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1 Introduction

We consider a quantum field theory in a d-dimensional Minkowski spacetime when at t = 0

the system gets separated in two parts, A and its complement B, by a (d− 2)-dimensional

hypersurface Σ. A legitimate question to ask is how much the degrees of freedom in the two

sub-systems A and B are correlated. Entanglement entropy (EE) and the Rényi entropy

(RE) are important measures of this quantum correlation. In particular EE across the

entangling surface Σ is given by

S(ρA) = −tr (ρA ln ρA) , (1.1)

where ρA is the reduced density matrix of the sub-system A, i.e. the density matrix obtained

after integrating out the degrees of freedom in B [1–4]. The n-th RE, with n ≥ 0, associated

with a quantum system described above is defined as

Sn =
1

1− n
ln tr (ρnA) . (1.2)

The whole set of eigenvalues of the reduced density matrix ρA can be reconstructed by

knowing the RE for all the indices n. For CFT’s in flat space, RE exhibits a universal

relation to the central charges of the theory, in particular the derivative of RE with respect

to n evaluated at n = 1 is proportional to the coefficient of the stress tensor two-point

function [5, 6]. Moreover, in the limit where n→ 1 RE reduces to EE.

In general, RE and EE are rather difficult to compute and measure, although remark-

able progress in this direction has been made recently [7–9]. In quantum field theory RE is

mainly computed by means of the so-called replica method [1, 10–12]. Here, one replaces

the computation of the n-th power of the density matrix (and thus the corresponding par-

tition function) with that of the density matrix of a theory which consists of n copies of the

original quantum field theory. This amounts to computing the Euclidean partition function
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on a geometry with conical singularity. Although a direct “holographic translation” of the

replica approach might involve conically singular geometries, which are generally difficult to

deal with and may not lead to the correct results [13, 14], RE can be studied holographically.

In holographic theories EE can be computed by the Ryu-Takayanagi (RT) formula1

involving minimal surfaces which extend into the bulk and end on the boundary entangling

surface [18–20]. A somewhat similar prescription for RE has been provided only recently

in [21]: RE can be determined by computing the area of cosmic branes which back-react

with the bulk geometry. Despite its beauty and geometric foundation, the prescription

in [21] can be arduous to handle in general cases.

Another remarkable approach to compute holographic EE for spherical entangling sur-

faces is the one proposed by Casini, Huerta, and Myers (CHM) [22], extended to the holo-

graphic RE in [23]. It consists of a conformal mapping on the CFT which takes us from

an Euclidean conically singular geometry to an Euclidean smooth thermal hyperboloid.

The gravity dual of such a thermal CFT (if it exists) is a black hole with hyperbolic event

horizon in asymptotically AdS (AAdS) spacetimes. Hence, the CHM map relates the RE of

the original CFT to the free energy of AAdS hyperbolic black holes. The index of the RE

is translated into the inverse of the black hole temperature (compared to some reference

temperature). Therefore, the knowledge of RE at any n (quantum entanglement spectrum)

requires the knowledge of free energy (and thus thermal entropy) of a hyperbolic black hole

in AdS at any temperature. We will review the crucial steps of the CHM map in section 2.

The advantages of CHM approach are twofold. First of all, it avoids conical singu-

larities and related problems [13, 24], by working on a thermal ensemble which makes the

boundary geometry perfectly smooth and straightforwardly treatable via standard holo-

graphic techniques. Second, it applies to any gravity theory (assuming they have a CFT

dual) and in particular to higher derivative gravities [23, 25–28], unlike the RT formula

which needs to be corrected [29–35].

In this manuscript we apply the CHM approach to study RE of holographic CFT,

dual to higher derivative gravity theories, in particular the so-called third order Lovelock

gravity [36, 37], in an asymptotically AdS spacetime. Lovelock gravities are interesting

generalizations of Einstein gravity, which are ghost-free and living in dimensions (strictly)

greater than four with small coupling constants, i.e. small corrections to general relativity.

In third order Lovelock gravity the Einstein-Hilbert action is corrected with terms propor-

tional to R2 (with R the curvature scalar), also known as Gauss-Bonnet gravity,2 and R3

with dimensionless coupling constants λ and µ, respectively. We will review basic aspects

of Lovelock gravity in section 3.1. These theories have proven useful in exploring various

properties of holographic theories, as for example the viscosity bounds [40–42], although at

intermediate energy scales they might become problematic [43].3 However, in this work we

always assume that Lovelock couplings are small positive numbers, satisfying constraints

1The formula has recently been proved in [15, 16], a first attempt to prove it was presented in [13],

cf. [17] for a recent review on holographic EE.
2For the relation between Gauss-Bonnet gravity and string theory see for example [38, 39].
3“Intermediate energy scales” is referred to energy scales where higher derivative corrections are impor-

tant but the theory is still weakly coupled [43].
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coming from boundary causality [44], as will be reviewed in section 3.2. We work in a

classical regime, therefore, the necessary additional degrees of freedom mentioned in [43]

to cure causality are not relevant to our discussions.

