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Abstract 

A series of five diruthenium diethynyl complexes based on α,β-fused 

oligothienoacenes in the core of the bridging ligands (BL), 

[{Ru(dppe)Cp*}2(µ-C≡C–L–C≡C)] (dppe = 1,2-bis(diphenylphosphino)ethane, Cp* 

= η5-C5Me5), L = thieno[3,2-b]thiophene (4), thieno[2,3-b]thiophene (5), 

3,4-dimethylthieno[2,3-b]thiophene (6) dithieno[3,2-b:2′,3′-d]thiophene (7) and 

thieno[3,2-b]thieno[2′,3′:4,5]thieno[2,3-d]thiophene (8), have been synthesized and 

fully characterized electrochemically and spectroscopically. Elongation of the redox 

non-innocent oligothienoacene bridge core causes a smaller potential difference 
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 2

between the initial two anodic steps, not seen for free dialkyl oligothienoacenes, and 

increased positive charge delocalization over the conjugated bridge backbone. The 

HOMO of the parent complexes resides predominantly on the oligothienoacene core, 

with strong participation of the ethynyl linkers and slightly smaller contribution from 

the metallic termini. This bonding character makes the initial one-electron oxidation 

symmetrical, as revealed by combined voltammetric and spectroscopic (IR, 

UV-vis-NIR and EPR) methods as well as DFT and TD-DFT calculations of truncated 

and selected non-truncated models of the studied series. The remarkable gradual 

appearance of two C≡C stretching absorptions in the IR spectra of the monocationic 

diethynyl complexes is ascribed to increasing vibronic coupling of the IR-forbidden 

νs(C≡C) mode of the oxidized –[C≡C–core–C≡C]+– bridge with a low-lying 

π-π*(intra-bridge) / MLCT electronic transition in the NIR-mid-IR spectral region. 

  

Introduction 

Numerous redox-active di- and oligonuclear transition metal complexes exhibit a 

wide range of important electronic, magnetic and optical properties[1] that can be 

varied reversibly along readily accessible multiple redox states. Certain physical 

properties of bimetallic complexes, such as luminescence and non-linear optical 

(NLO) activity, may display larger variability compared to the monometallic 

congeners.[2] Specifically in molecular electronics, carefully designed symmetric 

bimetallic complexes with conjugated bridging ligands and two or more redox centers 

featuring a variable degree of electronic communication are of central importance to 

study the mixed-valence (MV) electronic coupling[3] and develop a variety of 

functional materials. The ability of the molecular bridge to mediate electronic 

communication has been investigated by a wide range of methods including 

voltammetric techniques and spectroelectrochemistry (UV-vis-NIR-IR, Raman, EPR, 

etc.) and theoretical calculations.[4-11] 

Diruthenium complexes based on a few classical types of redox-active metallic 

termini supported by ancillary ligands are often explored to test diverse types of 
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carbometalated bridging ligands in symmetric MV systems.[12] The electronic 

coupling between the metal centers strongly depends on the key properties of the 

bridging ligand, such the degree of conjugation, coplanarity and length. In the earlier 

literature, researchers have mainly focused on bridging conjugated polyaromatic 

hydrocarbons (PAHs),[13] such as oligophenylene.[14] Thiophene-based heteroacenes 

have emerged as excellent building blocks in the synthesis of a variety of 

opto-electronic materials. These organic semiconductor materials exhibit considerable 

potential for application as photoswitches[15], DSSC[16] and OFETs,[17] owing to their 

good conjugation. In the field of organometallic chemistry, α,β-fused 

oligothienoacene moities have been applied as organic bridging units and introduced 

to gold- and platinum-containing ethynyl complexes; their physical and luminescent 

properties were investigated[18]. Recently, Lapinte and co-workers[19] have described 

magnetic communication between two [Fe(dppe)Cp*] units mediated by the 

2,5-diethynylthiophene spacer. Chen and co-workers[20] have also reported 

thiophene-based bimetallic ruthenium complexes and studied their electron-transfer 

properties. Subsequently, Liu and co-workers investigated the electronic coupling 

properties of oligothiophene-bridged binuclear ruthenium complexes (Chart 1) and 

their charge transfer ability[11a]. Recent studies[21] document that the charge transport 

ability across a molecular wire reduces and even drops exponentially with increasing 

their length. In overall consideration,[22] the fused molecular framework of 

thienoacenes represents one of the most attractive candidates for low-resistance 

molecular-scale wires featuring favorable electrical conductance characteristics. 

Systematic investigation of thiophene-based heteroacenes with higher 

conjugation may reveal excellent charge transfer properties. With this in mind, we 

have synthesized and characterized a series of diethynyl oligothienoacenes as bridging 

ligands carbometalated to Ru(dppe)Cp* terminal groups, viz. complexes 4-8 (Chart 1) 

based on thieno[3,2-b]thiophene (4), thieno[2,3-b]thiophene (5), 

3,4-dimethylthieno[2,3-b]thiophene (6) dithieno[3,2-b:2′,3′-d]thiophene (7) and 

thieno[3,2-b]thieno[2′,3′:4,5]thieno[2,3-d]thiophene (8) in the bridge core. We aimed 

(i) to probe with spectro-electrochemistry and quantum chemical calculations how the 
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 4

elongation of the oligothienoacene bridge core in complexes 1, 4, 7 and 8 affects their 

redox and electronic coupling properties, (ii) to evaluate the effect of the positional 

isomerism and methyl substitution of the dithienoacene bridge core in complexes 4-6 

on their electronic properties, and (iii) to compare the new experimental results with 

those previously reported[11a] for closely related complexes 1-3 with oligothiophenes 

in the bridge core.  

 

 

Chart 1. Previously published[11a] diethynyl oligothiophene-bridged diruthenium complexes 1-3 

and the target new series of diethynyl oligothienoacene-bridged diruthenium complexes 4-8. 

Complex 1 links both groups. Diethynyl dithienoacene isomers 4-6 form a separate sub-group. 

 

Results and Discussion 

Syntheses and Characterization 

The general synthetic route toward diethynyl oligothienoacene-bridged 
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 5

diruthenium complexes 4-8 is outlined in Scheme 1. Bridge-core precursors 4a
[23], 

5a
[23], 6a

[24], 7a
[17, 23b], 8a

[25] were prepared by the literature methods. Intermediates 

4b-8b were obtained in moderate to high yields by palladium(0)/copper(I)-catalysed 

cross-coupling reactions[26] of trimethylsilylethyne with 

2,5-dibromothieno[3,2-b]thiophene (4a),  2,5-dibromothieno[2,3-b]thiophene (5a), 

2,5-dibromo-3,4-dimethylthieno[2,3-b]thiophene (6a), 

5,5'-dibromodithieno[3,2-b:2',3'-d]thiophene (7a) and 

2,6-dibromo-thieno[3,2-b]thieno[2′,3′:4,5]thieno[2,3-d]thiophene (8a), respectively. 

