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Classical motor symptoms of Parkinson's disease (PD) such as tremor, rigidity, bradykinesia, and axial symptoms
are graded in the Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III. It is
yet to be ascertained whether parkinsonian motor symptoms are associated with different anatomical patterns of
neurodegeneration as reflected by brain grey matter (GM) alteration. This study aimed to investigate associa-
tions between motor subscores and brain GM at voxel level. High resolution structural MRI T1 scans from the
Parkinson's Progression Markers Initiative (PPMI) repository were employed to estimate brain GM intensity of
PD subjects. Correlations between GM intensity and total MDS-UPDRS III and its four subscores were computed.
The total MDS-UPDRS III score was significantly negatively correlated bilaterally with putamen and caudate GM
density. Lower anterior striatal GM intensity was significantly associated with higher rigidity subscores, whereas
left-sided anterior striatal and precentral cortical GM reduction were correlated with severity of axial symptoms.
No significant morphometric associations were demonstrated for tremor subscores. In conclusion, we provide

evidence for neuroanatomical patterns underpinning motor symptoms in early PD.

1. Introduction

Parkinson's disease (PD) is the second most common neurodegen-
erative disorder characterized by rigidity, tremor, bradykinesia and loss
of postural stability (Gibb, 1988). There is however, significant het-
erogeneity in the clinical presentation and course of the disease
(Thenganatt and Jankovic, 2014; van Rooden et al., 2011; Marras and
Chaudhuri, 2016). A number of MRI brain imaging methods (Brooks,
2010; Garg et al., 2015; Pyatigorskaya et al., 2014; Politis, 2014) have
been applied to study the grey matter (GM) and white matter changes,
and their association with clinical features of PD (Cochrane and
Ebmeier, 2013; Gattellaro et al., 2009; Koshimori et al., 2015). GM
density loss (Burton et al., 2004; Nagano-Saito et al., 2005; Beyer et al.,
2007; Melzer et al., 2012; Koshimori et al., 2015) and atrophy (Melzer
et al., 2012; Rosenberg-Katz et al., 2013; Mak et al., 2015; Delgado-
Alvarado et al., 2016) in PD patients have been extensively studied
using voxel-based morphometric methods. In contrast, relatively little
attention has been paid to study the relation between MRI GM intensity
changes and clinical motor measures as assessed with the Movement
Disorder Society Unified Parkinson's Disease Rating Scale (MDS-
UPDRS) III (Goetz et al., 2007). This is important because analysis of

morphometric association of GM with clinical (sub)domain scores is a
logical and powerful method to identify functionally meaningful brain
structural patterns that may inform on PD biotypes.

Previous findings for the correlation between GM structural changes
and MDS-UPDRS III were inconsistent. For example, one study based on
brain image segmentation and cortical surface reconstruction found
that there was a significant negative correlation between the MDS-
UPDRS III score and the volume of the left caudate, but not with cortical
thickness (Zarei et al., 2013). However, another study (Apostolova
et al., 2010) did not show significant associations between MDS-UPDRS
III subscale scores and caudate radial distance mapping an intuitive
measure of the cortical thickness. Nevertheless, there are also several
potential drawbacks with these earlier studies as they used relatively
small sets of data (< 100 PD subjects). Moreover, none of the studies
looked at the correlation between MDS-UPDRS III score and MRI GM
intensity. This is likely to have limited the studies' sensitivity as pre-
vious experiments (Rosenberg-Katz et al., 2013; Mak et al., 2015;
Delgado-Alvarado et al., 2016) showed that GM intensity was an ar-
guably more reliable approach to investigate subcortical atrophy. Al-
though significant correlation between GM concentration in the right
middle frontal gyrus and a previous version of the UPDRS III score
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(Fahn and Elton, 1987) was observed (Melzer et al., 2012), MRI GM
intensity associations with MDS-UPDRS III motor subscores have not
been attempted. It thus remains to be shown which of the MDS-UPDRS
III subscales best reflects symptoms arising from specific patterns of GM
deficit. This would be an important step toward better understanding
links between progression of the GM changes and clinical progression in
PD (Vingerhoets et al., 1997). In this study, a T1 weighted sequence was
adopted as the most popular method used to study brain structural
changes in neurodegenerative disorders. It offers detailed, validated
structural information including cortical thickness and GM density,
which can inform on structural macroscopic disease effects and their
patterns, and has been extensively used for PD morphometric studies
(Pan et al., 2012). Diffusion tensor imaging (DTI) is also commonly
used to study neurodegenerative disease based on its detailed char-
acterisation of subtle white matter changes, but it is less well estab-
lished to study neurodegenerative GM changes.

