Multiple Correspondence K-Means:
simultaneous vs sequential approach for
dimension reduction and clustering

Mario Fordellone and Maurizio Vichi

Abstract In this work, a discrete model for clustering and a continuous factorial
one for dimension reduction are simultaneously fitted to categorical data, with the
aim of identifying the best partition of the objects, described by the best orthogonal
linear combinations of the factors, according to the least-squares criterion. This new
methodology named Multiple Correspondence K-Means is an useful alternative to
the Tandem Analysis in the case of categorical data. Then, this approach has a dou-
ble objective: data reduction and synthesis, simultaneously in the direction of rows
and columns of the data matrix.

1 Introduction

In the era of ”big data” complex phenomena - representing reality in economic,
social and many other fields - are frequently described by a large number of sta-
tistical units and variables. Researchers who have to deal with this abundance of
information are often interested to explore and extract the relevant relationships by
detecting a reduced set of prototype units and a reduced set of prototype latent vari-
ables, both representing the ”golden knowledge” mined from the observed data. This
dimensionality reduction of units and variables is frequently achieved through the
application of two types of methodologies: a discrete classification method, produc-
ing hierarchical or non-hierarchical clustering and a latent model, creating factors.
The two methodologies, generally are not independently applied. In fact, first, the
factorial method is used to determine a reduced set of latent variables and then the
clustering algorithm is computed on the achieved factors. This sequential strategy
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of analysis has been called Tandem Analysis (TA) by Arabie and Hubert [1]. By
applying first the factorial method it is believed that all the relevant information
regarding the relationships of variables is selected by the factorial method, while,
the residual information represents noise that can be discarded. Then, the cluster-
ing of units complete the dimensionality reduction of data by producing prototype
units generally described by centroids, that is, mean profiles of units belonging to
clusters.

However, some authors have noted that TA in some situations cannot be reliable
because the factorial models applied first may identify factors that do not neces-
sarily include all the information on the clustering structure of units (De Sarbo et
al. [4]). In other terms the factorial method may filter out some of the relevant in-
formation for the subsequent clustering. A solution to this problem is given by a
methodology that includes the simultaneous detection of factors and clusters on the
observed data. Many alternative methods combining cluster analysis and the search
for a reduced set of factors have been proposed, focusing on factorial methods, mul-
tidimensional scaling or unfolding analysis and clustering (e.g., Heiser [8]; De Soete
and Heiser [6]). De Soete and Carroll [5] proposed an alternative to the K-Means
procedure, named Reduced K-means (RKM), which appeared to equal the earlier
proposed Projection Pursuit Clustering (PPC) (Bolton and Krzanowski [3]). RKM
simultaneously searches for a clustering of objects, based on the K-means criterion
(MacQueen [10]), and a dimension reduction of the variables, based on component
analysis. However, this approach may fail to recover the clustering of objects when
the data contain much variance in directions orthogonal to the subspace of the data
in which the clusters reside (Timmerman at al. [11]). To solve this problem, Vichi
and Kiers [12], proposed the Factorial K-Means (FKM) model. FKM combines K-
means cluster analysis with PCA, then finding the best subspace that best represents
the clustering structure in the data. In other terms FKM selects the most relevant
variables by producing factors that best identify the clustering structure in the data.
Both RKM and FKM proposals are good alternative to the TA in the case numeric
variables have been considered.

When categorical (nominal) variables are observed TA corresponds to apply first
Multiple Correspondence Analysis (MCA) and subsequently the K-means cluster-
ing on the achieved factors. As far as we know there are no studies that verify if
this TA has the same problems observed for quantitative variables. Thus, the first
aim of this paper is to discuss if there are limits of the TA in the case of categorical
data. The second and most relevant aim of the paper is to present a methodology,
named Multiple Correspondence K-Means (MCKM), for simultaneous dimension
reduction and clustering in the case of categorical data. The work is structured as
follows: in section 2 a background on the sequential and simultaneous approaches
is provided, showing an example where TA for categorical data fails to identify the
correct clusters. This is a good motivating example that justifies the use of a si-
multaneous methodology. In section 3 details on the MCKM model are shown, in
section 4 the Alternative Least-Square (ALS) algorithm is proposed for MCKM. In
section 5 the main theoretical and applied proprieties of the MCKM are discussed
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and finally, in section 6, and application on a real benchmark data is given to show
the characteristics of MCKM.

