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Abstract 15 

 16 

Interest in the creation of secondary pore space in petroleum reservoirs has increased 17 

because of a need to understand deeper and more complex reservoirs. The creation of 18 

new secondary porosity that enhances overall reservoir quality in deeply buried 19 

carbonate reservoirs is controversial and some recent studies have concluded it is not 20 

an important phenomenon. Here we present petrography, geochemistry, fluid 21 

inclusion data, and fluid-rock interaction reaction modeling results from Triassic 22 

Feixianguan Formation, Sichuan Basin, China, core samples and explore the relative 23 

importance of secondary porosity due to thermochemical sulphate reduction (TSR) 24 
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during deep burial diagenesis. We find that new secondary pores result from the 25 

dissolution of anhydrite and possibly from dissolution of the matrix dolomite. 26 

Assuming porosity before TSR was 16 % and the percentage of anhydrite was 6 %, 27 

modelling shows that, due to TSR, 1.6 % additional porosity was created that led to 28 

permeability increasing from 110 mD (range 72 to 168 mD within a 95% confidence 29 

interval) to 264 mD (range 162 to 432 mD within a 95 % confidence interval). 30 

Secondary porosity results from the density differences between reactant anhydrite 31 

and product calcite, the addition of new water during TSR, and the generation of 32 

acidity during the reaction of new H2S with the siderite component in pre-existing 33 

dolomite in the reservoir. Fluid pressure was high during TSR, and approached 34 

lithostatic pressure in some samples; this transient overpressure may have led to the 35 

maintenance of porosity due to the inhibition of compactional processes. An 36 

additional 1.6 % porosity is significant for reserve calculations, especially considering 37 

that it occurs in conjunction with elevated permeability that results in faster flow rates 38 

to the production wells. 39 

 40 

Keywords: Mesogenetic dissolution, thermochemical sulphate reduction, carbonate 41 
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Introduction 43 

Thermochemical sulphate reduction (TSR) is the abiological oxidation of 44 

hydrocarbons by sulphate (due to the dissolution of anhydrite, celestite and barite in 45 

sedimentary basins) at elevated temperatures, typically higher than 110 ºC (Jiang et al., 46 

2015c; Machel, 2001; Worden et al., 1995). Significant alteration of petroleum, 47 

generation of reduced forms of sulphur (S and H2S), and oxidized forms of carbon 48 



(carbonate minerals and CO2) are typically the results of TSR. TSR can also generate 49 

water, metal sulphides, organosulphur compounds, and bitumen (Bildstein et al., 2001; 50 

Cai et al., 2003; Jiang et al., 2015c; Machel, 1987; Machel et al., 1995; Worden et al., 51 

2000; Worden et al., 1995).  52 

A general reaction summarizing TSR: 53 

sulphate+ petroleum  calcite + H2S ± H2O ± CO2 ± S ± altered petroleum (1) 54 

Simple stoichiometric TSR reactions in many sedimentary basins (e.g. Feixianguan 55 

Formation, Sichuan Basin; Khuff Formation, Abu Dhabi; Upper Devonian and 56 

Mississippian strata, Alberta, Canada) between anhydrite and the two simplest 57 

hydrocarbons: 58 

CaSO4 + CH4  CaCO3 + H2S + H2O (2) 59 

2CaSO4 + C2H6  2CaCO3 + H2S + 2H2O + S (3) 60 

7CaSO4 + 4C2H6  7CaCO3 + 7H2S + 5H2O + CO2 (4) 61 

Most TSR-related studies have focused on stable isotope geochemistry and the 62 

geochemistry of petroleum, sulphate, and the products of TSR (e.g. CO2, H2S, S), and 63 

few focus on the ability of TSR to form new pore spaces in deeply buried rocks and 64 

thus improve carbonate reservoirs quality. For example, it is proposed that deep burial 65 

diagenesis in a closed system (including TSR) is not able to enhance porosity and 66 

permeability in carbonate reservoirs (Ehrenberg et al., 2012; Heydari, 1997; Machel 67 

and Buschkuehle, 2008). In the Upper Jurassic Smackover Formation, Mississippi, 68 

TSR appears to have resulted in large amount of calcite precipitation with significant 69 

porosity-loss (Heydari, 1997). Carbonate reservoirs in the Southesk-Cairn Carbonate 70 



Complex (SCCC), Alberta Basin, indicate the overall change of porosity and 71 

permeability during TSR is small. Similarly, based on a literature review and 72 

modelling, Ehrenberg et al. (2012) suggested that mesogenetic dissolution, producing 73 

a net increase in secondary porosity, is not likely during deep burial diagenesis. By 74 

contrast, detailed petrographic, geochemical, and modelling work (TSR impact on the 75 

carbonate reservoir quality) from the Western Canada Sedimentary Basin (WCSB) 76 

determined that while 75% of the porosity created by dissolution of anhydrite during 77 

