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1 Introduction

The general lesson that one learns from T-duality is that in string theory one has to

generalise the concept of geometry. In particular, in the context of flux compactifications,

T-duality implies the presence of non-geometric fluxes, that are quantities that cannot be

obtained in terms of the fields of the higher-dimensional supergravity theory. In the case

of torus reductions with fluxes turned on, while the RR fluxes of the IIA and IIB theory

are mapped into each other by T-duality in the standard way as

Fab1...bp
Ta←→ Fb1...bp , (1.1)

the NS 3-form flux Habc and the metric flux f c
ab transform into the non-geometric Qbc

a and

Rabc fluxes according to the chain of rules [1] (see also [2])

Habc
Tc←→ −f c

ab
Tb←→ −Qbc

a
Ta←→ Rabc . (1.2)

In this paper we will focus on the IIB/O3 and the dual IIA/O6 T 6/[Z2×Z2] orientifold

models [3–12] with generalised fluxes turned on. In the IIB/O3-orientifold picture, the only

geometric fluxes that can be introduced are F3 and H3. The dual IIA/O6-orientifold is

obtained by performing three specific T-dualities, which corresponds to mirror symmetry

for this particular orbifold [13].1 This maps the H3 flux of IIB to both geometric and

non-geometric fluxes in IIA. If one then includes all the allowed fluxes in the IIA picture,

this corresponds in the IIB picture to also including the Q flux.2 The resulting N = 1

superpotential was originally derived in [1].

In the IIB theory one can also include the flux Pbc
a which is the S-dual of Qbc

a , and

derive the way this flux enters the N = 1 superpotential [15]. In [16] it was shown that

the fluxes that are related by T-duality to Pbc
a in any dimension are P

b1...bp
a and Pa,b1...bp ,

where p is even in IIB and odd in IIA and the b indices are completely antisymmetrised.3

1A general analysis of the type II flux solutions which can be generated by T-dualizing the factorized

T 2 × T 2 × T 2 torus in the geometric case has been carried out in [14].
2The full list of RR, NS and P fluxes that can be turned on in the model, and how they are mapped by

mirror symmetry, is given in table 1.
3The P fluxes with all upstairs indices belong to mixed-symmetry irreducible representations.
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In particular, T-duality acts according to the rule [17]

P
b1...bp
a

Ta←→ Pa,b1...bpa

P
b1...bp
a

Tbp
←−→ P

b1...bp−1

a (1.3)

Pa,b1...bp
Tbp
←−→ Pa,b1...bp−1 ,

and the fluxes are such that if a is upstairs it coincides with one of the b indices, while

if it is downstairs it differs from all the b indices. Using this rule, one can determine for

the T 6/[Z2 × Z2] orientifold which fluxes can be included in both the IIB and IIA theory

following precisely the same method used for the NS fluxes: one first maps the flux Pbc
a of

IIB to the dual IIA theory by performing three T-dualities, then extends this to include all

the allowed IIA fluxes, and finally one maps this back to IIB. It turns out that in IIB one

has to include the additional flux Pa,b1...b4 . The expression for the resulting superpotential

of each theory is mapped to the one of the other theory under mirror symmetry [17], and

in the IIB case it coincides with the one derived in [18] as far as the P fluxes are concerned.

In string theory, fluxes cannot be turned on arbitrarily, because the presence of Chern-

Simons terms in the ten-dimensional type-II supergravity actions implies that fluxes along

internal cycles generate effective charges for specific potentials, that for consistency have

to be cancelled. In particular, if the potential is projected out in the orientifold model,

this implies that the charge induced by the fluxes has to vanish, resulting in a quadratic

constraint which is the Bianchi identity for the magnetic dual of the potential. Otherwise,

one has to impose a tadpole condition, which is the condition that the charge induced by

the fluxes has to be cancelled by including a suitable number of branes. Specifically, the

geometric fluxes give rise to non-trivial NS Bianchi identities, but also to a D3 tadpole in

IIB, originating from the term H3∧F3, and a D6 tadpole in IIA from H3F0+f ·F2. When

also the non-geometric Q, R and Pbc
a fluxes are included, this gives further contributions to

the NS Bianchi identities, but also generates additional tadpoles [1, 15]. In particular, in

IIB the term Qbc
[aFd]bc generates a tadpole for the D7-brane, and by S-duality this is mapped

to the term Pbc
[aHd]bc which generates a tadpole for the S-dual of the D7-brane [15].

The fact that the flux Pbc
a of the IIB theory transforms under T-duality as in eq. (1.3)

implies that one can map to the IIA theory the tadpole condition for the S-dual of the

D7-brane by performing three T-dualities. This results in a tadpole condition for an exotic

brane [17], which is an object that in the higher-dimensional theory is a generalised KK-

monopole, i.e. an object well-defined only in the presence of isometries [19–24]. In [25–28]

it was shown that exotic branes are associated to specific components of ten-dimensional

mixed-symmetry potentials. In particular, given a ten-dimensional mixed-symmetry poten-

tial Ap,q,r,... in a representation such that p, q, r, . . . (with p ≥ q ≥ r . . .) denote the length

of each column of its Young tableau, this corresponds to a brane if some of the indices p

are isometries and contain all the indices q, which themselves contain all the indices r and

so on. One can then classify all the mixed-symmetry potentials that give rise to branes in

lower dimensions in terms of the non-positive integer number α denoting how the tension

of the corresponding brane scales with respect to the string coupling gS . T-duality relates
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different potentials with the same value of α. In particular, the RR potentials Cp have

α = −1, while the potentials D6+p,p associated to the NS5-brane, the KK monopole and

their T-duals have α = −2 [25]. The potential E8 associated to the S-dual of the D7-brane

has α = −3, and the other mixed-symmetry potentials with the same value of α are of

the form E8+n,2m,n in IIB and E8+n,2m+1,n in IIA [26]. In [17] it was shown that on the

T 6/[Z2 × Z2] orientifold the IIB potential E8 is mapped by mirror symmetry to specific

components of the IIA potential E9,3,1, and by adding also all the other components that

can be consistently included in IIA, this maps in IIB to components of the potentials E8,4,

E9,2,1 and E10,4,2. Proceeding this way, one manages to obtain the full set of components

of α = −3 mixed-symmetry potentials corresponding to exotic branes of the IIB and IIA

theory that can be consistently added in the T 6/[Z2 × Z2] orientifold model to cancel the

tadpoles generated by the P fluxes.4

The aim of this paper is to complete the analysis carried out in [17] by including all

possible non-geometric fluxes and exotic branes in the model. We start by considering the

S-dual of Pa,b1...b4 , which following [18] we denote as Q′a,b1...b4 . In four dimensions this

flux and those that are related to it by T-duality have the same form of the NS fluxes,

and we denote them as NS′ fluxes. We manage to derive a universal T-duality rule that

transforms the flux Q′a,b1...b4 to the other NS′ fluxes, which is given in eq. (2.4) and actually

applies to any dimension.5 Using this rule, we manage to determine the fluxes of the IIA

theory that are mapped to the Q′a,b1...b4 fluxes of IIB. We then include all the additional

IIA fluxes that are allowed, and we find that these are mapped in IIB to the components of

the flux H′a1a2a3,b1...b6 . By S-duality, this latter flux is mapped to the flux that we denote

as F ′a1a2a3,b1...b6 . In four dimensions this flux and those that are related to it by T-duality

are in the same representations of the RR fluxes, and we denote them as RR′ fluxes. We

find a universal T-duality rule valid in any dimension,6 which we give in eq. (2.6), that

transforms the flux F ′a1a2a3,b1...b6 to additional RR′ fluxes. This rule allows us to derive the

fluxes of the IIA orientifold model that are mapped to F ′a1a2a3,b1...b6 in IIB. The NS′ and

RR′ fluxes, together with the RR, NS and P ones, give a total of 128 components, which

are all the fluxes that can be included in the model.7 The outcome of this analysis is that

we manage to derive the most general expression for the superpotential for both the IIB

and IIA theory, and in the IIB case this expression coincides with the one derived in [18].

Having derived all the possible fluxes that can be turned on in the model, one can

determine all the possible exotic branes that are sourced by these fluxes and thus can be

included to cancel the tadpoles. We show that all the remaining branes that can be added

have α = −5 and α = −7, and following [29] we denote the corresponding mixed-symmetry

potentials as G and I respectively. This result is achieved by exploiting the universal T-

duality rule derived in [17] which states as follows: given an α = −n brane associated to

4All the components of the α = −3 potentials corresponding to exotic branes in both the IIB and IIA

T 6/[Z2 × Z2] orientifold models are given in table 4.
5The highest dimension in which these fluxes appear is D = 7.
6Actually the highest dimension in which these fluxes appear is D = 4.
7All the NS′ and RR′ fluxes that can be turned on in the model, and how they are mapped by mirror

symmetry, are given in tables 2 and 3.
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a mixed-symmetry potential such that the a index occurs p times (in p different sets of

antisymmetric indices), this is mapped by T-duality along a to the brane associated to the

potential in which the a index occurs n− p times. Schematically, this can be written as

α = −n: a, a, . . . , a
︸ ︷︷ ︸

p

Ta←→ a, a, . . . ., a
︸ ︷︷ ︸

n−p

. (1.4)

We proceed precisely as for the α = −3 branes: the IIB potential E10,4,2 is mapped by

S-duality to G10,4,2, and using eq. (1.4) we map this by mirror symmetry to components of

the IIA potentials G10,5,3,1, G10,4,1 and G10,6,5,2. We then add all the other components of

these potentials that can consistently be included, and we map this back to IIB, resulting

in the inclusion in this theory of the potentials G10,5,4,1, G10,6,2,2 and G10,6,6,2. The latter

potential is mapped by S-duality to I10,6,6,2, which by mirror symmetry goes to components

of the potential I10,6,6,3 of IIA. Finally, the remaining component of this potential that can

be added is mapped in IIB to I10,6,6,6, which is a singlet under S-duality.8

Having determined all the branes that can be included in the model, we can derive all

the tadpole conditions for such branes. The quadratic terms in the fluxes that contribute

to such tadpole conditions are schematically as follows:9

α = −1 potential C: HNS · FRR

α = −3 potential E: HNS · P + FRR · HNS′

α = −5 potential G: HNS′ · P + FRR′ · HNS

α = −7 potential I: HNS′ · FRR′ . (1.5)

Moreover, we determine all the branes of the maximal theory that are projected out in the

orientifold and give non-trivial quadratic constraints for the fluxes. It turns out that these

branes have even α’s, and the resulting Bianchi identities have the schematic form

α = −2 potential: HNS · HNS + P · FRR = 0

α = −4 potential: P · P +HNS · HNS′ + FRR · FRR′ = 0

α = −6 potential: HNS′ · HNS′ + P · FRR′ = 0 . (1.6)

Again, by recursively applying mirror symmetry and S-duality, all such quadratic con-

straints are systematically derived.

