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We recently demonstrated that observers are capable of
encoding not only summary statistics, such as mean and
variance of stimulus ensembles, but also the shape of
the ensembles. Here, for the first time, we show the
learning dynamics of this process, investigate the
possible priors for the distribution shape, and
demonstrate that observers are able to learn more
complex distributions, such as bimodal ones. We used
speeding and slowing of response times between trials
(intertrial priming) in visual search for an oddly oriented
line to assess internal models of distractor distributions.
Experiment 1 demonstrates that two repetitions are
sufficient for enabling learning of the shape of uniform
distractor distributions. In Experiment 2, we compared
Gaussian and uniform distractor distributions, finding
that following only two repetitions Gaussian
distributions are represented differently than uniform
ones. Experiment 3 further showed that when distractor
distributions are bimodal (with a 308 distance between
two uniform intervals), observers initially treat them as
uniform, and only with further repetitions do they begin
to treat the distributions as bimodal. In sum, observers
do not have strong initial priors for distribution shapes
and quickly learn simple ones but have the ability to
adjust their representations to more complex feature
distributions as information accumulates with further
repetitions of the same distractor distribution.

Introduction

The world around us consists of objects: spatially
constrained entities with relatively consistent features.
It is therefore tempting to assume that information
processing is based on discrete objects or features.
However, when one looks at the sky, the trees, or the
sea, objects tend to disappear and features blend into
one another, calling for another perspective on
perception that can be called a distribution-based view.
From this perspective, single features are less important
than their probability distributions because the latter
are more stable and less prone to noise than the former.

Observers’ ability to make inferences regarding the
ensembles of visual stimuli has been studied for a long
time (see reviews in Bauer, 2015; Peterson & Beach,
1967; Pollard, 1975), but recently such views have
gained renewed popularity through the studies of
judgments of summary statistics, such as the mean or
variance of color, motion direction, size, orientation,
etc. (Alvarez, 2011; Alvarez & Oliva, 2008; Ariely,
2001; Chong & Treisman, 2003; Haberman, Brady, &
Alvarez, 2015; Haberman & Whitney, 2012; Rose-
nholtz, 2001; Utochkin, 2015). Even though stimulus
sets used in these experiments usually consist of discrete
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objects, observers’ ability to extract their aggregate
properties suggests that, at some level, these objects are
integrated into a unified representation. Moreover, the
stability of summary statistics is no less important for
efficient processing than the stability of individual
features. For example, changes in mean or variance of
stimulus features over a sequence of trials can increase
response times (RTs) on visual tasks (Corbett &
Melcher, 2014; Michael, de Gardelle, & Summerfield,
2014).

However, attempts to show that observers are able
to use other information about distributions of features
than their mean and standard deviation have been
unsuccessful. For example, Dakin and Watt (1997)
concluded that observers cannot access the skew of
orientation distributions. However, other studies find
that observers utilize information about distributions
of orientation statistics in natural images to make
perceptual judgments (Girshick, Landy, & Simoncelli,
2011; Zhang, Kwon, & Tadin, 2013). So, although
observers may not be able to assess complex distribu-
tions from single presentations, they could still be able
to learn such distributions with repeated exposure.
Moreover, Utochkin and Yurevich (2016) have recently
demonstrated that two distractor distributions with the
same range can lead to different visual search efficiency
when they have different shape. However, this does not
imply that observers encode the shape of the distribu-
tion. Instead, the authors suggest that this reflects
Gaussian approximations with a different number of
subsets.

Recently, we demonstrated for the first time that not
only can people encode summary statistics of stimulus
sets, but they can also encode probability density
functions corresponding to distribution shape with
repeated presentation (Chetverikov, Campana, &
Kristjánsson, 2016). We used a novel experimental
paradigm based on priming in visual search to compare
effects of different distractor distributions on RTs
following a change in distribution parameters (Figure
1). Observers searched for an oddly oriented line in a
matrix of 36 lines. In each trial, distractor orientations
were drawn randomly from a distribution with preset
parameters. These parameters were kept constant
during streaks of five to seven trials. It is well known
that observers use information acquired from previous
trials so that when target or distractors repeat, search is
fast, but when they change, search is slower and less
accurate (Kristjánsson & Campana, 2010; Lamy &
Kristjánsson, 2013; Maljkovic & Nakayama, 1994;
Meeter & Olivers, 2006). Importantly, different aspects
of the task-relevant stimulus properties, such as
distractor or target parameters and their relationship,
can be primed independently (Kristjánsson, 2006;
Kristjánsson & Driver, 2008; Kristjánsson, Ingvars-
dóttir, & Teitsdóttir, 2008; Lamy, Antebi, Aviani, &

Carmel, 2008; Maljkovic & Nakayama, 1994; Wang,
Kristjánsson, & Nakayama, 2005). Intertrial priming
reveals implicit expectations: The less a distractor or
target with specific features is expected, the slower the
RTs if they actually do appear (cf. Gekas, Seitz, &
Seriès, 2015). The expectations, in turn, reveal the
representations of the stimuli presented during the
trials.

