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Abstract
Bellʼs theoremwas a cornerstone for our understanding of quantum theory and the establishment of
Bell non-locality played a crucial role in the development of quantum information. Recently, its
extension to complex networks has been attracting growing attention, but a deep characterization of
quantumbehavior is stillmissing for this novel context. In this workwe analyze quantum correlations
arising in the bilocality scenario, that is a tripartite quantumnetworkwhere the correlations between
the parties aremediated by two independent sources of states. First, we prove that non-bilocal
correlations witnessed through a Bell-statemeasurement in the central node of the network form a
subset of those obtainable bymeans of a local projectivemeasurement. This leads us to derive the
maximal violation of the bilocality inequality that can be achieved by arbitrary two-qubit quantum
states and arbitrary local projectivemeasurements.We then analyze in details the relation between the
violation of the bilocality inequality and theCHSH inequality. Finally, we showhowourmethod can
be extended to the n-locality scenario consisting of n two-qubit quantum states distributed among
n 1+ nodes of a star-shaped network.

1. Introduction

Since its establishment in the early decades of the last century, quantum theory has been elevated to the status of
the ‘most precisely tested andmost successful theory in the history of science’ [1]. And yet,many of its
consequences have puzzled—and still do—most of the physicists confrontedwith it. At the heart ofmany of the
counter-intuitive features of quantummechanics is quantum entanglement [2], nowadays a crucial resource in
quantum information and computation [3] but that also plays a central role in the foundations of the theory. For
instance, as shown by the celebrated Bellʼs theorem [4], quantum correlations between distant parts of an
entangled system can violate Bell inequalities, thus precluding its explanation by any local hidden variable (LHV)
model, the phenomenon known as quantumnon-locality.

Given its fundamental importance and practical applications in themost varied tasks of quantum
information [5], not surprisinglymany generalizations of Bellʼs theoremhave been pursued over the years. Bellʼs
original scenario involves two distant parties that upon receiving their shares of a joint physical system can
measure one out of possible dichotomic observables. Natural generalizations of this simple scenario include
moremeasurements per party [6] and sequentialmeasurements [7], moremeasurement outcomes [8], more
parties [9, 10] and also stronger notions of quantumnon-locality [11–14]. All these different generalizations
share the common feature that the correlations between the distant parties are assumed to bemediated by a
single common source of states (see, for instance, figure 1(a)). However, as it is often in quantumnetworks [15],
the correlations between the distant nodes is not given by a single source but bymany independent sources
which distribute entanglement in a non-trivial way across thewhole network and generate strong correlations
among its nodes (figures 1(b)–(d)). Surprisingly, in spite of its clear relevance, such networked scenario is far less
explored.
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The simplest networked scenario is provided by entanglement swapping [16], where two distant parties,
Alice andCharlie, share entangled states with a central node Bob (seefigure 1(b)). Uponmeasuring in an
entangled basis and conditioning on his outcomes, Bob can generate entanglement and non-local correlations
among the two other distant parties even though they had no direct interactions. To contrast classical and
quantum correlation in this scenario, it is natural to consider classicalmodels consisting of two independent
hidden variables (figures 1(b)), the so-called bilocality assumption [17, 18]. The bilocality scenario and
generalizations to networks with an increasing number n of independent sources of states (figures 1(d)), the so
called n-locality scenario [19–26], allow for the emergence of a new kind of non-local correlations. For instance,
correlations that appear classical according to usual LHVmodels can display non-classicality if the
independence of the sources is taken into account, a result experimentally demonstrated in [27, 28]. However,
previousworks on the topic havemostly focused on developing new tools for the derivation of inequalities
characterizing such scenarios andmuch less attention has been given to understandwhat are the quantum
correlations that can be achieved in such networks.

That is precisely the aim of the present work.We consider in details the bilocality scenario and the bilocality
inequality derived in [17, 18] and characterize the non-bilocal behavior of general qubit quantum states when
the parties performdifferent kinds of projectivemeasurements. First of all we show that the correlations arising
in an entanglement swapping scenario, i.e. whenBob performs a Bell-statemeasurement (BSM), form a strict
subclass of those correlationswhich can be achieved by performing local projectivemeasurements in all stations.
Focusing on this wider class of correlations, we derive a theorem characterizing themaximal violation of the
bilocality inequality [17, 18] that can be achieved from general two-qubit quantum states shared among the
parties. This leads us to obtain a characterization for the violation of the bilocality inequality in relation to the
violation of theCHSH inequality [29]. Finally we showhowourmaximizationmethod can be extended to the
star network case [19], a n-partite generalization of the bilocality scenario, deriving thus themaximumviolation
of the n-locality inequality that can be extracted from this network.

2. Scenario

In the followingwewillmostly consider the bilocality scenario, which classical description in terms of a directed
acyclic graph is shown infigure 1(b). It consists of three spatially separated parties (Alice, Bob andCharlie)
whose correlations aremediated by two independent sources of states. In the quantum case, Bob shares two pairs
of entangled particles, onewithAlice and anotherwith Charlie. Upon receiving their particles Alice, Bob and
Charlie performmeasurements labeled by the randomvariablesX,Y andZ obtaining, respectively, the
measurement outcomesA,B andC. The difference between Bob and the other parties is the fact that the first has
in his possession two particles and thus can perform a larger set ofmeasurements including, in particular,
measurements in an entangled basis.

