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Abstract

Bell’s theorem was a cornerstone for our understanding of quantum theory and the establishment of
Bell non-locality played a crucial role in the development of quantum information. Recently, its
extension to complex networks has been attracting growing attention, but a deep characterization of
quantum behavior is still missing for this novel context. In this work we analyze quantum correlations
arising in the bilocality scenario, that is a tripartite quantum network where the correlations between
the parties are mediated by two independent sources of states. First, we prove that non-bilocal
correlations witnessed through a Bell-state measurement in the central node of the network form a
subset of those obtainable by means of alocal projective measurement. This leads us to derive the
maximal violation of the bilocality inequality that can be achieved by arbitrary two-qubit quantum
states and arbitrary local projective measurements. We then analyze in details the relation between the
violation of the bilocality inequality and the CHSH inequality. Finally, we show how our method can
be extended to the n-locality scenario consisting of n two-qubit quantum states distributed among

n + 1nodes of astar-shaped network.

1. Introduction

Since its establishment in the early decades of the last century, quantum theory has been elevated to the status of
the ‘most precisely tested and most successful theory in the history of science’ [ 1]. And yet, many of its
consequences have puzzled—and still do—most of the physicists confronted with it. At the heart of many of the
counter-intuitive features of quantum mechanics is quantum entanglement [2], nowadays a crucial resource in
quantum information and computation [3] but that also plays a central role in the foundations of the theory. For
instance, as shown by the celebrated Bell’s theorem [4], quantum correlations between distant parts of an
entangled system can violate Bell inequalities, thus precluding its explanation by any local hidden variable (LHV)
model, the phenomenon known as quantum non-locality.

Given its fundamental importance and practical applications in the most varied tasks of quantum
information [5], not surprisingly many generalizations of Bell’s theorem have been pursued over the years. Bell’s
original scenario involves two distant parties that upon receiving their shares of a joint physical system can
measure one out of possible dichotomic observables. Natural generalizations of this simple scenario include
more measurements per party [6] and sequential measurements [7], more measurement outcomes [8], more
parties [9, 10] and also stronger notions of quantum non-locality [11-14]. All these different generalizations
share the common feature that the correlations between the distant parties are assumed to be mediated by a
single common source of states (see, for instance, figure 1(a)). However, as it is often in quantum networks [15],
the correlations between the distant nodes is not given by a single source but by many independent sources
which distribute entanglement in a non-trivial way across the whole network and generate strong correlations
among its nodes (figures 1(b)—(d)). Surprisingly, in spite of its clear relevance, such networked scenario is far less
explored.

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Description of the causal structure of some different networks. (a) LHV model representing a tripartite scenario with a single
source of states. (b) BLHV model describing the bilocality counterpart of an entanglement swapping scenario. (c) Causal structure of a
bilocality scenario where the local projective measurements performed in B are represented by the presence of the two substations B
and BC. (d) Extension of the bilocality scenario to a network consisting of 1 different stations sharing a quantum state with a central
node, i.e. the so-called n-local star network.

The simplest networked scenario is provided by entanglement swapping [16], where two distant parties,
Alice and Charlie, share entangled states with a central node Bob (see figure 1(b)). Upon measuring in an
entangled basis and conditioning on his outcomes, Bob can generate entanglement and non-local correlations
among the two other distant parties even though they had no direct interactions. To contrast classical and
quantum correlation in this scenario, it is natural to consider classical models consisting of two independent
hidden variables (figures 1(b)), the so-called bilocality assumption [17, 18]. The bilocality scenario and
generalizations to networks with an increasing number 7 of independent sources of states (figures 1(d)), the so
called n-locality scenario [19-26], allow for the emergence of a new kind of non-local correlations. For instance,
correlations that appear classical according to usual LHV models can display non-classicality if the
independence of the sources is taken into account, a result experimentally demonstrated in [27, 28]. However,
previous works on the topic have mostly focused on developing new tools for the derivation of inequalities
characterizing such scenarios and much less attention has been given to understand what are the quantum
correlations that can be achieved in such networks.

That s precisely the aim of the present work. We consider in details the bilocality scenario and the bilocality
inequality derived in [17, 18] and characterize the non-bilocal behavior of general qubit quantum states when
the parties perform different kinds of projective measurements. First of all we show that the correlations arising
in an entanglement swapping scenario, i.e. when Bob performs a Bell-state measurement (BSM), form a strict
subclass of those correlations which can be achieved by performing local projective measurements in all stations.
Focusing on this wider class of correlations, we derive a theorem characterizing the maximal violation of the
bilocality inequality [17, 18] that can be achieved from general two-qubit quantum states shared among the
parties. This leads us to obtain a characterization for the violation of the bilocality inequality in relation to the
violation of the CHSH inequality [29]. Finally we show how our maximization method can be extended to the
star network case [19], a n-partite generalization of the bilocality scenario, deriving thus the maximum violation
of the n-locality inequality that can be extracted from this network.