The orientifold model we consider in this paper has a conjectured SL(2,Z)7 non-

perturbative duality symmetry [15, 30], which can be understood by investigating the

orbifold in more detail. The 6-torus factorises as T 6 =
⊗3

i=1 T
2
(i), with the two Z2’s acting

as (−1,−1, 1) and (1,−1,−1) respectively on the coordinates (xi, yi) of the three 2-tori,

and there are seven untwisted moduli S, Ti and Ui. In the IIB/O3-orientifold model, the

S modulus is the axion-dilaton, the Ti moduli are the complex Kähler moduli which are

given in terms of the Kähler form and the RR 4-form, and the Ui moduli are the complex

8All the components of the α = −5 and α = −7 potentials corresponding to exotic branes in both IIB

and IIA are given in tables 5 and 6.
9In this formula and the next we schematically denote with HNS and HNS′ all the NS and NS′ fluxes.
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structure moduli. In the low-energy supergravity theory in the absence of fluxes, each of

these moduli parametrises the coset SL(2,R)/ SO(2), and the global symmetry SL(2,R)7

is conjectured to be broken to SL(2,Z)7 in the full theory. The IIA/O6-orientifold arises

from performing three T-dualities, one on each torus (following [15], in this paper we take

these directions to be the three x directions). The 128 fluxes that can be turned on in

the model belong to the (2,2,2,2,2,2,2) representation of SL(2,R)7 [15]. In this paper

we determine the representations of all the branes that can be included. We find that

the branes belong to 16 irreducible representations, each made of three triplets and four

singlets. More precisely, these 16 representations are all the possible representations made

of three triplets and four singlets with the condition that in the IIB picture there is an even

number of triplets with respect to the SL(2,R)’s associated to the Ui moduli. Additionally,

we find that the branes with even α, that by being projected out give rise to the Bianchi

identities, collect in 12 irreducible representations of SL(2,R)7, which again are made of

three triplets and four singlets.

The plan of the paper is as follows. In section 2 we determine the T-duality rules that

transform the NS′ and RR′ fluxes, and we derive the expression for the superpotential with

all possible fluxes turned on. In section 3 we determine all the exotic branes that can be

included in the model, and we derive all the tadpole conditions that result from turning on

fluxes. We also derive all the Bianchi identities, which are the quadratic constraints that

cannot be relaxed by the inclusion of branes. In section 4 we determine how all the exotic

branes in the model transform with respect to the conjectured non-perturbative duality

symmetry SL(2,Z)7. Finally, section 5 contains our conclusions.

2 NS′ & RR′ fluxes: T-duality and superpotential

In this section we introduce the NS′ and RR′ fluxes, which are related by chains of T-

and S-dualities to the RR and NS fluxes and the P fluxes recently considered in [17]. In

particular, we will derive how these fluxes transform under T-duality and this will allow

us to determine all the fluxes that can be turned on in the orientifold T 6/[Z2 × Z2] model

for both the IIB and the IIA theory. This result will be used to derive the expression for

the N = 1 superpotential with all fluxes included for both theories. As it was the case for

the analogous analysis carried out in [17] for the P fluxes, our IIB/O3 result fits with that

found in [18] on the basis of generalised geometry considerations and valid for any IIB/O3

orientifold with SU(3) structure.

From the point of view of the four-dimensional effective action, fluxes give rise to

gaugings, and in particular the fluxes of the N = 1 theory can be identified with specific

components of the embedding tensor [31] of the maximal theory, which belongs to the

912 of E7(7) [32]. Under the branching E7(7) ⊃ SO(6, 6) × SL(2,R), where SO(6, 6) is

the perturbative symmetry and SL(2,R) transforms non-linearly the complex scalar made

of the four-dimensional dilaton and the axion dual to the NS 2-form, this representation

decomposes as

912 = (32, 3)⊕ (220, 2)⊕ (12, 2)⊕ (352, 1) . (2.1)

– 5 –



J
H
E
P
1
0
(
2
0
1
7
)
1
3
4

By further considering the embedding SL(2,R) ⊃ R
+, where R

+ is the dilaton weight,

one finds that the various fluxes belong to the following representations of the embedding

tensor:

RR fluxes: θα ∈ 322

NS fluxes: θMNP ∈ 2201

P fluxes: θMα̇ ∈ 3520 (2.2)

NS′ fluxes: θ′MNP ∈ 220−1

RR′ fluxes: θ′α ∈ 32−2 .

For the first three fluxes the form of the corresponding embedding tensor is the same in

any dimension D = 10 − d, and the T-duality rules in eq. (1.1), (1.2) and (1.3) can be

easily understood as specific O(d, d) transformations. In particular, observing that the P

fluxes belong to a vector-spinor representation was crucial to derive the T-duality rules in

eq. (1.3), combining the transformation of the vector index M , which splits in lower and

upper a, with the transformation of the spinor index α̇, which decomposes in the set of

all even or all odd antisymmetric indices b [17]. We list in table 1 all the RR, NS and P

fluxes that can be turned on in the orientifold T 6/[Z2 × Z2] model for both the IIB and

the IIA theory. In particular, the P fluxes of the IIA theory are determined by applying

three T-dualities along the three x directions [17].

The NS′ and RR′ fluxes collect in representations of SO(d, d) that are not the same in

any dimension. In particular, the NS′ fluxes belong to the embedding tensor θ′M1...Md−3
, and

therefore they can be turned on in seven dimensions and below [33]. In four dimensions the

embedding tensor belongs to the representation with three antisymmetric indices, which

decomposes in terms of the fluxes as

θ′M1M2M3
→ R′b1b2b3 Q′a1,b1b2b3b4 f ′a1a2,b1...b5 H′a1a2a3,b1...b6 . (2.3)

In this expression, the a indices and the b indices are separately completely antisym-

metrised. Given that in general one can dualise p upstairs indices of SL(d,R) with d − p

downstairs ones, the reader can appreciate that the SL(6,R) representations that occur in

eq. (2.3) are the same as those of the NS fluxes. On the other hand, only writing them with

upstairs indices as in eq. (2.3) one reproduces the correct embedding tensor in dimension

higher than four. Indeed, in seven dimensions only R′ can be turned on and it gives rise

to a singlet θ′. In six dimensions R′ and Q′ form the embedding tensor θ′M , and in five

dimensions θ′M1M2
is made out of R′, Q′ and f ′. Finally, in three dimensions one has to also

consider the flux H̃′a1...a4,b1...b7 , which together with the fluxes in eq. (2.3) gives rise to the

embedding tensor θ′M1...M4
. The fact that the NS′ fluxes all have upstairs indices reveals

their non-geometric nature, as also pointed out in [18]. The index structure in eq. (2.3)

also follows naturally from the observation that these fluxes are dual to α = −4 (D − 1)-

form potentials in D dimensions, that originate from the ten-dimensional mixed-symmetry

potentials F9,3, F9,4,1, F9,5,2, F9,6,3 and F9,7,4.
10

10Following [28], we denote the potentials with α = −1,−2,−3 . . . with the letters C, D, E and so on.
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IIB IIA #

flux component component flux

F3 Fx1x2x3 F F0 1

Fyixjxk Fxiyi F2 3

Fxiyjyk Fxjyjxkyk F4 3

Fy1y2y3 Fx1y1x2y2x3y3 F6 1

H3 Hx1x2x3 Rx1x2x3

R 1

Hyixjxk −Qxjxk

yi
Q 3

Hyiyjxk −fxk

yiyj
f 3

Hy1y2y3 Hy1y2y3 H3 1

Q Qxjxk

xi fxi

xjxk f 3

Qxjyk

xi Qykxi

xj Q 3

Qyjxk

xi Qxiyj

xk Q 3

Qxjxk

yi
−Hyixjxk H3 3

Qyjyk

xi −Rxiyjyk R 3

Qxjyk

yi
fyk

yixj f 3

Qyjxk

yi
fyj

xkyi
f 3

Qyjyk

yi
Qyjyk

yi
Q 3

P2
1 Pxjxk

xi −Pxi,xi
P1,1 3

Pxjyk

xi Pxi,xixkyk P1,3 3

Pyjxk

xi Pxi,xixjyj P1,3 3

Pxjxk

yi
−Pxi

yi
P1
1 3

Pyjyk

xi Pxi,xixjxkyjyk P1,5 3

Pxjyk

yi
Pxixkyk

yi
P3
1 3

Pyjxk

yi
Pxixjyj

yi
P3
1 3

Pyjyk

yi
Pxixjxkyjyk

yi
P5
1 3
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P1,4 Pxi,yixixjxk
−Pyi

xi P1
1 3

Pxi,yixiyjxk
Pyixjyj

xi P3
1 3

Pxi,yixixjyk Pyixkyk

xi P3
1 3

Pxi,yixiyjyk Pyiyjykxjxk

xi P5
1 3

Pyi,xiyixjxk
Pyi,yi P1,1 3

Pyi,xiyiyjxk
−Pyi,yixjyj P1,3 3

Pyi,xiyixjyk −Pyi,yixkyk P1,3 3

Pyi,xiyiyjyk −Pyi,yiyjykxjxk
P1,5 3

Table 1. All the RR, NS and P fluxes that can be turned on in the N = 1 orientifold model for

both IIB and IIA. Here and in the rest of the paper, we choose the convention that to map the IIB

to the mirror IIA theory we first perform a T-duality along x1, then along x2 and finally along x3.

The indices i, j, k are always meant to be in cyclic order. In the last column we give the number

of independent components for each flux. There are in total 8 RR fluxes, 32 NS fluxes and 48 P

fluxes.

Under a single T-duality the α = −4 potentials transform as in eq. (1.4) with n = 4.

Therefore, the duality between the NS′ fluxes and the (D−1)-form potentials with α = −4

originating from the mixed-symmetry potentials above allows us to determine how a single

T-duality transforms these fluxes in any dimension. The outcome of this analysis gives

R′abc Td←→ Q′d,abcd Te←→ f ′ed,abcde Tf
←→ H′fed,abcdef . (2.4)

By contracting with an epsilon symbol of SL(6,R), one can appreciate that in four dimen-

sions these rules coincide with the ones that transform the NS fluxes. The flux Q′a,b1...b4 in

IIB is the S-dual of Pa,b1...b4 , which is connected by T-duality to Pbc
a and by further S and

T-dualities to the NS and RR fluxes. As it is customary, in [17] all the components f b
ab,

Qab
a and Pab

a (with indices not summed) were put to zero. The T-duality rules in eq. (1.3)

then map Pbc
a with a different from b and c to the components of Pa,b1...bp such that the a

index must coincide with one of the b indices [17]. We thus assume that the same occurs

for the flux Q′a,b1...b4 , and then the rules in eq. (2.4) imply that for all the NS′ fluxes in

eq. (2.3) all the a indices have to be parallel to some of the b indices.

We now consider the RR′ fluxes, that in any dimension collect in the embedding tensor

θ′M1...Md−6α
of SO(d, d). This can actually only be defined in four dimensions and below,

and in particular in four dimensions we decompose it in terms of fluxes as11

θ′α →

{

F ′a1,b1...b6 F ′a1a2a3,b1...b6 F ′a1...a5,b1...b6 (IIB)

F ′b1...b6 F ′a1a2,b1...b6 F ′a1...a4,b1...b6 F ′a1...a6,b1...b6 (IIA)
, (2.5)

11In eq. (2.5) we only write down the fluxes that are relevant in four dimensions. In D = 3 one also has

the fluxes F ′a,b1...bp,c1...c7 with p odd in IIB and even in IIA.
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and using the SL(6,R) epsilon symbol one can see that the representations that occur are

the same as those of the RR fluxes. Again, all these fluxes are non-geometric and the

index structure is motivated by the duality with the (D − 1)-form potentials G and by

requiring that they give rise to the correct embedding tensor also in dimension lower than

four, provided that one also includes the contribution of the additional fluxes mentioned

in footnote 11.