2 Statistics background and motivating example

Let X = [x;;] be a N x J data matrix corresponding to N units (objects) on which J
categorical (nominal) variables have been observed. Tandem Analysis (TA) (Arabie
and Hubert [1]; De Sarbo et al. [4]) is the statistical multivariate procedure that uses
two methodologies: (i) a dimension reduction (factorial) method for finding a set
of P factors (generally, P < J) better reconstructing the J observed variables (for
example by using Principal Component Analysis (PCA) or Factor Analysis (FA));
and (ii) a clustering method that partitions the N multivariate objects into K homo-
geneous and isolated clusters (for example by considering K-Means, or Gaussian
Mixture Models). In TA the factorial method is applied first to compute a matrix of
component scores; then, the clustering method is applied, sequentially, on the com-
ponent score matrix. The first methodology detects the maximal part of the total
variance by using a reduced set of P components; while the second method maxi-
mizes the between variance of the total variance explained in the first analysis. Thus,
the variance explained by the factorial method could not be all the between variance
of the original variables necessary for the successive clustering methodology. Ac-
tually, it may happen that some noise masking the successive clustering could have
been included in the P components. Vichi and Kiers [12] show an instructive exam-
ple where a data set formed by variables with a clustering structure, together with
other variables without clustering structure (noise), but having high variance, has
been considered. When TA 1is applied on this typology of data the PCA generally
explains also part of the nose data. These last tend to mask the observed clustering
structure, and as a consequence, several units are misclassified.

If the J variables considered in the matrix X are categorical, then TA corre-
sponds, usually, to the application of Multiple Correspondence Analysis (MCA)
and K-Means (KM), this last sequentially applied on the factors identified by MCA.
The researcher may ask if this TA for the categorical variables has the same limits
discussed for the quantitative case. Before considering this, let us first formalize TA
in the categorical data case.

The MCA model can be written as

J2IBLY2 = YA + Eyca (1)

where Y = J!/2JBL!/2A is the N x P score matrix of the MCA; A is the J x P
column-wise orthonormal loadings matrix (i.e., A’A = Ip); J 1/ 2JBL1/ 2 =X is the
centered data matrix corresponding to the J qualitative variables, with the binary
block matrix B = [By,...,B;] formed by J indicator binary matrices B; with ele-
ments b;j, = 1 if the " has assumed category m for variable j, b;j,, = 0 otherwise;
L =diag(B'1y); J = Iy — N~ 151}, is the idempotent centering matrix with 1y the
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N-dimensional vector of unitary elements.
The KM applied on the MCA score matrix Y =J 1/2JBL!/?A can be written as

Y =UY+Egy, ()

where U is the N x K binary and row stochastic memberships matrix, i.e., uy €
{0,1} withi=1,...,Nandk=1,...,K and Ulg = 1y, identifying a partition of ob-
jects and Y is the K x P corresponding centroid matrix in the P-dimensional space.
Note that Y = XA, while Y =XA. Finally, Ej;CA and ExM are the N x J error ma-
trices of MCA and KM, respectively.
The Least-Squares (LS) estimation of model (1) corresponds to minimize the loss
function
||J1/2JBLY/2 — YA'|]? ~ min
AA=Tp , 3)
Y = J!/2JBL!/?

while LS estimation of model (2) relates to minimize the loss function
|[¥ —UY|)? = min
UY

ve{o,1} > )
Ulg =1y

Thus, given the LS estimates A, fJ, ? of MCA and KM and considering Y =
J'2JBL!/2A, the TA procedure has an overall objective function equal to the sum
(or mean) of the two objective functions of MCA and KM; formally,

A A A 2 1 A A A A D
RS AR (VEIRER N SRR )

Therefore, TA is the procedure that optimizes sequentially the two objective func-
tions of MCA and KM, which loss can be summarized by (5). However, we now
show with an example that this sequential estimation has some limits similar to
those evidenced in the quantitative case. In Figure 1, the heat-map of the data ma-
trix of 90 units according to 6 qualitative categorical variables, each one with 9
categories, is shown.