Low solubility of compound 8a resulted in lower yields (31%) of complex 8b. Finally, 

compounds 4b-8b were deprotected by the removal of the TMS group in a methanolic 

KF solution, and reacted with [RuCl(dppe)Cp*] for 24 h at 60 °C. Target complexes 

4-8 were collected by filtration and characterized by conventional spectroscopic 

methods. However, low solubility precluded the collection of sufficiently resolved 
13C 

NMR spectra of complexes 4 and 5. The studied diruthenium complexes exhibit some 

characteristic 1H NMR signals. For example, complex 7 shows the proton chemical 

shifts (in ppm) for C5(CH3)5 at δ 1.55, CH2/dppe at δ 2.06 and 2.68, and 

heptathienoacene-H at δ 6.42. Tetrathienoacene-H and CH2/dppe signals of complex 4 

coincide. Characteristic 13C NMR resonances of Ru‒C≡C‒ in 6-8 are observed at δ 

117. The 31P NMR spectra of complexes 4-8 display only one signal at δ 80.00, 

reflecting the molecular symmetry. The νas(C≡C) wavenumber in the IR spectra of the 

solid diethynyl complexes 1, 4, 7 and 8 (in the Nujol mull) gradually decreases from 

2064 cm-1 to 2041 cm-1 as the conjugated bridge core elongates. This trend is in line 

with the increasing electron-withdrawing power of the oligothienoacene bridge core, 

reflected in the less negative oxidation potentials (see below).  
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Scheme 1. Reaction paths to diethynyl oligothienoacene-bridged diruthenium complexes 4-8, and 

corresponding reaction yields. Reagents and conditions: (i) TMSA, [Pd(PPh3)4], CuI, 

THF/(i-Pr)2NH; (ii) [RuCl(dppe)Cp*], KF, CH3OH/THF. TMSA = trimethylsilylacetylene, dppe = 

1,2-bis(diphenylphosphino)ethane, Cp* = pentamethylcyclopentadiene. 

 

X-ray Structure Determination 

Single crystals of complexes 7 and 8 suited for X-ray structural analyses were 

grown by layering the solution in dichloromethane with hexane. The molecular 

structures of 7 and 8, including top and side views, are shown in Figure 1, 

respectively. Details of the data collection and refinement are presented in Table S1 

(Supporting Information). Selected parameters (bond lengths (Å) and angles (deg)) 

from the crystal structures of parent 7 and 8 are collected in Tables 1 and S2 

(Supporting Information). Both diruthenium complexes are symmetrical and exhibit a 

planar rigid structure over the entire bridge (Figure 1). As encountered in other 

Ru(dppe)Cp*-based complexes[13], the ethynyl linker and the Cp* and dppe ligands at 

the Ru center form a pseudo-octahedral environment. The P(1)‒Ru(1)‒P(2) angles in 

complexes 7 and 8 reach 83.35° and 83.57°, respectively, falling within the range of 
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 7

83-84° reported for a number of ruthenium phenylacetylide complexes.[13b,27] The 

bonding parameters of the planar oligothienoacene core, viz. 

thieno[3,2-b:2',3'-d]thiophene in 7 and 

thieno[3,2-b]thieno[2′,3′:4,5]thieno[2,3-d]thiophene in 8, do not deviate significantly 

from those reported for free triisopropylsilyl octathienoacene.[28] The 

Ru(1)‒C(37)‒C(38) angles in complexes 7 and 8 are 174.63° and 168.81°, 

respectively.  

 

 

Figure 1. X-ray structures of complexes 7 (a, b) and 8 (c, d) with thermal ellipsoids at the 50% 

probability level: (a, c) top view, (b, d) side view. Hydrogen atoms and solvent molecules have 

been removed for clarity.  

 

Table 1. Selected bond lengths (Å), angles (deg) and interatomic distance (Å) from the crystal 

structure of complex 7 and the DFT-optimized structures of models [7-H]n+
 (n = 0, 1, 2) and 

trans-7+.a 

Parameter 7 
trans-7+  

(BLYP35) b 
[7-H] 

(B3LYP) 

[7-H]
+ 

(B3LYP) 

[7-H]
2+ 

(B3LYP) 

Ru1‒C37 1.986(3) 1.913 1.910 2.011 1.966 1.921 

Ru1‒P1,2 2.262(7), 2.276(7) 2.281, 2.273 2.287, 2.277 2.280, 2.279 2.301, 2.301 2.323, 2.322 

C37‒C38 1.219(4) 1.206 1.205 1.230 1.242 1.256 

C38‒C39 1.416(4) 1.336 1.338 1.401 1.373 1.351 

C39‒C40 1.372(4) 1.363 1.363 1.385 1.410 1.437 

C40‒C41 1.414(4) 1.343 1.347 1.418 1.391 1.369 

C41‒S2 1.745(3) 1.697 1.697 1.757 1.756 1.757 
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 8

C41‒C42 1.382(4) 1.373 1.373 1.402 1.428 1.453 

C42‒C42' 1.407(4) 1.349 1.349 1.418 1.392 1.371 

S1‒C42 1.722(3) 1.679 1.680 1.736 1.736 1.739 

S1‒C39 1.757(3) 1.719 1.719 1.787 1.789 1.793 

P1‒Ru1‒P2 83.35(3) 83.35 83.09 93.08 92.57 91.18 

Ru1‒C37‒C38 174.6(2) 174.99 173.80 178.41 178.00 177.53 

C37‒C38‒C39 179.7(3) 179.53 179.50 178.90 178.07 176.71 

Ru…Ru' 15.2 14.9 14.9 15.4 15.3 15.2 
a The values are identical for the molecule halves, with the exception of slightly asymmetric trans-7+. b The values 

for trans-7+ in the right column correspond to the atom numbering with apostrophes in Figure 1(a).  

 

Electrochemical Studies  

Electronic properties of complexes 4-8 were first studied by electrochemistry 

revealing differences in their stepwise one-electron oxidation. The separation of two 

reversible redox waves (∆E1/2) is known to be potentially influenced by several 

factors such as electrostatic interaction, solvation, ion pairing with the electrolyte and 

structural distortions caused by an electron transfer process[29-32]. The anodic 

responses of the complexes were obtained in CH2Cl2/10-1 M Bu4NPF6 with cyclic 

voltammetry (CV) and square-wave voltammetry (SWV); the corresponding data are 

listed in Table 2. The oxidation potentials of reference complexes 1-3 have been 

reported in the literature[11a].  

Cyclic and square-wave voltammograms (CVs and SWVs) of complexes 1 and 

4-8 are depicted in Figures 2 and 3, and Figures S1-S4 (Supporting Information). All 

the complexes readily undergo two consecutive fully reversible one-electron 

oxidations. Figure 3a reveals that the E1/2(2) potential in the oligothienoacene series 1, 

4, 7 and 8 changes only slightly with the increasing length of the bridge core, while 

the E1/2(1) values increase profoundly, from -0.387 V for 1 to -0.180 V for 8. The 

potential difference ∆E1/2 decreases almost linearly from 320 mV to 135 mV with the 

number (1-4) of the α,β-fused thiophene rings (Figure 4) and the distance between the 

terminal ruthenium centers (Figure S5). The increasing delocalization of the unpaired 

electron/hole over the longer redox non-innocent diethynyl oligothienoacene bridge 

decreases the further input of energy required to place the other hole into the 
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 9

monocationic system. Notably, previously reported diethynyl oligothiophene-bridged 

complexes 1-3
[11a] exhibit more pronounced changes in ∆E1/2 because of the larger 

amplitude of the chain length variation from single thiophene to bithiophene and 

linear terthiophene. The comproportionation constants Kc for complexes 1, 4, 7 and 8, 

dwindle along the series from 2.25×105 to 191 (Table 2), marking the gradually 

decreasing thermodynamic stability of the electrochemically generated open-shell 

monocations.   

In contrast to the studied oligothienoacene series with the ruthenium ethynyl 

termini, the oxidation potentials of free (alkyl)disubstituted oligothienoacenes, 

R‒Tn‒R (n = 4-8), strongly decrease with the chain length and the ∆E1/2 values do not 

decline below 300 mV.[33] This difference in the anodic behavior is one of the 

characters reflecting the involvement of the conjugated (Ru‒)ethynyl units in the 

stepwise oxidation.  

