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High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to in-
vestigate field emission from a prolate spheroidal tip. The space charge limited current is several times lower
than the current calculated with the Fowler-Nordheim formula. The image-charge is taken into account with
a spherical approximation, which is good around the top of the tip, i.e. region where the current is generated.

I. INTRODUCTION

Although the underlying physics of field emission have
been understood for nearly 90 years1 it is still a vibrant
area of research, particularly as field emitters have be-
come important electron sources in modern devices2–5.
As field emission is highly dependent on the electric
field at the cathode surface it can be strongly affected
by the space charge from the emitted current. Hence,
the current density will lie somewhere between the val-
ues predicted by the Fowler-Nordheim equation6, where
space charge effects are neglected, and that predicted by
the Child-Langmuir equation7–9 where space charge re-
duces the surface electric field. Considerable work has
been done on the influence of space charge on field emis-
sion10–20. The analysis in those papers has been almost
exclusively based on one-dimensional models, although
field emission typically takes place from some sort of pro-
trusion due to local field enhancement. It has been shown
that for field emitter arrays, the one dimensional approx-
imation is valid in the region over the array, above an el-
evation which corresponds to the spacing between emit-
ters13,17. Closer to the emitter three dimensional effects
must be taken into account. Zhu and Ang20 developed
a self consistent model for continuous emission from a
prolate spheroidal, while Jensen et al..17 have studied
discrete emission of rings from a hemispheric emitter.

In this paper we build on our previous work16 to show
how molecular dynamics (MD) based codes can be used
to simulate field emission of electrons from a sharp tip.
Although the MD approach is in principle computation-
ally costly, it has the advantage of being able to account
for the discrete emission of single electrons and Coulomb
interaction between them. These are likely to be impor-
tant effects in the length scale describing a field emitter
and its immediate environment.

The paper is organized as follows. Section II of
this paper gives a description of the model and simu-
lation methodology used. Simulation results are pre-
sented in Section III with a short summary and discussion
in Section IV.

II. METHODOLOGY

A prolate spheroidal coordinates system,

x = a
√

ξ2 − 1
√

1− η2 cosφ ,

y = a
√

ξ2 − 1
√

1− η2 sinφ ,

z = aξη ,

(1)

where ξ ∈ [1,∞], η ∈ [−1, 1], φ ∈ [0, 2π] and

a =

√

d2R2

h2 + 2dh
+ d2 , (2)

is used to define a spheroidal tip as depicted in Fig. 1.
Here R is the base radius and h the height of the tip.
The gap spacing d is measured from the peak of the tip
to the anode which is given by η2 = 0 and held at poten-
tial V0. The cathode is defined by a surface of constant
η1 = −d/a and is at zero potential.
The MD approach is used to calculate electron motion

and it is also the basis for the field emission algorithm.
The simulation is of high resolution in the sense that
every single electron present in the vacuum gap is treated
as an individual particle with its Coulomb field taken
into account. Thus the total field at any point is E =

η2 = 0 V = V0

η1 = const.
V = 0

d

ξ

h

R
ξmax

z x

FIG. 1. A sketch of the prolate spheroidal tip parameters
and coordinate system. In this system a constant η defines a
hyperbolic surface and ξ is a coordinate along that surface.
To define the tips surface the parameters R, h and d are used.
They represent the base radius, the height of the tip and the
gap spacing respectively. The dashed lines show the electric
field lines in the system.
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ESC + E0, where ESC is the detailed space-charge field
and E0 is the vacuum field21. Particle advancement is
calculated using Verlet integration with a time step of
1.0 fs.
Field emission is a quantum mechanical tunneling pro-

cess and the resulting current density J can be described
with the Fowler-Nordheim equation22

J =
A

t2(ℓ)φ
F 2e−ν(ℓ)Bφ

3

2 /F , (3)

where φ is the work-function and F is the field
at the surface of the cathode, taken to be pos-
itive. A = e2/(16π2

~) [A eVV−2] and B =

4/(3~)
√
2mee [eV−

3

2 Vm−1] are the first and second
Fowler-Nordheim constants, while ν(ℓ) is called the Nord-
heim function and arises due to the image-charge ef-
fect. It contains complete elliptic integrals of the first
and second kind and is related to t(ℓ) by the relation
t(ℓ) = ν(ℓ) − (4/3)ℓ dν(ℓ)/dℓ. We use the approxima-
tions found by Forbes and Deane23,

ν(ℓ) = 1− ℓ+
1

6
ℓ ln(ℓ) (4a)

and

t(ℓ) = 1 + ℓ

(

1

9
−

1

18
ln(ℓ)

)

, (4b)

where

ℓ =
e

4πε0

F

φ2
. (4c)

