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Abstract: Designing aquaculture production units will require decisions on which treatment to include,
e.g., the intensification of the system, and then a decision on a technical solution for each treatment
function selected to implement. To complicate matters, each technical solution is not unique to each
treatment function, but has a multiple effect on the system. This interaction of a technical solution to
multiple treatment functions will play a part in the decision making process. Previous work by the
authors has made a taxonomy of all technical solutions for the treatment function, and in this article,
how technical solutions affect treatment functions is mapped. The article views the aquaculture
production system as a transformation process with three sets of functions, input, treatment and
output. Based on a comprehensive literature review where all technical solutions were found and
categorized into a taxonomy, their effect on treatment function was mapped using a quality function
deployment (QFD). The result is a matrix that gives an evaluation on the interaction. This work is
a step towards an aquaculture engineering design methodology.
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1. Introduction

Aquaculture production systems have been built for centuries, and the functions that are
needed to grow fish are fairly well known. During the last few decades, fish production has been
growing rapidly. Recent developments in recirculating aquaculture systems are focused on technical
improvements of individual components and re-utilization of nutrients through the integration of
fish and plants/algae [1]. Recirculating systems however are not perfect and have various problems.
Many different solutions for recirculating systems exist; many have failed or are having difficulties
that can often be traced back to the system design [2]. In order to effectively and efficiently design,
implement and operate aquaculture systems, a general overview of available technical solutions and
“how to integrate it all together” is required. According to Badiola et al. [2], this overview has never
been made. This paper is the last in a series of four articles, which are all part of a study that is aimed
at creating such an overview and take the first steps towards integrating it into a methodology. In the
previous three papers, the authors identified all of the possible functions needed in a aquaculture
production system. They also list the key variables that have to be monitored and collected all of the
methods that solve the functions [3]. One part of the functions, the treatments, were then analyzed
and all technical solutions to each method categorized into a taxonomy of technical solutions [4,5].
In this paper, the journey is concluded, and a map showing how each technical solution might solve
multiple treatment functions is made. The result is presented in a quality function deployment form,
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like quality management deals with product design, i.e., a matrix of technical solutions and treatment
functions is created and the link between those evaluated.

2. Materials and Methods

The methods used in this study are a comprehensive literature review and the quality function
deployment from quality management. The scope, execution of the literature review and the synthesis
is described in the next couple of sections.

2.1. Literature Review

This work is based on a literature review. Literature searches were carried out using The Web of
ScienceTM online service. Two search sets (the keywords “aquacultur*” and “RAS” vs. “aquacultur*”
and “reus*”) were selected to generate a platform to be further analyzed for technical solutions.
Search 1 delivered 126 results, and Search 2 delivered 96 results. After the results were combined
and the duplicates were deleted, a total count of 210 results, the articles were then analyzed in
order to filter out those that did not discuss specific technical solutions to the relevant treatment
function. The first filtering stage resulted in 116 articles. In the end, only 48 articles from the original
search were used; a backward search resulted in 43 articles and books and specific searches resulted
in 37 articles. Occasionally companies’ websites were searched for more detailed descriptions of certain
technical solutions.

2.2. The Quality Function Deployment

Quality function deployment (QFD) is derived from the Japanese phrase HinShitsu KiNo TenKai
and can be translated to “method for allocating features, or method for translating characteristics” [6].
This is a simple approach used to describe the relationship between customer demand, product
characteristics and manufacturing processes [6]. QFD can be used to grasp whole systems designs.
Multiple matrices are linked together in a waterfall manner where each succeeding matrix goes further
into the systems details.

In this work, QFD will be used to present how one solution can influence more than one treatment
function. Performance indicators could then be plotted against the means in the next matrix in the
QFD. To put this in better context with QFD, we can consider that the preceding matrices are as shown
in Figure 1 in red.
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Figure 1. Quality function deployment (QFD) matrix setup.
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The notation used in the inner workings of QFD is at the discretion of the user. In this work, the
authors have chosen to be general and only map out if there is an effect; the notation evaluates if it is
a benefit or a negative effect. Three classifications are used to describe the relationship between the
means and the treatment functions are hence: main function (++), derived benefit (+) and negative
effect (−). These relationships are taken from the results of the literature review.

Before presenting the results of the mapping of technical solutions to the treatment function, it is
necessary to summarize the results of the literature review.

