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Abstract: The 2+1 dimensional quantum Lifshitz model can be generalised to a class of

higher dimensional free field theories that exhibit Lifshitz scaling. When the dynamical

critical exponent equals the number of spatial dimensions, equal time correlation functions

of scaling operators in the generalised quantum Lifshitz model are given by a d-dimensional

higher-derivative conformal field theory. Autocorrelation functions in the generalised quan-

tum Lifshitz model in any number of dimensions can on the other hand be expressed in

terms of autocorrelation functions of a two-dimensional conformal field theory. This also

holds for autocorrelation functions in a strongly coupled Lifshitz field theory with a holo-

graphic dual of Einstein-Maxwell-dilaton type. The map to a two-dimensional conformal

field theory extends to autocorrelation functions in thermal states and out-of-equilbrium

states preserving symmetry under spatial translations and rotations in both types of Lif-

shitz models. Furthermore, the spectrum of quasinormal modes of scalar field perturbations

in Lifshitz black hole backgrounds can be obtained analytically at low spatial momenta and

exhibits a linear dispersion relation at z = d. At high momentum, the mode spectrum can

be obtained in a WKB approximation and displays very different behaviour compared to

holographic duals of conformal field theories. This has implications for thermalisation in

strongly coupled Lifshitz field theories with z > 1.
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1 Introduction

A second order quantum phase transition is characterized by a dynamical critical scaling

exponent z, which dictates the form of the scaling symmetry present at the zero tempera-

ture critical point,

~x→ λ~x, τ → λzτ , (1.1)

where ~x = (x1, . . . , xd) are spatial coordinates and τ is Euclidean time. In relativistic

systems z = 1 and the scaling symmetry is extended to the full conformal symmetry.

Generic quantum critical points in non-relativistic systems, on the other hand, do not have

conformal symmetry and exhibit anisotropic scaling between time and the spatial directions

with z > 1, commonly referred to as Lifshitz scaling. In this paper we study correlation

functions of scaling operators in theories with Lifshitz scaling in d ≥ 2 spatial dimensions.

We pay particular attention to so-called autocorrelators, i.e. correlation functions where

all the operators are inserted at the same spatial point but at different times,

〈O1(~x, t1)O2(~x, t2) . . .On(~x, tn)〉 . (1.2)

Autocorrelators carry information about the energy spectrum of the model in question and

provide a useful diagnostic of time evolution in out of equilibrium configurations.

We begin in section 2 by introducing a set of free field theories in d+1 dimensions

that realise Lifshitz scaling with arbitrary dynamical critical exponent. These theories

include the well known 2+1-dimensional quantum Lifshitz model as a special case with

z = d = 2 and provide a particularly simple setting to study quantum critical behaviour

at generic integer values of z. Many interesting properties of the original quantum Lifshitz

model survive in the more general free field theories when the dynamical critical exponent z

equals the number of spatial dimensions and we refer to the models with z = d as generalised

quantum Lifshitz models. For instance, it is well known that the ground state correlation

functions of scaling operators at equal time in the original quantum Lifshitz model can

be expressed in terms of correlation functions of a two-dimensional Euclidean field theory

with conformal symmetry [1]. We briefly review this construction and then show how the

connection to conformal field theory extends to d+1-dimensions, provided that z = d, in

which case the connection is to a higher-derivative free field CFT in d dimensions.

There is a further connection to conformal field theory, which is only realised in the time

domain. It turns out that autocorrelators in the generalised quantum Lifshitz model in any

number of dimensions can be expressed in terms of autocorrelators of a two-dimensional

conformal field theory when z = d. This holds for autocorrelators evaluated in any Gaus-

sian state that is symmetric under spatial translations and rotations, and as a non-trivial

example we work out autocorrelators of monopole operators in a thermal state.

Since the generalised quantum Lifshitz model is a free field theory, it is perhaps not that

surprising that its correlation functions take a simple form. It turns out, however, that the

connection to two-dimensional conformal field theory persists when one considers autocor-

relators in a strongly coupled field theory with a holographic dual that exhibits Lifshitz scal-

ing. In section 3 we introduce a holographic model that realises Lifshitz scaling with generic
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z > 1 and evaluate vacuum two-point functions of operators with large scaling dimension.

Analytic expressions are easily obtained for the equal time two-point function and the two-

point autocorrelator at general d and z. For the special case of z = 2 we find a parametrized

solution for the full vacuum two-point function at arbitrary spatial and temporal separation

on the boundary and compare it to the corresponding correlation function in the quantum

Lifshitz model. We then turn our attention to more general autocorrelators in the holo-

graphic model and uncover a quantitative relation to autocorrelators in a two-dimensional

conformal field theory. In particular, we show how the form of three-point autocorrelators

at general d and z is constrained by an underlying two-dimensional extended symmetry.

In section 4 we restrict to integer values of z = d and show how autocorrelators in a

thermal state in the holographic model can be expressed in terms of thermal autocorrelators

of a two-dimensional conformal field theory. The resulting thermal two- and three-point

autocorrelators in the holographic theory thus have the same scaling form as those of the

generalised quantum Lifshitz model.

In section 5 we venture outside the time domain and consider quasinormal modes

of massive scalar field fluctuations at finite momentum. In momentum space we can go

beyond the geodesic approximation and find that the special behaviour at z = d persists

at small momentum and any operator scaling dimension. In appendix C we expand on

the numerical and analytic methods we use to study the quasinormal mode spectrum and

extend our discussion to include quasinormal modes at any z, d and high momentum.

The connection between generalised Lifshitz models at z = d and two-dimensional

conformal field theory extends to more general states that are invariant under spatial

translations and rotations. This includes time-dependent states dual to Lifshitz-Vaidya

spacetimes in the holographic models and quench states in the generalised quantum Lifshitz

model, as briefly illustrated in section 6.

We conclude our discussion in section 7 and some technical results that are referred to

in the main text are worked out in the appendices.

2 The generalised quantum Lifshitz model

Our starting point is a class of d+1-dimensional quantum field theories exhibiting Lif-

shitz scaling with integer valued dynamical critical exponent z. They are governed by the

following (Euclidean) action

S =
1

2

∫
ddxdτ

[
(∂τχ)2 + κ2(∇zχ)2

]
, (2.1)

where κ > 0 is a constant and we are using a shorthand notation,

∇zχ =

{
(∇2)kχ if z = 2k ,

(∇2)k ~∇χ if z = 2k+1 .
(2.2)

These models generalise the well known quantum Lifshitz model [1], which has z = 2 in

2+1 dimensions, and allow us to systematically explore the behaviour of various physical

quantities at different values of the dynamical critical exponent in a controlled free field

– 3 –
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theory setting. When there are explicit analytic results available one can even consider for-

mally extending z to non-integer values. In the following we will mainly be concerned with

theories where z = d, which includes the quantum Lifshitz model as a special case. The con-

nection to conformal field theory found in the quantum Lifshitz model is retained at general

z = d > 2 and accordingly we refer to these theories as generalised quantum Lifshitz models.

The generalised monopole operators (or just monopole operators for short),

Oα(~x, t) = eiαχ(~x,t), (2.3)

with α ∈ R, turn out to have simple scaling properties in the generalised quantum Lifshitz

model and we will focus our attention on their correlation functions. The name monopole

operator arises from a dual gauge field representation of the original quantum Lifshitz

model, where such operators with α = ±2π create magnetic monopoles in three-dimensional

Euclidean space [1].

2.1 Equal time correlation functions

The ground state wave functional of the quantum Lifshitz model with z = d = 2 is given

by the exponential of a Euclidean action of a free 1+1-dimensional conformal field theory

(CFT) [1]. In appendix A we outline how this statement can be generalised to arbitrary

z = d by expressing the ground state wave functional in terms of a free d-dimensional

(higher-derivative) CFT of a type studied recently in [2]. The connection to a CFT can

also be obtained by showing that equal time correlation functions of monopole operators

in the generalised quantum Lifshitz model have the form of CFT correlation functions,

〈Oα1(~x1, τ) . . .Oαn(~xn, τ)〉 =
〈
eiα1χ(~x1) . . . eiαnχ(~xn)

〉
CFT

. (2.4)

Consider the vacuum two-point function of the χ field,

GE(~x1, τ1; ~x2, τ2) =

∫
dωddp

(2π)d+1

e−iω(τ1−τ2)−i~p·(~x1−~x2)

ω2 + κ2p2z
, (2.5)

where p = |~p| and we let z take a general integer value for now. The integral over ω is

easily performed by closing the integration contour around the upper or lower half of the

complex ω-plane, depending on the sign of τ12 ≡ τ1 − τ2. Either way, a single residue at

ω = ±iκpz is picked out, giving

GE(~x1, τ1; ~x2, τ2) =
1

2κ

∫
ddp

(2π)d
1

pz
e−κ|τ12|pz−i~p·~x12 , (2.6)

where ~x12 ≡ ~x1 − ~x2. The remaining momentum integral is convergent for z < d, logarith-

mically divergent for z = d, and power-law divergent for z > d.

For equal time correlation functions we set τ1 = τ2 in (2.6) and then the two-point

function becomes formally identical to the two-point function of a free scalar field in d-

dimensions with the action

S = κ

∫
ddxφ(−∇2)z/2φ . (2.7)
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At z = d with d an even integer, this is one of the higher-derivative free scalar CFTs

considered in [2].1

Equal time correlation functions of monopole operators are obtained by applying

Wick’s theorem, and the connection (2.4) follows from the equality of the two-point func-

tions of the elementary fields at equal time in the generalised quantum Lifshitz model

and the free d-dimensional CFT. So far, we have written down formal expressions which

need to be supplemented by prescriptions for both IR and UV regularisation. To address

such issues, and in order to establish some notation for later use, it is useful to work out

some explicit examples, starting with the equal time correlation function of two monopole

operators,

〈Oα1(~x1, τ)Oα2(~x2, τ)〉 =
〈
eiα1χ(~x1)eiα2χ(~x2)

〉
= e−

1
2
α2

1GE(~x1;~x1)− 1
2
α2

2GE(~x2;~x2)−α1α2GE(~x1;~x2). (2.8)

The equal time GE(~x1; ~x2) is given by (2.6) with z = d and τ1 = τ2,

GE(~x1; ~x2) =
1

2κ

∫
ddp

(2π)d
e−i~p·~x12

pd

=
Vol(Sd−2)

2κ(2π)d

∫ ∞
0

dp

∫ π

0
dθ(sin θ)d−2 e

−ip|~x12| cos θ

p+ µ
, (2.9)

where the parameter µ > 0, introduced to regulate the infrared divergence in the integral

over p, is to be sent to zero at the end of the calculation.

The integral over θ evaluates to a Bessel function,∫ π

0
dθ(sin θ)d−2e−ip|~x12| cos θ = 2(d−2)/2√πΓ

(
d− 1

2

)(
p|~x12|

)1− d
2J d

2
−1(p|~x12|),

and using Vol(Sd−2) = 2π(d−1)/2/Γ(d−1
2 ) we obtain

GE(~x1; ~x2) =
1

2κ(2π)d/2

∫ ∞
0

dy
y1− d

2

y + µ|~x12|
J d

2
−1(y)

= − 1

2dπd/2Γ(d/2)κ

(
log(µ|~x12|) + cd + . . .