This is a synthetic data set formed by considering multinomial distributions. The
first two variables are a mixture of three multinomial distributions with values from
1 to 3, from 4 to 6 and from 7 to 9, respectively, thus defining three clusters of
units, each one with equal size (30 units). The other four variables are multinomial
distributions with values from 1 to 9 with equal probabilities, thus these do not de-
fine clusters of units. We suppose that this is an example of a simulated data set of
90 customers who have expressed their preferences on 6 products on the basis of
a Likert scale from 1 (like extremely) to 9 (dislike extremely), passing through 5
(neither like nor dislike). The heat-map in Figure 1 is a graphical representation of
data where the individual values contained in the matrix are represented as different
levels of grey from white (value 1) to black (value 9) (1 like extremely, 2 like very



Multiple Correspondence K-Means 5

k|

Fig. 1 Heat-map of the 90 x 6 categorical variables with 9 categories for each variable

much, 3 like moderately, 4 like slightly, 5 neither like nor dislike, 6 dislike slightly,
7 dislike moderately, 8 dislike very much, 9 dislike extremely). By examining the
columns of the heat-map (corresponding to products) it can be confirmed that the
first two (products A, B)) have a well-defined clustering structure. In fact, the first 30
customers dislike (moderately, very much and extremely), the two products having
chosen attributes from 7 to 9, for both products. Customers from 31 to 60 having
values from 4 to 6 and from 1 to 3, for the first and second column, respectively,
are almost neutral on the first product (like slightly, nether like nor dislike, dislike
slightly), but they like the second product (extremely, very much or moderately).
Finally, customers from 61 to 90 have values from 1 to 3 and from 4 to 6 in the
first and second column, respectively, thus, they like the first product and are sub-
stantially neutral for the second. For the other four products (C, D, E, F) the 90
customers do not show a systematic clustering pattern with values that range ran-
domly with equal probability from 1 to 9. Therefore, the 90 customers have two
patterns of preferences: “clustered” for products A, B and “random” for products C,
D, E and F. On the 90 x 6 data matrix so defined, the TA was applied by computing
first the MCA and successively, by calculating the K-means algorithm on the first
two components identified by the MCA.

Figure 2, shows the Biplot of categories of the 6 variables named A, B, C, D, E,
F and followed by a number between 1 and 9 to distinguish categories. The total
loss (5) is 7.39.
It can be clearly seen from the Biplot that the most relevant categories are those
of the two variables A and B together with other categories e.g., F7, C7, E9, D1
from variables F, C, E and D. Thus, the clustered and the random patterns of the
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Fig. 2 Biplot of the 90 x 6 qualitative variables (A, B, C, D, E, F) with categories from 1 to 9. The
three clusters are represented by three different colors

customers are assorted and not clearly distinguishable in the Biplot. Furthermore,
TA tends to mask the three clusters of costumers, each one originally formed by 30

customers, as shown in the Table 1.

Table 1 Contingency table between K-Means groups and simulated groups

K-Means
Group 1 Group 2 Group 3|Total
Group 1| 30 0 0 30
Simulated groups Group 2| 3 27 0 30
Group 3| 7 1 22 30
Total 40 28 22 90

In fact, the points classified in the three groups are 40, 28 and 22, respectively. Thus,
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11 customers (12%) are misclassified (3 from the second cluster and 8 from the last
cluster). The Adjusted Rand Index (ARI) between the generated three clusters and
the three clusters obtained by K-means is ARl = 0.6579. Then, TA describes impre-
cisely the three clusters and defines components which do not clearly distinguish the
two different preference patterns: the clustered, for products A, B and the random
for the products C, D, E, F.

3 Multiple Correspondence K-Means model

Hwang et al. [9] propose a convex combination the homogeneity criterion for MCA
and the criterion for K-means; in this paper let us use a different approach by speci-
fying a model for the data, replacing equation (2) into equation (1). Thus, it follows
that

J'2JBLY? = (UY +Egy)A’ +Eyca (6)

and rewriting the error term Eycxa = ExayrA’ +Eysca, the resulting equation is here
named Multiple Correspondence K-Means (MCKM) model:

J'2IBLY? = (UYA' + Eyickm) - (7

MCKM model identifies, simultaneously, the best partition of the N objects de-
scribed by the best orthogonal linear combination of variables according to a single
objective function. The coordinates of the projections onto the basis are given by the
components y;, collected in the matrix Y = XA. Within this subspace, hence, with
these components, a partition of objects is sought such that the objects are "closest”
to the centroids of the clusters (Vichi and Kiers [12]). When X = J!/2JBL'/2 is ac-
tually a quantitative data matrix the Least-Squares (LS) estimation of model (7) is
equal to the Reduced K-Means (RKM) model, proposed by De Soete and Carroll
[5]. Additionally, when equation (7) is post-multiplied both sides by A, the RKM
model is transformed into the Factorial K-Means (FKM) model, proposed by Vichi
and Kiers [12]. Both models have been formalized for numeric data.
The LS estimation of MCKM corresponds to minimize the objective function

|[7V/2JBLY2 —UYA'||2 — min
AUY
A'A=1p : (8)
Ue{0,1}
Ulg =1y
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4 Alternating Least-Squares algorithm

The quadratic constrained problem of minimizing (8) can been solved by an Alterna-
tive Least-Squares (ALS) algorithm, which is structured on three steps, as follows:

Step 0: Firstly, initial values are chosen for A, U and Y: in particular, initial
values for A and U can be chosen randomly satisfying the constraints shown in
(8), while initial values for are then given at once by (U'U)~!'U'Y.

