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ABSTRACT 10 

Deeply-buried carbonate-reservoirs from the Lower Triassic Feixianguan Formation in the Sichuan Basin of 11 

China host extensive natural gas resources.  These reservoirs are predominantly found in oolitic shoals, with the 12 

reservoir quality of dolomitized zones being higher than that of undolomitized limestone counterparts.  Here we 13 

present a combination of petrographic, isotopic, fluid inclusion, and quantitative porosity data in order to 14 

understand and predict the diagenetic processes that have impacted the reservoir quality of dolostones and 15 

limestones.  The porosity of limestones has been reduced to ~7.5% due to calcite cementation, whereas the 16 

porosity in oolitic dolostones is not cemented with calcite and typically has ~23.5% porosity. Dolomitization 17 

and concurrent early-diagenetic gypsum growth played crucial roles on the development and preservation of 18 

high porosity in the oolitic dolostone, first by stabilizing the rock fabric to inhibit loss of porosity during burial, 19 

and secondly through the generation of new porosity by dissolution of carbonate and anhydrite. A negative shift 20 

of δ
18

O and salinity values (<3.5 wt. %) measured from fluid inclusions in diagenetic calcite cement in 21 

limestones suggest that diagenesis associated with meteoric water played a key role in destroying limestone 22 

reservoir quality.  Early oil charge seems to have had a positive effect on carbonate reservoir quality in the 23 

dolostones, since oil emplacement inhibited calcite cementation.  Subsequently, thermochemical sulfate 24 

reduction (TSR) occurred, predominantly in the dolostones, as shown by TSR calcite cement with highly 25 

negative δ
13

C values (~ -20 ‰ VPDB) and δ
18

O (~ -10 ‰ VPDB) together with elevated calcite precipitation 26 

temperatures (> 110°C).  It is likely that TSR was responsible for the formation of enlarged dissolution vugs that 27 

increased porosity by ~2% in dolostones due to: i) anhydrite dissolution, ii) production of significant amounts of 28 

water resulting in formation water undersaturated with respect to calcite and dolomite, iii) generation of H2S, 29 
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and CO2, and the consequent reaction of H2S with the siderite (FeCO3) component in calcite and dolomite.  This 30 

study demonstrates the importance of diagenesis in the formation of deeply-buried, high-quality reservoirs in 31 

ooid-dominated grainstones influenced by the presence of evaporites. Our results should be useful for guiding 32 

future exploration and reservoir developments in similar paleogeographic and diagenetic settings. 33 

Keywords: Feixianguan Formation, Sichuan Basin, carbonate reservoir, reservoir quality, diagenesis, 34 

dolomitization, thermochemical sulfate reduction, porosity evolution, fluid inclusion, C/O/Sr isotopes 35 

 36 

1. Introduction 37 

Porosity and permeability of carbonate successions generally decrease with burial depth (Schmoker and Halley, 38 

1982; Lucia, 1995; Sun, 1995; Lucia, 2004; Ehrenberg et al., 2006).  The reduction of porosity in limestones is 39 

caused predominantly by calcite cementation as a result of mechanical compaction, pressure-solution (chemical 40 

compaction)( (Heydari, 2000).  In contrast, deeply buried dolostone reservoirs normally show higher porosity 41 

compared to limestone because of reduced calcite cementation (Neilson and Oxtoby, 2008).  The porosity of 42 

shallow-buried (< 3,500 m) dolostones (e.g., Pliocene-Pleistocene and Miocene dolostone) is typically equal to, 43 

or less than, the porosity in age-equivalent limestones (Lucia, 1995; Ehrenberg et al., 2006).  However, there are 44 

some exceptional, shallow dolostone reservoirs that have higher porosity than their equivalent non-replaced 45 

limestones.  Examples include the First Eocene reservoir at the giant Wafra Field (Saller et al., 2014), and the 46 

Miocene carbonate platforms of the Marion Plateau (Ehrenberg et al., 2006).  As burial depth increases to more 47 

than 3,500 m, reservoir quality of dolostones tends to be better than that of limestone equivalents (Sun, 1995; 48 

Heydari, 1997; Ehrenberg et al., 2006; Jiang et al., 2014b; Jiang et al., 2016).  This has been interpreted as a 49 

result of dolostones being more resistant to porosity-loss than limestones (i.e., more resistant to mechanical and 50 

chemical compaction and cementation) during progressive burial (Schmoker and Halley, 1982).  Moreover, 51 

dolostone has been commonly reported to contain enlarged dissolution pores in deep burial environments (> 52 

3,500 m) (Hugman III and Friedman, 1979).  However, pores in deeply buried dolostone may have commonly 53 

been lined or plugged by late stage cements during deep burial diagenesis (Heydari, 1997; Loucks, 1999; 54 

Worden et al., 2000; Worden et al., 2004; Machel and Buschkuehle, 2008; Neilson and Oxtoby, 2008; Jiang et 55 

al., 2014a).  Diagenesis thus plays a significant role in the formation of reservoirs both in shallow and deeply 56 

buried carbonate successions. 57 
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The preservation of porosity in deeply buried dolostone reservoirs is predominately controlled by (i) the amount 58 

of remaining primary porosity (Choquette and Pray, 1970), (ii) the formation of secondary porosity due to 59 

replacement of calcite with dolomite (Sun, 1995; Machel, 2004a), although some authors have suggested that 60 

dolomite cementation could significantly reduce the reservoir quality (Lucia, 1995; Warren, 2000; Machel, 61 

2004b), (iii) the dissolution of calcite or aragonite during dolomitization (Jiang et al., 2014b; Saller et al., 2014), 62 

as well as (iv) the preservation of the remaining early diagenetic porosity during burial (Choquette and Pray, 63 

1970).  Secondary pores generated by dissolution during deep burial diagenesis are unlikely to significantly 64 

contribute to reservoir quality, because pore fluids in sedimentary basins are typically saturated with carbonate 65 

and thus cannot dissolve carbonate minerals (Sun, 1995; Machel, 2004a; Ehrenberg et al., 2006; Ehrenberg et 66 

al., 2012; Dickson and Kenter, 2014).  However, some case studies have reported that substantial porosity could 67 

be created during deep burial and/or uplift in carbonate reservoirs due to thermochemical sulfate reduction 68 

(TSR) (Ma et al., 2008a; Cai et al., 2014) and oxidation of the sulfate reduction-produced H2S (Hill, 1995).   69 

TSR is the abiological oxidation of hydrocarbons by sulfate at elevated temperatures (generally greater than 110 70 

ºC), resulting in significant alteration of petroleum and the generation of a variety of reduced forms of sulfur 71 

(i.e., native S and H2S) and oxidized forms of carbon (carbonate minerals and CO2) as well as a combination of 72 

water, sulfide minerals, organosulfur compounds and bitumen (Machel, 1987; Machel et al., 1995; Worden et 73 

al., 1995; Worden et al., 2000; Bildstein et al., 2001; Cai et al., 2003; Jiang et al., 2015c).   74 

A general reaction can be written as follows: 75 

sulfate + petroleum  calcite + H2S ± H2O ± CO2 ± S ± altered petroleum (R1) 76 

Recent studies have confirmed that TSR can generate substantial amounts of low salinity water (Worden et al., 77 

1996; Jiang et al., 2015c).  Consideration of the addition of this TSR water to deeply buried carbonate reservoirs 78 

may shed new light on mesogenetic secondary porosity generation and reservoir quality improvement (Worden 79 

et al., 1996; Jiang et al., 2015c). 80 

Moreover, processes such as hydrothermal dolomitization, fluid mixing, fluid cooling, fracture system formation 81 

and brecciation, may also play important roles in causing mesogenetic dissolution in deep burial environments 82 

(Qing and Mountjoy, 1994; Sun, 1995; Machel, 2004a; Davies and Smith, 2006; Saller and Dickson, 2011; 83 

Hiemstra and Goldstein, 2015; Jiang et al., 2015b; Zhu et al., 2015).   84 
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The Lower Triassic Feixianguan Formation, present on the platform margin of the Kaijiang-Liangping Bay in 85 

the Sichuan Basin, offers a good opportunity to study the impact of both shallow and burial diagenesis on pore 86 

evolution (with depth of up to 7,500 m).  Previous studies have shown that good quality reservoirs in this area 87 

are predominantly found in oolitic shoal facies present both at the platform margins and interiors, while 88 

dolomitized grainstones have much better reservoir quality compared to their limestone counterparts (Ma et al., 89 

2008a; Jiang et al., 2014b; Chen et al., 2015; Wang et al., 2015; Qiao et al., 2016).  Interparticle and dissolution-90 

enhanced porosity (e.g., dissolution vugs, solution-enlarged pores or moldic pores) are the main pore types in 91 

these reservoirs (Ma et al., 2008a; Chen et al., 2015; Qiao et al., 2016).  Most reservoirs in the northeast side 92 

(NE), and a few located in the southwest (SW) side, of the  Kaijiang-Liangping Bay have been extensively 93 

dolomitized (Zhao et al., 2005; Jiang et al., 2014b).  In contrast, most of the reservoirs in the SW side of 94 

Kaijiang-Liangping Bay are non-replaced limestones that have been heavily cemented by calcite and saddle 95 

dolomite (Cai et al., 2014; Jiang et al., 2014b; Zhou et al., 2014).  This paper focuses on documenting and 96 

understanding the different diagenetic processes that have affected oolitic limestone and oolitic dolostone 97 

reservoirs from platform margin shoal and platform interior shoal facies in the Feixianguan Formation.  We aim 98 

to determine the effects of dolomitization and TSR on the rock properties in deeply buried carbonate gas 99 

reservoirs.  Specifically, this study seeks to address the following research questions: 100 

1. What diagenetic processes have occurred and how have they affected pore evolution in coeval lime- and dolo- 101 

grainstone reservoirs? 102 

2. What are the factors that have controlled the presence of good reservoir quality in the deeply buried 103 

Feixianguan Formation? 104 

3. Can TSR improve reservoir quality, and if so, by what mechanisms? 105 

2. Geological setting 106 

The intracratonic Sichuan Basin is located in the east of the Sichuan Province, southwest China and has an area 107 

of about 230,000 km
2
 (Fig.  1A).  The Sichuan Basin is tectonically-bounded by the Longmenshan fold belt to 108 

the northwest, the Micangshan uplift in the north, the Dabashan fold belt the northeast, the Hubei-Hunan-109 

Guizhou fold belt to the southeast, and by the Emeishan-Liangshan fold belt to the southwest. 110 
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The Lower Triassic Feixianguan Formation was deposited in a tidal-dominated, platform margin, oolitic shoal 111 

complex.  It belongs to the highstand system tract (HST) of a single composite sequence and comprises several 112 

shallowing upward sequences consisting, from base to top, of grain-dominated packstone, cross- bedded ooid 113 

grainstone, laminated dolomudstone with fenestral porosity, and multiple gypsiferous layers, due to fluctuating 114 

sea-level and the predominantly arid climate of the time (Fig.  1B) (Zhao et al., 2005; Qiao et al., 2016).  These 115 

gypsum beds, together with the anhydrite and halite in the overlying Jialingjiang Formation, comprise the 116 

regional seal for the underlying carbonate reservoirs (Fig. 2) (Zhao et al., 2005).  A semi-isolated evaporitic 117 

carbonate platform formed on the northeast (NE) side of Kaijiang-Liangping Bay, whereas an open carbonate 118 

platform developed on the southwest (SW) side (Zhao et al., 2005; Ma et al., 2008a).  Hence, the Feixianguan 119 

Formation on the NE side of Kaijiang-Liangping Bay is more rich in dolomite than the SW side, probably due to 120 

a locally more restricted environment in the NE side (Zhao et al., 2005; Jiang et al., 2014b). 121 

The Feixianguan Formation reached its maximum burial of 7,500 m, and temperatures of 220C, due to initial 122 

progressive burial; after this it was followed by variable uplift (Fig. 3), resulting in Triassic reservoir 123 

temperatures between 100 and 140C and depths between 3,000 and 6,000 m at the present day (Ma et al., 124 

