplemental Table 1. There were no differences in the change
from baseline to 24 h for the vascular function measurements by
EndoPAT and digital volume pulse devices. There were no sig-
nificant effects of treatments on postprandial BP (SBP and DBP)
or PP.

Blood lipid profile and indexes of insulin resistance and
glycemia. There were no treatment effects on postprandial
blood lipids or indexes of insulin resistance and glycemia
determined over the 8 h (Supplemental Table 2). In addition,
there was no difference in the change from baseline to 24 h for
any of these measures.

Postprandial responses of vascular and inflammatory
biomarkers. No significant effects of treatments on serum CRP,
plasma total nitrates and nitrites, and IL-6 were observed (Supple-
mental Table 3). Statistical analysis of plasma TNF-a was not
conducted because 37% of the samples had concentrations
below the lower level of detection of the ELISA kit (0.11 pg/mL).

Ex vivo cytokine production. There was no effect of the
fortified or control dairy drinks on ex vivo production of IL-6
or TNF-a after stimulation of whole-blood cultures with LPS,
measured with the use of blood samples collected at baseline, 8 h,
or 24 h, or calculated as the change from baseline to 8 or 24 h
(Supplemental Table 4).

TABLE 1 Baseline characteristics of men with suboptimal
vitamin D status1

Value

Age, y 49 6 3

BMI, kg/m2 26.4 6 0.6

Systolic blood pressure, mm Hg 122 6 2

Diastolic blood pressure, mm Hg 64 6 2

Serum total cholesterol, mmol/L 5.04 6 0.21

Serum LDL cholesterol, mmol/L 3.61 6 0.09

Serum HDL cholesterol, mmol/L 1.21 6 0.03

Serum TG, mmol/L 1.48 6 0.21

Serum glucose, mmol/L 5.42 6 0.14

Serum insulin, pmol/L 47.7 6 3.2

Vitamin D dietary intake,2 μg/d 4.40 6 1.51

Plasma 25(OH)D3
3 concentration, nmol/L 31.7 6 3.4

1 Values are means 6 SEMs, n = 17 (means of 3 baseline periods).
2 Derived from 4-d diet diaries.
3 25(OH)D3, 25-hydroxycholecalciferol.

TABLE 2 Baseline and postprandial changes in plasma 25(OH)D3

concentrations from baseline in men after consumption of a
+HyD3 dairy drink, a +D3 dairy drink, and an unfortified dairy drink
(control)1

Measures of
25(OH)D3

Dairy drink

P2Control +D3 +HyD3

Baseline, nmol/L 28.5 6 2.8 31.0 6 3.4 30.4 6 3.3 0.85

maxC (0–8 h), nmol/L 32.9 6 3.6 34.6 6 3.8 40.2 6 3.9 0.37

imaxC (0–8 h), nmol/L 4.4 6 1.1b 3.6 6 0.7b 9.8 6 1.2a 0.0001

AUC (0–8 h), nmol/L 3 8 h 238.2 6 24.9 259.6 6 29.1 272.3 6 28.4 0.68

iAUC (0–8 h), nmol/L 3 8 h 10.3 6 5.8b 11.7 6 4.2b 29.2 6 5.2a 0.019

Change from baseline to 24 h 1.6 6 1.1b 4.5 6 0.8b 8.7 6 0.9a ,0.0001

Change from 8 to 24 h 20.2 6 1.2 3.1 6 0.9 1.6 6 1.0 0.10

1 Values are means 6 SEMs, n = 17. Labeled means in a row without a common

superscript letter differ, P , 0.05. iAUC, incremental AUC; imaxC, maximal change of

the variables; maxC, maximum concentration; 25(OH)D3, 25-hydroxycholecalciferol;

1D3, 20 mg vitamin D3–fortifiied dairy drink; 1HyD3, 20 mg 25-hydroxycholecalciferol–

fortified dairy drink.
2 One-factor ANOVA was applied to the outcome variable. Bonferroni multiple

pairwise comparison post hoc tests were used to identify the significant differences

between the treatments.
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Discussion

This study is the first to our knowledge to compare the post-
prandial responses to vitamin D3– and 25(OH)D3-fortified
dairy drinks on plasma 25(OH)D3 concentrations in addition to
markers of cardiometabolic risk. It was observed that consump-
tion of a +HyD3 dairy drink resulted in higher and more
sustained plasma 25(OH)D3 concentrations over 8 h and at 24 h
compared with the control and +D3 dairy drink, showing that
25(OH)D3-fortified dairy foods were more effective at increasing
plasma 25(OH)D3 than vitamin D3–fortified foods. However, we
did not detect changes in vascular function measurements or
cardiometabolic risk markers after consumption of the test meals
containing the 3 different types of dairy drink.