The purpose of this study was twofold. First, we used voxel-based
correlational analyses to investigate the correlation between GM den-
sity and MDS-UPDRS III scores and its four main subscores (tremor,
rigidity, bradykinesia, and axial symptoms) (Berganzo et al., 2016).
This allowed us to identify regional patterns of neurodegeneration
underpinning specific motor symptoms based on our hypothesis that
GM intensity reduction may be a suitable index of early neurodegen-
erative pathology leading to reduced neuronal density before overt
atrophic volume reduction. We postulated that mapping motor domains
separately would reveal distinct GM patterns pointing to potential
neural biotypes in PD.

Second, to test for potential confounding age effects we undertook
repeat regression analysis controlling for age but limited to the striatum
based on widely documented structural and diffusional alterations of
the striatal nuclei in PD (Péran et al., 2010; Fioravanti et al., 2015). We
hypothesised that there would not have significant age and striatal GM
intensity correlation in PD.

2. Materials and methods
2.1. MRI dataset

Three hundred and ninety-two PD MRI T1 structural images were
initially used in this study. All MRI image data were obtained from the
PPMI website (http://www.ppmi-info.org/) on 13/10/2015 as pre-
viously published (Li et al., 2017). Also, the UPRDS III scores for these
subjects were obtained from the PPMI database. Diagnosis of PD was
performed by movement disorder specialists according to the PD UK
Brain Bank Criteria. This excluded atypical Parkinsonism, concomitant
vascular load, history of cognitive impairment, psychiatric disorders or
other neurodegenerative disorders other than PD and any factors that
would preclude MRI scanning. Tremor, rigidity, bradykinesia, and axial
subscores were calculated according to the table in the supplementary
material section (Supplementary Table). Table 1 shows the

Table 1
Demographics and clinical details of 364 subjects with PD (235 male) derived from PPMI
repository.

PD (mean * SD)

Age 62.12 = 9.77
Total MDS-UPDRS III score 21.63 = 9.85
Sum of axial subscore 2.08 = 1.48
Sum of bradykinesia subscore 9.68 * 5.56
Sum of rigidity subscore 4.12 + 2.89
Sum of tremor subscore 5.76 *= 3.42
Hoehn and Yahr Stage score 1.62 = 0.52
Duration of disease (month) 6.70 + 6.65
Number of patients on PD medication 117

SD: Standard deviation.
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demographics and clinical details of the data used in the study.
2.2. MDS-UPDRS III subscores

We divided the MDS-UPDRS III score into 4 subgroups according to
motor symptoms in PD (Berganzo et al., 2016; Jankovic, 2008). MDS-
UPDRS III scores were then subdivided into tremor (sum of items
15-18), rigidity (item 3), bradykinesia (sum of items 2, 4-9 and 14) and
axial (sum of items 1 and 9-13) (Supplementary_Table). Group means
of the total UPDRS III scores and the sums of items of the 4 subscores
are displayed in Table 1.

2.3. Software packages for MRI data analysis

In the present study we employed several software packages/lan-
guages. The FSL-VBM package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
FSLVBM) was adopted for image registration, image segmentation, GM
modulation and image smoothing. The image registration toolkit
(IRTK) (https://github.com/BioMedIA/IRTK) was also applied for
image registration (Rueckert et al., 1999) if FSL failed for the image
registration. MATLAB (www.mathworks.com) was used for MRI GM
correlation analysis. In addition, Python language (https://www.
python.org) was implemented to extract patient information from the
clinical table, including age and total MDS-UPDRS III scores and sub-
scores. To help localize GM differences, the 120 regions specified in the
Automated Anatomical Labeling (AAL) template (Tzourio-Mazoyer
et al., 2002) were used to label regions in the resultant statistical maps.
Visual inspection was carried out at each step of image and clinical data
processing.