Any probability distribution compatible with the bilocality assumption (i.e. independence of the sources)
can be decomposed as

p a b c x y z p p p a x p b y p c z, , , , d d , , , , . 11 2 1 2 1 1 2 2ò l l l l l l l l=( ∣ ) ( ) ( ) ( ∣ ) ( ∣ ) ( ∣ ) ( )

In particular, if we consider that each partymeasures two possible dichotomic observables
(x y z a b c, , , , , 0, 1= ), it follows that any bilocal hidden variable (BLHV)model described by equation (1)
must fulfill the bilocality inequality

Figure 1.Description of the causal structure of some different networks. (a) LHVmodel representing a tripartite scenariowith a single
source of states. (b)BLHVmodel describing the bilocality counterpart of an entanglement swapping scenario. (c)Causal structure of a
bilocality scenariowhere the local projectivemeasurements performed in B are represented by the presence of the two substationsBA

andBC. (d)Extension of the bilocality scenario to a network consisting of n different stations sharing a quantum state with a central
node, i.e. the so-called n-local star network.
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As shown in [17, 18], if we impose the same causal structure to quantummechanics (e.g. in an entanglement
swapping experiment)we can nonetheless violate the bilocality inequality (even though the datamight be
compatible with LHVmodels), thus showing the existence of a new formof quantum non-locality called
quantum non-bilocality.

To that aim let us consider the entanglement swapping scenario with an overall quantum state

AB BCy yñ Ä ñ- -∣ ∣ , with 1 2 01 10y ñ = ñ - ñ-∣ ( )(∣ ∣ ).We notice that equation (2) is also valid if Bob performs a
singlemeasurement with four possible outcomes (instead of two dichotomicmeasurements). Then, we can
choose themeasurements operators for the different parties in the followingway. Stations A andCperform
single qubitmeasurements defined by

A C
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2
,

1

2
. 5x

z
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x
z

z
z

xs s s s
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=
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Station B, instead, performs a complete BSM, assigning to the two bits b b0 1 the values

00 for , 01 for , 10 for , 11 for . 6f f y yñ ñ ñ ñ+ - + -∣ ∣ ∣ ∣ ( )

The binarymeasurementBy is then defined such that it returns 1 by-( ) , with respect to the value of y 0, 1= .
This leads to
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where, in the last steps, wemade explicit use of themarginalization of probability p a b b c x z, , , ,0 1( ∣ ) over bk y¹ .
With these state andmeasurements, the quantummechanical correlations achieve a value 2 1 = > , which
violates the bilocality inequality and thus proves quantumnon-bilocality.

3. Results

3.1. Non-bilocal correlations with local projectivemeasurements
As reproduced above, in an entanglement swapping scenarioQuantumMechanics (QM) can exhibit
correlationswhich cannot be reproduced by any BLHVmodel. In turn, it was recently proved [22] that an
equivalent formof the bilocality inequality (equation (2)), can be violated byQMwhen all parties only perform a
a particular case of single qubit operations (i.e. , ,x z ys s s and linear combinations). Here wewill prove that,
given the bilocality inequality of equation (2), the non-bilocal correlations arising in an entanglement swapping
scenario (exploiting the BSMprotocol described in section 2) are a strict subclass of those obtainable bymeans of
local projectivemeasurements. This latter scenario differs from the former since station B performs the two-spin
projectivemeasurements described by

B y y y1 , 0, 1,

1, , , , 8

y

x y z

1 2 1 2

1 1 2 2 1 1 2 2

l s l s d s d s

l l l l d d d d s s s s

= - Ä + Ä =

= = = = º

       
        

( ) · · · ·

· · · · ( ) ( )

which do not require any entangled operation (differently from the BSMcase) and can be obtained by only
performing local projectivemeasurements.

Themainmotivation for considering local projectivemeasurements is the fact that they correspond to the
simplest set ofmeasurements implementable inmost physical setups used to study the violation of Bell
inequalities. Thismeans that station B can be seen as composed of two independent substationsBA andBC

(figure 1(c)). On the contrary, a general Local Operations andClassical Communication (LOCC) process would
require substantiallymore experimental efforts, for instance the implementation of a feedback systemwhich
drives the settings choice in substationBC, with respect to the results of substationBAʼsmeasurement. As a
matter of fact, when considering linear optical setups, even complete BSMs cannot be implemented [30]. This
implies that recent experiments violating the bilocality inequality [27, 28] have to rely on assumptions about the
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measurement device and being thus device-dependent in clear opposition to the general aimof Bellʼs theorem.
Finally, as pointed out in [31], when shared reference frames are added in the scenario, some particular
situationsmay require that no internal communication is ensured betweenBA andBC, i.e. the presence of the
localmeasurements scenario. From amore theoretical perspective, we stress that, so far,most of works on the
topic has been focused on the case where station Bperforms a BSM. The possibility of emulating the non-bilocal
results of a BSM (or rotated BSM) bymeans of an experimentally friendly subset of the LOCCoperations is, in
our view, a notable point.

We can nowproceedwith the evaluation of themain result of this section. The core of the bilocality
parameter  is the computation of the expected value A B Cx y zá ñ (equation (4)), that in the quantum case is given
by

A B C A B CTr . 9x y z x y z AB BC á ñ = Ä Ä Ä[( )( )] ( )

For the entanglement swapping scenariowe can summarize themeasurements in stations A andCby

A x A x A x
C z C z C z

1 0, 1,
1 0, 1, 10

x

z

0 1

0 1

= - + =
= - + =

( )
( ) ( )

whereAx andCz are general single qubit projectivemeasurements with eigenvalues 1 and−1.When dealingwith
station B, it is suitable to consider its operatorial definitionwhich is implicit in equation (7). Indeedwe can
consider that 1 by-( ) is the outcome of ourmeasurement, leading to values shown in table 1.

The quantummechanical description of the operatorBy (in an entanglement swapping scenario) is thus
given by

B y y1 2 2 1 11y f f f f y y y y= ñá + - ñá + - ñá - ñá+ + - - + + - -∣ ∣ ( )∣ ∣ ( )∣ ∣ ∣ ∣ ( )

which relates each value of y 0, 1= with its correct set of outcomes. This leads to the following theorem.

