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Abstract

A nonlocal damage-plastic model is adopted to describe the nonlinear structural response of masonry structures. The model, based
on a macromechanical approach, accounts for strength and stiffness degradation with hysteretic dissipation typically characterizing
the masonry response, when it is subjected to horizontal loads. The stiffness recovery due to the crack closure, under cyclic
loading, is also introduced by defining two different scalar damage variables for prevailing tensile and compressive states. To
explore the effect of such nonlinear phenomena on the masonry structural response, the behavior of an unreinforced slender wall
is investigated in the dynamic field. Special attention is devoted to the analysis of the wall frequency response curves (FRCs),
obtained by imposing base harmonic accelerations with slowly time-variable frequency. These curves highlight the complexity of
the dynamic phenomenon: due to the stiffness decay exhibited by the wall, a continuous variation of its natural frequencies occurs,
which in turn modifies the resonance conditions. Finally, the wall response results strongly path-dependent and the characteristics
of the wall restoring force lead to multi-valued FRCs.
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1. Introduction

Masonry buildings represent a significant part of the historical and architectural heritage in many countries. The
development of efficient numerical procedures to study their structural response especially under seismic loading
conditions is a challenging and significant task for researchers and practitioners. Masonry material shows a very
complex behavior due to the heterogeneous and composite nature of the medium and to the strongly nonlinear behavior
of the constituents. The overall response is influenced by shape, sizes and arrangement of blocks and mortar, by the
cohesion and friction between them, and by their mechanical properties. During the loading process, onset, growth
and coalescence of microcracks occur and plastic irreversible strains are accumulated. Different modeling approaches,
based on different scales of the analysis [1-6], have been proposed, that is micromechanical, macromechanical
and multi-scale. All contain damage and plasticity constitutive laws to describe the mechanical response of each
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constituents or the overall response of the masonry modeled as an equivalent homogenized medium. Macromechanical
approaches represent a fair compromise between accuracy of results and computational burden and are able to take into
account the main mechanisms characterizing masonry response under cyclic loads: strength and stiffness degradation,
unilateral effect and hysteretic dissipation. All these nonlinear mechanisms significantly affect both the static and
dynamic masonry structural response, as shown both by experimental evidences and by the observation of the masonry
real response under seismic events.

A number of studies have been dedicated to investigate the effects of the degrading and plasticity phenomena on
the nonlinear cyclic static response of masonry walls. But the presence of damage and irreversible strains substantially
modifies the dynamic structural response too, under seismic actions [4,6] and harmonic excitations [4,7]. In particular,
the frequency response curves (FRCs) are relevant for the structural dynamic characterization and permit to highlight
and distinguish the effects of the different nonlinear mechanisms. Several studies on nonlinear oscillators, characterized
by geometrical and/or material nonlinearities, have clarified that the FRCs features are referable to the restoring force
shape: hardening or softening behavior, multi-valued curves with jump phenomenon or single-valued curves can be
occured [8-10].

This study adopts the damage-plastic model and the finite element formulation presented in [5] to numerically
investigate the nonlinear response of an unreinforced masonry wall. The masonry constitutive model introduces two
different scalar damage variables, governing the degrading processes for prevailing tensile and compressive states,
to account for the unilateral effect. Moreover, a classical J2 formulation governs the flow of the irreversible plastic
strains. First, the nonlinear static response of the wall is investigated under horizontal loads. Then, the wall dynamic
response is explored by deriving the frequency response curves of the structure, exhibiting degrading and plastic
mechanisms and framing the influence of the peculiar masonry constitutive relationship within the large amount of
the available data devoted to systems characterized by invariant restoring forces.

2. Model and equilibrium equations

A 2D plane stress formulation under the hypothesis of small displacements and strains is adopted. The stress-strain
constitutive relationship, based on the damage-plastic model presented in [5], is expressed as:

o=[1-D)a,+(1-D)a]* C-e") (1

where o, € and e are the stress, total strain and plastic strain vectors, respectively, while C is the elastic constitutive
matrix of the undamaged material under plane stress conditions. D, and D, are two distinct damage variables,
measuring the material degradation for prevailing tensile and compressive states, respectively, while @, are weighting
coeflicients defined below. The definition of two distinct damage variables in tension and compression permits
to account for the unilateral effect, related to the closure in compression of the tensile cracks. According to their
definition [11], D, and D, range in [0, 1], the lower bound corresponding to the initial undamaged material state, the
upper one attained when the material is completely damaged. The thermodynamic irreversible constraint is imposed,
such that D,/C > 0, together with the condition D, > D..