Step 1: Minimize F([u]) = ||J'/2JBL'/? — UYA'||? with respect to U, given
the current values of A and Y. The problem is solved for the rows of U inde-
pendently by taking uy = 1 if F([uy]) = min{F([up]) :v=1,...,P;(v#k)};
uj, = 0, otherwise.

Step 2: Given U, update A and implicitly Y by minimizing (8). The problem is
solved by taking the first p eigenvectors of X' (U(U'U) 'U)X (e.g., see Vichi
M., Kiers H.A.L. [12]).

Step 3: Compute the objective function (8) for the current values of A, U and Y.
When the updates of A, U and Y have decreased the function value, repeat the
step 1 and 2; otherwise, the process has converged.

ALS algorithm monotonically decreases the loss function and, because the con-
straints on U, the method can be expected to be rather sensitive to local optima. For
this reasons, it is recommended the use of many randomly started runs to find the
best solution. In some test, it has been valued that, for a good solution (a good local
optimal value), the use of 500 random starts usually suffices.

S Theoretical and applied properties

5.1 Theoretical Property

PROPERTY 1: The LS solution of MCKM obtained by solving the quadratic prob-
lem (8) subject to constraints A’A = Ip, U € {0,1}, and Ulg = 1y is equivalent to
the minimization of the objective function (5) used to give an overall estimation of
the loss produced by Tandem Analysis results. In other terms, it can be proved the
equality

21(Y,A,0,Y) = [|J2JBLY2 —YA' |2+ Y - OY|]> = | X —UYA'|?, (9

where X = J!/2JBL'/2.
Prof. In fact, after some algebra the objective function of MCKM can be written as

X —UYA'|]> = || X — UXAA|? = tr(X'X) — tr(X'UXAA") . (10)

Thus, it is necessary to prove that the objective function of the TA is equal to (10).
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X —XAA'||* + || XA — UXA|* =
1r{(X — XAA') (X —XAA')} +r{(XA —UXA) (XA —UXA)} =
1r(X'X) — tr(X'XAA") — tr(AA’X'X) + 1r(AA'X'XAA')+
+1r(A’X'XA) — tr(A'’X'UXA) — 1r(A’X'U'XA) +17(A'’X'U'UXA) .

(1)

Now, knowing that UX = U(U'U) lux= PyX, where Py the idempotent projector
of matrix U, equation (11) can be written as
tr(X'X) —tr(A’X'XA) —tr(AA'X'X) +1r(A’X'XA)+
+1r(AA'X'X) — tr(A’X'PyXA) — tr(A’X'PyXA) +tr(A’X'PyPyXA) =
=tr(X'X) —tr(A'X'PyXA) — tr(A’X'PyXA) +tr(A'’X'PyXA) =
=tr(X'X) —tr(X'UXAA) ,

12)

which complete the prof.

5.2 Applied Property

Let us apply the Multiple Correspondence K-means on the 90 x 6 data set used in
section 2 to show the limits of the Tandem Analysis in case categorical data are con-
sidered. The loss function (8) is equal to 7.23, better than the loss of the TA, with an
improvement of the loss function of 2%. Even if the improvement seems small this
time the biplot of Multiple Correspondence K-means in Figure 3 shows a very clear
synthesis of the data. Categories of products A and B are well-distinguished from
categories of products C, D, E, F and therefore the clustered and random patterns
of preferences of customers are clearly differentiated. Furthermore the clustering
structure of the customers is well represented in the Biplot. In fact, the three clusters
are formed each one by 30 customers, as expected, and they are more homogeneous
and well-separated with respect to the clusters in the Biplot of TA (Figure 3).