2.4. MRI GM image processing

The MRI GM image was obtained using the FSL software package.
First, structural T1 images were registered to the Montreal Neurological
Institute (MNI) template using the FSL Linear Image Registration Tool
(FLIRT) (Jenkinson and Smith, 2001) function. If the images failed to be
registered, then the IRTK package with a manual registration was car-
ried out to obtain the initial value for a rigid registration. A large head
mask, as part of the MNI template, was employed to exclude shoulder
and neck in the PPMI T1 brain image. This was done by multiplying the
registered images with the head mask using FSL-maths functions. The
Brain Extract Tool (BET) method (Smith, 2002) was employed to ex-
tract the brain (removing the skull from the whole image) for each of
the 392 image sessions. Next, non-uniformity correction was carried
out, and the FSL Automated Segmentation Tool (FAST v.4) (Zhang
et al., 2001) was adopted to segment tissues according to their type.
The segmented GM partial volume images were then aligned to the MNI
standard space (MNI152) by applying the affine registration tool FLIRT
(FMRIB's linear image registration tool) and nonlinear registration
FNIRT (FMRIB's nonlinear image registration tool) methods, which use
a B-spline representation of the registration warp field. The registered
images (before smoothing), were averaged to create a study specific
template, and the native GM images were then nonlinearly re-registered
to the template image. The registered GM partial volume images were
then modulated (to correct for local expansion or contraction) by di-
viding them by the Jacobian of the warp field. The segmented and
modulated images were then smoothed with an isotropic Gaussian
kernel with a standard deviation (sigma = 3mm), and the final
smoothed image (with sigma = 3 mm) was employed for the correla-
tion analysis between brain GM and MDS-UPDRS III scores.

2.5. Correlation analysis and statistical inference
For GM and MDS-UPDRS III correlation analyses, 26 subjects were

removed from the study due to GM segmentation problems, and two
subjects had to be excluded due to missing MDS-UPDRS III scores
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resulting in a final dataset of 364 (235 male) subjects with PD (Table 1).
We did not include a control group GM correlation analysis as the focus
was on the interrelations with motor symptoms not present in control
groups. For most healthy controls, the UPDRS III (sub)scores are O or a
small number. It is mathematically easy to calculate, but difficult to
interpret the correlation between the GM and UPDRS III score in
healthy controls. Also, it is biologically not meaningful as these scores
define the presence and the severity of symptoms rather than the degree
of loss of normal function (Li et al., 2017).

We selected the MDS-UPDRS III scores collected from PPMI data-
base nearest to the MRI scan time. Pearson correlation was calculated
between MDS-UPDRS III and the smoothed GM image voxel by voxel.
Then the correlation coefficient (r value) was converted to Z scores and
T statistics for statistical inference. For the purpose of threshold cor-
rection, we also converted the T values to P values using MATLAB
tedf.m function. Based on P values and using FSL with family wise error
(FWE) correction, we corrected the threshold for statistical inference for
MDS-UPDRS III score/subscore and GM intensity correlation analysis.

To control for putative age and sex effects that may confound the
symptom and GM associations, we applied a multivariate general linear
model (GLM) to study the independent relationship between UPDRS III
scores and GM intensities. We employed GM intensity as a dependent
variable, and included total UPDRS III score, age, and sex as in-
dependent variables in the GLM:

Y = a + b-UPDRS3 + c-Age + d-Sex + ¢ (€8]

where Y is GM intensity for each voxel, a,b,c,d are the regression
coefficients and e is the model error. Applying the least square method
to solve Eq. (1), we obtained the regression coefficient c¢ for the age
effect, and then we tested the significance of the coefficients.

This analysis was run after applying a striatal GM mask created from
the AAL template. FSL-FWE method was then applied to determine the
small volume corrected P < 0.05 threshold.

3. Results
3.1. Correlation between MDS-UPDRS part III total and subscores

To understand the mutual correlation between different MDS-
UPDRS III subscores, we computed the cross correlation between these
items (Table 2). We averaged the subscores of each class, and calculated
the correlation between different classes. Although all the items in the
table are significantly correlated with each other (P < 0.05,
r > 0.1028), the tremor subscores show the weakest correlation
strength with the other three subscores (considered very weak for all
except rigidity (Evans, 1996)). The severity of tremor was less depen-
dent on the severity of the other motor subscores, suggesting it could
belong to a different biological subclass. The strongest interrelation was
seen for bradykinesia, which was strongly correlated with rigidity, and
moderately with axial symptoms. It should also be noted that brady-
kinesia displayed a very strong correlation with the total MDS-UPDRS
III score (explaining about 79% of its variance), highlighting its

Table 2

MDS-UPDRS III and its subscore cross-correlation matrix. 1st row/column: axial; 2nd
row/column: bradykinesia; 3rd row/column: rigidity; 4th row/column: tremor; 5th row/
column: average MDS-UPDRS III score (r > 0.1028, P < 0.05, degree of freedom is
362).