As we will see in section 3.3 third order Lovelock theories reveal interesting and unusual

features, not present in Einstein gravity and not even in Gauss-Bonnet gravity. Our study

unveils first order phase transitions between coexisting hyperbolic black holes in third

order Lovelock gravity. Such phase transitions were originally observed in a study by one

of the authors in [45], however, only for the special case where µ = λ2/3. In the present

work, by exploring the complete Lovelock parameter space spanned by {λ, µ}, we find that

in any given dimension, there are regions where the hyperbolic black holes with smaller

mass are favoured at low temperature. Some of these phase transitions are in the range

of parameter space which is excluded by boundary causality, including the specific case

µ = λ2/3. Nevertheless we can still observe plenty of phase transitions in the causal

regions. Figure 3 shows an example of regions where causality and bulk phase transitions

overlap in 7, 8 and 9-dimensions. For instance, in seven dimensions (d = 6) we observe

phase transitions in the causal range for 0.25 ≤ λ ≤ 0.387 and 0.024 ≤ µ ≤ 0.105, or in

terms of actual Lovelock couplings, for 0.021 ≤ α2
L2 ≤ 0.032 and 0.001 ≤ α3

L4 ≤ 0.004. Note

that, in the causal range where phase transitions happen the Lovelock couplings in (3.1) are

still small enough that L2 and L3 can be considered as perturbations to the Einstein term.

Furthermore, the first order nature of the phase transitions indicates a discontinuity in

the black hole thermal entropy. As mentioned earlier in CHM holographic approach, the

RE of a boundary CFT is related to the free energy, and thus to the thermal entropy of

black holes. It is then interesting to investigate the effects of these bulk phase transitions

on the boundary field theory RE.

This is the main focus of this work and the results are discussed in section 4. The

holographic RE for third order Lovelock gravity was already computed in [23, 25]. The

novelty here is to take into account that such black holes undergo phase transitions, to

systematically span the causal parameter space, and analyse the consequences for the dual

RE. Connections between RE and bulk phase transitions have been previously studied

in [46, 47]. However, there are two main differences here. First of all, our system is purely

gravitational, dual to a CFT in its vacuum state with the only corrections coming from

the corrections of the coupling constants. In [46] the authors holographically computed

RE by considering Einstein gravity with the addition of a scalar field (similarly in [47] for

the case of a charged system), and the instability of hyperbolic black holes is due to the

development of hair. Second, our phase transition is first order, while in [46, 47] it is second

order. This has a crucial effect on the RE: our results show that for strongly coupled dual

CFT’s the RE displays a kink at a critical index n which results in the non-analyticity of

RE with respect to n nearby the kink.

While our findings are particularly interesting for d = 6 where we have known examples

of AdS/CFT dualities, they are valid as well for d-dimensional field theories with d > 6.

In fact, from the bulk point of view the number of dimensions D = d + 1 is a mere

parameter, and it is interesting to explore its effect on the system. Our analysis shows that

D = 7 is not special: in any dimension D = d + 1 ≥ 7 it is possible to find regions of the
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parameter space where black holes are unstable and where the would-be boundary field

theory is causal (even though these regions shrink as we increase the number of spacetime

dimensions). Existence of higher (d > 6) dimensional CFT’s is still an open question,

e.g. [48]. However, assuming that a dual CFT exists, here third order Lovelock theories

can serve as a toy-model: they allow us to straightforwardly carry on computations, and

thus, to explore the role of higher derivative gravity in this context. This kind of approach

has turned out to be helpful in the past, e.g. cf. [40–42] on the discussion of the viscosity

bound or [31, 32] for the discovery of the F-theorem. For this reason, we hope that the

holographic system studied in this work might be instructive to predict novel features for

strongly coupled higher dimensional conformal field theories.

2 Holographic Rényi entropy

We will be interested in thermal states, so it is useful to understand the role of Rényi

entropies in this case. A description of the quantum Rényi entropy for a thermal state in

terms of the free energy has been discussed in [49]. Suppose we have a physical system

which is in thermal equilibrium at temperature T0. When the system is “quenched” and

the temperature is lowered by a factor n, the Rényi entropy is a measure of the maximum

amount of work (divided by the difference of temperature) the system can do in reaching

the new equilibrium state and is given by

Sn(T0) = −F (T )− F (T0)

T − T0
, (2.1)

where

n =
T0

T
. (2.2)

In the limit n → 1 the right hand side of expression (2.1) gives the usual relation for

thermal entropy, i.e.

Sthermal(T0) = −dF
dT
|T=T0 , (2.3)

which can be then used to rewrite the Rényi entropy in (2.1) as

Sn(T0) =
n

n− 1

1

T0

∫ T0

T0/n
Sthermal(T

′)dT ′ . (2.4)

We now review the main steps of the CHM approach to compute holographic Rényi

entropy [22, 23]. Let us start with a CFT in R1,d−1 in the vacuum state. The system is

at zero temperature, and we introduce a (d − 2)-dimensional spherical entangling surface

Σ. The conformal transformations found in [22] map the reduced density matrix of a

CFT in flat spacetime to a thermal density matrix of a CFT on a hyperbolic geometry

H ≡ R × Hd−1, where Hd−1 is a hyperbolic (d − 1)-dimensional space. The radius of the

curvature of the hyperbolic plane matches the radius R of the entangling surface Σ, and
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in particular the temperature is given by the inverse of R.4 The mapping among density

matrices extends to the entropy. Hence, the entanglement entropy of a spherical entangling

(d − 2)-dimensional surface of radius R in a CFT in flat spacetime is equivalent to the

thermal entropy of a CFT at temperature T0 = 1/2πR in a hyperbolic geometry R×Hd−1.

