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1 Introduction

The general lesson that one learns from T-duality is that in string theory one has to
generalise the concept of geometry. In particular, in the context of flux compactifications,
T-duality implies the presence of non-geometric fluxes, that are quantities that cannot be
obtained in terms of the fields of the higher-dimensional supergravity theory. In the case
of torus reductions with fluxes turned on, while the RR fluxes of the ITA and IIB theory
are mapped into each other by T-duality in the standard way as

Tq
Faby..by < Foy. by s (1.1)

the NS 3-form flux H 4 and the metric flux fS transform into the non-geometric QZC and
R fluxes according to the chain of rules [1] (see also [2])

Hape &) —fo &) —QZC (& Rabe (1.2)

In this paper we will focus on the IIB/O3 and the dual ITA/O6 T°/[Zy x Zs] orientifold
models [3—-12] with generalised fluxes turned on. In the IIB/O3-orientifold picture, the only
geometric fluxes that can be introduced are F3 and Hsz. The dual ITA/O6-orientifold is
obtained by performing three specific T-dualities, which corresponds to mirror symmetry
for this particular orbifold [13].} This maps the H3 flux of IIB to both geometric and
non-geometric fluxes in ITA. If one then includes all the allowed fluxes in the ITA picture,
this corresponds in the IIB picture to also including the Q flux.? The resulting N' = 1
superpotential was originally derived in [1].

In the IIB theory one can also include the flux P’ which is the S-dual of Q% and
derive the way this flux enters the N’ = 1 superpotential [15]. In [16] it was shown that
the fluxes that are related by T-duality to 732"’ in any dimension are 7321""’? and PoO1-bp
where p is even in IIB and odd in IIA and the b indices are completely antisymmetrised.>

LA general analysis of the type II flux solutions which can be generated by T-dualizing the factorized
T? x T? x T? torus in the geometric case has been carried out in [14].

2The full list of RR, NS and P fluxes that can be turned on in the model, and how they are mapped by
mirror symmetry, is given in table 1.

3The P fluxes with all upstairs indices belong to mixed-symmetry irreducible representations.



In particular, T-duality acts according to the rule [17]
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and the fluxes are such that if a is upstairs it coincides with one of the b indices, while
if it is downstairs it differs from all the b indices. Using this rule, one can determine for
the T /[Zy x Zs)] orientifold which fluxes can be included in both the IIB and ITA theory
following precisely the same method used for the NS fluxes: one first maps the flux P of
1IB to the dual ITA theory by performing three T-dualities, then extends this to include all
the allowed ITA fluxes, and finally one maps this back to IIB. It turns out that in IIB one
has to include the additional flux P®?1-04 The expression for the resulting superpotential
of each theory is mapped to the one of the other theory under mirror symmetry [17], and
in the IIB case it coincides with the one derived in [18] as far as the P fluxes are concerned.

In string theory, fluxes cannot be turned on arbitrarily, because the presence of Chern-
Simons terms in the ten-dimensional type-1I supergravity actions implies that fluxes along
internal cycles generate effective charges for specific potentials, that for consistency have
to be cancelled. In particular, if the potential is projected out in the orientifold model,
this implies that the charge induced by the fluxes has to vanish, resulting in a quadratic
constraint which is the Bianchi identity for the magnetic dual of the potential. Otherwise,
one has to impose a tadpole condition, which is the condition that the charge induced by
the fluxes has to be cancelled by including a suitable number of branes. Specifically, the
geometric fluxes give rise to non-trivial NS Bianchi identities, but also to a D3 tadpole in
1IB, originating from the term Hs A F3, and a D6 tadpole in IIA from HzFo+ f - Fo. When
also the non-geometric Q, R and P’ fluxes are included, this gives further contributions to
the NS Bianchi identities, but also generates additional tadpoles [1, 15]. In particular, in
IIB the term Ql[’cf]:d]bc generates a tadpole for the D7-brane, and by S-duality this is mapped
to the term P[b;’]-[d]bc which generates a tadpole for the S-dual of the D7-brane [15].

The fact that the flux P2 of the IIB theory transforms under T-duality as in eq. (1.3)
implies that one can map to the ITA theory the tadpole condition for the S-dual of the
D7-brane by performing three T-dualities. This results in a tadpole condition for an exotic
brane [17], which is an object that in the higher-dimensional theory is a generalised KK-
monopole, i.e. an object well-defined only in the presence of isometries [19-24]. In [25-28]
it was shown that exotic branes are associated to specific components of ten-dimensional
mixed-symmetry potentials. In particular, given a ten-dimensional mixed-symmetry poten-
tial A, 4. in a representation such that p,q,r,... (with p > ¢ > r...) denote the length
of each column of its Young tableau, this corresponds to a brane if some of the indices p
are isometries and contain all the indices g, which themselves contain all the indices r and
so on. One can then classify all the mixed-symmetry potentials that give rise to branes in
lower dimensions in terms of the non-positive integer number o denoting how the tension
of the corresponding brane scales with respect to the string coupling gg. T-duality relates



different potentials with the same value of «. In particular, the RR potentials C}, have
a = —1, while the potentials D¢, associated to the NS5-brane, the KK monopole and
their T-duals have o = —2 [25]. The potential Eg associated to the S-dual of the D7-brane
has a = —3, and the other mixed-symmetry potentials with the same value of « are of
the form Egyp om pn in IIB and Egipom+1,, in ITA [26]. In [17] it was shown that on the
TC/[Zo x Zs] orientifold the IIB potential Eg is mapped by mirror symmetry to specific
components of the ITA potential Fg 31, and by adding also all the other components that
can be consistently included in ITA, this maps in IIB to components of the potentials Ejg 4,
Eg91 and Ejp4,2. Proceeding this way, one manages to obtain the full set of components
of a = —3 mixed-symmetry potentials corresponding to exotic branes of the IIB and ITA
theory that can be consistently added in the T/[Zy x Zs] orientifold model to cancel the
tadpoles generated by the P fluxes.?

The aim of this paper is to complete the analysis carried out in [17] by including all
possible non-geometric fluxes and exotic branes in the model. We start by considering the
S-dual of P®b1b4 which following [18] we denote as Q%1%+, In four dimensions this
flux and those that are related to it by T-duality have the same form of the NS fluxes,
and we denote them as NS’ fluxes. We manage to derive a universal T-duality rule that
transforms the flux @'*1-+% to the other NS/ fluxes, which is given in eq. (2.4) and actually
applies to any dimension.’? Using this rule, we manage to determine the fluxes of the ITA
theory that are mapped to the Q%1% fluxes of IIB. We then include all the additional
ITA fluxes that are allowed, and we find that these are mapped in IIB to the components of
the flux H/®1a203.b1--b6 - By S-duality, this latter flux is mapped to the flux that we denote
as F'@10203.b1--b Tp four dimensions this flux and those that are related to it by T-duality
are in the same representations of the RR fluxes, and we denote them as RR’ fluxes. We
find a universal T-duality rule valid in any dimension,® which we give in eq. (2.6), that
transforms the flux F/@192¢3:b1--% to additional RR’ fluxes. This rule allows us to derive the
fluxes of the ITA orientifold model that are mapped to F/¢122¢3:b1--bs in IIB. The NS’ and
RR/ fluxes, together with the RR, NS and P ones, give a total of 128 components, which
are all the fluxes that can be included in the model.” The outcome of this analysis is that
we manage to derive the most general expression for the superpotential for both the IIB
and ITA theory, and in the IIB case this expression coincides with the one derived in [18].

Having derived all the possible fluxes that can be turned on in the model, one can
determine all the possible exotic branes that are sourced by these fluxes and thus can be
included to cancel the tadpoles. We show that all the remaining branes that can be added
have o = —5 and a = —7, and following [29] we denote the corresponding mixed-symmetry
potentials as G and [ respectively. This result is achieved by exploiting the universal T-
duality rule derived in [17] which states as follows: given an o = —n brane associated to

4All the components of the & = —3 potentials corresponding to exotic branes in both the IIB and ITA
T°/[Zs x Zs] orientifold models are given in table 4.

®The highest dimension in which these fluxes appear is D = 7.

6 Actually the highest dimension in which these fluxes appear is D = 4.

TAll the NS’ and RR’ fluxes that can be turned on in the model, and how they are mapped by mirror
symmetry, are given in tables 2 and 3.



a mixed-symmetry potential such that the a index occurs p times (in p different sets of
antisymmetric indices), this is mapped by T-duality along a to the brane associated to the
potential in which the a index occurs n — p times. Schematically, this can be written as

a=-n: a,a,...,a JELN a,a,....,a . (1.4)
S— ——
P n—p

We proceed precisely as for the o = —3 branes: the IIB potential F1942 is mapped by
S-duality to G142, and using eq. (1.4) we map this by mirror symmetry to components of
the ITA potentials G1053,1, G104,1 and G1o,6,52. We then add all the other components of
these potentials that can consistently be included, and we map this back to IIB, resulting
in the inclusion in this theory of the potentials G105.4,1, G10,6,2,2 and G1o6,6,2- The latter
potential is mapped by S-duality to /10,662, which by mirror symmetry goes to components
of the potential 110663 of IIA. Finally, the remaining component of this potential that can
be added is mapped in IIB to I1¢6,6,6, which is a singlet under S-duality.®

Having determined all the branes that can be included in the model, we can derive all
the tadpole conditions for such branes. The quadratic terms in the fluxes that contribute
to such tadpole conditions are schematically as follows:?

a = —1 potential C": HNs - FRR

o = —3 potential E: HNs - P+ Frr - Hns

a = —5 potential G: Hns - P+ Frr - HNs

« = —7 potential I: Hns' - FRR - (1.5)

Moreover, we determine all the branes of the maximal theory that are projected out in the
orientifold and give non-trivial quadratic constraints for the fluxes. It turns out that these
branes have even «’s, and the resulting Bianchi identities have the schematic form

o = —2 potential: Hns - Hns +P - Frr =0
a = —4 potential: PP+ Hns - HNs + FRR - Frrr = 0
a = —6 potential: Hnsy - Hngy +P - Frrr =0. (1.6)

Again, by recursively applying mirror symmetry and S-duality, all such quadratic con-
straints are systematically derived.

