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Abstract—A new spectral-spatial method for the classification 
of hyperspectral images is introduced. The proposed approach is 
based on two segmentation methods, Fractional-Order Darwini-
an Particle Swarm Optimization and Mean Shift Segmentation. 
The output of these two methods is classified by Support Vector 
Machines. Experimental results indicate that the integration of 
the two segmentation methods can overcome the drawbacks of 
each other and increases the overall accuracy in classification. 
Keywords— hyperspectral image analysis, multilevel segmentation, 
mean shift segmentation. 

I. INTRODUCTION 
ith recent advances in remote sensing technology, the 
spatial resolution of satellite images has become less 

than one meter [15]. The accurate classification of remote 
sensing images play a key role in many applications, includ-
ing crop monitory, forest applications, urban development, 
mapping and tracking or risk management. One way for 
achieving this goal would be to use the spectral and the spa-
tial information sequentially [15]. The goal of considering 
spatial context in the classification step can be partially 
achieved by using some specific methods such as morpholog-
ical filters [15] and Markov random fields [4]. The above-
mentioned methods significantly increase the accuracy of the 
classification by incorporating spatial and spectral infor-
mation. Another way for considering the spatial structures 
would be to perform image segmentation. 
Image segmentation is a procedure which can be used to 
modify the accuracy of classification maps. To make such an 
approach effective, an accurate segmentation of the image is 
needed. A few methods for segmentation of multispectral and 
hyperspectral images have been introduced in the literature. 
Some of these methods are based on region merging methods, 
where neighboring segmented regions are merged with each 
other according to their homogeneity criterion, for instance 
Multiresolution Segmentation Method in the eCognition 
software is used this type of approach [5]. In [6], hierarchical 
segmentation algorithm is proposed, which performs region 
growing and spectral clustering alternately.  
 

 
 

One of the best known methods for image segmentation is 
thresholding. Different types of optimal thresholding methods 
have been proposed in the literature (e.g., [16]).  One strategy 
to find the optimal set of thresholds is to take into account an 
exhaustive search. A commonly used exhaustive search 
method is based on the Otsu criterion [1]. However, exhaus-
tive search to find n - 1 optimal thresholds involves evalua-
tion of the fitness for n(L-n+1)n-1combinations of thresholds 
[9]. Therefore, this method is not desirable from a computa-
tional point of view. Alternatively, the issue of determining n 
- 1 optimal thresholds for n-level image thresholding can be 
formulated as a multidimensional optimization problem. To 
solve the aforementioned issue, several biologically inspired 
algorithms have been explored in image segmentation [9].  
One of the most commonly used methods based on split and 
merging segmentation is Mean Shift Segmentation (MSS) 
which is widely used in image processing. MSS is a nonpar-
ametric clustering technique which does not need embedded 
assumptions on the shape of the distribution and the number 
of clusters compared with the classic K-means clustering. 
MSS is a powerful method for segmentation of images with 
high redundancy [10] such as remote sensing images. 
Fractional Order Darwinian Particle Swarm Optimization 
(FODPSO) segmentation (as all thresholding based methods 
in general) suffers from the following disadvantages: i) It 
cannot handle inhomogeneity; ii) it fails when the intensity of 
object of interest does not appear as a peak in the histogram; 
and iii) the traditional FODPSO based segmentation takes 
into account only the between class variance, thus disregard-
ing any feedback from the within-class variance. In the MSS 
method, a kernel size needs to be tuned by the user.  The 
tuning may be a difficult task and the final results may be 
affected by that dramatically. 
In this letter, a new spectral-spatial classification approach is 
introduced for accurate classification of hyperspectral imag-
es. First, an input image will be segmented by Fractional 
Order Darwinian Particle Swarm Optimization (FODPSO). 
Then, the output of this step will be segmented again by MSS. 
At the end, the segmented image will be classified by Sup-
port Vector Machine (SVM).  The paper is organized as 
follows: Methodology is discussed in Section II. Then, Sec-
tion III is devoted to experimental results. Finally, in Section 
IV are outlined the main conclusions. 