The red cluster is formed by customers who like products A and are neutral on
the product B (the first 30 rows, in the data set). The blue cluster is formed by
customers who like the second product B and dislike the first product A (the second
30 rows of the data set). Finally, the green cluster of customers is formed by persons
that dislike the product B and are neutral of on product A (the third and last 30 rows
of the data set). So this time no misclassifications are observed for the clusters (see
Table 2) and the two different patterns of products are differently represented in the
plot as expected.
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Fig. 3 Biplot of the multiple correspondence K-means . It can be clearly observed that the three
cluster are homogeneous and well-separated

Table 2 Contingency table between MCKM groups and simulated groups

K-Means
Group 1 Group 2 Group 3|Total
Group 1| 30 0 0 30
Simulated groups Group 2| 0 30 0 30
Group 3| O 0 30 30
Total 30 30 30 90

6 Application on South Korean underwear manufacturer

The empirical data presented in this section, is part of a large survey conducted by a
South Korean underwear manufacturer in 1997 (Hwang et al. [9]), where 664 South
Korean consumers were asked to provide responses for three multiple-choice items.
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In particular, the first item asked which of eight brands of underwear the con-
sumer most prefers (A): (AO1) BYC, (A02) TRY, (A03) VICMAN, (A04) James
Dean, (A05) Michiko-London, (A06) Benetton, (A07) Bodyguard, and (A08) Calvin
Klein; then, both domestic (A01, A02, A03, A04, and A07) and international (A0S,
A06, and AO8) brands were included. The second item asked the attribute of under-
wear most sought by the consumers (B): (BO1) comfortable, (B02) smooth, (B03)
superior fabrics, (B04) reasonable price, (B0OS) fashionable design, (B06) favourable
advertisements, (B07) trendy colour, (BO8) good design, (B09) various colours,
(B10) elastic, (B11) store is near, (B12) excellent fit, (B13) design quality, (B14)
youth appeal, and (B15) various sizes. The last item asked the age class of each
consumer (C): (CO01) 10-29, (C02) 30-49, and (C03) 50 and over. In Table 3 the
frequency distributions of the three categorical variables is shown.

Table 3 Frequency distributions of the South Korean underwear manufacturer data

BRAND (A) ATTRIBUTES (B) AGE (C)
A01.BYC 201|{BO1. Comfortable 398|(C01. 10 - 29 239
A02. TRY 131|{B0O2. Smooth 65](C02. 30 - 49 242
A03. VICMAN 30|{B03. Superior fabrics 29(|C03. 50 and over|183
A04. James Dean 72||{B04. Reasonable price 33
A05. Michiko-London| 11|{B0S5. Fashionable design 67
A06. Benetton 13{|B06. Favorable advertisements| 7
A07. Bodyguard 166{|B07. Trendy color 15
A08. Calvin Klein 40(|B08. Good design 4

B09. Various colors 4
B10. Elastic 11
B11. Store is near 3
B12. Excellent fit 20
B13. Design quality 6
B14. Youth appeal 1
B15. Various sizes 1

The analysis starts with the application of Multiple Correspondence Analysis and,
subsequently, the application of K-Means on the computed scores (Tandem Analy-
sis). Hwang et al. [9], suggested to apply MCA by fixing the number of components
equal to 2 since sizes of the adjusted inertias appeared to decrease slowly after the
first two. The results obtained by the MCA are shown in the Table 4.

Table 4 Results of the MCA model applied on the South Korean underwear manufacturer data

Singular Inerti Chi-  Inertia ﬁl‘;‘;’a
Value nertia square (%) %)
0.726 0.527 1048.930 6.870  6.870
0.644 0.414 824.878 5.400 12.270
Total 0.941 1873.808 12.270 -

P-value= 0 Degrees of freedom= 196
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From Table 4, it is worthy to note that the non-revaluated explained variance of the
two computed factors is equal to 12.27% of the total inertia (note that Greenacre [7],
recommends to adjust the inertias greater than 1/J using Benzécri’s [2] formula). In
the Table 5 it is possible to observe the computed loadings among the two compo-
nents and each category of the data.

Table 5 Loading matrix of the MCA model applied on the South Korean underwear manufacturer
data

Component 1 Component 2
Brand Attributes Age ||Brand Attributes Age
-0.250 -0.133  0.467(| 0.177 -0.152  0.102
-0.302  -0.065 -0.163( 0.090 0.184 -0.374
-0.134  -0.008 -0.346(|-0.363  0.285 0.312
0.135 -0.047 - [|-0.291  0.234 -
0.161  0.373 - 0311  0.064 -
0.181 -0.046 - [|-0.031 -0.036 -
0.334  0.108 - 0.038  0.030 -
0.175 0.123 - [|-0.077  0.017 -