We utilized this priming effect and measured changes
in RTs when the parameters of distractor distributions
changed and when targets had features previously
pertaining to the distractor distribution. This allowed
us to infer how the distributions are encoded. As
expected, we found that RTs are affected by changes in
the mean and variance of distractors. More surpris-
ingly, however, we found that RTs as a function of the
distance in feature space between the current target and
previous distractor distribution mean (current target�
previous distractors, CT� PD) generally follow the
shape of the preceding distributions. Following a streak
of trials with a Gaussian distractor distribution, RTs
monotonically decreased as CT� PD increased. But
following trials with a uniform distribution, the RT }
CT� PD functions had two parts: The first had a flat
slope when a current target was within the range of the
preceding distribution, and the second part had a
negative slope, monotonically decreasing as CT � PD
increased. Similarly, we found that skewed distribu-
tions resulted in skewed functions of RT dependent on
CT� PD. Several alternative explanations, such as
priming from changes in target orientation or simple
range encoding were rejected. These and other results
allowed us to conclude that observers treat the part of
feature space previously occupied by distractors dif-
ferently, depending on the shape of the distractor
distributions. In other words, they have an internal
representation1 corresponding to the shape of the
distractor distribution.

Although our results demonstrated that observers
encode and learn distribution shape, the dynamics of
this learning process are still unknown. Studies of the
processing of summary statistics show that a single trial
suffices for observers to grasp the mean and variance of
a distribution (e.g., Ariely, 2001; Utochkin & Tiurina,
2014). Yet psychophysical studies using single exposure
have not revealed any encoding of other statistics
(Atchley & Andersen, 1995; Dakin & Watt, 1997). In
Chetverikov et al. (2016) five to seven trials in each
streak were enough to reveal encoding of distribution
shape. Here, by using test streaks of different lengths,
we assess for the first time the amount of information
needed for encoding distribution shape.

A second, tightly related and still unresolved
question concerns observers’ prior expectations and
their role in ensemble perception. From a Bayesian
perspective, observers may have priors that differ from
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uniform, which influence distribution encoding. Only
when new information is obtained will the priors be
gradually updated to reflect the distribution’s true
shape. One of the candidates for such priors is a
Gaussian distribution. Being defined by only two
parameters, it could be quite useful for different tasks,
such as categorization or scene segmentation (Utoch-
kin, 2015). Moreover, a Gaussian approximation can
be useful (although not optimal) for describing effects
of distractor heterogeneity in visual search (Rose-
nholtz, 2001). A model with Gaussian priors predicts
that with increasing streak length observers will

gradually adjust their perception of the distractor
distribution away from a Gaussian one and closer to
the observed one.

In Experiment 1, we used a uniform distribution of
distractors, varying streak length of search for targets
within the same distractor distribution to test the
dynamics of distractor distribution processing. We
assessed the underlying distributions by measuring
changes in RTs as target and distractors change.2 More
specifically, the critical measure was RT as a function
of the distance in feature space between the current
target and the mean of the previous distractor

Figure 1. Schematic explanation of the method introduced by Chetverikov et al. (2016) and used in the present experiments. The aim

is to estimate the internal representation corresponding to the prime distribution with a given probability density function (upper left

panel; in this example, a Gaussian distribution with a mean of 608 and SD of 158 shown in blue). One or more displays for odd-one-

out search are created from this distribution (lower left panel). The target is oriented 608 to 1208 away from the distractor distribution

mean and could be the same or change randomly on each trial. These displays are shown one after another (prime distribution

streak). The prime distribution streak of consecutive trials from the same distribution is then followed by one or more test trials

(middle panel: previous prime distribution is shown with the dashed red line; current distractor distribution is shown with the solid

line). On test trials, the key variable is CT� PD, the distance between the mean of the previous distractor distribution and the current

target orientation. The distractor distribution (Gaussian, SD ¼ 10) in test trials is set randomly so that the difference between its

mean and target orientation is the same as during the prime streak, 608 to 1208. RTs are then measured as a function of CT� PD

(right panel). The whole procedure is then repeated with different prime distribution means. The resulting RTs are then used to assess

observer expectations, revealing the internal representation of the prime distribution (the bottom-right panel; CT� PD for symmetric

distributions is shown here and later in absolute degrees).
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distribution (CT � PD). If there were strong Gaussian
priors for the distribution shape, we would expect that
with short streaks the representation of the distribution
would still reflect these priors—that is, RT as a
function of CT� PD would change monotonically with
no breaking points. In contrast, if the priors were
nonexistent or weak compared to the empirical
evidence gained by observers, even short streaks would
result in a two-segment function with a flat first
segment and a second segment with a negative slope.

Experiment 1

Method

Participants

Ten observers (four female, age M ¼ 24.80) at St.
Petersburg State University took part in two experi-
mental sessions taking approximately 20–30 min each.
This and the following experiments were run in
accordance with the Declaration of Helsinki and were
approved by the ethics committee of St. Petersburg
State University.