II. METHODOLOGY 
The flowchart of the proposed method is illustrated in Fig. 
1. The segmentation part consists of two different ap-
proaches: i) Multilevel thresholding method based on 
FODPSO; and ii) MSS. Then, the output of the segmenta-
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tion methods will be classified by SVM. The following sub 
sections present a brief description of both segmentation 
methods. 
 

 
 

Fig. 1: Flowchart of the proposed methodology. 
 
A. Multilevel thresholding method based on Fractional 
Order Particle Swarm Optimization (FODPSO) 
Multilevel segmentation techniques provide an efficient 
way to perform image analysis. However, the automatic 
selection of a robust optimum 𝑛-level threshold has re-
mained a challenge in remote sensing image segmentation. 
Let L represents the intensity levels in each component of a 
given image where a component is defined in the range {0, 1, 
2, …, L-1}. Then, one can calculate the probability distribu-
tion  𝑝!!  as: 
 

𝑝!! =
!!
!

!
, 𝑝!!

!
!!! = 1, (1) 

 
where i represents a specific intensity level, i.e., 0 ≤ i ≤ L-1, 
C represents the component of the pixel, e.g., 𝐶 = 𝑅, 𝐺, 𝐵  
for RGB images, N represents the total number of pixels in 
the image and ℎ!!  denotes the number of pixels for the corre-
sponding intensity level i in the component C. In other words, 
ℎ!!represents an image histogram for each component C, 
which can be normalized and regarded as the probability 
distribution 𝑝!! .  
Hence, the 𝑛-level thresholding presents 𝑛 − 1 threshold 
levels 𝑡!! , 𝑗 = 1,… , 𝑛 − 1, and the operation is performed 
as: 
 

𝐹! 𝑎, 𝑏 =
0,                                   𝑓! 𝑎, 𝑏 ≤ 𝑡!!

!
!
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⋮
!
!
𝑡!!!! + 𝑡!!!! , 𝑡!!!! < 𝑓! 𝑎, 𝑏 ≤ 𝑡!!!!

𝐿,                                  𝑓! 𝑎, 𝑏 > 𝑡!!!!

. (2) 

 
where 𝑎 and 𝑏 are the width (𝑊) and height (𝐻) pixel of the 
image of size 𝐻×𝑊 represented by 𝑓! 𝑎, 𝑏  with 𝐿 intensity 
levels for each component. The pixels of a given image will 
be divided into 𝑛 classes 𝐷!! ,…, 𝐷!! , which may represent 
multiple objects or even specific features on such objects 
(e.g., topological features). 
The simplest method of obtaining the optimal threshold is the 

one that maximizes the between-class variance of each com-
ponent which can be generally defined by: 
 

𝜎 
!
!
! = 𝑤!! 𝜇!! − 𝜇!!

!!
!!! 

, (3) 
 
where 𝑗 represents a specific class in such a way that 𝑤!!  and 
𝜇!!  are the probability of occurrence and mean of class 𝑗, 
respectively. The total mean value of a component is repre-
sented by 𝜇!! .  
For classes 𝐷!! ,…,𝐷! 

! , the probabilities of occurrence 𝑤!!and 
the means 𝜇!!  can be defined by (4) and (5), respectively: 
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The problem of 𝑛-level thresholding is reduced to an optimi-
zation problem to search for the thresholds 𝑡!!  that maximize 
the objective functions of each image component 𝐶, generally 
defined as: 
 

𝜑! = 𝑚𝑎𝑥!!!!!!⋯!!!!!! !!
!

𝜎 
!
!
! 𝑡!! . (6) 

 
Computing this optimization problem involves a huge com-
putational effort because the number of threshold levels and 
image components increase. Recently, biologically inspired 
methods, such as the well-known Particle Swarm Optimiza-
tion (PSO), have been used as computationally efficient al-
ternatives to analytical methods to solve optimization prob-
lems [13]. 
An example of such methods is the Fractional Order Particle 
Swarm Optimization (FODPSO) recently presented in [16]. 
This method is a natural extension of the Darwinian Particle 
Swarm Optimization (DPSO) presented by Tillett et al. in 
2005 [14] using fractional calculus to control the convergence 
rate and was extended for the classification of remote sensing 
images in [8]. 
As in the classical PSO, particles within the FODPSO travels 
through the search space to find an optimal solution by inter-
acting and sharing information with other particles. In each 
step of the algorithm, 𝑡, a fitness function is used to evaluate 
the success for a particle. To model the swarm, 𝑠, each parti-
cle, 𝑛, moves in a multidimensional space according to a 
position, 𝑥!! 𝑡 , 0 ≤ 𝑥!! 𝑡 ≤ 𝐿 − 1, and velocity, 𝑣!! 𝑡 . The 
position and velocity values are highly dependent on the 