2008a).  Gases in the Feixianguan Formation reservoirs have variable H2S concentrations, predominantly 125 

between 10 % and 20 % (Cai et al., 2004; Li et al., 2005; Hao et al., 2008; Cai et al., 2010; Liu et al., 2013; Liu 126 

et al., 2014; Hao et al., 2015) with H2S 
34

S values being close to the parent anhydrite 
34

S values (Zhu et al., 127 

2005; Cai et al., 2010). 128 

Reservoir quality of limestone and dolostone reservoirs in the research area shows great heterogeneity, which 129 

overall has been strongly influenced by sedimentary facies with significant diagenetic creation of secondary 130 

porosity and vertical flow barriers (e.g. lithofacies barriers, pore-type-change barriers, and cemented-zone 131 

barriers) that separated the reservoir into flow units (Zhao et al., 2005; Ma et al., 2008b; Qiao et al., 2016).  The 132 

best reservoirs, with thicknesses up to 300 m at depths > 5,000 m, are primarily found in the oolitic shoal facies 133 

deposited in a high-energy, shallow-water environment (Ma et al., 2008b).  Porosity (0-30 %) and permeability 134 

(0.01-10,000 mD) in oolitic dolostone reservoirs present in the upper part of HST are significantly higher than 135 

their oolitic limestone counterparts, which are typically present in the middle part of the same HST (Fig. 2). 136 

3. Methodology 137 
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218 core samples from 23 wells, containing various diagenetic phases and carbonate host rocks (e.g. limestone, 138 

dolostone), were collected from cores of the Lower Triassic Feixianguan Formation from the Puguang, Maoba, 139 

Luojiazhai, Dukouhe, Longgang, Tieshan, and Yuanba sour gas fields (Fig. 1A).  168 thin sections (30 µm thick) 140 

were stained with Alizarin Red S to differentiate calcite and dolomite and their ferroan versions (Dickson, 141 

1966).  Selected polished thin samples were examined by scanning electron microscope (SEM) in backscattered 142 

electron imaging mode (BSEM).  Point counting was used to determine the mineral composition and pore type.  143 

72 grainstone, 28 limestone and 44 dolostone samples were selected for point counting to quantify the various 144 

carbonate cement and diagenetic mineral and grain populations (Table 1). 145 

Fluid inclusion homogenization temperatures (Th) were measured from fluid inclusion assemblages (FIAs) 146 

containing two-phase aqueous inclusions in five doubly-polished (50 to 60 µm thick) wafers.  The use of FIAs 147 

to determine temperatures of mineral growth, as opposed to single inclusions, gives confidence that the Th data 148 

are credible and minimises the effects of artefacts, such as thermal re-equilibration (Goldstein & Reynolds 149 

(1994) and Goldstein (2012). 150 

Fine powder samples were extracted from cores using low-speed micro-drill and used for strontium, carbon, and 151 

oxygen isotopic measurements.  Approximately 60 mg of powder from 15 samples were extracted for strontium 152 

isotope analysis.  Calcite and dolomite samples were leached in 0.5 molar acetic acid at room temperature for 4 153 

hours and 3.4 molar acetic acid at 60°C for 24 hours, respectively.  The strontium in each component was 154 

further separated by conventional cation exchange techniques using ion exchange resin (packed with Bio-Rad 155 

AG50Wx8).  Strontium isotope analyses were performed on a Finnigan MAT-262 multi-collector thermal 156 

ionization mass spectrometer (TIMS).  The measured values for the NBS-987 standard were 
87

Sr/
86

Sr: 0.710256 157 

±0.000014 (n = 8, 1 SD).  Over the course of the analyses, the Sr blank was lower than 300 pg. 158 

Approximately 30-50 mg samples of ten vug/fracture filling calcite samples, collected from limestone 159 

dominated reservoirs, were extracted for δ
13

C and δ
18

O.  Calcite powered samples were then reacted with 160 

anhydrous phosphoric acid, under vacuum, to release CO2 at 25°C for 24h.  The CO2 was then analyzed for 161 

carbon and oxygen isotopes on a Finnigan MAT251 mass spectrometer standardized with NBS-18.  All δ
13

C 162 

and δ
18

O are reported in ‰ units relative to the Vienna Peedee Belemnite (VPDB) standard.  The precision for 163 

both δ
13

C and δ
18

O measurements is better than ±0.1‰. 164 

4. Results 165 
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4.1. Petrography and paragenetic sequence 166 

The entire paragenetic sequence in the studied Feixianguan Formation consists of 23 distinct events. The 167 

relative timing of these phases is based on superposition and cross-cutting of various features, as well as 168 

homogenization temperatures derived from various diagenetic minerals (see details below).  It should be noted 169 

that information about limestone represent new data generated during this study, which has here been compared 170 

to the paragenetic sequence in dolostone by summarising and referring to previous studies (Li et al., 2012; Cai et 171 

al., 2014; Jiang et al., 2014a; Jiang et al., 2015a). 172 

Micrite envelopes represent the first diagenetic phase; they are typically 10 to 50 μm wide, and surround ooids 173 

(Fig. 4A, B).  Extensive micritization led to the total destruction of the carbonate grain fabric.  Calcite-1 cement 174 

(Phase 2) followed, or was synchronous with, micrite envelopes.  Calcite-1 occurs as isopachous rims, fine-175 

crystalline (<50 μm) equant fringes to ooids (Fig. 4A), or infills to fenestral pores.  Calcite-1 locally led to a 176 

reduction of primary porosity.  Dolomite-1 is microcrystalline (Fig. 6A) and is spatially associated with 177 

restricted lagoon facies; it is more abundant in the NE than SW side of Kaijiang-Liangping Bay.  Ooids were 178 

either partially or totally dissolved (dissolution-1, also Phase 3) during the initial dolomitization process in 179 

dolostone reservoirs (Fig. 7A, B) in the NE side of Kaijiang-Liangping Bay; oomoldic pores are commonly 180 

found in the upper part of shallowing upward sequences (Zhao et al., 2005).  Diagenetic sulfate minerals, (e.g., 181 

sedimentary bedded anhydrite, isolated anhydrite nodules, anhydrite and celestite cements (Phase 4), have been 182 

found in the Fiexianguan Formation in the NE side of Kaijiang-Liangping Bay (Fig. 8A).  There are signs of a 183 

dissolution event (dissolution-2, Phase 5) both in limestone and dolostone samples in which some ooid grains 184 

are partially or totally dissolved (Figs. 2B, 4A, 6A, B); some oomoldic pores were found in the top of 185 

shallowing upward sequences in the SW side of Kaijiang-Liangping Bay.  Calcite-2 cement (Phase 6) occurs as 186 

fibrous to bladed crystals that have grown on top of calcite-1 or filled early moldic pores (Fig. 4B) in limestone 187 

(Dissolution 1) on the SW side of Kaijiang-Liangping Bay.  Dolomite-2 (Phase 7) represents the second 188 

dolomitization event in the Feixianguan Formation.  This dolomite type was the result of the reflux of 189 

mesohaline water and/or caused by seawater dolomitization at relatively low temperatures (~35 to 40 ºC) during 190 

early burial diagenesis (Fig. 6A) in both sides of the Kaijiang-Liangping Bay (Jiang et al., 2014b). 191 

Pressure solution features and calcite-3 cementation are common in Feixianguan limestone (Phase 8) (Fig. 4C), 192 

but rarely observed in Feixianguan dolostone (Fig. 5A).  The most obvious evidence for pressure solution is 193 

stylolites (pressure-solution seams) (Koehn et al., 2016), which form fitted fabrics, and occur as narrow, 194 
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undulating, dark grey to black seams.  Calcite in limestone reservoir occurs as very coarsely crystalline (up to 195 

several centimetres in size) pore-filling calcite cement in limestone reservoirs (Fig. 4B). 196 

An early episode of exotic mineral growth (Phase 9) is characterised by mineralization with localised trace 197 

quantities of barite, fluorite, quartz and celestite (Fig. 8B, D) in the NE side of Kaijiang-Liangping Bay (Jiang et 198 

al., 2014a).  Mineralization is unlikely to have had a regionally significant effect on Feixianguan Formation 199 

reservoir quality. 200 

Fracture-1 (Phase 10) probably developed during, or after, Phases 6-9, both in limestone and dolostone, based 201 

on the crosscutting relationships to stylolites and late fractures.  The fractures are variable in size and intensity 202 

(in terms of fractures per cm); they are commonly vertical to subvertical, with apertures range from centimetres 203 

to meters (Fig. 9A). 204 

Phases 11 to 19 are mostly found in dolostones in NE side of Kaijiang-Liangping Bay.  Dolomite-3 represents 205 

the third dolomitization event in the Feixianguan Formation (Phase 11).  It occurs as coarsely crystalline, fabric 206 

destructive dolomite and/or dolomite cement (Fig. 6B).  Based on detailed fluid inclusion and 
87

Sr/
86

Sr data, 207 

dolomite-3 formed at a temperature range between 80 and 140ºC, by the invasion of brine derived from the 208 

slightly younger, but also early Triassic, Jialingjiang Formation (Jiang et al., 2014b). 209 

Oil charging (Phase 12) occurred during progressive burial when reservoir temperatures reached 80ºC (Ma et al., 210 

2008a), with the oil supplied from the underlying, slightly hotter, Permian source rocks (Hao et al., 2008; Cai et 211 

al., 2010).  It is evident that dolostone reservoirs contain variable amounts of solid bitumen, and, in some 212 

intervals, the bitumen content is abnormally high (Hao et al., 2008).  Solid bitumen occurs as a pervasive “stain” 213 

in interparticle and intercrystal pore spaces, coatings or “blobs” in secondary pore spaces (Figs. 5B; Fig. 7A, C), 214 

as well as cement in fractures and bitumen-bearing fluid inclusions in calcite cements.  Dissolution-3 (Phase 13) 215 

happened during the oil charge stage, possibly associated with organic or carbonic acid released from the source 216 

rocks (Hao et al., 2008; Ma et al., 2008a; Cai et al., 2014). 217 

Calcite-4 (Phase 14) is present as coarsely crystalline, pore-filling and fracture-filling cements, mostly in 218 

dolostone reservoirs.  Oil/bitumen, and gas fluid inclusions are locally present both the edges and throughout 219 

calcite-4 (Fig. 5B, C) suggesting that it grew during late diagenesis, most likely after petroleum charging.  220 

Native (elemental) sulfur (Phase 15) occurs as subhedral, coarse-crystalline accumulations in some samples, as 221 

crenulated blobs, and as a fine-crystalline coating in fractures and secondary voids.  Native sulfur is intergrown 222 
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with bitumen, pyrite, and calcite-4.  Locally pyrite (Phase 16) occurs as millimetre- size cubic crystals, although 223 

it is also found as framboidal aggregates with single micrometer- size crystals.  Most millimetre- size pyrite 224 

occurs as traces in dolostone reservoirs (Fig. 8C), and commonly is the last cement after dolomite-3 and calcite-225 

4; pyrite shows a close growth relationship with native sulfur (Phase 15).  Dissolution-4 (Phase 17) created 226 

some enlarged pores that are partly filled with bitumen, calcite-4, native sulfur, and pyrite (Fig. 7C, D) (Jiang et 227 

al., 2014a).  Fracture-2 (Phase 18) occurs at variable sizes and intensities (number per cm), and is commonly 228 

vertical to sub-vertical, with sizes range from centimetres to meters (Fig. 9A).  Fracture-2 locally crosscuts 229 

fracture-1 and is commonly filled by calcite, indicating it was formed after fracture-1.  Gas charged the 230 

dolostone reservoir (Phase 19) due to increasing temperature during progressive depth of burial of the 231 

Feixianguan Formation and the underlying Permian source rock.  In this temperature realm (~100 to 200ºC), oil 232 

progressively transforms into gas, and TSR has been shown to promote oil cracking in the Feixianguan 233 

Formation (Hao et al., 2008; Ma et al., 2008b). 234 

A third phase of fracturing (fracture-3, Phase 20) cutting all the other minerals occurs both in limestone and 235 

dolostone reservoirs and occurred after TSR-related events 14-19 (Guo, 2010; Jiang et al., 2014a).  The fractures 236 

occur at variable sizes and densities, and are commonly vertical to sub-vertical, with sizes range from 237 

centimetres to meters.  Fracture-3 features are locally filled by the slightly later calcite-5 (Phase 21, Fig. 5D) in 238 

dolostone and late diagenetic calcite-3 in limestone, but some fractures are open without any infillings (Fig. 9B).  239 

A fifth phase of dissolution (dissolution-5, Phase 22) created localised void spaces.  In some dolostone intervals 240 

in the NE side of Kaijiang-Liangping Bay.  Phase 23 in the diagenetic sequence is represented by localized 241 

fracture-filling celestite, anhydrite, and barite in the dolostone reservoirs in the NE side of Kaijiang-Liangping 242 