Equipment

The stimuli were presented on an iiyama ProLite
T2250MTS display (19203 1080 pixel resolution) using
PsychoPy (Peirce, 2007). Viewing distance was ;57 cm.

Procedure

Observers searched for an oddly oriented line in a 6
3 6 grid of 36 lines subtending 168 3 168 at the center of
a display. The length of each line was 1.418. Line
positions were jittered by randomly adding a value
60.58 to both vertical and horizontal coordinates. The
trials were organized in streaks of one to 11 trials of the
prime distractor distribution (uniform; orientation
range¼ 608, Figure 2) with a constant mean. The mean
distractor orientation for each prime streak was set
randomly. Each prime streak was followed by a test
streak with a Gaussian distribution (SD¼ 10, outliers
with values outside of the 6208 range were removed;
although it is technically a ‘‘truncated Gaussian,’’ we
refer to it as Gaussian for the sake of brevity) with a
streak length of one or two trials (Figure 3). Searching
for targets among distractors from such a Gaussian
distribution is of intermediate difficulty for observers
and was found to be a good candidate for testing the
effects of priming in previous studies (Chetverikov et
al., 2016). The probability of each streak length within
each streak type (prime or test) was the same. Each
observer participated in two sessions of 180 prime
streaks lasting approximately 20–30 min each (with a
total of 2,703 trials per observer on average). For each
test streak, the mean of the prime distractor distribu-
tions differed from the mean of the test distractor
distribution by�808 toþ808 in 208 steps. The target in
each test and prime streak was set randomly so that
target-to-distractor distance ranged from 608 to 1208
and was constant within the streak (previous studies

Figure 2. Example prime distributions in Experiments 1, 2, and 3. The top row shows example stimuli, and the bottom row shows

corresponding probability density functions of distractor distributions and target position in feature space.
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have shown that the results are similar regardless of
whether target orientation in each trial is randomized;
Chetverikov et al., 2016).

In each trial during both prime and test streaks,
observers pressed the ‘‘i’’ key if the target was in the
upper half of the stimulus (upper three rows) and the
‘‘j’’ key if it was in the lower half of the stimulus (lower
three rows). Target position was randomized. If their
response was incorrect, the word ‘‘ERROR!’’ appeared
in red for 1 s. Observers were encouraged to respond as
quickly and accurately as possible and were told that
their performance would be scored. The score from the
previous trial was shown in the top left corner of the
display (green if positive, red if negative, computed as
score¼ 10 þ (1� RT) 3 10 for correct answers, where
RT is measured in seconds on previous trial, and as
score¼� j 10 þ (1 � RT) 3 10 j �10 for errors) along
with the trial number and the total number of trials.
Observers received positive scores for fast (faster than 1
s) and accurate responses and negative scores other-
wise. This score is purely arbitrary and was used only to
motivate observers. The total score was shown during
resting periods following 90 prime streaks (half of a
session). Resting periods and scores were intended to
increase observers’ vigilance and concentration. Rest-
ing time was unlimited, but observers were encouraged
not to take too much time for rest.

Data analysis

We used the same data analysis approach as in
Chetverikov et al. (2016). The main focus of the
analysis was RTs on test trials as a function of the
distance in feature space between the current target and
the mean of the distractor distribution used on
preceding prime trials (CT � PD). Only correct
responses were analyzed. Following the approach taken
in the previously reported experiments, we also
excluded posterror trials to avoid the effects of
posterror slowing. The probability of each distractor in
the uniform distribution was equal within the range of

the distribution and zero elsewhere. Hence, in test trials
similarly slow responses are expected when the target is
within the range of the preceding distractor distribution
(absolute values of CT� PD , 30) whereas a
monotonic decrease in RTs is expected with increasing
the distance from the range of the preceding distractor
distribution.3 In other words, the resulting RT } CT�
PD function should also have two components. The
presence of two components was tested with segmented
regression, also known as piece-wise or broken-line
regression, using the segmented package in R (Muggeo,
2003, 2008). To test whether the two-segment model fits
better than a one-segment model, we used the Davies
test (provided in the same package) that tests for
nonzero difference-in-slope parameters of the segments.

We report the results of linear mixed effects
regression (LMER) as regression coefficients (with
standard deviations in parentheses) and appropriate
Student’s t tests in case of simple linear regression and
Wald’s Z for binomial regression. The lme4 package in
R (Bates, Maechler, Bolker, & Walker, 2014) does not
report p values for t from mixed effects regression
because of indeterminacy surrounding the choice of
appropriate degrees of freedom. However, values of t
and Z above two can be treated similarly to p , 0.005.

Results

Average performance

First, we analyzed search times and accuracy as
function of the distribution within prime and test
streaks. Search was more difficult for targets among
distractors drawn from the uniform distribution than
the Gaussian with SD¼ 10 (Table 1), both in RT, t(9.0)
¼ 3.96, p¼0.003, and accuracy, t(9.0)¼ 5.27, p , 0.001.