3. The Taxonomy of Technical Solutions

The following section is a summary of the authors previous articles [4,5]. The taxonomies of
means (technical solutions [4,5]) are presented in each subsection along with a summary of how other
treatment functions are or can be influenced.

The treatment functions are [3]: controlling temperature, solids, dissolved gasses (dissolved oxygen
DO and CO2), pH (along with alkalinity and hardness), N compounds, organic matter, P compounds,
metals, disease outbreak along with the function of preventing diseases. The treatment function of
controlling disease outbreak is out of the scope.

3.1. Controlling Solids

Rapid removal of solids is a critical function in aquaculture systems. Solids mainly originate from
feed and fish excrete. Particles can irritate fish gills, nourish fish pathogens [7], as well as consume
dissolved oxygen and disrupt the function of other units in the system. Means used to control solids
are presented in Figure 2.
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Figure 2. Taxonomy: controlling solids.



Water 2016, 8, 487 4 of 18

Solids can be both inorganic and organic matter, split into settleable, suspended or fine (turbidity)
solids. By removing solids, the biochemical oxygen demand (BOD) in the system is reduced along
with N and P compounds [8]. Chemicals (polymers, alum or a combination of both) can be added to
increase coagulation/flocculation of fine particles, increasing their size and settling speed [9], making
them easier to remove. Membranes can reduce turbidity and potentially be used for advanced water
treatment in recirculating aquaculture systems, i.e., microorganisms where extra high water quality is
needed [10]. Bead filters offer both biofiltration and solid capture. Optimizing for both, however, can
be difficult [11]. Flotation, also known as protein skimming or foam fraction, can be used to concentrate
solids. Fine suspended solids and dissolved organic compounds can be removed by using the foam
fraction ([12], p. 254).

3.2. Controlling pH, Alkalinity and Hardness

Proper pH management is vital for the optimum performance of recirculating aquaculture
systems [13]. Alkalinity is a measure of the buffering capacity of water, i.e., the water’s capacity to
neutralize strong acids, therefore keeping the pH constant [14]. Hardness expresses the concentration
of metal ions in the water primarily calcium (Ca+2 ) and magnesium (Mg+

2 ), iron and manganese.
The culture water needs to be relatively hard to support the development of fertilized fish eggs and
calcification of larval skeletal structures [15]. Means used to control pH, alkalinity and hardness are
presented in Figure 3.
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Figure 3. Taxonomy: controlling pH, alkalinity and hardness.

In addition to being directly crucial to the growth and health of the cultured species, the pH also
controls the ratio of un-ionized ammonia (NH3) and ionized ammonia (NH+

4 ) formed. It also has
a major effect on the performance of nitrifying bacteria in biofilters [13] and influences the toxicity of
hydrogen sulfide and metals, such as copper, cadmium, zinc and aluminum [15]. CO2 production in
aquaculture causes the pH in the system to lower.

Rosseland and Skogheim [16] demonstrated that adding seawater to the culture water (1%–6%
seawater) increased the pH and alkalinity of the water and decreased the labile aluminum. As water
flows through the media bed of a shell-sand filter, the pH increases, and labile aluminum decreases [16].
Limestone can also be used as the medium.

In base addition, carbonate compounds increase the alkalinity of the water, i.e., the buffering
capacity of the water. Lye can be used to increase the pH, but does not increase the buffering capacity
of the water [17]. Silica lye is a good alternative for increasing the pH when reducing the toxicity
of aluminum is needed [18]. Applying calcium hydroxide at around 10%–20% of the daily feed
increases the pH and alkalinity in aquaculture systems [19]. Calcium hydroxide can also be used as
a flocculant [20]. Limestone, which is most often a mixture of calcium carbonate and magnesium
carbonate or dolomite, is a major source of alkalinity and hardness [21]. In ozonized systems, calcium
carbonate has no effect on increasing alkalinity [22]. The dissolution of limestone is dependent on
the dissolved CO2 concentration [21]. Quicklime can be used to reduce the toxicity of copper [23]
and cadmium [24] to fish. Using lime slurry, however, increase the particle content (turbidity) of the
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water [17]. Sodium carbonate and sodium bicarbonate can be used to increase the pH and alkalinity
of water [13,15]. By adding calcium and magnesium, the water is hardened, and also, the toxicity of
dissolved metals is decreased [15].