The T-duality rules for the RR′ fluxes in four dimensions are

F ′a1...a6
Ta1←−→ F ′a1,a1...a6

Ta2←−→ F ′a1a2,a1...a6 . . .
Ta6←−→ F ′a1...a6,a1...a6 . (2.6)

In three dimensions, one must add the additional T-duality rule

F ′a1...ap,b1...b6 Tc←→ F ′c,a1...apc,b1...b6c (2.7)

for the transformation along a direction that is not present in the flux. As for the case

of the NS′ fluxes, we only consider components such that in eq. (2.5) all the a indices are

parallel to some of the b indices, which is consistent with the T-duality rules in eq. (2.6).

We can now apply the T-duality rules in eqs. (2.4) and (2.6) to determine all the NS′

and RR′ fluxes that can be included in the four-dimensional T 6/[Z2×Z2] orientifold model.

By S-duality, the components of the P1,4 flux of the IIB theory that are listed in the last

eight rows of table 1 are mapped to the same components of the Q′1,4 flux. By applying

three T-dualities along the x directions using eq. (2.4), one gets the IIA fluxes that are listed

on the right-hand side of the first eight rows of table 2. In the IIA theory, the orientifold

projection selects components of R′ and f ′ with an odd number of y’s and components of

Q′ and H′ with an even number of y’s. By adding all the other components that satisfy

this criterion and are therefore compatible with the orientifold, one also includes the last

four IIA fluxes in table 2, which are mapped in IIB to all the allowed components of the

H′ flux.

One can similarly determine all the allowed RR′ fluxes in the orientifold. By S-duality,

the components of the H′ flux in the IIB theory are mapped to the same components of

the F ′3,6 flux. By applying three T-dualities along the x directions using eq. (2.6), one

derives the components of the RR′ fluxes that are allowed in the mirror IIA orientifold.

The result is given in table 3. From the table one can deduce that the orientifold selects

the components of F ′6 and F ′4,6 with an odd number of y’s and the components of F ′2,6

and F ′6,6 with an even number of y’s. To summarise, tables 1, 2 and 3 give all the possible

fluxes that can be included in the model, for both the IIB and the IIA theory. The aim of

the remaining of this section is to write down an expression for the superpotential for both

the IIB and the IIA theory with all these fluxes turned on.

In order to derive the superpotential in the orientifold model, we give the explicit

expression of the holomorphic 3-form and the Kähler form as functions of the moduli

following the conventions of [15]. In IIB the non-vanishing components of the 3-form Ω are

Ωx1x2x3 = 1 Ωyixjxk = i Ui Ωxiyjyk = −UjUk Ωy1y2y3 = −i U1U2U3 , (2.8)

while the non-vanishing components of the complexified Kähler 4-form are

(Jc)xjyjxkyk = i Ti . (2.9)
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IIB IIA #

flux component component flux

Q′1,4 Q′xi,yixixjxk
R′yixjxk

R′3 3

Q′xi,yixixjyk Q′xk,ykyixjxk
Q′1,4 3

Q′xi,yixiyjxk
Q′xj ,yjyixjxk

Q′1,4 3

Q′xi,yixiyjyk −f ′xjxk,yiyjykxjxk
f ′2,5 3

Q′yi,xiyixjxk
Q′yi,xiyixjxk

Q′1,4 3

Q′yi,xiyixjyk f ′xkyi,xiyixjykxk
f ′2,5 3

Q′yi,xiyiyjxk
f ′xjyi,xiyiyjxkxj

f ′2,5 3

Q′yi,xiyiyjyk −H′yixjxk,x1x2x3y1y2y3 H′3,6 3

H′3,6 H′x1x2x3,x1x2x3y1y2y3 R′y1y2y3 R′3 1

H′yixjxk,x1x2x3y1y2y3 −Q′yi,xiyiyjyk Q′1,4 3

H′xiyjyk,x1x2x3y1y2y3 −f ′yjyk,yiyjykxjxk
f ′2,5 3

H′y1y2y3,x1x2x3y1y2y3 H′y1y2y3,x1x2x3y1y2y3 H′3,6 1

Table 2. Table containing all the NS′ fluxes that can be turned on in the N = 1 orientifold model

for both IIB and IIA. In the last column we give the number of independent components for each

flux, whose total number is 32.

IIB IIA #

flux component component flux

F ′3,6 F ′x1x2x3,x1x2x3y1y2y3 −F ′x1x2x3y1y2y3 F ′6 1

F ′yixjxk,x1x2x3y1y2y3 F ′xiyi,x1x2x3y1y2y3 F ′2,6 3

F ′xiyjyk,x1x2x3y1y2y3 −F ′xjyjxkyk,x1x2x3y1y2y3 F ′4,6 3

F ′y1y2y3,x1x2x3y1y2y3 −F ′x1x2x3y1y2y3,x1x2x3y1y2y3 F ′6,6 1

Table 3. Table containing all the RR′ fluxes that can be turned on in the N = 1 orientifold model

for both IIB and IIA. In the last column we give the number of independent components for each

flux, whose total number is 8.

In IIA, the only non-vanishing components of the complexified holomorphic 3-form and the

complexified Kähler 2-form are

(Ωc)x1x2x3 = i S (Ωc)xiyjyk = −i Ui (Jc)xiyi = −i Ti . (2.10)

In all these expressions, as everywhere else in this section, the indices i, j and k are meant

to be in cyclic order. The two theories are mapped into each other by performing a T-

duality transformation along x1 followed by one along x2 and one along x3, corresponding to
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localising the O6-plane in the y directions. The resulting expressions for the superpotential

in the two theories are identified via the exchange of the T and U moduli.

The superpotential in the presence of non-geometric NS fluxes was originally derived

in [1] by applying the NS T-duality rules in eq. (1.2) to the Gukov-Vafa-Witten superpo-

tential in IIB [34] and to the one derived in [35, 36] in IIA, where all the possible geometric

fluxes were included. The expression for the IIB superpotential with all RR and NS fluxes

included is

WIIB/O3,RR,NS =

∫

[F3 − iSH3 +Q · Jc] ∧ Ω , (2.11)

where

(Q · Jc)a1a2a3 =
3

2
· Qb1b2

[a1
(Jc)a2a3]b1b2 . (2.12)

In IIA, the terms containing the NS fluxes were written in [15] in the form Ωc∧flux·J
n
c , with

n = 0, . . . , 3, with the upstairs indices of the fluxes contracting indices of Jn
c . Using Fierz

identities, one can show that these terms can also be rewritten in the form eJc ∧HNS ·Ωc,

with the upstairs indices of the fluxes contracting indices of Ωc instead of indices of Jc. We

therefore write the IIA superpotential with all RR and NS fluxes turned on as

WIIA/O6,RR,NS =

∫

eJc ∧ [FRR −HNS · Ωc]

=

∫ [

F6 −H3 ∧ Ωc + Jc ∧ (F4 − f · Ωc) +
1

2
Jc ∧ Jc ∧ (F2 −Q · Ωc)

+
1

6
Jc ∧ Jc ∧ Jc (F0 −R · Ωc)

]

, (2.13)

where the contractions are defined as

(f · Ωc)a1...a4 = 6 · f b
[a1a2

(Ωc)a3a4]b

(Q · Ωc)a1a2 = Qb1b2
[a1

(Ωc)a2]b1b2 (2.14)

R · Ωc =
1

6
· Rb1b2b3(Ωc)b1b2b3 .

Identifying the fluxes in the two theories as in table 1, eqs. (2.11) and (2.13) are mapped

into each other by swapping the moduli T and U . In particular, using eqs. (2.8), (2.9)

and (2.10) one can see that the superpotential is of the form P1(U) +SP2(U) + TP3(U) in

IIB and P1(T ) + SP2(T ) + UP3(T ) in IIA, where the P ’s are all cubic polynomials.

The contribution of the P2
1 flux in IIB was considered in [15] using S-duality. This

induces a term STP4(U) in the superpotential, and the mirror SUP4(T ) expression in IIA

arises from a term that can be schematically written as (Jc)
n · P · Ω2

c , with n = 0, . . . , 3.

In [17] the T-duality rules in eq. (1.3) were used to derive explicitly such expression, also

giving rise to a term U2P5(T ), which is mapped back to IIB to a term T 2P5(U) originating

from the flux P1,4. As a result, the full expression for the part of the IIB superpotential

containing the P fluxes is

WIIB/O3,P =

∫

[−iSP2
1 · Jc + P1,4 · J 2

c ] ∧ Ω , (2.15)
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where the contractions are

(P2
1 · Jc)a1a2a3 =

3

2
· Pb1b2

[a1
(Jc)a2a3]b1b2

(P1,4 · J 2
c )a1a2a3 =

1

4
· Pc,b1...b4(Jc)[a1a2|cb1|(Jc)a3]b2b3b4 . (2.16)

Precisely as done above for the terms containing the NS fluxes, the IIA mirror of eq. (2.15)

given in [17] can be rewritten using Fierz identities in the form eJc ∧ P · Ω2
c . Moreover,

one can show that, modulo Fierz rearrangements, the resulting expression is unique. We

therefore write down the P-flux part of the IIA superpotential as

WIIA/O6,P =

∫

eJc ∧ P · Ω2
c =

∫ [

P1
1 · Ω2

c + Jc ∧ (P1,1 + P3
1 ) · Ω

2
c

+
1

2
Jc ∧ Jc ∧ (P5

1 + P1,3) · Ω2
c +

1

6
Jc ∧ Jc ∧ Jc P1,5 · Ω2

c

]

,

(2.17)

where the contractions are defined as

(P1
1 · Ω2

c)a1...a6 = 60 ·
1

2
· Pb

[a1
(Ωc)a2a3|b|(Ωc)a4a5a6]

(P1,1 · Ω2
c)a1a2a3a4 = −6 ·

1

2
· Pc,b(Ωc)c[a1a2(Ωc)a3a4]b

(P3
1 · Ω2

c)a1a2a3a4 = −6 ·
1

2
· Pb1b2b3

[a1
(Ωc)a2a3|b1|(Ωc)a4]b2b3

(P1,3 · Ω2
c)a1a2 =

1

2
· Pc,b1b2b3(Ωc)b1b2[a1(Ωc)a2]cb3

(P5
1 · Ω2

c)a1a2 =
1

6
·
1

2
· Pb1...b5

[a1
(Ωc)a2]b1b2(Ωc)b3b4b5

P1,5 · Ω2
c = −

1

12
·
1

2
· Pc,b1...b5(Ωc)b1b2b3(Ωc)b4b5c . (2.18)

The reader can check that using eqs. (2.8), (2.9) and (2.10) and the relations among the P

fluxes given in table 1 the IIA expression is the mirror of the IIB one.