Theorem1 (Non-bilocal correlations and local projectivemeasurements).Given the general set of local
projectivemeasurements described in equation (8), QMpredictions for the bilocality parameter  which arise in an
entanglement swapping scenario (where Bob performs themeasurement described in equation (11)) are completely
equivalent to those obtainable by performing a strict subclass of equation (8), i.e.

. 12BSM LPM Ì{ } { } ( )

Proof. Let uswrite the Bell basis of a two qubitHilbert space in terms of the computational basis
( 00 , 01 , 10 , 11ñ ñ ñ ñ∣ ∣ ∣ ∣ ). From equation (11), we obtain

B y y

y

y

y y

1 2 2 1

1 00 00 01 01 10 10 11 11

00 11 01 10 10 01 11 00
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z z x x

f f f f y y y y

s s s s
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+ ñá + ñá + ñá + ñá

= - Ä + Ä

+ + - - + + - -∣ ∣ ( )∣ ∣ ( )∣ ∣ ∣ ∣
( ) (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣)

(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣)
( ) ( )

This shows that the entanglement swapping scenario is equivalent to the onewhere stationB only performs
the two local projectivemeasurements B z z0 s s= Ä and B x x1 s s= Ä , which form a strict subclass of the
general set of localmeasurements given by equation (8).Moreover, if we consider a rotated Bell basis, thenwe
obtain

B U U B U U y U U U U y U U U U

y b b y b b

1

1 , 14

y B B y B B B x B B x B B z B B z B
A C A C

0 0 1 1
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† † † † † †

where , ,x y zs s s s=
 ( ) and b b,

A A

0 1

 
(b b,

C C

0 1

 
) are orthonormal vectors. Due to the constraints b b

A A

0 1^
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and

b b
C C

0 1^
 

, this case still represents a strict subset of equation (8). ,

To further illustrate the relevance of theorem 1we shownext an example of correlations that can be achieved
with local projectivemeasurements but cannot with rotated BSMs. Let us consider the overall quantum state

Table 1.Expected values for the operatorBy, as implicitly
defined in equation (7).

y
b b0 1

00 (f+) 01 (f-) 10 (y+) 11 (y-)

y=0 1 1 −1 −1

y=1 1 −1 1 −1
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AB BC Ä , where

11

6
1
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00 00 . 15AB BC  f f= = ñá + - ñá+ +
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Moreover, let us define themeasurements performed in stations A andC as

A C A C
99

10
, . 16x z

z0 0 1 1
s s

s= =
+

= = ( )

Wecan analyze the set of non-bilocal correlations in terms of the correlation parameters I and J (defined in
section 2). Aswe show in appendix, if we consider the rotated BSMcase (constrained by b b

A A

0 1^
 

and b b
C C

0 1^
 

),
it is possible to show that the value I 121 320 0.378= ~∣ ∣ can only be obtained bymeans of unitary rotations
U UB BA CÄ which, nonetheless, lead to the constraint J 1 5 0.2 =∣ ∣ . On the contrary, relaxing these
orthogonality assumptions (i.e. exploring the local projectivemeasurements scenario), somemeasurement
settings exist such that the two values I J121 320 0.378, 89 320 0.278 0.2= ~ = ~ >∣ ∣ ∣ ∣ can be reached at
the same time. Since this latter couple of I J, values leads to 1.14 1 ~ > , then it proves how, in this scenario,
some peculiar non-bilocal correlations can only be obtained bymeans of local projectivemeasurements, rather
than performing a rotated BSM.

It is interesting to stress that the proof of theorem1 also allows for convex combinations of local projective
measurements. However, in principle,more general separablemeasurement are obtained through LOCCs.

As it turns out, this theoremhas strong implications in our understanding of the non-bilocal behavior of
QM. Indeed, it shows how the usual BSMprotocol described in section 2, which is characteristic of the
entanglement swapping scenario, is not capable of exploring thewhole set of quantumnon-bilocal correlations,
since its expected value for the parameter  is equivalent to a subclass of those obtainable bymeans of local
projectivemeasurements.Moreover, it also shows that neither its extension to a rotated Bell basis is able to
provide an enhancement, compared to the local projectivemeasurement protocol. Aswewill shownext, a better
characterization of quantum correlationswithin the bilocality contextmust thus in principle take into account
more general forms for Bobʼsmeasurements, especially when dealingwith different types of quantum states.

3.2. Non-bilocalitymaximization criterion
Wewill now explore themaximization of the bilocality inequality considering that Bob performs the projective
measurements described by equation (8). It is convenient to consider station B as a unique station composed of
the two substationsBA andBC, which perform single qubitmeasurements on one of the qubits belonging to the
entangled state shared, respectively, with stationA orC (see figure 1(c)).

LetA perform a general single qubitmeasurement and similarly forBA,BC andC.We can define these
measurements as

a b b cStation A , Station B , Station C , 17x y
A

y
C

zs s s sÄ
       ⟶ · ⟶ · · ⟶ · ( )

where , ,x y zs s s s=
 ( ). Let us nowdefine a general 2-qubit quantum state densitymatrix as

r s t
1

4
. 18

n m
nm n m

, 1

3

     ås s s s= Ä + Ä + Ä + Ä
=

   ( · · ) ( )

The coefficients tnm can be used to define a realmatrixT that lead to the following result:

Lemma1 (Bilocality Parameterwith Local ProjectiveMeasurements).Given the set of general local projective
measurements described in equation (17) and defined the general quantum state AB BC Ä accordingly to
equation (18), the bilocality parameter  is given by

a a T b b T c c a a T b b T c c
1

2

1

2
. 19

A C A C
0 1 0 0 0 1 0 1 1 1 0 1AB BC AB BC

    = + + + - -
           ∣( ) · ∣ ∣ · ( )∣ ∣( ) · ∣ ∣ · ( )∣ ( )