The orientifold model we consider in this paper has a conjectured SL(2,Z)7 non-
perturbative duality symmetry [15, 30|, which can be understood by investigating the
orbifold in more detail. The 6-torus factorises as 76 = ®§’:1 T (2i), with the two Zso’s acting
as (—1,—1,1) and (1,1, —1) respectively on the coordinates (z‘,y’) of the three 2-tori,
and there are seven untwisted moduli S, T; and U;. In the IIB/O3-orientifold model, the
S modulus is the axion-dilaton, the T; moduli are the complex Kéhler moduli which are
given in terms of the Kéhler form and the RR 4-form, and the U; moduli are the complex

8 All the components of the &« = —5 and a = —7 potentials corresponding to exotic branes in both IIB
and ITA are given in tables 5 and 6.
9In this formula and the next we schematically denote with Hng and Hyg all the NS and NS’ fluxes.



structure moduli. In the low-energy supergravity theory in the absence of fluxes, each of
these moduli parametrises the coset SL(2,R)/SO(2), and the global symmetry SL(2,RR)”
is conjectured to be broken to SL(2,Z)" in the full theory. The ITA/O6-orientifold arises
from performing three T-dualities, one on each torus (following [15], in this paper we take
these directions to be the three z directions). The 128 fluxes that can be turned on in
the model belong to the (2,2,2,2,2,2,2) representation of SL(2,R)” [15]. In this paper
we determine the representations of all the branes that can be included. We find that
the branes belong to 16 irreducible representations, each made of three triplets and four
singlets. More precisely, these 16 representations are all the possible representations made
of three triplets and four singlets with the condition that in the IIB picture there is an even
number of triplets with respect to the SL(2,R)’s associated to the U; moduli. Additionally,
we find that the branes with even «, that by being projected out give rise to the Bianchi
identities, collect in 12 irreducible representations of SL(2,R)”, which again are made of
three triplets and four singlets.

The plan of the paper is as follows. In section 2 we determine the T-duality rules that
transform the NS’ and RR’ fluxes, and we derive the expression for the superpotential with
all possible fluxes turned on. In section 3 we determine all the exotic branes that can be
included in the model, and we derive all the tadpole conditions that result from turning on
fluxes. We also derive all the Bianchi identities, which are the quadratic constraints that
cannot be relaxed by the inclusion of branes. In section 4 we determine how all the exotic
branes in the model transform with respect to the conjectured non-perturbative duality
symmetry SL(2,7Z)". Finally, section 5 contains our conclusions.

2 NS’ & RR’ fluxes: T-duality and superpotential

In this section we introduce the NS’ and RR’ fluxes, which are related by chains of T-
and S-dualities to the RR and NS fluxes and the P fluxes recently considered in [17]. In
particular, we will derive how these fluxes transform under T-duality and this will allow
us to determine all the fluxes that can be turned on in the orientifold 7% /[Zy x Zs] model
for both the IIB and the ITA theory. This result will be used to derive the expression for
the N/ = 1 superpotential with all fluxes included for both theories. As it was the case for
the analogous analysis carried out in [17] for the P fluxes, our IIB/O3 result fits with that
found in [18] on the basis of generalised geometry considerations and valid for any IIB/0O3
orientifold with SU(3) structure.

From the point of view of the four-dimensional effective action, fluxes give rise to
gaugings, and in particular the fluxes of the A" = 1 theory can be identified with specific
components of the embedding tensor [31] of the maximal theory, which belongs to the
912 of Ez(7) [32]. Under the branching E77;y O SO(6,6) x SL(2,R), where SO(6,6) is
the perturbative symmetry and SL(2,R) transforms non-linearly the complex scalar made
of the four-dimensional dilaton and the axion dual to the NS 2-form, this representation
decomposes as

912 = (32, 3) @ (220,2) @ (12,2) & (352,1). (2.1)



By further considering the embedding SL(2,R) D R™, where R is the dilaton weight,
one finds that the various fluxes belong to the following representations of the embedding
tensor:

RR fluxes: 0n € 329
NS fluxes: Oumnp € 2204
P fluxes: Orra € 3529 (2.2)
NS’ fluxes: inp € 220_1
RR’ fluxes: 6., €32_5.

For the first three fluxes the form of the corresponding embedding tensor is the same in
any dimension D = 10 — d, and the T-duality rules in eq. (1.1), (1.2) and (1.3) can be
easily understood as specific O(d, d) transformations. In particular, observing that the P
fluxes belong to a vector-spinor representation was crucial to derive the T-duality rules in
eq. (1.3), combining the transformation of the vector index M, which splits in lower and
upper a, with the transformation of the spinor index ¢, which decomposes in the set of
all even or all odd antisymmetric indices b [17]. We list in table 1 all the RR, NS and P
fluxes that can be turned on in the orientifold 7°/[Zy x Zs] model for both the IIB and
the ITA theory. In particular, the P fluxes of the ITA theory are determined by applying
three T-dualities along the three x directions [17].

The NS" and RR’ fluxes collect in representations of SO(d, d) that are not the same in
any dimension. In particular, the NS’ fluxes belong to the embedding tensor 93\/[1__ My_g and
therefore they can be turned on in seven dimensions and below [33]. In four dimensions the
embedding tensor belongs to the representation with three antisymmetric indices, which
decomposes in terms of the fluxes as

B anrs — R/bibabs Qfarbibabsbs  plarazbi..bs qparazasbi..bo (2.3)
In this expression, the a indices and the b indices are separately completely antisym-
metrised. Given that in general one can dualise p upstairs indices of SL(d,R) with d — p
downstairs ones, the reader can appreciate that the SL(6,R) representations that occur in
eq. (2.3) are the same as those of the NS fluxes. On the other hand, only writing them with
upstairs indices as in eq. (2.3) one reproduces the correct embedding tensor in dimension
higher than four. Indeed, in seven dimensions only R’ can be turned on and it gives rise
to a singlet #’. In six dimensions R’ and Q' form the embedding tensor 6,, and in five
dimensions 6, is made out of R’, Q" and f’. Finally, in three dimensions one has to also
consider the flux H/41--24:1-57 which together with the fluxes in eq. (2.3) gives rise to the
embedding tensor 9}\41“‘ a,- The fact that the NS’ fluxes all have upstairs indices reveals
their non-geometric nature, as also pointed out in [18]. The index structure in eq. (2.3)
also follows naturally from the observation that these fluxes are dual to o« = —4 (D — 1)-
form potentials in D dimensions, that originate from the ten-dimensional mixed-symmetry
potentials Fg73, Fg74,1, Fg,572, F9’673 and Fg,774.10

Following [28], we denote the potentials with o = —1, —2, —3... with the letters C, D, F and so on.
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Table 1. All the RR, NS and P fluxes that can be turned on in the N' = 1 orientifold model for
both IIB and ITA. Here and in the rest of the paper, we choose the convention that to map the IIB
to the mirror ITA theory we first perform a T-duality along 2!, then along 22 and finally along 3.
The indices 1, j, k are always meant to be in cyclic order. In the last column we give the number
of independent components for each flux. There are in total 8 RR fluxes, 32 NS fluxes and 48 P
fluxes.

Under a single T-duality the o = —4 potentials transform as in eq. (1.4) with n = 4.
Therefore, the duality between the NS’ fluxes and the (D — 1)-form potentials with v = —4
originating from the mixed-symmetry potentials above allows us to determine how a single
T-duality transforms these fluxes in any dimension. The outcome of this analysis gives

R/abc Tq Qld,abcd Te f/ed,abcde Ty Hlfed,abcdef' (24)

By contracting with an epsilon symbol of SL(6,R), one can appreciate that in four dimen-
sions these rules coincide with the ones that transform the NS fluxes. The flux Q@101 in
IIB is the S-dual of P%b1%4 wwhich is connected by T-duality to P’ and by further S and
T-dualities to the NS and RR fluxes. As it is customary, in [17] all the components fé’b,
Q% and P2 (with indices not summed) were put to zero. The T-duality rules in eq. (1.3)
then map P with a different from b and ¢ to the components of P®?1b» such that the a
index must coincide with one of the b indices [17]. We thus assume that the same occurs
for the flux Q%1% and then the rules in eq. (2.4) imply that for all the NS’ fluxes in
eq. (2.3) all the a indices have to be parallel to some of the b indices.

We now consider the RR’ fluxes, that in any dimension collect in the embedding tensor

M. M, o Of SO(d,d). This can actually only be defined in four dimensions and below,

and in particular in four dimensions we decompose it in terms of fluxes as'!

/
0, —

{Jrlal,bl...bg F/a1a2a37b1...b6 f/al...as,bl...b6 (IIB)
: (25)

I/bl...bﬁ f/a1a2,b1...bﬁ f’lal...a4,b1...b5 f/al...ae,b1...b6 (IIA)

"In eq. (2.5) we only write down the fluxes that are relevant in four dimensions. In D = 3 one also has
the fluxes F'@b1-bpe1-¢7 with p odd in I1IB and even in ITA.



and using the SL(6,R) epsilon symbol one can see that the representations that occur are
the same as those of the RR fluxes. Again, all these fluxes are non-geometric and the
index structure is motivated by the duality with the (D — 1)-form potentials G and by
requiring that they give rise to the correct embedding tensor also in dimension lower than
four, provided that one also includes the contribution of the additional fluxes mentioned
in footnote 11.
The T-duality rules for the RR’ fluxes in four dimensions are
Flai--ac & Flai,a1..as &) Flarag,ar..as & Flai..a6,a1...a (2.6)
In three dimensions, one must add the additional T-duality rule
Flarapbiobs Loy prear.apebi. bee (2.7)

for the transformation along a direction that is not present in the flux. As for the case
of the NS’ fluxes, we only consider components such that in eq. (2.5) all the a indices are
parallel to some of the b indices, which is consistent with the T-duality rules in eq. (2.6).