Bay.  Celestite, anhydrite, and barite are locally present in the dolostone reservoir in very small volumes, and 243 

occur as late diagenetic, coarsely crystalline minerals that contain two phase aqueous fluids inclusions (Jiang et 244 

al., 2014a). 245 

4.2. Mineralogy of limestone and dolostone 246 

Point counted mineral proportions from 72 oolitic dolostone and limestone samples from the Feixianguan 247 

Formation platform margin shoal facies and platform interior shoal facies are listed in Table 1.  The most 248 

common components include: dolomite, calcite, bitumen, diagenetic pyrite and quartz.  Limestone is 249 

predominantly composed of ooids, matrix, and early calcite cements (calcite-1, calcite-2, and calcite-3), with 250 

total solid mineral (grain and cement) volumes of more than 90 % (Fig. 10).  Late diagenetic calcite (calcite-4) 251 
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and pyrite are effectively absent (~ 0%) in limestone samples.  Average volumetric percentages of early calcite 252 

cement in oolitic limestone are as follows (Fig 10. A, B): (1) calcite-1: 11.1  ± 10.4% (n=14) in the platform 253 

interior shoal and 5.9 ± 2.2% (n=14) in the platform margin shoal; (2) calcite-2: 15.3 ± 10.4% (n=14) in the 254 

platform interior shoal and 15.2 ± 12.9% (n=14) in the platform margin shoal; (3) calcite-3: 28.3 ± 10.4% (n=14) 255 

in the platform interior shoal and 13.2 ± 12.6% (n=14) in the platform margin shoal.  Other diagenetic minerals, 256 

such as dolomite, quartz and bitumen, are locally present in small volumes (with a total volume <5 %) in 257 

limestone (Table 1, Fig. 11). 258 

Oolitic dolostone consists of dolomitized ooids and dolomite cements (dolomite-1, dolomite-2, and dolomite-3), 259 

with average values of 84.2% in the platform interior shoal and 82% in the platform margin shoal (Fig. 10C, D).  260 

In contrast to limestone, dolostone samples have negligible calcite-1, calcite-2, and calcite-3, contain lower 261 

amounts of calcite-4, but also contain some pyrite (Phase 16).  Average volumetric percentages of carbonate 262 

cements and bitumen are as follows (Fig. 10C, D): (1) calcite-1 and calcite-2: 0 % both in the platform interior 263 

shoal and platform margin shoal; (2) calcite-3: 0% in the platform interior shoal and 0.6 ± 3.1 % (n=29); (3) 264 

calcite-4: 1.5 ± 1.8 % (n=15) in the platform interior shoal and 1.7 ± 4.0 % (n=29) in the platform margin shoal; 265 

(4) dolomite-1, 2: 9.9 ± 7.6 % (n=15) in the platform interior shoal and 7.9 ± 7.2 % (n=29) in the platform 266 

margin shoal, dolomite-3: 8.1 ± 6.8 % (n=15) in the platform interior shoal and 5.6 ± 7.0 % (n=29) in the 267 

platform margin shoal; (5) bitumen: 3.6 ± 3.1 % (n=15) in the platform interior shoal and 4.8 ± 6.2 % (n=29) in 268 

the platform margin shoal.  Other diagenetic minerals in dolostone reservoirs (quartz, and calcite-5) collectively 269 

have a minor total volume of less than 0.5 %. 270 

4.3. Porosity and pore systems  271 

Porosity in lime-grainstone is relatively low, ranging from 0 to 10 %, with most values less than 5 % (Table 1).  272 

The average porosity value of 1.9 % ± 2.4 (n=14) in the platform interior shoal and 2.2 ± 3.4% (n=14) in the 273 

platform margin shoal (Table 1), is similar to the reported core analysis porosity data from the study area (Fig. 274 

2B) (Cai et al., 2014; Wang et al., 2015; Qiao et al., 2016).  Dolo-grainstones commonly have higher porosity 275 

values between 0 to 33 %, with an average of 9.1 ± 4.9 % (n=15) in the platform interior shoal and 10 ± 8.5 % 276 

(n=29) in the platform margin shoal (Table 1; Fig. 10C, D). These values are also similar to available core 277 

analysis porosity data (Fig. 2C) (Zhao et al., 2005; Ma et al., 2008a; Cai et al., 2014; Chen et al., 2015; Wang et 278 

al., 2015; Qiao et al., 2016). 279 
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Pore type classification in this study follows Choquette and Pray (1970).  The reservoirs contain pore types that 280 

are highly variable and include both primary and secondary pores.  These pores are listed in order of importance 281 

as follows: solution-enlarged pores, oomoldic, interparticle, intercrystalline, and fracture (Fig 4A; Fig. 7). 282 

4.3.1. Solution-enlarged pores/vugs 283 

Pores/vugs in dolostone reservoirs are dominated by solution-enlarged pores (Fig. 7).  This pore type has two 284 

main occurrences.  The first is characterised by solution-enlarged pores and vugs where some ooids have been 285 

completely dissolved leading to large sized (up to 2 mm) dissolution pores (Figs. 7C).  The second type is 286 

characterised by partial or complete dissolution of dolomite crystals (Figs. 7D).  Dissolution-enlarged pores are 287 

locally filled by calcite-4, pyrite, native sulfur, and bitumen.  Dolostone reservoirs with dissolution enlarged 288 

pores/vugs have the highest porosity and permeability in the Feixianguan Formation (Zhao et al., 2005; Cai et 289 

al., 2014; Hao et al., 2015). 290 

4.3.2. Oomoldic pores 291 

Grain-supported fabrics are common in the Feixianguan Formation.  Ooids are the dominant grain type, with 292 

peloids and bioclasts locally present in minor quantities.  In dolostone reservoirs, fabric destructive dolomite 293 

mainly consists of “ooid ghosts” and has some dolomite cements within interparticle pores.  Some ooids are 294 

partially dissolved, but locally filled with late diagenetic minerals (e.g. calcite, dolomite, anhydrite, and quartz) 295 

both in limestone and dolostone reservoirs (Fig. 4A; Figs. 7A, B) (Guo, 2010).  Some ooids have been 296 

completely dissolved, resulting in the formation of open moldic porosity. 297 

4.3.3. Interparticle pores 298 

Interparticle pores in dolostone reservoirs are commonly observed throughout the Feixianguan Formation (e.g., 299 

Fig. 6A).  This pore type is commonly associated with solution-enlarged pores and it is not possible to 300 

determine their total volume.  Although widespread, this is not the dominant pore type and does not significantly 301 

contribute to the present day overall porosity. 302 

4.3.4. Intercrystalline pores 303 

The most porous dolostones have intercrystalline porosity (Figs. 6B and 7D).  The most representative one is 304 

dolomudstone in lagoon facies rocks (Zhao et al., 2005).  Some of intercrystalline pores are filled with early or 305 
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late diagenetic anhydrite and/or celestite cements in areas near, or within, the lagoonal facies.  Intercrystalline 306 

pores were not subjected to these early and late cements in areas near to, or within, the platform margin shoal 307 

facies (Jiang et al., 2014b). 308 

4.3.5. Fracture porosity 309 

Some open fractures are locally present both in limestone and dolostone reservoirs (Guo, 2010), and these 310 

fractures cross-cut all the other diagenetic minerals (Fig. 9B).  This suggests that fracture-3 pores formed during 311 

the latest uplift stage.  However, fracture porosity does not contribute much porosity to the Feixianguan 312 

Formation because fractures are highly localized distribution and many are filled by calcite-5 (Guo, 2010; Jiang 313 

et al., 2014a). 314 

4.4. Geochemical results 315 

4.4.4. Aqueous inclusion homogenization temperature and salinity 316 

Diagenetic carbonate minerals, such as fracture-filling, non-TSR calcite (calcite-3 and calcite-5), pore-filling 317 

TSR calcite (calcite-4), and deep burial dolomite (dolomite-3), all contain primary, two-phase aqueous 318 

inclusions filled with fluids that may reflect the trapping conditions (Goldstein and Reynolds, 1994b).  We have 319 

previously reported fluid inclusion data in these late diagenetic carbonate and non-carbonate minerals in the 320 

Feixianguan dolostone reservoirs (Jiang et al., 2014a; Jiang et al., 2014b; Jiang et al., 2015c).  In this study, we 321 

have produced new fluid inclusion data from calcite-4 samples (the dominant calcite cement) and calcite-5 322 

(minor calcite cement) from limestone host rocks.  Our new data show that calcite-4 in limestone has 323 

homogenization temperatures ranging from about 70ºC to 120ºC with a modal value of about 90ºC; calcite-5 in 324 

limestone has homogenization temperatures mainly ranging from 130ºC to 170ºC (Figs. 11A, E, Fig. 12A).  The 325 

calcite-3 samples have relatively low salinities ranging from 0.35 % wt NaCl to 3.7 % wt NaCl, whereas calcite-326 

4 samples have relatively high salinities of about 10 % wt NaCl (Figs. 11B, F, Fig. 12B).  Homogenization 327 

temperature and salinity data of calcite-3 and calcite-5 in the dolostone reservoirs can be compared to the 328 

calcite-3 and calcite-5 data from limestone host rocks (Figs. 11C, D, E, F). 329 

4.4.2. Stable carbon and oxygen isotopic analyses  330 

In detail, new isotopic data show that calcite-2 has δ
13

C values from -2.5 to 2.8 ‰ V-PDB.  However, calcite-2 331 

δ
13

C values predominantly lie between 1.5 and 2.5 ‰ V-PDB, being close to the δ
13

C values of bulk dolostones 332 
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(Jiang et al., 2014b), bulk limestones (Jiang et al., 2015a) and calcite-5 (Jiang et al., 2014a) (Table 2; Figs. 13a, 333 

b).  In contrast, calcite-4 in dolostones, has a broadly negative spread of δ
13

C values, ranging from -18.9 ‰ up 334 

to about 1.5‰ V-PDB (Fig. 13b).  Calcite-2 has δ
18

O values from -7.2 to -3.8‰ V-PDB (Table 2; Fig. 13a).  335 

Bulk limestone samples have δ
18

O values between -6.0 to -4.5‰ V-PDB (Fig. 13a). 336 

4.4.3. Radioactive strontium isotopic analyses 337 

Bulk limestone samples and calcite-2 samples in limestone show relatively low 
87

Sr/
86

Sr ratios, ranging from 338 

0.70720 to 0.70750, and 0.7073 to 0.70765, respectively (Fig. A).  Both are well within the published range of 339 

coeval Feixianguan seawater 
87

Sr/
86

Sr values (Fig. 14) (Jiang et al., 2014b).  Calcite-4 and calcite-5 have 340 

87
Sr/

86
Sr ratio ranges that overlap with bulk limestone and calcite-2, with values lying between 0.70720 and 341 

0.70765 (Fig. 14B) (Jiang et al., 2015a).  Dolomite-1, dolomite-2, and dolomite-3 show relatively wider and 342 

slightly higher ranges of 
87

Sr/
86

Sr ratios from 0.70730 to 0.70800 (Jiang et al., 2013; Jiang et al., 2014b). 343 

5. DISCUSSION AND INTERPRETATION 344 

5.1. Interpretation of diagenetic history 345 

The paragenetic sequences for the two lithologies, limestone and dolostone, both show similarities and 346 

differences to those reported from earlier studies of Lower Triassic carbonates in the Sichuan Basin (Cai et al., 347 

2004; Hao et al., 2008; Cai et al., 2014; Jiang et al., 2014a; Hao et al., 2015; Jiang et al., 2015c).  Three overall 348 

stages have previously been defined (Jiang et al., 2014a) that represent the diagenetic history in the Feixianguan 349 

Formation (Fig. 15): (i) pre-TSR diagenesis, Phases 1 to 13, (ii) TSR diagenesis, Phase 14-19, and (iii) post-350 

TSR diagenesis, Phase 20-23.  These three diagenetic stages have been constrained by a combination of: 351 

temperature of cementation, cement composition, or sources of the diagenetic fluids inferred from geochemical 352 

data. 353 

Pre-TSR diagenetic processes commenced with the development of micrite envelopes and calcite-1 cementation, 354 

in the marine environment, both in limestones and dolostones.  The subsequent diagenetic processes in 355 

limestone were significantly different to those in dolostone.  In dolostone, the pre-TSR diagenetic stage included 356 

two stages of dolomite growth.  The dominant initial dolomitization (dolomite-1 and dolomite-2) commenced at 357 

relatively low temperatures, from 35 to 40 ºC as shown by (Jiang et al., 2013), under near-surface conditions or 358 

at very shallow burial (< 500 m) (Jiang et al., 2014b).  Burial dolomite (dolomite-3) developed at intermediate 359 
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burial environments with temperatures ranging between 80 and 140ºC (Jiang et al., 2014b).  The increasing 360 