TSR was lost due to calcite precipitation, net porosity increased 1 to 2% (Hutcheon 78 

and Krouse, 1994; Hutcheon et al., 1995).  79 

There is evidence for extensive TSR in the Feixianguan Formation, based on: (1) 80 

coexistence of TSR calcite, elemental sulphur, pyrite, sulphur-enriched bitumen, and 81 

anhydrite (Jiang et al., 2014a); (2) broad overlap of sulphur isotopes of TSR-82 

generated pyrite, elemental sulphur, sulphur in bitumen and H2S, with values 83 

approaching δ34S value of the pre-existing, early diagenetic anhydrite that is 84 

equivalent to coeval seawater sulphur isotopes (Cai et al., 2010; Hao et al., 2008; Zhu 85 

et al., 2005); (3) relatively high fluid inclusion homogenization temperatures found in 86 

TSR calcite (from ~110 ºC to 220 ºC) (Jiang et al., 2014a, 2015c), and; (4) gas 87 

geochemical characteristics including: relatively high H2S concentration (up to 58%) 88 

that replaced the CH4 in gas reservoirs, the extremely high gas dryness (C1/∑Cn) 89 

(>0.95), positive relationship of gas souring index [GIS = H2S/(H2S + ∑Cn)] (Worden 90 

et al., 1995) and TSR extent parameter [CO2/( CO2 + ∑CnH2n+2)] (Krouse et al., 1988), 91 

and the δ13C values of methane and ethane with a different extent of TSR (Cai et al., 92 

2013; Hao et al., 2008; Li et al., 2005; Liu et al., 2013; Liu et al., 2014).  93 



The Feixianguan Formation in the Sichuan Basin, China, offers an ideal place to study 94 

the impact of TSR on deeply buried carbonate reservoir quality, because it was a 95 

relatively closed diagenetic environment during TSR (Jiang et al., 2015a; Jiang et al., 96 

2015c). There is little evidence for diagenetic fluids (e.g., meteoric water, 97 

hydrothermal fluids, deep basinal fluids) influencing the carbonate reservoir during 98 

TSR. While a number of studies have focused on TSR in the Feixianguan Formation, 99 

only two have investigated the impact of TSR on porosity: Cai et al. (2014) suggested 100 

TSR was responsible for dissolution of dolomite and anhydrite with an overall 101 

positive effect on dolostone reservoir quality; by contrast, Hao et al. (2015) suggested 102 

TSR diagenesis was dominated by calcite cementation that reduced reservoir quality 103 

in the Feixianguan Formation. This study will focus on resolving this conflict and 104 

establishing the impact of TSR on carbonate reservoirs using the Feixianguan 105 

Formation, by addressing the following questions: 106 

1. Did new secondary pores develop in the Feixianguan Formation during TSR? 107 

2. If secondary pores did form during TSR, what are their characteristics?  108 

3. What are the possible mechanisms for enhanced reservoir quality during TSR? 109 

To answer these questions, we focus on representative wells which have experienced 110 

TSR by applying conventional core description techniques, point counting, 111 

transmitted-light petrography, scanning electron microscope (SEM) petrography, 112 

fluid-inclusion analysis and pressure modelling, and diagenesis modelling. 113 

Geological setting 114 

The diamond-shaped, intracratonic, 230,000 km2 Sichuan Basin is located in the east 115 

of Sichuan Province, southwest China (Fig. 1A). The Sichuan Basin is tectonically-116 



bounded by the Longmenshan fold belt in the northwest, the Micangshan uplift in the 117 

north, the Dabashan fold belt in the northeast, the Hubei-Hunan-Guizhou fold belt in 118 

the southeast, and by the Emeishan-Liangshan fold belt in the southwest (Fig. 1A). 119 

The Lower Triassic Feixianguan Formation (T1f) carbonates occupy high energy 120 

facies belts dominated by oolitic carbonates (Fig. 1B) (Ma et al., 2008a; Zhao et al., 121 

2005). During deposition of the Feixianguan Formation, open to semi-restricted 122 

carbonate platforms, in an arid climate, with fluctuating sea level, resulted in 123 

deposition of oolitic shoals and multiple gypsiferous layers on the margins of 124 

Kaijiang-Liangping Bay. Towards the end of Feixianguan deposition, aridity 125 

increased and the platforms became more restricted, which resulted in multiple 126 

gypsum beds interlayered with thin-bedded micritic limestones (Fig. 2). These upper 127 

evaporitic layers provide the regional seal for the underlying carbonate reservoirs 128 

(Zhao et al., 2005). 129 

Seawater evaporation from lagoons, on the restricted platform to platform margin, is 130 

reported to have caused the initial dolomitization in the Feixianguan Formation (Jiang 131 

et al., 2013; Jiang et al., 2014b; Zhao et al., 2005). The most significant 132 

dolomitization phase then occurred in shallow burial environments by reflux of 133 

mesohaline water or seawater dolomitization (Jiang et al., 2014b). The latest 134 

dolomitization event occurred during burial, at temperatures ranging from 80°C to 135 