According to the AdS/CFT correspondence, a thermal state in the boundary CFT is

dual to a black hole in the bulk geometry. Since the CFT has been defined on a hyper-

bolic plane, by matching the geometry on both sides of the duality, the appropriate black

hole to consider in the bulk is the so-called topological black hole, i.e. one with hyperbolic

horizon [22]. The Hawking temperature of the black hole is then related to the temper-

ature of the dual field theory according to the usual AdS/CFT dictionary. Therefore, in

this framework, the entanglement entropy across Σ is given by the horizon entropy of a

hyperbolic AdS black hole [22].

The procedure described above can be extended in a straightforward manner to the

holographic calculation of Rényi entropies for a spherical entangling surface [23, 25]. We

have seen above that the computation of Rényi entropies requires the knowledge of the

system at a temperature T given by T0/n, see for example (2.1). Holographically, this

means that we need to extend the AdS hyperbolic black hole solution to any T = T0/n.

3 Thermodynamics of Lovelock black holes

In section 3.1 we recall some basic features of third order Lovelock gravity with a negative

cosmological constant and the corresponding hyperbolic black hole solutions. In section 3.2

we review the constraints on the Lovelock coupling constants {λ, µ} imposed by requiring

that the boundary CFT is causal. In section 3.3 we study the thermodynamics properties

of these black holes as a function of the couplings in arbitrary dimensions.

3.1 Topological Lovelock black holes

In a spacetime with dimensions higher than four, Einstein gravity is not the most general

gravitational theory sharing the basic properties of standard general relativity, that is

field equations are generally covariant and contain at most second order derivatives of the

metric. Based on these assumptions, the action for the most general gravity theory in

(d+ 1)-dimensions is written as Lovelock gravity with the Lagrangian in the form [36, 37]

L =

[d/2]∑
p=1

αp Lp ,

where L1 is the Einstein-Hilbert term, L2 is the Gauss-Bonnet term, L3 is a third order

Lovelock term, and so on. Here, we consider up to third order Lovelock gravity with a

4The conformal transformations found in [22] map the causal development of the region inside Σ to a

Rindler wedge, which is in turn mapped to a hyperbolic plane H ≡ R × Hd−1. The crucial point is that

the vacuum state of the original CFT is mapped to a state in H which looks thermal with respect to the

Hamiltonian generating the time evolution in H (we refer the reader to the original reference [22] for more

details), hence the relation among the density matrices.
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negative cosmological constant, therefore we restrict ourselves to the following action

I =
1

2`d−1
p

∫
dd+1x

√
−g
(
d(d− 1)

L2
+R+ α2L2 + α3L3

)
, (3.1)

where R is the curvature scalar in the bulk, and

L2 = RijklRijkl − 4RijRij +R2, (3.2)

L3 = 2RijklRklmnRmnij + 8RijkmR
kl
jnRmnil + 24RijklRkljmRmi

+ 3RRijklRklij + 24RikjlRjiRlk + 16Rij RjkRki − 12RRij Rji +R3 . (3.3)

L is the scale of the cosmological constant described by the first term in (3.1), `p is the Plank

length, α2 and α3 are the second and third order Lovelock couplings with dimensions of a

(length)2 and (length)4, respectively.5 L2 and L3 are not zero only for dimensions strictly

higher than four and six, respectively. They are simply proportional to the corresponding

Euler density in four and six dimensions. For convenience, the Lovelock coefficients are

written in terms of dimensionless parameters as follows

α2 =
L2λ

(d− 2)(d− 3)
, α3 =

L4µ

(d− 2)(d− 3)(d− 4)(d− 5)
. (3.4)

Here λ and µ are chosen to be positive.

By varying the action (3.1), one obtains the equations of motion up to third order in

Lovelock coefficients as follows

Gij −
d(d− 1)

2L2
gij +

L2λ

(d− 2)(d− 3)
G

(2)
ij +

L4µ

(d− 2)(d− 3)(d− 4)(d− 5)
G

(3)
ij = 0 , (3.5)

where Gij = Rij − 1
2gijR is the Einstein tensor and

G
(2)
ij = 2

(
RiklmR klm

j − 2RikR k
j − 2RikjlRkl +RRij

)
− 1

2
gijL2 , (3.6)

G(3)
µν = 3

(
RijR2 − 4RijRklRkl +RijRklmnRklmn − 4RikjlRklR

+ 8RikjlRkmlnRmn + 8RikjlRkmR l
m − 4RikjlRkmnpRlmnp − 4RikRkjR

+ 8RiklmRljRkm + 4RiklmRlmknRnj + 2RiklmR klm
j R− 4RiklmRlmjnRkn

+ 4RjklmRlmknRin + 2RiklmRknpj R
lm

np + 8RikRjlRkl − 8RiklmR kl
j nRmn

+ 8RjklmRliRkm − 8RiklmRlnjpRmpkn
)
− 1

2
gijL3 . (3.7)

We will consider spherically symmetric hyperbolic black holes, thus we can employ the

following metric ansatz

ds2 = −
(
−1 + h(ρ)ρ2

)
N2dt2 + L2

(
dρ2

(−1 + h(ρ)ρ2)
+ ρ2dΣ2

−1,d−1

)
, (3.8)

where dΣ−1,d−1 is the metric of a (d−1)-dimensional unit hyperboloid and N is a constant

introduced to have a convenient normalization of the time coordinate. Clearly, h(ρ) has

5We normalize the action (3.1) such that α1 = 1.
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to be a solution of the equations of motion (3.5). Plugging the ansatz (3.8) into the

equations (3.5), we obtain a simple expression for the integral of motion

ρd
(
1− h(ρ) + λh(ρ)2 − µh(ρ)3

)
= const ≡ m. (3.9)