3.3. Controlling DO and CO2

Maintaining the right levels of dissolved gasses, such as dissolved oxygen and carbon dioxide,
is vital to the health of the cultured species and the operation of certain processes [25]. As oxygen is
consumed by the cultured species or other organisms in the system, for the metabolic process, the
CO2 concentrations increases. Other organisms are for instance nitrifying and heterotrophic bacteria.
The means used to control DO and CO2 are presented in Figure 4.
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Figure 4. Taxonomy: controlling DO and CO2.

In solution where water comes in contact with air, some gas exchange will take place. A packed
column aerators can be used for both oxygen transfer and nitrogen removal [26]. Modifications of the
spray tower have been tested to provide concurrent CO2 stripping [27].

Airlifts, which were briefly mentioned earlier, can be used for aeration and degasification along
with their water delivery [28]. Barrut et al. [29] found that vacuum airlifts could be a promising method
for CO2 stripping. Other airlifts could also provide air stripping [28,30].

Another way of controlling CO2 is using base addition to regulate pH: increasing the pH decreases
the CO2. These bases are either carbon-containing (such as sodium bicarbonate) or not (such as sodium
hydroxide). Carbon-containing bases also increase the total carbonate carbon in the system [31].
However, this requires careful monitoring and needs to be in conjunction with the management of the
pH and alkalinity in the system.
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The main purpose of biofilters is to remove ammonia from the process water in recirculating
aquaculture systems. Some types of biofilters also provide aeration and some CO2 stripping.
Trickling filters can aerate the water and provide some CO2 stripping [31,32]. Floating microbead
biological filters can provide CO2 stripping. If a gas space between the top of the beads and the water
spray is created, stripping can be forced [33]. Brazil [34] found that rotating biological contactors
removed an average 39% of carbon dioxide.

3.4. Controlling N Compounds

Nitrogen is a nutrient essential to all living organisms. Main sources of nitrogen in aquaculture
are metabolic waste from fish and uneaten or undigested feed [35]. Fish also discharges various
nitrogenous waste products that decompose into toxic compounds, such as ammonia and nitrite.
These compounds are toxic to fish and, therefore, of great interest in intensive recirculating aquaculture
systems [12]. Figure 5 displays the taxonomy of means for the treatment function controlling
N compounds.
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Figure 5. Taxonomy: controlling N compounds.

In nitrification processes, ammonia and nitrite are oxidized to less toxic nitrate [12]. To prevent
the accumulation of nitrate in the system, water exchange or a denitrification process is needed [36].
Nitrification is an aerobic process, therefore consuming oxygen, while denitrification is an anaerobic
process converting nitrate into nitrogen gas [12]. The nitrification process produces H+, consuming
alkalinity, which needs to be compensated with base addition to prevent lowering of the pH [13,37]
and accounts for a large production of CO2 in the system [38].

When using periphyton treatment, organisms trap and process suspended organic matter and
utilize nutrients in the water via photosynthesis. It therefore produces O2, removes CO2 and potentially
provides extra food for the cultured species [39], which helps to manage the pH [35].

Bio-flocs take up particulate organic matter and nitrogen waste from the fish, decreasing
ammonium concentrations within the system and creating a supplementary protein source for the
fish [35,40]. A bio-floc system is designed to use little or no water exchange. This causes nutrients that
cannot be lost atmospherically, such as phosphorus and phosphate, to accumulate in the system [41].
Phosphorus that is retained within particulate matter flocculates and can be eaten by the cultured
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species. The bio-floc process is aerobic, therefore lowering the dissolved oxygen content of the water.
The consumption of alkalinity by heterotrophic and nitrifying bacteria present in bio-floc causes
a reduction in alkalinity and pH in the system [19].

In earthen ponds, N removal is primarily done either by nitrification or photosynthesis
(phytoplankton uptake). Phytoplankton, such as algae, can be used as a supplement feed source
for animal cultures [42]. Algae retains phosphorus [42], and sediment in ponds can have good P
absorption capacity [43].

Constructed wetlands can be used for water treatment in recirculation systems to reduce total
suspended solids (TSS), TANand P [44]. Plants of various types serve, among other organisms,
the purpose of removing nutrients (N and P) from the processing water for reuse [45]. This is done via
nitrification and plant uptake [45]. Occurring microorganisms in constructed wetlands can inactivate
pathogenic microorganisms in the system, given an adequate retention time [17].