140°C, due to invasion of high salinity water, most likely from the overlying 136 

Jialingjiang Formation (Jiang et al., 2014b). The Feixianguan Formation on the NE 137 

side of the Kaijiang-Liangping Bay is more dolomitized compared to the SW side, 138 

perhaps because of local differences in aridity during deposition (Jiang et al., 2014b; 139 

Zhao et al., 2005). 140 



Burial histories in the Sichuan Basin were dominated by rapid burial in the Triassic 141 

and early Jurassic to depths of ~7500 m and temperatures of 220C followed by uplift 142 

prior to the Cretaceous Yanshan movement . This history has led to early Triassic gas 143 

reservoirs with temperatures between 100 and 140C at the present day (Ma et al., 144 

2008a). Thermochemical sulphate reduction (TSR) occurred during appropriate 145 

elevated temperature conditions, where there was sufficient supply of anhydrite and 146 

petroleum. The Feixianguan Formation carbonate has variable H2S concentrations 147 

generally between 10% and 20%, but up to 60% in some reservoirs (Cai et al., 2013; 148 

Hao et al., 2008; Li et al., 2005; Liu et al., 2014). 149 

Methods 150 

More than 100 core samples were collected from the lower unit of the Triassic 151 

Feixianguan Formation from the Puguang, Luojiazhai, Dukouhe, Maoba and Jingzhu 152 

carbonate reservoir gas fields. These fields were chosen since they have variable 153 

degrees of gas sourness. Polished sections, and conventional thin sections that were 154 

stained with Alizarin Red S to distinguish calcite and dolomite, were prepared from 155 

all samples. Selected samples were examined by scanning electron microscope (SEM) 156 

in backscattered electron imaging mode (BSEM), and elemental analysis by energy 157 

dispersive X-ray spectroscopy (EDS). Point counting of the stained thin sections (500 158 

points for each sample) was used to determine the mineral and pore-type proportions. 159 

Fluid inclusion homogenization temperatures (Th) and last ice melting temperatures 160 

(Tm) were measured from fluid inclusion assemblages (FIAs) containing two-phase 161 

aqueous inclusions in five doubly polished, detached (50 to 60 µm thick) wafers. The 162 

use of FIAs to determine temperatures of mineral growth, as opposed to single 163 

inclusions, provides confidence that the Th data are credible and minimizes the effects 164 



of artefacts, such as thermal re-equilibration (Goldstein, 2012; Goldstein and 165 

Reynolds, 1994). Fluid inclusion microthermometry was conducted using a Zeiss 166 

Axioskop 40A Pol light microscope with a Linkam THM600/TS90 heating and 167 

cooling stage. Last ice melting temperatures were converted to salinity using standard 168 

equations (Bodnar, 2003; Oakes et al., 1990). 169 

Coexistence of two-phase aqueous and single-phase hydrocarbon inclusions indicates 170 

that fluid inclusions were trapped in the immiscible two-phase field, and measured 171 

aqueous inclusion homogenization temperatures thus represent trapping temperatures 172 

(Goldstein and Reynolds, 1994). Raman analysis was undertaken for individual 173 

hydrocarbon fluid inclusions using LabRAM ARAMIS equipment. The position of 174 

each measured Raman line was determined, after baseline correction, using 175 

parameters for Gaussian/Lorentzian peak fitting (Lin et al., 2007). The 2851.38 and 176 

2972.44 cm–1 Ne lines (relative to the 514.529 nm Rayleigh line of the Ar ion laser, in 177 

air) were used for calibration. Concentrations of methane and trapping pressures were 178 

calculated following the equations of state for the CH4 system and the H2O-NaCl-CH4 179 

system (Duan and Mao, 2006; Duan, 1992), using the approach of Becker et al. 180 

(2010). 181 

The aim of geochemical modelling in this study is to simulate the overall change in 182 

mineral assemblage volume (including dolomite, calcite, and anhydrite) by 183 

considering the reaction described in equation (2) during TSR. A similar modelling 184 

strategy to the 3D reactive transport presented by Fu et al. (2016) was applied in this 185 

study. In contrast to Fu’s model, our geochemical model focuses on geochemical 186 

reactions without considering groundwater flow and solute transport during the TSR. 187 

This simplification renders fast computation. The US Geological Survey’s computer 188 



program PHREEQC and the database thermodynamic wateq4f.dat were used to 189 

simulate equilibrium reactions for aqueous species (Parkhurst and Appelo, 2013). 190 

Temperatures, pressures, and fluid compositions obtained from the fluid study were 191 

used as input to the geochemical model (details in the supplemental input file). In 192 

addition, the kinetic rates of TSR were obtained from the model presented by Fu et al. 193 