2. Scenario

In the following we will mostly consider the bilocality scenario, which classical description in terms of a directed
acyclic graph is shown in figure 1(b). It consists of three spatially separated parties (Alice, Bob and Charlie)
whose correlations are mediated by two independent sources of states. In the quantum case, Bob shares two pairs
of entangled particles, one with Alice and another with Charlie. Upon receiving their particles Alice, Bob and
Charlie perform measurements labeled by the random variables X, Y and Z obtaining, respectively, the
measurement outcomes A, Band C. The difference between Bob and the other parties is the fact that the first has
in his possession two particles and thus can perform a larger set of measurements including, in particular,
measurements in an entangled basis.

Any probability distribution compatible with the bilocality assumption (i.e. independence of the sources)
can be decomposed as

pa, b, clx, y, z) = fde)\zp()\l)p()\z)P(alx, Aply, M, A)plelz, Ay). (D

In particular, if we consider that each party measures two possible dichotomic observables
(%, ¥, 2, a, b, ¢ = 0, 1),itfollows that any bilocal hidden variable (BLHV) model described by equation (1)
must fulfill the bilocality inequality
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B= I+l <1, )

with
1 1
I== > (ABoC.), J=-= > (—1D)*"(AB/C,), (3
4 x,z=0,1 x,z=0,1
and where
(A:B,C;) = Z (=D <p(a, b, clx, y, 2). (4)

a,b,c=0,1

Asshownin[17, 18], if we impose the same causal structure to quantum mechanics (e.g. in an entanglement
swapping experiment) we can nonetheless violate the bilocality inequality (even though the data might be
compatible with LHV models), thus showing the existence of a new form of quantum non-locality called
quantum non-bilocality.

To that aim let us consider the entanglement swapping scenario with an overall quantum state
[¥ )ap @ ¢ )pe, with [¢7) = (1/4/2)(|01) — |10)). We notice that equation (2) is also valid if Bob performs a
single measurement with four possible outcomes (instead of two dichotomic measurements). Then, we can
choose the measurements operators for the different parties in the following way. Stations A and C perform
single qubit measurements defined by

o + (=1%o o, + (= 1D?oy

A, = , C, = 5
Station B, instead, performs a complete BSM, assigning to the two bits by b, the values
00 for |¢t), 01 for |¢), 10 for [¢), 11 for [¢7). (6)

The binary measurement B, is then defined such that it returns (— 1), with respect to the value of y = 0, 1.
This leads to

(AxB,C)= > (—D)**btep(a, by, by, clx, z)

a,bg,b1,c=0,1
= > (=D"pa, by, dx, ) = Y (=D*p(a, b, dx, y, 2), )
a,b,,c=0,1 a,b,c=0,1

where, in the last steps, we made explicit use of the marginalization of probability p(a, by, by, c|x, z) over by._.,,.
With these state and measurements, the quantum mechanical correlations achieve a value B = J2 > 1,which
violates the bilocality inequality and thus proves quantum non-bilocality.

3. Results

3.1. Non-bilocal correlations with local projective measurements

Asreproduced above, in an entanglement swapping scenario Quantum Mechanics (QM) can exhibit
correlations which cannot be reproduced by any BLHV model. In turn, it was recently proved [22] that an
equivalent form of the bilocality inequality (equation (2)), can be violated by QM when all parties only perform a
a particular case of single qubit operations (i.e. oy, 0;, 0, and linear combinations). Here we will prove that,
given the bilocality inequality of equation (2), the non-bilocal correlations arising in an entanglement swapping
scenario (exploiting the BSM protocol described in section 2) are a strict subclass of those obtainable by means of
local projective measurements. This latter scenario differs from the former since station B performs the two-spin
projective measurements described by

B=(1-N-3@X% F+y8-3®6-3  y=0,1,
N-XN=X - N=086=8-8=1, =0 0,0), 8)

which do not require any entangled operation (differently from the BSM case) and can be obtained by only
performing local projective measurements.

The main motivation for considering local projective measurements is the fact that they correspond to the
simplest set of measurements implementable in most physical setups used to study the violation of Bell
inequalities. This means that station B can be seen as composed of two independent substations B and B¢
(figure 1(c)). On the contrary, a general Local Operations and Classical Communication (LOCC) process would
require substantially more experimental efforts, for instance the implementation of a feedback system which
drives the settings choice in substation B € with respect to the results of substation B A4S measurement. Asa
matter of fact, when considering linear optical setups, even complete BSMs cannot be implemented [30]. This
implies that recent experiments violating the bilocality inequality [27, 28] have to rely on assumptions about the

3
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Table 1. Expected values for the operator By, as implicitly
defined in equation (7).

b(] bl

00(¢") 01(¢7) 10" 11@®7)

measurement device and being thus device-dependent in clear opposition to the general aim of Bell’s theorem.
Finally, as pointed out in [31], when shared reference frames are added in the scenario, some particular
situations may require that no internal communication is ensured between B* and B, i.e. the presence of the
local measurements scenario. From a more theoretical perspective, we stress that, so far, most of works on the
topic has been focused on the case where station B performs a BSM. The possibility of emulating the non-bilocal
results of a BSM (or rotated BSM) by means of an experimentally friendly subset of the LOCC operations is, in
our view, a notable point.