The differences in the anodic potentials are marginal in the series of diethynyl 

dithienoacene complexes 4, 5 and 6 (Figure 3b and Table 2). The isomerization of the 

bridge core from thieno[3,2-b]thiophene in 4 to thieno[2,3-b]thiophene in 5 (with the 

sulfur atoms located on the same side of the unit) caused a slight positive shift of the 

anodic potentials and a twice as large Kc value. Even higher stability was observed for 

6
+
 with two methyl substituents attached to the thieno[2,3-b]thiophene isomer in the 

bridge core. In contrast to the minor variability of the anodic voltammetric behavior, 

the structural changes in the dithienoacene series have profound consequences for the 

NIR-mid-IR electronic and IR vibrational absorption of 4
+-6+, as presented in the 

following section. 
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Figure 2. Anodic voltammetric responses of complex 7 in CH2Cl2/Bu4NPF6. (a) Cyclic 

voltammograms (CVs) at a different scan rate (0.05, 0.1, 0.2, 0.4, 0.6 V s-1); (b) the square-wave 

voltammogram (SWV) at f = 10 Hz (tp = 25 mV). The potential scale is referenced vs Fc/Fc+.  

 

 

 

Figure 3. Anodic square-wave voltammograms (SWVs) of (a) the series of oligothienoacene 

complexes 1, 4, 7, 8, and (b) the series of dithienoacene complexes 4, 5, 6 in CH2Cl2/Bu4NPF6, f = 

10 Hz (tp = 25 mV). The potential scale is referenced vs Fc/Fc+. 
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Table 2. Electrochemical data determined for complexes 1-8.a 

Complex E1/2(1) (V) E1/2(2) (V) ∆E1/2 (mV)b Kc 
c 

1
c
 -0.387 -0.067 320 2.25×105 

2
c
 -0.224 -0.087 137 207 

3
c,d

 -0.052 -0.132 80 22.5 

4 -0.320 -0.072 248 1.56×104 

5 -0.296 -0.026 270 3.66×104 

6 -0.343 -0.055 288 7.61×104 

7 -0.224 -0.040 184 1.29×103 

8 -0.180 -0.045 135 191 

a Electrode potential values vs the Fc/Fc+ standard redox couple recorded at 25 °C in dry dichloromethane 

containing 10-1 M Bu4NPF6. Additional anodic waves observed at higher potentials, most likely due to the 

oligothienoacene bridge core, were not examined further. b ∆E1/2 = E1/2(2) – E1/2(1). c Ref.11a. The 

comproportionation constants, Kc = exp(∆E1/2/25.69) at 298 K. d Calculated according to ref.[34] for the 

experimental value Ep = -0.092 mV (unresolved maxima) and width of 154 mV (the differential-pulse method). 
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Figure 4. Plot of anodic potential difference ∆E1/2 for diruthenium complexes 1, 4, 7 and 8 versus 

the number of the α,β-fused thiophene rings in the bridge core. 
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Chemical Oxidation Monitored by IR and UV-vis-NIR Spectroscopy  

The characteristic infrared C≡C stretching absorption can conveniently be used 

to monitor structural changes accompanying the strongly bridge-localized oxidation 

of the studied series of complexes (Chart 1). The CV and SWV studies have revealed 

that both the first and second oxidation potentials of complexes 1-8 are lower 

compared to E1/2 of the ferrocene standard (Table 2). Ferrocenium 

hexafluorophosphate, FcPF6, therefore served conveniently as a mild oxidizing agent 

to selectively generate the corresponding mono- and dications both in the 

oligothiophene-core series 1-3[11a]
 and the new oligothienoacene-core series 4-8.  

The νas(C≡C) vibrational frequencies recorded for complexes 1n+-8n+ (n = 0-2) in 

dichloromethane are presented in Table 3. In the oligothienoacene-core series 1, 4, 7 

and 8 (Figure 5), the experimental IR spectra in the ν(C≡C) region exhibit a single 

band of low to medium intensities, with absorption maxima shifting gradually to a 

larger wavenumber for the shorter bridge core, viz. from 2043 cm-1 (for 8) to 2056 

cm-1 (for 1). This trend, which is also seen[11a] in the diethynyl oligothiophene-bridged 

series 1-3 (Table 3), indicates less π-conjugation between the ethynyl linker and the 

shorter bridge core. As a result, the HOMO energy rises in this direction and the 

oxidation potential becomes more negative (vide supra). In contrast, the 

corresponding dications do not display any obvious trend in the main ethynyl 

stretching wavenumber values, all lying close to 1910 cm-1 (Table 3), in line with the 

conjugated symmetric {M=C=C}2=C(core)2+ backbone. This observation complies 

with the stagnant electrode potentials for the mono-/dication redox couples (Table 2).  

Most interesting observations in the infrared ν(C≡C) region have been made for 

the singly-oxidized cationic species divided into the oligothiophene series 1, 4, 7 and 

8, and the dithienoacene series 4-6. Except for 1+ absorbing at 1961 cm-1, the cations 

with the elongated oligothienoacene core feature two ν(C≡C) absorption bands with 

increasing separation: 4+ (∆ῦ = 26 cm-1), 7+ (∆ῦ = 42 cm-1) and 8+ (∆ῦ = 55 cm-1); the 

average wavenumber value however remains close to 1961 cm-1 (Table 3). At the 

same time, the increased band separation is accompanied by rising intensity of the 

ν(C≡C) band at the larger wavenumber. Notably, this trend reaches the maxima in the 
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dithienoacene series where 5+ (∆ῦ = 69 cm-1) and 6+ (∆ῦ = 91 cm-1) largely exceed the 

values obtained for 8+. In this case, the remarkable IR spectral changes in the ν(C≡C) 

region cannot be explained the co-existence of different rotamers of the monocations, 

modelled by DFT calculations, [35-37] as the one-electron oxidation largely resides on 

the oligothiophene bridge core (see below). Instead, it is important to consider the 

variable energy of lowest NIR-mid-IR π-π* (intra-bridge) electronic absorption 

accompanying the conversion of the neutral parent complexes to the monocations, as 

highlighted hereinafter.  

 

 

Figure 5. IR spectra in the ν(C≡C) region of complexes 1 and 4-8 in dichloromethane and their 

corresponding mono- and dications formed by addition of equivalent amounts of FcPF6. 
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Table 3. IR ν(C≡C) wavenumbers (cm-1) [av. = the average value] recorded for complexes [1-8]n+ 

(n = 0, 1, 2) in dichloromethane.a,b  

Complex n = 0 n = 1 n = 2 

1
n+ c 2056 (w) 1961 (s) [av. 1961] 1914 (m-w) 

2
n+ c
 2055 (w) 1982 (sh), 1933 (s) [av. 1958] 1909 (m-w) 

3
n+ c
 2046 (w) 2007 (w), 1920 (m) [av. 1964] 1971 (w), 1917 (w) 

4
n+ 2052 (w) 1974 (sh), 1948 (s) [av. 1961] 1912 (m-w) 

5
n+

 2050 (m) 1992 (m), 1923 (s) [av. 1958] 1916 (w) 

6
n+ 2047 (w) 2000(m-s), 1909 (s) [av. 1955] 1900 (vw) 

7
n+ 2045 (w) 1981 (w), 1939 (s) [av. 1960] 1907 (m-w) 

8
n+ 2043 (w) 1988 (w), 1933 (s) [av. 1961] 1911 (m-w) 

a Oxidation of the neutral parent complexes to corresponding mono- and dications was carried out by addition of 

exact equivalent amounts of ferrocenium hexafluorophosphate. b The low-intensity νs(C≡C) mode was not detected 

in the experimental IR spectra of neutral parent complexes and corresponding dications. For 7 and 7+, both νs(C≡C) 

and νas(C≡C) wavenumbers were obtained by harmonic frequency IR and Raman calculations, see the DFT section. 
c Ref.[11a] 