87
Sr/

86
Sr ratios in these dolostones (Fig. 15) suggest that some dolomitization fluids may have been influenced 361 

by an influx of younger Jialingjiang brines (Jiang et al., 2014b).  Anhydrite cement growth accompanied the 362 

main early reflux dolomitization stage (dolomite-1 and dolomite-2).  In contrast, there is a lack of anhydrite 363 

cementation in limestone.  Significant calcite cementation (calcite-3) occurred predominantly in limestone and 364 

resulted in almost complete loss of porosity.  Oil subsequently charged the dolostone reservoirs during 365 

progressive burial but the limestones were not charged since they had negligible remaining porosity (and thus 366 

vanishingly low permeability). 367 

Thermochemical sulfate reduction (TSR) diagenesis most commonly occurred in dolostone reservoirs due to the 368 

abundance and coexistence of sulfate and hydrocarbons, as well as the high burial temperatures (from >120 to 369 

220 ºC) (Cai et al., 2004; Li et al., 2005; Hao et al., 2008; Liu et al., 2013; Cai et al., 2014; Jiang et al., 2014a; 370 

Liu et al., 2014; Hao et al., 2015; Jiang et al., 2015c).  Calcite-4, characterized by a wide range of broadly 371 

negative carbon isotope values (Fig. 13), is interpreted to be the main mineral product of TSR.  TSR can be 372 

subdivided into oil- and gas-TSR by the different hydrocarbons dominant during different temperature ranges 373 

during burial (Jiang et al., 2014a).  Oil-TSR occurred at temperatures between 110 and 180 ºC, whereas gas-374 

TSR commenced at a temperature of about 140 ºC and continued to the highest burial temperature, at about 220 375 

ºC, as evidenced by the aqueous fluid inclusion temperature data (Fig. 11C).  Quartz, celestite, and anhydrite 376 

precipitated during the TSR diagenesis stage (Fig. 15B).  Bitumen also likely formed due to oil cracking and 377 

TSR. Post-TSR diagenetic processes were dominated by bitumen-free, fracture-filling calcite (calcite-5). 378 

Localized growth of celestite, barite and anhydrite in fractures only occurred in dolostone reservoirs (Fig. 15). 379 

5.2. Calcite cementation and porosity-loss in lime-grainstone 380 

Porosity-occlusion by calcite cementation in limestone is approximately the same as the volume of total 381 

intergranular and intragranular cements (Table 1, Fig. 10).  The measured porosity in the 28 lime-grainstone 382 

samples is very low, with an average of 1.8 %, mainly due to relatively early calcite (calcite-1, and calcite-2) 383 

cementation as well as late calcite-3 cementation.  Only a few single-phase fluid inclusions were found, 384 

suggesting low precipitation temperatures (less than 50ºC) (Goldstein and Reynolds, 1994a).  In contrast, late 385 

calcite cements (calcite-3) precipitated at relatively higher temperatures, lying between 70 and 120 ºC (Fig. 386 

11A).  The source for these early types of calcite (calcite-1 and calcite-2) was a seawater-derived fluid, as 387 

indicated by their seawater-like strontium isotope values (Fig. 13a, Fig. 14a), whereas late diagenetic calcite 388 
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(calcite-3) was most likely sourced from the dissolution of pre-existing calcite grains and cements.  Ooids in 389 

limestone commonly exhibit point- and line-contacts (pressure-induced dissolution), which, together with the 390 

abundance of stylolites, suggest that calcite cementation and porosity-loss was due to the combined effects of 391 

mechanical compaction, chemical compaction by intergranular pressure solution and cementation (Heydari, 392 

2000).  Negative shifts of δ
13

C and δ
18

O isotopes in some calcite cements could either be the result of freshwater 393 

influx or indicative of high-temperature diagenetic environments during calcite precipitation.  However, the very 394 

low water salinities (~ 0 w.t. %), as revealed by fluid inclusion ice melting temperature measurements, confirm 395 

that localized meteoric water probably penetrated into the limestone during relative early diagenesis (<50ºC). 396 

5.3. Impact of early dolomitization and oil charge on reservoir quality 397 

In contrast to lime-grainstone in these reservoirs, early calcite cementation is significantly less common in dolo-398 

grainstones and thus the visible porosity is much higher than that of limestones (Table 1, Fig. 10B).  For the 44 399 

point-counted dolostone samples, the average present-day porosity is 9.7 % (ranging from 0 to 33 %), and the 400 

average volume percentages of major cement types are listed in Table 1 and Figure 10B that reveal negligible 401 

early calcite cement but 8.6 % early dolomite cement.  Previous studies have shown that sucrosic dolostone 402 

reservoirs in the Feixianguan Formation (mainly consisting of dolomite-2) have much better reservoir quality 403 

(both porosity and permeability) than the limestone reservoirs (Fig. 10) (Ma et al., 2008a; Cai et al., 2014; Wang 404 

et al., 2015).  The majority of the dolomite cements (dolomite-1 and dolomite-2) were interpreted to have 405 

formed by reflux dolomitization during relatively early diagenetic processes in the Feixianguan Formation 406 

(Zhao et al., 2005; Jiang et al., 2013; Jiang et al., 2014b).  Early dolomitization prevented  C2 calcite 407 

cementation, which is probably the key to the creation of good dolostone reservoir quality in dolostone (Zhao et 408 

al., 2005; Jiang et al., 2014b).  Finally, the preservation of porosity in dolostones can also be attributed, in part, 409 

to the elevated resistance to mechanical and chemical compaction during burial compared to the Feixianguan 410 

limestone that commonly has more stylolites and shows sutured contacts between ooids (Fig. 10) (Schmoker 411 

and Halley, 1982).  In addition, oil charge appears to be a relatively early event in these dolomitized carbonate 412 

reservoirs (Hao et al., 2008; Ma et al., 2008a; Cai et al., 2010).  An early oil charge can inhibit calcite 413 

cementation in oil leg, resulting in a preservation of carbonate reservoir quality during burial diagenesis, 414 

whereas intense calcite cementation filled most of the macroporosity in the water leg (Neilson et al., 1998; Cox 415 

et al., 2010). 416 

5.4. Thermochemical sulfate reduction impact on carbonate reservoir 417 
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Thermochemical sulfate reduction (TSR) has been shown to be prevalent in the Feixianguan Formation (Cai et 418 

al., 2004; Zhu et al., 2005; Hao et al., 2008; Jiang et al., 2015c).  TSR-derived calcite in the Feixianguan 419 

Formation commonly shows relatively high temperatures (> 110°C) (Fig. 11), and is characterized by low δ
13

C 420 

and δ
18

O values (Fig. 13) (Li et al., 2012; Cai et al., 2014; Jiang et al., 2015a; Jiang et al., 2015c).  Simplified 421 

stoichiometric TSR reactions between anhydrite and the two simplest hydrocarbons can be written as follows: 422 

CaSO4 + CH4  CaCO3 + H2S + H2O (R2) 423 

2CaSO4 + C2H6  2CaCO3 + H2S + 2H2O + S (R3) 424 

7CaSO4 + 4C2H6  7CaCO3 + 7H2S + 5H2O + CO2 (R4) 425 

Two recent studies investigated the impact of TSR on the reservoir quality of Feixianguan Formation dolostone 426 

(Cai et al., 2014; Hao et al., 2015).  Based on detailed geochemical and petrological studies, Cai et al. (2014) 427 

reported evidence for (i) anhydrite dissolution and partial filling of secondary pores by calcite, and (ii) late 428 

dolomite dissolution, and suggested that TSR was responsible for a positive effect on the formation of good 429 

dolostone reservoirs.  In contrast, Hao et al. (2015) suggested that calcite cement growth, rather than dolomite 430 

dissolution, dominated TSR diagenesis in the Feixianguan Formation, and concluded that TSR had an 431 

insignificant role in altering the reservoir quality of these dolostones.  It has been proposed that late diagenesis, 432 

including TSR, is not able to enhance porosity and permeability because of the low degree of water-rock 433 

interaction and the assumption that formation water is always saturated with respect to carbonate minerals in 434 

these environments (Heydari, 1997; Machel and Buschkuehle, 2008; Ehrenberg et al., 2012).  However, TSR 435 

has the potential for the generation of porosity  since there is a net solid volume decrease when calcite replaces 436 

anhydrite as shown in R2-R4 (note that anhydrite has a molar volume of 46 cm
3
 and calcite has a molar volume 437 

of 36.9 cm
3
) (Smyth and McCormick, 1995). 438 

In the Feixianguan Formation, anhydrite is the dominate sulfate source for TSR (e.g. R2-R4), and the prominent 439 

negative shift of δ
13

C (from ~2.5‰ down to ~-20‰) in calcite-4 suggests there was a substantial contribution of 440 

δ
12

C-enriched carbon  most likely sourced from hydrocarbon (e.g. R4) during TSR (Fig. 13B) (Cai et al., 2003; 441 

Hao et al., 2008; Cai et al., 2010; Li et al., 2012; Cai et al., 2014; Jiang et al., 2014a; Hao et al., 2015; Jiang et 442 

al., 2015a; Jiang et al., 2015c).  Hence, although porosity resulted from anhydrite dissolution during TSR, some, 443 

or even much, of this porosity was then filled by calcite cement (calcite-4).  While some of the present solution-444 

enlarged porosity has contributed to primary porosity (e.g. interparticle) and early diagenetic porosity (e.g. 445 
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oomoldic), our petrographic observations suggest that there is a substantial amount of pore space, e.g. solution-446 

enlarged pores (Figs. 7C, D), that were most likely related to TSR diagenesis.  Dissolution-porosity related to 447 

TSR seems to have been underestimated by Hao et al. (2015), possibly because they did not undertake a full 448 

analysis of the paragenetic sequence and did not differentiate TSR calcite from pre-TSR and post-TSR types of 449 

calcite, and the various stages of dissolution, as defined in this study (Fig. 15). 450 

Recent studies have shown that significant amounts of fresh water were generated and added to the Feixianguan 451 

Formation during TSR (Jiang et al., 2015c), in the Permian Khuff Formation from Abu Dhabi (Worden et al., 452 

1996), and in the Devonian fields from Western Canada Sedimentary Basin (Yang et al., 2001).  The generation 453 

of fresh water due to TSR locally dilutes the pre-existing saline residual formation water by a factor of about 454 

four in the Feixianguan Formation (Fig. 12B), and possibly caused some dissolution of carbonates due to the 455 

formation water being undersaturated with respect to carbonates during TSR (Jiang et al., 2015c).   456 

In addition, TSR produced native sulfur and pyrite (Fig. 8C), which commonly grew at the edge of non-457 

selective, dissolution-enlarged pores.  Pyrite formed during TSR due to either reaction (R5) or (R6) (Liu et al., 458 

2013; Jiang et al., 2014a; Liu et al., 2014). 459 

Fe
2+

 + 2H2S    FeS2+ H2 + 2H
+  

(R5) 460 

FeCO3 + 2H2S    FeS2+ CO2 + H2O + H2 (R6) 461 

The volume of pyrite in the Feixianguan Formation ranges from 0 % to 4 % (average at 0.4 %) (Table 2).  The 462 

acidity of diagenetic fluids probably was transiently increased due to the release of H
+
, at least near to the site of 463 

pyrite precipitation.  As a consequence, carbonate dissolution may have occurred during, and after, pyrite 464 

precipitation (Figs. 7C, D).  TSR calcite (calcite-3) was not observed in close association with pyrite and native 465 

sulfur.  This probably suggests that during TSR, formation water may have been locally transported away from 466 

the reaction site.  The precipitation rate of calcite is much slower than that for pyrite (Worden et al., 2000). It is 467 

thus possible that dissolved (TSR) calcite was transported to other parts of the Feixianguan dolostone reservoirs 468 

via diffusion, and fractures and/or faults formed by local tectonic movements (Ma et al., 2008b).  Moreover, H
+
 469 

released from small volumes of pyrite precipitation may have enhanced reaction of anhydrite with dolomite and 470 

methane (Cai et al., 2014): 471 

CaMg(CO3)2 + CaSO4 + CH4 +2H
+
  CaCO3+H2S + Mg

2+
 +Ca

2+
 +2HCO3

-
+ H2O (R7) 472 
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The reactions (R2-4 and R7) may result in dissolution or replacement of anhydrite and dolomite by TSR calcite, 473 

leading to an enhancement or redistribution of porosity. 474 

In addition, high concentration of H2S in these natural gas dolostone reservoirs may have led to present-day 475 

porosity that is 2% higher than if TSR had not happened, due to deep burial dissolution of dolomite (Ma et al., 476 