We can now apply the T-duality rules in egs. (2.4) and (2.6) to determine all the NS’
and RR/ fluxes that can be included in the four-dimensional T /[Zy x Zs] orientifold model.
By S-duality, the components of the P%* flux of the IIB theory that are listed in the last
eight rows of table 1 are mapped to the same components of the @'%* flux. By applying
three T-dualities along the x directions using eq. (2.4), one gets the ITA fluxes that are listed
on the right-hand side of the first eight rows of table 2. In the ITA theory, the orientifold
projection selects components of R’ and f’ with an odd number of y’s and components of
Q' and H' with an even number of 3’s. By adding all the other components that satisfy
this criterion and are therefore compatible with the orientifold, one also includes the last
four IIA fluxes in table 2, which are mapped in IIB to all the allowed components of the
H' flux.

One can similarly determine all the allowed RR/ fluxes in the orientifold. By S-duality,
the components of the H’ flux in the IIB theory are mapped to the same components of
the 726 flux. By applying three T-dualities along the z directions using eq. (2.6), one
derives the components of the RR’ fluxes that are allowed in the mirror ITA orientifold.
The result is given in table 3. From the table one can deduce that the orientifold selects
the components of 76 and F'4% with an odd number of 3’s and the components of F'*0
and F'%% with an even number of y’s. To summarise, tables 1, 2 and 3 give all the possible
fluxes that can be included in the model, for both the IIB and the ITA theory. The aim of
the remaining of this section is to write down an expression for the superpotential for both
the IIB and the IIA theory with all these fluxes turned on.

In order to derive the superpotential in the orientifold model, we give the explicit
expression of the holomorphic 3-form and the Ké&hler form as functions of the moduli
following the conventions of [15]. In IIB the non-vanishing components of the 3-form  are

Qxlaﬂ:p?’ =1 Q =1 U; Qxiyjyk = —UjUk Q1 —i U UUs (2.8)

yladxh yry?yd =

while the non-vanishing components of the complexified Kahler 4-form are

(Te) giyiahye = 1T . (2.9)
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o'ty o fralytatytylatal 251 3
Q,yi@iyiyjyk _H/yixjxk7x1x2x3y1y2y3 236 | 3
7473.6 | qpatatad atatatylyy? RV Y R3 1
H/yixjmk,w1x213y1y2y3 _ Q’yi@iyiyjyk Q’1’4 3
2x Y yk et a?atyly?y? — Yty ytalat %513
H/y1y2y3,x1x2x3yly2y3 %/y1y2y3,m1x2x3y1y2y3 /3,6 1

Table 2. Table containing all the NS’ fluxes that can be turned on in the A" = 1 orientifold model
for both IIB and ITA. In the last column we give the number of independent components for each
flux, whose total number is 32.

1B TIA 4

flux component component flux
JT_~/3,6 f/xlx2x3,x1a:2a:3yly2y3 _le1x2x3yly2y3 JT_‘IG 1
f/yiwjxk’xlexiiylyQyB f/xiyi7x11213y1y2y3 ‘/__.,276 3
J—_'/xiyjyk,:r:lx2x3y1y2y3 _f/xjij’“yk,xlex:”ylyQyB f-"476 3
f/y1y2y3,1112963y1y2y3 _f/x1x213y1y2y3,xlzzz3y1y2y3 ‘/__.,676 1

Table 3. Table containing all the RR’ fluxes that can be turned on in the N" = 1 orientifold model
for both IIB and ITA. In the last column we give the number of independent components for each
flux, whose total number is 8.

In ITA, the only non-vanishing components of the complexified holomorphic 3-form and the
complexified Kahler 2-form are

(Qe)pig2ps =15 (Qc)xiyjyk =—iU; (Jc)xiyi =—1T;. (2.10)
In all these expressions, as everywhere else in this section, the indices i, 7 and k are meant
to be in cyclic order. The two theories are mapped into each other by performing a T-

duality transformation along 2! followed by one along 2% and one along 23, corresponding to
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localising the O6-plane in the y directions. The resulting expressions for the superpotential
in the two theories are identified via the exchange of the T and U moduli.

The superpotential in the presence of non-geometric NS fluxes was originally derived
in [1] by applying the NS T-duality rules in eq. (1.2) to the Gukov-Vafa-Witten superpo-
tential in IIB [34] and to the one derived in [35, 36] in ITA, where all the possible geometric
fluxes were included. The expression for the IIB superpotential with all RR and NS fluxes
included is

WiiB/03,RR,NS = /[J::a —iSH3 + Q- T N Q, (2.11)

where

3
(Q - Je)arazas = 9 Q2 (~7c)a2a3]blb2 : (2.12)

[a1
In ITA, the terms containing the NS fluxes were written in [15] in the form Q. Aflux-J2, with
n =0,...,3, with the upstairs indices of the fluxes contracting indices of J!'. Using Fierz
identities, one can show that these terms can also be rewritten in the form e’c A Hng - Q,
with the upstairs indices of the fluxes contracting indices of ). instead of indices of J.. We
therefore write the IIA superpotential with all RR and NS fluxes turned on as

WA /06,RR,NS = / e’* A [Frr — Hns - Qo
1
:/ |:f6—H3AQC+JcA(f4—f-QC)+2JC/\JC/\(.FQ—Q-QC)

1
e Ne Ao (Fo =R Q)| (2.13)

where the contractions are defined as

(f : QC)al--.a4 =6- f[l;laQ (QC)a3a4}b
(2 Q)aras = Q0 () agjby b (2.14)

[a1

1
R = 6 . RblebS (Qc)b1b2b3 :

Identifying the fluxes in the two theories as in table 1, eqs. (2.11) and (2.13) are mapped
into each other by swapping the moduli 7" and U. In particular, using egs. (2.8), (2.9)
and (2.10) one can see that the superpotential is of the form Py(U) + SP,(U)+TP3(U) in
IIB and P (T') + SP(T) + UPs(T) in ITA, where the P’s are all cubic polynomials.

The contribution of the P? flux in IIB was considered in [15] using S-duality. This
induces a term ST P;(U) in the superpotential, and the mirror SU P4(T") expression in ITA
with n =0,...,3.
In [17] the T-duality rules in eq. (1.3) were used to derive explicitly such expression, also

arises from a term that can be schematically written as (J.)" - P - Q2,

giving rise to a term U?Ps(T), which is mapped back to IIB to a term 72 Ps(U) originating
from the flux P14, As a result, the full expression for the part of the IIB superpotential
containing the P fluxes is

Whsjo3,p = /[—iSPf T+ PY - THNQ, (2.15)

— 11 —



where the contractions are

3
(7312 : \jc)alazag = 5 'P[ballb2 (jC)azaP,]ble
1
(731’4 : jc2)a1azas = 4 P (u7c)[ala2|cb1\(‘7C)‘13]b253b4 : (2.16)

Precisely as done above for the terms containing the NS fluxes, the IIA mirror of eq. (2.15)
given in [17] can be rewritten using Fierz identities in the form e’s A P - Q2. Moreover,
one can show that, modulo Fierz rearrangements, the resulting expression is unique. We
therefore write down the P-flux part of the IIA superpotential as

Wita /06,5 = / NP Q2 = / [P% Q24 J A (PM 4 PE) . Q2

1 1
oo Ao N (PP + P13 - Q% + e N e N PLS Q2| |

(2.17)
where the contractions are defined as
(P 02)a, .05 = 60 - % Play () azag)pl (Ue)asasas)
(P2 0)asasasar = 6 5 - P sy
(P} 0 arasasas = —6 - % P2 Q) asasin] (2c)aslbbs
(P 02)asas = 5 PP () b (V)
(7315 : Qz)auﬂ = é ' % 'P[ballmbs(gc)azlblb (€2c)bsbabs

PLO. 02 = _% : % - PO (O )1 baby (e babse - (2.18)

The reader can check that using eqs. (2.8), (2.9) and (2.10) and the relations among the P
fluxes given in table 1 the ITA expression is the mirror of the IIB one.

We want to generalise the analysis to include all the allowed fluxes. We first consider
the NS’ fluxes. In IIB, Q"4 is the S-dual of P14, and one can immediately write down its
contribution to the superpotential. One then maps this to ITA using the relations among
the fluxes given in table 2. The ITA expression for the superpotential also contains terms
that are mapped back in IIB to H'>% terms. The resulting IIB superpotential is

WHB/O3,NS’ - /[—iSQ/1’4 : ;702 + ng’ﬁ : jcg] VAN Q, (219)
where the contractions are defined as

(QllA : -7c2)a1a2a3 = — . Qb (jc)[altmlcbll(jC)as}b2b3b4

B

1
.2 . gqlercaca;bi. b (%)[alag‘clcg‘(jc)a3}c3b1b2 (Je)bsbabsbe - (2.20)

(/H/3’6 ’ t7c3)a1a2a3 = 6

— 12 —



In ITA, we again find that modulo Fierz rearrangements there is a unique expression that

one can write in the form e’c A Hyg - Q2, which is
Wiia /06Ny = /[6J° A Hys - Q0] = / [ R% Q)= Je A QMO

1 1
—5Je N A 2508 - Gle N e N HBE.03

(2.21)
where the contractions are defined as
1
(R/S ) Qg)al---GG =30- 6 - R/P1b2bs (QC)[alazag (Qc)a4a5|b1|<QC)a6]b2b3
1 C
(9/1’4 : Qg)alv--azx = 9 Q' Drba (QC)[a1a2|C(QC)a3a4}bl(Qc)b2b364
1 1 e
(f,2’5 : Qg)aum = 12 9 f/ rebibs (QC)[a1|c1c2|(QC)a2}b1b2 (QC)b3b4b5
1 1
,H/&G ’ Qg = _ﬁ ) 6’]—[/016203,171-.1)6 (QC)CICle (QC)Cstbs (Qc)b4b5b6 . (2'22)

Again, it can be checked that using eqs. (2.8), (2.9) and (2.10) and the relations among the
NS’ fluxes given in table 2 the ITA and IIB expressions are related by mirror symmetry,
with the ITB polynomial which has the form ST?Ps(U) + T2 P;(U).