 

Changes in the electronic UV-vis-NIR-IR absorption recorded for complexes 1, 

4-8 upon gradual addition of one and two equivalents of the ferrocenium 

hexafluorophosphate oxidant to their solutions in dichloromethane are depicted in 

Figure 6 and Figures S6-S8 (Supporting Information). The corresponding electronic 

absorption data for the neutral parent complexes and their mono- and dications are 

listed in Table 4. The UV-vis-NIR spectral responses to the two initial oxidation steps 

within the diruthenium diethynyl oligothienoacene series 1, 4-8 are very similar and 

will be demonstrated in detail for complex 7 with alternating trithienoacene in the 

bridge core (Figure 6). Neutral parent 7 exhibits an intense absorption at 445 nm that 

corresponds to the HOMO→LUMO (π-π*) transition characteristic for free 

oligothienoacenes[33], with participation of the π-system of the ethynylene linkers. The 

one-electron oxidation to 7+ generates two intense subgap absorption bands at 683 nm 

and 1800 nm with a shoulder around 1375 nm. This new visible and asymmetric NIR 

absorption is typical for radical cations of free oligothienoacenes and can be ascribed 

to SOMO→LUMO and HOMO→SOMO (π-π*) transitions, respectively.[33] It is 

Page 14 of 40

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 15

evident that the oxidation of 7 to 7+
 is largely localized on the trithiophene bridge core. 

The participation of the (Ru‒)ethynyl linkers, revealed by the IR spectral monitoring 

and anomalous voltammetric responses (see above), will be discussed in greater detail 

in the following TD-DFT section. Continued oxidation of 7
+
 to 7

2+ led to the 

appearance of a new intense absorption band at 909 nm, which also complies with the 

dominantly terthiophene-localized anodic steps; in spectra of free oligothiophene 

dications this band is attributed to a HOMO→LUMO (π-π*) transition[33].  

All three members of the diethynyl tetrathienoacene redox series, 8n+ (n = 0, 1, 2), 

exhibit the intra-bridge electronic transitions red-shifted compared to 7
n+, while the 

opposite blue shift is encountered for the two shorter members 4n+ and 1n+ (n = 0, 1, 2). 

The descendent trends for the elongated oligothienoacene bridge core in each 

oxidation state are visualized in Figures 6a (n = 0), 6b (n = 1) and 6c (n = 2).  

Focusing on the remarkable spectral changes observed in the infrared ν(C≡C) 

region of the monocationic (n = 1) series (see Figure 5), the analysis of the 

corresponding NIR electronic absorption provides a strong support for vibronic 

coupling13b of the ν(C≡C) modes of the oxidized –[C≡C–core–C≡C]+– bridge to the 

low-lying electronic transition. The stronger coupling, taking place on decreasing 

significantly the excitation energies, activates the νs(C≡C) mode of the bridge in terms 

of both gained intensity and wavenumber difference from the asymmetric stretching 

mode. Thus, for singly oxidized 1+, 4+, 7+ and 8+, the absorption maxima of the lowest 

NIR absorption bands shift from 7195 to 6370, 5555 and 4930 cm-1, respectively, 

resulting in the pronounced activation of the symmetric stretching mode of the 

oxidized diethynyl oligothienoacene bridge in the same direction (Figure 5). A strong 

support for this explanation is obtained from monitoring the oxidation of the diethynyl 

dithienoacene series, 4-6. Whereas the redox properties in this series are very similar 

(see Table 2), the energy of the lowest electronic transition further decreases from 

6370 cm-1 for 4+ to 4000 cm-1 for 5+ and even 3825 cm-1 for 6+ that is the minimum 

value in the studied diethynyl oligothienoacene series. Accordingly, the strongest 

effect on the ν(C≡C) modes is observed for 6+
 (Figure 5) showing the largest energy 

gap ∆ῦ = 91 cm-1 between the ν(C≡C) absorption maxima, and comparable band 
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intensities. These characteristics nicely correspond with a very similar situation 

reported for another singly oxidized Ru diethynyl complex, viz. 

[{Ru(dppe)Cp*}2(µ-C≡C–L–C≡C)]+, L = benzo[1,2-b;4,3-b′]-dithiophene (bent).[35] 

In the latter case, the lowest electronic absorption (featuring a mixed ML(bridge)-CT 

and π–π*(benzodithiophene) character) lies at 3200 cm-1 and the separation of the two 

ν(C≡C) absorption maxima of comparable intensities reaches ∆ῦ = 86 cm-1. The 

substitution with L = benzo[1,2-b;4,5-b′]dithiophene (linear) caused a blue shift of the 

NIR absorption to 4540 cm-1, accompanied by a significant decrease of the ν(C≡C) 

separation to ∆ῦ = 41 cm-1 and reduced relative intensity of the symmetric stretching 

mode. The closely related diethynyl oligothiophene series[11a] 1+-3+ represents another 

example of the vibronic coupling affecting the νs(C≡C) vibrations of the singly 

oxidized bridge. 

 

 

Figure 6. Red shift of the corresponding (generally intra-bridge) electronic transitions in the 

UV-vis-NIR absorption spectra recorded for the diruthenium diethynyl oligothienoacene redox 
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series 1n+, 4n+, 7n+ and 8n+ (n = 0, 1, 2), with the increasing length of the oligothienoacene bridge 

core. (a) n = 0; (b) n = 1; (c) n = 2. Conditions: CH2Cl2, 298 K. 

 

Table 4. Electronic absorption of complexes 1 and 4-8 in their mono- and dicationic forms in 

CH2Cl2 at 298 K.a 

Complex λmax(nm) (10-4 εmax (dm3 mol-1 cm-1)) 

1 400 (2.51) 

1
+
 600 (2.63), 1390 (2.11) 

1
2+

 754 (1.73) 

4 421 (1.15) 

4
+
 639 (2.81), 1569 (2.75) 

4
2+

 812 (4.86) 

5 336 (2.06) 

5
+
 341 (1.56), 767 (0.52), 2500 (0.72) 

5
2+

 446 (1.37), 820 (0.93), 1237 (0.39) 

6 329 (2.25), 841 (0.14) 

6
+
 425 (1.11), 799 (0.88), 2614 (0.68) 

7 445 (3.12) 

7
+
 683 (1.89), 1800 (2.04) 

7
2+

 909 (3.05) 

8 461 (2.97) 

8
+
 707 (2.06), 2028 (2.42) 

8
2+

 1017 (3.67) 

a Oxidized species 62+ was poorly soluble under the given experimental conditions. 

 

DFT and TD-DFT Calculations 

In order to assist the analysis of the molecular and electronic structures in the 

diethynyl oligothienoacene series [1]n+, [4]n+, [7]n+ and [8]n+ (n = 0, 1, 2), truncated 

model complexes [1-H]n+, [4-H]n+, [7-H]n+ and [8-H]n+ were selected for density 

functional theory (DFT) calculations at the B3LYP/6-31G* level. The extension “-H” 

indicates the replacement of the Cp* and dppe ligands in the parent complexes by Cp 

and two PH3 ligands, respectively. Representative non-truncated model complex 7
+ 
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has been selected for DFT calculations based on the global hybrid BLYP35 functional 

and the 6-31G* basis set, following examples in the literature[13,35-38]. Key frontier 

orbitals of [4-H]n+-[8-H]n+ (n = 0, 1, 2) with electron density distribution are shown in 

and Figures S9-S13 (Supporting Information). The lists of frontier molecular orbital 

energies and compositions resulting from Mulliken analysis are provided in Tables 

S3-S17 (Supporting Information).   