Repetition effects

We next assessed repetition effects on prime streaks
(the test streaks only had one or two trials, analyzed in

Figure 3. Example sequence of prime and test streaks in Experiment 1. The prime distribution streaks could be one to 11 trials long,

and the test distribution streaks were one or two trials long.
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the next session). Search times decreased during the
first few repetitions reaching a plateau approximately
following the second trial (Figure 4). Accuracy also
increased after the first trial in a streak. LMER with
Helmert contrasts (comparing each trial with the
average of the following trials within the streak)
confirmed these observations, indicating that only RTs
on the first trial were slower, B¼ 0.12 (0.01), t¼ 17.07,
and less accurate, B ¼�0.34 (0.06), Z ¼ 5.88, than on
later trials. Search on the second trial was neither
slower, B¼�0.01 (0.01), t¼�1.78, nor more accurate,
B ¼�0.03 (0.07), Z ¼ 0.41, than on later trials.4

RTs as function of CT � PD

We analyzed RTs on test streaks as a function of the
distance between the current target orientation and
distractor mean orientation on preceding prime trials
(CT � PD). Replicating the results from our previous
studies, we found a nonlinear dependency of RTs on
preceding distractor distributions. Specifically, a seg-
mented regression showed that RTs are described by a

two-part linear function with a breaking point at 25.88

distance (Figure 5). The slope of the first part did not
significantly differ from zero, B ¼ 0.67, 95% CI ¼
[�1.36, 2.71] (values represent slope and CI for
untransformed search times; the actual analysis was
done using log-transformed RT data and yielded the
same results), and for the second part, the slope was
significantly negative, B ¼�1.86, 95% CI ¼ [�2.37,
�1.36]. The Davies test confirmed that the difference in
slopes for the two parts was indeed significant, p ¼
0.001.

The most novel and important question here was
how quickly representations of distributions develop.
To test whether observers can represent uniform
distributions and to analyze effects of streak length, we
used LMER including CT� PD and its interaction
with previous streak length for segments within (08 to
308 CT� PD) and outside the range of the previous
distractor distribution (308 to 908 CT� PD). We also
controlled for the effect of distance between the
previous target and the mean of the current distractor
distribution and the distance between means of
previous and current distractor distributions. Within
the range of the previous distractor distributions the
slope of CT� PD was flat, B¼ 0.01 (0.02), t¼ 0.70, and
did not interact with previous streak length, B¼�0.001
(0.003), t¼ 0.48. Outside the previous distractor
distribution range, it was negative, B¼�0.01 (0.01), t¼
�2.29, but also did not interact with previous streak
length, B ¼�0.001 (0.001), t ¼�0.68.

Figure 4. Repetition effects within streaks in Experiment 1 (prime distractor distributions). Bars show 61 SEM.

Distractors

Accuracy RTcorr, ms

M SD M SD

Gaussian, SD ¼ 10 (test streaks) 0.95 0.02 674 123

Uniform (prime streaks) 0.89 0.05 743 168

Table 1. Search times and accuracy. Notes: The uniform
distribution had longer streaks, and thus the comparisons
between distributions should be made with caution.
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Discussion

In Experiment 1, we replicated the effects of uniform
distractor distributions on RTs for the consequent test
distribution (Chetverikov et al., 2016). The RT } CT�
PD function consisted of two segments: The first had
zero slope, and the second had a negative slope. In
essence, search was slow as long as the target was inside
the range of the previous uniform distractor distribu-
tion and fast when the target was outside of it. This
result replicates previous findings that used the same
two-segmented function and demonstrates the validity
of the modeling approach we use.

The new finding here is that the number of
repetitions did not influence the shape of the RT } CT
� PD function. Observers’ responses on test trials
indicate that they treated the preceding distribution as
uniform following only a few repetitions. Further
repetitions neither helped nor hindered performance.

The results of Experiment 1 demonstrate that
observers do not have any strong nonuniform priors
when they encode distractor distributions. Given that
the mean value for the distribution shape changes for
every prime streak, the results cannot be explained by
carryover effects from preceding streaks. Moreover,
our previous experiments show that neither learning
target orientation nor learning the range of distribu-
tions can explain the correspondence between the shape
of the RT as a function of CT� PD and the shape of
the distribution (Chetverikov et al., 2016, see experi-
ment 3C for results with random target orientation and
experiments 2 and 3A for a comparison of the
distributions with the same range). However, the effects
obtained with short streaks in the present study might
partially be explained by the fact that after several
streaks observers begin to expect a uniform distribu-
tion. Moreover, the results leave open the question of
the strength of uniform priors themselves. In other
words, the fact that observers can easily learn uniform
distributions of distractors does not imply that there
are uniform priors or that nonuniform distributions
cannot be learned with ease.

In Experiment 2, we tried to disentangle this by
comparing the learning dynamics for uniform and
Gaussian distributions. Experiment 1 did not show any
effect of the number of repetitions on the shape of the
RT } CT� PD function. Thus, in Experiment 2, we
contrasted short streaks (one to two trials) with
relatively long streaks (six to seven trials), allowing us
to increase the number of trials for each streak length
used and, in combination with increased number of
sessions, increase statistical power. We expected that if
there was a strong prior for a uniform distractor
distribution, then following a short prime streak of
Gaussian trials, observers would still represent it as
uniform, and a two-segment RT } CT � PD function
would be observed.