We want to generalise the analysis to include all the allowed fluxes. We first consider

the NS′ fluxes. In IIB, Q′1,4 is the S-dual of P1,4, and one can immediately write down its

contribution to the superpotential. One then maps this to IIA using the relations among

the fluxes given in table 2. The IIA expression for the superpotential also contains terms

that are mapped back in IIB to H′3,6 terms. The resulting IIB superpotential is

WIIB/O3,NS′ =

∫

[−iSQ′1,4 · J 2
c +H′3,6 · J 3

c ] ∧ Ω , (2.19)

where the contractions are defined as

(Q′1,4 · J 2
c )a1a2a3 =

1

4
· Q′c,b1...b4(Jc)[a1a2|cb1|(Jc)a3]b2b3b4

(H′3,6 · J 3
c )a1a2a3 =

1

32
·
1

6
· H′c1c2c3,b1...b6(Jc)[a1a2|c1c2|(Jc)a3]c3b1b2(Jc)b3b4b5b6 . (2.20)
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In IIA, we again find that modulo Fierz rearrangements there is a unique expression that

one can write in the form eJc ∧HNS′ · Ω
3
c , which is

WIIA/O6,NS′ =

∫

[−eJc ∧HNS′ · Ω
3
c ] =

∫ [

−R′3 · Ω3
c − Jc ∧ Q′1,4 · Ω3

c

−
1

2
Jc ∧ Jc ∧ f ′2,5 · Ω3

c −
1

6
Jc ∧ Jc ∧ Jc H′3,6 · Ω3

c

]

,

(2.21)

where the contractions are defined as

(R′3 · Ω3
c)a1...a6 = 30 ·

1

6
· R′b1b2b3(Ωc)[a1a2a3(Ωc)a4a5|b1|(Ωc)a6]b2b3

(Q′1,4 · Ω3
c)a1...a4 =

1

2
· Q′c,b1...b4(Ωc)[a1a2|c(Ωc)a3a4]b1(Ωc)b2b3b4

(f ′2,5 · Ω3
c)a1a2 = −

1

12
·
1

2
· f ′c1c2,b1...b5(Ωc)[a1|c1c2|(Ωc)a2]b1b2(Ωc)b3b4b5

H′3,6 · Ω3
c = −

1

24
·
1

6
H′c1c2c3,b1...b6(Ωc)c1c2b1(Ωc)c3b2b3(Ωc)b4b5b6 . (2.22)

Again, it can be checked that using eqs. (2.8), (2.9) and (2.10) and the relations among the

NS′ fluxes given in table 2 the IIA and IIB expressions are related by mirror symmetry,

with the IIB polynomial which has the form ST 2P6(U) + T 3P7(U).

We finally consider the RR′ fluxes. In IIB, the only contribution comes from F ′3,6,

which is the S-dual of H′3,6. This results in the contribution

WIIB/O3,RR′ =

∫

[−iSF ′3,6 · J 3
c ] ∧ Ω (2.23)

to the superpotential, where the contraction is defined as

(F ′3,6 · J 3
c )a1a2a3 =

1

32
·
1

6
· F ′c1c2c3,b1...b6(Jc)[a1a2|c1c2|(Jc)a3]c3b1b2(Jc)b3b4b5b6 . (2.24)

Using table 3, this is mapped in IIA to the expression

WIIA/O6,RR′ =

∫

eJc ∧ FRR′ · Ω4
c =

∫ [

F ′6 · Ω4
c + Jc ∧ F ′2,6 · Ω4

c

+
1

2
Jc ∧ Jc ∧ F ′4,6 · Ω4

c +
1

6
Jc ∧ Jc ∧ JcF

′6,6 · Ω4
c

]

,

(2.25)

where the contractions are defined as

(F ′6 · Ω4
c)a1...a6 = 5 ·

1

24
· F ′b1...b6(Ωc)[a1a2a3(Ωc)a4a5|b1|(Ωc)a6]b2b3(Ωc)b4b5b6

(F ′2,6 · Ω4
c)a1...a4 =

1

2
·
1

8
· F ′c1c2,b1...b6(Ωc)[a1a2|c1|(Ωc)a3a4]b1(Ωc)c2b2b3(Ωc)b4b5b6

(F ′4,6 · Ω4
c)a1a2 =

1

12
·
1

16
· F ′c1...c4,b1...b6(Ωc)[a1|c1c2|(Ωc)a2]c3b1(Ωc)c4b2b3(Ωc)b4b5b6

F ′6,6 · Ω4
c =

1

144
·
1

24
· F ′c1...c6,b1...b6(Ωc)c1c2c3(Ωc)c4c5b1(Ωc)c6b2b3(Ωc)b4b5b6 . (2.26)
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Again, mirror symmetry relates the IIB and IIA expressions, and in particular in IIB one

gets a contribution to the superpotential of the form ST 3P8(U).

It is instructive to summarise our results writing down the superpotential with all

fluxes included for both theories. In IIB one gets

WIIB/O3 =

∫

[F3 − iSH3 + (Q− iSP2
1 ) · Jc + (P1,4 − iSQ′1,4) · J 2

c

+ (H′3,6 − iSF ′3,6) · J 3
c ] ∧ Ω , (2.27)

where the contractions are given in eqs. (2.12), (2.16), (2.20) and (2.24). This expression

coincides with the one derived in [18] on the basis of generalised geometry considerations.

The mirror IIA superpotential is

WIIA/O6 =

∫

eJc ∧ [FRR −HNS · Ωc + P · Ω2
c −HNS′ · Ω

3
c + FRR′ · Ω4

c ] , (2.28)

where the contractions are defined in eqs. (2.14), (2.18), (2.22) and (2.26). We interpret the

fact that the IIA superpotential has a unique expression when written as in eq. (2.28) as a

manifestation of mirror symmetry. For geometries with SU(3) structure, Ω and eJc are two

Clifford(6,6) spinors which are both pure (i.e. they are annihilated by half of the gamma

matrices) and mirror symmetry corresponds to the exchange of these two spinors [37–41].

Generalising this to compactifications with non-geometric fluxes, one thus expects that the

IIB superpotential
∫
(flux·J n

c )∧Ω be mapped by mirror symmetry to the IIA superpotential
∫
eJc ∧ (flux · Ωn

c ), precisely of the form we find.

The full expression of the superpotential as a function of the moduli in IIB is

WIIB/O3 = −Fy1y2y3+iUiFxiyjyk+UjUkFyixjxk−iU1U2U3Fx1x2x3

−iS(−Hy1y2y3+iUiHxiyjyk+UjUkHyixjxk−iU1U2U3Hx1x2x3)

+iTi(Q
xjxk

yi −iUiQ
xjxk

xi +iUkQ
xjyk

yi
+iUjQ

yjxk

yi
+UiUjQ

yjxk

xi

+UiUkQ
xjyk

xi −UjUkQ
yjyk

yi
+iU1U2U3Q

yjyk

xi )

+STi(P
xjxk

yi −iUiP
xjxk

xi +iUjP
yjxk

yi
+iUkP

xjyk

yi
+UiUjP

yjxk

xi

+UiUkP
xjyk

xi −UjUkP
yjyk

yi
+iU1U2U3P

yjyk

xi ) (2.29)

+TjTk(−Pxi,yixixjxk

+iUiP
yi,xiyixjxk

−iUjP
xi,yixiyjxk

−iUkP
xi,yixixjyk

−UiUjP
yi,xiyiyjxk

−UiUkP
yi,xiyixjyk+UjUkP

xi,yixiyjyk−iU1U2U3P
yi,xiyiyjyk)

−iSTjTk(−Q′xi,yixixjxk

+iUiQ
′yi,xiyixjxk

−iUjQ
′xi,yixiyjxk

−iUkQ
′xi,yixixjyk

−UiUjQ
′yi,xiyiyjxk

−UiUkQ
′yi,xiyixjyk+UjUkQ

′xi,yixiyjyk−iU1U2U3Q
′yi,xiyiyjyk)

+T1T2T3(−iH′x1x2x3

+UiH
′yixjxk

+iUjUkH
′xiyjyk−U1U2U3H

′y1y2y3)

−iST1T2T3(−iF ′x1x2x3

+UiF
′yixjxk

+iUjUkF
′xiyjyk−U1U2U3F

′y1y2y3) ,
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where the sum over the i index is understood wherever this index occurs, while j and k are

related to i by cyclicity. The mirror IIA expression is obtained by exchanging the fluxes in

this expression with the IIA ones given in tables 1, 2 and 3 and by swapping Ui with Ti. In

the formula for simplicity of notation we have also omitted the six antisymmetric indices

of H′3,6 and F ′3,6, which are understood to be x1x2x3y1y2y3. In the next section we will

focus on the tadpole cancellation conditions generated by the NS′ and RR′ fluxes and we

will determine the set of exotic branes which have to be added in order to cancel them.

3 Exotic branes, tadpoles and Bianchi identities

In the IIB/O3 T 6/[Z2×Z2] orientifold, D3 and D7-branes can be included in order to cancel

the tadpoles induced by the RR flux F3 and the NS fluxesH3 andQ [15]. In particular, only

stacks of D7-branes wrapping two of the internal two-dimensional tori with coordinates x

and y are allowed. After performing three T-dualities along the x directions, one similarly

finds that in the dual IIA description with O6-planes, the only allowed RR sources are

D6-branes spanning three x directions or one x and two y directions, each on a different

torus. Besides the D-branes, more localised sources surviving the orientifold projections

and compatible with supersymmetry can be included. In particular, in IIB one can include

the S-dual of the D7-brane [15], which is a brane with α = −3. In [17] we have recently

determined all the α = −3 branes which cancel the tadpoles induced by the P fluxes in

both the IIB and IIA orientifolds using the universal T-duality rules in eq. (1.4). Except

for the S-dual of the D7-brane, all these branes turn out to be exotic as they are defined

only in presence of isometries, and we associate them to specific components of the mixed-

symmetry potentials E as reviewed in the introduction [26]. For the convenience of the

reader, we have collected all the results on the α = −1 branes (i.e. the D-branes) and

α = −3 branes in table 4. In this section we will first determine how the NS′ fluxes modify

the tadpole conditions for the α = −3 branes listed in table 4, and we will then complete

the analysis of [17] determining all the exotic branes which can be included in both the

type-II orientifolds in order to cancel the tadpoles induced by the NS′ and/or the RR′

fluxes.

As table 4 shows, in IIB one has to include together with E8 also the mixed-symmetry

potentials E8,4, E9,2,1 and E10,4,2. The field E8,4 electrically couples to the 343-brane
12 in

four dimensions. Using the T-duality rules of eqs. (1.2), (1.3) and (1.4), the generalised

Chern-Simons term
∫
E8∧P2

1 ·H3 responsible for the tadpole of the S-dual of the D7-brane

is mapped to a term
∫
E8,4 ∧ (P2

1 · Q + P1,4 · H3). Under S-duality, the E8,4 potential is

a singlet, while the term P1,4H3 is mapped to −Q′1,4F3. As a consequence, we find that

when all the allowed fluxes are taken into account the Chern-Simons coupling is

∫

E8,4 ∧ (P2
1 · Q+ P1,4 · H3 −Q′1,4 · F3)

4
2 , (3.1)

12It is conventional to denote with pmn a p-brane with α = −n and m orthogonal isometries. The same

notation was also used in [17].
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IIB IIA #

potential component component potential

C4 C4 C4x1x2x3 C7 1

C8 C4xiyixjyj C4 yiyjxk C7 3

E8 E4xiyixjyj E4xiyixjyjxk,xixjxk,xk E9,3,1 3

E8,4 E4xiyixjyj ,xiyixjyj E4xiyixjyjxk,yiyjxk,xk E9,3,1 3

E4xiyixjyk,xiyixjyk E4xiyixjykxk,yiykxk,xk 6

E4xiyixjxk,xiyixjxk E4xiyixjxk,yi E8,1 3

E4xiyiyjyk,xiyiyjyk E10,yixjyjxkyk,xjxk E10,5,2 3

E9,2,1 E4xiyixjyjyk,xiyk,xi E4 yixjyjxkyk,xjxkyk,xk E9,3,1 6

E4xiyixjyjxk,yixk,yi E4xiyixjyjxk,xiyixj ,yi 6

E4xiyixjyjxk,xixk,xi E4 yixjyjxk,xj E8,1 6

E4xiyixjyjyk,yiyk,yi E10,xiyixjxkyk,yixk E10,5,2 6

E10,4,2 E10,xiyixjyj ,xiyi E4 yixjyjxkyk,yiyjxk,yi E9,3,1 6

E10,xiyjxkyk,xiyj E4 yixjyjxkyk,xjyjyk,yj 6

E10,xiyixjxk,xjxk E4xiyiyjyk,yi E8,1 3

E10,xiyiyjyk,yjyk E10,yixjyjxkyk,yjyk E10,5,2 3

Table 4. The α = −1 and α = −3 branes that can be included in order to cancel the tadpoles

generated by the fluxes. To avoid cumbersome notations, in all terms we have not specified the

sets of ten indices. Moreover, the indices i, j, k are always meant to be all different. In the last

column we give the number of independent components for each potential, which corresponds to

the number of different branes. There are in total 4 α = −1 branes and 60 α = −3 branes.

which gives a tadpole condition for the 343-brane. In this expression, the products are

defined as

(P2
1 · Q)abcdef = 12P

[ab
[e Q

cd]
f ]

(P1,4 · H3)
abcd
ef = Pp,abcdHpef , (3.2)

and the contraction Q′1,4 · H3 follows by S-duality.