Correlation Axial Bradykinesia Rigidity Tremor Average
coefficient UPDRS III
Axial 1.0000 0.4850 0.3885  0.1031 0.5740
Bradykinesia 1.0000 0.6181  0.1985 0.8879
Rigidity 1.0000 0.2040 0.7715
Tremor 1.0000 0.5351
Total UPDRS III 1.0000
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cardinal role in PD and the MDS-UPDRS III score analysis.

3.2. Association pattern of motor severity and GM intensity

Voxelwise correlation analysis revealed a significant negative as-
sociation GM intensity and severity of total UPDRS III score (Fig. 1).
Patients with more severe motor symptoms were found to have sig-
nificantly less GM density in the heads of the caudate nuclei (MNI co-
ordinate: ( = 13.9, 14, 4), T = — 4.5) and the right anterior putamen
(MNI coordinate: (15.8, 11.1, 0), T = — 4.42). No positive correlations
were identified at P < 0.05 with FWE correction.

We studied the total MDS-UPDRS III score correlation with GM in a
multivariate regression model taking age and sex effects into account
(Eq. (1)). In the regression model, we tested coefficient b to quantify the
correlation between MDS-UPDRS III and GM intensity. The colour re-
gions in Fig. 2 show the significant (P < 0.05, FWE corrected
threshold) associations in putamen and caudate regions.

Potential regional age effects were then further studied by testing
the coefficient ¢ in Eq. (1). We found that the regions with significant
age effects were located mainly in the amygdala-hippocampus and
parahippocampus regions (data not shown). We did not find significant
age correlations with GM in other brain regions, in particular not the
striatal regions, providing further support that our observed striatal GM
motor association pattern is not affected by age.

Next, we investigated the strength of correlation by selecting sig-
nificant clusters from Fig. 1 (putamen and caudate) as regions of in-
terest for post hoc correlation analysis. Cluster-averaged GM intensities
were then correlated with respective MDS-UPDRS III (sub-)scores. This
showed significant but weak correlations (Table 3) between the GM
intensity in the caudate and putamen with global motor severity (MDS-
UPDRS III) and three of its subscores (axial, bradykinesia and rigidity).
There was no significant correlation between striatal GM intensity and
tremor severity.

3.3. Association patterns of motor subdomains and GM intensity

To further assess potential motor domain specific GM change pat-
terns we used separate voxel-wise regression analysis for the motor
subscores. Axial symptoms showed significant (P < 0.05, FWE cor-
rected) negative correlations with left-hemispheric GM intensity
(Fig. 3). In addition to the left putamen (MNI coordinate: (— 18.6, 13,
—6.6), T = —4.87) and left caudate (MNI coordinate: (— 10, 12.1,
3.9), T = —4.57), significant negative correlation was found between
axial subscores and GM intensities in the left primary motor (BA4) (MNI
coordinate: (—46.3, —10.8, 32.4), T = — 5.3) and pre-motor dorsal
areas (BA6) (MNI coordinate: (— 49.2, — 6.1, 32.9), T = — 4.58).

Similarly, correlation between the rigidity subscores and GM in-
tensity showed a negative correlation in the putamen (MNI coordinate:
(—20.5, 10.2, —4.5), T = —4.37) and caudate (MNI coordinate:
(£ 129, 15.9, 3), T = —4.48) (Fig. 4). The correlational pattern of
GM and rigidity was qualitatively very similar to that of the MDS-
UPDRS III total score (Fig. 1).

Correlation between GM and bradykinesia subscores was also cal-
culated, revealing negative correlations in the putamen and caudate,
which was not significant at the FWE corrected P < 0.05 level.
Furthermore, voxel wise correlations did not show significant inter-
relations between tremor subscores and GM intensity at the corrected
level, although we found significant negative correlations between se-
verity of tremor and bilateral precentral cortical GM intensity (with
FWE correction, there was no significant difference yet, P < 0.05). We
also explored the interrelation between putamen and caudate regional
Striatal Binding Ratio (SBR) of DATScan SPECT images as provided by
the PPMI database with MDS-UPDRS III scores. No significant clinical
correlation was found.
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Fig. 1. Correlation map showing significant negative asso-
ciations between total MDS-UPDRS III score and striatal GM
intensity (P < 0.05, FWE corrected).