Experiment 2

Participants

Ten observers (four female, ageM¼25.10) took part
in three experimental sessions taking approximately
20–30 min each.

Figure 5. Search times as a function of the distance between the

current target and the mean of the previous prime distractor

distribution (CT� PD) in Experiment 1. The top panel shows the

fitted loess functions for the streaks of different lengths; the

bottom panel shows the probability density function (PDF) of

the preceding distribution. Note that units for the PDF do not

have physical meaning, but the PDF can be intuitively

understood as a description of the ‘‘shape’’ of the distribution.

Gray areas show 95% confidence intervals of the fitted

functions. In this and the following plots, the absolute value of

CT � PD is used because the analyzed distributions were

symmetric. Hence, a uniform distribution with a range of 608 is

shown to range from 08 to 308.
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Method

The procedure was similar to Experiment 1 with

some modifications. The prime distribution streaks

could be either long (six to seven trials) or short (one

to trials). Each streak length had the same probability.

To keep overall probabilities of Gaussian and uniform

distributions equal, both prime and test distributions

could be uniform or Gaussian except that prime

distributions had a maximum possible range of 608

(SD¼ 15 for a Gaussian with outliers outside of 62 3

SD removed) whereas test distributions had a 408

range (SD¼ 10 for a Gaussian with similarly removed

outliers). Test distribution type was counterbalanced

with prime distribution and prime streak length. Each

observer participated in three sessions of 208 prime

and test streaks, each lasting approximately 20–30

min.

Results

Average performance

A two-way repeated-measures ANOVA showed a
significant effect of distractor distribution type on
search times, F(1, 9) ¼ 57.98, p , 0.001, g2

G ¼ 0.11,
qualified by an interaction with distribution range, F(1,
9) ¼ 18.03, p¼ 0.002, g2

G ¼ 0.01. For accuracy, the
effects of distribution type, F(1, 9) ¼ 74.33, p , 0.001,
g2

G¼ 0.17, and range, F(1, 9)¼ 18.45, p¼ 0.002, g2
G¼

0.18, did not interact. As Table 2 shows, the interaction
stems from the fact that RTs were similar for Gaussian
distributions with a different range, and for the
uniform distributions with a different range, the RTs
differed. A separate analysis of the Gaussian and
uniform distributions with larger range showed differ-
ences both in RT, t(9.0) ¼ 7.06, p , 0.001, and
accuracy, t(9.0) ¼ 5.17, p , 0.001. Similarly, with
smaller range, the uniform distribution resulted in
slower responses, t(9.0) ¼ 6.54, p , 0.001, and lower
accuracy, t(9.0) ¼ 6.54, p , 0.001, than the Gaussian.

Observers responded more slowly, B¼ 0.14 (0.01), t
¼ 19.84 for uniform and B ¼ 0.14 (0.01), t ¼ 25.38 for
Gaussian distribution, and were less accurate, B ¼
�0.39 (0.07), Z¼�5.82 and B¼�0.43 (0.08), Z¼�5.48,
respectively, on the first trial than on later trials as well
as on the second trial for the Gaussian distribution, B¼
0.02 (0.01), t ¼ 3.69, and marginally slower for the
uniform distribution, B¼ 0.01 (0.01), t¼ 1.88, but not
more accurately, B ¼ 0.12 (0.09), Z ¼ 1.35 and B ¼
�0.07 (0.10), Z¼�0.65, respectively, than on later trials
(Figure 6).

Distractors

Accuracy RTcorr, ms

M SD M SD

Gaussian 620 (test streaks) 0.96 0.02 606 41

Uniform 620 (test streaks) 0.93 0.03 636 53

Gaussian 630 (prime streaks) 0.93 0.03 609 55

Uniform 630 (prime streaks) 0.91 0.04 663 72

Table 2. Search times and accuracy. Notes: Prime streaks were
on average longer than test streaks, and comparisons between
them should be made with caution.

Figure 6. Repetition effects in Experiment 2 (prime distractor distributions). Bars show 61 SEM.
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RTs as function of CT � PD

Figure 7 shows that the RT } CT � PD function
clearly differed between the uniform and Gaussian
prime streaks. A segmented regression showed that
following a uniform distribution RTs can be described
by a two-part linear function with a breaking point at
22.4 distance (Davies’ test p¼ 0.040). The slope of the
first part did not significantly differ from zero, B¼0.40,
95% CI ¼ [�2.64, 3.44], and for the second part, the
slope was significantly negative, B ¼�1.43, 95% CI ¼
[�1.73,�1.13]. In contrast, following the Gaussian
distribution, no significant breaking point was found
(Davies’ test p ¼ 0.732). The results were similar for
different test distribution shapes (Supplementary Fig-
ure S1).