(2016). Mineral proportions were derived from point counting of the thin-section 194 

samples. The modelling results for volume changes in mineral compositions were 195 

further used to estimate change in porosity following the similar method presented by 196 

Yang et al. (2008) and (Xu et al., 2010). 197 

Permeability modelling was achieved by obtained the equation of relationship 198 

between porosity and permeability, which can be obtained from the measured core 199 

plug petrophysical data. The changes of permeability during TSR were calculated by 200 

inputting the modelled porosity change during TSR to the calculated porosity-201 

permeability relationship equation, using 95 % confidence limits to present ranges for 202 

the derived permeability values. 203 

Results 204 

Thermochemical sulphate reduction diagenetic minerals 205 

Dolomite crystal sizes typically range from 50 to 200 μm in Feixianguan Formation 206 

sucrosic dolostone reservoirs (Fig. 3). Here we illustrate that late diagenetic TSR 207 

calcite locally fills pores but is heterogeneously distributed in these dolostone 208 

reservoirs, with some parts of the reservoir filled with calcite whereas other parts 209 

contain open pores (Fig. 3A, C; Fig. 4B, D; Fig. 5C). Pore characteristics have been 210 

strongly modified by diagenetic processes, with some pores occupied by diagenetic 211 

minerals and some enlarged by carbonate dissolution (Fig. 3B, D; Figs. 4 and 5). 212 



Calcite produced by TSR represents the most volumetric mineral during TSR (in 213 

contrast to elemental sulphur), with average point-counted volumes of 1.6 ± 3.4 % 214 

(N=44) and a maximum volume of up to 17 % (Table 1).  Two types of TSR calcite 215 

have been identified: TSR calcite that contains oil or bitumen inclusions is here 216 

defined as oil-stage TSR calcite, and TSR calcite with no evidence of oil or bitumen 217 

inclusions is defined as gas-stage TSR calcite. These calcites may either have 218 

precipitated from fluids in open pores or replaced the former anhydrite cement within 219 

the reservoir (Jiang et al., 2014a). 220 

Euhedral pyrite is locally present in pores either as replacement of dolomite or in 221 

pores that are also typically associated with elemental sulphur (Fig. 4A). The average 222 

point counted volume of pyrite is less than 0.4 ± 0.9 % (N=44) (Table 1). Elemental 223 

sulphur in dolostone reservoir is best shown using BSEM analysis and commonly 224 

occurs with pyrite and TSR calcite (Figs. 3, 4, and 5). The total point counted volume 225 

of sulphur is less than 0.1% (N=44) although it is locally enriched at the edges of 226 

dissolution-enlarged pores. Elemental sulphur is appears similar to bitumen in the 227 

optical microscope (opaque and irregular in form). Bitumen is commonly present as 228 

sheet- and sphere-shape masses, with length or diameter in a range from 10 to 100 μm 229 

(Figs. 3 and 5), and represents 4.4 ± 5.4 % (N=44) rock volume (Table 1).  230 

Dissolution-enlarged pores 231 

Pore spaces in the Feixianguan Formation are dominated by dissolution-enlarged 232 

pores, which are commonly associated with TSR calcite, elemental sulphur, pyrite and 233 

bitumen (Figs. 3 and 45). There are two main occurrences of dissolution-enlarged 234 

pores in the Feixianguan dolostone reservoirs. The first type is selective dissolution 235 

pores. These are represented either by solution-enhanced vugs, where moldic pores 236 



have been enlarged, or by complete dissolution of anhydrite cement; these dissolution 237 

pores are relatively large (up to 2 mm) (Fig. 4; Fig. 5A, B). The second type is 238 

characterised by partial or complete dissolution of coarse crystalline dolomite (Fig. 239 

5D). Elemental sulphur commonly occurs on the edges of dissolution pores but there 240 

is notably little TSR calcite present (Figs. 3 and 5). The point counted (meso) porosity 241 

for these good  dolostone reservoirs is in the range from 0% to 33 %, average at 9.7 ± 242 

7.5 % (N=44) (Table 1).  243 

Fluid inclusion microthermometry 244 

Calcite produced by TSR contains primary, two-phase aqueous inclusions. Fluid 245 

inclusion homogenization temperature (Th) variations within fluid inclusion 246 

assemblages (FIAs) from TSR calcite are generally less than about 10 °C (Fig. 6). 247 

Salinity values, determined from last ice melting temperatures, vary from less than 5 248 

wt % NaCl to nearly 25 wt % NaCl for TSR calcites. 249 

Measured homogenization temperatures (Th) for FIAs (and isolated fluid inclusions) 250 

for oil-dominated TSR calcite range from approximately 110 °C to 200 °C (Fig. 6). In 251 

contrast, gas-dominated TSR calcite has a Th range from 135 °C to 210 °C (Fig. 6). 252 