)
, (2.10)

where cd is a finite constant and . . . denotes terms that vanish in the limit µ→ 0. Inserting

this expression for GE(~x1; ~x2) into (2.8) then gives

〈
Oα1(~x1, τ)Oα2(~x2, τ)

〉
=
(
µecd

) (α1+α2)2

2d+1πd/2Γ(d/2)κ ε
α2

1+α2
2

2d+1πd/2Γ(d/2)κ |~x12|
α1α2

2dπd/2Γ(d/2)κ , (2.11)

where we have introduced an ultraviolet cutoff,

|~xij | ≥ ε , (2.12)

1In odd numbered spatial dimensions the action (2.7) appears non-analytic in momentum space but we

can still obtain a free CFT at z = d at odd d. A free field theory is fully determined by its two-point

functions and (2.6) with τ1 = τ2 supplies a well-defined two-point function for the φ field for any integer d.
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to regulate the self-contractions in Wick’s theorem. As a result, the equal time two-point

function of monopole operators is independent of the infrared regulator when α1 + α2 = 0

but vanishes when µ→ 0 unless this condition on the charges is satisfied. The dependence

on the ultraviolet cutoff can be absorbed into a renormalisation of the monopole operator

when viewed as a composite operator,

ORα (~x, τ) ≡ ε−∆eiαχ(~xi,τ) , (2.13)

of scaling dimension

∆ =
α2

2d+1πd/2Γ
(
d
2

)
κ
. (2.14)

The equal time two-point function of renormalized monopole operators then reduces to the

usual scaling form,

〈ORα (~x1, τ)OR−α(~x2, τ)〉 = |~x12|−2∆. (2.15)

The equal time correlation function of three monopole operators is obtained in a similar

fashion,

〈Oα1(~x1, τ)Oα2(~x2, τ)Oα3(~x3, τ)〉

= e−
1
2

∑3
i,j=1 αiαjGE(~xi;~xj) (2.16)

=
(
µecd

) (α1+α2+α3)2

2d+1πd/2Γ(d/2)κ ε∆1+∆2+∆3 |~x12|∆3−∆1−∆2 |~x13|∆2−∆3−∆1 |~x23|∆1−∆2−∆3 .

This expression vanishes in the µ → 0 limit unless α1 + α2 + α3 = 0 but when the sum

of charges is zero the equal time three-point function of renormalised monopole operators

reduces to a standard CFT form,

〈ORα1
(~x1, τ)ORα2

(~x2, τ)ORα3
(~x3, τ)〉 = |~x12|∆3−∆1−∆2 |~x13|∆2−∆3−∆1 |~x23|∆1−∆2−∆3 . (2.17)

Finally, a straightforward calculation gives the equal time correlation function of four

renormalised monopole operators with
∑4

i=1 αi = 0 in terms of invariant cross ratios,

〈ORα1
(~x1, τ) . . .ORα4

(~x4, τ)〉 = ε−∆̃e−
1
2

∑4
i,j=1 αiαjGE(~xi;~xj) (2.18)

=
∏
i<j

|~xij |
∆̃
3
−∆i−∆jX

∆̃
3
− (α1+α3)2

2d+1πd/2Γ(d/2)κY
∆̃
3
− (α1+α4)2

2d+1πd/2Γ(d/2)κ ,

where X = |~x12| |~x34|
|~x13| |~x24| , Y = |~x12| |~x34|

|~x14| |~x23| and ∆̃ =
∑4

i=1 ∆i.

2.2 Operators inserted at generic points

We now turn our attention to correlation functions in the generalised quantum Lifshitz

model with operators inserted at different times as well as different spatial positions. For

this we find it convenient to adopt a streamlined regularisation procedure along the lines

of the one used by [1] in the original quantum Lifshitz model. Having established that

non-vanishing correlation functions of monopole operators are independent of the infrared

regulator, we can dispense with µ in our formulas, provided we only consider correlation

– 6 –
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functions where the monopole charges satisfy
∑

i αi = 0. The ultraviolet divergences are

then efficiently handled by introducing a regularised two-point function with the equal time

coincident point two-point function subtracted off. Starting from (2.6) we obtain

GRE(~x1, τ1; ~x2, τ2) ≡ GE(~x1, τ1; ~x2, τ2)−GE(~x1, τ1; ~x2, τ2)
∣∣∣
{|~x12|=ε, τ12=0}

=
1

2κ(2π)d/2

∫ ∞
0

dp

p

[(
p|~x12|

)1− d
2J d

2
−1(p|~x12|)e−κ|τ12|pd −

(
pε
)1− d

2J d
2
−1(pε)

]
=

1

2κ(2π)d/2

∫ ∞
0

dy y−d/2
[
J d

2
−1(y)e−ξy

d −
∣∣∣∣~x12

ε

∣∣∣∣ d2−1

J d
2
−1

(
εy

|~x12|

)]
, (2.19)

where in the last step we have introduced a scaling variable,

ξ ≡ κ|τ12|
|~x12|d

, (2.20)

which is invariant under the Lifshitz scaling transformation (1.1) with z = d.

The equal time correlation functions of renormalised monopole operators are easily

recovered by setting ξ = 0 in the regularised two-point function. In this case the integral

in (2.19) can be obtained in closed form and one finds the following exact result for the

regularised equal time two-point function,

GRE(~x1; ~x2) = − 1

2dπd/2Γ
(
d
2

)
κ

log

(
|~x12|
ε

)
. (2.21)

Wick’s theorem then yields the same equal time correlation functions of monopole operators

as in section 2.1.

The regularised two-point function at generic points can be expressed as a sum of two

terms: the equal time two-point function (2.21) and an integral that only depends on the

Lifshitz invariant combination ξ,

GRE(~x1, τ1; ~x2, τ2) = GRE(~x1; ~x2)
∣∣∣
ξ=0

+ Id(ξ) , (2.22)

with

Id(ξ) =
1

2κ(2π)d/2

∫ ∞
0

dy y−d/2J d
2
−1(y)

(
e−ξy

d − 1
)
. (2.23)

The integral is finite for any finite value of ξ and can easily be evaluated numerically for any

given number of spatial dimensions. Correlation functions of monopole operators inserted

at generic points do not have the CFT form found for equal time correlators but depend

on the Lifshitz invariant ratio ξ in a non-trivial way. For instance, the correlation function

of two renormalised monopole operators is given by

〈ORα (~x1, τ1)OR−α(~x2, τ2)〉 = |~x12|−2∆ eα
2Id(ξ). (2.24)

In the special case of d = 2, the integral can be expressed in terms of an incomplete gamma

function

I2(ξ) = − 1

8πκ
Γ

(
0,

1

4ξ

)
, (2.25)
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and we reproduce the monopole operator two-point function of [1] for the original quantum

Lifshitz model,

〈ORα (~x1, τ1)OR−α(~x2, τ2)〉 = |~x12|−2∆ e
−∆Γ

(
0,
|~x12|

2

4κ|τ12|

)
. (2.26)

2.3 Vacuum autocorrelators

Next we consider monopole operators located at the same spatial point but at different

times and evaluate the resulting autocorrelation functions. This amounts to taking the

limit |~xij | → 0 for all the spatial insertion points before using Wick’s theorem to evaluate

the correlation function of the monopole operators. At first sight, the regularised two-

point function (2.22) appears singular in this limit, due to the logarithmic dependence on

|~x12| in the equal time two-point function (2.21), but this turns out to be cancelled by a

corresponding logarithm in the integral Id(ξ) at large ξ.

To see this, we differentiate Id with respect to ξ,

dId
dξ

= − 1

2(2π)d/2κ

∫ ∞
0

dy yd/2J d
2
−1(y)e−ξy

d
, (2.27)

then use the series expansion for the Bessel function,

Jm(y) =
(y

2

)m ∞∑
n=0

(−1)n

Γ(n+1)Γ(m+n+1)

(y
2

)2n
, (2.28)

and exchange the order of summation and integration to obtain

d

dξ
Id = − 1

d 2dπd/2κ

∞∑
n=0

(−1)n

22n

Γ(2n
d +1)

Γ(n+1)Γ(n+d
2)

(
1

ξ

) 2n
d

+1

. (2.29)

Integrating with respect to ξ and keeping only the leading terms at large-ξ, we find

Id(ξ) =
1

d 2dπd/2Γ
(
d
2

)
κ

[
− log ξ + c̃d +O(ξ−2/d)

]
, (2.30)

where c̃d is a d-dependent constant of integration. Finally, we insert this into (2.22) and see

that the logarithm of |~x12| is precisely cancelled, leaving a well-defined expression for the

regularised two-point function of the χ field inserted at the same spatial point at different

times,

GRE(τ1; τ2) = − 1

d 2dπd/2Γ
(
d
2

)
κ

log

(
κ|τ12|
ec̃dεd

)
. (2.31)

With the two-point function in hand, the autocorrelation functions of renormalised

monopole operators, as defined in (2.13), are easily obtained by applying Wick’s theo-

rem. For instance, for two monopole operators carrying opposite charges inserted at ~x at

times τ1 and τ2, one finds the following scaling form,

〈ORα (~x, τ1)OR−α(~x, τ2)〉 = |e−c̃dκ τ12|−2∆/d. (2.32)

The scaling exponent in (2.32) differs from the one found in the corresponding equal time

correlation function (2.15) by a factor of 1/d, reflecting the underlying z = d Lifshitz
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symmetry. This result could be anticipated, as the form of the two-point function of

scaling operators is fixed by scale invariance. Higher-point functions, on the other hand,

are not fixed by scale invariance but nevertheless higher order autocorrelation functions of

monopole operators also have a characteristic CFT form. For three renormalised monopole

operators with α1 + α2 + α3 = 0 we obtain,

〈ORα1
(τ1)ORα2

(τ2)ORα3
(τ3)〉 ∝ |τ12|(∆3−∆1−∆2)/d |τ23|(∆1−∆2−∆3)/d |τ13|(∆2−∆3−∆1)/d, (2.33)

up to an overall constant factor that we have not kept track of. Similarly, the four-point

autocorrelator with
∑
αi = 0 is given by

〈ORα1
(τ1)ORα2

(τ2)ORα3
(τ3)ORα4

(τ4)〉 (2.34)

∝
∏
i<j

|τij |
∆̃
3d
−∆i

d
−

∆j
d X

∆̃
3d
− (α1+α3)2

d 2d+1πd/2Γ(d/2)κ Y
∆
3d
− (α1+α3)2

d 2d+1πd/2Γ(d/2)κ ,

where X = |τ12| |τ34|
|τ13| |τ24| , Y = |τ12| |τ34|

|τ14| |τ23| and ∆̃ =
∑4

i=1 ∆i. The apparent CFT structure clearly

generalises to n-point autocorrelators for any n in the ground state.

We have seen that both equal time correlation functions and autocorrelation functions

in the generalised quantum Lifshitz model have the appearance of CFT correlation func-

tions while this does not hold for correlation functions of operators inserted at generic

points in space and time. For the autocorrelation functions it is less clear why there should

be any connection to a CFT as in this case the correlation functions are not simply given by

path integrals weighted with the vacuum wave functional and they involve time evolution

with respect to a Lifshitz symmetric rather than a conformally invariant Hamiltonian.

The relation to a CFT for autocorrelation functions can be established in another way,

which reveals that the CFT in question is not the same as the one involved for the equal

time correlation functions. In fact, the vacuum autocorrelation functions of the generalised

quantum Lifshitz model in any number of spatial dimensions are matched by those of a

standard free boson CFT in two Euclidean dimensions.

Starting from (2.5) and setting ~x1 = ~x2, the two-point function of the elementary field

is given by

GE(τ1; τ2) =

∫
dωddp

(2π)d+1

e−iω τ12

ω2 + κ2p2d
. (2.35)

Now write the p integral in spherical coordinates, change variables to q = κpd and extend

the range of integration over q to be from −∞ to ∞, to obtain

GE(τ1; τ2) =
1

d 2dπd/2Γ
(
d
2

)
κ

∫
dωdq

2π

e−iωτ12

ω2 + q2
. (2.36)

This is the two-point function at coincident spatial points of a free two-dimensional CFT

with the action

SCFT = d 2d−2π
d
2
−1Γ(d/2)κ

∫
dydτ

(
(∂τχ)2 + (∂yχ)2

)
. (2.37)
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The key point in the above reduction is that the integrand in (2.35) only depends on the

magnitude of the momentum and not on its direction. Thus, it works only for autocorre-

lators.

To evaluate the two-point function (2.36) in this approach, we would introduce in-

frared and ultraviolet regulators and proceed in parallel with the calculation presented

in section 2.1 for equal time correlation functions. It is straightforward to check that

such a calculation reproduces the autocorrelation functions of monopole operators in the

generalised quantum Lifshitz model found above.