individually best, (𝑥!! 𝑡 , and the globally best, 𝑔!! 𝑡 , infor-
mation: 
 

𝑣!! 𝑡 + 1 = 𝛼𝑣!! 𝑡 + !
!
𝛼𝑣!! 𝑡 − 1 + !

!
𝛼 1 −

𝛼  𝑣!! 𝑡 − 2 + !
!"
𝛼 1 − 𝛼 2 − 𝛼 𝑣!! 𝑡 − 3 +

𝜌!𝑟! 𝑔!! − 𝑥!! 𝑡 + 𝜌!𝑟! 𝑥!! − 𝑥!! 𝑡 , 

(7) 

 
𝑥!! 𝑡 + 1 = 𝑥!! 𝑡 + 𝑣!! 𝑡 + 1 . (8) 

 
The coefficients 𝜌! and 𝜌! are weights which control the 
global and individual performance, respectively. Within the 
FODPSO algorithm, the inertial influence of particles de-
pends on the fractional coefficient 𝛼. The parameters  𝑟! and 
𝑟! are random vectors with each component is generally a 
uniform random number between 0 and 1.  
When applying the FODPSO to multilevel thresholding of 
images, the particles’ velocities are initially set to zero and 
their position is randomly set within the boundaries of the 
search space, i.e., 𝑣!! 0 = 0 and 0 ≤ 𝑥!! 0 ≤ 𝐿 − 1. In other 
words, the search space depends on the number of intensity 
levels 𝐿, i.e., if one wishes to perform a segmentation of a 8-
bit image, then particles will be deployed between 0 and 255. 
Hence, associated to each particle, a possible solution 𝜑!  will 
be found and compared between all particles of the same 
swarm. The particle that has found the higher between-class 
variance 𝜑!  so far will be the best performing one (i.e., 
𝑔!! 𝑡 ), thus luring other particles toward it. It is also note-
worthy that when a particle improves, i.e., when a particle is 
able to find a higher between-class variance 𝜑!  from one step 
to another, the fractional extension of the algorithm outputs a 
higher exploitation behavior. This allows achieving an im-
proved collective convergence of the algorithm, thus allowing 
a good short-term performance. 
FODPSO is a promising method to specify a predefined 
number of clusters with a higher between class variance. In 
[9], the authors demonstrated that the FODPSO based seg-
mentation method performs considerably better in terms of 
accuracies than Genetic Algorithm (GA), Bacterial Algorithm 
(BA), PSO and DPSO, thus finding different number of clus-
ters with a higher between-class variance and more stability 
in less computational processing time. For further infor-
mation on the FODPSO algorithm please refer [9, 16]. 
 
B. Mean Shift Segmentation 
MSS is a nonparametric clustering technique which requires 
neither embedded assumptions on the shape of the distribu-
tion nor the number of clusters in comparison to the classic 
K-means clustering approach. Mean shift was firstly intro-
duced in [11]. This approach has been more recently devel-
oped for different purposes of low-level vision problems, 
including, adaptive smoothing and segmentation [10]. 
In the MSS, each pixel is associated with the most significant 
mode of the joint domain density located in its neighborhood, 
after nearby modes were pruned as in the generic feature 
space analysis technique [12]. Let us assume that we have 𝑁 
data points 𝑋! , 𝑖 = 1, . . . ,𝑁 in a 𝑑-dimensional space 𝑅!. 
Then, the multivariate kernel density estimate obtained with a 
radially symmetric kernel, 𝐾 𝑋 , and window radius, h, is: 

 

𝑓 𝑋 = !
!!!