2007).  The gas-phase CO2 in sour dolostone reservoirs has high 
13

C compared to CO2 derived from oxidation 477 

of hydrocarbon since the carbon in CO2 was, at least partly, derived from dissolved carbonate minerals during or 478 

after TSR (Huang et al., 2012; Cai et al., 2014; Hao et al., 2015).  CO2 
13

C data therefore suggest that 479 

significant rock dissolution has occurred and 
13

C-rich CO2 was added to the reservoir fluids, during and after 480 

TSR (Liu et al., 2013). 481 

TSR may also have increased fluid pressure by the generation of H2S and CO2.  For example, reaction R3 shows 482 

the conversion of four moles of ethane into a combination of seven moles of H2S and one mole of CO2, as well 483 

as five moles of water.  The resulting increase in fluid pressure at the site of TSR may have driven the 484 

diagenetic (calcite-saturated) aqueous fluids out of the TSR site to help dissipate the locally elevated pressure.  485 

This proposal is supported by a detailed fluid inclusion study of TSR diagenetic minerals and pressure 486 

modelling (Liu et al., 2006).  Hence, it is possible that a complex cycling of fluids on a reservoir scale occurs 487 

during TSR, resulting in some zones of reservoir developing higher porosity whereas others are occupied by 488 

TSR calcite cements. It is interesting to note that a modelling study of TSR in the Western Canada Sedimentary 489 

Basin also concluded that TSR probably increased the overall porosity by about 1 to 2 % due to the dissolution 490 

of anhydrite and partial infilling by calcite (Hutcheon et al., 1995). 491 

We can summarize the impact of TSR on reservoir quality in the Feixianguan Formation as: i) about 2 % net 492 

porosity was gained by a combination of dissolution of anhydrite and precipitation of calcite due to TSR; ii) the 493 

generation of TSR water may have caused some local dissolution and created additional secondary porosity; iii) 494 

further dissolution of carbonate minerals occurred due to the release of H
+
 associated with pyrite precipitation; 495 

and iv) locally overpressured fluids that may have resulted from the movement of calcite-saturated water away 496 

from the TSR site. 497 

5.5. Intra-reservoir heterogeneity 498 

Carbonate reservoir quality in the Feixianguan Formation is controlled both by sedimentary facies and 499 

diagenetic processes (Zhao et al., 2005; Ma et al., 2008a; Cai et al., 2014; Jiang et al., 2014a; Chen et al., 2015; 500 
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Qiao et al., 2016).  Good quality reservoirs are most commonly found in high-energy shoal facies and platform 501 

interior shoals that are associated with evaporites (Table 3).  A large degree of reservoir quality heterogeneity is 502 

found in these carbonate reservoirs in each facies despite common initial environments of deposition (Table 3).  503 

The heterogeneity is a consequence of the diagenetic modification of pore space either by mineral dissolution or 504 

precipitation during diagenesis. 505 

In order to better understand of how diagenesis affects intra-reservoir heterogeneity, limestone and dolostone 506 

samples from high-energy depositional environments (e.g. platform margin shoal, platform interior shoal) were 507 

examined in this study.  The results shows that, despite the similar high-energy depositional environments, 508 

porosity in dolo-grainstone is high (from 0 to 33%, average at 9.7%) compared to their lime-grainstone 509 

counterparts (average of 2.1% ranging from 0 to 10%,) (Table 1).  The average porosity of the platform interior 510 

shoal and platform margin shoal in dolostone is much better than the limestone (Table 3). Hence, diagenesis, 511 

and most importantly dolomitization, is the dominant factor which controls secondary porosity development and 512 

primary porosity preservation (Sun, 1995).  Some parts of the dolostone reservoir are enriched in dissolution-513 

enlarged pores whereas other parts are heavily cemented by calcite; this suggests that late diagenesis (e.g. TSR) 514 

may be able to modify the pore system by increasing the intra-reservoir heterogeneity. 515 

5.6. Reservoir evolution model for the Feixianguan Formation 516 

Based on petrological and geochemical studies, point counting data (Table 4), and fluid geochemistry (Ma et al., 517 

2008b; Cai et al., 2014; Hao et al., 2015), we have synthesised a geological and porosity evolution model of the 518 

Feixianguan Formation for both the non-reservoir limestone (Fig. 16) and the dolostone reservoir (Fig. 17).  The 519 

differences in reservoir quality of the dolo-grainstone and lime-grainstone is a direct consequence of their 520 

different diagenetic pathways.  Marine diagenesis (calcite-1) occurred both in lime-grainstone and dolo-521 

grainstone, and occluded an average of ~8.5% primary porosity.  The conditions that led to the formation of 522 

high quality dolostone reservoir are: early dolomitization and oil charging, dissolution caused by various types 523 

of fluids such as dolomitization water, organic acids, acidic fluids generated due to TSR, uplifting and fracture 524 

formation (Jiang et al., 2014a).  We have subdivided the evolution of limestone and dolostone reservoir quality 525 

in the Feixianguan Formation into three and four stages, respectively.  Porosity evolution was achieved by the 526 

average point count data for each component in the lime-grainstone and dolo-grainstone during diagenetic 527 

processes (Table 1), assuming that each component has the same volume change by increased pressure and 528 

temperature. 529 
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5.6.1 Limestone reservoir evolution model 530 

Stage 1: Meteoric water dissolution and cementation in limestone 531 

Stage 1 for limestone consists of phases 2 and 6 (calcite-1 and calcite-2) (see Figs. 15A, 16).  Based on 532 

published values, we here have assumed that the original porosity of the oolitic limestone was about 52 % (Enos 533 

and Sawatsky, 1981; Schmoker and Halley, 1982; Heydari, 2000), and initial formation water was Feixianguan 534 

seawater with salinity of about 3.5 wt. % NaCl.  Marine diagenesis and calcite-1 cementation (8.5%; Table 1) 535 

resulted in the decrease of porosity to ~43.5 % (the original 52% less 8.5% of calcite-1).  Meteoric water influx 536 

resulted in some moldic pores by dissolution and a decrease of formation water salinity down to 0 wt. % NaCl 537 

(Fig. 16a).  Dissolution induced by meteoric water locally created some moldic pores in the limestone, although 538 

the precipitation of calcite-2 (15.25%; Table 1) decreased reservoir porosity to 28.3% due to growth of 15.25% 539 

calcite-2. 540 

Stage 2: Mechanical compaction, pressure solution, and calcite cementation in limestone 541 

Stage 2 consists of phases 7 to 10 (Figs. 4A, 16).  Point- and line-contact relationships between ooid grains in 542 

limestone are very common.  Some porosity was lost at this stage due to calcite cementation, mechanical 543 

compaction, and pressure solution, causing growth of 20.8% calcite-3 (Table 1) resulting in porosity of 7.5% 544 

(Table 1).  The precipitation of small quantities of dolomite-3 (2.9%) and quartz (0.5%) cement (Table 1) 545 

further decreased the average porosity to about 4.1%.  Oil charging locally occurred with some bitumen 546 

occupying the pore spaces thus decreasing the average porosity to about 0.9%.  Note that TSR did not occur in 547 

the lime-grainstones. 548 

Stage 3: Post-TSR calcite cementation and dissolution 549 

Stage 3 in limestone consists of phases 20 to 23 (Figs. 15A, 16).  This stage was dominated by calcite-5 550 

cementation in fractures.  The overall porosity decreased by ~1.2% (Table 1), thus accounting for the current 551 

average core analysis porosity of oolitic limestones in the Feixianguan Formation being now about 2% (Fig. 16). 552 

5.6.2 Dolostone reservoir evolution model 553 

Stage 1: Early dolomitization and moldic porosity formation 554 
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Stage 1 consists of phases 2 to 7 (Figs. 15B, 17).  As for the limestones, we have assumed that the initial 555 

porosity of the original oolitic limestone was about 52% and we have assumed that, as for the limestones, 556 

growth of 8.5% marine calcite-1 cementation decreased porosity to 43.5% (i.e. 52 % less 8.5 %).   Initial 557 

formation water salinity was about 3.5 wt. % NaCl; the same as for the limestone.  Early reflux of evaporated 558 

and/or normal seawater resulted in dolomitization of the detrital carbonate materials and the early calcite cement 559 

(calcite-1).  This phase of dolomitization may have produced some moldic pores by dissolution (Melim et al., 560 

2001; Jiang et al., 2014b; Saller et al., 2014) and led to an increase of the formation water salinity up to 18 wt. 561 

% NaCl (Fig. 16B), although we note that molds can also be formed by marine pore fluids and meteoric water 562 

diagenesis (Melim et al., 2001).  Some porosity was lost at this stage due to anhydrite cementation and 563 

mechanical compaction, resulting in a net average porosity of 32%, as supported by point counting data (grain + 564 

matrix + calcite-1; Table 1).  Dolomite-1 and dolomite-2 cementation (~8.5%) further decreased the average 565 

porosity to ~23.5% (Table 1; Fig. 16b). 566 

Stage 2: Early oil charge 567 

Stage 2 consists of phases 8 to 13 (Figs. 15B, 17).  Burial dolomitization resulted in 6.5% dolomite cementation 568 

and replacement (dolomite-3) decreasing the average porosity to about 17 % (23.5 % less 6.5 %) (Fig. 17).  569 

Calcite-3 and other diagenetic minerals (e.g. barite, fluorite, quartz, celestite, and pyrite) represent small 570 

volumes (< 0.5 %) (Table 1) and so led to a small net reduction in porosity down to about 16 % (Fig. 17) due to 571 

compaction and pressure solution.  Early oil, sourced from Lower Permian strata, then charged the Feixianguan 572 

dolostone reservoirs and maintained the porosity by inhibiting further cementation (e.g., calcite) in oil saturated 573 

reservoir part (Neilson et al., 1998; Heasley et al., 2000; Worden et al., 2000; Cai et al., 2010; Cox et al., 2010; 574 

Sathar et al., 2012).  Hence, early oil charge had a positive effect on reservoir quality in the carbonate reservoirs 575 

(Ma et al., 2008b; Saller et al., 2014; Hao et al., 2015). 576 

Stage 3: TSR dissolution and cementation, gas charge, and bitumen formation 577 

Stage 3 consists of phases 14 to 19 (Figs. 15B, 17).  TSR is the dominant diagenetic event in this stage.  TSR 578 

resulted in anhydrite dissolution and calcite precipitation, and produced significant amounts of H2S and CO2.  579 

Dissolution-enlarged pores in the Feixianguan Formation are most likely related to TSR, and the overall TSR-580 

induced porosity-increase was ~2%, as discussed previously.  TSR locally increased visible porosity by up to 581 

one third in some vin thin-sections (Table 1).  However, calcite-4, pyrite, and bitumen have occupied about 582 
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1.6%, 0.4%, and 5% of the total rock volume in grain-dolostone reservoirs, respectively (Table 1).  Hence, 583 

following TSR and bitumen generation, the average porosity in the Feixianguan was ~11% (Fig. 17). 584 

Stage 4: Post-TSR calcite cementation and dissolution 585 

Stage 4 consists of phases 20 to 23 (Figs. 15B, 17).  This stage is dominated by calcite-5 cementation and TSR 586 

induced dissolution of carbonate minerals, although some other minerals, such as anhydrite, celestite and barite, 587 

locally precipitated in fractures.  The overall porosity decreased by ~1% (Table 1), thus the current average core 588 

analysis porosity of oolitic dolostones in the Feixianguan Formation is about 10% (Fig. 17). 589 

5.7. Implications for ooid-dominated dolo-grainstone reservoir evolution during diagenesis 590 

This detailed, inter-well-scale study of contrasting diagenesis between ooid-dominated lime-grainstone and 591 

dolo-grainstone reservoirs has enabled us to reconstruct the diagenetic fluid and porosity evolution of carbonates 592 

deposited in a tidal-dominated platform-marginal oolitic shoal complex.  Previous studies of the diagenetic and 593 

reservoir evolution in the Feixianguan Formation focused on the dolostone showing good reservoir quality, and 594 

did not emphasize the diagenesis of their limestone counterpart (Zhao et al., 2005; Huang et al., 2007; Ma et al., 595 