We can now proceed with the evaluation of the main result of this section. The core of the bilocality

parameter 3 is the computation of the expected value (A, B, C,) (equation (4)), that in the quantum case is given
by
<AxByCz> =Tr[(Ax ® By ® C;)(0aB ® 0BC)]. (C)
For the entanglement swapping scenario we can summarize the measurements in stations A and C by

Ax:(l—x)A0+xA1 x=0,1,

C,=(1-2)Cy + z G z=0,1, (10)
where A, and C, are general single qubit projective measurements with eigenvalues 1 and —1. When dealing with
station B, it is suitable to consider its operatorial definition which is implicit in equation (7). Indeed we can
consider that (—1) is the outcome of our measurement, leading to values shown in table 1.

The quantum mechanical description of the operator B, (in an entanglement swapping scenario) is thus
given by

By = 1¢") (¢ + (1 = 2)1¢7) (¢ | + 2y — DT (@] — [¢7) (¥ (11)
which relates each value of y = 0, 1with its correct set of outcomes. This leads to the following theorem.
Theorem 1 (Non-bilocal correlations and local projective measurements). Given the general set of local
projective measurements described in equation (8), QM predictions for the bilocality parameter I3 which arise in an

entanglement swapping scenario (where Bob performs the measurement described in equation (11)) are completely
equivalent to those obtainable by performing a strict subclass of equation (8), i.e.

{B}gsm C {B} om- (12)

Proof. Let us write the Bell basis of a two qubit Hilbert space in terms of the computational basis
(00), [01), [10), |11)).From equation (11), we obtain

B, =1¢") (¢l + (1 = 20)|¢) (¢ + 2y — DI (7] — [¥7) (¢
= (1 = ) (100)(00] — [01){01] — [10){10] + |11){11])
+ y (J00) (11| + |01) (10] + [10) (01] 4 [11){00])
=1 —-y)o,Q0,+y o 0y (13)

This shows that the entanglement swapping scenario is equivalent to the one where station B only performs
the two local projective measurements By = 0, ® o, and B; = 0, ® 0, which form a strict subclass of the
general set of local measurements given by equation (8). Moreover, if we consider a rotated Bell basis, then we
obtain

By = Uy @ UpeB, U, ® Ulc = (1 — y) Upaor Ul @ Ugeo Ul + y Upno, U @ Ugeo, Ul
—A ~C —A -C
=(1—-y)by -3Rb, - F+yb -5Db -5, (14)
. ~A =A »C =C . mA L oA
where ¢ = (oy, 0y, 0;)and b, , b, (by, b, )areorthonormalvectors. Dueto the constraints b, L b, and

~C  ~C . . . .
by L b, , this case still represents a strict subset of equation (8). O

To further illustrate the relevance of theorem 1 we show next an example of correlations that can be achieved
with local projective measurements but cannot with rotated BSMs. Let us consider the overall quantum state

4
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24 @ ©pc,>Where

OaB = OBC = glﬁ)@*l + (1 - g)l(w) (00]. (15)

Moreover, let us define the measurements performed in stations A and C as
V9o, + o,
0

We can analyze the set of non-bilocal correlations in terms of the correlation parameters I and J (defined in

Ay = Co = A =G =o,. (16)

section 2). As we show in appendix, if we consider the rotated BSM case (constrained by Z;OA 1 I;IA and Z;OC 1 l;lc),
itis possible to show that the value |I| = 121/320 ~ 0.378 can only be obtained by means of unitary rotations
Upt ® Uge which, nonetheless, lead to the constraint |J| < 1/5 = 0.2. On the contrary, relaxing these
orthogonality assumptions (i.e. exploring the local projective measurements scenario), some measurement
settings exist such that the two values |I| = 121/320 ~ 0.378, |J| = 89/320 ~ 0.278 > 0.2 can be reached at
the same time. Since this latter couple of I, ] valuesleadsto B ~ 1.14 > 1, then it proves how, in this scenario,
some peculiar non-bilocal correlations can only be obtained by means of local projective measurements, rather
than performing a rotated BSM.

Itis interesting to stress that the proof of theorem 1 also allows for convex combinations oflocal projective
measurements. However, in principle, more general separable measurement are obtained through LOCCs.

As it turns out, this theorem has strong implications in our understanding of the non-bilocal behavior of
QM. Indeed, it shows how the usual BSM protocol described in section 2, which is characteristic of the
entanglement swapping scenario, is not capable of exploring the whole set of quantum non-bilocal correlations,
since its expected value for the parameter B is equivalent to a subclass of those obtainable by means oflocal
projective measurements. Moreover, it also shows that neither its extension to a rotated Bell basis is able to
provide an enhancement, compared to the local projective measurement protocol. As we will show next, a better
characterization of quantum correlations within the bilocality context must thus in principle take into account
more general forms for Bob’s measurements, especially when dealing with different types of quantum states.