𝐾 !!!!
!

!
!!! , (10
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where ℎ is the kernels size parameter, presents the radius of 
kernel. The radially symmetric kernel 𝐾(𝑋) can be defined 
as: 
 

𝐾 𝑋 = 𝑐!𝑘 𝑋 ! , (1
1) 

 
where 𝑐! is a normalization constant. The modes of the densi-
ty function are located at the zeros of the gradient function, 
i.e., where ∇𝑓 𝑥 = 0. After some algebraic manipulation, 
the gradient of the density estimator can be written as fol-
lows: 
 

∇𝑓 𝑋 = !!!,!
!!!!!

𝑔 !!!!
!

!
!
!!!

!!!
!!!!
!

!
!
!!!

!
!!!!
!

!
!
!!!

− 𝑋 , (12) 

 
 
where 𝑔 𝑋 = −𝑘′ 𝑋  which gives the derivative of the 
selected kernel profile. The first term of (12) gives infor-
mation regarding the density estimate at 𝑥 computed with 
kernel 𝐺 𝑋 = 𝑐!𝑔 𝑋 ! . The second term is regarded as 
the mean shift vector, 𝑚, which points toward the direction of 
the maximum increase in density and is related to the density 
gradient estimate at point 𝑥 obtained with kernel 𝐾. In fol-
lows, the way of calculating the mean shift for a given point 
𝑋! will be shown (cf., Fig. 1): 

i. Computation of the mean shift vector 𝑚(𝑋!!). 
ii. Translation of the window: 𝑋!!!! =  𝑋!! +𝑚 𝑋!! .   
iii. Iterate steps i and ii, until convergence, i.e., 
til ∇𝑓 𝑋 = 0. 

The most important limitation of the standard MSS is that the 
value of the kernel size is unspecified. More information 
regarding the MSS can be found in [10]. 

III. EXPERIMENTAL RESULTS 
A. Description of data sets 
Pavia data: The first test case is a hyperspectral data set 
captured on the city of Pavia, Italy, by airborne data from the 
ROSIS-03. In our experiments, 12 noisy bands were eliminat-
ed and 103 bands were processed. The spatial resolution is 
1.3 m per pixel. The original data set is 610 by 340 pixels. 
This data set consisted of different classes, including trees, 
asphalt, bitumen, gravel, metal sheet, shadow, bricks, mead-
ow and soil. Fig. 2a and b depict Pavia data set and its refer-
ence map. 
Salinas data: This scene was captured by AVIRIS sensor 
over Salinas Valley, California, and is characterized by high 
spatial resolution (3.7-meter pixels) consisting 512 lines and 
217 samples. It includes vegetables, bare soils, and vineyard 
fields. The Salinas reference data contains 16 classes. Fig. 2c 
and d show the Salinas data set and its corresponding refer-
ence map. 

term	1	 term	2	



The data sets have been classified with SVM and a Gaussian 
kernel. The hyper parameters have been selected using 5-fold 
cross validation. The training set was randomly composed of 
12.5% of the referenced set, the experiments have been re-
peated 20 times, and the mean accuracy and the standard 
deviation have been reported in Table II and IV.  
 

 
Fig. 2: An example of our test cases. a) False color composition of Pavia 

data set; and b) reference map where each color represents a specific 
class c) Salinas data set d) reference map where each color represents a 

specific class. 
 

The proposed multilevel thresholding techniques based on 
FODPSO were implemented with the specific parameters 
shown in Table I for our test cases. These parameters are cho-
sen based on some studies from [3], [16]. 

Table I: Initial parameters of the FODPSO for our data sets 
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Since the MSS approach is very dependent on the kernel 
size, two different kernel sizes were selected (5 and 20) in 
the experiments. The experimental evaluation will demon-
strate if the proposed method is highly dependent on the 
size of kernel or not. 