2.4 Autocorrelators in a thermal state

We round up our discussion of the generalised quantum Lifshitz model at z = d by consider-

ing thermal autocorrelation functions. In the Matsubara formalism the two-point function

of the χ field in a thermal state is given in terms of the sum

GE(τ1, τ2) = T
∑
n

∫
ddp

(2π)d
e−iωnτ12

ω2
n + κ2p2d

, ωn = 2πnT. (2.38)

As before, we make the change of variables in the momentum integral q = κpd, which gives

GE(τ1, τ2) =
2πT

d 2dπd/2Γ(d2)κ

∑
n

∫
dq

2π

e−iωnτ12

ω2
n + q2

. (2.39)

This is precisely the thermal two-point function of the free conformal field theory with the

action (2.37) [5]. The thermal autocorrelation functions of monopole operators are thus

identical to those of a two-dimensional free boson, as they can be obtained from the χ

autocorrelation function using Wick contraction.

We use the same regularization procedure as in section 2.2 above and restrict our atten-

tion to correlation functions where the monopole charges satisfy
∑

i αi = 0. A regularised

two-point function, with the equal time two-point function subtracted off, is given by

GRE(τ1; τ2) ≡ GE(τ1; τ2)−GE(τ + ε̃; τ)

= − 1

d 2dπd/2Γ(d2)κ
log

[
| sin(πTτ12)|

πT ε̃

]
, (2.40)

where ε̃ is an ultraviolet cutoff in the Euclidean time direction and we have performed

the integral and sum in (2.39). This reduces to the zero temperature two-point function

in (2.31) in the T → 0 limit provided the temporal and spatial UV cutoffs are related by

κ ε̃ = ec̃dεd . (2.41)

The thermal autocorrelator of two renormalised monopole operators is then given by

〈
ORα (~x, τ1)OR−α(~x, τ2)

〉
=

(πT )2∆/d

|e−c̃dκ sin(πTτ12)|2∆/d
. (2.42)
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For later reference, we include also the thermal autocorrelator of three renormalised

monopole operators in the generalized quantum Lifshitz model,

〈ORα1
(τ1)ORα2

(τ2)ORα3
(τ3)〉 (2.43)

∝ (πT )(∆1+∆2+∆3)/d

| sin(πTτ12)|(∆1+∆2−∆3)/d | sin(πTτ23)|(∆2+∆3−∆1)/d | sin(πTτ13)|(∆3+∆1−∆2)/d
.

3 Holographic models with Lifshitz scaling

Anisotropic scaling of the form (1.1) with z > 1 is realized in holographic models through

geometries that are asymptotic to the so-called Lifshitz spacetime [3, 4]

ds2 = `2
(
dτ2

u2z
+
du2

u2
+
d~x 2

u2

)
, (3.1)

Here ` is a characteristic length scale in the higher dimensional bulk spacetime and the

coordinates τ , u, and ~x are dimensionless. For convenience, we adopt units such that ` = 1.

The Lifshitz metric (3.1) is invariant under

τ → λz τ , ~x→ λ~x , u→ λu , (3.2)

which incorporates the scaling in (1.1) on the τ and ~x coordinates. Spacelike infinity is at

u = 0 and the geometry has a null singularity at u→∞, where tidal forces diverge while

all scalar curvature invariants remain finite. This is a peculiarity of the Lifshitz vacuum

spacetime. Finite temperature states in the dual boundary field theory instead correspond

to Lifshitz black holes with a non-singular horizon at a finite value of u.

The Lifshitz spacetime is known to be a solution of the field equations of several

different gravitational models. The Einstein-Maxell-dilaton (EMD) theory [6],

SEMD = −
∫

dd+2x
√
−g

[
R− 2Λ− 1

2
∂µφ∂

µφ− 1

4
eαφFµνF

µν

]
, (3.3)

with negative cosmological constant Λ = −1
2(d + z)(d + z − 1) and α = −

√
2d/(z − 1) is

a particularly convenient choice. This model has well known analytic black hole solutions

for generic z ≥ 1 [7], which we utilize when we discuss thermal correlation functions in

section 4 below. Our results in the present section, including those higher-order vacuum

correlation functions in section 3.3, hold for arbitrary values of d and z. They only rely on

the form of the Lifshitz metric (3.1) and do not depend on the choice of gravitational model.

The Lifshitz metric is a solution of the EMD field equations when the dilaton and

gauge field have the following background values,

eφ =
(u0

u

)√2d(z−1)
, Fuτ = i

√
2(z + d)(z − 1)u−z−1

0

(u0

u

)d+z+1
, (3.4)

where the factor of i appears due to the Euclidean signature and u0 is an arbitrary reference

value of u which arises due to the shift symmetry of the action

φ→ φ+ c, Aµ → e−cα/2Aµ. (3.5)
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As expected when z = 1, the dilaton is independent of u, the auxilliary gauge field vanishes,

and the Lifshitz metric reduces to that of anti-de Sitter space.

A z ≥ 1 planar black brane solution is given by

ds2 = f(u)
dτ2

u2z
+

1

f(u)

du2

u2
+
d~x 2

u2
, (3.6)

with

f(u) = 1− (u/uH)z+d (3.7)

and the same dilaton and gauge field (3.4) as the Lifshitz vacuum. Now there is a horizon

at u = uH and in order for the Euclidean spacetime geometry to be smooth there the time

τ must be periodic with a period that corresponds to the Hawking temperature

T =
d+ z

4πuzH
. (3.8)

Due to the underlying scale symmetry of the planar black brane solution, all finite tem-

peratures are physically equivalent in this system. Indeed, one is always free to rescale the

horizon radius uH to unity by a scale transformation of the form (3.2) accompanied by an

appropriate shift (3.5), upon which the temperature in (3.8) becomes a pure number.

3.1 Scalar two-point functions in the geodesic approximation

Now consider a minimally coupled scalar field with the action

S =
1

2

∫
dd+2x

√
g
(
(∂ϕ)2 +m2ϕ2

)
. (3.9)

In general, the two-point function of the scaling operator O in the dual boundary field

theory, that is dual to the bulk field ϕ, is obtained from a solution of the Klein-Gordon

equation,

(−∇2 +m2)ϕ = 0 . (3.10)

Near the u→ 0 boundary the solutions have the asymptotic form

ϕ(τ, ~x, u) = ϕ−(τ, ~x)u∆− + ϕ+(τ, ~x)u∆+ + . . . . (3.11)

with

∆± =
d+ z

2
±

√(
d+ z

2

)2

+m2. (3.12)

The scaling dimension of O is ∆ = ∆+ and for large scalar mass we have ∆ ≈ m� 1.

The two-point correlation function of operators of high scaling dimension, ∆ � 1,

can be expressed in terms of the length of the shortest bulk geodesic connecting the two

insertion points x1 = (τ1, ~x1) and x2 = (τ2, ~x2) on the boundary [10, 11],

〈OR(x1)OR(x2)〉 ≈ ε−2∆e−∆L(x1;x2). (3.13)

Here ε is an infrared cutoff in the bulk spacetime, u > ε. The geodesic approximation

can be motivated either from a saddle point approximation in the particle path integral
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representation of the bulk Klein-Gordon propagator, or from a WKB solution of the bulk

Klein-Gordon equation [12].

We will determine the geodesic by minimizing the length functional

L =

∫
dλ

1

2

(
e−1gµν

dxµ

dλ

dxν

dλ
+ e

)
, (3.14)

where e is a vielbein that satisfies the following equation of motion

e2 = gµν
dxµ

dλ

dxν

dλ
. (3.15)

We can use the coordinate reparametrization symmetry to set e = 1 so that the length

functional reduces to

L =

∫
dλ = λ2 − λ1, (3.16)

where λ1, λ2 are the values of the affine parameter of the geodesic at its endpoints on the

boundary.

We first consider vacuum correlation functions of high-dimension operators, which are

captured by geodesics in the Lifshitz spacetime (3.1). Thermal correlators obtained from

geodesics in Lifshitz black hole backgrounds will be considered in section 4. We orient the

spatial coordinates on the boundary so that the geodesic endpoints to lie on the x-axis, in

which case the geodesic equations become

τ̇ = E u2z, (3.17)

ẋ = p u2, (3.18)

u̇2

u2
= 1− p2u2 − E2u2z, (3.19)

where ḟ ≡ df/dλ and E, p are constants. Using (3.19) the affine parameter can be expressed

as an integral over the radial coordinate,

λ =

∫
du

u

1√
1− p2u2 − E2u2z

+ constant. (3.20)

Below, we focus on some special values of z, p, and E where the integral can be explicitly

evaluated. Numerical results are readily obtained for generic values of these parameters

but we will not pursue that here.

3.2 Two-point function at equal time and the two-point autocorrelator

We are not able to evaluate the integral in (3.20) analytically in full generality,2 but we

can proceed by setting either E = 0 or p = 0, which corresponds to equal time correlation

functions or autocorrelation functions, respectively.

We begin by considering a geodesic connecting boundary points that are spatially

separated but at equal times, which amounts to setting E = 0 in (3.20). Adjusting the

2In appendix B we consider the special case of z = 2, for which which one can analytically compute the

integral in (3.20) for both E and p non-zero (for any number of spatial dimensions d).
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constant of integration so that λ = 0 corresponds to the midpoint of the geodesic, one finds

a radial profile

u(λ) =
1

|p|
1

coshλ
. (3.21)

With an infrared cutoff the geodesic endpoints are at u = ε, which translates into

λ1,2 = ± log

(
ε|p|
2

)
+O(ε2) . (3.22)

By integrating (3.18) and taking the ε→ 0 limit, we find that p = 2/|~x12|. The regularized

geodesic length is then given by

LR = −2 log ε+ 2 log |~x12|+O(ε2) , (3.23)

and the equal time vacuum two-point function has the expected scaling form,

〈OR(~x1, τ)OR(~x2, τ)〉 = |~x12|−2∆ , (3.24)

which is independent of the value of d and z.

The autocorrelator at generic z is obtained by setting p = 0 in (3.20) and going through

the same steps as before. The radial profile of the geodesic is given by

u = (|E| cosh zλ)−1/z . (3.25)

and by integrating (3.17) we find E = 2/(z|τ12|). The regularized geodesic length is

LR = −2 log ε+
2

z
log (z|τ12|) . (3.26)

Inserting this into (3.13) leads to a scaling form of the two-point autocorrelator,

〈OR(~x, τ1)OR(~x, τ2)〉 = (z |τ12|)−2∆/z . (3.27)

This expression differs from that of the equal time correlator in precisely the way one

expects from the Lifshitz scaling relation (1.1).

3.3 Three-point vacuum autocorrelators

In this section we obtain the three-point autocorrelator of large-dimension scalar operators

in the Lifshitz vacuum, i.e. a boundary correlation function, with all three operators in-

serted at the same spatial position ~x = 0 but at different (Euclidean) times τ1, τ2, τ3. We

consider a bulk theory with a three-point vertex of the form

− λ

3!

∫
dd+2x

√
gφ1(x)φ2(x)φ3(x), (3.28)

where the fields φj have masses mj . To first order in powers of λ, the three-point function,

is given by a tree-level Witten diagram,

G3(τ1, τ2, τ3) = −λ
∫
ddxdτdu

√
gG

(1)
BB(0, τ1; ~x, τ, u)G

(2)
BB(0, τ2; ~x, τ, u)G

(3)
BB(0, τ3; ~x, τ, u).

(3.29)
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In the limit of large scaling dimensions, ∆j = mj � 1, the integral can be performed in a

saddle point approximation,

G3(τ1, τ2, τ3) ∝ −λ e−
∑
j ∆j LR(0,τj ;~x,τ,u) , (3.30)

where LR(0, τj ; ~x, τ, u) is the regularised length of a geodesic connecting the boundary point

(0, τj) and the bulk point xµ = (~x, τ, u). The bulk vertex is positioned so as to minimise

the sum over the lengths of the bulk-to-boundary geodesics (weighted by the corresponding

scaling dimensions),

∂

∂xµ

3∑
j=1

∆jLR(0, τj ; ~x, τ, u) = 0. (3.31)

It is clear by symmetry that the bulk saddle point will be at ~x = 0 and we only have to

vary τ and u to locate it.