To date, to our knowledge, no randomized controlled trials
have evaluated the effects of 25(OH)D3-fortified dairy products
on the change in acute vitamin D status. The postprandial change
in plasma 25(OH)D3 concentrations offers an important insight
into the absorption kinetics of 25(OH)D3 and vitamin D3, which
may influence the form of vitamin D chosen for fortification.
Jetter et al. (15) compared the effect of capsules containing 20 mg
of 25(OH)D3 and vitamin D3 on plasma 25(OH)D3 concentra-
tions in healthy postmenopausal women who had similar
baseline plasma 25(OH)D3 concentrations [30.7 6 10.2 nmol/L
(mean6 SD)] to the participants in the current study. A significant
1.3-fold higher plasma 25(OH)D3 AUC (0–24 h) was observed
after the 25(OH)D3 supplementation compared with the vitamin
D3 supplement (15). This direction of effect was in line with the
current study, where the +HyD3 dairy drink resulted in a signifi-
cant 1.5-fold higher plasma 25(OH)D3 iAUC compared with
the +D3 dairy drink, which was evident within 8 h of ingestion.
The differences between the studies may be due in part to the
characteristics of the study participants. The current study was
conducted in men aged 30–54 y, whereas Jetter et al. (15) studied
postmenopausal women aged 50–70 y, although there is no
evidence from any previous studies of an age or sex effect on the
absorption of vitamin D supplements. In addition, the form of the
25(OH)D3 may have influenced absorption, with a preferential
absorption of 25(OH)D3 with a fat-containing meal rather than

taking it from capsules with water. This speculative explanation
would require further confirmation.

We were unable to quantify plasma vitamin D3 concentra-
tions because plasma concentrations were below the detection
limit of the LCMS/MS assay. One explanation may relate to the
findings of Barger-Lux et al. (9). Their study investigated the
dose response to supplemental vitaminD3 (25, 250, and 1250mg/d)
and 25(OH)D3 (10, 20, and 50 mg/d) for 8 and 4 wk, re-
spectively. It was observed that both serum vitamin D3 and
25(OH)D3 increased with all of the vitamin D3 supplementa-
tions, whereas only serum 25(OH)D3 increased after the
25(OH)D3 supplementations. In addition, the subjects in the
study of Barger-Lux et al. (9) had higher mean fasting 25(OH)D3

concentrations (67 compared with 32 nmol/L in the current
study) considered to be in the optimal range, which may have
been associated with higher circulating concentrations of vita-
min D3, the precursor of 25(OH)D3. Furthermore, our study
was performed in the postprandial phase, and so a longer-term
intervention period [as in Barger-Lux et al. (9)] may be required
for detectable plasma vitamin D3 concentrations.

A study by Stamp (26) investigated the acute effect of a single
dose of supplemental 25(OH)D3 at 10 mg/kg body weight in
healthy subjects over 24 h. The peak concentration of circulating
25(OH)D3 was reached between 4 and 8 h. In contrast, Jetter et al.
(15) reported the time to reach peak plasma 25(OH)D3 concen-
trations for a supplemental dose of 20 mg of 25(OH)D3 and
vitamin D3 to be 10.8 and 22.2 h, respectively. In the current study,
the peak circulating concentration of 25(OH)D3 could not be
identified precisely because blood samples were not collected
between 8 and 24 h, although 24-h concentrations were still above
baseline concentrations. Thus, we speculate that the peak concen-
trationwas reached earlier, after ingestion of the +HyD3 dairy drink
compared with the +D3 dairy drink, although this would need to be
confirmed in a study with frequent blood sampling over 8–36 h.

The mechanism for the more rapid absorption of 25(OH)D3

is unclear, but it might be because hepatic metabolism of vitamin
D3 to 25(OH)D3 is circumvented (6), and so the bioactive form
of vitamin D, 1,25(OH)2D3, can be more rapidly synthesized by
the kidneys, whereas vitamin D3 needs to be transported from
the gut to the liver for further metabolism (3).

Effective dietary strategies to increase population vitamin D
status are required to address the high incidence of suboptimal
vitamin D status within the population (5). The UK Scientific
Advisory Committee for Nutrition published new dietary
guidance in 2016 (1), recommending a daily vitamin D intake
of 10 mg/d for adults, which is challenging to achieve through
diet unless fortified foods are consumed. The mean daily intake
of vitamin D for UK adults is only 3.1 mg for men and 2.6 mg for
women, respectively (5). Therefore, vitamin D–fortified foods
are one strategy that would increase vitamin D dietary intake.
Milk and dairy are ideal foods for fortification because they are
consumed by the majority of the population within Europe and
the United States (5, 27). The current study verified that dairy
products are suitable vehicles for fortification with 25(OH)D3,
resulting in a more rapid increase in markers of vitamin D status
than vitamin D3 in the 24 h after consumption. Although we
could not determine whether long-term consumption of 25(OH)D3-
fortified foods would lead to more favorable vitamin D status
than vitamin D3–fortified foods, a previous study reported that
25(OH)D3 given as a daily or weekly supplement, or as a single
bolus, was 2- to 3-foldmore potent at increasing plasma 25(OH)D3

concentrations than vitamin D3 supplementation (15). However,
further studies investigating the effects of 25(OH)D3-compared
with vitamin D3–fortified foods over a longer intervention