We finally consider the RR’ fluxes. In IIB, the only contribution comes from F’3:6,
which is the S-dual of H’36. This results in the contribution

WiB/03.RR = /[—iSf/3’6 WAITXY) (2.23)
to the superpotential, where the contraction is defined as
1 1
(]:/3’6 : jcg)amzag = 326 Fleieacs;bi.-be (\7C)[a102|0162|(jC)ag]Cgblbg (Je)bsbabsbe - (2.24)

Using table 3, this is mapped in IIA to the expression

Wiiajo6rr = / e’ N Fre - Q¢ = / {f’ﬁ QL+ T ATl

1 1
5 e Ade A FAe. b 4 gl N e N F5o. 0t
(2.25)

where the contractions are defined as

(F - 08ar 0 =5+ 57 F (0 gy (U)o (s Qe bt
(F - Q)a;...a4 % : é F Fre2P06 (0) 0 asler (e asanlon () eababs (Qe)babsbe
(F - 0 aa = 15 16 F 0001t e (Ve et Qe
FOO 0= o PO 00 Qs (et Qe - (2:26)
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Again, mirror symmetry relates the IIB and ITA expressions, and in particular in IIB one
gets a contribution to the superpotential of the form ST Py(U).

It is instructive to summarise our results writing down the superpotential with all
fluxes included for both theories. In IIB one gets

WiBjo3 = /[fs —iSH3 + (Q —iSPY) - Je + (P —iSQMY) - 72
+ (M0 —iSF30) . 73 A Q, (2.27)

where the contractions are given in egs. (2.12), (2.16), (2.20) and (2.24). This expression
coincides with the one derived in [18] on the basis of generalised geometry considerations.
The mirror ITA superpotential is

Wiia o6 = /eJC A[FRr — Hns - Qe + P - Q2 — Hng - Q3 + Frre - Q, (2.28)

where the contractions are defined in egs. (2.14), (2.18), (2.22) and (2.26). We interpret the
fact that the ITA superpotential has a unique expression when written as in eq. (2.28) as a
manifestation of mirror symmetry. For geometries with SU(3) structure, Q and e”’s are two
Clifford(6,6) spinors which are both pure (i.e. they are annihilated by half of the gamma
matrices) and mirror symmetry corresponds to the exchange of these two spinors [37-41].
Generalising this to compactifications with non-geometric fluxes, one thus expects that the
IIB superpotential [(flux-J)AQ be mapped by mirror symmetry to the ITA superpotential
[ e’ A (flux - Q7), precisely of the form we find.
The full expression of the superpotential as a function of the moduli in IIB is

WiBjo3 = —Fyiy2y

—iS(—H

3+iUifxiy3yk +U; ka igi gk —U1UU3F 102,03

y1y2y3+iUiniyjyk+UjUkHyiszk—iU]_UQUg/)L[xleIS)

. ad ak :)3]:1: . wIyk | . ylxk y? zk
+iTi(Qy: ™ —iU;Qu™ +iUp Q" +iU; Q" +UiU; Q

alyk vyt vy
+UUQ,." —UiUr Q" +ilhUaUs Q" )
+ST (P iU P2 iU P iU PE Y TP
j 0k

+UURPYY —UjUkP;j +zU1U2U373y ) (2.29)
—UUPY Y U py ey L gLy pry ey _Z'UlUQngyi,riyiyjyk)
—UU; QY Y U, QY LU, v Y _iUlUQUgQ/yivxiyiyjy’“)

1,2,3

FTY T T (—iH 2 L UMY iU U™ Y — U Uy Us Y Y

1,2,3

—iSTy Ty Ty (—iF™ =% U FY " iU U F' 0V Uy UpUs FY'0°°Y
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where the sum over the 7 index is understood wherever this index occurs, while j and k are
related to ¢ by cyclicity. The mirror IIA expression is obtained by exchanging the fluxes in
this expression with the ITA ones given in tables 1, 2 and 3 and by swapping U; with T;. In
the formula for simplicity of notation we have also omitted the six antisymmetric indices
of H36 and F3°, which are understood to be xz'z?z3y'y?y3. In the next section we will
focus on the tadpole cancellation conditions generated by the NS’ and RR’ fluxes and we
will determine the set of exotic branes which have to be added in order to cancel them.

3 Exotic branes, tadpoles and Bianchi identities

In the IIB/O3 T°/[Za x Zs] orientifold, D3 and D7-branes can be included in order to cancel
the tadpoles induced by the RR flux F3 and the NS fluxes Hs and Q [15]. In particular, only
stacks of D7-branes wrapping two of the internal two-dimensional tori with coordinates z
and y are allowed. After performing three T-dualities along the x directions, one similarly
finds that in the dual ITA description with O6-planes, the only allowed RR sources are
D6-branes spanning three = directions or one z and two y directions, each on a different
torus. Besides the D-branes, more localised sources surviving the orientifold projections
and compatible with supersymmetry can be included. In particular, in IIB one can include
the S-dual of the D7-brane [15], which is a brane with o = —3. In [17] we have recently
determined all the &« = —3 branes which cancel the tadpoles induced by the P fluxes in
both the IIB and IIA orientifolds using the universal T-duality rules in eq. (1.4). Except
for the S-dual of the D7-brane, all these branes turn out to be exotic as they are defined
only in presence of isometries, and we associate them to specific components of the mixed-
symmetry potentials E as reviewed in the introduction [26]. For the convenience of the
reader, we have collected all the results on the @ = —1 branes (i.e. the D-branes) and
a = —3 branes in table 4. In this section we will first determine how the NS’ fluxes modify
the tadpole conditions for the a« = —3 branes listed in table 4, and we will then complete
the analysis of [17] determining all the exotic branes which can be included in both the
type-1I orientifolds in order to cancel the tadpoles induced by the NS’ and/or the RR/
fluxes.

As table 4 shows, in IIB one has to include together with Eg also the mixed-symmetry
potentials Eg 4, Ego1 and E1g42. The field Egs4 electrically couples to the 33-brane!? in
four dimensions. Using the T-duality rules of egs. (1.2), (1.3) and (1.4), the generalised
Chern-Simons term [ Eg AP} -H; responsible for the tadpole of the S-dual of the D7-brane
is mapped to a term [ Eg4 A (P?-Q+Ph% . Hs). Under S-duality, the Es 4 potential is
a singlet, while the term PY*H3 is mapped to —Q'"* F3. As a consequence, we find that
when all the allowed fluxes are taken into account the Chern-Simons coupling is

/ Faa A (P2~ Q4+ PM .y — QM. F)S, (3.1)

121t is conventional to denote with p a p-brane with @ = —n and m orthogonal isometries. The same
notation was also used in [17].
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1IB IIA #
potential component component potential

Cy Cy Cyp1p223 Cy 1
Cy C4xiyixjyj C4yiyj$k Cy 3
Eg E4a:'iyia:jyj E4miyixjyfzk,xixjx’“,xk E9,371 3
E8,4 E4ziyixjyj7xiyixjyj E4wiyi$jijk7yiijk7$k E9,371 3
By iyigiyk giyiziyr | Eagiyigiyhak yiykak ok 6
E4xiyixjxk7xiyizjzk E4Iiyizjxk7yi Eg 1 3
E4xiyiyjyk,mz’yiyjyk Eloyyixjijkyk@jxk Eiop,2 3
Egy21 Ey piigiyiyk giyk zi | Eayiziyizhyk pighyk o E9 31 6
Ey yiyigiyiah yiakyi | Eagiyiziyick giyizi i 6
By piyiziyizh pigk o Eyyigiyizh 29 Eg 1 6
E4xiyixjyjyk7yiyk7yi ElO’xiyixjxkyk7ink E107572 6
E10,472 Elo’xiyiwjyj,xiyi E4yimjijkyk’yiyjmk,yi E9’3,1 6
Elo’ziyjrkyk’xiyj E4yiwjijkyk7rjyjyk’yj 6
Ero piyiizh zizh Ey piiyiyk i Eg 1 3
E]_O,xiyiyjykyjyk E107yixjijkyk7yjyk E10,5,2 3

Table 4. The a = —1 and o = —3 branes that can be included in order to cancel the tadpoles

generated by the fluxes. To avoid cumbersome notations, in all terms we have not specified the
sets of ten indices. Moreover, the indices i, j, k are always meant to be all different. In the last
column we give the number of independent components for each potential, which corresponds to
the number of different branes. There are in total 4 « = —1 branes and 60 aw = —3 branes.

which gives a tadpole condition for the 3§—brane. In this expression, the products are
defined as

(,Pl Q)abcd _ 127) abQ
(,PL4 T )abcd PP abcderef 7 (32)

and the contraction Q%% - H3 follows by S-duality.

Besides Eg 4, in the IIB orientifold also the field Fg 2 is a singlet under S-duality. In
four dimensions, the electric source for Fg 1 is the 6%’1—brane,13 and the corresponding
Chern-Simons term takes the form

/E9,2,1 A (P2 Q+ P Hy — QM )Pt (3.3)

13The 1,1 denotes the fact that two isometries orthogonal to the worldvolume of the brane are different;
specifically, one isometry corresponds to an index repeated twice while the other one corresponds to an
index repeated three times. We use similar conventions for all the branes considered in rest of this section.
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where the contractions between the fluxes are defined as
(P - Q)b = —PQpe + Qg Pre
1
(PR Ha) = P H g, (3-4)

and the contraction Q'* - F3 follows by S-duality. In equation (4.25) of [17] the Chern-
Simons term for any components of Fgo 1, not necessarily associated to a single brane,
and with only the non-geometric fluxes P? and Q turned on, has been derived. One can
verify that turning off the fluxes P%* and Q" in eq. (3.3) reproduces the single brane
components of that equation.