At this point it is convenient to change the radial coordinate to y = uz/z so that the

Lifshitz metric (3.1) becomes

ds2 =
1

z2

1

y2
(dτ2 + dy2) +

1

(zy)2/z
d~x2, (3.32)

The part of the metric that is relevant for geodesics in the (τ, y)-plane is that of AdS2

with a characteristic radius rescaled by a factor of 1/z compared to that of the Lifshitz

spacetime. The geodesics are simply arcs of semicircles in the new coordinates and their

regularised length is given by

LR(0, τj , ε
z/z; 0, τ, y) =

1

z

(
log
(
(τ − τj)2 + y2

)
− log y + log z − z log ε

)
. (3.33)

The saddle point equations (3.31) reduce to

3∑
j=1

∆j

z

τ − τj
(τ − τj)2 + y2

= 0 , (3.34)

3∑
j=1

∆j

z

(τ − τj)2 − y2

(τ − τj)2 + y2
= 0 , (3.35)

and after some algebra one finds the following solution

y2 =
γ

4P 2
τ2

12τ
2
23τ

2
13 , (3.36)

τ =
X

2P
, (3.37)

where

γ = 2∆2
1∆2

2 + 2∆2
1∆2

3 + 2∆2
2∆2

3 −∆4
1 −∆4

2 −∆4
3 ,

P = ∆1∆2τ
2
12 + ∆2∆3τ

2
23 + ∆1∆3τ

2
13 −∆2

1τ12τ13 −∆2
2τ21τ23 −∆2

3τ31τ32 , (3.38)

X = ∆2
1τ12τ31(τ2 + τ3) + ∆2

2τ12τ23(τ1 + τ3) + ∆2
3τ23τ31(τ1 + τ2)

+2∆1∆2τ
2
12τ3 + 2∆1∆3τ

2
13τ2 + 2∆2∆3τ

2
23τ1 .

– 15 –



J
H
E
P
0
5
(
2
0
1
7
)
0
3
3

Non-trivial cancellations occur when the solution is inserted into the expression for the reg-

ularised length (3.33), yielding rather simple time dependence. For instance, the geodesic

connecting the bulk vertex to the boundary insertion at τ1 has length

LR(0, τ1, ε
z/z; 0, τ, y) =

1

z
log

[
2∆1(∆1 −∆2 −∆3)

√
γ

]
+

1

z
log

[
|zτ12||zτ13|
|zτ23|εz

]
. (3.39)

The lengths of the geodesics connecting to the boundary at τ2 and τ3 are obtained by

cyclic permutation. This, in turn, leads to the following CFT-like form for the three-point

autocorrelator,

G3(τ1, τ2, τ3) ∝ C(∆1,∆2,∆3)

|τ12|(∆1+∆2−∆3)/z|τ13|(∆1+∆3−∆2)/z|τ23|(∆2+∆3−∆1)/z
, (3.40)

where the analog of the OPE coefficient is given by

C(∆1,∆2,∆3) = −λ (γ/2)∆/z∆
−∆1/z
1 ∆

−∆2/z
2 ∆

−∆3/z
3 z−(∆1+∆2+∆3)/z (3.41)

× (∆1−∆2−∆3)−∆1/z(∆2−∆3−∆1)−∆2/z(∆3−∆1−∆2)−∆3/z.

4 Holographic thermal autocorrelators

In this section we outline the computation of two- and three-point thermal autocorrelators.

The geodesics relevant to the autocorrelators are located on a constant ~x slice, as they

provide an extremum of the geodesic length functional. Thus, the only part of the metric

relevant to the autocorrelator geodesics is

ds2
2 = gττdτ

2 + guudu
2. (4.1)

On a Lifshitz black brane with z = d, this part of the metric has the form

ds2
2,Lif =

(
1− u2d

u2d
H

)
dτ2

u2d
+

du2

u2(1− u2d

u2d
H

)
, (4.2)

corresponding to a thermal state with T = d/2πudH . In gravitational duals of 1+1 dimen-

sional CFTs the spacetime dual to a thermal state is the BTZ black hole. The corresponding

part of the metric in a BTZ black hole is

ds2
2,BTZ =

1

y2

[(
1− y2

y2
H

)
dτ2 +

dy2

1− y2

y2
H

]
. (4.3)

The geometric reason for the agreement of the autocorrelators is that there is a time

independent coordinate transformation relating (4.2) and (4.3) up to a constant rescaling

of the metric,

y =
ud

d
, ds2

2,Lif =
1

d2
ds2

2,BTZ . (4.4)

The radial positions of the black brane horizons are related by yH = udH/d. Within the

geodesic approximation the factor of 1/d2 in front of the BTZ metric is important in
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getting right the Lifshitz scaling dimension ∆ ≈ m/d. This is apparent when we consider

the thermal two-point correlation function in the geodesic approximation,

G2 ∝ e−mLLif = e−
m
d
LBTZ . (4.5)

The fact that the relevant part of the Lifshitz black hole metric can be transformed into the

BTZ metric implies agreement between thermal z = d Lifshitz autocorrelators and thermal

autocorrelators of a 1+1 dimensional CFT for large scaling dimension operators. In what

follows, we check this explicitly for thermal two- and three-point correlation functions.

4.1 Holographic thermal two-point autocorrelators

The time translational symmetry of the action (3.14) leads to a conserved energy

E = u−2d

(
1− u2d

u2d
H

)
τ̇ , (4.6)

and since we are interested in the autocorrelator we can set ~x to be constant along the

geodesic and use e = 1 in (3.15), to solve for u(λ),

u̇2

u2
= 1−

(
u−2d
H + E2

)
u2d . (4.7)

This leads to the integral

λ− λ0 =

∫
dũ

ũ
√

1− ũ2d(1 + Ẽ2)
, (4.8)

where λ0 is a reference point along the geodesic, which will turn out to be the turning

point, and we have introduced rescaled variables ũ = u/uH and Ẽ = udHE to simplify

notation. This can be integrated to

ũd(λ) =
1√

1 + Ẽ2 cosh [d(λ− λ0)]
. (4.9)

Next we obtain τ from (4.6),

τ̃(λ) =

∫
dλ

Ẽ

(1 + Ẽ2) cosh2[d(λ− λ0)]− 1
, (4.10)

where we have also introduced a rescaled time variable τ̃ = τ/udH . Performing the integral

leads to the identity

tan(d τ̃) =
1

Ẽ
tanh[d(λ− λ0)] , (4.11)

where we have used the symmetry of the metric under Euclidean time translations to set

τ = 0 at the turning point. Next we require that as λ → λ1,2, the radial coordinate

approaches the cutoff at u = ε, which allows us to determine λ1 and λ2 and the regularised

length of the geodesic becomes

LR = λ2 − λ1 =
2

d
log

(
2udH

εd
√

1 + Ẽ2

)
. (4.12)
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Now the only problem left is to relate Ẽ to the time separation between the endpoints of

the geodesic. This can be obtained from (4.11) by taking the limit λ → λ2 and requiring

that τ → τ2 = τ12/2. This leads to

Ẽ =
1

tan (πTτ12)
, (4.13)

where T is the temperature of the Lifshitz black brane. Plugging this value of Ẽ into the

regularized length in (4.12) and inserting the resulting expression into (3.13) finally gives

the two-point autocorrelation function,

〈OR(~x, τ1)OR(~x, τ2)〉 =

(
πT

d sin(πT |τ12|)

)2∆/d

, (4.14)

which reduces to (3.27) in the zero temperature limit.

4.2 Holographic thermal three-point autocorrelators

To calculate the thermal three-point function it is convenient to use the coordinates (y, τ)

for the Lifshitz black brane as defined in (4.3) and (4.4). The regularized length of an equal

space geodesic connecting the bulk point (τ, y, ~x = 0) and the boundary point (τi, ~x = 0)

is then given by the corresponding expression in the BTZ spacetime, multiplied by the

constant factor 1/d.

L
(i)
R =

1

d
log

[
2d y2

H

yεd

(
1−

√
f(y) cos

(
τ − τi
yH

))]
, (4.15)

where we denote f(y) = 1− y2

y2
H

. The calculation of the three-point function in the geodesic

approximation proceeds as in the vacuum case, this time extremising the action

SR =
3∑
i=1

∆i

d
log

[
2dy2

H

yεd

(
1−

√
f(y) cos

(
τ − τi
yH

))]
. (4.16)

As before, the three-point function is given by the saddle point value, G3 ≈ e−SR .

At this point it is convenient to introduce new coordinates that map the (τ, y) section

of BTZ into the Poincare patch of AdS2,

ȳ =
y

1 +
√
f(y) cos( τ

yH
)
, τ̄ =

yH
√
f(y) sin( τ

yH
)

1 +
√
f(y) cos( τ

yH
)
. (4.17)

In terms of the AdS2 coordinates, the action (4.16) is given by

SR =

3∑
i=1

∆i

d

[
log

(
(τ̄ − τ̄i)2 + ȳ2

ȳ

)
− log

(
τ̄2
i + y2

H

2y2
H

)
+ log d− log εd

]
, (4.18)

where τ̄i = yH tan τi
2yH

. We note that, apart from the second term in the brackets, this

expression is the same as the action obtained from the regularised geodesic length (3.33) in
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the vacuum (upon setting z = d). The extra term arises from the coordinate transformation

in (4.17), but since it does not involve the variables τ̄ and ȳ the minimisation problem at

finite temperature reduces to the corresponding problem in the vacuum, which was already

solved in section 3.3. Using the result (3.40), we obtain the thermal three-point function

G3(τ1, τ2, τ3) ≈
C(∆1,∆2,∆3)

∏3
i=1

(
τ̄2
i +y2

H

2y2
H

)∆i/d

|τ1 − τ2|(∆1+∆2−∆3)/d|τ1 − τ3|(∆1+∆3−∆2)/d|τ2 − τ3|(∆2+∆3−∆1)/d
,

(4.19)

where C(∆1,∆2,∆3) is given by (3.41). After some algebra this reduces to,

G3(τ1, τ2, τ3) (4.20)

≈ (πT )(∆1+∆2+∆3)/dC(∆1,∆2,∆3)

| sin(πTτ12)|(∆1+∆2−∆3)/d| sin(πTτ13)|(∆1+∆3−∆2)/d| sin(πTτ23)|(∆2+∆3−∆1)/d
,

which reduces to (3.40) in the zero temperature limit. Up to an overall factor this coincides

with the thermal three point function (2.43) of the generalized quantum Lifshitz model,

consistent with an underlying conformal symmetry.

5 Excursions outside the time domain

In the previous sections we have seen that, in the limit of large scaling dimensions,

the autocorrelation functions of scalar operators computed in Lifshitz spacetime and

Lifshitz black brane backgrounds for z = d have the form of autocorrelation functions

of a 1+1-dimensional conformal field theory. In this section we investigate the structure

of thermal correlation functions at generic values of ∆. We perform the analysis in

momentum space and, when possible, make contact with the real-space calculations

discussed in the previous sections.

The wave equation for a massive scalar field in the Lifshitz-like black brane back-

ground (3.6) with z = d is

ϕ′′(u)− 1

1− u
ϕ′(u) +

1

4u2(1− u)d2

(
w2u

(1− u)
− q2u

1
d −∆(∆− 2d)

)
ϕ(u) = 0 , (5.1)

where we have expanded ϕ in Fourier modes as

ϕ(u, t, ~x) = e−iωt+i~p·~xϕ(u) , (5.2)

and defined the dimensionless quantities

u =
u2d

u2d
H

, w =
ω

2πT/d
, ~q =

~p

(2πT/d)1/d
. (5.3)

We wish to determine the analytic structure in frequency space of correlation functions of

scalar operators dual to the bulk field ϕ. We begin by computing the two-point correlation

function explicitly for ~q = 0 to establish a connection with the holographic autocorrelation

functions of the previous section. We then determine the quasinormal mode frequencies,
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which correspond to poles of the real-time correlation function. We obtain the mode

spectrum numerically at generic values of q and also analytically in an expansion for small-

q as well as in a WKB approximation for large-q. The details of these calculations are

provided in appendix C, while in the main text we focus on presenting the results.