Besides E8,4, in the IIB orientifold also the field E9,2,1 is a singlet under S-duality. In

four dimensions, the electric source for E9,2,1 is the 61,13 -brane,13 and the corresponding

Chern-Simons term takes the form
∫

E9,2,1 ∧ (P2
1 · Q+ P1,4 · H3 −Q′1,4 · F3)

2,1
1 , (3.3)

13The 1, 1 denotes the fact that two isometries orthogonal to the worldvolume of the brane are different;

specifically, one isometry corresponds to an index repeated twice while the other one corresponds to an

index repeated three times. We use similar conventions for all the branes considered in rest of this section.
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where the contractions between the fluxes are defined as

(P2
1 · Q)ab,ac = −Pab

p Qpa
c +Qab

p Ppa
c

(P1,4 · H3)
ab,a
c =

1

2
Pa,abpqHcpq , (3.4)

and the contraction Q′1,4 · F3 follows by S-duality. In equation (4.25) of [17] the Chern-

Simons term for any components of E9,2,1, not necessarily associated to a single brane,

and with only the non-geometric fluxes P2
1 and Q turned on, has been derived. One can

verify that turning off the fluxes P1,4 and Q′1,4 in eq. (3.3) reproduces the single brane

components of that equation.

The last α = −3 brane to consider in IIB is the 52,23 , which is the electric source for the

potential is E10,4,2, and whose tadpole condition is generated by the Chern-Simons term

∫

E10,4,2 × (P1,4 · Q+H′3,6 · F3)
4,2, (3.5)

with the contractions between the fluxes specified by

(P1,4 · Q)abcd,cd = Pp,abcdQcd
p + Pc,cdapQbd

p − Pc,cdbpQad
p + Pd,dcapQbc

p − Pd,dcbpQac
p

(H′3,6 · F3)
abcd,cd = −

1

2
H′acd,abcdpqFapq −

1

2
H′bcd,abcdpqFbpq . (3.6)

The potential E10,4,2 forms a triplet of the SL(2,R) symmetry of the IIB theory, and in

particular under S-duality it is mapped to G10,4,2 which in turn sources the 52,25 -brane with

α = −5. Transforming under S-duality eq. (3.5), one obtains that the tadpole condition

for this brane is generated by the Chern-Simons term
∫

G10,4,2 × (Q′1,4 · P2
1 + F ′3,6 · H3)

4,2, (3.7)

where the contractions are defined in a way analogous to eq. (3.6). We now want to

determine all the α = −5 branes that can be simultaneously included in the IIB theory

together with the 52,25 -brane.

In the orientifold model, the components of the E10,4,2 potential that give rise to

branes in IIB are given on the left-hand side of the last four rows in table 4. By S-

duality, these are mapped to the same components of the G10,4,2 potential. Using eq. (1.4)

with α = −5, one discovers that by performing three T-dualities along the x directions

these components are mapped to components of G10,5,3,1, G10,4,1 and G10,6,5,2 in IIA. In

particular, the IIA orientifold condition implies that the number of y indices must be even.

The additional components of these potentials that satisfy these conditions are mapped by

mirror symmetry to the components of the IIB potentials G10,5,4,1, G10,6,2,2 and G10,6,6,2,

corresponding to 41,3,15 , 34,0,25 and 30,4,25 branes. The full list of α = −5 branes allowed in

the orientifold, for both the IIB and IIA case, is given in table 5.

We now proceed with discussing the tadpole conditions for the remaining α = −5

branes in the IIB theory, which we obtain precisely with the method discussed above. We

first map the relevant brane components in eq. (3.7) to the mirror IIA theory, we then
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IIB IIA #

potential component component potential

G10,4,2 G10,xiyixjyj ,xiyi G10,xiyixjyjxk,xjyixk,xk G10,5,3,1 6

G10,xiyjxkyk,xiyj G10,xiyjxkykxj ,xjyjxk,xj 6

G10,xiyixjxk,xjxk G10,xiyixkxj ,xi G10,4,1 3

G10,xiyiyjyk,yjyk G10,6,xixjxkyjyk,xjxk G10,6,5,2 3

G10,5,4,1 G10,xiyixjyjxk,xiyixjxk,xj G10,xiyixkyj ,yi G10,4,1 6

G10,xiyixjyjxk,xjyjyixk,yi G10,xiyixjyjxk,xiyiyj ,yi G10,5,3,1 6

G10,xkykxjyjyi,xjyjxkyi,xk G10,xiyixjyjyk,xiyiyj ,xi 6

G10,xjyjxkykyi,xkykyiyj ,yj G10,6,xiyixjyjyk,yjxi G10,6,5,2 6

G10,6,2,2 G10,6,xiyi,xiyi G10,xjyjxkykyi,yixjxk,yi G10,5,3,1 3

G10,6,xiyj ,xiyj G10,xjyjxkykyi,yjxjxk,yj 6

G10,6,yiyj ,yiyj G10,6,xiyixjyjxk,yjyi G10,6,5,2 3

G10,6,xixj ,xixj G10,yjyixkyk,xk G10,4,1 3

G10,6,6,2 G10,6,6,xiyi G10,xjyjxkykyi,yjyiyk,yi G10,5,3,1 3

Table 5. The α = −5 branes that can be included in order to cancel the tadpoles generated always

by the NS′ and RR′ fluxes. To avoid cumbersome notations, in all terms we have not specified

the sets of ten and six internal indices. Moreover, the indices i, j, k are always understood to be

different. In the last column we give the number of independent components for each potential,

which corresponds to the number of different branes, which are 60 in total.

extend this result to the remaining branes in the IIA theory that are allowed and we finally

map this back to IIB. In particular, for G10,5,4,1 we find the term

∫

G10,5,4,1 × (P2
1 · H′3,6 −Q · F ′3,6 + P1,4 · Q′1,4)5,4,1 , (3.8)

where we have defined

(P2
1 · H′3,6)abcde,abcd,a = −Pad

p H′abc,abcdep + Pac
p H′abd,abcdep − Pab

p H′acd,abcdep

(P1,4 · Q′1,4)abcde,abcd,a = Pa,acdeQ′b,bcda − Pb,bcdaQ′a,acde + Pa,abdeQ′c,cdab (3.9)

− Pc,cdabQ′a,abde + Pa,abceQ′d,dabc − Pd,dabcQ′a,abce

and (Q · F ′3,6)5,4,1 is found by S-duality. Moreover, from the form of the Chern-Simons

coupling in eq. (3.8), one can see that G10,5,4,1 is a singlet under S-duality. The field

G10,6,2,2 is also a singlet and, by the same analysis, its generalised Chern-Simons term is

found to be ∫

G10,6,2,2 × (P1,4 · Q′1,4 + P2
1 · H′3,6 −Q · F ′3,6)6,2,2 , (3.10)
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IIB IIA #

potential component component potential

I10,6,6,2 I10,6,6,xiyi I10,6,6,xjyixk I10,6,6,3 3

I10,6,6,6 I10,6,6,6 I10,6,6,y1y2y3 I10,6,6,3 1

Table 6. The α = −7 branes that can be included in order to cancel the tadpoles generated by

the NS′ and RR′ fluxes. In order to avoid cumbersome notations, in all terms we have not specified

the sets of ten and six internal indices. In the last column we give the number of independent

components for each potential, which corresponds to the number of different branes, which are 4 in

total.

with

(P1,4·Q′1,4)abcdef,ab,ab = −Pa,abcdQ′b,befa−Pa,abefQ′b,bcda+Pa,abceQ′b,bdfa−Pa,abcfQ′b,bdea

−Pa,abdeQ′b,bcfa+Pa,abdfQ′b,bcea+Pb,bcdaQ′a,abef+Pb,befaQ′a,abcd

−Pb,bceaQ′a,abdf+Pb,bcfaQ′a,abde+Pb,bdeaQ′a,abcf−Pb,bdfaQ′a,abce

(P2
1 ·H

′3,6)abcdef,ab,ab = −Pab
p H′abp,abcdef . (3.11)

The remaining IIB α = −5 field in table 5 is G10,6,6,2 and the corresponding Chern-Simons

coupling is ∫

G10,6,6,2 × (P1,4 · H′3,6)6,6,2 , (3.12)

where we have defined

(P1,4 · H′3,6)abcdef,abcdef,ab =

Pa,abefH′bcd,abcdef − Pa,abdfH′bce,abcdef + Pa,abdeH′bcf,abcdef + Pa,abcfH′bde,abcdef

− Pa,abceH′bdf,abcdef + Pa,abcdH′bef,abcdef + Pb,befaH′acd,abcdef − Pb,bdfaH′ace,abcdef

+ Pb,bdeaH′acf,abcdef + Pb,bcfaH′ade,abcdef − Pb,bceaH′adf,abcdef + Pb,bcdaH′aef,abcdef.

(3.13)

The fieldG10,6,6,2 transforms in a triplet of the IIB SL(2,R) symmetry, and in particular

by S-duality it is mapped to I10,6,6,2, which is associated to the 30,4,27 -brane, which has

α = −7. Thus, one can conjecture that also the α = −7 branes electrically coupled to

I10,6,6,2 can be included in IIB in order to cancel other tadpoles induced by the RR′ and

NS′ fluxes. The exotic branes which couple electrically to I10,6,6,2 can wrap only one of

the two-dimensional tori of the compactification and under mirror-symmetry, using the

rules (1.4), they are found to be in correspondence with three of the four 30,3,37 -branes

associated to the field I10,6,6,3 in IIA, in particular those components with two x and one

y as the extra indices. Once again, one can argue that also the remaining brane associated

with the component of I10,6,6,3 with three extra y can be included in IIA and this in turn

corresponds to the 30,0,67 -brane associated to I10,6,6,6 in IIB. We have collected all the results

for the α = −7 branes in table 6.
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The Chern-Simons of the I10,6,6,2 potential in IIB is obtained from S-duality on the

one of G10,6,6,2 in eq. (3.12), resulting in

∫

I10,6,6,2 × (Q′1,4 · F ′3,6)6,6,2 , (3.14)

where the contractions are analogous to eq. (3.13). The Chern-Simons term associated to

the field I10,6,6,6 is reminiscent of that induced by the D3-brane charge and proportional

to H3 ∧ F3. Namely, we find

∫

I10,6,6,6 × (H′3,6 · F ′3,6)6,6,6 , (3.15)

and the contraction between the fluxes is specified by

(H′3,6 · F ′3,6)abcdef,abcdef,abcdef = −20H′[abc|,abcdefF ′|def ],abcdef . (3.16)

Given that the potential I10,6,6,6 is invariant under S-duality, this concludes the analysis of

tadpole conditions.