The evolution processes of the two damage variables are driven by two equivalent strain measures, Y; and Y,
defined as:

Y, = i (e + Ki D ten-{ej). @

where the Mac’Auley brackets (o)., compute the positive/negative part of a quantity, « is a material parameter
influencing the shape of the damage limit function in compression and e; results as:

ei=(1-20&+vY & 3)
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&; denoting the principal total strains and v the Poisson ratio. Furthermore, two damage limit functions, F, and F,
are defined to completely describe the damage evolution processes by means of the classical Kuhn-Tucker conditions,
expressed as:

F; = (Y; - Yo) - D (a;Y; + b))
Fc = (Yc - YCO) - Dc (acYc + b¢)

“

Here, the material parameters Yy and Y, set the damage initial thresholds in tension and compression, while ;. and
a,. influence the uni-axial tension and compression peak strengths and the softening branches slope, respectively.
Finally, the weighting coefficients combining the two damage variables in Eq. (1) are defined as:

Yi /Yo

= c = 1 -
Y Yot Y Yy T T )

a;

where the principal elastic strains £; are used to evaluate Y}, , according to formulas (2) and (3).

Concerning the adopted plasticity model, a classical J2 model with hardening is considered, denoting with o, and
H; the yield stress and the kinematic hardening coefficient, respectively.

The presented model and the developed solution algorithm for the evolution problems of damage and plastic
variables have been implemented in a finite element procedure (FEAP code [12]), where the mesh-dependence
problem, related to strain-softening behavior, has been overcome by adopting the nonlocal regolarization technique
[13]. Thus, the integral definition Y,/C and f/f/c of the damage associated variables is introduced in Egs. (2,4,5).

The FE discretized equations, governing the dynamic nonlinear structural problem, are written as:

Mii + Dua + P™(u) = P (6)

where u, u and ii are the global nodal displacement, velocity and acceleration vectors, respectively, in which dots
denote the derivative with respect to time. The global mass matrix M is assembled by following a lumped approach,
while the Rayleigh damping matrix D is evaluated as a linear combination of the mass and initial elastic stiffness
matrix. Finally, P is the external force vector and P™(u) is the internal force vector, accounting for the nonlinear
structural response. The implicit Newmark-3 algorithm is used for the integration in time of Eqs. (6) and the
Newton-Raphson procedure to evaluate the solution within each time step Ar.

3. Monotonic and cyclic restoring force

The model presented in Section 2 is used to study the structural response of an unreinforced masonry wall. The
geometrical parameters of the wall, schematically shown in Fig. 1(a), are height H = 6 m and thickness s = 1 m.
These have been selected to reproduce typical geometries of walls of historical buildings and churches, as for example
the external walls of the Basilica S. Maria di Collemaggio [14], aiming at studying the nonlinear static and dynamic
response of these slender walls taking into account damage and plasticity nonlinear phenomena. In fact, a unity wall
width is set to analyze the out-of-plane response of a strip composing the external wall. Concerning the material
properties, that is Young’s modulus E, compression strength and volume density p, reference is made to experimental
tests on masonry walls performed at the Joint Research Centre of Ispra [15]. Table 1 contains the adopted material
parameters, corresponding to tensile and compressive uni-axial strengths equal to 0.3E+6 N/m? and 5E+6 N/m?,
respectively.

Table 1. Masonry material parameters.
ENm) v  plkgm’] Yo Yo a, ae b, be oy [N/m?|  H[N/m?]
1.7E4+9  0.15 1750 7E-5 9E-4 9.7E-1 909E-1 4.5E-4 1.6E-2 1.3E+6 0.95FE

Considering simplified boundary conditions, where the wall is completely restrained at the base and free at the top,
monotonic and cyclic loadings are applied. Fig. 1(b) shows the load-displacement global curve obtained by applying
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Fig. 1. (a) Schematic of the wall; (b) monotonic and (c) cyclic load-displacement global curves.

a monotonic horizontal displacement at the top side nodes. A nonlocal radius /. = 0.5m is used and two different
meshes made of 19 X 3 (mesh 1 solid line) and 38 x 6 (mesh 2 dashed line) FEs are compared. The perfect agreement
of the two curves confirms the effectiveness of the adopted regularization technique and, then, the coarser mesh is
adopted in the following. However, the pushover response curve highlights that the structural response is strongly
affected by the degrading phenomena, showing significant decay of strength and stiffness. Pushing the structure
towards right, after the initial elastic branch, damage arises in the bottom left corner, where the tensile strains are
concentrated and then spreads around this region. Fig. 1(b) also contains the tensile damage maps corresponding to
the peak load (point A) and at the end of the analysis (point B), showing that the steep softening branch is due to
the spread of damage along the entire base section. Finally, the wall response is investigated by imposing a cyclic
horizontal displacement history at the top. The obtained curve, contained in Fig. 1(c), shows the onset of plastic
strains as well as the stiffness recovery, under load reversal, essentially due to the opening and subsequent closing of
the tensile cracks, when the material undergoes compression strain states.

4. Dynamic response

To point out the main features of the wall dynamic response, when this exhibits significant degrading and hysteresis
mechanisms, the FRCs of the wall are derived by applying sinusoidal horizontal acceleration histories ii, = U sin[(Q(#)¢]
at the base. These are characterized by a fixed amplitude U and by an excitation frequency £2(¢) smoothly varying
with linearly increasing and decreasing laws, called sweep 1 and 2, respectively. The ratio between €(r) and the first
elastic circular frequency of wall w; varies in the range [0.2+1.5] for sweep 1, conversely for sweep 2, as shown in
Figs. 2(c) and (d) with black lines. Assuming a Rayleigh damping factor equal to 3%, the FRCs are evaluated in terms
of top displacement of the point P in Fig. 1(a), by applying the two sweep loading histories.