The temperatures obtained from the inclusions in TSR calcite represent minimum 253 

trapping temperatures (Goldstein and Reynolds, 1994). Oil-stage TSR calcite has 254 

decreasing salinity with increasing temperature, while, in contrast, gas-stage TSR has 255 

decreasing salinity with decreasing temperature (Fig. 6). The Th-salinity distribution 256 

defines a progressive evolution during burial and heating, initially in the presence of 257 

oil with ever-falling salinity, and then in the presence of gas once the oil underwent 258 

cracking at maximum burial, followed by uplift and cooling in the presence of the 259 

evolved gas charge (Fig. 6). 260 



Methane concentrations of fluid inclusions and trapping pressures 261 

Aqueous fluid inclusions in TSR calcite in the Feixianguan Formation have bulk 262 

methane concentrations over a wide range from ~ 1500 to 11000 ppm, corresponding 263 

to trapping pressures of ~ 25 to 165 MPa (Fig. 7). By reference to the large-scale 264 

thermal cycle revealed by the oil-stage TSR calcite and then the gas-stage TSR calcite 265 

(Fig. 6), it is possible to infer the pressure evolution of the Feixianguan Formation 266 

during TSR. The fluid inclusions show variations in pressure with temperature with a 267 

clear subdivision of the oil-stage and gas-stage TSR calcites. The increasing 268 

temperature for the oil-stage calcite reveals increasing fluid pressure with time (and 269 

with heating) as the Feixianguan Formation was buried to ~7000 m (temperature of 270 

~220°C). The switch to gas-stage calcite at elevated temperature shows that uplift to 271 

the current burial depth of ~3000 to 5000 m (temperatures of ~ 120 to 140 °C) was 272 

accompanied by decreasing fluid pressure with time (and with cooling). The highest 273 

fluid pressures approach the simulated trapping pressures (153-160MPa) for high 274 

density methane inclusions reported elsewhere for the Feixianguan Formation (Liu et 275 

al., 2009). Fluid pressures approach, and exceed in some cases, the modelled 276 

lithostatic pressure gradient suggesting that at least some of the fractures present in 277 

these rocks maybe due to excess fluid pressure. 278 

Thermochemical sulphate reduction modelling result 279 

Prior to TSR, calcite and anhydrite are here interpreted to have been abundant 280 

minerals in the dolostone Feixianguan Formation reservoirs (representing 1 and 6 281 

wt. %, respectively) with porosity of 16% (Table 2), based on the point count data. 282 

The gas phase in these reservoirs is dominated by CH4 (95 vol. %), CO2 (2 vol. %), 283 

and N2 (1.5 vol. %). The initial composition of pore water before the onset of TSR in 284 



the geochemical model has been calculated by equilibrating of seawater through 285 

evaporation to the salinity obtained from fluid inclusion data. Temperature in the 286 

geochemical model was varied from 120 to 200 °C, based on the fluid inclusion 287 

evidence (Fig. 6). 288 

Relative changes in mineral volumes for anhydrite, calcite, and dolomite at the steady 289 

state, based on the PHREEQC modelling results, are listed in Table 2. Anhydrite is 290 

consumed due to TSR, resulting in decreasing solid rock volume by 312.4 cm3 (6.00 % 291 

of the total rock volume), whereas carbonate minerals precipitated and increased the 292 

solid rock volume by 212.8 cm3 due to calcite (4.05 % of the total rock volume) and 293 

1.3 cm3 rock volume due to dolomite (0 % of the total rock volume). Hence there was 294 

a 1.95 % increase in relative porosity equating to an absolute post-TSR porosity 295 

increase of 1.6 %.  296 

Sensitivity modelling of initial porosity of 10 % before TSR was also conducted; the 297 

results show that porosity increased by 1.7 % due to TSR (Table 2). 298 

Permeability modelling result 299 

An equation of the relationship between porosity and permeability was calculated 300 

based on the core plug petrophysical data: Y = 0.0166e0.5498X, R² = 0.6489 (where Y 301 

and X stands for mD-permeability and percentage porosity, respectively). 302 

The modelled permeability changes during TSR in the most proper porosity change in 303 

Case 1 (16 to 17.6 % porosity-increase due to TSR) is from 110 mD (before TSR, 304 

with a range 72 to 168 mD within a 95% confidence interval) to 264 mD (after TSR 305 

with a range 162 to 432 mD within a 95% confidence interval). For case 2 (10 to 11.7 % 306 



porosity-increase due to TSR) is from 4.1 mD (before TSR) to 10.3 mD (after TSR) 307 

(Table 3). 308 

Discussion 309 

Conditions during TSR calcite growth 310 

Comparison of the homogenization temperatures and salinities reveals a distinct 311 

separation that also relates to the type of host TSR calcite (Fig. 6). Oil was present in 312 

the reservoir before gas became the dominant petroleum phase, so initial calcite 313 

growth started in the presence of both oil and high salinity waters (25 wt % NaCl). 314 