DFT (G09-B3LYP)-optimized truncated model structures [7−H]n+ and [8−H]n+ 

(n = 0, 1, 2) reveal significant changes in the bond lengths accompanying the 

sequential one-electron oxidation of the conjugated bridging ligands (see below), i.e., 

gradual lengthening of the C≡C and C=C bonds and shortening of the C‒C bonds 

(Chart 1). The bridge core in the dications obtains a markedly quinoid structure, much 

like the crystalline dication of free triisopropylsilyl octathienoacene[28]; the 

Ru‒C≡C‒C(core) moiety converted to delocalized {Ru=C=C}2=C(core)2+. More 

accurate bond lengths and angles in singly oxidized 7
+ have been obtained with the 

G09-BLYP35 DFT method (Table 1). The highest occupied molecular orbitals 

(HOMOs) of complexes [4-H]-[8-H] are indeed largely delocalized over the diethynyl 

oligothienoacene bridge, with contributions rising from 76% to 84% on elongating the 

bridge core; the metallic termini become less involved in the same direction.  

The calculated spin-density distribution in monocations [1-H]+, [4-H]+, [7-H]+ 

and [8-H]+
 reveals, in line with the parent HOMO characters, that the oxidation is 

increasingly localized on the elongated diethynyl oligothienoacene bridge, viz. from 

72% in [1-H]+ to 80% in [8-H]+. However, the participation of the ethynyl linkers 

decreases along this series from 36% in [1-H]+ to 24% in [8-H]+, whereas the 

involvement of the oligothienoacene core rises from 36% in [1-H]+ to 56% in [8-H]+ 

(Figure 7). These changes have a strong implication for the ν(C≡C) wavenumbers in 

the IR spectra (see below). For the dicationic species, [1-H]2+, [4-H]2+, [7-H]2+ and 

[8-H]2+, the HOMO and LUMO are also largely delocalized over ethynyl‒core 

backbone with some participation of the Ru centers, having a very similar 

composition as the HOMO-1 and HOMO of the neutral parents (Figures S9-S13, 

Supporting Information). The LUMO+1 and LUMO are different, except those of 
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[8-H]2+ and [8-H], respectively.  

The B3LYP DFT calculations yielded single IR ν(C≡C) wavenumbers for both 

neutral [1-H], [4-H], [7-H] and [8-H] and the corresponding dications: [1-H]n+ ‒ 2118 

cm-1 (n = 0) and 1980 cm-1 (n = 2); [4-H]n+ ‒ 2113 cm-1 (n = 0) and 1981 cm-1 (n = 2); 

[7-H]n+ ‒ 2111 cm-1 (n = 0) and 1982 cm-1 (n = 2); [8-H]2+
 ‒ 2110 cm-1 (n = 0) and 

1986 cm-1 (n = 2) (scaled by 0.9614, see the Computational Details). The large 

∆ῦ(C≡C) values of 143, 137, 134 and 129 cm-1 along the series, which are very close 

to the experimental values of 142, 140, 138 and 132 cm-1, respectively (Table 3), 

reveal significant weakening of the C≡C bond upon the two-electron oxidation. The 

smaller ∆ῦ(C≡C) values reflect the declining involvement of the ethynyl linkers in the 

oxidation that becomes increasingly localized on the elongated, strongly conjugated 

oligothienoacene bridge core. The same descending trend applies for the 

corresponding cationic series [1-H]+, [4-H]
+, [7-H]+ and [8-H]+. The calculated 

∆ῦ(C≡C) values of 91, 87, 85 and 82 cm-1, respectively, are consistent with the 

changing spin-density distribution in the model cationic complexes, as shown in 

Figure 7.  

 

 

 

 

Figure 7. Spin-density distributions in oligothienoacene (Tn)-bridged diruthenium monocations 

[1-H]+, [4-H]+, [7-H]+, [8-H]+
 and trans-7+ and cis-7+ (Ru/CH≡CH/Tn/CH≡CH/Ru) with the 
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corresponding compositions. Contour values: ±0.0004 e/bohr3. 

A number of earlier reported singly oxidized diruthenium diethynyl complexes 

with a planar aromatic bridge core show multiple ν(C≡C) absorption bands assigned 

to different rotamers with a variable degree of a mixed-valence state.[13,28] Within the 

studied diethynyl oligothienoacene series, three principal conformations, viz. trans-, 

cis- and perp-, were modelled for representative non-truncated cation 7
+, having 

employed the expedient global hybrid functional BLYP35 introduced recently by 

Kaupp, Low and co-workers.[35-38] The basis set 6-31G* (Lanl2dz for the Ru atom) 

was used in combination with the conductor polarizable continuum model (CPCM) in 

CH2Cl2. Notably, the DFT method has only afforded potential minima for slightly 

asymmetrical trans-7+ (Table 1) and symmetrical cis-7+ conformations while several 

optimization programs failed to obtain a stable perpendicular conformation, perp-7+. 

In this regard, 7
+ resembles the electronically closely related diethynyl 

benzodithiophene-bridged diruthenium complexes.36 The DFT results obtained for 

non-truncated isomers trans-7+ and cis-7+ within the harmonic approach show strong 

νas(C≡C) absorption at 2231 cm-1; in addition, a very weak νs(C≡C) band at 2239 cm-1 

was obtained for trans-7+ (scaled by 0.95, see the Computational Details). In addition, 

the calculated Raman wavenumbers of the symmetric and asymmetric C≡C stretching 

modes for trans-7+
 are identical with the IR results; their absorption intensities are 

inversed. For comparison, harmonic frequency IR and Raman calculations for parent 

7 also yielded νas(C≡C) and νs(C≡C) absorptions at 2294 cm-1 and 2298 cm-1, 

respectively. The ∆ῦ(C≡C) value calculated for parent 7 and corresponding trans-7+ is 

smaller than the experimental value of 106 cm-1 for νas(C≡C), see Table 3. Both 

trans-7+ and cis-7+ isomers show almost symmetric distribution of the spin density 

over the bridge core and ethynyl linkers, viz. trans-7+: 70%; cis-7+: 72% (Figure 7), 

thereby closely resembling truncated [7-H]+. This outcome supports the assumption 

that the proximity of the electronic absorption in the NIR region is the main factor 

responsible for the appearance of the two significantly separated IR-active ν(C≡C) 

modes of 7
+, as discussed in the preceding spectroscopic section. The origin of the 

low-energy electronic absorption has been unraveled with TD-DFT (BLYP35) 
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calculations carried out on the structurally fully optimized non-truncated models of 7+ 

(Figure S14). The major electronic excitations in trans-7+ and cis-7+ are listed in 

Table 5. The corresponding isosurface plots of molecular orbitals involved in the 

major electronic excitations are displayed in Figure S15. Both cationic isomers of 7+ 

exhibit an intense absorption band near 7000 cm−1 and two smaller bands between 

17000 and 21000 cm−1 (trans-7+: 7047, 17605, and 20790 cm−1; cis-7+: 7077, 17391, 

and 20833 cm−1, Table 5), thereby reproducing well the absorption maxima in the 

NIR and visible region of the experimental electronic absorption spectrum (Figure 6, 

Table 4). Thus, the strong NIR absorption corresponds to the β-HOSO → β-LUSO 

excitation having a dominant π-π*(diethynyl trithienoacene) character mixed with 

some ML(bridge)CT. The direct involvement of the ethynyl linkers in the low-energy 

electronic excitation is not surprising, having a big impact on their vibrational 

behavior (Figure S15). The visible region features an intense absorption band below 

600 nm, largely due to α-HOSO → α-LUSO displaying very similar 

π-π*(intra-bridge)/MLCT characteristics (Figure S15). Finally, the fairly weak 

electronic absorption of the cationic complexes in the blue spectral region, 400-500 

nm (Figure 6b), belongs mainly to L(Cp*, dppe)MCT, also directed to the β-LUSO. 