FIGURE 2 Postprandial plasma 25(OH)D3 concentrations in men

after consumption of a +HyD3 dairy drink, a +D3 dairy drink, and an

unfortified dairy drink (control). Values are means 6 SEMs, n = 17 for

each treatment. Two-factor repeated measure ANOVA was used to

access treatment, time, and time-by-treatment interaction effects.

25(OH)D3, 25-hydroxycholecalciferol; +D3, 20 mg vitamin D3–fortified

dairy drink; +HyD3, 20 mg 25-hydroxycholecalciferol–fortified dairy

drink.
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period are required to determine the efficacy of 25(OH)D3

fortification on reversing suboptimal vitamin D status.
Evidence on the associations of low vitamin D status and

CVD risk factors, such as hypertension and elevated lipids, is
predominantly from epidemiological studies, which may be
influenced by confounding factors or reverse causality (1). In the
current study, no treatment effects on postprandial arterial
stiffness, a key CVD risk factor (28), in men with suboptimal
vitamin D status were observed, which is in line with a previous
study (29) that also reported no changes in arterial stiffness after
consumption of a single dose of 7500 or 1875 mg of vitamin D3.
In addition, a recent systematic review and meta-analysis (30)
summarized 28 randomized controlled trials on vitamin D3

supplementation and concluded that there was no effect of
vitamin D supplementation (doses ranged from 25 mg/d to
3000 mg/mo) on arterial stiffness after administration periods
ranging from 2 to 12 mo.

In contrast with our study of no effect on BP, Bischoff-Ferrari
et al. (10) reported a 5.7–mm Hg decrease (P = 0.0002) in SBP
after daily supplementation with 20 mg 25(OH)D3 compared
with 20 mg vitamin D3 over 4 mo in subjects who had normal BP.
In our study, the effect of the test meal containing the dairy drink
was only followed up for 24 h as opposed to the study of
Bischoff-Ferrari et al. (10), which had a 4-mo intervention
period. This suggests that a chronic intervention period may
have been required for significant changes in BP to be observed.

The determination of postprandial outcomes is important
because an elevated nonfasting serum TG concentration is now
recognized as an independent CVD risk factor (31). Our find-
ings on a lack of effect of the fortified dairy drinks on the
postprandial lipid profiles (TGs and NEFAs) are in line with a
previous intervention study (29), which also reported that
there were no effects of a single higher dose of vitamin D3 of
7500 or 1875 mg on postprandial lipid profiles (TGs and total
HDL and LDL cholesterol) after #8 h in overweight vitamin D–
deficient women [vitamin D concentration (mean 6 SD) of
27.1 6 13.8 nmol/L]. Furthermore, the current study is the first
to investigate the effects of vitamin D–fortified dairy drinks on
the ex vivo production of the inflammatory cytokines, IL-6
and TNF-a, in whole-blood culture following stimulation with
LPS. No differences between the dairy drinks were observed,
suggesting that higher doses or a longer supplementation period
may be required to determine the effects of vitamin D forms on
inflammation.

This study has some potential limitations. First, the study was
powered to detect a significant difference in the primary
outcome of postprandial plasma 25(OH)D3, however, it may
not have been suitably powered to detect changes in the
secondary outcomes. In addition, this study was conducted in
generally healthy men, which may have contributed to the null
findings with respect to the cardiometabolic risk markers
following the 3 treatments. Second, blood samples were not
collected between 8 and 24 h, which restricted the estimation of
the peak 25(OH)D3 concentration. Furthermore, the partici-
pants were men with suboptimal vitamin D concentrations, and
the results may not be representative of responses in women or
those individuals with adequate vitamin D concentrations.

In conclusion, the current study confirmed that a +HyD3

dairy drink was able to increase the postprandial marker of
vitamin D status more efficiently than a +D3 dairy drink.
Although the magnitude of change in the vitamin D status was
significantly higher after the +HyD3 dairy drink than after the
+D3 dairy drink, additional longer-term intervention studies are
needed to determine whether 25(OH)D3 preferentially increases

vitamin D status. This may have important public health
implications for addressing hypovitaminosis D in the popula-
tion. It is important that future studies investigate the impact of
daily +HyD3 dairy drink consumption on longer-term vitamin D
status in both men and women.
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