3.2. Non-bilocality maximization criterion
We will now explore the maximization of the bilocality inequality considering that Bob performs the projective
measurements described by equation (8). It is convenient to consider station B as a unique station composed of
the two substations B* and B, which perform single qubit measurements on one of the qubits belonging to the
entangled state shared, respectively, with station A or C (see figure 1(c)).

Let A perform a general single qubit measurement and similarly for B4, B and C. We can define these
measurements as

—

SA -C

StationA — d,-d, StationB — b, -3 ®0b, -3, StationC — ¢ -3, (17)
where ¢ = (0y, 0y, 7). Let us now define a general 2-qubit quantum state density matrix as

1 o o 3
g:Z(]I®]I+r-U®H+H®S~J+ S tum Ou @ o). (18)
n, m=1

The coefficients t,,,,, can be used to define a real matrix T, that lead to the following result:
Lemma 1 (Bilocality Parameter with Local Projective Measurements). Given the set of general local projective

measurements described in equation (17) and defined the general quantum state pxp @ 0pc accordingly to
equation (18), the bilocality parameter B is given by

1 . R -A -C . R 1 N R A =C . .
B= 5\/|(ﬂo +a) - T,,by | by - T,,.(Co + D] + E\/Kﬂo —a) - T,,b | by - T, (Co—D]. (19

Proof. Let us consider two operators O; in the form O; = ¥; -  and a two qubit quantum state g described by
equation (18). We can write
(01© 02), =Trl(01® 0ol =Til Y (vigg@oavel= 3 wWvt=7- (L), (0
jk=1,2,3 jk=1,2,3
where we made use of the properties of the Pauli matrices o;. Given the set of local measurements described in

equation (17), and the definitions of I and J (showed in equation (3)), the proof comes from a direct application
of equation (20) to the quantum mechanical expectation value:

<Ax ® B;AA ® Bf ® CZ>K’AB®Z’BC = <Ax ® B;‘>[’A3 <BJ/C & CZ> (21)

Opc*

O
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Next we proceed with the maximization of the parameter B over all possible measurement choices, that is,
the maximum violation of bilocality we can achieve with a given set of quantum states. To that aim, we introduce
the following Lemma.

Lemma 2. Given a square matrix M and defined the two symmetric matrices M; = M™ and M, = MM", each
non-null eigenvalue of M, is also an eigenvalue of M,, and vice versa.

Proof. Let A be an eigenvalue of M,

MMV = M. (22)
If A = 0we musthave M¥ = 0. We can then apply the operator M from the left, obtaining
MMT(MV) = A\(MV), (23)
which shows that MY is an eigenvector of M, with eigenvalue A.
The opposite statement can be analogously proved. O

We can now enunciate the main result of this section.

Theorem 2 (Bilocality Parameter Maximization). Given the set of measurements described in equation (17), the
maximum bilocality parameter that can be extracted from a quantum state pyp @ opc can be written as

Brmax = N1 + 5, (24)

Tt T

©OBC ~9BC

where t;* and ti* (t and t5’) are the two greater (and positive) eigenvalues of the matrix Ty T, ), with

OAB " @AB
th >t andtf > tf.

Proof. We will prove theorem 2, following a scheme similar to the one used by Horodecki [32] for the CHSH
inequality. Let us introduce the two pairs of mutually orthogonal vectors

(@y + @) =2cosa iy and (4 — @) = 2 sina i),
(Co+ &) =2cosy fic and (¢y — &) = 2 sin~y 7, (25)

and let us apply equation (25) to (19)

K SA. -C - " ~A_ C N .
max (y|(7iy - T,, by ) (by - T,,.7ic) cosa cosy| + 4/|(fiy - T, by ) (by - T,, #ic) sina siny])

OBC

Bmax

—A T - -C . - A T - —-C N . .
= max (\/l(b0 T, . 1) (by - T,,.fic) cosa cosy| + \/|(b1 T, i) (b, - TgBCné) sinq sinv| ),
(26)
c i & L mA =A  , =C =C
where the maximization is done over the variables iy, 7y, by, b, , #ic, #go, by, by, aandy. Wecan
SA —A -C -C .. )
choose by, b, , b, ,andb, sothatthey maximize the scalar product. Defining
[|IMP|? = MV - MV =V - MT™M¥V, (27)

. ~A ~A oC ~C . .
and rememberingthatb, , b, , b, ,and b, are unitary vectors, we obtain

T = = T = - . .
Bunas = max (1T, #idll 1T, il leos @ cosyl + JITE Il 11Ty, il Isina sina). (28)
Next we have to choose the optimum variables a and . This leads to the set of equations

W = ST TR T, Tsin@)sing)] cot(a)

1 T =/
- EJnTgABnAn |

88(0[, ’Y) 1 T
= V- NT
o= I,

T, il Icos(a)cos(y)| tan(a) = 0,

7yl 1T, 7l Isin(a)sin(y)| cot(y)

1 S =
- EJHT;AB Il 1T, il [cos(@)cos(y)] tan(y) = 0. (29)

This system of equations admits only solutions constrained by

tan(o)? = tan(y)? < = xa + nm, n € Z, (30)