 

Table 5. Major electronic excitations of trans- and cis- 7
+
 determined by TD-DFT methods. 

Rotamer 
λ/nm 

[cm-1] 

Oscillator 

strength (ƒ) 
Major contributions Assignment 

trans-7
+ 

1419 

[7047] 
1.1214 

β-HOSO→β-LUSO 

(98%) 

π-π*(diethynyl 

trithienoacene) 

ML(bridge)CT 

568 

[17605] 
0.8393 

α-HOSO→α-LUSO 

(76%) 

π-π*(diethynyl 

trithienoacene) 

ML(bridge)CT 

481 

[20790] 
0.1787 

β-HOSO-6→β-LUSO 

(88%) 
L(Cp*, dppe)MCT 

cis-7
+
 

1413 

[7077] 
1.1727 

β-HOSO→β-LUSO 

(98%) 

π-π*(diethynyl 

trithienoacene) 

ML(bridge)CT 

575 

[17391] 
0.8892 

α-HOSO→α-LUSO 

(83%) 

π-π*(diethynyl 

trithienoacene) 

ML(bridge)CT 
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480 

[20833] 
0.1975 

β-HOSO-6→β-LUSO 

(92%) 
L(Cp*, dppe)MCT 

 

 

EPR studies 

The contribution of the terminal metal centers and bridging ligands to the 

one-electron anodic processes was further explored by the EPR spectroscopy for 

monocations 1
+, 4

+, 7
+ and 8

+
 in CH2Cl2 at 298 and 150 K. The EPR signals were 

recorded after having added 1 equiv. of the ferrocenium hexafluorophosphate oxidant 

(see Figures S16-S19 in Supporting Information). Detailed data are summarized in 

Table S18. The solutions of the monocations exhibit at 298 K isotropic singlets with 

no apparent hyperfine coupling to 31P nuclei of the ancillary dppe ligands. All 

determined giso-values in Table S18 are close to 2.04. This value is close to the 

g-values for radical cations of free oligothienoacenes[33b,c] and free electron (ge = 

2.0023); the cationic complexes therefore exhibit certain organic radical characters.[39] 

Importantly, at 150 K, the EPR spectra of the cations displayed broad signals showing 

only small g-tensor anisotropy. The EPR spectra are close to those reported for 

cationic oligothiophene complexes 1
+
-3

+.[11a]
 The total g-tensor anisotropy (∆g) 

values for complexes 1+, 4+, 7+ and 8+ are 0.042, 0.040, 0.030 and 0.033, respectively, 

falling apparently out of the range of ∆g values for paramagnetic organometallic 

complexes with ruthenium(III) centers (0.3~0.6)[40-43]. The small giso and ∆g values in 

this series of complexes therefore comply with the dominant participation of the 

diethynyl oligothienoacene bridge in the one-electron oxidation, which is fully 

consistent with the results of the DFT calculations (vide supra). 

 

Conclusions 

In this work, we describe successful syntheses and full characterization of five 

redox-responsive diruthenium complexes, 4-8, having thieno[3,2-b]thiophene (4), 

thieno[2,3-b]thiophene (5), 3,4-dimethylthieno[2,3-b]thiophene (6) 

dithieno[3,2-b:2′,3′-d]thiophene (7) and 
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thieno[3,2-b]thieno[2′,3′:4,5]thieno[2,3-d]thiophene (8) in the core of the diethynyl 

oligothienoacene bridge. Differently from free oligothienoacenes, the elongation of 

the bridge core leads to positive potential shifts a reduced potential difference, ∆E1/2, 

between the two anodic steps. This behavior reflects the involvement of ethynyl 

linkers, and to a small extent even the ruthenium centers, in line with the presented 

DFT calculations and EPR spectra. In the monocationic series, the spin density is 

localized symmetrically on the bridge, with an increasing contribution of the 

elongated oligothienoacene core. This trend for 4
+, 7

+ and 8
+ cannot explain the 

appearance of two IR ν(C≡C) absorption bands with increasing wavenumber 

difference along this series and varied intensity ratio. According to the frequency DFT 

calculations, the IR spectrum of non-truncated model trans-7+, electronically very 

close to the cis-isomer but showing small asymmetry, exhibits one intense νas(C≡C) 

band while the νs(C≡C) absorption is vanishingly low. Other theoretical rotamers on 

the potential energy landscape with asymmetric localization of the spin density along 

the molecular backbone have not been obtained. This behavior can be explained by 

considering a strong vibronic coupling of the νs(C≡C) mode of the oxidized 

–[C≡C–core–C≡C]+– bridge to a low-lying π-π*(intra-bridge) / MLCT electronic 

transition observed in the NIR-IR spectral region. Indeed, the significant red shift of 

the NIR-IR absorption maxima is accompanied by the conspicuous appearance of the 

dual ν(C≡C) absorption. A strong support for this plausible explanation comes from 

the diethynyl dithienoacene series 4
+-6+

 showing otherwise very similar redox 

properties. The likely general nature of this phenomenon is proposed, based on the 

literature data for other dinuclear diethynyl complexes with a readily oxidized 

conjugated bridge core. Our study provides further helpful information for potential 

applications of redox-responsive conjugated oligothienoacene systems as components 

of molecular electronic devices. 
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Experimental section 

General Materials. All manipulations were carried out at room temperature under a 

dry nitrogen atmosphere using standard Schlenk techniques, unless otherwise stated. 

Solvents were pre-dried, distilled, and degassed prior to the use. The main reagents 

3-bromothiophene, thieno[2,3-b]thiophene, acetylacetone, [Pd(PPh3)4] and TMSA 

were commercially available. The starting materials [RuCl(dppe)Cp*][44], 

2,5-dibromothieno[3,2-b]thiophene (4a)[23],  2,5-dibromothieno[2,3-b]thiophene 

(5a)[23], 2,5-dibromo-3,4-dimethylthieno[2,3-b]thiophene (6a)[24], 

5,5'-dibromodithieno[3,2-b:2',3'-d]thiophene (7a)[17,23b] and 

2,6-dibromo-thieno[3,2-b]thieno[2′,3′:4,5]thieno[2,3-d]thiophene (8a)[25] were 

prepared by the literature methods. 

 

Syntheses of bis((trimethylsilyl)ethynyl)thienoacenes
[26] 

2,5-Bis(trimethylsilylethynyl)thieno[3,2-b]thiophene (4b). 

Trimethylsilylacetylene (392 mg, 4.00 mmol) was added to a stirred solution of 

2,5-dibromothieno[3,2-b]thiophene 4a (300 mg, 1.0 mmol), CuI (19 mg, 0.10 mmol), 

and [Pd(PPh3)4] (116 mg, 0.10 mmol) in (i-Pr)2NH (10 mL) and THF (10 mL) under 

an argon atmosphere; the mixture was heated at 60 °C for 24 h. The solution was then 

cooled down and filtered through a bed of Celite. The filtrate was evaporated under 

reduced pressure and purified by silica gel column chromatography (petroleum ether) 

to give of a light-yellow powder. Yield: 251 mg, 75%. 1H NMR (400 MHz, CDCl3): δ 

0.26 (s, 18H, SiCH3), 7.29 (s, 2H, thiophene-H), as reported in ref.[45].  