2008a; Chen et al., 2015; Hao et al., 2015; Wang et al., 2015).  Detailed comparison and analysis of diagenetic 596 

sequences, fluid inclusion homogenization temperatures and salinities of the diagenetic minerals, δ
13

C, δ
18

O, 597 

87
Sr/

86
Sr of carbonate minerals, porosity and diagenetic mineral quantitative volume estimations, have together 598 

allowed us to develop a comprehensive understanding of the heterogeneous evolution of carbonate diagenesis 599 

and reservoir quality. 600 

Deeply buried (> 3,500 m) carbonate successions generally show relatively low porosity and permeability due to 601 

mechanical compaction, pressure dissolution, and calcite and dolomite cementation (Schmoker and Halley, 602 

1982; Heydari, 2000; Ehrenberg et al., 2006).  This study suggests that diagenesis, most importantly early 603 

dolomization and thermochemical sulfate reduction, have yielded reservoirs with significant porosity in the 604 

Feixianguan Formation from the Sichuan Basin in China. 605 

Ooid-dominated grainstones globally represent many important carbonate reservoirs (Harris and Weber, 2006; 606 

Lehrmann et al., 2012): e.g., Mississippian Formation of the United States (Handford, 1988), the Triassic Khuff 607 

and Kangan Formations (Moradpour et al., 2008; Faqira et al., 2009), and the Jurassic Arab Formation (Lindsay 608 

et al., 2006; Ehrenberg et al., 2007).  These have similar geological settings and show reservoir characteristics 609 



23 
 

comparable to those of the Feixianguan Formation.  Dolomitization occurred in evaporitic sabkha and shallow 610 

reflux settings associated with anhydrite cementation.  Removal of anhydrite and the generation of H2S and low 611 

salinity water, during later diagenesis caused by sulfate reduction reactions.  Both bacterial sulfate reduction 612 

(BSR) in relatively lower temperatures (< 100 °C) (Saller et al., 2014) and thermochemical sulfate reduction 613 

(TSR) in relatively high temperatures (> 100 °C) (Jiang et al., 2015c), are able to locally enhance the reservoir 614 

quality.  Hence, the diagenetic and reservoir formation model of the ooid-dominated dolo-grainstone of the 615 

Feixianguan Formation may be applicable to other deeply buried dolo-grainstone reservoirs deposited in similar 616 

sedimentary facies (e.g. Triassic Khuff and Kangan Formations on the Arabian plate, Mississippian Formation 617 

of the United States, and the Jurassic Arab Formation).  618 

6. Conclusions 619 

(1) Integration of petrographic, isotopic, fluid inclusion, and porosity point counting data, reveals discrete 620 

diagenetic and porosity evolution patterns in limestone and dolostone reservoirs in the Lower Triassic 621 

Feixianguan Formation. 622 

(2) Early calcite cementation and mechanical compaction, pressure solution, and late stage calcite cementation 623 

have reduced porosity in limestone to ~2%.  Negative trend of δ
18

O and the low salinity data (<3.5 wt. %) of 624 

some calcite-2 and calcite-3 in limestone suggest that there was an influx of meteoric water. 625 

(3) Dolostone reservoirs have retained relatively high porosity (10 %) mainly due to four important diagenetic 626 

stages (pre-TSR, oil charge, TSR, and post-TSR) that have collectively controlled reservoir quality. 627 

(4) Average porosity in oolitic dolostone was ~23.5% after early dolomitization.  Early dolomitization appears 628 

to be crucial in the formation of dolostone reservoirs.  The reservoir quality of dolostones is significantly higher 629 

than that of limestones mainly due to: i) the generation of new porosity instead of calcite cementation, and ii) 630 

dolostone being more resistant to compaction than limestone.  631 

(5) Early oil charge had a positive effect on dolostone reservoir quality which is able to inhabit calcite cement 632 

growth into the pore spaces in the oil leg.  Subsequent diagenesis of dolostone reservoirs was dominated by 633 

thermochemical sulfate reduction (TSR).  The depleted δ
13

C (~-20‰ VPDB) and δ
18

O values of deep diagenetic 634 

carbonates (calcite-4), the elevated precipitation temperatures (>110°C), and the presence of native sulfur and 635 
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pyrite, suggest that these minerals are the products of TSR processes.  TSR was responsible for the formation of 636 

enlarged dissolution pores that enhanced the reservoir quality (increased porosity by ~2 %) in dolostones. 637 

(6) The mechanisms by which TSR improved dolostone reservoir quality are: i) anhydrite dissolution; ii) 638 

production of significant amounts of water (dilution of initially saline formation water in the gas leg by TSR-639 

induced fresh water by a factor of four); iii) generation of H2S, CO2, and the reaction of H2S with Fe
2+

 (with the 640 

iron found in ferroan calcite and ferroan dolomite) that created acidic fluids capable of causing a further amount 641 

of dissolution.  The overall impact of post-TSR diagenesis on dolostone reservoir was largely insignificant. 642 

(7) This study has demonstrated the importance of early dolomitization and late TSR in the preservation of 643 

reservoir quality in deeply buried dolostones and the destruction of pores in equivalent limestones, both of 644 

which were deposited in platform interior shoal and margin shoal facies.  Dolostone represents much better 645 

reservoir quality than limestone due to the preservation of porosity and the creation of secondary pores largely 646 

resulting from TSR that was localised to the anhydrite-bearing dolostone.  The study of diagenesis and porosity 647 

evolution in platform interior and margin shoal facies from Feixianguan Formation may be applicable to other 648 

deeply buried dolo-grainstone reservoirs that have intra-reservoir heterogeneity deposited in similar sedimentary 649 

facies. 650 
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 872 

Figure Caption: 873 

Figure 1.  A) Paleogeography and locations of the sampled gas fields. The Feixianguan Formation dolomite 874 

reservoirs in the NE Sichuan Basin.  B) Cross section (from A to B in part A) showing stratigraphic 875 

relationships and sedimentary facies distribution of the Feixianguan and Changxing formations.  Modified from 876 

Jiang et al. (2014b). 877 

Figure 2.  A) Stratigraphic and porosity correlation of the oolitic limestone and dolostone in the Feixianguan 878 

Formation across the open platform on the southwest side of Kaijiang–Liangping Bay to the restricted platform 879 

on the northwest side in Sichuan Basin (Fig. 1B).  B) Core samples from well LG-001 showing the contrast 880 

reservoir quality between the dolostone section and limestone section: dolostone is porous and shows good 881 

moldic porosity whereas limestone is tight and enriched in stylolites and calcite cement.  C) Core-derived 882 

porosity-permeability data of oolitic limestone reservoir in the Yuanba gas field, data modified from Cai et al. 883 

(2014).  D) Core-derived porosity-permeability data of ooids enriched dolostone reservoir in the Puguang 2 well, 884 

data modified from Ma et al. (2008b). 885 
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Figure 3.  Burial and paleo-temperature histories constructed of well PG2 (A) and (B) well YB2 from the East 886 

Sichuan Basin, modified from Cai et al. (2014).  Isotherms were constrained by vitrinite reflectance and fluid 887 

inclusion measurements. 888 

Figure 4.  Different types of calcite cements and stylolite from the limestone in the Feixianguan Formation, well 889 

LG001, depth 6088.8 m.  A) Calcite-1 and calcite-2 in limestone, open oomodic pores (red epoxy; yellow arrow) 890 

locally present, well HB2, 5,104.3m.  B) Calcite-2 (in red) filling in moldic porosity and interparticle pores in 891 

limestone, well YB2, depth 6428 m.  C) Photomicrograph shows tight limestone with minimal visual porosity 892 

due to the presence of stylolite (red arrow) and volumetrically-important calcite-3 cementation.    893 

Figure 5. Different types of calcite cements precipitated in various diagenetic environments in dolostone in the 894 

Feixianguan Formation (A, B, C are photomicrograph figures, D is a photo of BSEM). A) Calcite-3 (red) filling 895 

in fracture in dolomite reservoir, well LJ1, 3,470.40 m.  B) Oil-stage TSR calcite-4 (red) and bitumen (black) 896 

filling in dissolution-enlarged pores (blue proxy) in dolomite reservoir, dissolution pores locally present in 897 

calcite-3, micrite envelopes (yellow arrow) developed in the edges of ooids, well LJ2, 3,232.9m.  C) Gas-stage 898 

TSR calcite-4 (red) does not contain bitumen or oil inclusions filling (black) in dissolution pores in dolomite 899 

reservoir, well LJ6, 3,936.00 m.  D) Late stage post-TSR calcite-5 (light gray) filling in fractures in the dolomite 900 

reservoir, well DW102, depth 4901 m. 901 

Figure 6. Photomicrographs showing different preservation of original ooid textures in dolomite reservoirs.  A) 902 

Micro-crystalline dolomite with early replaced dolomite cement (red arrow), the original ooid texture is well 903 

persevered, white space stand for pore space, well PG2, 4977.4 m;  B) Coarsely crystalline, fabric destructive 904 

dolomite, the original ooid texture cannot be discerned due to severe recrystallization, abundant intercrystalline 905 

porosity (blue) is present, well LJ2, 3,232.2 m. 906 

Figure 7. Photomicrographs show different types of dissolution porosity in dolomite reservoirs.  A) Partially 907 

dissolved moldic porosity (red) developed in ooids, well PG2, depth 5130 m.  B: Open mold (red) show 908 

completely dissolution of the ooids, well PG2, depth 5133 m.  C) Dissolution enlarged porosity up to 909 

millimetres range (blue) with some ooids completely dissolved, LJ2 3,232.9 m.  D) Late dissolution of coarse 910 

dolomite crystals, which were partially or completely dissolved (red), locally filling with bitumen, well PG2, 911 

depth 5130 m. 912 
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Figure 8: Photomicrographs (A, B) and BSEM images (C, D) show other non-carbonate minerals in dolomite 913 

reservoirs.  A) Early anhydrite cement (marked as A) filling in both interparticle and intraparticle porosities of 914 

dolostone (marked as D), well PG11, 5,818.00 m.  B) Late stage quartz cement (marked as Q) filling in 915 

dissolution enlarged pores in dolostone (marked as D), well D2, depth 4300 m.  C) Pyrite (marked as Py) filling 916 

in dissolution pores in dolostone (marked as D), D2-25, depth 4309 m.  D) Barite (marked as Ba) associated 917 

with fluorite (marked as F) and calcite (marked as C) filling in a fracture, well P2-30. 918 

Figure 9: Photomicrographs show three generation of fractures in dolomite reservoir.  A) Fracture-1 crosscut by 919 

fracture-2, both of which were filled with calcite-3 cement, well HB2-5, depth 5105.2 m.  B) Fracture-3 cross-920 

cutting all the other minerals suggesting that it represents the latest fracture stage, and it locally remains open 921 

(red) without any mineral in-filling, well PG2, depth 5103 m. 922 

Figure 10: Compositions of oolitic limestone (A) and oolitic dolomite (B).  Original porosity in limestone was 923 

nearly completely filled by early calcite, thus limestones show negligible late diagenetic minerals or dissolution 924 

porosity.  In contrast, dolostone reservoirs contain only minor quantities of early calcite cement and have much 925 

higher remaining porosity and quantities of late diagenetic minerals dominated by dolomite and bitumen. 926 

Figure 11: Fluid-inclusion data obtained from different types of calcite in the Feixianguan Formation.  A) Fluid-927 

inclusion homogenization temperatures from aqueous inclusions from pre-TSR calcite (calcite-2).  B) Salinity of 928 

aqueous inclusions from calcite-2.  C) Fluid-inclusion homogenization temperatures from two-phase aqueous 929 

inclusions from TSR calcite-4 (those with oil or bitumen inclusions are oil stage TSR calcite; those without are 930 

gas stage TSR calcite).  D) Salinity of aqueous inclusions from TSR calcite-4.  E) Fluid-inclusion 931 

homogenization temperatures from two-phase aqueous inclusions from post-TSR calcite (calcite-5).  F) Salinity 932 

of aqueous inclusions from calcite-5.  Fluid inclusion data from dolostone reservoirs are adapted from Jiang et al. 933 