In a rotating biological contactor (RBC), several stages can be used. By recycling part of the
process water from the last stage to the first, studies show improvements in COD, BOD5, ammonia
removal and an increase of DO concentrations [46] along with denitrification of the recirculation
water [47]. As the media contacts air, CO2 is stripped from the water, and oxygen is supplemented [34].
With controlled ventilation (the ratio of air to water flow needs to be around 10), trickling filters
can also provide degassing or CO2 stripping and even evaporation cooling in warm climates [48].
Floating bead bioclarifiers (bead filters) provide nitrification in addition to solid removal and, if
operated in anaerobic conditions, denitrification [49]. A fluidized sand filter can also be used for
heterotrophic denitrification [50]. By allowing space between the media and the water spray, in
downflow microbead filters, gas stripping can be forced [33]. Air blower and ventilation then needs to
be installed. Moving bed bioreactor (MBBR) can be either operated as an aerobic process (nitrification)
or anoxic and anaerobic processes [51].

Hydroponics strip the process water of nutrients, such as nitrates and phosphorus. Lennard and
Leonard [52], comparing NFT, floating rafts and media beds, found DO of the process water to decrease
over all three types of hydroponic beds. In media bed systems, plant roots and media can provide
a surface area for nitrifying bacteria and solid capture [52,53].

3.5. Controlling Organic Matter

Organic matter consists of impurities in the culture water that originate from feeding and
metabolic waste. Organic matter can be split into solid and dissolved organic matter. The partial
taxonomy of means is presented in Figure 6. Solid organic matter can be removed using the solid
removal techniques (see Section 3.1). Some methods such as flotation with ozone are very effective in
removing particulate organic matter [54].
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Figure 6. Taxonomy: controlling organic matter.

Several means can be used to remove dissolved organic matter. In biofilters, dissolved organic
matter can be oxidized, therefore reducing its concentration [55]. Hydroponic beds can remove
dissolved organic matter in recirculating aquaponic systems [56], and adsorption onto activated carbon
can be used for the removal of dissolved organic carbon along with therapeutants [57].
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Ozone can improve multiple water quality indicators, including oxidizing toxic nitrite to
nitrate [58], removal of organic compounds by oxidizing dissolved organic matter and improving
flocculation of fine and colloidal particulates; that results in better particle removal via settling,
filtration [59] or foam fractionation [58].

3.6. Controlling P Compounds

In aquaculture phosphorus (P) enters the culture unit with feed. Not all P provided is utilized
by the cultured species, and part of it is retained in the system either as uneaten feed or excretes.
Disintegration and bacterial degradation of solids, temperature and incubation time, all influence the
amount of phosphorus which is lost from the solid form to dissolved by bacterial degradation and
leaching [60]. As solid phosphorus stays longer in the system, goes though equipment, etc., more gets
dissolved into the culture water, making it more difficult to remove. The partial taxonomy is presented
in Figure 7.

Checking new animals for parasites/diseases

Inlet control
Heat / steam
Chemicals

Inlet control and disinfection of equipment

Maintain optimum water quality
No light or sound harassment
Minimize handling

Maintain stress free environment

Injection
Osmotic immersion
Oral
Ultrasonic immunization

Vaccination

Solid removal methods

Ozone addition

UV irradiation

ElectromagnetRadiation methods

Preventing diseases

pH control methods

Ozone addition

Water exchange

Controlling metals

Enhanced biological phosphorus removal (EBPR)
Membrane bioreactor

Biological treatment

Alum
Ferric chloride
Calcium hydroxide
Polymers

Physiochemical treatments (Precipitation)

Solid removal methods

Feed management

Water exchange

Controlling P compounds

Inside culture unit
Outside culture unit

Periphyton treatment

Primarily nitrification
Primarily photosynthesis

Earthen ponds/reservoirs

Vertical flow
Horizontal flow

Subsurface flow

Free water surface
Wetlands

Inside the culture unit
Outside the culture unit

Bio-floc treatment

Rotating biological contactor
Trickling filter

Emerged

Packed

Unpressurized granular media filter
Pressurized granular media filter
Continuously back-flushed granular media filter 