Proof. Let us consider two operatorsOi in the form O vi i s=
 · and a two qubit quantum state ñ described by

equation (18).We canwrite

O O O O v v v v t v T vTr Tr , 20
j k

j k
j k

j k

j k
jk1 2 1 2

, 1,2,3
1 2

, 1,2,3
1 2 1 2  å ås sá Ä ñ = Ä = Ä = =

= =

 [( ) ] [ ( ) ] · ( ) ( )

wherewemade use of the properties of the Paulimatrices is . Given the set of localmeasurements described in
equation (17), and the definitions of I and J (showed in equation (3)), the proof comes from a direct application
of equation (20) to the quantummechanical expectation value:

A B B C A B B C . 21x y
A

y
C

z x y
A

y
C

zAB BC AB BC   á Ä Ä Ä ñ = á Ä ñ á Ä ñÄ ( )

,
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Nextwe proceedwith themaximization of the parameter  over all possiblemeasurement choices, that is,
themaximumviolation of bilocality we can achieve with a given set of quantum states. To that aim, we introduce
the following Lemma.

Lemma2.Given a squarematrix M and defined the two symmetricmatrices M MT
1 = and MMT

2 = , each
non-null eigenvalue of 1 is also an eigenvalue of 2 , and vice versa.

Proof. Letλ be an eigenvalue of 1

M Mv v . 22T l=
  ( )

If 0l ¹ wemust have Mv 0¹
 

.We can then apply the operatorM from the left, obtaining

MM Mv Mv , 23T l=
 ( ) ( ) ( )

which shows that Mv

is an eigenvector of 2 with eigenvalueλ.

The opposite statement can be analogously proved. ,

Wecan now enunciate themain result of this section.

Theorem2 (Bilocality ParameterMaximization).Given the set ofmeasurements described in equation (17), the
maximumbilocality parameter that can be extracted from a quantum state AB BC Ä can bewritten as

t t t t , 24A C A C
max 1 1 2 2 = + ( )

where t A
1 and t A

2 (tC
1 and t C

2 ) are the two greater (and positive) eigenvalues of thematrix T TT
AB AB  (T TT

BC BC  ), with

t tA A
1 2 and t tC C

1 2 .

Proof.Wewill prove theorem 2, following a scheme similar to the one used byHorodecki [32] for theCHSH
inequality. Let us introduce the two pairs ofmutually orthogonal vectors
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and let us apply equation (25) to (19)
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so that theymaximize the scalar product. Defining

Mv Mv Mv v M Mv , 27T2 = =
    ∣∣ ∣∣ · · ( )

and remembering that b b b, , ,
A A C

0 1 0

  
and b

C

1


are unitary vectors, we obtain

T n T n T n T nmax cos cos sin sin . 28A C A C
T T

max AB BC AB BC
    a g a g= + ¢ ¢   ( ∣∣ ∣∣ ∣∣ ∣∣ ∣ ∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣ ∣ ) ( )

Nextwe have to choose the optimumvariablesα and γ. This leads to the set of equations

T n T n

T n T n

T n T n

T n T n

, 1

2
sin sin cot

1

2
cos cos tan 0,

, 1

2
sin sin cot

1

2
cos cos tan 0. 29

A C

A C

A C

A C

T

T

T

T

AB BC

AB BC

AB BC

AB BC





 

 

 

 

a g
a

a g a

a g a

a g
g

a g g

a g g

¶
¶

= ¢ ¢

- ¢ ¢ =

¶
¶

= ¢ ¢

- ¢ ¢ =

 

 

 

 

( ) ∣∣ ∣∣ ∣∣ ∣∣ ∣ ( ) ( )∣ ( )

∣∣ ∣∣ ∣∣ ∣∣ ∣ ( ) ( )∣ ( )

( ) ∣∣ ∣∣ ∣∣ ∣∣ ∣ ( ) ( )∣ ( )

∣∣ ∣∣ ∣∣ ∣∣ ∣ ( ) ( )∣ ( ) ( )

This systemof equations admits only solutions constrained by

n ntan tan , , 302 2 a g g a p= « =  + Î( ) ( ) ( )
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leading to

T n T n T n T n

T n T n T n T n

max cos sin

max . 31

A C A C

A C A C

T T

T T

max AB BC AB BC

AB BC AB BC

    

   

a a= + ¢ ¢

= + ¢ ¢

   

   
(∣ ∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣ ∣ ∣∣ ∣∣ ∣∣ ∣∣ )

( ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ∣∣ ) ( )

Next, wemust take into account the constraints n nA A^ ¢ 
and n nC C^ ¢ 

. Since these two couples of vectors
are, however, independent, we can proceedwith a firstmaximizationwhich deals onlywith the two set of
variables nA


and nA¢


. SinceT TT

AB AB  is a symmetric realmatrix, it is diagonalizable. Let us call ,1 2l l and 3l its

eigenvalues and let uswrite nA

and nA¢


in an eigenvector basis. If we define k T n 0C1 BC= >

∣∣ ∣∣ and

k T n 0C2 BC= ¢ >
∣∣ ∣∣ , our problem can bewritten in terms of Lagrangemultipliers related to themaximization of

a function f, given the constraints gi

f n n k n k n

g n n n g n n n g n n n n

, ,

1, 1, , , 32

A A
i

i A
i

i
i A

i

A A A A A A A A A A

1
1,2,3

2
2

1,2,3

2

1 2 3

å ål l¢ = + ¢

= - ¢ = ¢ ¢ - ¢ = ¢
= =

 

         

( ) ( ) ( )