In [17] we have also determined the most general Bianchi identities corresponding to

the absence of α = −2 solitonic branes (see eq. (4.2) of that paper). In the IIB orientifold

only two classes of those constraints survive the orientifold projections meaning that, for the

components corresponding to single branes, neither KK-monopoles (which are 512-branes)

nor non-geometric 532-branes can be included in the four-dimensional theory because they

would break the N = 1 supersymmetry. Moreover, in IIA one finds that the mirror of

these constraints are sourced again by KK-monopoles and 532-branes. By T-duality, we are

now able to determine similar constraints related to the absence of α = −4 and α = −6

branes in both the orientifolds. For the convenience of the reader, we have schematically

anticipated the final results in eq. (1.6). First, let us point out that the 532-brane sources

the potential D9,3 in the four-dimensional theory, which actually belongs to a triplet of the

IIB SL(2,R) symmetry and in particular it is mapped to F9,3 by S-duality. Actually, for

the field F9,3 only two kinds of constraints are allowed. These are conditions on the absence

of branes associated to the components with the three isometric indices containing both

the coordinates x and y of one of the two-dimensional sub-tori. By using the T-duality

rules in eq. (1.4) for the α = −4 fields, we find that the conditions given by the field F9,3

in IIB, corresponds to requiring the absence of specific components of the fields F9,4,1 and

F10,5,2,1 in IIA. The requirement that in IIA all the components of these fields with an odd

number of y indices have to be included implies that other six conditions on the fluxes must

be imposed. In IIB, the mirror of these constraints corresponds to forbidding the exotic

branes 33,24 , 53,0,14 , 33,2,14 , sourcing respectively the fields F9,5,2, F10,4,1,1 and F10,6,3,1. In all,

the Bianchi identities for the IIB α = −4 branes are found to be

3P [ab
p P

c]p
f +Q′a,abcpHfap+Q′b,abcpHfbp+Q′c,abcpHfcp = 0

−Pd,dbcpPad
p +Pd,dacpPbd

p −Pd,dabpPcd
p +Q′d,dbcpQad

p −Q′d,dacpQbd
p +Q′d,dabpQcd

p = 0
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−Pa,abdePce
f +Pe,eabdPac

f +Pa,acdePbe
f −Pe,eacdPab

f −Pa,abcePed
f −Pe,eabcPad

f +Q′a,abdeQce
f

−Q′e,eabdQac
f −Q′a,acdeQbe

f +Q′e,eacdQab
f −Q′a,abceQde

f = 0

Pf,fcdePa,abef−Pf,facdPe,efab+Pf,fabdPe,efac−Pf,fbdePa,acef+Pf,fbcePa,adef

−Pf,fabcPe,efad−H′acf,abcdefQef
c −H′adf,abcdefQef

d −H′abf,abcdefQef
b = 0.

(3.17)

As far as S-duality in concerned, the fields F9,5,2 and F10,4,1,1 turn out to be singlets,

whereas F10,6,3,1 transforms in a triplet and its S-dual is the potential H10,6,3,1, which has

α = −6. Exactly as in the case of the α = −2 branes, one finds that the corresponding IIB

constraint is mapped by mirror symmetry to constraints associated to specific components

of the potentials H10,6,3,1 and H10,6,5,3. The additional IIA components of these potentials

giving non-trivial constraints are then mapped in IIB to constraints which correspond to

forbidding the 31,2,36 -branes which source H10,6,5,3. In all, for the IIB α = −6 branes, we

find the Bianchi identities

Q′f,fcdeQ′a,abef −Q′f,facdQ′e,efab +Q′f,fabdQ′e,efac −Q′f,fbdeQ′a,acef +Q′f,fbceQ′a,adef

−Q′f,fabcQ′e,efad −F ′acf,abcdefPef
c −F ′adf,abcdefPef

d −F ′abf,abcdefPef
b = 0

(3.18)

and

−F ′abc,abcdefPf,fbce + F ′bce,abcdefPf,fabc + F ′acf,abcdefPb,bcef −F ′cef,abcdefPb,bcfa

+F ′abf,abcdefPc,cefb −F ′efb,abcdefPc,cfab +H′abc,abcdefQ′f,fbce

−H′bce,abcdefQ′f,fabc +H′cef,abcdefQ′b,bcfa −H′acf,abcdefQ′b,bcef

−H′abf,abcdefQ′c,cefb +H′efb,abcdefQ′c,cfab = 0 .

(3.19)

In table 7 we have collected all the branes with α even, forbidden by the N = 1 su-

persymmetry and giving rise to non-trivial Bianchi identities. As far as the Bianchi iden-

tities are concerned, what actually happens in IIA can be easily found from (3.17), (3.18)

and (3.19) by mirror symmetry. The same is true for all the IIB tadpole conditions derived

in this section. In both the type II orientifolds, 27 branes can be included in order to cancel

the tadpoles induced by the fluxes. It’s interesting to note that the total number of branes

compatible with the minimal amount of supersymmetry turns out to be equal to that of the

fluxes. In [15] all the fluxes have been embedded in the representation (2,2,2,2,2,2,2) of

SL(2,R)7. In the next section we will show how also the 27 branes of this section organise

in irreducible representations of SL(2,R)7 which are singlets and triplets of each SL(2,R).

An analogous result will be found for the forbidden branes with α even giving rise to the

Bianchi identities (3.17), (3.18) and (3.19).

4 Exotic branes and SL(2,ZZZ)7

The orientifold model considered in this paper has a conjectured SL(2,Z)7 non-perturbative

duality symmetry [15, 30], where each SL(2,Z) has a modular action

M →
aM − ib

icM + d
(4.1)
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IIB IIA #

potential component component potential

D7,1 D4xjyjxk,xk D4xjyjxi,xi D7,1 6

D4xjyjyk,yk D4xjyjykxixk,ykxixk D9,3 6

D9,3 D4xiyixkykxj ,xiyixj D4 yixkyk,yi D7,1 6

D4xiyixkykyj ,xiyiyj D4 yixkykyjxj ,yiyjxj D9,3 6

F9,3 F4xiyixkykxj ,xiyixj F4xiyixkykxj ,xiyixjxk,xk F9,4,1 6

F4xiyixkykyj ,xiyiyj F10,xiyiyjxjxk,xjxk,xj F10,5,2,1 6

F9,5,2 F4xiyixjyjxk,xiyixjyjxk,xjyj F4xiyixjyjxk,xiyiyjxk,yj F9,4,1 6

F4xiyixjyjyk,xiyixjyjyk,xjyj F10,xiyiyjykxk,yjxk,xk F10,5,2,1 6

F10,4,1,1 F10,xkykxiyi,xk,xk F4xiyixjyjyk,ykxiyixj ,xj F9,4,1 6

F10,xkykxiyi,yk,yk F10,xkykxiyixj ,ykxj ,yk F10,5,2,1 6

F10,6,3,1 F10,6,xkykxj ,xj F4xiyiyjxkyk,xiyiyjyk,yk F9,4,1 6

F10,6,xkykyj ,yj F10,xiyixjyjyk,ykyj ,yj F10,5,2,1 6

H10,6,3,1 H10,6,xkykxj ,xj H10,6,xkykxi,xi H10,6,3,1 6

H10,6,xkykyj ,yj H10,6,xkykyjxixj ,yjxixj H10,6,5,3 6

H10,6,5,3 H10,6,xiyixjyjxk,xiyixk H10,6,yixjyj ,yi H10,6,3,1 6

H10,6,xiyixjyjyk,xiyiyk H10,6,yixjyjykxk,yiykxk H10,6,5,3 6

Table 7. The branes with α even that are forbidden by the N = 1 supersymmetry and give rise

to non-trivial Bianchi identities. The total number of such branes is 96.

on each modulus M . We denote with SL(2,R)|S , SL(2,R)|Ti
and SL(2,R)|Ui

the group that

acts on the modulus S, Ti and Ui respectively. The 128 fluxes that can be turned on in

the model belong to the (2,2,2,2,2,2,2) representation of SL(2,R)7 [15], where the first

doublet is with respect to SL(2,R)|S , the second to fourth with respect to SL(2,R)|Ti
and

the fifth to seventh with respect to SL(2,R)|Ui
. The aim of this section is to determine the

representations of all the space-filling branes that can be included to cancel the tadpoles.

We will find that the branes belong to 16 irreducible representations, each made of three

triplets and four singlets. More precisely, these 16 representations are all the possible

representations made of three triplets and four singlets with the condition that in the

IIB picture there is an even number of triplets with respect to the groups SL(2,R)|Ui
.

Additionally, we will find that the branes with even α, that by being projected out give

rise to Bianchi identities, collect in 12 irreducible representations of SL(2,R)7, which again

are made of three triplets and four singlets.

The analysis of [15] consisted in identifying the SL(2,R)7 weights of each flux. The

outcome can be found for instance in table 6 of that paper, where + and − denote the two

weights of the 2 of each SL(2,R). We are interested in particular in the transformation
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with b = −1 and c = 1 in eq. (4.1), whose action on the modulus M is

M → 1/M . (4.2)

This transforms a particular component of the (2,2,2,2,2,2,2) representation according

to [15]

(n1, . . . , nM , . . . , n7) → sign(nM )(n1, . . . ,−nM , . . . , n7) , (4.3)

where any label n is either + or −. We denote with S, Ti and Ui the generators that

invert respectively the moduli S, Ti and Ui as in eq. (4.2).14 In the IIB/O3 orientifold, the

flux Fy1y2y3 has weight (+,+,+,+,+,+,+). This is mapped under S to the flux Hy1y2y3

of weight (−,+,+,+,+,+,+). The action of the generator Ui on the flux components

corresponds to the exchange of the coordinates xi and yi. Therefore, the fluxes Fx1x2x3

and Hx1x2x3 have weight (+,+,+,+,−,−,−) and (−,+,+,+,−,−,−) respectively. The

generator Ti maps for instance Fy1y2y3 to Qxjxk

yi
and Fx1x2x3 to Qyjyk

xi . In particular, the

flux Qx2x3

y1 has weight (+,−,+,+,+,+,+). Similarly, one can determine the weights of all

the other fluxes [15].

We now want to determine the representations of the 128 branes that can be introduced

in the model to cancel the tadpoles induced by the fluxes, as discussed in the previous

section. Given that the charges of the branes have to cancel quadratic terms in the fluxes,

the branes must organise themselves into representations which are either singlets or triplets

of each of the seven SL(2,R)’s. The key idea to determine these representations is to

trace the transformations of the potentials which couple to the branes from those of the

fluxes. Again, we focus on the IIB/O3 orientifold, and by transforming the fluxes in the

generalised Chern-Simons terms derived in the previous section under S, Ti and Ui we

manage to determine all the representations of the branes.