-4.45

-4.5

-4.55

-4.6

Fig. 2. Multivariate regression model showing independent
association between average MDS- UPDRS III score and GM
density, considering age and sex as a co-variates in the
model (T < —2.548, one tailed, P < 0.05, FWE cor-
rected, with small volume correction in striatum region).
(For interpretation of the references to color in this figure,
the reader is referred to the web version of this article.)

4. Discussion due to the addition of small volume correction for the multivariate
analysis while the main findings and pattern remain remarkably similar

In this study, we investigated the relationship between MRI GM suggesting a negligible age effect. We found an inverse association in
intensity and MDS-UPDRS III scores and motor subscores. Figs. 1 and 2 the putamen and caudate demonstrating that increased total motor
show the negative correlation between total UPDRS III score and GM severity (MDS-UPDRS III) was linked with decreased anterior striatal
intensity, and the apparent difference between Figs. 1 and 2 is largely GM density. Similar inverse association patterns were found for rigidity

501



X. Li et al.

Table 3

Correlation between GM intensity in caudate and putamen and MDS-UPDRS III scores.
Bold and underlining indicate significant (P < 0.05, degree of freedom is 362) correla-
tion.

Correlation Axial Bradykinesia Rigidity Tremor Average

coefficient UPDRS III
Caudate -0.2195 -0.1970 -0.2354 -0.0718 —0.2382
Putamen -0.2353 -0.2103 —0.2363 —0.0493 —0.2405

(MDS-UPDRS 1II subscores), while axial subscores showed negative
correlation with the left hemispheric GM including precentral cortical
areas (Fig. 3). With the FWE threshold correction, we only found sig-
nificant left hemispheric correlations for axial motor scores. This could
be due to the fact that the GM shows slight asymmetry in this dataset,
with larger GM intensity in the right hemisphere. However, at more
liberal (uncorrected, data not shown) threshold, both hemispheres
show correlation with the axial motor subscore. Neither bradykinesia
nor tremor scores were found to be significantly correlated with focal
GM densities.

4.1. Comparing with previous studies

Although conventional structural MRI has been extensively used in
PD to study GM loss and cortical atrophy (Burton et al., 2004; Pitcher
et al., 2012; Camicioli et al., 2003), this is the first imaging study which
used GM from a structural image to evaluate anatomical associations of
motor symptoms in PD. Our structural MRI results show differences
from and similarities with previous MRI and nuclear imaging (PET/
SPECT) studies.

Our study contradicts a recent morphometric study (Garg et al.,
2015), which showed no significant associations between GM changes
and UPRDS III using MRI surface displacements information. Surface
displacement captures disease related changes in the shape of the
subcortical structures. This could be owing to the fact that the surface
displacements were obtained from an image registration method that is
sensitive to scale related changes (Garg et al., 2015). Our results also
differ from other MRI studies (Apostolova et al., 2010; Zarei et al.,
2013), which found absence of correlations (Apostolova et al., 2010) or
between left caudate volume (Zarei et al., 2013) and motor severity

NeuroImage: Clinical 17 (2018) 498-504

(MDS-UPDRS III). This could be due to the methodological differences
or reflect true differences in patient populations. Interestingly, we ob-
served a left-sided predominance in the association pattern with axial
symptoms specifically affecting the left caudate, which is partially in
line with Zarei et al. (Zarei et al., 2013).

Our results are in good agreement with SPECT/PET studies with
8Fluorodopa (F-dopa) and dopamine transporter (DAT) tracers. F-dopa
and DAT studies have traditionally been used to evaluate the disease
severity of PD by assessing the integrity of dopaminergic terminals
(Morrish et al., 1996; Punal-Riobdo et al., 2009; Heiss and Hilker, 2004;
Rahmim et al., 2016). PET/SPECT studies demonstrated negative cor-
relation between MDS-UPDRS motor score and F-dopa and DAT con-
centration in caudate and putamen regions (Miiller et al., 2000; Ziebell
et al., 2010; Appel et al., 2015). The available data on the PPMI re-
pository did not allow to undertake a voxel-based analysis in this cohort
of patients and may well explain the lack to observe correlations be-
tween motor severity and regionally averaged SBR.