Formation water salinity decreased to about 9 wt % NaCl during increasing 315 

temperature as oil-induced TSR progressed. After the oil charge evolved to a gas 316 

charge at elevated temperature, uplift occurred accompanied by decreasing 317 

temperature; the salinity of the formation water continued to fall (to 5 wt % NaCl) at 318 

this stage. The increasing and then decreasing temperatures in TSR calcites from the 319 

Feixianguan Formation are due to burial and uplift rather than invasion and 320 

subsequent cooling of hydrothermal fluids, (Jiang et al., 2015a; Jiang et al., 2014a). 321 

The measured homogenisation temperature data from TSR calcite (Fig. 6) have been 322 

related to the derived trapping pressures (Fig. 7B). A modelled lithostatic pressure 323 

gradient of 25.4 MPa/km was calculated for a depth-averaged rock density of 2.59 324 

g/cm3, using wireline log data from the Sichuan Basin. A modelled hydrostatic 325 

pressure gradient was calculated as 9.9 MPa/km, based on a water density of 1.02 326 

g/cm3. Depths for the lithostatic and hydrostatic pressure gradients have been 327 

converted into temperature assuming a geothermal gradient of 24 °C/km (Liu et al., 328 

2016; Qiu et al., 2008). Broadly speaking, the calculated fluid inclusion trapping 329 

pressures at the time of TSR calcite growth represent pore-fluid pressures that were 330 



significantly above the hydrostatic pressure gradient (Fig. 7B). Many of the pore-fluid 331 

pressure measurements are near lithostatic pressures; some of the low pressure-332 

temperature points lie at, or just below, the hydrostatic gradient (Fig. 7B). 333 

Impact of thermochemical sulphate reduction on reservoir quality 334 

According to petrographic observations reported here, dissolution-enhanced pore 335 

spaces tend to be spatially-close to TSR-related diagenetic minerals (pyrite, elemental 336 

sulphur, calcite) (Figs. 3 and 45). The close spatial association suggests that this 337 

secondary porosity, with point counted porosity values up to 32 % in one thin-section, 338 

formed by TSR. Our modelling work (Table 2) suggests that a porosity gain of 1.6 % 339 

is a consequence of TSR in the Feixianguan Formation, mainly due to the dissolution 340 

of anhydrite cement and/or nodules (Jiang et al., 2014b).  This is different from the 341 

TSR modelling by Fu et al. (2016), within which the sulphate for TSR was derived 342 

from anhydrite seal, and porosity should be decreased by TSR-calcite precipitation in 343 

their model.  Note that Hao et al. (2015) suggested, instead, that calcite cementation, 344 

rather than anhydrite and carbonate dissolution, dominated TSR diagenesis in the 345 

Feixianguan Formation, leading to porosity-loss during TSR. Our petrographic 346 

observations lead to a different conclusion. Porosity related to TSR dissolution has 347 

likely been underestimated by Hao et al. (2015) because they did not provide a 348 

detailed paragenetic sequence and also failed to discriminate TSR calcite from other 349 

types of diagenetic calcite. The diagenetic environments, reactants and products of 350 

TSR, and the gas geochemistry characteristics of the Feixianguan Formation are 351 

similar to those in the Western Canada Sedimentary Basin (Cai et al., 2014; Hao et al., 352 

2008; Hutcheon et al., 1995; Jiang et al., 2015c; Zhu et al., 2005). Significantly, TSR 353 

modelling of the Western Canada Sedimentary Basin, by Hutcheon et al. (1995), also 354 



showed that TSR probably led to an increase in porosity by 1 to 2 %, concurring with 355 

model outputs from the Feixianguan Formation. The permeability modelling result 356 

suggests that a net porosity increased from 1.6 % to 1.7 % by TSR, which doubled the 357 

reservoir permeability (Table 3), thus resulting in significantly enhancement of 358 

reservoir deliverability. 359 

Elemental sulphur and calcite produced by TSR, as well as the TSR by-product 360 

pyrite, , typically occur at the edge of dissolution enlarged pores (Figs. 3 and 5). 361 

Elemental sulphur is routinely present in appreciable quantities in sour gas and oil 362 

reservoirs in the Arabian Gulf region and United Arab Emirates (Abou-Kassem, 363 

2000), as well as in the Smackover Formation in southern Mississippi (Kuo, 1972). 364 

The freezing point of elemental sulphur, at atmospheric pressure, is 119 °C. Elemental 365 

sulphur and H2S are miscible at high pressure allowing dissolution of H2S into the 366 

liquid sulphur phase, and vice versa. Hence, it is likely that elemental sulphur is 367 

present as a liquid (or is dissolved in H2S-rich gas) under reservoir temperatures and 368 

pressures conditions during and after TSR (Meyer, 1976). Elemental sulphur in the 369 

Feixianguan Formation may have been present either at the contact between local 370 