The last @« = —3 brane to consider in IIB is the 5?,}’2, which is the electric source for the
potential is F19 4,2, and whose tadpole condition is generated by the Chern-Simons term

/E10,4,2 x (PH.Q + HP0 . F)t2, (3.5)
with the contractions between the fluxes specified by
(Pl . g)abeded — ppiabed di | pescdap di _ pesedbp di | pdsdeap Q]l;c _ pd.debp Que
(H3S . y)obeded _ _%Hlacd,abcdpq Fopg — %H/bcd,abcdpq Fine. (3.6)

The potential Ejg42 forms a triplet of the SL(2,R) symmetry of the IIB theory, and in
particular under S-duality it is mapped to G'10,4,2 which in turn sources the 5?’2—brane with
a = —5. Transforming under S-duality eq. (3.5), one obtains that the tadpole condition
for this brane is generated by the Chern-Simons term

/G10,4,2 x (QM4. P FI36 . 95)h2, (3.7)

where the contractions are defined in a way analogous to eq. (3.6). We now want to
determine all the &« = —5 branes that can be simultaneously included in the IIB theory
together with the 5?’2—brane.

In the orientifold model, the components of the Eig42 potential that give rise to
branes in IIB are given on the left-hand side of the last four rows in table 4. By S-
duality, these are mapped to the same components of the G 42 potential. Using eq. (1.4)
with @ = —5, one discovers that by performing three T-dualities along the x directions
these components are mapped to components of Gig53,1, Gio4,1 and Gioes,2 in ITA. In
particular, the ITA orientifold condition implies that the number of y indices must be even.
The additional components of these potentials that satisfy these conditions are mapped by
mirror symmetry to the components of the IIB potentials G1o5.4,1, G1o,6,2,2 and G1o,6,6,2,

corresponding to 4%’3’1, 3§’0’2 and Sg’4’2 branes. The full list of &« = —5 branes allowed in
the orientifold, for both the IIB and IIA case, is given in table 5.
We now proceed with discussing the tadpole conditions for the remaining o = —5

branes in the IIB theory, which we obtain precisely with the method discussed above. We
first map the relevant brane components in eq. (3.7) to the mirror ITA theory, we then
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1IB ITA #

potential component component potential
G107472 Glo’ziyizjijiyi Glowiyixjijk’xjyixk@k G10,5,3,1 6
GlO,a:iyja:kyk,xiyj GlO,ziijkykxj,acjyjcck,xj 6
GlO,:ciyizrj:ck,zjwk GlO,:viyia:k:vj,:ﬂi 01074,1 3
Gyl(],:p’iy'iyjyk,g,(jy’C GlO,G,xirjmkyjyk,xjxk G10,6,5,2 3
G10’574’1 GlO,xiyixjijk7xiyixjxk7xj G107xiyizkyj7yi G107471 6
Glo,xiyixjijkijjyixhw Glo’xiyixjijk,ziyiyjﬂi G10,5,371 6
Gl(]’xkykrjyjyi’zjyjzkyi’mk Glo’ziyizjyjyk’riyiyj@i 6
GlO’xjijkykyi’zkykyiyj,yj G10’67xiyixjyjyk’yjzi G10767572 6
G10’672’2 G10767xiyi,xiyi G107$jyj$kykyi7yi$jxk7yi G10,573’1 3
GlO,G,xiyj,:ciyj GlO,acjyjackykyi,yjmjxk,yj 6
GlO,G,y"yj,y"yj G10,6,ziyizﬂ'ya‘zk,yiyi G652 | 3
G10,6,mimj,mia:j GlO,yjyi:vkyk,zk G1074,1 3
G10,6,6,2 G107676,xiyi GlO’xjijkykyi,yjyikayi G10,5,371 3

Table 5. The o = —5 branes that can be included in order to cancel the tadpoles generated always

by the NS’ and RR’ fluxes. To avoid cumbersome notations, in all terms we have not specified
the sets of ten and six internal indices. Moreover, the indices ¢, 7, k are always understood to be
different. In the last column we give the number of independent components for each potential,
which corresponds to the number of different branes, which are 60 in total.

extend this result to the remaining branes in the ITA theory that are allowed and we finally
map this back to IIB. In particular, for G054, we find the term

2 1,136 13,6 1,4 A/1,4v\5,4,1
/G10,5,4,1 x (Pi-H30 — Q. b 4 ptt. gyt (3-8)
where we have defined
2 13,6 \abcde,abcd,a __ ad- slabe,abedep acq ylabd,abcdep abn slacd,abedep
(P2 71435) — —PY +PLH — P
(731,4 . Q/1,4)abcde,abcd,a _ Pa,,acde le,bcda _ Pb,bcda Qla,acde + Pa,,abde Qlc,cdab (3 9)

o ch,cdab Qla,abde + zPa,abce Q/d,dabc . de,dabc Qla,abce

and (Q - F36)>41 is found by S-duality. Moreover, from the form of the Chern-Simons
coupling in eq. (3.8), one can see that Gios4,1 is a singlet under S-duality. The field
G1o6,2,2 is also a singlet and, by the same analysis, its generalised Chern-Simons term is
found to be

/ Grog22 X (PH. QM4 4 P2 HB36 . F36)6.22 (3.10)
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1B ITA 4

potential | component | component | potential

Lose2 | loeeaiy | 110662y | 110663 | 3

T10,6,6,6 0,666 Logeyry2ys | Tr0663 | 1

Table 6. The o« = —7 branes that can be included in order to cancel the tadpoles generated by
the NS" and RR/ fluxes. In order to avoid cumbersome notations, in all terms we have not specified
the sets of ten and six internal indices. In the last column we give the number of independent
components for each potential, which corresponds to the number of different branes, which are 4 in
total.

with
(731,4. Qll,4)abcdef,ab,ab — _rPa,abcd le,befa_rpa,abef le,bcda+73a,abce le,bdfa_zpa,abcf le,bdea
_rPa,abde le,bcfa +pa,abdf le,bcea +Pb,bcda Qla,abef +rpb,b6fa Qla,abcd
_be,bcea Qla,abdf +Pb,bcfa Qla,abde +rpb,bd6a Qla,abcf_rpb,bdfa Qla,abce

(,P12',H/3,6)abcdef,ab,ab — _rPnglabp,abcdef ) (311)

The remaining IIB a = —5 field in table 5 is G'19,6,6,2 and the corresponding Chern-Simons
coupling is

/G10,6,6,2 x (PhA.3/36)66.2 (3.12)
where we have defined
(zpl,4 . Hl3,6)abcdef,abcdef,ab —
fPa,abefrHlbcd,abcdef . rpa,abdfrHlbce,abcdef + Pa,abderH/bcf,abcdef + rpa,abcfrHlbde,abcdef
o zpa,abcerHlbdf,abcdef + Pa,abcdH/bef,abcdef + zpb,befaf}_[/acd,abcdef . Pb,bdfarHlace,abcdef

+ Pb,bdearHlacf,abcdef + Pb,bcfarHlade,abcdef . er,bcearHladf,abcdef + er,bcda/Hlaef,abcdef‘
(3.13)

The field G10,6,6,2 transforms in a triplet of the IIB SL(2, R) symmetry, and in particular
by S-duality it is mapped to Ii066,2, which is associated to the 3(7)’4’2—brane, which has
a = —7. Thus, one can conjecture that also the a = —7 branes electrically coupled to
I0,6,62 can be included in IIB in order to cancel other tadpoles induced by the RR’ and
NS’ fluxes. The exotic branes which couple electrically to I19662 can wrap only one of
the two-dimensional tori of the compactification and under mirror-symmetry, using the
rules (1.4), they are found to be in correspondence with three of the four 32’3’3—branes
associated to the field 106,63 in IIA, in particular those components with two = and one
y as the extra indices. Once again, one can argue that also the remaining brane associated
with the component of I 6,63 with three extra y can be included in ITA and this in turn
corresponds to the 3(7)’0’6-brane associated to I1g 66,6 in IIB. We have collected all the results

for the &« = —7 branes in table 6.
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The Chern-Simons of the I 66,2 potential in IIB is obtained from S-duality on the
one of G662 in eq. (3.12), resulting in

/110,6,6,2 x (Q4. Fr36)66.2 (3.14)

where the contractions are analogous to eq. (3.13). The Chern-Simons term associated to
the field I10,6,6,6 is reminiscent of that induced by the D3-brane charge and proportional
to Hs A F3. Namely, we find

/IIO,G,G,G % (H/?),G . ]:/3,6)6,6,67 (315)

and the contraction between the fluxes is specified by

(Hl3’6 . f/3,6)abcdef,abcdef,abcdef — _20Hl[abc\,abcdeffl|def],abcdef ) (316)

Given that the potential 119666 is invariant under S-duality, this concludes the analysis of
tadpole conditions.