4.2. Relation with PD subtypes

Our GM results, however, suggest that functionally relevant changes
of dopaminergic terminals in PD are co-localised and potentially un-
derpinned by GM reductions. The observed association of GM intensity
reduction with increasing motor severity in this early cohort of PD
patients further points to early neural tissue damage in the anterior
striatum, in keeping with neostriatal alpha synuclein pathology de-
tected in stage III (Mori et al., 2008), and dendritic degeneration of
medium spiny neurons (Zaja-Milatovic et al., 2005).

Interestingly, we also found that different PD motor domains have
different GM correlation patterns, suggesting different motor striatal
degeneration patterns. We identified similar GM intensity reduction in
the anterior striatum with increasing severity of axial symptoms and
rigidity, and at post hoc analysis level for bradykinesia. Tremor sub-
scores, however, showed no correlation with GM density while axial
symptoms also showed precentral cortical associations. We thus provide
neuroanatomical support for neural biotypes that may underlie clinical
phenotypes. This is important as a theoretical background to further
justify recent attempts to use MRI for PD sub-classification, motivated
by the increasing interest to subgroup PD into biologically distinct
subtypes that may pave the way for a precision medicine approach in

Fig. 3. Correlation map between MDS-UPDRS-III axial motor subscores severity and GM intensity (P < 0.05, FWE corrected).
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developing more effective treatments. Many different subtype classifi-
cation systems and analysis methods have been proposed (Marras and
Lang, 2013; Marras and Chaudhuri, 2016), with the best established
classification according to the expression of two main motor symptoms
into tremor-dominant (TD), postural instability with gait disorders
(PIGD) subtypes and an intermediate form (Rosenberg-Katz et al.,
2013). A recent latent class model of clinical information also revealed
three distinct clinical PD subtypes (Campbell et al., 2016), whereas a
model-based cluster analysis using baseline data suggested there may
be four (van Rooden et al., 2011) or even five subtypes (Lawton et al.,
2015). To determine clinically meaningful PD classes, it is likely that a
multidimensional approach is needed that combines factors previously
used such as clinical symptoms, genetic factors with imaging features
(brain atrophy, cortical thinning, or functional imaging characteristics)
(Rosenberg-Katz et al., 2013; Jankovic et al., 1990; Fereshtehnejad
et al., 2015; Uribe et al., 2016). Our study demonstrates that GM
density maps have additional classification potential and highlight a
principled approach for feature selection based on powerful symptom-
structure correlations using recently released large repository data.

To study the extent of a possible confounding age effect, we in-
cluded age and sex of each subject as covariates in an additional re-
gression model (Fig. 2). The multivariate regression results showed si-
milar putamen and caudate GM correlation patterns with motor
severity scales as seen in the univariate analysis (Fig. 1), that remained
significant using a striatal small volume correction mask.

4.3. Advantages and limitations

The advantage of this study is that we used a large PD MRI dataset
in the analysis. Without big data, GM and clinical correlations, sig-
nificant differences would not be detected due to the small degree of
freedom in the statistical comparison. A second advantage of the da-
taset is the large proportion of unmediated subjects (67.8%) thereby
reducing the risk of drug-induced brain morphometric changes. The
major limitation is that these results were based on cross-sectional data
allowing us only to infer any associations, while longitudinal data is
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Fig. 4. Rigidity subscores correlation with GM intensity in
PD, coloured regions show significant negative correlation
with FWE correction (P < 0.05). (For interpretation of the
references to color in this figure, the reader is referred to
the web version of this article.)

needed to confirm whether disease progression induces GM changes. At
the level of cortical GM densities, we did not find interrelations with
motor symptoms. This does however not exclude the possible presence
of cortical pathology at a microscopic level that may either not affect
GM density or be unrelated to motor symptoms. We also cannot exclude
that clinically relevant cortical GM density changes may be a later
phenomenon in PD as our large PD cohort includes mostly de-novo
volunteers (Table 1). Finally, further investigation of the relation be-
tween dopaminergic functional imaging would be needed to clarify the
molecular underpinnings of the observed structural/motor associations
in early PD.

5. Conclusion

In a large sample of early PD, we found decreasing striatal GM
density with increasing MDS-UPDRS III motor severity suggesting early
anterior striatal neurodegeneration. We also observed different asso-
ciation patterns between motor domains with distinct subcortical GM
intensity loss underpinning rigidity, cortical and subcortical GM re-
ductions with increased axial symptoms, but no associations with bra-
dykinesia or tremor severity.
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