5.1 Correlation functions at ~q = 0

We first consider the situation at zero momentum. As noted in [15], the dependence on the

spatial coordinates ~x drops out entirely in this case and one can solve for the radial wave-

function exactly. The generic solution for z = d can be written in terms of hypergeometric

functions,

ϕ(u) = ϕ− u
∆−
2d (1− u)β2F1

(
∆−
2d

+ β,
∆−
2d

+ β,
∆−
d
, u

)
+ϕ+ u

∆+
2d (1− u)β2F1

(
∆+

2d
+ β,

∆+

2d
+ β,

∆+

d
, u

)
, (5.4)

where ∆± is defined in (3.12) and

β =
iw

2d
. (5.5)

With the solution to the wave equation in hand, it is straightforward to compute the

two-point correlation function at q = 0 following the prescription in [16]. The retarded

correlation function is given in terms of a flux factor that arises as a boundary term when

evaluating the (Wick-rotated) action (3.9) on-shell,

F(u;w, q) =
1

2
ϕ∗in(u)

√
gguu∂uϕin(u), (5.6)

where ϕin is a solution to the scalar equation of motion which is in-falling at the horizon.

In terms of F , the retarded correlation function is

GR(w, q) = −2 lim
u→ε
F(u;w, q), (5.7)

where ε is an infrared cut-off on the bulk radial coordinate. The solution to the scalar wave

equation, which is in-falling at the horizon and normalized to one at the boundary, is

ϕ(u) =
(1− u)−βu

∆−
2d

(1− ε)−βε
∆−
2d

2F1(∆−
2d − β,

∆−
2d − β, 1− 2β, 1− u)

2F1(∆−
2d − β,

∆−
2d − β, 1− 2β, 1− ε)

. (5.8)

Using this, one can evaluate (5.7) to compute the correlation function. The main point

to make here is that the wave-function in (5.8) is precisely the same as that in [16] for a

scalar in the BTZ black hole background at zero momentum (with ∆− replaced by ∆−/d).3

Therefore, correlation functions of scalar operators at zero momentum in the z = d Lifshitz

black brane background are given by zero momentum correlators in a 1+1-dimensional

conformal field theory (up to a rescaling of all scaling dimensions by a factor d). The

3The flux-factor F is (up to an overall normalization) the same as that computed in [16]. To see this,

we note that the coordinate zthere in [16] naturally generalises to the situation here such that zthere = 1−u.
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reason behind this behaviour is the same as in the previous section. In particular, at q = 0

the scalar Laplacian is equivalent (after a coordinate transformation) to that of a scalar

field in a BTZ black hole background, from which the relation to the 1+1-dimensional

conformal field theory follows.

It is tempting to try to make contact with the autocorrelators discussed in the previous

sections by performing a Wick-rotation to the Euclidean correlator and then a Fourier

transform to position-space. Unfortunately, the Fourier transform of the q = 0 correlator

is not in general equivalent to the autocorrelation function. The autocorrelator is instead

given by the Fourier transform of the momentum space correlation function, computed

after first integrating over the spatial momentum,

G(τ1, τ2) =

∫
dωE
2π

∫
dd~p

(2π)d
e−iωE(τ1−τ2)GE(ωE , ~p). (5.9)

It is, however, worthwhile to point out that for large ∆ the autocorrelation function is dom-

inated by a saddle point which enforces ~p = 0. So, at least in this limit, the autocorrelator

and the q = 0 correlation functions are equivalent.

We have shown that momentum space correlation functions at q = 0 in duals to the

z = d Lifshitz-like black branes (3.6) are equivalent to those of a 1+1-dimensional confor-

mal field theory. In what follows we will investigate what happens when q 6= 0. In this case,

the scalar wave equation can no longer be solved analytically and we turn to computing the

quasinormal mode frequency spectrum at q 6= 0, which corresponds to the poles of the cor-

relation function in frequency space, using a combination of analytic approximations valid

for restricted values of parameters and numerical methods for generic parameter values.

5.2 Quasinormal mode spectrum

The quasinormal mode spectrum for massive scalar field fluctuations in Lifshitz black brane

backgrounds was computed in [15] for the special case of q = 0. An interesting transition

was pointed out as one varied the value of z relative to d. In particular, for z < d both the

real and imaginary parts of the quasinormal frequencies are non-zero, whereas for z ≥ d

they become purely imaginary. In [15], the cases z < d and z ≥ d were referred to as

underdamped and overdamped, respectively. Furthermore, precisely at z = d, one can

determine the spectrum exactly to be

wn,q=0 = −i(∆ + 2nd), n = 0, 1, 2, · · · . (5.10)

After the discussion in the previous sub-section it is perhaps not surprising that, up to an

overall factor of d, this is precisely the quasinormal mode spectrum for q = 0 in a BTZ

black hole background.

5.2.1 Small-q regime

We begin by discussing the behaviour of the quasinormal frequencies for small values of q.

In table 1 we present a fit to numerical data for the momentum dependence of the lowest

quasinormal mode for a massless scalar at several values of z and d.
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d z = 1 z = 2 z = 3

1 1.0q− 2.0i −(1.9 + 0.30q2)i −(2.4 + 0.17q2)i

2 1.8+0.42q2−(2.7−0.12q2)i 0.71q− (4.0 + 0.17q2)i −(3.5 + 0.20q2)i

3 3.1+0.24q2−(2.7−0.072q2)i 2.1+0.25q2−(4.9+0.096q2)i 0.58q−(6.0+0.14q2)i

Table 1. Leading momentum dependence (for q � 1) of the lowest quasinormal mode in the

spectrum of a massless scalar field for several values of z and d. The q-dependence of the entries is

obtained by a quadratic polynomial fit to numerical results.

We present the results for z 6= d in order to emphasize the special behaviour that

occurs for z = d. In particular, for generic values z 6= d, the behaviour near q = 0 displays

a quadratic dispersion away from the q = 0 result and furthermore, the leading dependence

on q retains the underdamped (overdamped) behaviour for z < d (z > d) of the q = 0

results.4 However, for z = d we see that the leading dependence on q is instead linear and

real. For the case z = d = 1, this is the well-known behaviour for quasinormal frequencies

in the BTZ black hole and is exact. For z = d > 1, there are two important differences.

First, in these cases the linear term is no longer exact and there are further corrections

which become important as q increases. Second, although not obvious from this data, the

slope of the linear term for z = d > 1 is a function of both the scaling dimension ∆ of

the dual operator and the critical exponent, as opposed to the BTZ result whose linear

term has a coefficient precisely equal to one. Nonetheless, the linear approach to q = 0 is

suggestive and implies that slowly varying spatial perturbations propagate and dissipate

in a way similar to a 1+1-dimensional conformal field theory.

For z = d we can analytically determine the slope by computing the mode function

analytically in a hydrodynamic expansion. Owing to the fact that the q = 0 mode functions

are given exactly by (5.4), we can solve the equation (5.1) perturbatively for small q and

determine the quasinormal mode functions and frequencies. We relegate the details of this

calculation to appendix C. The leading (n = 0) quasinormal mode frequency is found to be5

w = −i∆±

√
Γ
(

∆+1−d
d

)
Γ
(

1
d

)
Γ
(

∆
d

)q +O(q2) . (5.11)

Note that although in principle one can compute the quasinormal frequencies to generic

order in q, for simplicity we contented ourselves with the leading linear-in-q dependence.

For massless scalars with ∆ = 2d, this result simplifies to

wn=0,∆=2d = −2id± 1√
d
q +O(q2), (5.12)

which matches nicely with the results in table 1.

4Note that the overdamped behaviour for z > d is only robust for a finite region near q = 0. Our

numerical results (discussed in appendix C) indicate that as q increases two quasinormal poles approach

each other along the imaginary axis and eventually, at a particular value of q = qc, these two poles merge

and obtain a real part for q > qc.
5The higher mode frequencies (n > 0) have similar expressions but the slope depends on n in a nontrivial

way. The result for generic n is presented in appendix C.
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Figure 1. Comparison between numerical data and analytic results at high and low momentum for

the lowest quasinormal mode of a massless scalar in the z = d = 2 Lifshitz black brane background.

The blue dots represent numerical data. The inset illustrates the small-q dependence, where the

blue line is the result in (5.11). The red line is the asymptotic large-q result in (5.13).

Figure 1 provides a visualization of the q dependence for the lowest quasinormal mode

of a massless scalar. In particular, the insets in the figure highlight the approach to q = 0

for the real and imaginary parts of the frequency for the special case of z = d = 2. The

blue dots in the inset refer to numerical data while the blue line is the hydrodynamic result

in (5.11). The two are in good agreement at small q.

5.2.2 Large-q regime

From the data in figure 1 it is evident that the quasinormal mode dependence on q becomes

linear in q both for small q and large q. These two behaviours are, however, unrelated. As we

have seen, the linearity in the small-q regime is specific to the z = d situation and contains

information about the approach to equilibrium for slowly varying spatial anisotropy. The

linearity at large q is instead generic and occurs for all values of (z, d).

This can be verified analytically as well. In appendix C we provide a WKB calculation

of the linear behaviour for asymptotically large values of q, including the leading off-set

from linearity. The result for z = d is given by

wn = e−iπ
d−1
2d

√
d

d− 1
(d− 1)

1
2d q− id√

2
(2n+ 1) +O(q−1). (5.13)

Finally, it is interesting to note that the large-q results imply that large-momentum ex-

citations in a plasma dual to the Lifshitz-like black brane are always exponentially damped

for z > 1. This is in stark contrast to the z = 1 result, where regardless of the dimension,

for asymptotically large q the coefficient of the linear-in-q term is exactly ±1, indicating

that high temperature CFT plasmas with holographic duals possess long-lived propagating

excitations. In fact, in the z = 1 case the WKB analysis is slightly more subtle and the

overall structure is modified from the above such that the leading correction to the linear

term is proportional to q−
d−1
d+3 and so becomes more suppressed as q increases [18, 23].
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6 Non-equilibrium states

Up to now we have considered equilibrium states. For specific types of quench scenarios, the

evolution of out of equilibrium states has been studied analytically in both 1+1-dimensional

CFTs and in their holographic dual description in terms of the BTZ-Vaidya spacetime. Here

we extend those non-equilibrium results to the generalised quantum Lifshitz model and the

holographic EMD theory for z = d.

6.1 States with translational and rotational symmetry

Autocorrelators in a general translationally and rotationally invariant state of the z = d

generalised quantum Lifshitz model are related to autocorrelators in a two-dimensional

CFT. In the Heisenberg picture, the field operator equations of motion are solved by (in

this section we work in real time)

χ(x, t) =

∫
ddp

(2π)d
1√

2ω(p)

(
e−iω(p)t+ip·xap + eiω(p)t−ip·xa†p

)
, (6.1)

where ω(p) = κpd and we denote pd ≡ (p2)
d
2 . The normalization of the operators ap and

a†p is chosen so that they satisfy commutation relations
[
ap, a

†
p′

]
= (2π)dδd(p − p′). The

Wightman autocorrelator on a general Heisenberg picture state |ψ〉 is then given by

〈χ(t2)χ(t1)〉 =

∫
ddp1

(2π)d

∫
ddp2

(2π)d
1

2
√
ω(p1)ω(p2)

(
e−iω(p1)t1−iω(p2)t2〈ap2ap1〉 (6.2)

+ eiω(p1)t1−iω(p2)t2〈ap2a
†
p1
〉+ e−iω(p1)t1+iω(p2)t2〈a†p2

ap1〉+ eiω(p1)t1+iω(p2)t2〈a†p2
a†p1
〉
)
.