(pore-scale) oil-water or gas-water contacts with the host dolomites in the dissolution 371 

enlarged pores, possibly inhibiting calcite growth on surface of dolomite crystals (Fig. 372 

3D; Fig. 5). 373 

Pyrite was formed during TSR either via equation (5) or via equation (6) in the 374 

Feixianguan Formation (Fig. 4A) (Jiang et al., 2014a; Liu et al., 2013). 375 

Fe2+ + 2H2S  FeS2+ 4H+  (5) 376 

FeCO3 + 2H2S  FeS2+ CO2+H2O+H2  (6) 377 



CaMg(CO3)2 + 4H+  Ca2+ + Mg2+ + 2H2O + 2CO2 (7) 378 

For equation (6), we are not suggesting that pure siderite (FeCO3) was present in the 379 

rock,rather that this represents the ferroan-component in dolomite, with iron likely 380 

being originally sourced from anoxic dolomitizing fluids. Point counted volumes of 381 

pyrite in the Feixianguan Formation range from 0 to 4 % (average of 0.4 %). Hence, 382 

at least near to the site of pyrite precipitation-- equation (5), the acidity of diagenetic 383 

fluids must have been increased by the release of H+. As a consequence, carbonate 384 

dissolution is likely to have occurred, via equation  (7), during and after pyrite 385 

precipitation in the Feixianguan Formation as a result of acid-creating equation (5) or 386 

via equation (6). Our modelling results show that TSR processes have not changed the 387 

volume of dolomite in these reservoirs (Table 2), although dolomite dissolution 388 

occurred after TSR. As mentioned above, this is consistent with isotopically-heavy 389 

CO2 found in the Feixianguan Formation. Calcite produced by TSR has not been 390 

observed in direct association with pyrite and elemental sulphur in the Feixianguan 391 

Formation suggests that the slow rate of diffusion exceeds the rate of TSR. This may 392 

also suggest that the components required to make TSR calcite may have been 393 

transported away from the immediate reaction site and TSR in porous carbonates may 394 

be able to proceed more efficiently than TSR in a finely crystalline dolomite matrix 395 

(with low porosity and low permeability) (Jiang et al., 2014a; Worden et al., 2000). 396 

Calcite precipitation rates are slower than pyrite precipitation rates (Fu et al., 2016), 397 

and therefore it is possible that TSR calcite has been transported into other parts of the 398 

Feixianguan dolostone reservoirs via diffusion, fractures and/or faults formed by local 399 

tectonic movements, whereas pyrite growth may have occurred close to the original 400 

TSR site (Ma et al., 2008b).  Although precipitation of 0.4% TSR-derived pyrite may 401 

have reduced porosity, the data presented here also shows that advanced carbonate 402 



dissolution occurred as a result of pyrite precipitation.  Hence, it is possible that the 403 

overall effects of TSR-related pyrite precipitation and carbonate dissolution on these 404 

dolostone reservoirs are positive in terms of reservoir quality. 405 

TSR impact on reservoir fluid composition and pressure  406 

According to balanced TSR equations (1-4), fluid phase H2S, CO2, elemental sulphur 407 

and H2O are all produced during TSR. Hence, both pore-fluid pressure and fluid 408 

composition were significantly altered by TSR. Trace elements, rare earth elements, 409 

and strontium isotopic data from TSR calcite demonstrate that TSR diagenesis most 410 

likely represents a relatively closed system in the Feixianguan Formation (Jiang et al., 411 

2015a). Previously published oxygen isotope data from TSR calcite in the 412 

Feixianguan Formation suggest that TSR-calcite precipitated in isotopic and thermal 413 

equilibrium with the host rock, TSR water and sulphate minerals, and the negative 414 

shift of carbon isotopes in this type of calcite is indicative of carbon partially sourced 415 

from hydrocarbons due to TSR and partial adoption of the matrix dolomite 13C 416 

signal (Cai et al., 2014; Huang et al., 2012; Jiang et al., 2015c) similar to the 417 

explanation of mixed 13C values in TSR calcite for other formations (Worden and 418 

Smalley, 1996). 419 

Fluid inclusion data show that about four times the volume of fresh water, compared 420 

to the initial residual formation water, was generated by TSR and added to the fluids 421 

in the Feixianguan Formation during TSR (Fig. 6) (Jiang et al., 2015c). Similar 422 

findings have also been reported for the Permian Khuff Formation from Abu Dhabi 423 

(Worden et al., 1996), and in the Devonian fields from the Western Canada 424 

Sedimentary Basin (Yang et al., 2001). Generation of low salinity water by TSR 425 

possibly resulted in the formation water being transiently undersaturated with respect 426 



to calcite and dolomite, which would also facilitating the dissolution of carbonate 427 

minerals in the Feixianguan Formation. 428 

The contact relationships of the ooids demonstrate that there is lack of compaction in 429 

these  dolostone reservoirs, precluding the possibility that disequilibrium compaction 430 

contributed to the overpressure during progressive burial (Heydari, 2000). Therefore, 431 

the elevated fluid pressure (near lithostatic pressure) at maximum burial and the 432 

continuation of these high pressures during early uplift stage were probably related to 433 

the addition of gas either by oil cracking or TSR. It is possible that systematic 434 

increase in fluid overpressure during burial (Fig. 7B) was related to the generation of 435 

hydrocarbon gases due to secondary cracking of the primary oil that was originally 436 

derived from Upper Permian marine source rocks (Cai et al., 2010; Hao et al., 2008). 437 