(2015a). 934 

Figure 12: A) Average salinity and homogenization temperature data from fluid inclusions in calcite cements in 935 

limestone.  B) Average salinity and homogenization temperature from fluid inclusions in pre-TSR, TSR, and 936 

post-TSR calcite in dolomite, adapted data from Jiang et al. (2015c). 937 

Figure 13: Carbon and oxygen isotopic compositions of (A) limestone and (B) dolostone from the Feixianguan 938 

Formation in the NE Sichuan Basin. Dash open rectangles are adapted from previous studies (Jiang et al., 2014a; 939 

Jiang et al., 2015a; Jiang et al., 2015c); red rectangle filled with red symbols is from this study. 940 
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Figure 14: 
87

Sr/
86

Sr ratios of various types of carbonate minerals in (A) limestone and (B) dolostone, in 941 

comparison with those from literature data for coeval seawater from the Lower Triassic Feixianguan Formation 942 

in NE Sichuan Basin, China.  Sr isotope and age data for the Feixianguan and Jialingjiang seawater from Jiang 943 

et al. (2014b). 944 

Figure 15.  Paragenetic sequence of A) limestone and B) dolostone in the Feixianguan Formation in northeast 945 

Sichuan Basin, summarizing major products of pre-TSR diagenesis, TSR diagenesis, post-TSR diagenesis, and 946 

the temperature for each diagenetic realms.  Temperature data are from fluid inclusion analysis. Time scale bar 947 

was added by combing the burial histories in Figure 3 with fluid inclusion data. 948 

Figure 16: Limestone reservoir evolution models for the Feixianguan Formation.  The model has been divided 949 

into three different diagenetic stages, which are here considered to be important for reservoir quality evolution.  950 

Each stage has distinguishable diagenetic fluids, products, and porosity.  They are: stage 1, meteoric water 951 

dissolution and cementation; stage 2, mechanical compaction, pressure solution, and calcite cementation; stage 3, 952 

post-TSR calcite cementation, see text for details of each stage.  Porosity in each diagenetic stage was calculated 953 

by the average point count data of lime-grainstone and dolo-grainstone in Table 1. 954 

Figure 17: Dolostone reservoir evolution models for the Feixianguan Formation.  The models have been divided 955 

into four different diagenetic stages, which are here considered to be important for reservoir quality evolution.  956 

Each stage has distinguishable diagenetic fluids, products, and porosity.  They are: stage 1, early dolomitization 957 

and moldic porosity formation; stage 2, early oil charge; stage 3, TSR dissolution and cementation, gas charge, 958 

and bitumen formation; stage 4, post-TSR calcite cementation and dissolution, see text for details of each stage. 959 

Table captions 960 

Table 1. Point counting data showing percentages of each component in lime-grainstone and dolo-grainstone 961 
reservoirs in the Feixiangian Formation. 962 
 963 
Table 2. δ

13
C‰, δ

18
O‰, and 

87
Sr/

86
Sr values of various types of carbonate minerals in lime-grainstone and 964 

dolo-grainstone reservoirs in the Feixianguan Formation. 965 

Table 3. Four types of carbonate reservoirs classified on the basis of sedimentary facies in the Feixianguan 966 
Formation. Data are modified from an internal company report from Sinopec. 967 
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Figure 1.  A) Paleogeography and locations of the sampled gas fields. The Feixianguan Formation dolomite 970 

reservoirs in the NE Sichuan Basin.  B) Cross section (from A to B in part A) showing stratigraphic 971 

relationships and sedimentary facies distribution of the Feixianguan and Changxing formations.  Modified from 972 

Jiang et al. (2014b). 973 
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Figure 2.  A) Stratigraphic and porosity correlation of the oolitic limestone and dolostone in the Feixianguan 977 

Formation across the open platform on the southwest side of Kaijiang–Liangping Bay to the restricted platform 978 

on the northwest side in Sichuan Basin (Fig. 1B).  B) Core samples from well LG-001 showing the contrast 979 

reservoir quality between the dolostone section and limestone section: dolostone is porous and shows good 980 

moldic porosity whereas limestone is tight and enriched in stylolites and calcite cement.  C) Core-derived 981 

porosity-permeability data of oolitic limestone reservoir in the Yuanba gas field, data modified from Cai et al. 982 

(2014).  D) Core-derived porosity-permeability data of ooids enriched dolostone reservoir in the Puguang 2 well, 983 

data modified from Ma et al. (2008b). 984 
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Figure 3.  Burial and paleo-temperature histories constructed of well PG2 (A) and (B) well YB2 from the East 988 

Sichuan Basin, modified from Cai et al. (2014).  Isotherms were constrained by vitrinite reflectance and fluid 989 

inclusion measurements. 990 
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Figure 4.  Different types of calcite cements and stylolite from the limestone in the Feixianguan Formation, well 994 

LG001, depth 6088.8 m.  A) Calcite-1 and calcite-2 in limestone, open oomodic pores (red epoxy; yellow arrow) 995 

locally present, well HB2, 5,104.3m.  B) Calcite-2 (in red) filling in moldic porosity and interparticle pores in 996 

limestone, well YB2, depth 6428 m.  C) Photomicrograph shows tight limestone with minimal visual porosity 997 

due to the presence of stylolite (red arrow) and volumetrically-important calcite-3 cementation.    998 
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Figure 5. Different types of calcite cements precipitated in various diagenetic environments in dolostone in the 1002 

Feixianguan Formation (A, B, C are photomicrograph figures, D is a photo of BSEM). A) Calcite-3 (red) filling 1003 

in fracture in dolomite reservoir, well LJ1, 3,470.40 m.  B) Oil-stage TSR calcite-4 (red) and bitumen (black) 1004 

filling in dissolution-enlarged pores (blue proxy) in dolomite reservoir, dissolution pores locally present in 1005 

calcite-3, micrite envelopes (yellow arrow) developed in the edges of ooids, well LJ2, 3,232.9m.  C) Gas-stage 1006 

TSR calcite-4 (red) does not contain bitumen or oil inclusions filling (black) in dissolution pores in dolomite 1007 

reservoir, well LJ6, 3,936.00 m.  D) Late stage post-TSR calcite-5 (light gray) filling in fractures in the dolomite 1008 

reservoir, well DW102, depth 4901 m. 1009 
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Figure 6. Photomicrographs showing different preservation of original ooid textures in dolomite reservoirs.  A) 1014 

Micro-crystalline dolomite with early replaced dolomite cement (red arrow), the original ooid texture is well 1015 

persevered, white space stand for pore space, well PG2, 4977.4 m;  B) Coarsely crystalline, fabric destructive 1016 

dolomite, the original ooid texture cannot be discerned due to severe recrystallization, abundant intercrystalline 1017 

porosity (blue) is present, well LJ2, 3,232.2 m. 1018 
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Figure 7. Photomicrographs show different types of dissolution porosity in dolomite reservoirs.  A) Partially 1021 

dissolved moldic porosity (red) developed in ooids, well PG2, depth 5130 m.  B: Open mold (red) show 1022 

completely dissolution of the ooids, well PG2, depth 5133 m.  C) Dissolution enlarged porosity up to 1023 

millimetres range (blue) with some ooids completely dissolved, LJ2 3,232.9 m.  D) Late dissolution of coarse 1024 

dolomite crystals, which were partially or completely dissolved (red), locally filling with bitumen, well PG2, 1025 

depth 5130 m. 1026 

1027 
  1028 



39 
 

Figure 8: Photomicrographs (A, B) and BSEM images (C, D) show other non-carbonate minerals in dolomite 1029 

reservoirs.  A) Early anhydrite cement (marked as A) filling in both interparticle and intraparticle porosities of 1030 

dolostone (marked as D), well PG11, 5,818.00 m.  B) Late stage quartz cement (marked as Q) filling in 1031 

dissolution enlarged pores in dolostone (marked as D), well D2, depth 4300 m.  C) Pyrite (marked as Py) filling 1032 

in dissolution pores in dolostone (marked as D), D2-25, depth 4309 m.  D) Barite (marked as Ba) associated 1033 

with fluorite (marked as F) and calcite (marked as C) filling in a fracture, well P2-30. 1034 

1035 
  1036 
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Figure 9: Photomicrographs show three generation of fractures in dolomite reservoir.  A) Fracture-1 crosscut by 1037 

fracture-2, both of which were filled with calcite-3 cement, well HB2-5, depth 5105.2 m.  B) Fracture-3 cross-1038 

cutting all the other minerals suggesting that it represents the latest fracture stage, and it locally remains open 1039 

(red) without any mineral in-filling, well PG2, depth 5103 m. 1040 
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Figure 10: Compositions of oolitic limestone (A) and oolitic dolomite (B).  Original porosity in limestone was 1044 

nearly completely filled by early calcite, thus limestones show negligible late diagenetic minerals or dissolution 1045 

porosity.  In contrast, dolostone reservoirs contain only minor quantities of early calcite cement and have much 1046 

higher remaining porosity and quantities of late diagenetic minerals dominated by dolomite and bitumen. 1047 
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Figure 11: Fluid-inclusion data obtained from different types of calcite in the Feixianguan Formation.  A) Fluid-1051 

inclusion homogenization temperatures from aqueous inclusions from pre-TSR calcite (calcite-2).  B) Salinity of 1052 

aqueous inclusions from calcite-2.  C) Fluid-inclusion homogenization temperatures from two-phase aqueous 1053 

inclusions from TSR calcite-4 (those with oil or bitumen inclusions are oil stage TSR calcite; those without are 1054 

gas stage TSR calcite).  D) Salinity of aqueous inclusions from TSR calcite-4.  E) Fluid-inclusion 1055 

homogenization temperatures from two-phase aqueous inclusions from post-TSR calcite (calcite-5).  F) Salinity 1056 

of aqueous inclusions from calcite-5.  Fluid inclusion data from dolostone reservoirs are adapted from Jiang et al. 1057 

(2015a). 1058 

1059 
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Figure 12: A) Average salinity and homogenization temperature data from fluid inclusions in calcite cements in 1061 

limestone.  B) Average salinity and homogenization temperature from fluid inclusions in pre-TSR, TSR, and 1062 

post-TSR calcite in dolomite, adapted data from Jiang et al. (2015c). 1063 

1064 
  1065 
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Figure 13: Carbon and oxygen isotopic compositions of (A) limestone and (B) dolostone from the Feixianguan 1066 

Formation in the NE Sichuan Basin. Dash open rectangles are adapted from previous studies (Jiang et al., 2014a; 1067 

Jiang et al., 2015a; Jiang et al., 2015c); red rectangle filled with red symbols is from this study. 1068 

 1069 

 1070 

  1071 



45 
 

Figure 14: 
87

Sr/
86

Sr ratios of various types of carbonate minerals in (A) limestone and (B) dolostone, in 1072 

comparison with those from literature data for coeval seawater from the Lower Triassic Feixianguan Formation 1073 

in NE Sichuan Basin, China.  Sr isotope and age data for the Feixianguan and Jialingjiang seawater from Jiang 1074 

et al. (2014b). 1075 
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Figure 15.  Paragenetic sequence of A) limestone and B) dolostone in the Feixianguan Formation in northeast 1079 

Sichuan Basin, summarizing major products of pre-TSR diagenesis, TSR diagenesis, post-TSR diagenesis, and 1080 

the temperature for each diagenetic realms.  Temperature data are from fluid inclusion analysis. Time scale bar 1081 

was added by combing the burial histories in Figure 3 with fluid inclusion data. 1082 
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Figure 16: Limestone reservoir evolution models for the Feixianguan Formation.  The model has been divided 1086 

into three different diagenetic stages, which are here considered to be important for reservoir quality evolution.  1087 

Each stage has distinguishable diagenetic fluids, products, and porosity.  They are: stage 1, meteoric water 1088 

dissolution and cementation; stage 2, mechanical compaction, pressure solution, and calcite cementation; stage 3, 1089 

post-TSR calcite cementation, see text for details of each stage.  Porosity in each diagenetic stage was calculated 1090 

by the average point count data of lime-grainstone and dolo-grainstone in Table 1. 1091 
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Figure 17: Dolostone reservoir evolution models for the Feixianguan Formation.  The models have been divided 1095 

into four different diagenetic stages, which are here considered to be important for reservoir quality evolution.  1096 

Each stage has distinguishable diagenetic fluids, products, and porosity.  They are: stage 1, early dolomitization 1097 

and moldic porosity formation; stage 2, early oil charge; stage 3, TSR dissolution and cementation, gas charge, 1098 

and bitumen formation; stage 4, post-TSR calcite cementation and dissolution, see text for details of each stage. 1099 
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Table 1. Point counting data showing percentages of each component in lime-grainstone and dolo-grainstone 1102 
reservoirs in the Feixiangian Formation 1103 

Sample 

No. 