2,5-Bis(trimethylsilylethynyl)thieno[2,3-b]thiophene (5b). This compound was 

synthesized by the same method as 4b, having used 

2,5-dibromothieno[2,3-b]thiophene (5a) (600 mg, 2.00 mmol), CuI (38 mg, 0.20 

mmol), and [Pd(PPh3)4] (524 mg, 0.46 mmol), (i-Pr)2NH (30 mL), THF (30 mL), 

trimethylsilylacetylene (1772 mg, 18.08 mmol). Yield: 535 mg (80%) of a 

light-yellow powder. 1H NMR (400 MHz, CDCl3): δ 0.27 (s, 18H, SiCH3), 7.16 (s, 

2H, thiophene-H). EI-MS: m/z = 332.11 [M]+. Note: the compound was thermally 

unstable and hence used directly in the next reaction step after the characterization 
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and purity check with NMR and MS. 

2,5-Bis(trimethylsilylethynyl)-3,4-dimethylthieno[2,3-b]thiophene (6b). This 

compound was synthesized by the same method as 4b, having used 

2,5-dibromo-3,4-dimethylthieno[2,3-b]thiophene (6a) (100 mg, 0.31 mmol), CuI 

(5.85 mg, 0.20 mmol), [Pd(PPh3)4] (35.5 mg, 0.41 mmol), triethylamine (NEt3) (5 

mL), THF (15 mL), trimethylsilylacetylene (196 mg, 2.00 mmol). Yield: 95 mg (86%) 

of a light-yellow powder. 1H NMR (400 MHz, CDCl3): δ 0.26 (s, 18H, SiCH3), 2.51 

(s, 6H, CH3). 
13C NMR (100 MHz, CDCl3): δ 0.0 (SiMe3), 14.3 (CH3), 97.4, 102.2, 

121.2, 136.5, 137.2, 144.0. Anal. Calcd for C18H24S2Si2: C, 59.94; H, 6.71. Found: C, 

59.78; H, 6.65. 

5,5'-Bis(trimethylsilylethynyl)dithieno[3,2-b:2',3'-d]thiophene (7b). This 

compound was synthesized by the same method as 4b, having used 

5,5'-dibromodithieno[3,2-b:2',3'-d]thiophene (7a) (800 mg, 2.26 mmol), CuI (43 mg, 

0.23 mmol), [Pd(PPh3)4] (262 mg, 0.23 mmol), (i-Pr)2NH (30 mL), THF (30 mL), 

trimethylsilylacetylene (886 mg, 9.04 mmol). Yield: 562 mg (64%) of a light-yellow 

powder. 1H NMR (400 MHz, CDCl3): δ 0.28 (s, 18H, SiCH3), 7.40 (s, 2H, 

thiophene-H), as reported in ref.[46]. 

2,6-Bis(trimethylsilylethynyl)thieno[3,2-b]thieno[2′,3′:4,5]thieno[2,3-d]thiophene 

(8b). This compound was synthesized by the same method as 4b. 

2,6-dibromo-thieno[3,2-b]thieno[2′,3′:4,5]thieno[2,3-d]thiophene (8a) (300 mg, 0.73 

mmol), CuI (14 mg, 0.073 mmol), and [Pd(PPh3)4] (85 mg, 0.073 mmol), (i-Pr)2NH 

(30 mL), THF (30 mL), trimethylsilylacetylene (358 mg, 3.66 mmol). Yield: 100 mg 

(31%) of a yellow powder. 1H NMR (400 MHz, CDCl3): δ 0.28 (s, 18H, SiCH3), 7.42 

(s, 2H, thiophene-H). Anal. Calcd for: C20H20S4Si2: C, 54.01; H, 4.53. Found: C, 

53.87; H, 4.61. Note: the compound has poor solubility in many deuterated solvents 

including CDCl3, and the 13C NMR spectrum could not be collected.  

 

General Syntheses of Diruthenium Complexes
[11]

 

Preparation of 4. A solution of [RuCl(dppe)Cp*] (381 mg, 0.57 mmol), 

2,5-bis(trimethylsilylethynyl)thieno[3,2-b]thiophene (4b) (90 mg, 0.27 mmol), and 
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KF (188 mg, 3.24 mmol) in 20 mL CH3OH and 5 mL THF was heated to reflux under 

nitrogen atmosphere for 24 h. The crude product was collected by filtration, washed 

with methanol and hexane. The solid was dissolved in dichloromethane, precipitated 

by slow diffusion of hexane, then filtered and dried to give 4 as a yellow powder. 

Yield: 250 mg, 60%. Note: the compound is poorly soluble in many deuterated 

solvents including CDCl3, and its 13C NMR spectrum could not be collected. 1H NMR 

(400 MHz, CDCl3): δ 1.57 (s, 30H, 2C5(CH3)5), 2.04 (br, 4H, CH2/dppe), 2.66 (br, 4H, 

CH2/dppe), 7.21-7.37 (m, 32H+2H, HAr/dppe+Hthiophene), 7.74 (br, 8H, HAr/dppe). 
31P NMR 

(160 MHz, CDCl3): δ 79.9 (s, dppe). IR (Nujol/cm−1): ν(C≡C) 2052 (s). Anal. Calcd 

for C82H80P4Ru2S2: C, 67.66; H, 5.54. Found: C, 67.71; H, 5.49. 

Preparation of 5. The synthetic procedure applied to 5 mirrored that for 4, having 

used [RuCl(dppe)Cp*] (381 mg, 0.57 mmol), 

2,5-bis(trimethylsilylethynyl)thieno[2,3-b]thiophene (5b) (90 mg, 0.27 mmol), KF 

(188 mg, 3.24 mmol), CH3OH (20 mL), THF (5 mL). Yield: 221 mg (55%) of a 

yellow solid. Note: the compound is poorly soluble in many deuterated solvents 

including CDCl3, and its 13C NMR spectrum could not be collected. 1H NMR (400 

MHz, CDCl3): δ 1.54 (s, 30H, 2C5 (CH3)5), 2.05 (br s, 4H, CH2/dppe), 2.67 (br s, 4H, 

CH2/dppe), 6.27 (s, 2H, Hthiophene), 7.21–7.37 (m, 43H, HAr/dppe), 7.74 (br s, 8H, HAr/dppe). 

31P NMR (160 MHz, CDCl3): δ 79.1 (s, dppe). IR (Nujol/cm−1): ν(C≡C) 2050 (s). 

Anal. Calcd for C82H80P4Ru2S2: C, 67.66; H, 5.54. Found: C, 67.59; H, 5.56. 

Preparation of 6. The synthetic procedure applied to 6 mirrored that for 4, having 

used [RuCl(dppe)Cp*] (195 mg, 0.29 mmol), 2,5-bis(trimethylsilylethynyl)-3,4- 

dimethylthieno[2,3-b]thiophene (6b) (50 mg, 0.14 mmol), KF (97 mg, 1.67 mmol), 

CH3OH (20 mL), THF (5 mL). Yield: 97 mg (44%) of a yellow solid. 1H NMR (400 

MHz, CDCl3): δ 1.55(s, 30H, 2C5(CH3)5), 2.01(s, 6H, CH3), 2.11 (br, 4H, CH2/dppe), 

2.73(br, 4H, CH2/dppe), 7.17-7.33 (m, 32H, HAr/dppe), 7.74 (br, 8H, HAr/dppe). 
13C NMR 

(100 MHz, CDCl3): δ 10.1 (CH3), 13.6 (thiophene-CH3), 29.4 (t, J = 23.00 Hz, 

CH2/dppe), 92.8 (CH/C5Me5), 102.3 (thiophene-C≡CH), 117.2 (Ru-C≡CH), 126.5, 

127.4, 128.8, 128.8, 133.2, 133.7, 136.7, 137.2, 138.7, 139.1. 31P NMR (160 MHz, 

CDCl3): δ (ppm) 79.9 (s, dppe). IR (Nujol/cm-1): ν(C≡C) 2049 (s). Anal. Calcd for 
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C84H86P4Ru2S2: C, 67.91; H, 5.83. Found: C, 67.87; H, 5.88. 