Granular media filter

Propeller washed
Hydraulic (Bubble washed)
Pneumatic (Air pressure)

Floating bead bioclarifier

Expandable

Fluidized sand filter
Down flow microbead filter
Moving bed bioreactor (MBBR)

Expanded

Submerged

Fixed filmBiofiltration

Nutrient film technique (NFT)
Floating rafts

Liquid hydroponic systems

Media bedAggregate hydroponic systems
Integration with plants or vegetables

pH control method

Water exchange

Feed management

Controlling N compounds

Solid removal methods

Biofiltration

Activated carbon Adsorption

Generated from air
Generated from pure oxygen

Ozone generation

Ozone supply method
Ozone control methods

Ozone addition

Submerged
Emerged

UV irradiation

Water exchange

Feed management

Controlling organic matter

Immersion heaters
Oil and gas heaters
Heat exchangers
Heat pumps

Heaters

Heat exchangers
Heat pumps
Ice addition
Cold water / seawater addition

Coolers

Water exchange

Controlling temperature

Treatment functions

Figure 7. Taxonomy: controlling P compounds.

In physicochemical treatment, chemicals are added to increase the coagulation/flocculation of
dissolved phosphorus. Chemicals, such as alum, ferric chloride and calcium hydroxide, can be used to
coagulate dissolved phosphorus [20]. Polymers can also be used, but are not as effective at removing
phosphorus [9]. However, using polymers in conjunction with other chemicals, such as alum [9] or calcium
hydroxide [20], shows much better results.

3.7. Controlling Metals

Metal compounds can become toxic to the cultured species, the environment or the consumer.
This includes both heavy metals (cadmium, copper, etc.) and other metals (aluminum, iron, etc.).
Metals can originate from the corrosion of pipes and fittings or from feed [25]. The partial taxonomy is
presented in Figure 8.
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By increasing the alkalinity and hardness of the culture water, the toxicity of metals, such as
copper, cadmium and zinc, can be reduced [25]. Shell-sand filter and seawater addition can lower the
labile (inorganic) aluminum in the culture water [16]; silica lye can also be used to decrease the toxicity
of aluminum [17]; and calcium and magnesium decrease the toxicity of dissolved metals [15].

Ozone addition can be used to “significantly” lower dissolved copper and iron in systems with
a low water exchange rate, such as RAS. The concentration of dissolved zinc can be lowered, as
well [37].
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3.8. Preventing Diseases

Over 100 fish diseases exist and are caused by various microorganisms, such as bacteria, viruses,
fungi and parasites. Diseases are mainly introduced to the system through the water, the fish or the
equipment used, such as nets, baskets, gloves, etc. [61]. The means used to prevent diseases are
presented in the partial taxonomy in Figure 9.
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Figure 9. Taxonomy: preventing diseases.

Adding ozone at a lower rate just before entering the culture tanks could lower the risk of bacteria
gill disease and the number of heterotrophic bacteria [62].

Using UV as the main disinfectant process has increased in popularity for aquaculture water, as
it is very effective for inactivating the pathogens Cryptosporidium and Giardia lamblia without forming
any byproducts [63]. Treating the culture water with ozone followed by UV irradiation can result in
“practically complete disinfection” of total heterotrophic bacteria count [64]. The UV irradiation then
both acts as a disinfectant, as well as destroying remaining ozone.

Disinfection of all equipment before use in the system or when moving equipment between tanks
will reduce the likelihood of diseases spreading [61].

Many microorganisms are attached to solids, so removing them from the system with the
previously-mentioned solid removal methods will decrease the total number of microorganisms
within the system. With a small enough mesh size (<20 um), some organisms can be filtered out, while
membranes (<1 nm) can remove all types of microorganisms [17].

Exposing fish (rainbow trout) to specific low frequency electromagnetic fields has “possible effects
on growth performance, non-specific immunity and disease resistance” [65]. Stressed fish is more
susceptible to diseases [61]. Water quality has a large influence on fish stress. However, stress can be
produced by other factors, such as light or sound [61].

Vaccines can protect aquatic animals against some viral and bacterial diseases. The effect is
however dependent on the aquaculture species and diseases [66].