We first consider the D3-branes. From the fact that the RR field C4 couples to the

background fluxes as C4 ∧ H3 ∧ F3 in the corresponding Chern-Simons term, one finds

that C4 does not transform under S and Ui, while under the action of Ti it is mapped

to the component E4xjyjxkyk,xjyjxkyk ,
15 of the field E8,4. To complete the representation,

one has to determine how the generators Tj and Tk act on E4xjyjxkyk,xjyjxkyk . From (3.1),

one can check that they generate the component G10,6,xkyk,xkyk of G10,6,2,2 and the field

I10,6,6,6 whose Chern-Simons terms have been given in (3.10) and (3.15). Thus, we find

that, starting from the RR potential C4, there is a total of eight branes which can be

reached by acting with the generators of SL(2,R)7. These eight branes correspond to the

products of the two roots of each SL(2,R)|Ti
, and therefore the resulting representation

is (1,3,3,3,1,1,1), i.e. a singlet under SL(2,R)|S and SL(2,R)|Ui
and a triplet under

each SL(2,R)|Ti
. We denote the resulting representation as (3T1

,3T2
,3T3

). The result is

summarised in the first row of table 8.

By looking at tables 4 and 5, one can notice that the potentials E8,4 and G10,6,2,2 couple

also to additional branes that are not contained in the (3T1
,3T2

,3T3
) representation derived

above. In particular, we are missing the components of these fields which transform under

14In IIB, the S transformation is precisely S-duality, acting as S → 1/S on the axion-dilaton.
15Using the notation of the previous section, we take the indices i, j and k to be all different.
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IIB/O3 SL(2,R)7 rep potential component # # reps

(3T1
,3T2

,3T3
)

C4 C4 1

1E8,4 E4xiyixjyj ,xiyixjyj 3

G10,6,2,2 G10,6,xiyi,xiyi 3

I10,6,6,6 I10,6,6,6 1

(3Ti
,3Uj

,3Uk
)

E8,4 E4xiyixjyk,xiyixjyk 2

3

E4xiyixjxk,xiyixjxk 1

E4xiyiyjyk,xiyiyjyk 1

G10,6,2,2 G10,6,xjyk,xjyk 2

G10,6,xjxk,xjxk 1

G10,6,yjyk,yjyk 1

(3Ti
,3Ui

,3Uj
)

E9,2,1 E4xiyixjyjyk,xiyk,xi 1

6

E4xiyixjyjyk,yiyk,yi 1

E4xiyixjyjxk,xixk,xi 1

E4xiyixjyjxk,yixk,yi 1

G10,5,4,1 G10,xjyjxkykxi,xjyjxkxi,xk 1

G10,xjyjxkykxi,xjyjykxi,yk 1

G10,xjyjxkykyi,xjyjxkyi,xk 1

G10,xjyjxkykyi,xjyjykyi,yk 1

(3S ,3Tj
,3Tk

)

C8 C4xjyjxkyk 1

3

E8 E4xjyjxkyk 1

E10,4,2 E10,xiyixjyj ,xjyj 2

G10,4,2 G10,xiyixjyj ,xjyj 2

G10,6,6,2 G10,6,6,xiyi 1

I10,6,6,2 I10,6,6,xiyi 1

(3S ,3Uj
,3Uk

)

E10,4,2 E10,xjykxiyi,xjyk 2

3

E10,xjxkxiyi,xjxk 1

E10,yjykxiyi,yjyk 1

G10,4,2 G10,xjykxiyi,xjyk 2

G10,xjxkxiyi,xjxk 1

G10,yjykxiyi,yjyk 1

Table 8. The SL(2,R)7 representations of the IIB/O3 potentials which couple to the allowed space-

filling branes, which have α odd. They are all the possible representations with four singlets and

three triplets of SL(2,R)|U . The branes are 27 in number and organise in 16 different representations.
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the action of the generators Ui. Looking at E8,4, one finds that for each i there are four of

those components, i.e. E4xiyixjyk,xiyixjyk (two components for i fixed), E4xiyixjxk,xiyixjxk

and E4xiyiyjyk,xiyiyjyk . One can also see that these components are singlets of SL(2,R)|Ui

while transform with each other under the action of Uj and Uk. Similarly, one can prove

that they do not transform under the action of Tj and Tk, whereas under the action of Ti
they generate the components G10,6,xjyk,xjyk , G10,6,xjxk,xjxk and G10,6,yjyk,yjyk of G10,6,2,2.

For fixed i, this gives a total of 8 branes, which collect in the representation that we denote

(3Ti
,3Uj

,3Uk
). The result is summarised in the second row of table 8.

The remaining α = −3 and α = −5 branes that are singlets under S are associated to

the potentials E9,2,1 and G10,5,4,1. As tables 4 and 5 show, this gives in total 48 branes,

which are embedded in six different representations denoted as (3Ti
,3Ui

,3Uj
). In particular,

for fixed i and j the components E4xiyixjyjxk,xixk,xi , E4xiyixjyjxk,yixk,yi , E4xiyixjyjyk,xiyk,xi

and E4xiyixjyjyk,yiyk,yi of E9,2,1, together with the components G10,xjyjxkykxi,xjyjxixk,xk ,

G10,xjyjxkykxi,xjyjxiyk,yk , G10,xjyjxkykyi,xjyjyiyk,yk and G10,xjyjxkykyi,xjyjyixk,xk of G10,5,4,1,

belong to a single irreducible representation.

The D7-branes and their S-dual belong to triplets of SL(2,R)|S . The allowed compo-

nents of the electric potential of the D7-branes, C8, are C4xiyixjyj , and one can see that

they are invariant under the action of the three generators Ui. Moreover, we find that these

components do not transform under Tk while they generate respectively the components

E10,xjyjxkyk,xjyj and E10,xiyixkyk,xiyi of the potential E10,4,2 under a single action of Ti and

Tj . By S-duality, we see that we have to include also the components G10,xjyjxkyk,xjyj and

G10,xiyixkyk,xiyi of G10,4,2. From these components, under the composed action of the gen-

erators Tj and Ti, we can generate the field G10,6,6,xkyk which forms a triplet of SL(2,R)|S
together with its S-dual I10,6,6,xkyk . The resulting representation is (3S ,3Tj

,3Tk
).

Just as in the case of the S-duality singlets E8,4 and G10,6,2,2, that contain components

that are not in the representation of the D3-branes, in this case there are components of

the potentials E10,4,2 and G10,4,2 which do not transform in the same representation of

the D7-branes; they are the components with the two extra indices labelling directions

along different tori of the orbifold, which are listed in the last row of table 8 and form the

representation (3S ,3Uj
,3Uk

).

To summarise, all the SL(2,R)7 representations of the 27 IIB/O3 branes have been

collected in table 8. As it is clear by looking at the table, we find that the branes form

16 irreducible representations, each made of three triplets and four singlets, and therefore

each containing 8 branes. The 16 representations are all the possible representations made

of three triplets and four singlets and such that there is an even number of triplets with

respect to SL(2,R)|Ui
. By looking at tables 4, 5 and 6, one can easily derive the mirror

result for the IIA/O6 orientifold. This is listed in table 9. Obviously, in the IIA picture the

representations are all those with an even number of triplets with respect to SL(2,R)|Ti
.

In the previous section we have also derived the branes with even α that are forbidden

by supersymmetry and whose absence implies Bianchi identities for the fluxes, as shown

schematically in eq. (1.6). Such branes are listed in table 7. We repeat for these branes the

same analysis carried out so far in this section for the branes with odd α. As table 7 shows,

there is a total of 96 such branes, and we find that analogously to the branes with odd α,
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IIA/O6 SL(2,R)7 rep potential component # # reps

(3U1
,3U2

,3U3
)

C7 C4x1x2x3 1

1E9,3,1 E4xiyixjyjxk,yiyjxk,xk 3

G10,5,3,1 G10,xiyixjyjyk,ykxixj ,yk 3

I10,6,6,3 I10,6,6,y1y2y3 1

(3Tj
,3Tk

,3Ui
)

E9,3,1 E4xiyixkykxj ,yixkyk,xk 2

3

E8,1 E4xiyixjxk,yi 1

E10,5,2 E10,yixjyjxkyk,xjxk 1

G10,5,3,1 G10,xiyixkykyj ,xkykxi,yk 1

G10,6,5,2 G10,6,xjxixkyjyk,yjyk 2

G10,4,1 G10,yjykxiyi,xi 1

(3Ti
,3Tj

,3Ui
)

E9,3,1 E4 yixkykxjyj ,xkxjyj ,xj 1

6

E4xiyixkykxj ,xiyixk,yi 1

E8,1 E4 yixkykxj ,xk 1

E10,5,2 E10,xiyixkxjyj ,yixj 1

G10,4,1 G10,xkykyjxi,yk 1

G10,5,3,1 G10,xjyjxkykxi,xjyjyk,yj 1

G10,xiyixkykyj ,xiyiyk,xi 1

G10,6,5,2 G10,6,xiyixjyjyk,xiyj 1

(3S ,3Uj
,3Uk

)

C7 C4xiyjyk 1

3

E9,3,1 E4xjyjxkykxi,xjxkxi,xi 1

E4 yjxkykxiyi,xkyiyj ,yj 2

G10,5,3,1 G10,xiyixjyjxk,yjxixk,xk 2

G10,xjyjxkykyi,yiyjyk,yi 1

I10,6,6,3 I10,6,6,xjxkyi 1

(3S ,3Tj
,3Tk

)

E9,3,1 E4xiyixkykyj ,xkykyi,yk 2

3

E10,5,2 E10,xjyjxkykyi,yjyk 1

E8,1 E4xiyiyjyk,yi 1

G10,5,3,1 G10,xjxkykxiyi,xkykxi,xk 2

G10,4,1 G10,xjxkxiyi,xi 1

G10,6,5,2 G10,6,xjyjxkykxi,xjxk 1

Table 9. The SL(2,R)7 representations of the IIA/O6 potentials which couple to the allowed space-

filling branes, which have α odd. They are all the possible representations with four singlets and

three triplets of SL(2,R)|T . The branes are 2
7 in number and organise in 16 different representations.
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IIB/O3 SL(2,R)7 rep potential component # reps

(3Tj
,3Tk

,3Uk
)

D7,1 D4xjyjxk,xk

6

D4xjyjyk,yk

F10,4,1,1 F10,xkykxiyi,xk,xk

F10,xkykxiyi,yk,yk

F9,5,2 F4xiyixjyjxk,xiyixjyjxk,xjyj

F4xiyixjyjyk,xiyixjyjyk,xjyj

H10,6,5,3 H10,6,xjyjxiyixk,xkxiyi

H10,6,xjyjxiyiyk,ykxiyi

(3S ,3Ti
,3Uj

)

D9,3 D4xkykxiyixj ,xiyixj

6

D4xkykxiyiyj ,xiyiyj

F9,3 F4xkykxiyixj ,xiyixj

F4xkykxiyiyj ,xiyiyj

H10,6,3,1 H10,6,xkykxj ,xj

H10,6,xkykyj ,yj

F10,6,3,1 F10,6,xkykxj ,xj

F10,6,xkykyj ,yj

Table 10. The SL(2,R)7 representations of the forbidden IIB/O3 potentials which couple to

space-filling branes with α even. The branes are 96 in number and are embedded in 12 different

representations.

they collect in 12 irreducible representations made of three triplets and four singlets. We

give the full result in table 10 for the IIB case and in table 11 for the IIA case.