( ) · ( ) · ( ) · ( )

wherewe considered thatfinding the values thatmaximize f x∣ ( )∣ is equivalent tofind these values for f x∣ ( )∣.
Let us now introduce the scaled vectors k nA A1h =

 
and k nA A2h¢ = ¢ .We obtain

f

g k g k g

, ,

, , , , 33

A A
i

i A
i

i
i A

i

A A A A A A A A A A

1,2,3

2

1,2,3

2

1 1
2

2 2
2

3

å åh h l h l h

h h h h h h h h h h

¢ = + ¢

= - ¢ = ¢ ¢ - ¢ = ¢
= =



    

( ) ( ) ( )

( ) · ( ) ( ) · ( ) ( ) · ( )

whose solution is given by vectors with twonull components, out of three. If we define 1 2 3 l l l and if
k k1 2> , the solution related to themaximal value is then given by

f k k 34max 1 1 2 2l l= + ( )

which leads to

T n t T n tmax , 35
n n

C
A

C
A

max
,

1 2
C C

BC BC
  = + ¢

¢

 
  ( ∣∣ ∣∣ ∣∣ ∣∣ ) ( )

wherewemade use of the lemma 2.
Themaximization over the last two variables leads to an analogous Lagrangemultipliers problemwith

similar solutions, thus proving the theorem. ,

This theorem generalizes the results of [33] (which dealt with some particular classes of quantum states in the
entanglement swapping scenario) to themore generic case of any quantum state in the localmeasurements
scenario (which, in a bilocality context, includes the correlations obtained through entanglement swapping). It
represents an extension of theHorodecki criterion [32] to the bilocality scenario, taking into account a general
class of localmeasurements which can be performed in station B.Our result thus shows that, as far as we are
concernedwith the optimal violations of the bilocality inequality provided by given quantum states, local
projectivemeasurements or a BSM (in the right basis) are fully equivalent.

3.3. The relation between the non-bilocality and non-locality of sources
Wewill now characterize quantumnon-bilocal behavior with respect to the usual non-locality of the states
shared betweenA, B andB, C. Let us start from equation (24) and separately consider Bell non-locality of the
states AB and BC .We can quantify it by evaluating the greatest CHSH inequality violation that can be obtained
with these states. Let us define theCHSH inequality as

U V U V U V U V
1

2
1. 36UV

0 0 0 1 1 0 1 1 º á + + - ñ∣ ∣ ( )

If we apply the criterion byHorodecki et al [32], we obtain

t t t t, , 37AB A A BC C C
max 1 2 max 1 2 = + = + ( )

wherewe defined t t t, ,A A C
1 2 1 and t C

2 accordingly to equation (24). From a direct comparison of (24) and (37)we
canwrite

Proposition 1.

1 and 1 1. 38AB BC
max max max    ⟶ ( )

Proof.Applying theCauchy–Schwarz inequality we obtain
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1. 39AB BC
max
2

max max    ( )

,

This result shows that if the two sources cannot violate theCHSH inequality then theywill also not violate
the bilocality inequality. Thus, in this sense, if our interest is to check the non-classical behavior of sources of
states, it is just enough to check for CHSHviolations (at least if Bob performs a BSMor local projective
measurements). Notwithstanding, we highlight that this does notmean that the bilocality inequality is useless,
since there are probability distributions that violate the bilocality inequality but nonetheless are local according
to a LHVmodel and thus cannot violate any usual Bell inequality [18, 27]. This fact can be explained considering
that the bilocality inequality is derived under the assumption of independence of the two sources of states, which
introduces a supplementary constraint. A probability distributionwhich violates the bilocality inequality, then,
could nonetheless admit a decomposition in termof LHVmodels, since they do not rely on this supplementary
assumption and can then include awider class of probability distributions.

Next we consider the reverse case: is it possible to have quantum states that can violate theCHSH inequality
but cannot violate the bilocality inequality? That turns out to be the case. To illustrate this phenomenon, we start
considering twoWerner states in the form v v1 4 y y= ñá + -- -(∣ ∣) ( ) . In this case, indeed, in order to
have a non-local behavior betweenA andB (B andC)wemust have v 1 2AB > (v 1 2BC > )while it is
sufficient to have v v 1 2AB BC > in order towitness non-bilocality. This example shows that on one hand it
might be impossible to violate the bilocality inequality although one of AB or BC is Bell non-local (for instance
v 1A = and v 0C = ). It also shows that, when onewitnesses non-locality for only one of the two states, it can be
possible, at the same time, to have non-bilocality by considering the entire network (for instance v 1A = and

v1 2 1 2C< < ). Another possibility is the one described by the following Proposition

Proposition 2.Given a tripartite scenario

and such that 1, 1 & 1. 40AB BC
AB BC
max max max     $ > > ( )

Proof.Wewill prove this point with an example. Let us take

v

3

5

2

5

0.2 0 0 0.2
0 0.3 0.3 0
0 0.3 0.3 0

0.2 0 0 0.2

,

7

10
,

1

3

0.05 0 0 0
0 0.45 0.35 0
0 0.35 0.45 0
0 0 0 0.05

, 41

AB

BC



 

y y f f

l

= ñá + ñá =

= = = = -
-

+ + + +

⎜ ⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

∣ ∣ ∣ ∣

( )

wherewe defined v, l( ) as

v v v, 1
2

1
4

. 42 
l y y l

y y y y
l= ñá + -

ñá + ñá
+ -- -

- - + +⎡
⎣⎢

⎤
⎦⎥( ) ∣ ∣ ( ) ∣ ∣ ∣ ∣ ( ) ( )

For these two quantum states one can check that

t t t t1, 0.04, 0.64, 0.49, 43A A C C
1 2 1 2= = = = ( )

which leads to

1.02, 1.06, 0.97. 44AB BC
max max max     ( )

,

This shows how it is possible to have non-local quantum states which nonetheless cannot violate the
bilocality inequality (with localmeasurements). However, we highlight that, since the bilocal set is a subset of the
local one, certainly there are bilocality inequalities other than (2) that are violated by these non-local states.