- -0.097 - - 0.027 -
- -0.082 - - -0.278 -
- -0.020 - - 0.162 -
- -0.002 - - -0.164 -
- 0.152 - - -0.231 -
- 0.099 - - 0.049 -
- -0.067 - - -0.073 -

From the table, it easy to note that the categories with bigger contributions on the
first component are: the first two brands of underwear (AO1 and A02) and the sev-
enth brand (A07); the fifth attribute (BOS); the first and third class of the age (CO1
and C03). Whereas, the categories with bigger contribution on the second compo-
nent are: the third, fourth and fifth brand (A03, A04 and A05); the third, fourth, tenth
and thirteenth attribute (B03, B04, B10 and B13); second and third class of the age
(CO1 and CO03). Then, the two component scores represent a very high number of the
categories. However, the variables brands (A) and age (C) are more represented than
attributes (B). Subsequently, according to the TA approach, the K-Means model on
the two component scores has been applied. The fixed number of groups is K = 3
as suggested by Hwang et al. [9]. The plot in Figure 4 shows the projection of the
single category on the bi-dimensional factorial plane and the distributions of the
computed scores. We can note that the three defined groups are underlined with dif-
ferent colours.

The biplot shows that the groups are not well separated and they are characterized
by an high inside heterogeneity. In fact, it is very hard to understand the preferences
of the consumers that belong to the three groups.

Different results have been obtained with the Multiple Correspondence K-Means
approach. Fixing the same number of components and groups, the explained vari-
ance of the two components are around to 20%. The component loadings of the
MCKM are represented in the Table 6.
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Fig. 4 Biplot of the sequential approach applied on South Korean underwear manufacturer data

In the MCKM model the categories with bigger contributions on the first component
are: the first two brands of underwear (AO1 and A02) and the seventh brand (A07);
the first and the third class of the age (CO1 and CO03). The categories with bigger
contribution on the second component are the fourth, fifth, sixth, seventh and eighth
brand (A04, A05, A06, AO7 and A8) only. Then, unlike TA, in the MCKM model
the variable attributes (B) do not give a relevant contribution.

In the Figure 5 is shown the biplot where are represented the component scores
and the three defined groups.
From the plot we can note that the groups are well separated and homogeneous. In
fact, it easy to note that the green group (166 observations) are the consumers that
prefer the seventh brand (A07); the blue group (361 observations) are the consumers
that prefer the first three brands (AO1, A02 and A03) and they have mainly an age of
50 years and over (C03); finally the red groups (137 observations) are the consumers
that prefer the fourth, fifth, sixth and eight brand (A04, A0S, A06, and A08). It is
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Table 6 Loading matrix of the MCKM model applied on the South Korean underwear manufac-
turer data

Component 1 Component 2
Brand Attributes Age ||Brand Attributes Age
0429 0.029 -0.252|[ 0.159 0.040 -0.057
0.346 0.028 0.062|[ 0.128  0.068 -0.018
0.158 0.034 0.216]| 0.046 -0.045 0.086
-0.123  0.025 - [|-0.609  0.007 -
-0.048 -0.161 - [|-0.238 -0.074 -
-0.052  0.031 - [|-0.259  0.007 -
-0.694 -0.016 - 0.449 -0.018 -
-0.092  -0.046 - [|-0.454  0.005 -

- 0.061 - - 0.022 -
- 0.011 - - 0.034 -
- 0.052 - - 0.019 -
- 0.036 - - -0.093 -
- -0.052 - - -0.132 -
- -0.054 - - 0.035 -
- 0.030 - - 0.011 -

possible to verify these results observing the frequency distributions of the three
categorical variables shown in Table 3.

7 Conclusions

Tandem Analysis (TA) is a well-known sequential procedure for clustering and di-
mensional reduction. It is frequently used in applications for quantitative data, how-
ever is has several limitations. In particular, it can fail to find the correct clustering
structure with a reduced set of factors (Vichi and Kiers [12]). TA is also frequently
used when categorical variables are considered. It corresponds to apply MCA on the
original data and successively K-means clustering on the component score matrix of
MCA. In this paper it was proved that also this TA has serious problems to correctly
classify units and synthesize the relationships of the observed categorical variables.
Thus, a model called Multiple Correspondence K-means (MCKM) was proposed
and estimated in the LS by using an ALS algorithm. Property 1 proves that the LS
estimation of MCKM corresponds to optimize the loss function of the TA which is
only imprecisely estimated by the sequential application of MCA and K-means.
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Fig. 5 Biplot of the simultaneous approach applied on South Korean underwear manufacturer data
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