Note that m is the dimensionless black hole conserved charge, therefore a measure of its

mass. m (3.9) can be expressed in terms of the (dimensionless) black hole horizon ρH ,

defined by gtt(ρH) = 0, that is

m = ρd−6
H

(
ρ6
H − ρ4

H + λρ2
H − µ

)
. (3.10)

Similarly, the integral of motion (3.9) evaluated at the boundary ρ → ∞ defines the

asymptotic value of h(ρ), i.e. h∞, as

1− h∞ + λh2
∞ − µh3

∞ = 0 . (3.11)

A convenient choice for the normalization constant N is [23]

N2 =
L2

h∞R2
, (3.12)

in this way the curvature scale of the hyperbolic spatial slices is R in the boundary CFT

on R×Hd−1.

The metric (3.8) asymptotically represents a pure AdS spacetime with radius L̃ where

L̃2 =
L2

h∞
, (3.13)

or in other words, the effective cosmological constant is, in fact,

Λeff =
1

L̃2
=
h∞
L2

. (3.14)

In principle, equation (3.11) could have three real distinct solutions provided the discrim-

inant is positive. Therefore there exist three different effective cosmological constants.

However, if the discriminant of (3.11) vanishes, all three solutions coincide. This happens

at λ = 1/3 and µ = 1/27, thus the theory has maximum degeneracy and the full symmetry

of AdS is recovered for this particular choice of Lovelock parameters.

By examining the equations of motion (3.9), it is straightforward to find that there

is always a unique solution for h(ρ) which is real everywhere provided that, in any given

dimension, the Lovelock coefficients satisfy the following condition

µ ≥ λ2

3
. (3.15)

From this point forward parameters are chosen such that the condition (3.15) holds. Also

the discriminant of (3.11) is strictly negative when the inequality in (3.15) is fulfilled and

therefore a fixed {λ, µ} results in only one effective cosmological constant, i.e. a unique

AdS at the boundary.

The metric solution for generic λ and µ is easily obtained from equation (3.9) as6

h(ρ) =
λ

3µ

[
1 +

(√
Γ + J(ρ)2 + J(ρ)

)1/3
−
(√

Γ + J(ρ)2 − J(ρ)
)1/3

]
, (3.16)

J(ρ) ≡ 1− 9µ

2λ2
+

27µ2

2λ3
K(ρ) , K(ρ) ≡ 1− m

ρd
, Γ ≡

(
3µ

λ2
− 1

)3

.

6We partly borrow notation used in [45].
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In the following we also express other thermodynamic formulae which will be used to aid

in further calculations.7 One can assume a black hole as a thermodynamic system [50–53]

and define the Hawking temperature [54, 55] as

T =
N

4πL
|∂ρgtt(ρH)| =

dρ6
H − (d− 2)ρ4

H + (d− 4)λρ2
H − (d− 6)µ

4πR
√
h∞ ρH

(
ρ4
H − 2λρ2

H + 3µ
) . (3.17)

With our conventions, the AdS solution corresponds to a temperature given by

T0 =
1

2πR
. (3.18)

This can be seen by using the relation (3.10) with m = 0, and recalling that for an AdS

spacetime the function h(ρ) is the constant h∞, which implies ρH = 1√
h∞

.

The ADM mass can be worked out in a straightforward manner from m (3.10), and it

is given by

M = VΣ

(
L

`p

)d−1 (d− 1)ρd−6
H

(
ρ6
H − ρ4

H + λρ2
H − µ

)
2R
√
h∞

, (3.19)

where VΣ is the volume of the hyperboloid Σ−1,d−1. The horizon entropy can be computed

from the Wald entropy formula [56–58], and it results in [25]

S = 2π VΣ

(
L

`p

)d−1(
ρd−1
H + 3µ

d− 1

d− 5
ρd−5
H − 2λ

d− 1

d− 3
ρd−3
H

)
. (3.20)

VΣ is a divergent quantity, and in particular its leading behaviour is proportional to ε2−d,

where ε is a short-distance cut-off [22, 23]. Such UV-divergences are expected, and they

correspond to the (divergent) terms responsible for the so-called area law in the boundary

field theory.

In a classical regime the bulk partition function reduces to the exponential of (minus)

the regularized classical on-shell action SE,reg, thus the black hole free energy is simply

given by

F = T SE,reg . (3.21)

SE,reg can be computed by extending holographic counter-term methods to general Lovelock

theories, explicitly developed in [59, 60] and initiated in [61–63].8 The final result can be

written as

F = E0 +M − TS , (3.22)

where M , T , and S are given by (3.19), (3.17), and (3.20) respectively. E0 is a finite

constant term which arises from the counter-term methods, and accounts for the Casimir

energy. It depends upon the Lovelock couplings {λ, µ}, but not on the horizon data.9

Consequently, it leads to an overall shift in the free energy.

7We do not follow the conventions adopted in [23, 25], however our results if written in terms of the

parameter x, i.e. x = ρH
√
h∞ , agree exactly with theirs.

8For an alternative regularization approach to derive similar counter-terms, we refer an interested reader

to [64].
9In particular when λ and µ are set to zero E0 reduces to the hyperbolic AdS Casimir energy [65–68].
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Since we will be interested in comparing free energies of coexisting black hole solutions

at any given {λ, µ} and d (section 3.3), the Casimir energy E0 will not play any role, and

we can safely work with the following free energy density per unit volume

F =
F − E0

VΣ

(
L
`p

)d−1
T0

. (3.23)

Here, we introduce the thermal entropy density which will be useful later, as

S =
S

VΣ

(
L
`p

)d−1
, (3.24)

where S is the thermal entropy (3.20). Note that F and S are dimensionless.