LMER confirmed that the slopes within the distri-
bution range (08 to 308) were significantly more
negative for the Gaussian than the uniform distribu-
tions, B¼ 0.02 (0.01), t¼ 2.30. However, streak length
did not affect the slopes for the uniform, B ¼ 0.003
(0.014), t¼ 0.20, or the Gaussian distributions, B ¼
0.003 (0.013), t¼ 0.23. Interestingly, the slopes outside

the previous distractor distribution range were more
shallow for longer streaks than for shorter streaks
following the uniform, B¼ 0.01 (0.01), t¼ 2.21, but not
the Gaussian distribution, B ¼ 0.01 (0.01), t ¼ 1.81.

Discussion

Experiment 2 shows that for both uniform and
Gaussian distributions the shape of the RT } CT� PD
functions was not affected by the number of prime trial
repetitions. When the previous distractor distribution
was Gaussian, RTs monotonically decreased with
increasing CT� PD distance already after one to two
repetitions. However, when the previous distractor
distribution was uniform, the RT } CT� PD function
had a two-segment shape with a flat slope in the first
segment and a negative slope in the second segment,
roughly following the probability density function of
the previous distractor distribution. Note that both
Figures 5 and 7 indicate that the length of the first
segment is shorter and closer to the actual distribution

Figure 7. Search times as a function of the distance between the current target and the mean of previous distractor distribution (CT�
PD) in Experiment 2. The top panel shows the fitted loess functions for the streaks of different lengths, and the bottom panel shows

the probability density of the preceding distribution. Gray areas show 95% confidence intervals of the fitted functions.
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range with longer streaks. Thus, it is possible that
additional repetitions allow for more precise estimation
of distribution shape. This could explain the effect of
previous streak length on slopes of the second segment
of the RT } CT � PD function for uniform
distributions: Longer streaks might allow a more
detailed representation of the probability outside the
previous distractor distribution. Nevertheless, the main
conclusion of Experiment 2 is that one or two
repetitions are enough for observers to grasp the
general shape of distractor distributions.

In Experiments 1 and 2, the prime distributions were
relatively simple and may have been easy to learn,
which might explain why further repetitions have little
or no effect. In Experiment 3, we therefore used a
bimodal distribution to measure how observers would
represent this more complex distribution following
short streaks and whether they would be able to learn
the true shape of the distribution with increased
repetitions.

Experiment 3

Method

Procedure

The procedure was the same as in Experiment 1
except that the prime distribution was bimodal (see
Figure 2, right panel), consisting of two uniform
distributions with orientations randomly drawn from
(�308, �158) and (158, 308) segments of feature space
(relative to the distribution center).

Participants

Eleven observers5 (three female, age M¼ 24.91) took
part in two experimental sessions taking approximately
20–30 min each.

Results

Average performance and repetition effects

Similarly to the uniform distribution in Experiment
2, the bimodal distribution search was more difficult
than the Gaussian, both in search time, t(10.0)¼ 6.83, p
, 0.001, and accuracy, t(10.0)¼ 6.39, p , 0.001 (Table
3). There was a significant quadratic effect of target-to-
distractor distance for both Gaussian, B¼ 0.76 (0.25), t
¼ 3.02, and bimodal, B ¼ 5.27 (0.35), t¼ 15.19,
distributions. The repetition effect was most noticeable
after the first trial (Figure 8). LMER with Helmert

Figure 8. Repetition effect within streak in Experiment 3 (prime distractor distributions). Bars show 61 SEM.

Distractors

Accuracy RTcorr, ms

M SD M SD

Gaussian, SD ¼ 10 (test streaks) 0.95 0.02 637 62

Bimodal (prime streaks) 0.88 0.04 739 98

Table 3. Search time and accuracy in Experiment 3. Notes: The
bimodal distribution had longer streaks, and thus the
comparisons between distributions should be made with
caution.
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contrasts indicated that search on the first trial was
slower, B¼ 0.15 (0.01), t¼ 22.52, and less accurate, B¼
�0.42 (0.05), Z ¼�7.97, than on later trials.

RTs as function of CT � PD

Figure 9 shows that following a bimodal distribution
the RT } CT� PD function differed from those
observed in previous studies. Given that a bimodal
distribution with CT� PD analyzed in absolute degrees
has three parts (08 to 158, 158 to 308, and 308 to 908), we
first ran a segmented regression with two break points.
However, because the second breaking point did not
correspond to any significant change (p¼ 0.868) in
slope, we repeated the analysis assuming only one
breaking point. The analysis revealed a breaking point
at 14.08 (p , 0.001). There was a tendency-level positive

slope for the first part, B¼ 3.33, 95% CI¼ [�0.05, 6.71],
and for the second part, the slope was significantly
negative, B¼�1.38, 95% CI¼ [�1.66,�1.10]. We then
ran a mixed effects regression that included the effect of
the CT� PD split into three segments (08 to 158, 158 to
308, and 308 to 908) controlling for distance between
previous target and the current distractor and the
accuracy of the preceding response. As in Experiment
1, targets far from the mean of the preceding
distribution (.308) were processed significantly faster,
B¼�0.03 (0.01), t¼�2.66. Crucially, however, RTs in
the 158 to 308 segment were slower than in the 08 to 158
segment, B ¼ 0.02 (0.01), t ¼ 2.15.