3.9. Controlling Temperature

The temperature of the culture water is important. Each species has its temperature tolerance and
range for optimum survival and growth. If the culture water temperature needs to be much higher
than the inlet water temperature, lower water exchange rates could save heating costs. The partial
taxonomy is presented in Figure 10.
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Figure 10. Taxonomy: controlling temperature.

The technical solutions and the treatment functions are now introduced, and in the rest of this
article, we will present the result of the interaction in a matrix format.

4. The Quality Function Deployment Matrix of Technical Solutions and Treatment Functions

The quality function deployment is a well-known tool to use in product development. It allows
a visual overview of many aspects of the product, and it helps designers to discuss the pros and cons of
different possible solutions. Often, the QFD process is done in a cascading manner to link customers to
the actual product attributes. Here, we only propose one matrix of the interaction between treatment
functions and technical solutions. The other matrices, both in front and behind (see Figure 1), are fine
targets for future work.

Means vs. Treatment Functions

Technical solutions (means) often influence more than one treatment function. The QFD matrix
presented here was developed to describe the relationship between a specific technical solution and all
treatment functions. Technical solutions with a similar effect were grouped together for easier reading
of the matrix (see Table 1).

Table 1. Grouping of Technical solutions with a similar effect for easier reading of the matrix presented
in Tables 2 to 8.

Group Technical.solutions
Sediment(trap(in(plug(flow(raceway
Dual(drain
Horizontal(flow(settling(basin
Standpipe
Lamella(separation
Radial(flow(settler
Hydrocyclones
Drum(filter
Vertically(rotating(disk(filter
Rotating(belt(filter
Horizontally(rotating(disk(filter
Triangler
Bowed(screens
Stacked(trays
Geotextile(bag(filter
Unpressurized(granular(media(filter
Pressurized(granular(media(filter
Continuously(backDflushed((gr.(m.(filter
Diffusers(D(porous(tubes
Diffusers(D(porous(stones
Periphyton(treatment(inside(culture(unit
Periphyton(treatment(outside(culture(unit
BioDfloc(treatment(inside(culture(unit
BioDfloc(treatment(outside(culture(unit
Subsurface(wetlands
Free(water(surface(wetlands
Propeller(washed(bead(filter
Hydraulically(washed(bead(filter
Pneumatically(wahed(bead(filter
NFT(aquaponic(system
Floating(raft(aquaponic(systems

Floating.raft.and.NFT.aquaponic.systems

Wetlands

Bead.filters

Periphyton.treatment

Bio<floc.treatment

Granular.media.filter

Diffusers

Screen.filters

Settleable.particle.removal
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In matrix I, separated into Table 2 through Table 8 (the full matrix is available in a Supplementary
Materials), the treatment functions are on the y-axis divided into sub-functions. The means are listed
up on the x-axis roughly in the order they appear in this article. Three classifications are used to
describe the relationship between the means and the treatment functions; main function (++), derived
benefit (+) and negative effect (−). For example, solid removal techniques have the main function (++)
of removing solids. By removing solids, they will not be degraded in the system and cause reduction
in DO and increased CO2 (+). Further, solids can contain 7%–32% of the total nitrogen and 30%–84% of
the total phosphorus in the system [11]. Finally, microorganisms that are attached to solids are removed,
lowering the chances of any diseases (+). Foam fraction techniques used for fine solid removal and
dissolved organic compounds (++) also provide aeration at the same time (+). The foam fraction with
ozone injection organic matter removal becomes much more efficient (++). Membranes’ main purpose
is to remove impurities (++). However, with a small enough mesh size (<1 nm), they can be used
to remove microorganisms, as well (++) [17]. With proper feed management, waste production can
be reduced, resulting in less organic (++) and inorganic (++) solids; BOD is reduced (+), as well as
nitrogen and phosphorus loading (++). Water exchange is used, in relation to other means, to control
all treatment functions (++). This part of the matrix is presented in Table 2.

Table 2. QFD matrix presenting how feed management, water exchange and solid removal techniques
influence different treatment functions.
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In Table 3, means to control the pH are presented. Managing the pH of the culture water is vital
since the pH has a major effect on the performance of nitrifying bacteria (+) and controls the ratio
of un-ionized ammonia (NH3) and ionized ammonia (NH+

4 ) formed (+). By increasing the pH and
alkalinity, the toxicity of metals (zinc, copper, cadmium) is reduced (+). Seawater addition can be used
to increase the pH (++) and alkalinity (++) of the culture water. Labile aluminum is also reduced with
seawater addition (+).