In the rest of this section we will investigate the thermodynamics of hyperbolic black

holes in the full parameter space {λ , µ} of third order Lovelock gravity in arbitrary dimen-

sions. In particular, we find that in any given dimension for certain values of {λ , µ} there

exist multiple isothermal black holes, a fact that is a signal of a possible phase transition

in the theory. However, before moving to identify where in the parameter space the phase

transition will occur, crucial limits on {λ , µ} should be taken into account which arise from

the causality constraints of the CFT boundary theory. These constraints will be briefly

discussed in the following section 3.2.

3.2 Causality constraints on the Lovelock parameters

Demanding causality of the boundary theory, the fact that the velocity of any signal prop-

agating on the boundary should not exceed the speed of light, will introduce constraints

on the Lovelock parameters. These constraints have been well studied in the literature for

Gauss-Bonnet [41, 69–73] and third order Lovelock gravities [42, 44, 74]. Here, we follow

the results obtained in [44] for third order Lovelock gravity where the constraints have

been derived using the perturbations of metric as well as shock waves calculation. While

we encourage an interested reader to find the details of calculations in [44] and reference

therein, we only express the final results here. In general, there exist three modes prop-

agating on the boundary: helicity 2, helicity 1 and helicity 0 gravitons. The requirement

that each mode propagates with the velocity lower than the speed of light imposes the

following constraints:

helicity 2 : 1−
2
(
d2 − 5d+ 10

)
(d− 4)(d− 3)

λh∞ +
3
(
d2 − 3d+ 8

)
(d− 4)(d− 3)

µh2
∞ ≥ 0 ,

helicity 1 : 1 +
4

(d− 3)
λh∞ −

3(d+ 1)

(d− 3)
µh2
∞ ≥ 0 , (3.25)

helicity 0 : 1 +
2(d+ 1)

(d− 3)
λh∞ −

3(3d− 1)

(d− 3)
µh2
∞ ≥ 0 ,

where h∞ is governed by equation (3.11).

Exploring the space of Lovelock parameters while respecting constraints (3.25), one

finds that the causality of helicity 2 boundary gravitons will set a lower bound on the
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Figure 1. Shadowed blue indicates the allowed regions by causality for Lovelock parameters in 7,

8 and 9-dimensions which grow as dimensionality increases.

parameters while the causality of the other two modes imposes an upper bound on the

allowed region of {λ, µ}. However, helicity 0 constraint is always more stringent than

helicity 1. Therefore, at the end, the allowed region due to causality is identified by the

helicity 2 and helicity 0 modes. This is true in any arbitrary dimension.

The shadowed blue region in figure 1 shows the region in the parameter space fulfilling

the causality constraints (3.25), as well as reality constraints, in 7, 8 and 9-dimensions,

respectively. Recall that in any given dimension, the full metric solution (3.8) is real

everywhere whenever the condition (3.15) holds, i.e. µ ≥ λ2/3. Therefore any region below

the parabola µ = λ2

3 is excluded although it may be allowed by boundary causality. Figure 1

clearly indicates that the allowed region grows as we move to higher dimensions.

3.3 Phase transitions for µ ≥ λ2/3

This section is devoted to determine where in the parameter space {λ, µ} of third order

Lovelock gravity, phase transitions happen for hyperbolic black holes in arbitrary dimen-

sions. In order to identify whether a thermal phase transition would occur, we need to

look for the existence of isothermal black hole solutions. To do so, one should examine

the behaviour of the temperature as a function of black hole mass, i.e. T (M). If we find

that temperature is a non-monotonic function of mass, then at a given temperature there

are coexisting black hole solutions with different masses, or different horizon radii, which

signals the possibility of a thermal phase transition in the gravitational system. In order

to confirm that a phase transition happens, one should further compare the free energy

of isothermal solutions. The way to investigate non-monotonicity of T (M) is to examine

whether dT
dM has a real solution or not: if the derivative has no real solution, temperature is

a monotonic function of mass, otherwise is non-monotonic and isothermal solutions exist.

Since the ADM mass M (3.19) is proportional to m (3.10), and the black hole temperature

and mass m are expressed in terms of the horizon radius in equations (3.10) and (3.17), it

is preferred to study dm
dρH

and dT
dρH

rather than dT
dM directly.
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In general, our analysis reveals that non-monotonicity of T (M) is due to having either

two extremal black holes or extrema in the temperature. The former is related to the

behaviour of dm
dρH

(this simply follows from the thermodynamic relation dM
dρH

= T dS
dρ ), while

for the latter one should inspect dT
dρH

.

For any d > 6, in order to find the solutions of the equation dm
dρH

= 0 at a non-trivial

horizon radius ρH 6= 0, we need to analyse a cubic equation in terms of ρ2
H , i.e.

dρ6
H − (d− 2)ρ4

H + (d− 4)λρ2
H − (d− 6)µ = 0 . (3.26)

For a given {λ, µ} if the discriminant of the cubic equation (3.26) is positive, then dm
dρH

has three real roots which result in having two minima for the mass: mext1 = m(ρH<)

and mext2 = m(ρH>) where ρH< and ρH> are the smallest and largest real roots of (3.26),

respectively. If mext1 ≤ mext2 then there are two extremal black holes whose masses

correspond to mext1,2 . Note that if mext1 > mext2 , then there is only one extremal black

hole solution with mext2 = m(ρH>). In this case temperature is always a monotonic

function of mass and no phase transition is expected.