All these statements provide awell-defined picture of the relation between theCHSH inequality and the
bilocality inequality in respect to the quantum states AB BC Ä .We indeed derived all the possible cases of
quantumnon-local correlations whichmay be seen between couples of nodes, or in thewhole network
(according to theCHSHand bilocality inequalities). This characterization is shown infigure 2, in terms of a
Venn diagram.

Wefinally notice that if A andB share amaximally entangled state while B andC share a generic quantum
state, then it is easier to obtain a bilocality violation in the tripartite network rather than aCHSHviolation
between the nodesBC andC. Indeed it is possible to derive
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t t t t , 45BC
C C C C BC

max 1 2 1 2 max F ñáF Ä = + + =+ +(∣ ∣ ) ( )

wherewemade use of the following Lemma

Lemma3.Given the parameters t t t, ,A A C
1 2 1 and t C

2 defined in equation (24), it holds

t t t t0 , , , 1 46A A C C
1 2 1 2  ( )

Proof.This proof will be divided in twomain points.

(1) U U such that T is diagonal,   " $ ¢ = ¢
† .

As discussed in [34], if we apply a local unitaryU U U1 2= Ä to the initial quantum state ñ, thematrixT will
transform accordingly to

T U T U , 47
T

1 2 ⟶ ˜ ˜ ( )

whereU1˜ andU2˜ are orthogonal 3×3 realmatrices which represent, respectively, the spin rotations properties of U1

andU2. According to the SingularDecomposition Theorem, it is always possible to chooseU1˜ andU2˜ such that
U T U

T
1 2˜ ˜ is diagonal, thus demonstrating point 1.
It is important to stress that we can always rotate ourHilbert space in away that U U  † sowe can take

 ¢without loss of generality.
(2) IfT is diagonal, then the eigenvalues ofT TT

  are less or equal to 1.
It was shown in [32] that, for every quantum state ñ, we have t t1,nm nm Î∣ ∣ regardless to the basis chosen

for ourHilbert space. IfT is diagonal thenT T TT 2
  = and its eigenvalues ti can bewritten as t t 1i ii

2 = .

Given the definitions of t A
1 and t A

2 (tC
1 and t C

2 ) described in equation (24), the lemma is proved. ,

3.4. Extension to the star network scenario
Wenow generalize the results of theorem2, to the case of a n-partite star network. This network is the natural
extension of the bilocality scenario, and it is composed of n sources sharing a quantum state between one of the n
stationsAi and a central node B (see figure 1(d)). The bilocality scenario corresponds to the particular case where
n=2. The classical description of correlations in this scenario is characterized by the probability decomposition

p a b x y p p a x p b y, , d , , . 48i i n i i n
i

n

i i i i i i i n1,..., 1,
1

1,ò  l l l l== =
=

=

⎛
⎝⎜

⎞
⎠⎟({ } ∣{ } ) ( ) ( ∣ ) ( ∣ { } ) ( )

As shown in [19], assuming binary inputs and outputs in all the stations, the following n-locality inequality
holds

I J 1, 49n n
star

1 1 = +∣ ∣ ∣ ∣ ( )

Figure 2.Venns diagram representing quantum correlations in a bilocality scenario. Possible quantum correlations thatmay be
witnessed given a quantum state AB BC Ä . The blue sets represent quantum states that do not violation theCHSH inequality for

AB (AB local) or BC (BC local). The orange set includes, instead, these states whose correlations do not violate the bilocality
inequality, while thewhole set of quantumcorrelations is represented in green. For all different regions a blue square shows those
decompositions which are not allowed (crossedwith red lines), accordingly to the greater square on the right. All violations are related
to local projectivemeasurements.
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where

I A A B I A A B

A A B p a b x y

1

2
... ,

1

2
1 ... ,

... 1 , , . 50

n
x x

x x
n

n
x x

x
x x

n

x x
n

y
a a b

b a
i i n i i n

...

1
0

...

1
1

1

... ,
1, 1,

n

n

n

i i
n

n

n

i i

1

1

1

1

1

1

å å

å

= á ñ = - á ñ

á ñ= -

å

å+
= =

( )

( ) ({ } ∣{ } ) ( )

Wewill nowderive a theorem showing themaximal value of parameter star that can be obtained by local
projectivemeasurements on the central node and given arbitrary bipartite states shared between the central node
and the n parties.

Theorem3 (Optimal violation of the n-locality inequality).Given single qubit projectivemeasurements and
defined the generic quantum state ...A B A Bn1

 Ä Ä accordingly to equation (18), themaximal value of star is given
by

t t , 51
i

n
A

n

i

n
A

n

star
max

1
1

1

1
2

1

i i  = +
= =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

where t A
1

i

and t A
2

i

are the two greater (and positive) eigenvalues of thematrix T TT
Ai B Ai B  with t tA A

1 2
i i .