The effect of the previous distribution on RTs
became more pronounced with more trials. To facilitate
the comparisons, we contrasted short (one to two
trials), medium (three to seven trials), and long streaks
(eight to 11 trials). For the shortest streaks, RTs for the
08–158s CT � PD segment and the 158–308 CT � PD
segment did not differ, B ¼�0.02 (0.03), t¼�0.85.
However, a significant interaction between the effect of
the segment and previous streak length indicated that
for the longest streaks, RTs for the 158–308 segment
became slower than for the 08–158 segment, B¼ 0.07
(0.03), t ¼ 2.03 (see Figure 10, blue line). Pair-wise
comparisons confirmed that the difference between the
08–158 and 158–308 segments was significant for the
longest streaks, B ¼ 0.04 (0.02), p¼ 0.033, but
nonsignificant for the midlength, B ¼ 0.03 (0.02), p¼
0.239, and the shortest streaks, B¼�0.02 (0.03), p¼
0.601. The difference between the 308–908 segment and

Figure 9. Search times as a function of the distance between the

current target and the mean of the previous distractor

distribution (CT� PD) in absolute degrees in Experiment 3. The

top panel shows the fitted loess functions for the streaks of

different lengths, and the bottom panel shows the probability

density function of the preceding distribution. Gray areas show

95% confidence intervals of the fitted functions. As in previous

plots, absolute values of CT� PD are analyzed, so the bimodal

distribution with two segments at�158 to�308 and 158 to 308

is shown as a single-segment distribution.

Figure 10. Search times as a function of the distance between

targets and previous distractors’ mean split by previous streak

length in Experiment 3. Bars show 61 SEM.
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the 158–308 segment was already significant for the
shortest streaks, B¼�0.05 (0.02), t¼�2.17, and did not
interact with streak length, B¼ 0.03 (0.03), t¼ 1.17.

Discussion

Two important conclusions follow from Experiment
3. Initially, observers fill in the gaps between the modes
of a bimodal distribution, seemingly assuming that the
distribution is unimodal and uniform between the
modes. In fact, with short streaks, RTs are longer when
the current target falls in the region between the peaks
of a previous bimodal distractor distribution (08–158 in
Figure 10) than when it falls outside its range (308–908
in Figure 10). It is as if this part of the feature space
between peaks is also occupied by distractors.

With more repetitions—and this is the second
important finding—observers begin to differentiate
between the region in between the modes and the
regions at the modes. That is, they learn that the
probability of seeing a particular distractor is not
uniform. However, the effect of this additional learning
is relatively small compared to the overall difference
between the region between the modes and the region
outside of them.

General discussion

In the three experiments reported here, we investi-
gated for the first time the dynamics of stimulus
distribution encoding over several trials. Using visual
search for an oddly oriented line, we asked whether
observers have any strong priors when they encode
distractor features and whether the knowledge about
distractor distributions improves with repetitions. To
answer this question, we assessed how the shape of
previously observed distractor distributions influences
search times depending on the number of repetitions
and the shape of the distribution.

In Experiment 1, we demonstrated that observers
can represent uniform distributions already after one or
two trials, and further trials do not change RT patterns.
Experiment 2 showed that observers are equally fast at
learning uniform and Gaussian distributions. The
results from these experiments replicate and extend our
previous findings (Chetverikov et al., 2016). As in
previous experiments, we found that RTs as a function
of the distance between the mean of the previous
distractor distribution (CT � PD) correspond to the
shape of distractor distribution. The RTs seemingly
correspond to observers’ (implicit) expectations. Fol-
lowing uniform distributions, the expectations are
similarly uniform within the range of the preceding

distribution, and following Gaussian distributions, they
monotonically decrease even though this distribution
has the same range.

However, in contrast to our previous experiments,
we varied the number of repetitions and were able to
study the prior expectations and dynamics of distribu-
tion encoding. We reasoned that observers’ represen-
tation of distractor distribution would depend both on
their prior expectations and the actual shape with the
weight of the priors decreasing with repetitions. Hence,
we expected that any strong priors would be visible
after short streaks. However, our findings demonstrate
that observers do not have any strong priors related to
distribution shape when they process distractors in
visual search. Both Gaussian and uniform distributions
are encoded correctly after one or two repetitions, and
further repetitions do not affect observers’ representa-
tions. It might seem surprising, but on the other hand,
each trial contains 35 distractors, and 70 distractors
appear to be more than enough to obtain probability
density estimates. The average RTs in Experiment 2 for
the first two trials in the streak were 600–700 ms,
providing a conservative estimate of 2 s for analyses of
the distributions during two trials. It is possible that
with shorter presentation times encoding might differ.
At the very least, our findings convincingly indicate
that, even if representations of distractor distributions
are influenced by any prior expectation when observers
first encounter the stimulus distribution, this prior
dissipates amazingly quickly under the influence of
incoming sensory data.