Sea-shell/limestone filters can be used to increase the pH (++), alkalinity (++) and hardness (++)
of the culture water. CO2 is used in the reaction process with the sea-shell/limestone and is therefore
decreased (+). Using Lye and silica lye increases the pH (++), but not the alkalinity (i.e., buffering
capacity). However, silica lye can be used to decrease the toxicity of aluminum (++). Calcium hydroxide
increases the pH (++) and alkalinity (++) along with its precipitation abilities (++). Lime (calcium
carbonate, quicklime, dolomite and magnesium carbonate) can be used to control the pH (++),
alkalinity (++) and hardness (++) of the water. Quicklime has been proven to specifically reduce
the toxicity of copper and cadmium (++). Sodium carbonate and sodium bicarbonate (baking soda) can
be used to increase the pH (++) and alkalinity (++) of the water. By adding calcium and magnesium
into the water, the hardness is increased (++).



Water 2016, 8, 487 12 of 18

Table 3. QFD matrix presenting how pH control methods influence different treatment functions.
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In Table 4, means specifically intended for DO and CO2 control (++) are presented. Means supplying
oxygen to the water aid nitrification due to its oxygen requirements (+). Packed columns and cascade
aerators increase the dissolved oxygen in the water (++), while at the same time stripping CO2 and
nitrogen gas (++). Spray towers, used for oxygenation (++), can be modified to also strip CO2 and
nitrogen gas (++). Packed columns, cascade aerators and spray towers can also provide evaporation
cooling in warm climates (+).

Table 4. QFD matrix presenting how dissolved oxygen and CO2 control methods influence different
treatment functions.
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Periphyton treatment (Table 5) photosynthesizes inorganic nutrients (++) and carbon dioxide (+)
producing oxygen (+) and biomass that also traps organic matter (+). It also has an effect on the pH (+).
Bio-flocs, created by flocculation of particulate organic matter (+) and bacteria, utilize ammonia
nitrogen (++) in an aerobic process, therefore decreasing the dissolved oxygen (−) and organic
matter (+) in the system. Bio-flocs consume alkalinity (−), causing the pH to decrease (−). In earthen
ponds, ammonia nitrogen can be removed (++) in various ways, such as photosynthesis, producing
O2 (+), or nitrification, consuming O2 (−). In the pond, there is time for settleable solids to settle (+);
phosphorus can be absorbed by the sediment in earthen ponds or retained by phytoplankton (++).
Long contact time between the water surface and air results in nitrogen gas removal (+). Other areas of
the pond can have denitrification, as well (++).

Wetlands (Table 5) remove ammonia nitrogen via plant uptake and nitrification (++). They have
also been found to reduce the total suspended solids (TSS) (+). Occurring microorganisms in
constructed wetlands can inactivate pathogenic microorganisms (++) in the system given adequate
retention time [17]. Bead filters use nitrification to remove ammonia nitrogen in addition to their
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solid removal function (++). Nitrification however consumes oxygen (−), lowers the pH (−) and
produces CO2 (−) while oxidizing some of the dissolved organic matter (+). Rotating biological
contactors (RBC) and trickling filters can provide O2 addition (++) and CO2 removal (++) in addition
to nitrification (++). RBCs can also provide denitrification (++) when used in series or submerged.
With aeration, nitrogen gas is stripped (+). The trickling filter aerates the water, increases DO (++),
decreases CO2 (++) and nitrogen gas (+), as well as provides appropriate conditions for nitrification (++).
Further, trickling filters can provide evaporation cooling in warm climates (+). Fluidized sand filters,
usually nitrification filters (++), could be operated in anaerobic conditions, therefore providing
denitrification (++). Downflow microbead filters can be equipped to strip CO2 (+) in addition to
nitrification (++). However, that is done prior to the nitrification phase, which produces CO2 (−),
so net CO2 production/reduction depends on the efficiency of the nitrification and CO2 stripping.
MBBRs are either operated in aerobic (nitrification)(++) or anaerobic (denitrification) (++) conditions.