Assuming that the state |ψ〉 is invariant under spatial translation and rotation leads to the

following form of the matrix elements of the creation and annihilation operators (a proof

is given in appendix D)

〈ap2ap1〉 = A11(ω(p1))(2π)dδd(p1 + p2),

〈ap2a
†
p1
〉 = A12(ω(p1))(2π)dδd(p1 − p2),

〈a†p2
ap1〉 = A21(ω(p1))(2π)dδd(p1 − p2), (6.3)

〈a†p2
a†p1
〉 = A22(ω(p1))(2π)dδd(p1 + p2).

The two-point autocorrelator becomes

〈χ(t2)χ(t1)〉 =

∫
ddp1

(2π)d
1

2ω(p1)

(
e−iω(p1)(t1+t2)A11(ω(p1)) (6.4)

+ eiω(p1)(t1−t2)A12(ω(p1)) + e−iω(p1)(t1−t2)A21(ω(p1)) + eiω(p1)(t1+t2)A22(ω(p1))
)
.

Using the same change of integration variables as before q = κpd1 and extending the inte-

gration region, we obtain

〈χ(t2)χ(t1)〉 =
2π

2dπd/2dκΓ(d2)

∫
dq

2π

1

2ω̄(q)

(
e−iω̄(q)(t1+t2)A11(ω̄(q)) (6.5)

+ eiω(p1)(t1−t2)A12(ω̄(q)) + e−iω(q)(t1−t2)A21(ω̄(q)) + eiω(q)(t1+t2)A22(ω̄(q))
)
,
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where ω̄(q) = |q|. The autocorrelator (6.6) is identical to the autocorrelator of a 1+1

dimensional CFT with the action (2.37), now in Lorentzian time.

The state of a Gaussian CFT is specified by the matrix elements

〈bq2bq1〉 = A11(ω̄(q1))2πδ(q1 + q2),

〈bq2b†q1〉 = A12(ω̄(q1))2πδ(q1 − q2),

〈b†q2bq1〉 = A21(ω̄(q1))2πδ(q1 − q2), (6.6)

〈b†q2b
†
q1〉 = A22(ω̄(q1))2πδ(q1 + q2),

where the creation and annihilation operators of the CFT satisfy the algebra[
bq, b

†
q′

]
= 2πδ(q− q′). We have so far demonstrated that the Wightman autocorrelators of

the z = d generalised quantum Lifshitz model are equivalent to the two-dimensional CFT

Wightman autocorrelators. Other two-point correlation functions (such as Feynman or

retarded correlators) can be obtained from linear combinations of Wightman functions and

their complex conjugates. If the wavefunctional of the state |ψ〉 is Gaussian, one can obtain

the correlation functions of all the composite operators, such as the monopole operators, by

using Wick’s theorem with the 〈χχ〉 two-point function. Thus, in Gaussian states with spa-

tial translational and rotational symmetries, the autocorrelators of the generalised quantum

Lifshitz model are identical to autocorrelators of a 1+1 dimensional free boson CFT.

6.2 A mass quench in the generalised quantum Lifshitz model

As a concrete example of a non-equilibrium state in the generalised quantum Lifshitz model

with z = d, we can consider a quench state starting from the ground state of a different

free Hamiltonian at t = 0. In this case the matrix elements (6.3) are given by

A11(ω) = A22 =
1

4

(
ω

ω0
− ω0

ω

)
, (6.7)

A12(ω) =
1

4

(
ω

ω0
+
ω0

ω
+ 2

)
, (6.8)

A21(ω) =
1

4

(
ω

ω0
+
ω0

ω
− 2

)
, (6.9)

where ω0 is the initial dispersion relation, and ω the final dispersion relation. These matrix

elements can be computed from matching the initial and final ground state at t = 0. In

the case of a quench starting from the ground state of a mass deformed quantum Lifshitz

Hamiltonian one has

ω0 =
√
κ2p2d +m2

0, ω = κpd. (6.10)

For simplicity we consider the case of a deep quench with m−1
0 � t where t is any of the

following |t1−t2|, t1 or t2. This in particular gives the late time behaviour of the correlation

function. The full time evolution of the correlator can be evaluated numerically. When m0

is large, the leading contribution to the two-point function becomes

〈χ(t2)χ(t1)〉 ≈ 2π

2dπd/2dκΓ(d2)

m0

8π

∫ ∞
0

dq

q2

(
e−iq(t2−t1) + eiq(t2−t1) − e−iq(t2+t1) − eiq(t2+t1)

)
,

(6.11)
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where we use the integration variable q = κpd. Performing the integrals gives

〈χ(t2)χ(t1)〉 ≈ 2π

2dπd/2dκΓ(d2)

m0

8

(
t1 + t2 − |t2 − t1|

)
. (6.12)

The Feynman propagator is given by

GF (t2, t1) = θ(t2 − t1)〈χ(t2)χ(t1)〉+ θ(t1 − t2)〈χ(t1)χ(t2)〉

≈ 2π

2dπd/2dκΓ(d2)

m0

8

(
t1 + t2 − |t2 − t1|

)
.

(6.13)

The two-point function of monopole operators is obtained by using Wick’s theorem

〈Teiαχ(t2)e−iαχ(t1)〉 ≈ e−
πm0
2d

∆|t2−t1|. (6.14)

This has the same exponential fall off at large |t2− t1| as the thermal autocorrelator if one

identifies an effective temperature Teff = m0/4.

6.3 Vaidya collapse spacetime in the holographic model

A class of non-equilibrium states within holography is provided by “quenches” starting

from the gapless ground state of the dual field theory. This can be achieved by introducing

a time dependent source J(t) for some operator in the dual field theory. A fast varying

source induces a perturbation in some (combination of) field(s) close to the boundary of

the space, which subsequently falls into the bulk and forms a black hole. Generically the

time evolution has to be followed numerically by solving the dynamical Einstein’s equations

coupled to whatever matter is present [19]. A simple metric that can be used to model the

collapsing configuration is the Vaidya spacetime, which corresponds to null and pressureless

matter sourcing Einstein’s equations.

An asymptotically Lifshitz version of the Vaidya spacetime was constructed in [8] and

equal time correlators of scalar operators obtained in the geodesic approximation. Here we

would instead like to consider autocorrelators in this time-dependent background.

For z = d the Lifshitz-Vaidya spacetime is given by

ds2 = − 1

u2d

(
1−m(v)u2d

)
dv2 − 2

dudv

ud+1
+
dx2

u2
, (6.15)

which can be transformed to the form

ds2 =
1

d2

1

y2

[
− (1− d2m(v)y2)dv2 − 2dydv

]
+

1

(dy)2/d
dx2, (6.16)

with the coordinate transformation y = ud/d. The gvv and gyv components of the met-

ric (6.16) are identical to those of the BTZ-Vaidya spacetime, and since the large-∆ limit

of the autocorrelation function is insensitive to the dx2 part of the metric, they will be

identical to the autocorrelator in the BTZ-Vaidya background. These were computed in [9]

using the geodesic approximation in two different ways with the result

GF (t2, t1) ∝ 1(
t1 cosh(πTt2)− 1

πT sinh(πTt2)
)2∆/d

, (6.17)
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where T is the temperature of the final state black hole. Due to the above reasoning, this

is also the result for the non-equilibrium autocorrelator in the Lifshitz-Vaidya case as well.

In (6.17) we have assumed t1 < 0 and t2 > 0. When both times are negative, i.e. before the

collapse, the two-point function is instead identical to the vacuum one. Correspondingly,

when both times are positive, i.e. after the collapse, the two-point function is identical to

the thermal one.

7 Summary

In this paper we have studied two types of theories exhibiting a Lifshitz scale invariance:

free field theories and holographic theories. The free field theories generalise the well

known quantum Lifshitz model to arbitrary number of spatial dimensions. These theories

can be defined for any value of z but we restrict our attention for the most part to models

with z = d in order to retain some key properties of the original quantum Lifshitz model.

In particular, precisely for z = d, one can define a set of scaling operators (so-called

generalised monopole operators) whose equal time correlation functions match those of a

d-dimensional conformal field theory. The holographic theories are dual to gravitational

models of Einstein-Maxwell-dilaton (EMD) type and we consider scalar operators dual to

massive scalar fields in the bulk geometry. By studying the vacuum and thermal correlation

functions of these two classes of theories we have uncovered several interesting features.

At z = d vacuum autocorrelation functions of scaling operators in the generalized

quantum Lifshitz model can be expressed in terms of autocorrelators of a 1+1-dimensional

CFT. Likewise, for holographic models a similar relation manifests in the geodesic (or

large-∆) approximation to the autocorrelator. This indicates an enhanced symmetry in

the time domain that does not follow in an obvious way from the Lifshitz scaling symme-

try. Furthermore, we find that the relation to a 1+1-dimensional CFT persists when we

consider autocorrelators in a thermal state. On the gravitational side we expect this finite

temperature behaviour to be specific to the EMD models and that it will not persist in,

for instance, Lifshitz models that are dual to bulk theories of Einstein-Proca form.

In the generalised quantum Lifshitz model the relation to autocorrelators in a 1+1-

dimensional CFT follows from a simple change of variables, q = κpd, in the momentum

integrals in propagators. On the holographic side, the corresponding relation can be estab-

lished by a transformation of the radial coordinate, y = ud/d, which maps the (u, t) section

of the z = d Lifshitz black brane metric to a corresponding (y, t) section of a BTZ black

hole metric. The relation to a 1+1-dimensional CFT continues to hold for autocorrelators

in out of equilibrium states of the generalised Lifshitz model that are invariant under spa-

tial translations and rotations. Similarly, holographic non-equilibrium states described by

a Lifshitz-Vaidya type collapsing spacetime can be mapped to the BTZ-Vaidya spacetime

with the same coordinate transformation as in the thermal state. This leads to the equiva-

lence between the large-∆ limit of autocorrelators in certain non-equilibrium states of holo-

graphic theories with Lifshitz scaling and 1+1-dimensional CFTs with holographic duals.

We also consider correlation functions of operators with order one scaling dimensions,

i.e. outside the geodesic approximation. In practice, we look for the poles of retarded ther-
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mal two-point functions, or in other words the quasinormal mode frequencies of the corre-

sponding bulk fields. For zero spatial momentum, p = 0, the quasinormal mode spectrum

can be found analytically and agrees with the BTZ quasinormal mode spectrum. This again

follows from the same coordinate transformation we used when evaluating autocorrelators.

Furthermore, for large scaling dimension operators, the equal space limit of correlation

functions can be argued to correspond to zero spatial momentum. Thus, we find consistent

results with both methods. The quasinormal modes at small non-zero momenta also share

features with the corresponding BTZ quasinormal modes. In particular, for z = d, we find

that the leading momentum dependence of the quasinormal frequency is purely real and

linear in the momentum, as in the BTZ case. At high momentum, on the other hand, we

find interesting differences compared to CFT results. In particular, the imaginary part of

the quasinormal mode frequency scales linearly with p at high momentum. This is in strong

contrast to holographic CFTs where the imaginary parts approach zero as p−
d−1
d+3 at high

momentum. This implies that, while CFTs have long lived excitations at high momentum,

we find that high momentum excitations are very short lived in Lifshitz theories with z > 1.