In [17] we have also determined the most general Bianchi identities corresponding to
the absence of & = —2 solitonic branes (see eq. (4.2) of that paper). In the IIB orientifold
only two classes of those constraints survive the orientifold projections meaning that, for the
components corresponding to single branes, neither KK-monopoles (which are 5}-branes)
nor non-geometric 53-branes can be included in the four-dimensional theory because they
would break the N' = 1 supersymmetry. Moreover, in IIA one finds that the mirror of
these constraints are sourced again by KK-monopoles and 53-branes. By T-duality, we are
now able to determine similar constraints related to the absence of @ = —4 and o = —6
branes in both the orientifolds. For the convenience of the reader, we have schematically
anticipated the final results in eq. (1.6). First, let us point out that the 5%—brane sources
the potential Dy 3 in the four-dimensional theory, which actually belongs to a triplet of the
IIB SL(2,R) symmetry and in particular it is mapped to Fy3 by S-duality. Actually, for
the field Fy 3 only two kinds of constraints are allowed. These are conditions on the absence
of branes associated to the components with the three isometric indices containing both
the coordinates x and y of one of the two-dimensional sub-tori. By using the T-duality
rules in eq. (1.4) for the o = —4 fields, we find that the conditions given by the field Fy 3
in IIB, corresponds to requiring the absence of specific components of the fields Fy 41 and
Fip,5.2.1 in ITA. The requirement that in ITA all the components of these fields with an odd
number of y indices have to be included implies that other six conditions on the fluxes must
be imposed. In IIB, the mirror of these constraints corresponds to forbidding the exotic
branes 32’2, 52’0’1, 3372’1, sourcing respectively the fields Fy 52, F104,1,1 and Fiog3,1. In all,
the Bianchi identities for the IIB o« = —4 branes are found to be

SPLOPIP L Qb 4 QYR fy 4 QP = 0

_Pd,dbcppgd+73d,dacp7)£d_rPd,dabsz;d_i_Qld,dbcp Q;d— Qld,dacp di_i_gld,dabp Q]c)d -0
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_«Pa,abdeP;e+Pe,eabd7)}zc+73a,acdepjlze_Pe,eacdp}zb_«])a,abcep;d_Pe,eabcP}zd+Qla,abde Q?e

_ Qle,eabd Q?c_ Qla,acde Ql}e+ Qle,eacd Q?b_ Qla,abce Q(Jice —0
Pf,fcdepa,abef_rPf,facdpe,efab+Pf,fabd7je,efac_Pf,fbdepa,acef +73f,fbce7;a,adef

_fPf,fabCzPe,efad_rH/acf,abcdef sz _/H/adf,abcdef sz _rH/abf,abcdef sz —0.
(3.17)

As far as S-duality in concerned, the fields Fy 52 and Fig4,1,1 turn out to be singlets,
whereas Fio63,1 transforms in a triplet and its S-dual is the potential Hig .31, which has
a = —6. Exactly as in the case of the & = —2 branes, one finds that the corresponding 1B
constraint is mapped by mirror symmetry to constraints associated to specific components
of the potentials Hig63,1 and Hig65,3. The additional IIA components of these potentials
giving non-trivial constraints are then mapped in IIB to constraints which correspond to
forbidding the 3%’2’3—branes which source Higg53. In all, for the IIB o = —6 branes, we
find the Bianchi identities

Qlf,fcde Qla,abef o Q/f,facdg/e,efab + Q/f,fabdQ/e,efac o Q/f,fbdeQ/a,acef + Q/f,fbceQ/a,adef
_Q/f,fabCQ/e,efad _ ]_—/acf,abcdeffpef _ ]_-/adf,abcdefzpsf _ ]_—/abf,abcdef:PIff -0
c
(3.18)
and
_]_—/abc,abcdefzpf,fbce + ]_-/bce,abcdeffpf,fabc + ]_-/acf,abcdefapb,bcef o ]_-/cef,abcdeffpb,bcfa
+f/abf,abcdefpc,cefb - ]:Iefb,abcdefzpc,cfab + Hlabc,abcdef Q/f,fbce
_H/bce,abcdef Qlf,fabc + /chef,abcdef le,bcfa o Hlacf,abcdef le,bcef
_Hlabf,abcdef Qlc,cefb + /H/efb,abcdef Q/c,cfab —0.
(3.19)

In table 7 we have collected all the branes with « even, forbidden by the N’ = 1 su-
persymmetry and giving rise to non-trivial Bianchi identities. As far as the Bianchi iden-
tities are concerned, what actually happens in ITA can be easily found from (3.17), (3.18)
and (3.19) by mirror symmetry. The same is true for all the IIB tadpole conditions derived
in this section. In both the type II orientifolds, 27 branes can be included in order to cancel
the tadpoles induced by the fluxes. It’s interesting to note that the total number of branes
compatible with the minimal amount of supersymmetry turns out to be equal to that of the
fluxes. In [15] all the fluxes have been embedded in the representation (2,2,2,2,2,2,2) of
SL(2,R)". In the next section we will show how also the 27 branes of this section organise
in irreducible representations of SL(2,R)” which are singlets and triplets of each SL(2, R).
An analogous result will be found for the forbidden branes with « even giving rise to the
Bianchi identities (3.17), (3.18) and (3.19).

4 Exotic branes and SL(2,Z)"

7

The orientifold model considered in this paper has a conjectured SL(2,Z)" non-perturbative

duality symmetry [15, 30], where each SL(2,Z) has a modular action
aM —ib

—_ 4.1
—>icM+d (4.1)
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1B A i

potential component component potential
D7, D4l,jijk7xk D4ijjxi7xi D7, 6
Dy yiyiyh b Dy yiyiykgizh yhzizh Dg 3 6
Dy 3 Dy yiyighykai wiyizi Dy yighyk 4 D74 6
D4xiyixkykyj7xiyiyj D4yixkykijj7yiijj D973 6
Fy 3 Fy piighybzi giyizi Fy piighybzi giyizizh ok Fo 41 6
Fy giyighyhys ziyiyi Fio piyiyizick gk oi Fio521 | 6
F975’2 F4ziyixjijk7xiyixjijk7xjyj F4xiyi$jyj$k7wiyiijk7yj F974’1 6
Ey giyyiqiyiyh giyiaiyiyk ziyi B0 giyiyiyhak yich ok Fios21 | 6
F107471,1 FlO’xkykxiyi’mk@k F4ziyixjyjyk’ykmiyixj7xj F97471 6
F]_O,xkykxiyi,ykyk F]_O,Z.kykxiyixjykxj,yk F10757271 6
Fi063,1 F10’67xkykxj,xj F4wiyiijkyk7xiyiyjyk’yk Fo 41 6
Fi0,6 2k ykyi yi Fio piyiaiyiyk yhyi i Fios21 | 6
Hip6,31 Hio 6 okykai i Hyp 6,2k ykai g Hipe31 | 6
H10,6,:vkykyj R HlO,G,:vkykyj:ci:cj ylxted H10,6,573 6
Hio,6,5,3 H0 6 giyiziyizh ziyizh Hi06yiziyiyi Hipe31 | 6
H10767xiyixjyjyk7xiyiyk H10767yixjyjykxk7yiykxk H10’675’3 6

Table 7. The branes with o even that are forbidden by the N' = 1 supersymmetry and give rise
to non-trivial Bianchi identities. The total number of such branes is 96.

on each modulus M. We denote with SL(2,R)|s, SL(2, R)|7, and SL(2,R)|y, the group that
acts on the modulus S, T; and U; respectively. The 128 fluxes that can be turned on in
the model belong to the (2,2,2,2,2,2,2) representation of SL(2,R)” [15], where the first
doublet is with respect to SL(2,R)|g, the second to fourth with respect to SL(2,R)|r, and
the fifth to seventh with respect to SL(2,R)|y,. The aim of this section is to determine the
representations of all the space-filling branes that can be included to cancel the tadpoles.
We will find that the branes belong to 16 irreducible representations, each made of three
triplets and four singlets. More precisely, these 16 representations are all the possible
representations made of three triplets and four singlets with the condition that in the
IIB picture there is an even number of triplets with respect to the groups SL(2,R)|y,.
Additionally, we will find that the branes with even «, that by being projected out give
rise to Bianchi identities, collect in 12 irreducible representations of SL(2,R)7, which again
are made of three triplets and four singlets.

The analysis of [15] consisted in identifying the SL(2,R)” weights of each flux. The
outcome can be found for instance in table 6 of that paper, where + and — denote the two
weights of the 2 of each SL(2,R). We are interested in particular in the transformation

— 922 —



with b= —1 and ¢ =1 in eq. (4.1), whose action on the modulus M is
M —1/M. (4.2)

This transforms a particular component of the (2,2,2,2, 2,2, 2) representation according
to [15]
(n1,...,nMm,...,n7) = sign(na)(na, ..., —nar, ..., n7), (4.3)

where any label n is either + or —. We denote with S, 7; and U; the generators that
invert respectively the moduli S, T; and U; as in eq. (4.2).1* In the IIB/O3 orientifold, the
flux Fy1,2,3 has weight (+, 4+, +, +, 4+, +,+). This is mapped under S to the flux H,1,2,s
of weight (—,+,+,+,+,+,+). The action of the generator U; on the flux components
corresponds to the exchange of the coordinates z* and y’. Therefore, the fluxes F,1,2,3
and H,1,2,3 have weight (+,+,+,4+,—, —,—) and (—,+,+,+, —, —, —) respectively. The
generator T; maps for instance Fy1,2,s to Q;”ka and F, 12,3 to ngyk. In particular, the
flux QZ?IS has weight (4, —, +, +, +, 4+, +). Similarly, one can determine the weights of all
the other fluxes [15].

We now want to determine the representations of the 128 branes that can be introduced
in the model to cancel the tadpoles induced by the fluxes, as discussed in the previous
section. Given that the charges of the branes have to cancel quadratic terms in the fluxes,
the branes must organise themselves into representations which are either singlets or triplets
of each of the seven SL(2,R)’s. The key idea to determine these representations is to
trace the transformations of the potentials which couple to the branes from those of the
fluxes. Again, we focus on the IIB/O3 orientifold, and by transforming the fluxes in the
generalised Chern-Simons terms derived in the previous section under S, 7; and U; we
manage to determine all the representations of the branes.

We first consider the D3-branes. From the fact that the RR field Cy couples to the
background fluxes as Cy A H3 A F3 in the corresponding Chern-Simons term, one finds
that C4 does not transform under S and U;, while under the action of 7; it is mapped

to the component Ey 15 of the field Eg 4. To complete the representation,

YR aiyiakyhks
one has to determine how the generators 7; and Ti act on Ey i kyk piyighys- From (3.1),
k of G1076’2,2 and the field

I0,6,6,6 whose Chern-Simons terms have been given in (3.10) and (3.15). Thus, we find

one can check that they generate the component Gy g zkyk g
that, starting from the RR potential Cy, there is a total of eight branes which can be
reached by acting with the generators of SL(2,R)7. These eight branes correspond to the
products of the two roots of each SL(2,R)|z,, and therefore the resulting representation
is (1,3,3,3,1,1,1), ie. a singlet under SL(2,R)|s and SL(2,R)|y, and a triplet under
each SL(2,R)|7,. We denote the resulting representation as (31, 37,,37,). The result is
summarised in the first row of table 8.