Image-charge is taken into consideration in our MD
simulations with two objectives in mind. First, the
image-charge of the electron being emitted is taken into
account by calculating the barrier potential which the
electron must tunnel through by use of Eq. 4. Second,
to maintain the proper boundary conditions at the cath-
ode, we include a spherical image-charge approximation
for the space-charge to be found in the gap. In this ap-
proximation each electron is given an image-charge part-
ner whose position is calculated using the image-charge
equations for a sphere. The radius of curvature of the
tip surface at the point on the tip closest to the electron
is calculated. The sphere is then placed inside the tip,
tangent at this point, its radius being equal to the ra-
dius of curvature at the contact point. An examples of
this method can be seen in Fig. 2. An exact open-form
solution24,25 of the image-charge problem for the prolate
spheroidal tip exists. However, in practice it is not usable
for MD simulations since its numerical convergence is too
slow. In Fig. 3 we compare the exact results for the sur-
face charge density to our spherical image-charge approx-
imation. As can be seen the approximation works best
near the peak of the tip and becomes less effective when
electrons move further away from the peak as in Fig. 3(b).
In spite of the discrepancy this approximation works out
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FIG. 2. The spherical image-charge approximation. The blue
solid line shows cross section of the tip. While the red dashed
line shows the imaginary sphere used to calculated the image-
charge partner for the ⋆. The ⋆ shows the location of the
electron and its image-charge partner used in Fig. 3(a), while
the +’s show the positions of the electrons used in Fig. 3(b).

quite well, since most of the emission takes place near the
peak (to be discussed later, see Fig. 5) and the electrons
closest to the peak contribute the most to the field there.
Fig. 4 shows the relative error of the surface charge den-
sity at the peak of the tip. In Fig. 4(a) the electron is
placed at ξ = 1.0 and the charge density is calculated
for various heights above the tip. The exact solution had
troubles converging for some locations of the electron and
therefor the tip was also modeled in COMSOL26 to find
the charge density. COMSOL solves the Laplace equa-
tion using finite element analysis and therefore, includes
the image charge. We can see from Fig. 4(a) that the
relative error is small when the electron is close to the
tip and increases as the electron moves away. Since the
influence of the electron is strongest when it is close to
the peak, the large relative error of the spherical model
at locations far away from the tip have negligible effect
on the simulation results. Fig. 4(b) shows the relative
error of the charge density at the peak with η = −0.95
fixed and ξ is varied from 1.000 to 1.020. The electron is
located quite close to the tip and we see that the relative
error is small even if the electron moves further down
towards the tip surface.

III. RESULTS

We examine a system with the parameters R =
250 nm, h = 500 nm, d = 1000 nm, φ = 4.7 eV and
V0 = 1kV. Care was taken in selecting the vacuum field
such that the parameter ℓ in Eq. 4c was less than 1. If ℓ
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FIG. 3. Comparison of the surface charge density on the sur-
face of the tip for the spherical image-charge approximation
(blue solid) and exact solution24,25 (red dashed). (a) Electron
at (ξ = 1.01, η = 0.8) close to the peak of the tip (Shown as a
⋆ in Fig. 2). (b) Two electrons at (ξ = 1.05, η = 0.8 (Shown as
the left and right + in Fig. 2). The surface charge density at
the tip of the peak due to the vacuum field is 8.2×104 µC/m2.

is larger than 1 then the tunneling barrier will be below
the Fermi energy. In Fig. 5 the current density is plotted
as a function of ξ, the position on the tip. The results
of the simulations are given by the blue solid line. We
see that the emission is largest at the peak of the tip
(ξ = 1) and falls of rapidly. This was to be expected as
the field is strongest at the peak. At around the value of
ξ = 1.02 the current density has dropped by about 95%
of the peak value. The results obtained are similar to
the results from Zhu and Ang20 where they use a fluid
like model. The green dashed lines shows Eq. 3 plotted
for the Vacuum field. We can see that space charge lim-
ited current density is about 20% of the current density
calculated from the Vacuum field. This can also be seen
in Fig. 6, where the relationship between the scaled cur-
rent density and voltage is shown. The current density
has been scaled with Fowler-Nordheim current density for
the vacuum field. It is clear from the figure that as the
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FIG. 4. The relative error (right axis) of the surface charge
density (left axis) at the peak of the tip. a) Varying z with
ξ = 1 fixed. b) Varying ξ with η = −0.95 fixed.
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FIG. 5. Current density as a function of ξ, the position on
the tip with the distance from the peak shown for comparison.
The blue line shows the simulations results, while the green
dashed line shows the Fowler-Nordheim result of Eq. 3
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FIG. 6. Current density versus voltage at the peak of the tip.
The current density, from the field including space charge, is
scaled with the Fowler-Nordheim current density at the peak
calculated from the vacuum field.

voltage is increased space charge effects become stronger.