Proof. In our single qubitmeasurements scheme the operatorB can bewritten as

B B b . 52y
i

n

y
i

i

n

y
i

1 1

s= =
= =

 ⨂ ⨂ · ( )

As pointed out in [19], this allows us towrite

A B A B A B A B
1

2

1

2
, 53

i

n
i i i i

n

i

n
i i i i

n

star
1

0 0 1 0

1

1
0 1 1 1

1

  = á ñ + á ñ + á ñ - á ñ
= =

( ) ( ) ( )

which leads to

a a T b a a T b
1

2

1

2
. 54

i

n
i i i

n

i

n
i i i

n

star
1

0 1 0

1

1
0 1 1

1

AiB AiB
   = + + -

= =

     
( ) · ( ) · ( )

Introducing the pairs ofmutually orthogonal vectors

a a n a a n2 cos & 2 sin , 55i i
i i

i i
i i0 1 0 1a a+ =  -  = ¢   ( ) ( ) ( )

allows us towrite

n T b n T bcos sin . 56
i

n

i i
i

n

i

n

i i
i

n

star
1

0

1

1
1

1

AiB AiB
   a a= + ¢

= =

   
· · ( )

Wecan choose the parameters by

i
so that theymaximize the scalar products.We obtain

T n T nmax cos sin . 57
i

n

i i

n

i

n

i i

n
T T

star
max

1

1

1

1

AiB AiB
   a a= + ¢

= =

 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣∣ ∣∣ ∣∣ ∣∣ ( )

Wecannowproceed to themaximization over the parameters ia . Let us define the function

K , cos sin . 58n
i

n

i

n

i

n

i

n

1 1
1

1

2
1

1

 a a l a l a¼ = +
= =

( ) ( )

Wecanwrite

K

n
cot

n

, sin cos
tan 0, 59n

j

i

n
i

n

j
i

n
i

n

j
1 2 1

1
1 1

1 a a
a

l a
a

l a
a

¶ ¼
¶

= - == =( ) ∣ ∣ ∣ ∣
( )

which, similarly to equation (29), admits only solutions constrained by

n n j ktan tan , , . 60j k j k
2 2 a a a a p= « =  + Î "( ) ( ) ( )

This leads to

K , max cos sin , 61n
n n n n

1 max 1
1

2
1

1
2

2
2a a l a l a l l¼ = + = +

a
( ) (∣ ∣ ∣ ∣) ( )
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which allows us towrite

T n T nmax . 62
i

n

i

n

i

n

i

n
T T

star
max

1

2

1

2

AiB AiB
   = + ¢

= =

 ∣∣ ∣∣ ∣∣ ∣∣ ( )

Let us nowdefine

k T n k T n, , 63
i

n

i
i

n

i
T T

1
2

2
2

AiB AiB  = = ¢
= =

 ∣∣ ∣∣ ∣∣ ∣∣ ( )

wehave that

k T n k T nmax . 64n n n nT T
star
max

1
2

1
2

2
2

1
2

A B A B1 1
  = + ¢ ∣∣ ∣∣ ∣∣ ∣∣ ( )

Labeling ,1 2l l and 3l as the eigenvalues ofT TT
A B A B1 1
  (which is real and symmetric) andwriting n1


and n1¢


in

an eigenvector basis we obtain the Lagrangemultipliers problem related to themaximization of a function f,
given the constraints gi:

f n n k n k n

g n n n g n n n g n n n n

, ,

1, 1, , , 65

i
i

i

n

i
i

i

n

1 1 1
2

1,2,3
1

2

2

2
2

1,2,3
1

2

2

1 1 1 1 2 1 1 1 3 1 1 1 1

å ål l¢ = + ¢

= - ¢ = ¢ ¢ - ¢ = ¢
= =

 

         

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( )

( ) · ( ) · ( ) · ( )

wherewe considered that the values whichmaximize f x∣ ( )∣alsomaximize f x∣ ( )∣ .
This Lagrangianmultipliers problem can be treated similarly to equation (32), giving the same results. If

k k1 2> , we obtain

f k k 66n n
max 1 1

2
2 2

2l l= +( ) ( ) ( )

which leads to

t T n t T nmax . 67A n

i

n

i

n
A n

i

n

i

n
T T

star
max

1
1

2

2

2
1

2

2

AiB AiB

1 1   = + ¢
= =

 
⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
⎟⎟( ) ∣∣ ∣∣ ( ) ∣∣ ∣∣ ( )

The proof is concluded by applying iteratively this procedure. ,

Wenotice that the bilocality scenario can be seen as a particular case (n=2) of a star network, where
A C2 º and x z2 º .Moreover we emphasize that equation (51) gives the same results that would be obtained if
one performed an optimizedCHSH test on a 2-qubit state were t1 and t2 are given by the geometricmeans of the
parameters t A

1
i and t A

2
i.

4. Conclusions

Generalizations of Bellʼs theorem to complex networks offer a new theoretical and experimental ground for
further understanding quantum correlations and its practical applications in information processing. Similarly
to usual Bell scenarios, understanding the set of quantum correlations we can achieve and in particular what are
the optimal quantum violation of Bell inequalities is of primal importance.

In this workwe have taken a step forward in this direction, deriving the optimal violation of the bilocality
inequality proposed in [17, 18] and generalized in [19] for the case of a star-shaped networkwith n independent
sources. Considering that the central node in the network performs arbitrary local projectivemeasurements and
that the other parties performprojectivemeasurements we have obtained the optimal value for the violation of
the bilocality and n-locality inequalities. Our results can be understood as the generalization for complex
networks of theHorodeckiʼs criterion [32] valid for theCHSH inequality [29].We have analyzed in details the
relation between the bilocality inequality and in particular shown that if both the quantum states cannot violate
theCHSH inequality then the bilocality inequality also cannot be violated, thus precluding, in this sense, its use
as away to detect quantum correlations beyond theCHSHcase.Moreover, we have shown that some quantum
states can separately exhibit Bell non-local correlations, but nevertheless cannot violate the bilocality inequality
when considered as awhole in the network, thus proving that not all non-local states can be used towitness non-
bilocal correlations (at least according to this specific inequality).