By looking at tables 4 and 5, one can notice that the potentials Eg 4 and G1062,2 couple
also to additional branes that are not contained in the (37, 31,, 31,) representation derived
above. In particular, we are missing the components of these fields which transform under

"1n IIB, the S transformation is precisely S-duality, acting as S — 1/.S on the axion-dilaton.
15Using the notation of the previous section, we take the indices i, j and k to be all different.
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IIB/O3 SL(2,R)” rep | potential component # | # reps

C4 C'4 1

(371,31, 37) Esa By ivjiziys wiviniys 310
Gro622  Gro6aiyiaiyi 3
110,666 110,666 1
E8,4 E, aiyiadyk giylapiyk 2
E4 ziyiziah ziyieizh 1

(37, 3u;, 3u,.) By wiyiyiyk aiyiyiyk 1 s
G622  Giopaiykaiyh 2
G1076,ac.7xk,wja:k 1
G10.6,57y4 v+ !
E9,2,1 E, zlylzdylyk ziyk pi 1
E4 xiytxd ylyk yiyk 4t 1
E4 ziyiziyiak zizk ol 1

(3Ti7 3u,, 3Uj) B, ; ) 1 6

dxiyiziyizhk yiak yt

G10,5,4,1 GlO,:rjyjzkykZi,ﬂﬁjijkxivmk 1
Gloﬂ,jyjzkykzi,xjyjykxi7yk 1
Gloﬂ,jyjzkykyi,xjyjmkyiJk 1
Gw@jyjzkykyi’xjyjykyi7yk 1
Cs Cy xdyixkyk 1
Ey E, iyl xkyk 1

(35,31,,37,) Biuus  Flosiyiaryaiy 2| 3
G10,4,2 GlO,xiinjyj alyd 2
Gro662  Gro6,6.0iy 1
Loss2 10660ty 1
Eio4p2 E10,xiyk;riy",:rjy"' 2
ElO,Q:jmkxiyi,Ijxk 1

(357 3Uj’ 3Uk) Elo,yjykwiyivyjyk 1 3
G10,4,2 Glo,xjykmiyi,mjyk 2
GlO,xjmkxiyi,zjxk 1
Gl[)’yjykxiyi’yjyk 1

Table 8. The SL(2,R)” representations of the IIB/O3 potentials which couple to the allowed space-
filling branes, which have o odd. They are all the possible representations with four singlets and
three triplets of SL(2,R)|y. The branes are 27 in number and organise in 16 different representations.
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the action of the generators U;. Looking at Ejg 4, one finds that for each i there are four of

those components, i.e. E, . two components for i fixed), E, .

yiziyk aiyiziyk ( yizdzk qiyizigh

and By yiyiyiyhk giyiyiyk- One can also see that these components are singlets of SL(2, R)|y,
while transform with each other under the action of I/; and U),. Similarly, one can prove
that they do not transform under the action of 7; and 7, whereas under the action of 7;
they generate the components Gy g yiyk piyks G106,2i0k gizk A0 Giog yiyk yiye Of G10622.
For fixed i, this gives a total of 8 branes, which collect in the representation that we denote
(37,,3u;,30,,)- The result is summarised in the second row of table 8.

The remaining « = —3 and a = —5 branes that are singlets under S are associated to
the potentials Fgo1 and Gios4,1. As tables 4 and 5 show, this gives in total 48 branes,
which are embedded in six different representations denoted as (37, 3y,, 3y, ). In particular,
yiziyizh pigk gy Lagi
and E4$iyizjyjyk7yiyk7yi of Ega1, together with the components Gw’xjngc

for fixed ¢ and j the components E, .. yiziyizh yizh yis La giyigiyiyk ziyk zi
kykgi piyigick gk
Glowjyjmkykxi7xjijiyk7yk, Gl()’xjijkykyi’xjyjyiykﬂk and Glowjijkykyi,xjyjyixkJk of G1075,471,
belong to a single irreducible representation.

The D7-branes and their S-dual belong to triplets of SL(2,R)|s. The allowed compo-

nents of the electric potential of the D7-branes, Cg, are Cy iyiziyi, and one can see that

7
they are invariant under the action of the three generators U;. Mofeover, we find that these
components do not transform under 7T while they generate respectively the components
ElO’xjijkyk,xjyj and E107miyixkyk,xiyi of the potential E1g 42 under a single action of 7; and
7j. By S-duality, we see that we have to include also the components G iy zkyk zi, and
G0 ziyikyk iyi Of G10,42. From these components, under the composed action of the gen-
erators 7; and T;, we can generate the field Gy g g ;4 Which forms a triplet of SL(2,R)|s
together with its S-dual I, g ,k,x. The resulting representation is (3s, 37;, 37;,).

Just as in the case of the S-duality singlets Fg 4 and G196,2,2, that contain components
that are not in the representation of the D3-branes, in this case there are components of
the potentials Eip4,2 and Gipa,2 which do not transform in the same representation of
the D7-branes; they are the components with the two extra indices labelling directions
along different tori of the orbifold, which are listed in the last row of table 8 and form the
representation (3s, 3y;, 3y, )-

To summarise, all the SL(2,R)7 representations of the 27 IIB/O3 branes have been
collected in table 8. As it is clear by looking at the table, we find that the branes form
16 irreducible representations, each made of three triplets and four singlets, and therefore
each containing 8 branes. The 16 representations are all the possible representations made
of three triplets and four singlets and such that there is an even number of triplets with
respect to SL(2,R)|y,. By looking at tables 4, 5 and 6, one can easily derive the mirror
result for the ITA /O6 orientifold. This is listed in table 9. Obviously, in the ITA picture the
representations are all those with an even number of triplets with respect to SL(2,R)|r,.

In the previous section we have also derived the branes with even « that are forbidden
by supersymmetry and whose absence implies Bianchi identities for the fluxes, as shown
schematically in eq. (1.6). Such branes are listed in table 7. We repeat for these branes the
same analysis carried out so far in this section for the branes with odd a. As table 7 shows,
there is a total of 96 such branes, and we find that analogously to the branes with odd «,
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ITA/06 SL(2,R)" rep | potential component # | # reps

Cy C4 rlx2g3 1

(3u1, 30,5, 305) Eo 31 By giyiaiyiah yiyizk ok 3 1
G10,5,3,1 G1o,xiyia:jyjy’€,ykmix7 y* 3
Losss  1106,6,y1y2y 1
E931 E, ziytzkykad yizkyk ok 2
Ly By gigyigigh g 1

(87;, 31, 30;) F105,2 B0 yigiyiahyk zizk 1 3
G10,5,3,1 G10,xiy'ixkykyf akybzigh |1
G10,6,5,2 G10,6,x.izizky-7yk,yfyk 2
G104, Gro0,yiykaini zi !
Ey31 E, yizkykaiyi pheiyi i 1
E4Iiyixkykzj’xiyizk7yi 1
Egq b, yizkykzi ok 1

(31,,31;,30,) Buss  Biowiyickaiy yia 1 6
G041 Glo,xkykyjﬂvi,yk 1
Gi0531  Growiyiakybai wiyiyhyi | 1
G107xiyixkykyj Jiyiyk ot 1
G10,6,5,.2 G10,6,xiyixjyjyk@iyj 1
Cy C4 ziyiyk 1
Eg31 Ey viyighykai pighzi zi 1

(35, 3Uj, 3Uk) E, yizhyk iyt gkyiyi yi 2 3
Gr0531  Grogiyiaiyiok yizizh ok | 2
Gr0,2iyizkybyi yiyiykyi | 1
Loses  T1066.25aky 1
Eg 3.1 By piyighyhyi ahyyi ok 2
Eiop,2 ElO,xJ'ijkykyi,yjyk 1

(3s,37;,31,) Eg1 Ey gigjiyiyh yi 1 s
G10,5,3,1 G1o7zjzkykzithky’“wi,w’“ 2
010,471 GlO,xJ'zkziyﬂxi 1
G652  Gro6aiyiakyte zizh 1

Table 9. The SL(2,R)” representations of the ITA /O6 potentials which couple to the allowed space-
filling branes, which have o odd. They are all the possible representations with four singlets and
three triplets of SL(2,R)|7. The branes are 27 in number and organise in 16 different representations.
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1IB/03 SL(2,R)7 rep | potential component # reps

D771 D4a:jyja:k,mk

D4rjy1y’“7y’“

Froan1  Fioakyhgiyi gk oh
(3Tj73Tk73Uk) F o 6
10,zkykaiyt yk yk
F9,5,2 F4xiyimjyjmk,xiyixjijk,xjyj
Fyaiyiziyiyk aiyiaiyiyk aiys
H10,6,5,3 H10,67xjijiyixk’kaiyi

H10,67xjijiyiy’“7y’“xiyi

D973 D4xkykriyimj,l'iyil'j
D4xkykmiyiyj,$iyiyj
F973 F4Ikykxiyixj7xiyixj
(35’3Ti73Uj) F S 6
4xkykxlyzy]’xzyzyj

Hioes1  Higgakybeiai
Hlo,ﬁ,zkykyj,yj
Fio631  Fro6akykai 2

Fro.6,2kybyi yi

Table 10. The SL(2,R)” representations of the forbidden IIB/O3 potentials which couple to
space-filling branes with o even. The branes are 96 in number and are embedded in 12 different
representations.

they collect in 12 irreducible representations made of three triplets and four singlets. We
give the full result in table 10 for the IIB case and in table 11 for the ITA case.