This has interesting implications for thermalisation of far from equilibrium configurations

in these theories, which seems opposite to the pattern of thermalisation found in CFTs,

where the long lived high momentum excitations are the slowest to equilibrate.
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A Ground state wave functional in the generalised quantum Lifshitz

model

The Hamiltonian of the generalised quantum Lifshitz model is given by

H =
1

2

∫
ddx
(

Π(x)2 + κ2(∇zχ)2
)
, (A.1)

where Π(x) = ∂tχ is the canonical momentum, which in the Schrodinger picture is replaced

by the operator

Π(x) = −i δ

δχ(x)
. (A.2)

The ground state of the theory can be found by solving the time independent Schrodinger

equation

HΨ [χ] = EΨ [χ] . (A.3)
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At this point if is convenient to introduce the operators

Q(x) =
1√
2

(
iΠ(x) + κ(−�)z/2χ(x)

)
, (A.4)

Q†(x) =
1√
2

(
− iΠ(x) + κ(−�)z/2χ(x)

)
. (A.5)

The Hamiltonian can be now expressed as

H =

∫
ddxQ†(x)Q(x) + E0, (A.6)

where E0 is given by6

E0 = lim
x′→x

∫
ddx

κ

2
(−�)z/2δd(x− x′) = Vd

∫
ddk

(2π)d
ω(k)

2
, (A.7)

where ω(k) = κ(k2)z/2. The operator H̃ = H −E0 is positive definite as for any normaliz-

able state

〈H̃〉 =

∫
ddx〈ψ|Q†(x)Q(x)|ψ〉 =

∫
ddx||Q(x)|ψ〉||2 ≥ 0. (A.8)

Thus, if we can find a state for which Q(x)|ψ〉 = 0, this state will minimize the energy, i.e.

it is the ground state of the theory. The equation

Q(x)Ψ [χ] =
1√
2

(
δ

δχ(x)
+ κ(−�)z/2χ(x)

)
Ψ [χ] = 0, (A.9)

can be straightforwardly solved by

Ψ [χ] =
1√
Z
e−

1
2

∫
ddxχ(x)κ(−�)z/2χ(x), (A.10)

where Z is a normalization factor that ensures the wavefunction has unit norm

Z =

∫
[dχ] e−κ

∫
ddxχ(x)(−�)z/2χ(x). (A.11)

Thus, the correlation functions of operators at equal time in the ground state are given by

the expression

〈O(χ)〉 =
1

Z

∫
[dχ] e−κ

∫
ddxχ(x)(−�)z/2χ(x)O(χ), (A.12)

which can be identified as a correlation functions in a d-dimensional Euclidean CFT if

z = d.

B Generic two-point function at z = 2

We want to compute a two-point function in the geodesic approximation with both spatial

and temporal dependence. For z = 2 we can allow for arbitrary values of both E and p.

In this case (3.20) gives

u2 =
4e2λ

1 + 2e2λp2 + e4λ(p4 + 4E2)
, (B.1)

6Above we have defined Q†(x)Q(x) = limx′→xQ
†(x)Q(x′).
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and is is easy to see that (3.21) and (3.25) are recovered by setting E = 0 or respectively

p = 0 and shifting the affine parameter by a constant. At the endpoints of the regularized

geodesic, where u = ε, the affine parameter takes the values

λ1 = − log
ε

2
− 1

2
log(p4 + 4E2) +O(ε2) , λ2 = log

ε

2
+O(ε2) , (B.2)

and the regularized length is given by

LR = −2 log
ε

2
− 1

2
log(p4 + 4E2) +O(ε2) . (B.3)

Inserting this into (3.13) leads to a simple expression for the vacuum two-point function of

scaling operators in terms of p and E,

〈OR(~x1, τ1)OR(~x2, τ2)〉 =

((
p

2

)4

+

(
E

2

)2
)∆/2

. (B.4)

Integrating the conservation laws (3.17) and (3.18) gives

|τ12| =
1

E

(
1− η

tan η

)
, (B.5)

|~x12| =
2

p

η

tan η
. (B.6)

where the scaling variable η is defined via

2E

p2
= tan η , (B.7)

or equivalently
|~x12|2

|τ12|
=

2η2

tan η − η
. (B.8)

This can in principle be inverted to obtain η as a function of |~x12|2/|τ12|.
The vacuum two-point correlation function (B.4) can be expressed in terms of the

scaling variable in two equivalent ways,

〈OR(~x1, τ1)OR(~x2, τ2)〉 =
F (η)∆

|~x12|2∆
=
F̃ (η)∆

|2τ12|∆
, (B.9)

with

F (η) =
η2 cos η

sin2 η
and F̃ (η) =

1

sin η

(
1− η cos η

sin η

)
. (B.10)

We can obtain series expansions for the two-point function in different asymptotic limits

by using the relation (B.8). The limit |~x12|2 � |τ12| corresponds to η → 0 and

〈OR(~x1, τ1)OR(~x2, τ2)〉 =
1

|~x12|2∆

(
1− 6∆

|τ12|2

|~x12|4
+ . . .

)
, (B.11)
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Figure 2. The blue (solid) curve shows the scaling function that appears in the holographic two-

point function, while the red (dashed) curve shows the corresponding scaling function found for

two-point functions of monopole operators in the quantum Lifshitz model. Both are plotted as

functions of the scaling variable α = |~x12|2/|τ12|.

which reduces to the equal time result (3.24) when |τ12| → 0. On the other hand, |τ12| �
|~x12|2 amounts to η → π/2 and

〈OR(~x1, τ1)OR(~x2, τ2)〉 =
1

|2τ12|∆

(
1− ∆

π

|~x12|2

|τ12|
+ . . .

)
, (B.12)

which in turn reduces to the autocorrelator (3.27) for z = 2 when |~x| → 0.

The corresponding two-point function can be straightforwardly calculated in the orig-

inal quantum Lifshitz model (see e.g. [1], or our section 2.2). In the limit |~x|2 � κ|τ12| one

finds

〈OR(~x1, τ1)OR(~x2, τ2)〉QL =
1

|~x12|2∆

(
1− 4∆κ|τ12|

|~x12|2
e
− |~x12|

2

4κ|τ12| + . . .

)
, (B.13)

while the leading behaviour for |~x12|2 � κ|τ12| is

〈OR(~x1, τ1)OR(~x2, τ2)〉QL =
1

|2κτ12|∆

(
1− ∆

4

|~x12|2

κ|τ12|
+ . . .

)
. (B.14)

The holographic two-point function and the one found in the quantum Lifshitz model

agree in the special cases when either |τ12| = 0 or |~x12| = 0 and they both exhibit scaling

in |~x12|2/|τ12| at generic separation, but the scaling functions differ in the two theories.

In particular, the approach to the equal-time result is exponentially fast in the quantum

Lifshitz model but power law in the holographic model. The scaling functions are compared

in figure 2 where we compare (B.10) and (2.26) when plotted against α ≡ |~x12|2/|τ12|.

C Quasinormal mode spectrum

In this appendix we provide some details on the computation of the quasinormal mode spec-

trum. In particular, we elaborate on our numerical procedure as well as obtain analytical

results for small-q in (5.11) and large-q in (5.13).
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C.1 Numerical algorithm

To perform the numerical computation we used the Mathematica package “QNMspec-

tral” [21]. The essence of the algorithm boils down to the following. First we cast the

scalar wave equation (3.10) in infalling Eddington-Finkelstein coordinates with a compact

radial coordinate, which we discretise on a spectral grid. This grid puts more points near

the boundary and horizon than in the “middle”, which is convenient for numerical pur-

poses. We then express the eigenfunctions in terms of a sum of Chebychev polynomials

where we take into account the required fall-off. Note that we can only have as many

Chebychev coefficients as points on the spectral grid. This yields a set of equations which

can be cast into the form of a generalised eigenvalue problem,

M · ~v = ω · ~v , (C.1)

where ~v is a vector with the coefficients of the Chebychev expansion and M is a matrix

with values depending on the details of the quasinormal mode equation (3.10). The

eigenvalue problem can readily be solved using Mathematica. In principle, the higher

rank the matrix M , the higher the precision and number of overtone numbers n of the

quasinormal modes ω. The minimum numerical precision of the quasinormal modes

computed in this paper is better than 1%.

C.2 Small-q expansion

In order to derive (5.11) we begin with the the scalar wave equation in the z = d Lifshitz

black brane background (5.1), which we rewrite here for completeness

ϕ′′(u)− 1

1− u
ϕ′(u) +

1

4u2(1− u)d2

(
w2u

(1− u)
− q2u

1
d −∆(∆− 2d)

)
ϕ(u) = 0 . (C.2)

For q = 0, solution that is regular at infinity is given by (5.4) with ϕ− = 0, such that

ϕ(u) = ϕ+ u
∆+
2d (1− u)−

iw
2d 2F1

(
∆+

2d
− iw

2d
,

∆+

2d
− iw

2d
,

∆+

d
, u

)
. (C.3)

Imposing in-falling boundary conditions at the horizon further restricts the solution such

that w is quantized as

wn,q=0 = −i(∆ + 2nd), n = 0, 1, 2, · · · . (C.4)

For generic values of w the hypergeometric function in (C.3) is given by an infinite series

in u, however at the quasinormal values of w in (C.4) the series terminates and one can

write the hypergeometric as a finite degree polynomial. In particular, when evaluated on

the quasinormal frequency the q = 0 scalar solution is (see eq. 15.4.1 of [22])

ϕ(u) = ϕ+ u
∆+
2d (1− u)−n−

∆
2d 2F1

(
−n,−n, ∆+

d
, u

)
= ϕ+ u

∆+
2d (1− u)−n−

∆
2d

n∑
m=0

(−n)2
m

m!(∆
d )m

um, (C.5)
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where the Pochhammer symbol (·)m is defined by

(a)m ≡
Γ(a+m)

Γ(a)
. (C.6)

We will now specialize to the case n = 0 and will come back to the generic-n situation later.

At n = 0 the hypergeometric function above is a constant. In order to find the momentum

dependence we then make the following ansatz

ϕ(u) = u
∆
2d (1− u)−

∆
2d
−i ŵ

2d ϕ̂(u), (C.7)

where ϕ̂(u) parametrizes the deviation from the q = 0 solution and we have set w =

−i∆ + ŵ, so that ŵ is the shift of the frequency from the q = 0 result. Its appearance in

the exponent above is required by the in-falling boundary condition at the horizon.

Inserting this into (5.1) we find the following equation for φ̂(u)

(
u

∆
d (1− u)1−∆

d ϕ̂′(u)
)′

+
iŵu

∆
d

d(1− u)
∆
d

ϕ̂′(u) +
u

∆
d
−2

4d2(1− u)
∆
d

(uŵ2 − u
1
d q2)ϕ̂(u) = 0. (C.8)

Solving this equation perturbatively in ŵ and q, and demanding regularity at the boundary

u→ 0, one finds that the solution up to O(ŵ2, q2) is given by

φ̂(u) =

= φ0

[
1−

Γ(1−∆
d )

4dΓ(1
d)

∫
du′u′−

∆
d (1−u′)

∆
d
−1

(
Γ

(
1+

∆

d

)
Γ

(
1

d

)
ŵ2− ∆

∆+1−d
Γ

(
∆+1

d

)
q2

)

−
∫

du′

4d(∆−d)

(
ŵ2F

(
1, 1, 2−∆

d
, 1−u′

)
−q2u

1
d
−1F

(
1

d
, 1, 2−∆

d
, 1−u′

))]
+O(ŵ3, q3).

The important point to note for our purposes is that, when ∆
d is not an integer,7 the integral

on the first line gives a solution which is non-analytic at u = 1 and should be vanishing.

In order for this term to vanish one must set

ŵ2 =
Γ(∆+1−d

d )

Γ(∆
d )Γ( 1

d)
q2, (C.9)

which is the result quoted in (5.11). One can perform the same analysis with the generic

form of the quasinormal solution in (C.5) to obtain the general-n result,

ŵ2 =
Γ
(
n+ ∆

d

)2
Γ(n+ 1)2Γ

(
∆
d

)2
Γ
(
2n+ ∆

d

) n∑
i,j=0

(−n)2
i(

∆
d

)
i

1

i!

(−n)2
j(

∆
d

)
j

1

j!

Γ
[
i+ j + ∆

d + 1
d − 1

]
Γ
[
i+ j + 1

d − 2n
] q2 . (C.10)

7In deriving the integrands in (C.2) we utilized a relation between hypergeometric functions evaluated

at u to a sum of two hypergeometric functions evaluated at 1− u (see eq. 15.3.6 of [22]). For generic values

of ∆ one branch simplifies to the elementary functions in the first line. However, when ∆ is a positive

integer the connection equation from u to 1− u contains terms with log(1− u) (see eq. 15.3.12 of [22]). The

vanishing of the logarithmic terms coincides with the condition given in (C.9).
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C.3 Large-q WKB

At high momentum, we can compute the scalar mode functions in a WKB approximation

that is valid for large q. using a method described in [18]. We will carry out the calculation

using generic values of (d, z) and later specialize to the case of d = z.