Depth Location Facies Rock 

type 

Grain 

(%) 

Matrix 

(%) 

 Carbonate cement (%) Porosity  

(%) 

Bitumen Pyrite Quartz 

  (m)  (Shoal) C1 C2 C3 C4 C5 D1,2 D3 (%) (%) (%) 

HB1-5a 4972 NE Side Interior O L 26 0 16 27 25 0 0 0 0 6 0 0 0 

HB1-5b 4972 NE Side Interior O L 26 0 41 0 19 0 0 7 0 7 0 0 0 

HB1-5c 4973 NE Side Interior O L 56 0 2 24 16 0 0 0 0 2 0 0 0 

HB1-5d 4973 NE Side Interior O L 48 0 0 23 29 0 0 0 0 0 0 0 0 

HB1-5f 4974 NE Side Interior O L 35 3 7 20 28 0 0 2 0 5 0 0 0 

HB2-5a 5104 NE Side Interior O L 42 0 5 10 41 0 0 0 0 2 0 0 0 

HB2-5b 5106 NE Side Interior O L 45 0 6 3 45 0 0 0 0 1 0 0 0 

HB2-5c 5017 NE Side Interior O L 46 0 10 9 31 0 0 0 0 4 0 0 0 

HB2-5d 5112 NE Side Interior O L 55 0 18 10 15 0 0 2 0 0 0 0 0 

HB102-

4a 

5174 NE Side Interior O L 55 0 5 10 30 0 0 0 0 0 0 0 0 

HB102-

4b 

5177 NE Side Interior O L 46 0 24 11 16 0 0 3 0 0 0 0 0 

J5 outcrop SW Side Interior  O L 29 0 10 40 20 0 0 0 0 0 1 0 0 

J7 outcrop SW Side Interior O L 43 0 7 17 33 0 0 0 0 0 0 0 0 

J8 outcrop SW Side Interior O L 11 26 5 10 48 0 0 0 0 0 0 0 0 

DW102 outcrop SW Side Margin O L 70 6 3 3 0 0 0 8 0 3 3 0 4 

PLD-1 outcrop SW Side Margin O L 60 0 4 6 0 0 20 0 0 10 0 0 0 

PLD-2 outcrop SW Side Margin O L 45 22 3 5 0 0 13 0 0 7 0 0 5 

YB2-3 6401 SW Side Margin O L 45 0 3 5 40 0 0 0 5 0 2 0 0 

YB2-4 6428 SW Side Margin O L 55 0 6 14 18 0 0 0 7 0 0 0 0 

YB3-1a 6581 SW Side Margin O L 50 6 6 15 8 0 0 0 15 0 0 0 0 

YB3-1b 6583 SW Side Margin O L 36 25 6 15 10 0 0 0 8 0 0 0 0 

YB3-2 6627 SW Side Margin O L 23 18 10 20 28 0 0 1 0 0 0 0 0 

YB101-2 6797 SW Side Margin O L 54 0 5 6 30 0 0 1 2 0 0 0 2 

YB102-

4a 

6597 SW Side Margin O L 34 0 10 29 0 0 0 17 0 1 9 0 0 

YB102-

4b 

6600 SW Side Margin O L 27 0 8 53 0 0 1 4 0 0 7 0 0 

YB102-

5a 

6602 SW Side Margin O L 44 0 7 24 18 0 0 0 0 2 3 0 2 

YB102-

5b 

6605 SW Side Margin O L 65 1 6 6 13 0 0 0 0 8 1 0 0 

LGC 5935 SW Side Margin O L 63 0 5 12 20 0 0 0 0 0 0 0 0 

LJ2-1 3198 NE Side Interior OD 67 6 0 0 0 0 2 7 2 6 9 0 1 

LJ2-18 3267 NE Side Interior O D 70 0 0 0 0 0 0 15 8 5 2 0 0 

LJ2-25 3256 NE Side Interior O D 65 0 0 0 0 0 0 15 5 8 5 2 0 

LJ2-33 3232 NE Side Interior O D 75 0 0 0 0 0 0 0 15 8 2 0 0 

LJ2-37 3233 NE Side Interior O D 56 0 0 0 0 4 0 17 0 20 3 0 0 

LJ2-26 3256 NE Side Interior O D 71 0 0 0 0 0 0 0 17 8 1 3 0 

LJ3-58 -- NE Side Interior O D 69 0 0 0 0 2 0 10 5 13 0 1 0 

LJ3-27 -- NE Side Interior O D 66 0 0 0 0 0 0 18 7 3 6 0 0 

LJ2 -- NE Side Interior O D 71 0 0 0 0 2 0 8 15 2 1 1 0 

LJ2-23 -- NE Side Interior O D 67 0 0 0 0 0 0 25 0 3 5 0 0 

D1 -- NE Side Margin O D 58 0 0 0 0 3 0 17 4 9 8 0 1 

D2-25 4309 NE Side Margin O D 62 0 0 0 0 5 0 0 20 10 1 2 0 

D2-7 -- NE Side Margin O D 57 0 0 0 0 0 0 0 18 16 2 2 5 

D4-4 4236 NE Side Margin O D 78 0 0 0 0 4 0 5 0 13 0 0 0 

D5 4793 NE Side Margin O D 55 0 0 0 0 3 0 11 6 12 9 0 4 

DW102 4901 NE Side Margin O D 71 9 0 0 17 3 0 0 0 0 0 0 0 

PLD-3 outcrop NE Side Margin O D 80 0 0 0 0 0 6 0 0 0 12 2 0 

PLD-4 outcrop NE Side Margin O D 72 0 0 0 0 0 14 0 0 0 14 0 0 

LJ6-7 3936 NE Side Margin O D 65 0 0 0 0 0 0 12 8 8 7 0 0 

PG1a -- NE Side Margin O D 70 0 0 0 0 0 0 12 0 17 1 0 0 

PG1b -- NE Side Margin O D 72 0 0 0 0 0 0 5 5 17 1 0 0 

PG2-24 5020 NE Side Margin O D 63 0 0 0 0 0 0 10 0 27 0 0 0 

PG2-21 4987 NE Side Margin O D 60 0 0 0 0 0 0 0 14 25 1 0 0 

PG2-20a 4978 NE Side Margin O D 83 0 0 0 0 0 0 12 0 3 2 0 0 

PG2-27 5043 NE Side Margin O D 75 0 0 0 0 0 0 18 0 5 2 0 0 

PG2-31 5076 NE Side Margin O D 72 0 0 0 0 0 0 5 20 0 3 0 0 

PG2-32 5085 NE Side Margin O D 74 0 0 0 0 0 0 7 14 3 2 0 0 

PG2-41 5196 NE Side Margin O D 70 0 0 0 0 0 0 13 5 10 2 0 0 

PG2-39 5166 NE Side Margin O D 65 0 0 0 0 0 0 10 8 17 0 0 0 

PG2-22a 4980 NE Side Margin O D 64 0 0 0 0 0 0 0 20 14 2 0 0 

PG2-26 4937 NE Side Margin O D 75 0 0 0 0 0 0 13 0 12 0 0 0 

PG2-21 4934 NE Side Margin O D 80 0 0 0 0 6 0 0 7 7 0 0 0 

PG2-22b 4935 NE Side Margin O D 64 0 0 0 0 17 0 0 15 0 4 0 0 

PG2-5 4776 NE Side Margin O D 67 0 0 0 0 14 0 0 5 13 0 0 1 

PG2-20b 4982 NE Side Margin O D 38 0 0 0 0 0 0 12 17 33 0 0 0 

PG2-30 5066 NE Side Margin O D 87 0 0 0 0 0 0 0 0 12 1 0 0 

PG6-a -- NE Side Margin O D 60 0 0 0 0 0 0 18 7 10 5 0 0 

PG6-b -- NE Side Margin O D 68 0 0 0 0 0 0 0 0 2 26 4 0 

PG6-c 5142 NE Side Margin O D 75 0 0 0 0 0 0 0 18 5 2 0 0 

TS 5-9 -- SW Side Margin O D 66 0 0 0 0 3 0 14 0 6 11 0 0 

TS 5-11 -- SW Side Margin O D 56 0 0 0 0 0 0 14 0 18 12 0 0 

TS 5-12 -- SW Side Margin O D 49 0 0 0 0 1 0 24 0 10 16 0 0 

TS 5-13 -- SW Side Margin O D 53 18 0 0 0 2 0 14 0 2 11 0 0 

LGC 5933 SW Side Margin O D 65 0 0 0 0 3 0 17 0 13 2 0 0 

Average value Lime-grainstone 44.1 3.8 8.5 15.3 20.8 0 1.2 1.6 1.3 2.1 0.9 0.0 0.5 

Dolo-grainstone 67.0 0.8 0.0 0 0.4 1.6 0.5 8.6 6.5 9.7 4.4 0.4 0.3 

NE Side: Northeast side of the Kaijiang-Liangping Bay; SW Side: Southwest side of the Kaijiang-Liangping Bay; OL: oolitic limestone; OD: oolitic dolostone 1104 
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Table 2. δ13C‰, δ18O‰, and 87Sr/86Sr values of various types of carbonate minerals in lime-grainstone and dolo-1105 
grainstone reservoirs in the Feixianguan formation 1106 

Sample Depth (m) Location Lithology Mineral δ13C‰ δ18O‰ 87Sr/86Sr 

LG3 5935.9 SW Side Limestone Micrite -- -- 0.707280 

LG3 -- SW Side Limestone Micrite -- -- 0.707130 

LG8 6523.4 SW Side Limestone Micrite -- -- 0.707399 

LG8 6526.0 SW Side Limestone Micrite -- -- 0.707344 

LG8 6524.1 SW Side Limestone Micrite -- -- 0.707130 

LG8 6526.1 SW Side Limestone Micrite -- -- 0.707345 

LG8 6527.8 SW Side Limestone Micrite -- -- 0.707220 

TS5 -- SW Side Limestone Micrite -- -- 0.707460 

LG001 6141.5 SW Side Dolostone Dolomite-2 --l -- 0.707508 

LG001 6142.6 SW Side Dolostone Dolomite-2 -- -- 0.707823 

LG001 5990.1 SW Side Dolostone Dolomite-2 -- -- 0.707518 

YB101 -- SW Side Dolostone Calcite-2 3.44 -4.41 -- 

YB205 -- SW Side Dolostone Calcite-2 2.79 -5.72 -- 

YB27 -- SW Side Dolostone Calcite-2 2.46 -5.93 -- 

YB271 --  SW Side Dolostone Calcite-2 2.95  -3.99 -- 

EL-1 outcrop  SW Side Dolostone Calcite-2 2.19  -3.78 -- 

EL-3 outcrop  SW Side Dolostone Calcite-2 -2.53 -7.17 -- 

EL-16 outcrop  SW Side Dolostone Calcite-2 -0.11 -3.95 -- 

TS5-11 -- SW Side Dolostone Calcite-3 -- -- 0.707581 

TS5-13 -- SW Side Dolostone Calcite-3 -- -- 0.707607 

LG3  5935.5 SW Side Dolostone Calcite-3 1.53 -6.45 0.707344 

LG8  6523.3 SW Side Dolostone Calcite-3 1.44 -6.30 0.707363 

LG9 5870.1  SW Side Dolostone Calcite-3 1.66  -5.51 -- 

-- Not measured or no data available; SW Side: Southwest side of the Kaijiang-Liangping Bay 1107 

 1108 

 1109 

  1110 
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Table 3. Four types of carbonate reservoirs classified on the basis of sedimentary facies in the Feixianguan 1111 
Formation. Data are modified from a report from Sinopec. 1112 

Sedimentary  

Facies 

Porosity (%) Permeability (mD) 

Number Range Average Number Range Average 

Slope 21 0.9-1.8 1.4 21 0.01-0.43 0.06 

Restricted platform 84 1.3-20.9 3.1 57 0.00-41.54 1.49 

Platform margin Shoal 744 1.11-28.9 9.24 664 0.02-7973.77 174.81 

Evaporative platform 591 0.45-17.2 4.5 526 0.00-9664.89 81.94 

 1113 

 1114 