Experiment 3 provided important additional infor-
mation about distribution shape learning. When
confronted with a bimodal distractor distribution
(consisting of two separate uniform segments), ob-
servers initially treated it as unimodal, interpolating the
gap between the two modes as if there were distractors
there. However, with further repetitions, their RTs
gradually became different for the feature space that
was occupied by distractors and the interpolated part
between the modes of the distribution that was not
occupied by distractors. Their RTs started to follow the
shape of the preceding distribution more closely,
indicating that they began to encode the bimodality of
the distribution.

The results for the bimodal distribution show that
observers are limited in their ability to approximate the
shape of distributions. Although Gaussian or uniform
distributions are easily approximated, a bimodal
distribution is not. Bimodal distributions are only
approximated following five to seven repetitions. This
might indicate that observers initially expect unimodal
distributions and only after obtaining more informa-
tion start to separate the modes (Utochkin & Yurevich,
2016). The encoding of object ensembles is therefore
flexible but not without limits.

Journal of Vision (2017) 17(2):21, 1–15 Chetverikov, Campana, & Kristjánsson 12

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/936040/ on 06/02/2017



These results are novel and surprising given the role
that Gaussian distributions play in accounts of
ensemble perception (Rosenholtz, 2001; Utochkin,
2015). However, the fact that the distribution is
encoded as uniform does not mean that it cannot be
further approximated as Gaussian if necessary. In fact,
the results of our previous experiments (Chetverikov et
al., 2016) and Experiment 2 here demonstrate that
observers can correctly encode the shape of Gaussian
distributions. But apparently they do not enforce such
approximations on data when they do not fit. As we
argued before (Chetverikov et al., 2016), encoding of
the shape of feature distributions can be implemented
in many ways, ranging from simple counting of specific
orientations to an approximation with multiple simple
functions (such as Gaussian functions) or using higher-
order moments, such as skewness or kurtosis. We do
not advocate a specific mechanism as the research into
distribution representations has only just began.
However, simple counting seems to be unlikely given
the results of Experiment 3 as it does not explain the
interpolation between distribution peaks with short
streaks. It is then likely that more complex mechanisms
are involved.

Our results further demonstrate the advantages of
our new method for studying internal representations
of ensembles. In a feature-based search task, targets
and distractors cannot have the same features. The
more probable it is that distractors have features from a
particular region of feature space, the less probable it is
that a target will have features from this region, and the
slower observers respond when this actually happens.
The mapping between features in the physical world,
the corresponding probabilities in perceptual space,
and the mapping between the latter and RTs is
nonlinear. However, as our results demonstrate, the
resulting RT patterns correspond to distributions of
features in the physical world, and varying the
parameters of the distributions of features in the
physical world and analyzing RTs as a function of CT
� PD enables the study of the characteristics of
ensemble perception and the underlying mechanisms.

Keywords: visual search, learning, ensemble
representations, summary statistics, priming of pop out,
line orientation
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Footnotes

1 We did not test for observers’ awareness of the
difference between distributions, but previous studies
(Atchley & Andersen, 1995; Dakin & Watt, 1997) show
that observers perform poorly on tasks requiring
explicit discrimination between distributions based on
skewness or kurtosis. Hence, it is highly unlikely that
observers have conscious access to representations of
distributions in our studies.

2 How exactly physical feature space, perceptual
domain, and RTs are mapped to each other is unclear.
But we assume that the relationship between them is
monotonic: The lower the probabilities in physical
space are, the lower are the probabilities in perceptual
space, and the RTs are subsequently longer.

3 We expect a monotonic decrease rather than a
sharp drop of RTs and then similarly fast RTs outside
of the range of the previous distractor distribution
because previous results show that the sharp drop in
distractors’ probability corresponds to a gradual
decrease of response times (Chetverikov et al., 2016).
Whether this is a result of encoding the borders of the
distribution or simply a noisy representation is not yet
known.

4 The lack of the effect from third and later
repetitions is unlikely to result from the different
number of trials per repetition. Figure 4 shows that the
confidence intervals become only slightly larger with
increasing trial number in a streak. Moreover, Helmert
contrasts compare each trial with the average of the
following trials within the streak, and hence, the
number of trials per comparison remains high. Only the
latest comparison, e.g., ninth trial (N¼879) versus 10th
and 11th (N ¼ 835) may begin to suffer from the
comparatively lower power. Hence, we do not think
that our conclusions regarding the repetition effects can
be explained by the differences in the number of trials
within different streaks. Later comparisons related to
CT� PD effects for different streak length are not
affected by different numbers of trials in the streaks.
Although there are more first trials in prime streaks
than 11th trials, the number of streaks consisting of one
trial and 11 trials is balanced in the design.

5 We planned to enroll 10 observers as in previous
experiments; however, data from an additional partic-
ipant were collected due to an error in the schedule. The
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results do not change if the data from the last observer
is discarded.
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