On the other hand, if the discriminant of equation (3.26) for a given {λ, µ} is negative,
dm
dρH

has only one real root and therefore there is only one extremal black hole. Nevertheless,

in such a case T (m) could still be non-monotonic due to having more than one extremum:

our investigations show that equation dT
dρH

= 0 could have two (non-trivial) real distinct

solutions. Hence, for a given {λ, µ} one needs to look for two real solutions of

dρ10
H + (d− 2− 6dλ)ρ8

H + (15dµ− (d− 8)λ)ρ6
H − 2

(
2(d+ 3)µ− (d− 4)λ2

)
ρ4
H

− 3(d− 8)λµρ2
H + 3(d− 6)µ2 = 0 . (3.27)

The equation (3.27) should be solved numerically in arbitrary dimensions, except for d = 6

where one can find solutions analytically.

The above analysis also applies to the 7-dimensional case (d = 6). However, in this

case equation (3.26) is independent of µ. Therefore, the behaviour of dm
dρH

for a given λ

is valid for all µ’s, and here the only constraint on µ is that of the reality constraint, i.e.

µ ≥ λ2/3. Instead, the behaviour of dT
dρH

still depends on both parameters {λ, µ}.
To summarize, for a given λ (d ≥ 6) and µ (d > 6) in order to specify non-monotonicity

of T (m) due to having two extremal black holes not only the discriminant of (3.26) should

be positive but also mext1 ≤ mext2 . Alternatively, for a given {λ, µ} in any dimension T (m)

could be non-monotonic as dT/dρH = 0 might have more than one real solution.

To proceed further it is beneficial if we classify regions of λ as below:

I) λ < λc: where λc is obtained by solving equation (3.26) for µ = λ2
c/3 while demanding

mext1 = mext2 .10 For any λ < λc and µ ≥ λ2/3 there is only one extremal black hole

with m = mext2 and horizon radius at ρH> which is the largest real root of the

equation (3.26). Temperature is a monotonically increasing function of mass and

therefore, no phase transition is expected in this range.

10Some examples of λc are: λc = 0.25 in 7-dimensions (d = 6), λc = 0.301836 in 8-dimensions (d = 7),

λc = 0.316987 in 9-dimensions (d = 8) and λc = 0.323678 in 10-dimensions (d = 9).
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(a) Free energy

(b) Entropy

Figure 2. (a) Free energy density F (3.23) against temperature T/T0 for a given {λ, µ} in

7-dimensions: on the left for λc ≤ λ < 1
3 and µ > λ2

3 where a phase transition between two isother-

mal black holes with different masses occurs at Tc ≈ 0.056; on the right for 1/3 < λ < λd = 3/5 and

µ > µc2 where a phase transition between two isothermal black holes with different masses occurs

at Tc ≈ 0.292. (b) Thermal entropy density S (3.24) against temperature T/T0 where the phase

transition between two black holes in the lowest and highest branches are shown with black dots.

The dashed red line indicates the temperature of phase transition and discontinuity in the thermal

entropy reveals that the phase transition is of first order.

II) λc ≤ λ < 1/3: in this region for any λ2/3 ≤ µ ≤ µc3 the discriminant of equa-

tion (3.26) is positive and mext1 ≤ mext2 , therefore the system has two extremal

black holes and T (m) is non-monotonic. For a given λ one can easily obtain µc3
by solving equation (3.26) while demanding mext1 = mext2 . Note that µc3 → ∞ in

7-dimensions since equation (3.26) is independent of µ. Thus, in this range of {λ, µ}
it is legitimate to expect a phase transition between smaller and larger isothermal

black holes at some critical temperature Tc ≥ 0. In order to check whether the phase

transition happens or not, one should compare the free energy of the black hole so-

lutions against temperature, i.e. F (T ). On the left panel, figure 2a shows such an

example where the occurrence of a phase transition is vivid at Tc ≈ 0.056. Moreover,

by examining black hole entropy S(T ) one finds that the phase transition is of first
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order, see figure 2b on the left panel. Note that for λ = λc or µ = µc3 a phase

transition happens at Tc = 0, whereas Tc increases by increasing λ (or decreasing µ)

keeping fixed µ (or fixed λ). Furthermore, as the number of spacetime dimensions

becomes larger, λc approaches 1/3.

III) 1/3 ≤ λ < λd: where λd = 3/5 in 7-dimensions (d = 6) and λd = (d− 2)2/3d(d− 4)

in any higher dimension (d > 6). Depending on the value of µ there might exist

isothermal black holes due to having either an extremum in the temperature or two

extremal black holes. Therefore, one should inspect non-monotonicity of temperature

by examining both dT
dρH

and dm
dρH

. Our analysis indicates that T (m) is non-monotonic

in two intervals: λ2/3 ≤ µ ≤ µc1 and µc2 ≤ µ ≤ µc3 . For a given λ both µc1 and µc2
are obtained by demanding that two real non-trivial solutions of equation (3.27) co-

incide. Whereas µc3 for d > 6 is obtained by solving equation (3.26) while demanding

mext1 = mext2 . In 7-dimensions (d = 6) there is no upper bound in the second interval

since equation (3.26) is independent of µ. As a result, non-monotonicity of temper-

ature and possible phase transitions are expected in these two intervals. Again, in

order to check the actual occurrence of phase transitions, one has to compare the free

energy of coexisting solutions. An example of such comparison is shown on the right

in figure 2a in 7-dimensions, while the discontinuity of entropy indicates a first order

phase transition on the right in figure 2b. It is straightforward to work out similar

comparisons of free energy in arbitrary dimensions to see that phase transitions be-

tween smaller and larger black holes always happen in the range where temperature

is non-monotonic.