B. Results and Discussion 
1) Pavia data set 
Table II illustrates the kappa coefficient and overall accuracy 
for different methods for the Pavia data set. 
As can be observed from Table II, FODPSO+SVM gave 
comparatively the worst performance in terms of accuracies. 
In histogram based methods, the spatial information of data 
such as size and shape are not taken into consideration and 
the final result is spatially independent and can be determined 
by considering only the histogram of the data. On the contra-
ry, the MSS+SVM outperforms the FODPSO+SVM in terms 
of accuracies since it does not suffers from the above-
mentioned disadvantages and can handle images with more 
complexity such as remote sensing images in a significant 
way. As can be seen in the table, FODPSO+MSS+SVM gave 
comparatively the best accuracies. Fig. 3 shows the output of 
classification for different methods. 
To further improve the comparison between MSS+SVM and 
FODPSO+MSS+SVM, the significance of the method on the 

overall accuracy (OA) and the kappa coefficient (dependent 
variables) was analyzed using the Multivariate Analysis of 
Variance (MANOVA) technique after checking the assump-
tions of multivariate normality and homogeneity of vari-
ance/covariance. This is a statistical test procedure that al-
lows comparing multivariate means of several groups. In 
other words, it allows comparing different methods (as it is 
the case) with more than one dependent variable (i.e., overall 
accuracy and the kappa coefficient). In other words, the 
MANOVA merges the multiple dependent variables, thus 
creating a single dependent variable. For more information 
regarding MANOVA, it is referred to [2]. 
 

Table II. The kappa coefficient and overall test accuracy of different 
methods for the Pavia data set 

Methods Kernel 
size 

Mean(Overall 
accuracy) 

Mean(kappa 
coefficient) 

FODPSO+SVM 90.8 ± 0.192 0.887 ± 0.003 
MSS(R=5)+SVM R=5 98.84 ± 0.079 0.985 ± 0.001 
FODPSO+MSS(R=5)+SVM 98.92 ±0.106 0.986 ± 0.001 
MSS(R=20)+SVM R=20 97.72 ±0.120 0.970 ± 0.002 
FODPSO+MSS(R=20)+SVM 98.04 ± 0.128 0.974 ± 0.002 
SVM 94.32± 0.174 0.925± 0.002 
 

 
Fig. 3: Pavia classification result for a) Original image b) FODPSO c) 

MSS d) FODPSO+MSS. 
 
The assumption of normality for each of the univariate de-
pendent variables was examined using univariate tests of 
Kolmogorov-Smirnov (p-value < 0.05). When the MANOVA 
detected significant statistical differences, we proceeded to 
the commonly-used ANOVA for each dependent variable 
followed by the Tukey’s HSD Post Hoc. The classification of 
the size effect (i.e., measure of the proportion of the total 
variation in the dependent variable explained by the depend-
ent variable) was done according to Maroco [7] and Pallant 
[2]. This analysis was performed using IBM SPSS Statistics 
for a significance level of 5%. 
 

Table III. MANOVA results for the Pavia data set. 
Method kappa      OA 

FODPSO+MSS(R=20) +SVM vs MSS(R=20)+SVM .004*     .003* 

* The corresponding mean difference is significant at the 0.05 level 

All p-values corresponding to the mean differences are equal to 0.001  

 
A two-way MANOVA analysis was carried out to assess 
whether the algorithms used on this study have statistically 
significant differences with respect to the classification pro-
cess. The MANOVA analysis revealed that the dependent 
variable kappa coefficient presents statistically significant 



differences with large effect (F(1,38) = 66.656; p-value = 
0.001; 𝜂!! = 0.637; Power = 1.0), as well as the dependent 
variable overall accuracy (F(1,38) = 66.491; p-value = 0.001; 
𝜂!! = 0.636; Power = 1.0) (See Table III). 
 