However, all these conclusions are based on the assumption that the central node in the network performs
localmeasurements (that in such scenario include as a particular case the results obtained through the usual
complete BSMprotocol). This immediately opens a series of interesting questions for future research. Canwe
achieve better violations by employingmore generalmeasurements in the central station, for instance, entangled
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measurements in different basis, non-maximally entangled, non-projective ormore general separable
measurements? To exemplify, we notice that if Bob applies the protocol described in section 2 to the non-
maximally entangled basis , , 01 , 10f fñ ñ ñ ñ+ -{∣ ∣ ∣ ∣ }, then itsmeasurement operatorwill be given by

B y y1
2

, 68y z z
z z x x y y 

s s
s s s s s s

= - Ä +
Ä - Ä + Ä - Ä

( ) ( )

which does not admit the decomposition defined in equation (8), and thus cannot be reproduced bymeans of
local projectivemeasurements. Although this fact does not prove that non-maximally entangled basis can
provide an enhancement over neither the BSMnor the local projectivemeasurements protocols, it shows that
their analysis could lead to potential advantages.

Related to that, it would be highly relevant to derive new classes of network inequalities [21, 22, 35]. One of
the goals of generalizing Bellʼs theorem for complex networks is exactly the idea that since the corresponding
classicalmodels aremore restrictive, it is reasonable to expect that we canfindnewBell inequalities allowing us
to probe the non-classical character of correlations that are local according to usual LHVmodels. Can it be that
local projectivemeasurements ormeasurement in the Bell basis allow us to detect such kind of correlations if
newbilocality or n-locality inequalities are considered? Andwhatwould happen if we considered general POVM
measurements in all our stations? Couldwewitness a whole new regime of quantum states, which at the
moment, instead, admit a n-local classical description? Finally, one canwonder whether quantum states of
higher dimensions (qudits)would allow for higher violations of the n-locality inequalities.
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Appendix. Example of local projectivemeasurements correlations

Let us consider the scenario described by equations (15) and (16). Assuming equation (14) for the rotated BSM
case, and equation (17) for the local projectivemeasurement case, we can evaluate the correlations parameters
I J, , similarly to lemma 1. The two quantum states are characterized by

T T
11 6 0 0

0 11 6 0
0 0 1

, A1
AB BC = = -

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ( )

while the A, Cmeasurement vectors are

a c a c
1

10

99
0
1

,
0
0
1

. A20 0 1 1= = = =
   

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

Let us consider the rotated BSMcase. Themeasurement vectors b b,
A A

0 1

 
(b b,

C C

0 1

 
)will be constrained by their

mutual orthogonality condition. If we define a general 3-dimensional vector v

and the generic vector v̂



belonging to its orthogonal plane as

v v,
sin cos

cos
sin sin

, , , cos
cos cos

sin
cos sin

sin
sin
0

cos
, A3q f

q f
q

q f
q f y y

q f
q

q f
y

f

f
= = - +

-
^

 
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( ) ( )

thenwe can consider

b v b v b v b v, , , , , , , , , . A4
A

A A

A
A A A

C
C C

C
C C C0 1 0 1q f q f y q f q f y= = = =^ ^

       ( ) ( ) ( ) ( ) ( )

The evaluation of the correlation parameters I J, for the rotated BSMcasewill then lead to

I J, ,
11

40
, , , , ,

1

40
, A5A A C C A A A C C CBSM

2

BSM

2

q f q f q f y q f y= G G = L L⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( ) ( ) ( )
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wherewe defined

, cos 2 sin sin ,

, , 11 cos 18 sin cos cos 18 cos 11 sin sin . A6

q f f f q
q f y f f q y f f y
G º +

L º - - +
( ) ( )

( ) ( ) ( ) ( )

Wecannow evaluate themaximumvalue IBSM
max of IBSM∣ ∣. This calculation leads to I 121 320 0.378BSM

max = ~ ,
which can be obtained if and only if

k k n n
2

,
2

, arctan 2 , arctan 2 , A7A A C C A A C Cq
p

p q
p

p f p f p= + = + = + = + ( )

where k k n n, , ,A C A C Î .
Nevertheless, when assuming equation (A7), one obtains J 1 5 sin sin 1 5 0.2A CBSM y y= =∣ ∣ ( )∣ ∣ .
On the contrary, we can consider the local projectivemeasurement case by relaxing the orthogonality

assumption of vectors b b,
A A

0 1

 
(b b,

C C

0 1

 
). Thismeans thatwe can define the four generic independent vectors

b v b v b v b v, , , , , , , , A8
A

A A

A
A A

C
C C

C
C C0 1 0 1q f a b q f a b= = = =

       ( ) ( ) ( ) ( ) ( )

leading to

I I J, ,
11

40
, , ,

1

40
, A9A A C C A A C CLPM BSM

2

LPM

2

q f q f a b a b= = G G = F F⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( ) ( ) ( )

wherewe defined

, 11 cos 18 sin sin . A10a b b b aF º -( ) ( ) ( )
In this scenario, then, ILPM and JLPM are not correlated by somemeasurements’ orthogonality assumption, and
can thus be independentlymaximizedwith a propermeasurements choice. Since
J Jmax 89 320 0.278 0.2LPM

max
LPM= = ~ >∣ ∣ (which can be obtained by setting 2A Ca a p= = and

arctan 11 18A Cb b= = -[ ]), if we choose, at the same time, the values of , , ,A C A Cq q f f described in
equation (A7), thenwe are able to obtain non-bilocal correlations which could not be reached bymeans of a
rotated BSM.

We stress that this fact does not prove that some scenarios exist where themaximal amount of non-bilocality
can be obtained onlywith local projectivemeasurements rather than by performing a rotated BSM. It proves,
instead, that some peculiar set of non-bilocal correlations (defined by the corresponding values of the
correlation parameters I and J), can only be addressed bymeans of local projectivemeasurements.
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