10P Publishing

NewJ. Phys. 19 (2017) 113020 F Andreoli et al

leading to
T - - . T - -
Bunax = max (cos al 1173 sl 1Ty, 7icll + Isin al T2, 411 11T, )
T - — T = —
= max (T2, iall 1T, dicll + TS, Al 11Ty, E))- (31)

Next, we must take into account the constraints 7, | iy and 7ic L 7i¢.. Since these two couples of vectors
are, however, independent, we can proceed with a first maximization which deals only with the two set of
variables 77, and 77}. Since Ty T!,TAE is a symmetric real matrix, it is diagonalizable. Let us call )\, A, and );its
eigenvalues and let us write 77, and 7 in an eigenvector basis. If we define k; = [|T,,.7icll > 0and
k, = ||T,, 1| > 0,our problem can be written in terms of Lagrange multipliers related to the maximization of
afunction f, given the constraints g;

fn A=k [ Y M) + k| S Nm')?,
i=1,2,3 i=1,2,3

Qi) =iy - fix — 1, i) =iy - iiy — 1, g, fiy) = iy - iy, (32)
where we considered that finding the values that maximize /| f (x)| is equivalent to find these values for | f (x)|.

. o R / / .
Let us now introduce the scaled vectors 7j, = k; 74 and WA =k WA. We obtain

fGip D= | 3 N0 + [ 3 M@,

i=1,2,3 i=1,2,3
N I / / / R / N /
&) =T, - Ty — (k)?, g2(7A) = WA : WA - (k)% G WA) =M WA’ (33)

whose solution is given by vectors with two null components, out of three. If we define \; > )\, > Asandif
ki > k, the solution related to the maximal value is then given by

fom=kN + kb X (34)
which leads to
Bunas = max (|1 Ty, ficll Vi + 11T, AL {2, (35)

ne, ne

where we made use of the lemma 2.
The maximization over the last two variables leads to an analogous Lagrange multipliers problem with
similar solutions, thus proving the theorem. O

This theorem generalizes the results of [33] (which dealt with some particular classes of quantum states in the
entanglement swapping scenario) to the more generic case of any quantum state in the local measurements
scenario (which, in a bilocality context, includes the correlations obtained through entanglement swapping). It
represents an extension of the Horodecki criterion [32] to the bilocality scenario, taking into account a general
class of local measurements which can be performed in station B. Our result thus shows that, as far as we are
concerned with the optimal violations of the bilocality inequality provided by given quantum states, local
projective measurements or a BSM (in the right basis) are fully equivalent.

3.3. The relation between the non-bilocality and non-locality of sources

We will now characterize quantum non-bilocal behavior with respect to the usual non-locality of the states
shared between A, B and B, C. Let us start from equation (24) and separately consider Bell non-locality of the
states g4p and ¢pc. We can quantify it by evaluating the greatest CHSH inequality violation that can be obtained
with these states. Let us define the CHSH inequality as

1
S = I (U Vo + UpVi + Uil — UiV < 1. (36)

If we apply the criterion by Horodecki et al [32], we obtain

Sp =Nttt S =+t (37)

where we defined /%, 5!, tC and t5 accordingly to equation (24). From a direct comparison of (24) and (37) we
can write

Proposition 1.
S2B <1 and 8B <1 — Buw <L (38)

max

Proof. Applying the Cauchy-Schwarz inequality we obtain

7
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2
B max

< S4B §BC (. (39)

max max

O

This result shows that if the two sources cannot violate the CHSH inequality then they will also not violate
the bilocality inequality. Thus, in this sense, if our interest is to check the non-classical behavior of sources of
states, it is just enough to check for CHSH violations (at least if Bob performs a BSM or local projective
measurements). Notwithstanding, we highlight that this does not mean that the bilocality inequality is useless,
since there are probability distributions that violate the bilocality inequality but nonetheless are local according
toa LHV model and thus cannot violate any usual Bell inequality [18, 27]. This fact can be explained considering
that the bilocality inequality is derived under the assumption of independence of the two sources of states, which
introduces a supplementary constraint. A probability distribution which violates the bilocality inequality, then,
could nonetheless admit a decomposition in term of LHV models, since they do not rely on this supplementary
assumption and can then include a wider class of probability distributions.

Next we consider the reverse case: is it possible to have quantum states that can violate the CHSH inequality
but cannot violate the bilocality inequality? That turns out to be the case. To illustrate this phenomenon, we start
considering two Werner states in the form ¢ = v(|¢™) (¥7]) + (1 — v)1/4. In this case, indeed, in order to
have a non-local behavior between A and B (B and C) we must have v > 1/+/2 (vge > 1/+/2) whileitis
sufficient to have /vagvpc > 1/ V2 in order to witness non-bilocality. This example shows that on one hand it
might be impossible to violate the bilocality inequality although one of g5 or gp¢ is Bell non-local (for instance
vy = land v¢ = 0). Italso shows that, when one witnesses non-locality for only one of the two states, it can be
possible, at the same time, to have non-bilocality by considering the entire network (for instance v, = 1and
1/2 < v¢ < 1/~/2). Another possibility is the one described by the following Proposition