Preparation of 7. The synthetic procedure applied to 7 mirrored that for 4, having 

used [RuCl(dppe)Cp*] (289 mg, 0.43 mmol), 

5,5'-bis(trimethylsilylethynyl)dithieno[3,2-b:2',3'-d]thiophene (7b) (80 mg, 0.21 

mmol), KF (143 mg, 2.47 mmol), CH3OH (20 mL), THF (5 mL). Yield: 155 mg (47%) 

of a brown solid. 1H NMR (400 MHz, CDCl3): δ 1.55 (s, 30H, 2C5(CH3)5), 2.06 (br, 

4H, CH2/dppe), 2.68 (br, 4H, CH2/dppe), 6.42 (s, 2H, thiophene), 7.22-7.40 (m, 32H, 

HAr/dppe), 7.75 (br, 8H, HAr/dppe). 
13C NMR (100 MHz, CDCl3): δ 10.0 (CH3), 29.4 (t, J 

= 22.80 Hz, CH2/dppe), 92.8 (CH/C5Me5), 102.9 (thiophene-C≡CH), 117.1 (Ru-C≡CH), 

126.5, 127.4, 129.0, 133.2, 133.5, 136.3, 136.8, 138.3, 138.6, 140.2. 31P NMR (160 

MHz, CDCl3): δ 79.9 (s, dppe). IR (Nujol/cm-1): ν(C≡C) 2044 (w). Anal. Calcd for 

C84H80P4Ru2S3: C, 66.74; H, 5.33. Found: C, 66.69; H, 5.41. 

Preparation of 8. The synthetic procedure applied to 8 mirrored that for 4, having 

used [RuCl(dppe)Cp*] (158 mg, 0.24 mmol), 

2,6-bis(trimethylsilylethynyl)thieno[3,2-b]thieno[2′,3′:4,5]thieno[2,3-d]thiophene (8b) 

(50 mg, 0.11 mmol), KF (78 mg, 1.35 mmol), CH3OH (20 mL), THF (5 mL). Yield: 

80 mg (43%) of a dark brown solid. 1H NMR (400 MHz, CDCl3): δ 1.55 (s, 30H, 

2C5(CH3)5), 2.08 (br, 4H, CH2/dppe), 2.67 (br, 4H, CH2/dppe), 6.43 (s, 2H, thiophene), 

7.31-7.39 (m, 32H, HAr/dppe), 7.75 (br, 8H, HAr/dppe). 
13C NMR (100 MHz, CDCl3): δ 

10.0 (CH3), 29.6 (t, J = 22.80 Hz, CH2/dppe), 93.0 (CH/C5Me5), 103.0 

(thiophene-C≡CH), 117.1 (Ru-C≡CH), 126.7, 127.4, 129.0, 131.5, 132.3, 133.2, 133.5, 

136.3, 136.8, 137.7, 138.6, 142.0. 31P NMR (160 MHz, CDCl3): δ 79.9 (s, dppe). IR 

(Nujol/cm−1): ν(C≡C) 2041 (w). Anal. Calcd for C86H80P4Ru2S4: C, 65.88; H, 5.14. 

Found: C, 65.95; H, 5.01. 

 

Crystallographic Details. Single crystals of complexes 7 and 8 suitable for X-ray 

analysis, were grown by slow diffusion of hexane into a solution of dichloromethane. 

Crystals with approximate dimensions of 0.16 × 0.12 × 0.10 mm3 for 7 and 0.12 × 

0.10 × 0.10 mm3 for 8 were mounted on a glass fibre for diffraction experiments. 

Intensity data were collected on a Nonius Kappa CCD diffractometer with Mo Kα 
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radiation (0.71073 Å) at low temperature (100 K) for 7 and room temperature (296 K) 

for 8. The structures were solved by a combination of direct methods (SHELXS-97)[47] 

and Fourier difference techniques and refined by full-matrix least squares 

(SHELXL-97)[48]. All non-H atoms were refined anisotropically. The hydrogen atoms 

were placed in ideal positions and refined as riding atoms. The partial solvent 

molecules have been omitted. Further crystal data and details of the data collection are 

summarized in Table S1. Selected bond distances and angles are given in Tables 1 and 

S2 (Supporting Information), respectively. CCDC number 1504782 & 1504783 for 7 

and 8. 

Physical Measurements. 
1H, 13C, and 31P NMR spectra were collected on a Varian 

Mercury Plus 400 spectrometer (400 MHz). 1H and 13C NMR chemical shifts are 

given relative to TMS, and 31P NMR chemical shifts to 85% H3PO4. Elemental 

analyses (C, H, N) were performed with a Vario ElIII Chnso instrument. UV-vis-NIR 

spectra were recorded using a Shimadzu UV-3600 spectrophotometer and 

liquid-sample cells of the 0.2-mm optical path. IR spectra of solid samples dispersed 

in Nujol between KBr discs, and solutions in 0.2-mm optical cells were obtained with 

a Nicolet Avatar spectrometer. Electrochemical measurements were conducted with a 

CHI 660C potentiostat. A single-compartment electrochemical cell contained a 

pre-polished platinum disk working electrode (d = 0.5 mm), a platinum wire counter 

electrode, and a silver wire pseudo-reference electrode. Dry CH2Cl2, deaerated by 

bubbling with argon for 10 min, was used to prepare solutions of 10-3 M complexes 

and 10-1 M n-Bu4NPF6 (dry, recrystallized) added as the supporting electrolyte. 

Ferrocene served as an internal reference for E1/2 values and rapid electron transfer at 

the anode reflected in identical ∆Ep values for each reversible redox couple. Chemical 

oxidation of parent complexes to corresponding mono- and dications was carried out 

by adding equivalent amounts of ferrocenium hexafluorophosphate.[11a] EPR spectra 

was recorded on a Bruker BioSpin spectrometer, using a microwave frequency of 

about 9.84 GHz, 100 kHz modulation frequency, 1 G modulation amplitude, and ca 

20 mW power of the microwave. 
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Computational Details. Density functional theory (DFT) calculations were 

performed using the Gaussian 09 software[49] at the B3LYP/6-31G* (Lanl2dz for the 

Ru atom) and BLYP35[38]/6-31G* (Lanl2dz for the Ru atom) levels of theory. 

Geometry optimizations and full geometry optimizations were performed without any 

symmetry constraints, and frequency calculations on the resulting optimized 

geometries showed no imaginary frequencies. Electronic transitions were calculated 

by the time-dependent DFT (TD-DFT) method. The MO contributions were generated 

using GaussView 5.0. The solvation effects in dichloromethane were included for a 

part of the calculations with the conductor-like polarizable continuum model 

(CPCM)[50]. Calculated harmonic vibrational frequencies were scaled by an empirical 

factor of 0.95 (BLYP35) and 0.9614 (B3LYP).[51,52] 
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The localization of the HOMO of the parent diruthenium complexes on the 

redox non-innocent oligothienoacene bridge core with strong participation of 

the ethynyl linkers and a limited contribution from the metallic termini 

makes the initial one-electron oxidation symmetrical. The remarkable 

appearance of a dual IR ν(C≡C) absorption in the cationic complexes is 

ascribed to a vibronic coupling of the IR-forbidden νs(C≡C) mode of the 

oxidized –[C≡C–core–C≡C]+– bridge to the low-lying π-π*(intra-bridge) / 

MLCT electronic transition in the NIR-mid-IR spectral region. 
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