The point (λ, µ) = (1/3, 1/27) is an exception in this range as the symmetry enhances

the spacetime to a full AdS space for which no phase transition happens.

IV) λ ≥ λd: in this region the discriminant of equation (3.26) is strictly negative which

results in having only one extremal black hole for all values of µ. Therefore, the

temperature could only be non-monotonic due to having an extremum which happens

if λ2/3 ≤ µ ≤ µc1 . Again µc1 is obtained by demanding that two real non-trivial

solutions of equation (3.27) coincide. Then, we expect a possible phase transition

in this range and comparing the free energy of isothermal black holes confirms the

occurrence of a phase transition, which is first order as other regions. In dimension

less than 9, λd is larger than the maximum λ allowed by causality. Furthermore, λd
approaches to 1/3 as d increases.

Figure 3 is a complete parameter space in 7, 8 and 9-dimensions and shows a sum-

mary of possible phase transitions in all the regions discussed above. The blue regions

consist of those values allowed by the boundary causality which was discussed earlier in

section 3.2. The shadowed red region indicates the existence of phase transitions either

due to having two extremal black holes or extrema in temperature. The green dot located

at (λ, µ) = (1/3, 1/27) represents the maximally symmetric AdS space for which no phase

transition happens. Moving from 7 to 8-dimensions, the size of the regions where phase

transitions happen dramatically reduces. This is due to the fact that the upper limit µc3 is
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Figure 3. Parameter space of third order Lovelock in 7, 8 and 9-dimensions. The shadowed blue

region is the allowed region due to boundary causality. The shadowed red region indicates the

region where phase transitions between small and large black holes occur. The green dot represents

the maximally symmetric AdS spacetime with (λ, µ) = (1/3, 1/27) for which no phase transition

occurs. It is visible that as the spacetime dimensions increase the regions that phase transitions

occur shrink. Also both λc, λd → 1/3 when d→∞.

absent in 7-dimension, since equation (3.26) is independent of µ for d = 6, as we explained

above. From figure 3 it is also evident that as dimensionality increases, the red areas in the

shaded blue regions (that is allowed by causality) shrink and eventually disappear as d→∞
since in this limit both λc, λd approach to 1/3. This means that we approach to the green

dot in parameter space as d→∞, and no phase transition happens at this point. In another

words, the theory is stable for a wider range of Lovelock parameters in higher dimensions.
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Figure 4. Ratio of Rényi entropy to the entanglement entropy as a function of n in 7-dimensions

for a fixed µ = 0.055 and λ = 0.0373, 0.35, 0.33, 0.31 from top to bottom. Lovelock parameters have

been chosen from the causal region in parameter space where the phase transition in the bulk occur,

figure 3. Therefore, each curve displays a kink in the Rényi entropy at nc = T0/Tc. The kink appears

at larger nc for smaller λ and moves to the left towards n = 1 as λ grows. Note that for µ = 0.055

an upper bound from boundary causality, i.e. λ ≤ 0.373, imposes a lower bound on nc ≥ 2.06.

4 Results and discussion

We can now investigate the implications of the instabilities of third order Lovelock black

holes studied in section 3.3 on the Rényi entropies. As explained in section 2, in order to

calculate the Rényi entropy of a boundary CFT, we can either use the expression (2.4),

where now Sthermal is the black hole thermal entropy in the bulk as a function of its

temperature given by expressions (3.20) and (3.17), or we can use (2.1) where now F is

the black hole free energy (3.22) again as a function of the temperature (3.17).

Let us consider for example the expression (2.4). Recall that T0 is the temperature

of the boundary CFT, and we use this value as a reference temperature, while the final

temperature is given by T0/n. Keeping fixed T0, whenever the final temperature is smaller

than Tc, we end up integrating over a piece-wise continuous function Sthermal. This becomes

clear by looking at figure 2b. Thus, the integral over the jump between the two stable

branches will result in a continuous but not differentiable function of T
T0

, and this is nothing

but the Rényi entropy, cf. (2.4). Figure 4 shows the Rényi entropy in terms of the index

n(= T0
T ) in 7-dimensions for a fixed µ = 0.055 and several λ’s, all in the causal region where

the phase transition happens in the bulk. It is evident that there is a kink in the Rényi

entropy at nc = T0
Tc

which is a direct consequence of the bulk first order phase transition. In

particular, in any dimension the kink is placed at nc > 1. This is due to the fact that the

phase transitions in the causal regions occur at a critical temperature that is always smaller

than T0, i.e. Tc
T0
< 1. As expected from field theoretical computations, Rényi entropies are

divergent when the index n approaches to zero (in terms of the entanglement spectrum this

limit represents the logarithm of the number of non-vanishing eigenvalues), specifically the

leading divergence behaves as 1
nd−1 . On the other side, they approach a constant as n→∞
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Figure 5. ncmin
for µ and corresponding maximum value of λ allowed by causality for which phase

transition occurs. The discontinuity in nc at µ = 0.0406 is due to the jump in λmax from the helicity

2 curve to the curve µc2 in figure 3. The lowest value of ncmin
= 1.38 is at µ = 0.0406 for that

λmax = 0.343.