Proposition 2. Given a tripartite scenario

3 oap and opc suchthat S2B > 1, SBC > 1 & Bpax < 1. (40)

max max

Proof. We will prove this point with an example. Let us take

02 0 0 02
0 0303 0

30 Lt 21y st —
ow =2+ 26 = 03 03 o |
02 0 0 0.2
0.05 0 0 0
(7 . _1Y_|[ o 045 —035 0
‘-”BC*‘-”(V*H)’ ’\*3)* 0 —035 045 0 | (1)
0 0 0 0.05
where we defined ¢ (v, \) as
- - 4+ + + I
oW N = v ) (Wl + (- v)[A'w IO 4o - A)Z]‘ )
For these two quantum states one can check that
th =1, =004, tF=064, 15 =049, (43)
which leads to
SAB ~1.02, SBC ~1.06, B =~ 0.97. (44)

This shows how it is possible to have non-local quantum states which nonetheless cannot violate the
bilocality inequality (with local measurements). However, we highlight that, since the bilocal set is a subset of the
local one, certainly there are bilocality inequalities other than (2) that are violated by these non-local states.

All these statements provide a well-defined picture of the relation between the CHSH inequality and the
bilocality inequality in respect to the quantum states gap ® @pc. Weindeed derived all the possible cases of
quantum non-local correlations which may be seen between couples of nodes, or in the whole network
(according to the CHSH and bilocality inequalities). This characterization is shown in figure 2, in terms of a
Venn diagram.

We finally notice that if A and B share a maximally entangled state while B and C share a generic quantum
state, then it is easier to obtain a bilocality violation in the tripartite network rather than a CHSH violation
between the nodes B and C. Indeed it is possible to derive
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AB local

A Y
ABC biIocaP\

Figure 2. Venns diagram representing quantum correlations in a bilocality scenario. Possible quantum correlations that may be
witnessed given a quantum state g4p @ ¢pc. The blue sets represent quantum states that do not violation the CHSH inequality for
0ap (ABlocal) or gpc (BClocal). The orange set includes, instead, these states whose correlations do not violate the bilocality
inequality, while the whole set of quantum correlations is represented in green. For all different regions a blue square shows those
decompositions which are not allowed (crossed with red lines), accordingly to the greater square on the right. All violations are related
to local projective measurements.

Bunax(197) (07] @ 0pc) = (1€ + 1€ > Jt€ + 1€ = S, (45)

where we made use of the following Lemma
Lemma 3. Given the parameters t/*, 5, tC and t5 defined in equation (24), it holds

o<ttt 1S <1 (46)
Proof. This proof will be divided in two main points.

(D)Vo, 3 o' = U'oU such that T, is diagonal.
Asdiscussed in [34], if we apply a local unitary U = U, ® U, to theinitial quantum state g, the matrix T, will
transform accordingly to

T, — UT,0,, (47)

where U, and U, are orthogonal 3 x 3 real matrices which represent, respectively, the spin rotations properties of U
and U,. According to the Singular Decomposition Theorem, it is always possible to choose Uy and U, such that
U, T, 0, isdiagonal, thus demonstrating point 1.

Itis important to stress that we can always rotate our Hilbert space in a way that ¢ — UTp U so we can take
o' without loss of generality.

(2)If T, is diagonal, then the eigenvalues of T; T, areless or equal to 1.

It was shown in [32] that, for every quantum state o, we have |t,,| < 1, tu, € R regardless to the basis chosen
for our Hilbert space. If T, is diagonal then T[,T T, = Tj and its eigenvalues t; can be writtenas t; = t7 < 1.

Given the definitions of #/* and ¢;* (t© and t{°) described in equation (24), the lemma is proved. O

3.4. Extension to the star network scenario

We now generalize the results of theorem 2, to the case of a n-partite star network. This network is the natural
extension of the bilocality scenario, and it is composed of n sources sharing a quantum state between one of the n
stations A;and a central node B (see figure 1(d)). The bilocality scenario corresponds to the particular case where
n = 2. The classical description of correlations in this scenario is characterized by the probability decomposition

i=1

paili=1,..n bl{xiliz1n> ) = f(H dAip(\)p(ailxi, Ai))P(bD’» {Aiti=1n)- (48)

As shown in [19], assuming binary inputs and outputs in all the stations, the following n-locality inequality
holds

Noar = V" + " < 1, (49)
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where
1
=— Z y ALBy), I= - Z (—DXi%(AL ... A By),
(A} ..Al B)) Z (=D 2% p({aihic i bH{XiYiz10> ¥)- (50)
)

We will now derive a theorem showing the maximal value of parameter N, that can be obtained by local
projective measurements on the central node and given arbitrary bipartite states shared between the central node
and the n parties.