We conclude this section by pointing out that the generators 7; and U; can be written as
the products of specific T-duality transformations and S. In particular, in IIB we find that

7; = —ijijkykSijijkyk
Ui = —(ST,iyi)° (4.4)
where ijijkyk = Tyk oT, ko Tyj o T,; is the combination of single T-dualities along

the directions @7, 9/, ¥ and y*, and similarly Tyiyi = Tyi o Ty is the combination of
T-dualities along z' and y*. The reader can verify that using eq. (4.4) and the T-duality
transformations of the fluxes given in egs. (1.1), (1.2), (1.3), (2.4) and (2.6) one recovers all
the weights of the fluxes, and similarly using the universal T-duality rule given in eq. (1.4)
one can determine all the representations given in tables 8 and 10. Using mirror symmetry,
an analogous result applies to the ITA case.
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5 Discussion and conclusions

The original motivation of this paper was to extend the analysis of [17], where the inclusion
of the P fluxes was discussed for both the IIB/O3 and ITA/O6 T°/[Zy x Zs] orientifold
models, to all the remaining allowed non-geometric fluxes. We have denoted such fluxes
as NS’ and RR’, and we have shown that they transform under T-duality according to the
general rules given in egs. (2.4) and (2.6). These rules allow to write down a complete
expression for the superpotential, which is at most linear in the modulus S and at most
cubic in the moduli T; and U;. The IIB and ITA expressions for the superpotential are
related by mirror symmetry.

The superpotential of the ITA /O6 theory given in eq. (2.28) is obtained by requiring the
matching with IIB using the mapping dictated by the T-duality transformation rules that
we have found. We interpret the fact that the ITA superpotential has the form [ ede A (flux
Q) as a general manifestation of mirror symmetry. Indeed, for any ' = 1 compactification
with SU(3) structure, mirror symmetry has been conjectured to correspond to the exchange
of Q and e’e [37-41], and if one assumes that this result is actually reliable in a generic
non-geometric setup, one can expect that the form of the ITA superpotential that we find is
valid for any O6 orientifold. In this regard, it would be worth investigating our ITA result
more deeply in the context of generalised geometry. Moreover, focusing on the large class of
ITA/O6 Calabi-Yau orientifolds, it would be promising to understand the relation between
the ITA superpotential and the cohomological numbers which characterise the topology of
the compactification. As far as we know, this relation has been worked out only for IIB/O3
Calabi-Yau orientifolds so far, including all the allowed RR, NS and P? fluxes [42].16

We have also determined all the exotic branes that can be sourced by all the non-
geometric fluxes. The tadpole conditions that we find have the general form given in
eq. (1.5). Similarly, we have determined how the inclusion of all the fluxes modifies the
Bianchi identities which correspond to non-trivial quadratic constraints for the fluxes, aris-
ing in the orientifold from the absence of specific exotic branes of the maximal theory, as
eq. (1.6) summarises. Exotic branes are charged with respect to mixed-symmetry poten-
tials, and in particular denoting with A, ,, . a ten-dimensional mixed-symmetry potential,
this corresponds to a brane if some of the indices p are isometries and contain all the indices
¢, which themselves contain all the indices  and so on [25, 26, 45]. The crucial ingredient
in our analysis of tadpole conditions and Bianchi identities is the universal rule discovered
in [17] and given in eq. (1.4), which relates under T-duality the brane components of the
various mixed-symmetry potentials.

The mixed-symmetry potentials that occur in this paper arise in the decomposition
of the Kac-Moody algebra Ej; [46] with respect to the ten-dimensional theory [47], and
in particular the brane components are associated to the real roots of Eq; [48]. From the
point of view of the lower-dimensional theory, these components are the long weights of the
representation of the symmetry group to which the corresponding potential belongs [49].
The Bianchi identities that we find in section 3 are restricted to these components, as they

5The generalization of the Bianchi identities including P? fluxes to the IIB/O3 Calabi-Yau orientifolds
has been discussed as well [43, 44].
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ITA/O6 SL(2,R)” rep | potential component # reps

D7y D4:pjyj:p’i,x'i
Dy 3 D, wiyigkykai ghykgi
(3Tka3Uj73Uk) o S . 6
datytaiyiak wiytydzk yi
F10’5’2’1 FIO,Z‘kykxiyimj,l?jyk,yk
Fl()’xiyixkykyj’zkyj@k
Hio653  Hyo6miyiyiakyk ahkykyi

Hio631  Hiopwiyiyiy

D7’1 D4zkykyi7yi
Dg’g D4Z‘ky

F9,4,1 F4mkykziyixj,xiyixjwk,xk

(35,37, 303) [ 6
datyiakybyl yiziyiyk yk

kytaiyd ytalyd

F10757271 FlO,xjyja:iyixk,kaj,zj
F107y’“xiyixjyj,yjy’“,yj
Hioe31  Higgukyraiai

Hio653  Hioeakykaiyici viziyi

Table 11. The SL(2,R)” representations of the forbidden IIA/O6 potentials which couple to
space-filling branes with « even. The branes are 96 in number and are embedded in 12 different
representations.

are associated to branes with even « that are forbidden by supersymmetry (see eq. (1.6)). A
more detailed analysis should include the Bianchi identities for the remaining components.
We leave this as an open project.

An analogous restriction has actually been made on the fluxes themselves throughout
the paper. Indeed, we have always assumed that the fluxes that are not related by S
and T-dualities to the RR and H3 fluxes are not present. This implies that f¢ and Qab
(with @ not summed) vanish, as well as all the P fuxes. Similarly, for the P, NS’
and RR’ fluxes with all upstairs indices, we only consider the components such that the
first set of indices is fully contained in the second. From a group-theoretic perspective,
all these components correspond again to the long weights of the SO(6,6) representations
in eq. (2.2).

In [50, 51] it was shown that the Bianchi identities for the NS fluxes can be obtained
via demanding the nilpotency of the generalized twisted differential operator D = HA+f -
+Q - +R-, and it would be interesting to generalise this construction with all the fluxes
included. We observe that many of the Bianchi identities and tadpole conditions that we
have derived can be obtained by requiring independently the nilpotency of the operators
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Dy = (HPS A +PY . +Q - +F3) and its S-dual Dy = (F36 A QM4 . 4PF - +H3.).
The constraints obtained from the nilpotency of these operators have exactly the same
form of the NS Bianchi identities when P-fluxes are turned off (see, for instance, eq. (4.1)
of [17]). In particular, from (D;)? = 0, we recover the Bianchi identities related to the
fields Dg 3 and Fig63,1 (see table 7), and the tadpole conditions cancelled by the branes
which couple to the fields Cg, F194,2 and G196,6,2. Similarly, the constraints worked out
from (D2)2 = 0 correspond to the Bianchi identities related to Fy 3 and Higg 3,1 and to the
tadpoles cancelled by the branes coupling to Eg, G142 and I1966,2. It is interesting that
also the Bianchi identities related to Dy 3 are in these constraints, thus overlapping with
the whole set of NS Bianchi identities. This seems to suggest that a redundancy actually
occurs when the nilpotencies of these operators are taken simultaneously into account.
What is the real meaning of this, and whether there could exist an analogous description
for the rest of the constraints discussed in section 3, remains to be investigated.

A natural continuation of our analysis would be a detailed study of the solutions to
all the Bianchi identities and tadpole conditions that we have determined. Although this
is beyond the scope of this paper, we have performed a preliminary numerical analysis
aimed at finding solutions that are non-geometric and that can be allowed only in the
presence of exotic branes. In the isotropic case, where the three two-dimensional tori
are identified, we are left with 40 flux parameters satisfying 16 Bianchi identities and 30
tadpole conditions. We have looked for solutions by scanning the zero minima of the
function defined as the quadratic sum of all the constraints, where the integer number
of branes and fluxes are generally treated as parameters to be determined. This was
performed using the Mathematica algorithm NMinimize. As a sensible prescription, we
discard the configurations of fluxes in which no minima are found in zero after a number
of 10° iterations. That is also justified by the fact that for any configuration of fluxes no
new solutions are actually found in the range between 10* and 10° iterations.

We give here a few IIB examples of the solutions we have found. If only the fluxes
F3, H3, PL% and H'?0 are turned on, no solutions could be found without including exotic
branes. Besides the D3-branes, the fluxes induce tadpoles for the exotic branes 33, 6;71,
53’2 and Sg’4’2, and we find that the minimum number of @ = —3 branes which need to be
included is equal to 3. If instead only the fluxes F3, Hsz, H'>% and F’36 are turned on,
one finds that together with the D3-branes one has to include the exotic branes 53’2, 5%’2
and 3(;’0’6. Interestingly, there are solutions every time at least one of the 3 different kinds
of exotic branes is included. Finally, we have considered the case in which the fluxes Fj3,
Hs, Q1A H'36 and F36 are turned on. This is the most constrained case that we have
analysed (the total number of non-vanishing fluxes is 22), and to find solutions, besides
the D3-branes, we need to include also the exotic branes 3§, Gé’l, 53’2, 5?’2 and 32’0’6. We
plan to perform a more systematic search of solutions in the near future.

In [15] it has been shown that all the fluxes of the orientifold model fill the repre-
sentation (2,2,2,2,2,2,2) of SL(2,R)". Therefore, the fluxes are symmetric under the
exchange of any pair of SL(2,R)’s. In this paper we have shown that in IIB the space-
filling branes group in 16 irreducible representations of SL(2, R)” which are all the possible
representations made of four singlets and three triplets with an even number of triplets of
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SL(2,R)|y,. This means that the symmetry under the exchange of the different SL(2,R)’s
is actually broken by the presence of space-filling branes. This reveals the real effect of the
orientifold projection on the symmetries, which is to make a distinction between SL(2, R)|y,
and SL(2, R)|z,, whose exchange corresponds in fact to switching the description to IIA /O6.
We have also expressed the action of the SL(2,R)|y, and SL(2,R)|7, generators in terms
of S- and T-duality as in eq. (4.4), which is a general formula that can be applied to any
representation. This on one side proves the power of our T-duality rules and on the other
side gives an elegant expression for the SL(2,R)” generators which is universally valid.

To conclude, the inclusion of exotic branes may be an important tool in string com-
pactifications with non-geometric fluxes. Indeed, it would enlarge the possibilities to find
more viable N' = 1 four-dimensional vacua where all moduli can be conveniently stabilised,
as many constraints on the fluxes could be relaxed. Moreover, from a wider perspective
which goes beyond the closed string sector, it could be of extreme interest to further extend
this analysis studying the dynamics of the exotic branes.
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