In Fig. 7(a) we see a cross-section of the spatial dis-
tribution of electrons taken at three different elevations,
z = 525, 1000, and 1500 nm. The distributions are nor-
malized such that the area under the curve is 1. The
figure shows that the electrons spread further apart the
higher they are. This spread comes from the Coulomb
repulsion between electrons and the transverse compo-
nent of the vacuum field. Fig. 7(b) shows the transverse
speed distribution for the same three elevations. The
solid lines are the simulations results, while the dashed
lines are curves fitted to the 2D Maxwell-Boltzmann dis-
tribution. We see that closest to the peak of the tip the
distribution fits quite well with the Maxwell-Boltzmann
distribution. Electrons are emitted from the tip with zero
velocity and it seems they fit to the Maxwell-Boltzmann
distribution quite quickly. At higher elevations, after
the electrons have been accelerated longitudinally by
the applied field, the transverse speed distribution is
no longer described by the Maxwell-Boltzmann distribu-
tion. The temperatures obtained from the fitting of the
curves are T1500 = 1.3 × 106K, T1000 = 1.2 × 106K and
T525 = 0.48× 106K.
The MD simulations also allows us to calculate the

emittance of the beam coming from the tip. The RMS

emittance27 is calculated using ǫx =

√

x2 x′2 − xx′
2
,

where x is the position and x′ = dx/dz ≈ Px/P is the
slope of the trajectory. Due to the symmetry in the sys-
tem calculating ǫy for the y-direction gives almost the
same results as for the x-direction. The emittance ǫ is
given as the average of ǫx and ǫy. The averages of x2, x′2

and xx′
2
are taken over the duration of the simulation.

In Fig. 8 the emittance is shown as a function of the base
radius of the tip. The voltage is also varied in such a way
to keep the same electric field at the peak for all runs.

−1000 0 1000

x [nm]

0.0

0.5

1.0

1.5

S
p
a
ti

a
l 
d
is

tr
ib

u
ti

o
n

×10−4

(a)1500 nm

1000 nm

525 nm

0.0 0.5 1.0 1.5

V [m/s] ×107

0.0

0.5

1.0

1.5

2.0

2.5

S
p
e
e
d
 d

is
tr

ib
u
ti

o
n

×10−7

(b)

FIG. 7. The cross-section of the spatial and the transverse
speed distribution. Taken through planes at three different
heights z = 525, 1000 and 1500 nm over the duration of the
simulation. (a) The spatial distribution of electrons. (b) The
transverse speed distribution of electrons, with solid lines the
MD simulations and dashed lines fitted Maxwell-Boltzmann
distributions.

The emittance grows as the base radius increases. Since
the electric field at the peak is the same for all runs the
active emission area on the tip becomes larger with in-
creasing radius. More electrons are then emitted further
away from the peak which increases the spread of the
beam and the emittance.

IV. SUMMARY AND CONCLUSIONS

The MD approach to simulation offers a high fidelity
model of field emission from a tip and charge propagation
through the gap of the diode. Discrete particle effects,
such as single electron emission and Rutherford scatter-
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FIG. 8. The emittance in the system as a function of the
base radius. The electric field at the peak is the same in all
simulations.

ing are implicitly included. The drawback to the MD ap-
proach is the computational cost involved, which scales
as the number of particles squared. In the case of the
prolate hyperbolic spheroid tip, the issue of computa-
tional cost is greatly exacerbated when the image charge
for electrons in proximity to the tip is included by using
exact open form equations for the image charge. To get
around this problem, we have made the approximation
that the image charge of an electron is calculated from
an osculating sphere, tangent to the tip surface at the
point closest to the electron. This speeds up computa-
tion significantly, and makes the MD approach practical.
Although this approximation is quite good for electrons
near the tip, it becomes bad for electrons that are placed
to the side of the tip and can even lead to the image
charge being situated outside the tip. Nevertheless this
is not of great concern since almost all of the emission
takes place from the point of the tip. Hence, errors due
to spurious electrons emitted to the side are minimal.

The utility of the MD approach is that its advanta-
geous inclusion of discrete particle effects dovetails nicely
with the limitations set by computational cost. This is
due to the fact that discrete particle effects are mostly
important within a region on the order of a Debye length,
that typically includes a number of particles that is man-
ageable for MD calculations. We can comfortably handle
several thousands of electrons on an average high perfor-
mance computer cluster, which is a realistic number for
a nanometric diode. Larger systems with more particles
can be accurately approximated with continuous mod-
els or by using particle-in-cell simulations (PIC). For the
tip geometry described in this work, a motivating factor
is that MD simulations may be used to describe three
dimensional field emission in the immediate vicinity of a
single emitting tip in an array, and those simulations used
to describe the first cell in a larger PIC code for model-
ing of field emitter arrays in a manner similar to that

described by Jensen et al.
17. The length scale for such a

cell is that of the distance between neighboring emitters,
and as such is quite amenable to MD simulations.
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