Theorem 3 (Optimal violation of the n-locality inequality). Given single qubit projective measurements and
defined the generic quantum state g o p @ ... ® 0 5, p accordingly to equation (18), the maximal value of Ny, is given

by
n 1/n n 1/n
Nmax — \/(H t{*"] + (H tzA") , (51)
i=1 i=1

with t/ > 4.

where t* and t;* are the two greater (and positive) eigenvalues of the matrix Té, s Loas

Proof. In our single qubit measurements scheme the operator B can be written as

n n .
. i
B, = @B, = Qb, - 5. (52)
i=1 i=1
As pointed outin [19], this allows us to write
n 1/n n 1/n
Noar = H ((A¢By) + (A{B)) + | [T =((A4B)) — (A/B/)) > (53)
i=1 =1
which leads to
" L/n 1/n
=1 - i =1 - ot
Near = | ]] E(a(; +d) - T,, by + | [1 =@ —a)- 1, b (54)
i=1 i=1
Introducing the pairs of mutually orthogonal vectors
(Eié—kﬁ'f):Zcosa,- n; & (ao — al)—2smoz1 i, (55)
allows us to write
L t/n n 1/n
-1 . -
Near = H cosq; 1 - HA o H sina; i} - T, s, Bbl (56)
We can choose the parameters by so that they maximize the scalar products. We obtain
1/n 1/n
st:s‘—max[ [T cosas 77, il H sina (|7, i ] 57)
We can now proceed to the maximization over the parameters «;. Let us define the function
n 1/n n 1/n
K(oy, ...a) = ‘ M]] cosa; X[ sine (58)
i=1 i=1
We can write
n . l/n n /n
K (ay, ... (A2 ]]. . sinq;l IMT]., cosa;l
OK (o, ... an) = H’_l : cotay; — H’_l : tana; = 0, (59)
Oa; n n
which, similarly to equation (29), admits only solutions constrained by
tan(aj)? = tan(ax)? < oj=toax+nm, ne€Z Vj k. (60)
Thisleads to
K(ay, ...0)max = max(lz\%/” cosal + |/\12/’1 sinal) = 1//\12/” + )\g/”, (61)

«
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which allows us to write
n 2/n n 2/n
T = T —
= max || [T 175, @l |+ | T N75, (62)
i=1 i=1
Let us now define
n n
T T
k=] I, ,mll k=111 T, 7l | (63)
i=2 i=2
we have that
2/n T 2/n T
e = max [k TS, AP+ kIS AP (64)
Labeling A, A, and \; as the eigenvaluesof 7, , T,  (which s real and symmetric) and writing 7i; and 1 in

an eigenvector basis we obtain the Lagrange multipliers problem related to the maximization of a function f,
given the constraints g;:

2/n 2/n
f@, i) = (kﬁ > Ai(nf‘)Z] - (kf > A,(n’i)Z] ,

i=1,2,3 i=1,2,3
. N 1/ 1 o) oy -
gy=mn-m—1, g)=n -0, —1, gO, #)=n -, (65)
where we considered that the values which maximize | f (x)| also maximize /| f (x)] .

This Lagrangian multipliers problem can be treated similarly to equation (32), giving the same results. If
k; > ky, we obtain

foax = R+ (o A (66)
which leads to
n 2/n n 2/n
= max| (51" [Hz ||T3A,.Bﬁi||) + (G (Hz IITJA,B%’II] : (67)
The proofis concluded by applying iteratively this procedure. O

We notice that the bilocality scenario can be seen as a particular case (n = 2) of a star network, where
A, = Cand x = z. Moreover we emphasize that equation (51) gives the same results that would be obtained if
one performed an optimized CHSH test on a 2-qubit state were #; and £, are given by the geometric means of the
parameters ¢ and t;".

4. Conclusions

Generalizations of Bell’s theorem to complex networks offer a new theoretical and experimental ground for
further understanding quantum correlations and its practical applications in information processing. Similarly
to usual Bell scenarios, understanding the set of quantum correlations we can achieve and in particular what are
the optimal quantum violation of Bell inequalities is of primal importance.

In this work we have taken a step forward in this direction, deriving the optimal violation of the bilocality
inequality proposed in [17, 18] and generalized in [19] for the case of a star-shaped network with n independent
sources. Considering that the central node in the network performs arbitrary local projective measurements and
that the other parties perform projective measurements we have obtained the optimal value for the violation of
the bilocality and n-locality inequalities. Our results can be understood as the generalization for complex
networks of the Horodecki’s criterion [32] valid for the CHSH inequality [29]. We have analyzed in details the
relation between the bilocality inequality and in particular shown that if both the quantum states cannot violate
the CHSH inequality then the bilocality inequality also cannot be violated, thus precluding, in this sense, its use
as a way to detect quantum correlations beyond the CHSH case. Moreover, we have shown that some quantum
states can separately exhibit Bell non-local correlations, but nevertheless cannot violate the bilocality inequality
when considered as a whole in the network, thus proving that not all non-local states can be used to witness non-
bilocal correlations (at least according to this specific inequality).