In order to set notation, let us write the metric for generic (d, z)

ds2 =
f(u)

u2z
dτ2 +

du2

u2f(u)
+
dx2

u2
, f(u) = 1− ud+z

ud+z
H

. (C.11)

The scalar wave equation for generic (d, z) is given by

ϕ′′(u)− 1

1− u
ϕ′(u) +

1

u2(1− u)(d+ z)2

(
w2u

2z
d+z

(1− u)
− q2u

2
z+d −m2

)
ϕ(u) = 0, (C.12)

where we have again defined dimensionless quantities, which for generic (d, z) are now given

by

u =
ud+z

ud+z
H

,

w =

(
4πT

d+ z

)−1

ω,

~q =

(
4πT

d+ z

)−1/z

~p . (C.13)

and

m2 = ∆(∆− d− z). (C.14)

It is useful to write the wave equation in terms of the so-called “tortoise” coordinate, which

we define to be

r? =
1

d+ z

∫ u

0
u′−

d
d+z

du′

1− u′
. (C.15)

With this convention the boundary is located at r? = 0 and the horizon is approached as

r? →∞.
In terms of the rescaled wave function ψ(u) = u

− d
2(d+z)ϕ(u), the equation of mo-

tion (C.12) can be written in Schrödinger form

(−∂2
r? + V (u))ψ = w2ψ, (C.16)

where the potential is given by

V (u) =
1− u

u
2z
d+z

[
q2u

2
d+z + ν2 − z2

4
+
d2

4
u

]
, (C.17)

with ν2 = m2 − (d+z)2

4 . To take the large q limit, we rescale the frequency as

w = wq, (C.18)

– 34 –



J
H
E
P
0
5
(
2
0
1
7
)
0
3
3

in which case the equation of motion can be solved in an expansion in inverse powers of q.

In particular, we can write the potential as

V (u) = q2V0(u) + V2(u), (C.19)

where

V0(u) = u
2(1−z)
d+z (1− u). (C.20)

To determine the leading WKB quasinormal modes, we only need to take into account the

leading order potential V0(u). The additional terms in V2(u) yield sub-leading contributions

that are suppressed by powers of q−1.

In what follows, we will review the analysis of [18]. It is important to note that for

z > 1 the potential in (C.20) behaves very differently near the boundary compared to the

case of z = 1 studied in [18]. In particular, for z = 1 (C.20) approaches a constant at the

boundary, whereas for z > 1 it diverges.8 This divergence will naturally lead to bound

state solutions. The following analysis will therefore echo the large-mass analysis of [18],

rather than the high momentum analysis.

First, consider the situation for real values of w, in which case intuition from one-

dimensional scattering in quantum mechanics is useful. In particular, since the potential

vanishes at the horizon u = 1, the function

κ(r?) = w2 − V0(r?) (C.21)

is positive for sufficiently large r? as one approaches the horizon. The WKB solutions in

this region correspond to oscillating waves

ψ>,±(r?) =
A>,±

κ(r?)1/4
e±iqW (r?) +O(q−1) , (C.22)

where

W (r?) ≡
∫ r?

r?c

dr′?
√
w2 − V0(u(r′?)) (C.23)

and r?c corresponds to a classical turning point of the potential, such that κ(r?c) = 0.

As one moves further from the horizon eventually r? = r?c, after which one enters the

classically forbidden region with κ(r?) < 0. The WKB solutions in this region correspond

to rising and falling exponentials

ψ<,±(r?) =
A<,±

(−κ(r?))1/4
e±qZ(r?) +O(q−1) , (C.24)

where

Z(r?) ≡
∫ r?

r?c

dr′?
√
V0(r′?)− w2. (C.25)

8In fact, as was recently pointed out in [23], for z = 1 the WKB analysis does not capture the behaviour

of the lowest quasinormal modes for large-q. This is because for z = 1 the turning point of the potential

gets pushed to the near-boundary region, but this does not happen for the z > 1 case discussed here.
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Writing the integral out explicitly in terms of the coordinate u,

Z(u) =
1

d+ z

∫ u

uc

du′
1

1− u′
u′−

d
d+z

√
V0(u′)− w2, (C.26)

where u < uc, we see that Z(u) is negative and decreasing as u moves away from the turning

point and so the solution ψ<,+(r?) corresponds to the decaying mode under the potential

barrier. As one further approaches the boundary at r? = 0 the WKB solutions behave as

ψ<,±(u) ' A<,±e±qZ(r?c,0)u
(z−1)
2(d+z) e±qu

1
d+z

. (C.27)

In order to construct quasinormal solutions we will build the solution up from the

boundary. Near the boundary, the WKB expansion breaks down and one must solve for

the wave-function in a near-boundary expansion. At large-q, the w2 term is suppressed by

powers of q−1 and the near-boundary solution is independent of w to lowest order. The

regular solution near the boundary is given by

ψn.b.(u) = B u
z

2(d+z) Iν(qu
1
d+z ), (C.28)

which scales as φ ∼ uν+(d+z)/2 for small u as is appropriate for a normalizable mode. To

match this to the WKB solutions in (C.24) we expand for large u,

ψn.b.(u) ' B u
z−1

2(d+z)

√
2πq

equ
1
d+z

. (C.29)

We therefore see that the normalizable solution at the boundary can be matched onto the

decaying WKB solution ψ<,+(r?), with A<,− = 0 and

B =
√

2πqeqZ(r?c,0)A<,+. (C.30)

Next, matching the solution ψ<,+(r?) across the turning point onto the oscillating solutions

in (C.22) one finds the solution in the allowed region (r? > r?c) to have A>,− = eiπ/2A>,+,

such that

ψ(r?) =
2A>,+

κ(r?)1/4
cos
(
qW (r?)−

π

4

)
, r? > r?c. (C.31)

For large r? this solution behaves as a linear combination of e+iqr? and e−iqr? . The first

behaviour corresponds to an in-falling wave and the latter to an out-going wave. Solutions

with real w are therefore not quasinormal.

To find quasinormal frequencies one must analytically continue by allowing both w

and r? to take complex values. This allows for additional turning points where κ(r?)

vanishes. In particular, there will be special complex values of w where one of these new

turning points, which we will refer to as r?t, will merge with the analytic continuation of

the physical turning point r?c. As explained in [18], when this occurs certain sub-dominant

contributions to the out-going mode will become of the same order as the leading term.

Near the point where the turning points merge, the ratio of the two contributions to the

out-going mode is given by

e2qZ(r?c,r?t), (C.32)
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where

Z(r?c, r?t) =

∫ r?t

r?c

dr′?
√
V0(r′?)− w2. (C.33)

This means that when

e2qZ(r?c,r?t) = −1, (C.34)

the two contributions will exactly cancel and leads to the quantization condition [18]

2qZ(r?c, r?t) = iπ(2n+ 1), n = 0, 1, 2, · · · . (C.35)

The two turning points merge when the following two conditions are satisfied,

V0(ub) = w2
b ,

V ′0(ub) = 0, (C.36)

which ensure that κ(r?) has a second order zero at r?b ≡ r?(ub). We can approximate the

potential around the point where the two turning points merge as a quadratic polynomial

V0(r?) ' V0(r?b) +
1

2
V ′′0 (r?b)(r? − r?b)2. (C.37)

Furthermore, assuming w = wb + x, where x is small, we see that the turning points r?t
and r?c are located at r?b ± a, where

a =

√
4wbx

V ′′0 (r?b)
. (C.38)

In this approximation we can perform the integral

Z(r?c, r?t) =

∫ r?t

r?c

dr′?
√
V0(r′?)− w2

'
∫ a

−a
dy

√
1

2
V ′′0 (r?b)y2 − 2xwb

' ±ia2

√
V ′′0 (r?b)

2

∫ 1

−1
dy
√

1− y2

' ±ia
2π

2

√
V ′′0 (r?b)

2

' ± iπx
δ
, (C.39)

where

δ =

√
V ′′0 (r?)

2V0(r?)

∣∣∣
r?=r?b

. (C.40)

The quantization condition (C.35) then leads to the expression

wn = wb + x

= wb +
δ

2q
(2n+ 1). (C.41)

– 37 –



J
H
E
P
0
5
(
2
0
1
7
)
0
3
3

The quasinormal frequencies are then given by

w = qwb +
δ

2
(2n+ 1), n = 0, 1, 2, · · · . (C.42)

Evaluating this for our potential in (C.20), we find the turning point conditions to be

ub = − 2(z − 1)

d+ 2− z
,

wb = e−iπ
(z−1)
d+z

√
d+ z

d+ 2− z

(
2(z − 1)

d+ 2− z

)− (z−1)
d+z

. (C.43)

Evaluating the offset δ in (C.40) for this case we find

δ = e−iπ
z
d+z

d+ z√
2

(
2(z − 1)

d+ 2− z

) d−z
2(d+z)

. (C.44)

Note that we only trust these results for z in the range 1 < z < d+2. The case of z ≥ d+2

needs to be treated with more care as the point ub, where the turning points merge, goes

behind the horizon, i.e. ub > 1.

For the case of d = z, this gives the following result for the quasinormal frequencies

wn = e−iπ
d−1
2d

√
d

d− 1
(d− 1)

1
2d q− id√

2
(2n+ 1) +O(q−1). (C.45)

Figure 3 provides an overview of our numerical results for several values of d, z and q.

D Matrix elements of creation and annihilation operators

In this appendix we demonstrate how the momentum dependence of the creation and an-

nihilation operator matrix elements (6.3) is fixed by rotational and translational invariance

of the state |ψ〉. The vacuum |0〉 is a state invariant under rotations and translations

eix·P |0〉 = |0〉, U(R)|0〉 = |0〉, (D.1)

where P is the momentum operator and U(R) is an operator generating the rotation R.

The one particle state |p〉 = a†p|0〉 transforms as

eix·P |p〉 = eix·p|p〉, U(R)|p〉 = |Rp〉, (D.2)

where (Rp)i = Rijp
j is the rotated momentum. This leads to the following transformation

properties of the creation operators

eix·Pa†pe
−ix·P = a†pe

ix·p, U(R)a†pU
†(R) = a†Rp. (D.3)

The transformation properties of the annihilation operators follow from Hermitian conju-

gation. Next we consider one of the matrix elements in (6.3)

f(p1, p2) = 〈ψ|ap1ap2 |ψ〉. (D.4)
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Figure 3. Real and imaginary parts of the first three overtones (n = 0, 1, 2) in the EMD model

for a massless field with ∆ = d+ z. The dots above the x-axis represent the real part and the ones

below the axis represent the imaginary part. Notice the different behaviour at small q when d > z,

d = z or d < z. In the d = 1 and z = 3 plot, the real parts remain zero, as expected from the

large-q WKB result.

We assume that the state ψ is invariant under translations and rotations, eix·P |ψ〉 = |ψ〉
and U(R)|ψ〉 = |ψ〉. Inserting three unit operators 1 = U †(R)U(R) in (D.4) gives

f(p1, p2) = f(Rp1, Rp2), (D.5)

which means that f(p1, p2) is a function of the rotationally invariant combinations p2
1, p2

2

and p1 · p2. By inserting three unit operators 1 = e−ix·P eix·P in (D.4) gives

f(p1, p2) = eix·(p1+p2)f(p1, p2). (D.6)

Since f(p1, p2) should be independent of the arbitrary transformation parameter x, f must

be of the form

f(p1, p2) = g(p1)δd(p1 + p2). (D.7)

Now because of rotational invariance g(p1) is only a function of p2
1. Finally p2

1 dependence

can be traded to dependence on ω(k1) = κpd1 ≡ κ
(
p2

1

) d
2 . The same analysis can be repeated

for all of the matrix elements in (6.3).
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