We conclude this section by pointing out that the generators Ti and Ui can be written as

the products of specific T-duality transformations and S. In particular, in IIB we find that

Ti = −TxjyjxkykSTxjyjxkyk

Ui = −(STxiyi)
3 , (4.4)

where Txjyjxkyk = Tyk ◦ Txk ◦ Tyj ◦ Txj is the combination of single T-dualities along

the directions xj , yj , xk and yk, and similarly Txiyi = Tyi ◦ Txi is the combination of

T-dualities along xi and yi. The reader can verify that using eq. (4.4) and the T-duality

transformations of the fluxes given in eqs. (1.1), (1.2), (1.3), (2.4) and (2.6) one recovers all

the weights of the fluxes, and similarly using the universal T-duality rule given in eq. (1.4)

one can determine all the representations given in tables 8 and 10. Using mirror symmetry,

an analogous result applies to the IIA case.
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5 Discussion and conclusions

The original motivation of this paper was to extend the analysis of [17], where the inclusion

of the P fluxes was discussed for both the IIB/O3 and IIA/O6 T 6/[Z2 × Z2] orientifold

models, to all the remaining allowed non-geometric fluxes. We have denoted such fluxes

as NS′ and RR′, and we have shown that they transform under T-duality according to the

general rules given in eqs. (2.4) and (2.6). These rules allow to write down a complete

expression for the superpotential, which is at most linear in the modulus S and at most

cubic in the moduli Ti and Ui. The IIB and IIA expressions for the superpotential are

related by mirror symmetry.

The superpotential of the IIA/O6 theory given in eq. (2.28) is obtained by requiring the

matching with IIB using the mapping dictated by the T-duality transformation rules that

we have found. We interpret the fact that the IIA superpotential has the form
∫
eJc ∧ (flux

·Ωn
c ) as a general manifestation of mirror symmetry. Indeed, for anyN = 1 compactification

with SU(3) structure, mirror symmetry has been conjectured to correspond to the exchange

of Ω and eJc [37–41], and if one assumes that this result is actually reliable in a generic

non-geometric setup, one can expect that the form of the IIA superpotential that we find is

valid for any O6 orientifold. In this regard, it would be worth investigating our IIA result

more deeply in the context of generalised geometry. Moreover, focusing on the large class of

IIA/O6 Calabi-Yau orientifolds, it would be promising to understand the relation between

the IIA superpotential and the cohomological numbers which characterise the topology of

the compactification. As far as we know, this relation has been worked out only for IIB/O3

Calabi-Yau orientifolds so far, including all the allowed RR, NS and P2
1 fluxes [42].16

We have also determined all the exotic branes that can be sourced by all the non-

geometric fluxes. The tadpole conditions that we find have the general form given in

eq. (1.5). Similarly, we have determined how the inclusion of all the fluxes modifies the

Bianchi identities which correspond to non-trivial quadratic constraints for the fluxes, aris-

ing in the orientifold from the absence of specific exotic branes of the maximal theory, as

eq. (1.6) summarises. Exotic branes are charged with respect to mixed-symmetry poten-

tials, and in particular denoting with Ap,q,r,... a ten-dimensional mixed-symmetry potential,

this corresponds to a brane if some of the indices p are isometries and contain all the indices

q, which themselves contain all the indices r and so on [25, 26, 45]. The crucial ingredient

in our analysis of tadpole conditions and Bianchi identities is the universal rule discovered

in [17] and given in eq. (1.4), which relates under T-duality the brane components of the

various mixed-symmetry potentials.

The mixed-symmetry potentials that occur in this paper arise in the decomposition

of the Kac-Moody algebra E11 [46] with respect to the ten-dimensional theory [47], and

in particular the brane components are associated to the real roots of E11 [48]. From the

point of view of the lower-dimensional theory, these components are the long weights of the

representation of the symmetry group to which the corresponding potential belongs [49].

The Bianchi identities that we find in section 3 are restricted to these components, as they

16The generalization of the Bianchi identities including P2
1 fluxes to the IIB/O3 Calabi-Yau orientifolds

has been discussed as well [43, 44].
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IIA/O6 SL(2,R)7 rep potential component # reps

(3Tk
,3Uj

,3Uk
)

D7,1 D4xjyjxi,xi

6

D9,3 D4xjyjxkykxi,xkykxi

F9,4,1 F4xjyjxiyiyk,xjykxiyi,xj

F4xiyixjyjxk,xiyiyjxk,yj

F10,5,2,1 F10,xkykxiyixj ,xjyk,yk

F10,xiyixkykyj ,xkyj ,xk

H10,6,5,3 H10,6,xjyjyixkyk,xkykyi

H10,6,3,1 H10,6,xjyjyi,yi

(3S ,3Tj
,3Ui

)

D7,1 D4xkykyi,yi

6

D9,3 D4xkykyixjyj ,yixjyj

F9,4,1 F4xkykxiyixj ,xiyixjxk,xk

F4xiyixkykyj ,yjxiyiyk,yk

F10,5,2,1 F10,xjyjxiyixk,xkxj ,xj

F10,ykxiyixjyj ,yjyk,yj

H10,6,3,1 H10,6,xkykxi,xi

H10,6,5,3 H10,6,xkykxjyjxi,xixjyj

Table 11. The SL(2,R)7 representations of the forbidden IIA/O6 potentials which couple to

space-filling branes with α even. The branes are 96 in number and are embedded in 12 different

representations.

are associated to branes with even α that are forbidden by supersymmetry (see eq. (1.6)). A

more detailed analysis should include the Bianchi identities for the remaining components.

We leave this as an open project.

An analogous restriction has actually been made on the fluxes themselves throughout

the paper. Indeed, we have always assumed that the fluxes that are not related by S

and T-dualities to the RR and H3 fluxes are not present. This implies that fa
ab and Qab

a

(with a not summed) vanish, as well as all the P
ab1...bp
a fluxes. Similarly, for the P, NS′

and RR′ fluxes with all upstairs indices, we only consider the components such that the

first set of indices is fully contained in the second. From a group-theoretic perspective,

all these components correspond again to the long weights of the SO(6, 6) representations

in eq. (2.2).

In [50, 51] it was shown that the Bianchi identities for the NS fluxes can be obtained

via demanding the nilpotency of the generalized twisted differential operator D = H∧+f ·

+Q · +R·, and it would be interesting to generalise this construction with all the fluxes

included. We observe that many of the Bianchi identities and tadpole conditions that we

have derived can be obtained by requiring independently the nilpotency of the operators
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D1 = (H′3,6 ∧ +P1,4 · +Q · +F3·) and its S-dual D2 = (F ′3,6 ∧ +Q′1,4 · +P2
1 · +H3·).

The constraints obtained from the nilpotency of these operators have exactly the same

form of the NS Bianchi identities when P-fluxes are turned off (see, for instance, eq. (4.1)

of [17]). In particular, from (D1)
2 = 0, we recover the Bianchi identities related to the

fields D9,3 and F10,6,3,1 (see table 7), and the tadpole conditions cancelled by the branes

which couple to the fields C8, E10,4,2 and G10,6,6,2. Similarly, the constraints worked out

from (D2)
2 = 0 correspond to the Bianchi identities related to F9,3 and H10,6,3,1 and to the

tadpoles cancelled by the branes coupling to E8, G10,4,2 and I10,6,6,2. It is interesting that

also the Bianchi identities related to D9,3 are in these constraints, thus overlapping with

the whole set of NS Bianchi identities. This seems to suggest that a redundancy actually

occurs when the nilpotencies of these operators are taken simultaneously into account.

What is the real meaning of this, and whether there could exist an analogous description

for the rest of the constraints discussed in section 3, remains to be investigated.

A natural continuation of our analysis would be a detailed study of the solutions to

all the Bianchi identities and tadpole conditions that we have determined. Although this

is beyond the scope of this paper, we have performed a preliminary numerical analysis

aimed at finding solutions that are non-geometric and that can be allowed only in the

presence of exotic branes. In the isotropic case, where the three two-dimensional tori

are identified, we are left with 40 flux parameters satisfying 16 Bianchi identities and 30

tadpole conditions. We have looked for solutions by scanning the zero minima of the

function defined as the quadratic sum of all the constraints, where the integer number

of branes and fluxes are generally treated as parameters to be determined. This was

performed using the Mathematica algorithm NMinimize. As a sensible prescription, we

discard the configurations of fluxes in which no minima are found in zero after a number

of 105 iterations. That is also justified by the fact that for any configuration of fluxes no

new solutions are actually found in the range between 104 and 105 iterations.

We give here a few IIB examples of the solutions we have found. If only the fluxes

F3, H3, P
1,4 and H′3,6 are turned on, no solutions could be found without including exotic

branes. Besides the D3-branes, the fluxes induce tadpoles for the exotic branes 343, 6
1,1
3 ,

52,23 and 30,4,25 , and we find that the minimum number of α = −3 branes which need to be

included is equal to 3. If instead only the fluxes F3, H3, H
′3,6 and F ′3,6 are turned on,

one finds that together with the D3-branes one has to include the exotic branes 52,23 , 52,25

and 30,0,67 . Interestingly, there are solutions every time at least one of the 3 different kinds

of exotic branes is included. Finally, we have considered the case in which the fluxes F3,

H3, Q
′1,4, H′3,6 and F ′3,6 are turned on. This is the most constrained case that we have

analysed (the total number of non-vanishing fluxes is 22), and to find solutions, besides

the D3-branes, we need to include also the exotic branes 343, 6
1,1
3 , 52,23 , 52,25 and 30,0,67 . We

plan to perform a more systematic search of solutions in the near future.

In [15] it has been shown that all the fluxes of the orientifold model fill the repre-

sentation (2,2,2,2,2,2,2) of SL(2,R)7. Therefore, the fluxes are symmetric under the

exchange of any pair of SL(2,R)’s. In this paper we have shown that in IIB the space-

filling branes group in 16 irreducible representations of SL(2,R)7 which are all the possible

representations made of four singlets and three triplets with an even number of triplets of

– 30 –



J
H
E
P
1
0
(
2
0
1
7
)
1
3
4

SL(2,R)|Ui
. This means that the symmetry under the exchange of the different SL(2,R)’s

is actually broken by the presence of space-filling branes. This reveals the real effect of the

orientifold projection on the symmetries, which is to make a distinction between SL(2,R)|Ui

and SL(2,R)|Ti
, whose exchange corresponds in fact to switching the description to IIA/O6.

We have also expressed the action of the SL(2,R)|Ui
and SL(2,R)|Ti

generators in terms

of S- and T-duality as in eq. (4.4), which is a general formula that can be applied to any

representation. This on one side proves the power of our T-duality rules and on the other

side gives an elegant expression for the SL(2,R)7 generators which is universally valid.

To conclude, the inclusion of exotic branes may be an important tool in string com-

pactifications with non-geometric fluxes. Indeed, it would enlarge the possibilities to find

more viable N = 1 four-dimensional vacua where all moduli can be conveniently stabilised,

as many constraints on the fluxes could be relaxed. Moreover, from a wider perspective

which goes beyond the closed string sector, it could be of extreme interest to further extend

this analysis studying the dynamics of the exotic branes.
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