(which is proportional to the logarithm of the largest eigenvalue), where again the specific

value of the constant depends on the dimension d and the coupling constant {λ, µ}, see for

example the discussion in [23].

In general, in a given dimension for a fixed µ, decreasing (increasing) λ leads to an

increase (decrease) in nc. There is always a lower bound on λ given by λc for which

nc → ∞: recall that for λ = λc the phase transition happens at Tc
T0

= 0 (cf. region II

in section 3.3). Moreover, λ ≤ λmax (for a fixed µ) which imposes a lower bound on

nc, namely ncmin : depending on the value of µ the upper limit λmax is either dictated by

causality constraints (3.25) or is the maximum possible λ in the causal region for which a

phase transition happens. Figure 5 shows ncmin in 7-dimensions for 0.03 ≤ µ ≤ 0.074 and

the corresponding λmax which is partly obtained by causality constraints: helicity 2 in the

region 0.03 ≤ µ ≤ 0.0405 and helicity 0 for 0.0499 ≤ µ ≤ 0.0741. However, in the range

0.0405 < µ < 0.0499, λmax is the maximum value in the causal region for which phase

transitions happen and it belongs to the curve µc2 in figure 3 for 7-dimensions. Notice that

there is a discontinuity in nc at µ = 0.0406 due to the jump in λmax from the helicity 2

curve to the µc2 curve in figure 3. Also in figure 5 the lowest value of ncmin = 1.38 (for

µ = 0.0406 and λmax = 0.343) indicates that for any fixed µ in 7-dimensions nc ≥ 1.38, i.e.

the kink does not happen at or very close to 1. Therefore, despite having a kink the Rényi

entropy is still smooth and differentiable in the vicinity of n = 1.

Alternatively, in a given dimension one can examine how nc varies with µ for a fixed λ:

our analysis reveals that nc increases (decreases) with increasing (decreasing) µ. Therefore,

for each λ the minimum value of nc, namely ncmin , is obtained for the minimum µ in the

causal region for which the phase transition happens. From figure 3 it is easy to see that in

7-dimensions µmin is partly obtained by causality constraints, in particular by the helicity

2 constraint for λc ≤ λ ≤ 0.343 and by the helicity 0 constraint for 0.364 ≤ λ < 0.389.

Whereas µmin belongs to the curve µc2 if 0.343 < λ < 0.364. One can reproduce a plot
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similar to 5 for ncmin but at a fixed λ and correspondent µmin. However, the lowest value

of nc is still ncmin = 1.38, obtained for λ = 0.343 µmin = 0.0406. Hence, we have again that

nc ≥ 1.38 and the kink is far enough from n = 1 to give a differentiable Rényi entropy in

the vicinity of n = 1.

To our knowledge this is the first pure gravitational system to produce first order phase

transitions in the bulk which are reflected in a kink of the dual Rényi entropy. In holo-

graphic field theories, second order phase transitions were previously discussed in [46, 47].11

There, the second derivative of the Rényi entropies with respect to the index n was found

to be discontinuous. We stress that there the bulk mechanism to give arise the phase tran-

sition is rather different: it is either due to the formation of hairy black holes in presence

of light scalars [46] or due to a holographic superconductor-like mechanism in the charged

case [47]. Our original boundary field theory is a CFT at zero temperature living in a flat

d-dimensional space where we have a bipartite system separated by a (d− 2)-dimensional

spherical entangling surface of radius R. The only scale present here is set by the radius

of the entangling surface. We are essentially probing the ground state of this bipartite

system. Our results suggest that there is an emergent critical index nc (where the Rényi

entropy displays a kink) which might be a sign of a phase transition in the ground state:

that is the spectrum seems to have distinct regions, likely characterised by two distinct

probability distributions.

An analogous non-analytic dependence was found in the universal coefficients of Rényi

entropy for the O(N) model close to critical points [77] (both in the large N -limit and

4−ε-expansion).12 This was found by purely field theoretic considerations but O(N) vector

models are conjectured to be dual to higher spin theory in AdS [78, 79],13 suggesting that

similar behaviours to that found in our study can also been seen in another gravitational

setting. Another field theoretical example is provided by the work [81]. Here, the authors

find a phase transition in the Rényi entropy for Luttinger liquids at a critical nc, which

emerges essentially when the index n has a significant effect on the natural scale of the field

theory (Luttinger parameter). An important lesson from [81] is that the replica method

would miss such a phase transition, and a general caution should be kept in mind in applying

the replica method in cases where Rényi entropy is not analytical. Nevertheless, as already

pointed out in [47] the fact that Rényi entropy might not be analytical does not have any

effect in the proof of RT formula where only analyticity at n = 1 is assumed [15, 16].

As mentioned at the beginning, this holographic set-up could provide a simpler and yet

rich framework where novel aspects of strongly coupled higher dimensional CFT’s could be

revealed. It would be interesting to investigate how the inclusion of a U(1) charge in our

model would affect the bulk instabilities, and thus the phase transitions in Rényi entropy.

A major challenge would be how to holographically realises the non-analytic behaviour of

the Rényi entropies found in [77], we leave this for future works.

11For related discussions in Gauss-Bonnet gravity see also [75, 76].
12We want to stress that in this work we are not extracting the universal coefficients, we are computing

the whole value of Rényi entropy.
13Cf. the recent review [80] and references therein.
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