Moreover, a suitable and summary measure of the overall tensile damage evolving in the wall is defined as follows:

NN

D = )
NIRZ

where A = H X s denotes the wall area. Although this index does not provide information about the spatial distribution
of the damage, it gives a good measure of the progression of the degrading process in the wall.

Figs. 2(a) and (b) show the top displacements (blue lines) exhibited by the wall under sweep 1 and 2 excitations,
respectively, with reference to an imposed acceleration amplitude ratio U/g = 0.06 (where g denotes the gravity
acceleration). The black lines refer to the elastic response of the wall depicted for comparison. It emerges that the
wall structural response is strongly affected by the nonlinear phenomena. In fact, when the damage starts to evolve
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in the structure, decay of the structural stiffness occurs causing in turn a decreasing of the natural frequencies. Thus,
during sweep 1 excitation, as the wall frequency decreases, the forcing frequency increases and, then, the structure
sharply comes out from the resonance condition and does not exhibit any further degrading process (see the DY
evolution in Fig. 2(c)). Conversely, in the case of sweep 2, when the driven frequency is approaching the natural wall
frequency, the damage slowly increases, as a conseguence, a frequency reduction occurs, but now the variation of the
wall frequency follows the same trend of (). Hence, the structure follows the resonance conditions and a longer and
more severe damage progression occurs (see Fig. 2(d)). Basing on these step-by-step response curves, the FRCs are
derived, by associating the displacement amplitude of each response cycle to the corresponding frequency excitation.
Figs. 3(a) and (b) contain the obtained curves corresponding to the three different ratio U/g = 0.04,0.05, 0.06,
depicted in green, red and blue lines, respectively. The elastic FRCs (black lines) are also shown for comparison.
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Fig. 2. Elastic (black lines) and nonlinear (blue lines) top displacement responses under (a) sweep 1 and (b) sweep 2, respectively, for U/g = 0.06;
time histories of the global damage index (blue lines) and excitation frequency for (c) sweep 1 and (d) sweep 2.
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Fig. 3. FRCs for (a) sweep 1 and (b) sweep 2: elastic curves (black lines), damage-plastic curves (colored lines) for three values of U/g.

For the lower excitation amplitude, the nonlinear peak is greater than the elastic, due to damage and stiffness
reduction, while by increasing the amplitude ratio U/g the peak response becomes lower than that of the corresponding
elastic curves. This is due to the onset of hysteresis mechanisms. Indeed, the cyclic load-displacement curve in
Fig. 1(c) shows that larger hysteresis loops are associated to larger attained displacement and, then, greater energy
dissipation occurs for greater input amplitudes. As expected, the overall behavior exhibits a softening trend, as
the backbone curve bents to the left with respect to the corresponding elastic one. This phenomenon can be better
appreciated by Fig. 3(b) where the decreasing sweep allows for explore the points of the peak response by obtaining
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the frequency-amplitude curve (backbone). Furthermore, the curves obtained under sweep 1 and 2 do not overlap,
due to the strong dependence of the structural response on its stiffness decay, being path-dependent and resulting
in multi-valued FRCs. In other words, the irreversible degradation of the wall mechanical properties of the wall
definitely influences the dynamic amplification of the response. It is worth noting that, neglecting the damage effects
and considering only an elastic-plastic constitutive response, according to the adopted J2 model, the same curve
is obtained by applying sweep 1 and 2. This is typical of hysteretic responses not undergoeing unstable periodic
solutions [8].

5. Conclusions

An isotropic nonlocal damage-plastic model has been adopted to describe the main features of the highly nonlinear
mechanical response of masonry structures, under static and dynamic loading conditions. In particular, a slender
masonry wall has been studied with the aim of characterizing the effects of degrading and hysteretic mechanisms
on masonry structural elements typical of historical buildings. The numerical simulations have highlighted the
following main features: the global cyclic load-displacement response curve of the wall shows strength and stiffness
degradation, hysteretic dissipation and recovery of stiffness due to the closing in compression of the tensile cracks.
Such nonlinear phenomena definitely affect the wall dynamic response. In fact, the resonance condition continuously
changes in relation with the decay of the structural stiffness, causing a variation of the natural frequencies. The FRCs,
evaluated by imposing base harmonic accelerations with slowly increasing and decreasing frequency, highligthed a
strong differences of the structural behavior with respect to the steady-state response of nonlinear invariant systems.
The curves show a softening trend and a peculiar multi-valued aspect, typical of the systems with restoring force
characterized by not fully hysteresis. Besides, the equilibrium points of the FRCs are strongly dependent on the
history due to the irreversible effect of the damage, preventing to retrace the same curve.
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