2) Salinas data set 
For the Salinas data set, FODPSO+SVM gave the worst accu-
racies (Table IV). Furthermore, the overall classification 
accuracy by MSS+SVM dropped from 99.14% to 94.76% 
when the kernel size was increased from 5 to 20. This dra-
matic decrease in accuracy shows that the result of the classi-
fication by using MSS is highly dependent on the kernel size. 
The kernel size must still be tuned by user who might find the 
task difficult since the size can dramatically influence the 
final result. A larger or smaller kernel may influence the 
result of the segmentation and considerably reduce the effi-
ciency of the MSS method. Mode candidates with a distance 
that is less than the kernel size are merged and may cause to 
lose information on an image. In contrast, a small kernel size 
may cause a high increase on the CPU processing time. As 
the FODPSO is able to find modes with maximum between-
class distance, the influence of tuning the size of the kernel 
size is significantly reduced. In other words, the two methods 
can solve each other’s problems and, thus, complement each 
other. Fig. 4 illustrates the result of the classification for the 
different methods. Compared to the MSS+SVM, the FOD-
PSO+MSS+SVM increased the accuracy from 94.76% to 
96.27% with the kernel size of 20. Considering both kernel 
sizes (R=5 and R=20), it can be stated that the FOD-
PSO+MSS+SVM shows more stability. FOD-
PSO+MSS+SVM improved the result of the traditional SVM 
by almost 5 and 2 percent by considering kernels with the 
size of 5 and 20, respectively (Table IV).  
 

Table IV. The kappa coefficient and overall test accuracy of different 
methods for the Salinas data set 

Methods Kernel 
size 

Mean(Overall 
accuracy) 

Mean(kappa 
coefficient) 

FODPSO+SVM 91.97 ± 0.17 0.91 ± 0.0020 
MSS(R=5)+SVM R=5 99.14± 0.05 0.99±  0.0005 
FODPSO+MSS(R=5)+SVM 99.13± 0.03 0.99± 0.0004 
MSS(R=20)+SVM R=20 94.76 ± 0.19 0.94 ± 0.0021 
FODPSO+MSS(R=20)+SVM 96.27 ± 0.11 0.958± 0.0013 
SVM 94.06 ±0.13 0.93 ± 0.0014 
 
For the Salinas data set, the MANOVA was separately per-
formed on MSS (R=5)+SVM, FODPSO+MSS(R=5)+SVM 
and MSS (R=20)+SVM , FODPSO+MSS(R=20)+SVM  (Ta-
ble V). The MANOVA analysis revealed that the kappa coeffi-
cient does not present statistically significant differences 
(F(1,38) = 0.415; p-value = 0.523; 𝜂!! = 0.011; Power = 0.96). 
A similar result was observed for the overall accuracy (F(1,38) 
= 0.386; p-value = 0.538; 𝜂!! = 0.010; Power = 0.93). 
For R=20, the MANOVA analysis depicted that the dependent 
variable kappa coefficient presents statistically significant 
differences with large effect (F(1,38) = 1111.827; p-value = 
1.00; 𝜂!! = 0.967; Power = 1.00), as well as the dependent 
variable overall accuracy (F(1,38) = 1112.876; p-value = 0.001; 
𝜂!! = 0.967; Power = 1.00). Results show that by increasing 
the size of the kernel, the proposed method works better than 
others in terms of accuracies. 

 

 
Fig. 4: Salinas classification result for a) Original image b) FODPSO c) 

MSS d) FODPSO+MSS. 
 

Table V. MANOVA results for the Salinas data set. 
Method       kappa                OA 

FODPSO+MSS(R=5)+SVM vs MSS(R=5) +SVM   -9.258E-5           -8.023E-
5 

FODPSO+MSS(R=20)+SVM vs MSS(R=20) 
+SVM     0.017*              0.015* 

* The corresponding mean difference is significant at the 0.05 level 

All p-values corresponding to the mean differences are equal to 0.001  

IV. CONCLUSION 
In this paper, a new spectral-spatial classification approach is 
introduced for the accurate classification of hyperspectral 
images. The approach is based on the combination of Frac-
tional Order Darwinian Particle Swarm Optimization (FOD-
PSO) and Mean Shift Segmentation (MSS). FODPSO is a 
very powerful approach for finding the predefined number of 
clusters with the highest between-class value. In the proposed 
approach, the result of FODPSO is used as the input to MSS 
to develop a pre-processing method for classification. Tuning 
the size of the kernel can be considered as the main difficulty 
of MSS and the obtained result may considerably be affected 
by the kernel size. The SVM is used for classification on the 
outcome of these two segmentation methods. Results indicate 
that the use of both segmentation methods can overcome the 
shortcomings of each other and the combination can improve 
the result of classification significantly. 
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