However, all these conclusions are based on the assumption that the central node in the network performs
local measurements (that in such scenario include as a particular case the results obtained through the usual
complete BSM protocol). This immediately opens a series of interesting questions for future research. Can we
achieve better violations by employing more general measurements in the central station, for instance, entangled
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measurements in different basis, non-maximally entangled, non-projective or more general separable
measurements? To exemplify, we notice that if Bob applies the protocol described in section 2 to the non-
maximally entangled basis {|¢"), |¢), [01), |10)}, then its measurement operator will be given by

By:(l—y)oz®oz+yaz®]l ]I®Uz+20x®0x Uy®0y’ (68)
which does not admit the decomposition defined in equation (8), and thus cannot be reproduced by means of
local projective measurements. Although this fact does not prove that non-maximally entangled basis can
provide an enhancement over neither the BSM nor the local projective measurements protocols, it shows that
their analysis could lead to potential advantages.

Related to that, it would be highly relevant to derive new classes of network inequalities [21, 22, 35]. One of
the goals of generalizing Bell’s theorem for complex networks is exactly the idea that since the corresponding
classical models are more restrictive, it is reasonable to expect that we can find new Bell inequalities allowing us
to probe the non-classical character of correlations that are local according to usual LHV models. Can it be that
local projective measurements or measurement in the Bell basis allow us to detect such kind of correlations if
new bilocality or n-locality inequalities are considered? And what would happen if we considered general POVM
measurements in all our stations? Could we witness a whole new regime of quantum states, which at the
moment, instead, admit a n-local classical description? Finally, one can wonder whether quantum states of
higher dimensions (qudits) would allow for higher violations of the n-locality inequalities.
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Appendix. Example of local projective measurements correlations

Let us consider the scenario described by equations (15) and (16). Assuming equation (14) for the rotated BSM
case, and equation (17) for the local projective measurement case, we can evaluate the correlations parameters
I, J,similarly tolemma 1. The two quantum states are characterized by

J11/6 0 0
T!’AB = E’BC = 0 —\/ﬁ/6 o) (A1)
0 0 1

while the A, C measurement vectors are

L (V99 0
dy=co=—| o |\ @a=a=]0} (A2)
10 1 1

. oA A 2C CC . .
Let us consider the rotated BSM case. The measurement vectors b, , b, (b, , b, )willbe constrained by their
mutual orthogonality condition. If we define a general 3-dimensional vector ¥ and the generic vector
belonging to its orthogonal plane as

sin 6 cos ¢ cos  cos ¢ —sin ¢
v, ¢)= cosd |, (0, ¢, ) =cos| —sinf |+ sinl 0 | (A3)
sin 6 sin ¢ cos 6 sin ¢ cos ¢
then we can consider
.y - A ~C ~C
bo - V(eAa ¢A)a bl - 1_/l(oli.a ¢AJ ¢A)> bo = V(Gc, ¢C)r b] - VL(0C> ¢C> 7~/)C) (A4)

The evaluation of the correlation parameters I, ] for the rotated BSM case will then lead to
2

2
IBSM = 1—\(GA) ¢A)P(9C) QSC)(LIL_(I)) > ]BSM = A(QA) (bA’ wA)A(GC) (bC) /(/}C)(ZILO) > (AS)
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where we defined
', ¢) = (cos¢ + 2sin¢)sinb,
A, ¢, )= (11cos¢p — 18sin¢)cosf cosyy — (18cos + 11sin¢@)sin . (A6)

We can now evaluate the maximum value Igey; of |Igsy- This calculation leads to Igey; = 121/320 ~ 0.378,

which can be obtained if and only if

0, = g + kam, Oc= % + kem, ¢, = arctan2 4+ mm, @, = arctan2 + ncm, (A7)

where ks, ke, na, nc € Z.
Nevertheless, when assuming equation (A7), one obtains |Jgsm| = (1/5)] sinyy sinyc| < 1/5 = 0.2.
On the contrary, we can consider the local projective measurement case by relaxing the orthogonality

) A -A -C =C . ..
assumption of vectors b, , b, (b, , b; ). This means that we can define the four generic independent vectors

by =700 &), B =T(an B, by =700 é b = Flac, fo), (48)
leading to
Iiem = Iesm = I'(0a, 91 (b, ¢C)(411_(1))2’ Jiem = ®(au, B) Pac, ﬁc)(4—1())2) (A9)
where we defined
d(a, B) = (11cos B — 18sin B)sin a. (A10)

In this scenario, then, I1 py; and Jipy; are not correlated by some measurements’ orthogonality assumption, and
can thus be independently maximized with a proper measurements choice. Since

Ty = max |Jypm| = 89/320 ~ 0.278 > 0.2 (which can be obtained by setting oy = ac = 7/2 and

Ba = B¢ = arctan[—11/18]), if we choose, at the same time, the values of 64, 6, @,, @ describedin
equation (A7), then we are able to obtain non-bilocal correlations which could not be reached by means of a
rotated BSM.

We stress that this fact does not prove that some scenarios exist where the maximal amount of non-bilocality
can be obtained only with local projective measurements rather than by performing a rotated BSM. It proves,
instead, that some peculiar set of non-bilocal correlations (defined by the corresponding values of the
correlation parameters I and J), can only be addressed by means of local projective measurements.
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