Table 5. QFD matrix presenting how periphyton, bio-floc, earthen-ponds and wetlands influence
different treatment functions.
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Table 6. QFD matrix presenting how biofilters influence different treatment functions.
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NFT and floating raft aquaponics systems (Table 7) remove dissolved organic matter (++) and
nutrients, nitrate and phosphate (++), from the water by plant uptake. Media bed aquaponics systems
can facilitate nitrification of ammonia nitrogen (++) to nitrate, which is then taken up by plants’
roots (++). DO reduction takes place in the hydroponics (−).

Ozone, when injected into the water, oxidizes nitrite and organic matter (++) and improves the
flocculation of fine particles (++), making them easier to remove. This results in lower BOD and
COD within the system (+). Ozone “significantly” reduces iron and copper concentration within the
system and also reduces zinc (+). Reactions involving the oxidation of ammonia with ozone have
been associated with an alkalinity decrease [22] (−). Ozone can also aid in the prevention of diseases,
as it is an effective disinfectant of bacteria, viruses and parasites (++). UV irradiation is used in the
prevention of diseases (++). In addition to destroying ozone, it is effective at destroying pathogens
and other harmful organisms. Used in conjunction with ozone “practically complete disinfection” of
heterotrophic bacteria can be achieved. The chemicals alum, ferric chloride and polymers flocculate
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suspended (++) and fine solids (++), increasing and aiding settling (+), as well as flocculating dissolved
phosphorus (++).

Table 7. QFD matrix presenting how aquaponic systems, adsorption, ozonation, UV irradiation and
physicochemical treatment influence different treatment functions.
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Disinfecting equipment (Table 8) prevents diseases (++) and controls disease outbreaks (++)
(maintain hygiene). Different techniques/chemicals are used for disinfecting equipment, which have
different costs, handling (procedures) difficulties, etc. These methods are not considered to have any
other beneficial (+) or negative (−) effect on other treatment functions.

Although practical applications were not found, exposing fish to electromagnetic waves can
improve their disease resistance (++).

Technical solutions to controlling the temperature of the culture water do not influence other
treatment functions. Immersion heaters and oil and gas burners provide heat (++), while heat
exchangers and heat pumps can be used to either heat or cool the culture water (++). Often in
aquaculture, a combination of those technical solutions (heaters, heat exchangers and heat pumps) is
used to control the temperature of the culture water. Direct mixing of water or seawater (++) should
not be mistaken as a water exchange. This water/seawater can originate from a different source
than the inlet water, such as storage tanks, colder streams or wells, and different depths in seawater.
This mixing can either be continuous or added discontinuously as needed.

Table 8. QFD matrix presenting how technical solutions for preventing diseases and controlling
temperature influence different treatment functions.
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5. Discussion

This series of articles has only been a waypoint on a greater journey. To map out the aquaculture
production system as a transformation process, describe all of the ways each function can be solved
and trying to create an overview of the interaction was not the final objective. What we do want to
achieve is a complete aquaculture engineering design methodology. To do that, several things remain
to be done.
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Future work could include several directions, like the taxonomy of input and output functions
and their technological solutions, further work with quality function deployment, better evaluation of
the interactions (quantification) and last, but not the least, the next step in the aquaculture engineering
design methodology. Let us look at those in turn.

The taxonomy presented in these four parts did not include input and output functions. It would
be beneficial to map out all of the technical solutions to those functions in a similar manner as we
have done here. That would complete the taxonomy. Using the QFD methodology to describe how
the customer needs can be linked to the aquaculture production design would have great benefits.
Such an approach could take into account a green-field design of a production system, an upgrade
approach (intensification) and selection strategies for technical solutions. At the other end, finding how
the performance indicators deal or link with each technical solution would further the work towards
a design methodology. Here, we have only coarsely evaluated the strength of the interaction between
treatment functions and technical solutions. A second round would be appropriate to increase the
granularity of the link, a better quantification of the link than the current main function (++), derived
benefit (+) and negative effect (−). This syntax does not allow us to choose between different technical
solutions of from the same group, e.g., how effective are the different screen filters as listed in Table 1
A quantification scheme, e.g., a scale of one to five or similar, on each link would facilitate the making
of design strategies. Finally, tying all of those things into a complete aquaculture engineering design
methodology would be the final grand step.

Supplementary Materials: A complete QFD matrix is available online at www.mdpi.com/2073-4441/8/11/487/s1.
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