Thermochemical sulphate reduction seems to have occurred simultaneously with oil 438 

cracking and had a significant impact on both gas composition and isotopes (Cai et al., 439 

2013; Hao et al., 2008). An increase of fluid pressure due to the production of H2S 440 

and CO2 in these dolostone reservoirs (equation 4) has been proven to be a result of 441 

TSR (Liu et al., 2006). However, fluid pressure progressively decreased to near-442 

hydrostatic pressure (~56 MPa) during further uplift (Fig. 7A)(Liu et al., 2009). Fluid 443 

pressure increasing during burial followed by a decreasing trend during uplifting 444 

demonstrates that oil cracking may have been completed from the maximum burial to 445 

early uplift stage, and continuation of exhumation and the generation of fractures may 446 

have released some fluid pressure in these  dolostone reservoirs. 447 

We propose a model in which oil cracking due to progressive burial and increasing 448 

temperature, associated with TSR, led to increasing pore-fluid pressure in the 449 

Feixianguan Formation. During uplift, after oil cracking and bitumen formation, TSR 450 



continued to occur and produced H2S and CO2, maintaining some of the fluid pressure 451 

in the reservoir. In addition, pressure may have been episodically released from the 452 

system during uplift, resulting in methane exsolving from pore water into free-gas 453 

phase, maintaining methane saturation in the aqueous phase (Becker et al., 2010). 454 

Overpressure during TSR diagenesis may have resulted in the forcing of pore-fluids 455 

out of the TSR site. It is possible that a complex cycling of fluids on a reservoir scale 456 

is involved during TSR, resulting in some zones of reservoir develop higher porosity 457 

whereas others are occupied by calcite cements. 458 

Implications for deeply buried carbonate reservoir exploration 459 

In carbonate reservoirs, open system diagenesis, that can lead to enhanced porosity, 460 

has been proposed by numerous authors. In some carbonate systems, secondary 461 

porosity has been interpreted to have formed by near-surface karstification (Loucks, 462 

1999), due to early dissolution by meteoric water and/or dolomitization during water 463 

leaching (Dickson and Kenter, 2014; Jiang et al., 2016; Lucia et al., 1994; Zhu et al., 464 

2006), by mesogenetic dissolution (Kenter et al., 2006; Mazzullo and Harris, 1992), 465 

as well as by hydrothermal karstification and dissolution (Biehl et al., 2016a; Davies 466 

and Smith, 2006; Jiang et al., 2015b; Packard et al., 2001; Saller and Dickson, 2011; 467 

Smith, 2006). In contrast, in a closed or semi-closed burial diagenetic system, where 468 

water/rock ratios is low, the formation waters are commonly interpreted to be 469 

saturated with respect to calcite (Bjørlykke and Jahren, 2012; Ehrenberg et al., 2012).  470 

Based on detailed petrographic and geochemical data, as well as permeability, 471 

pressure and geochemical modelling, we here conclude that porosity and permeability 472 

has been increased by TSR in the Feixianguan Formation even though this rock unit is 473 

probably part of a relatively closed system. The current CO2 concentration measured 474 



in the  dolostone reservoir appears to correlate with H2S concentrations, and carbon 475 

isotopic composition of the contemporary CO2 gas is 13C-enriched and does not 476 

reflect a 12C-rich CO2 that would be expected from oxidation of hydrocarbon by 477 

sulphate (Cai et al., 2014; Hao et al., 2015; Huang et al., 2012). This observation is 478 

consistent with significant dissolution occurring and 13C-rich CO2 added to these 479 

reservoirs. Carbonate dissolution during deep burial environments may be related to 480 

TSR by generation of water, supported by this study, TSR modelling (Fu et al., 2016), 481 

and generation of acidity during the reaction of H2S with siderite component in 482 

dolomite. In addition, elemental sulphur generated by TSR may have maintained 483 

porosity from calcite precipitation. It is likely that TSR is capable of increasing 484 

reservoir heterogeneity and maintaining porosity by the inhibition of compactional 485 

processes due to the high fluid pressure conditions. Our study shows that TSR has 486 

enhanced the reservoir porosity by 1.6 % (Table 2) and doubled the permeability in 487 

the Feixianguan Formation dolostone (Table 3), which has clear and significant 488 

implications for petroleum exploration in deep sedimentary basins that experienced 489 

TSR (Biehl et al., 2016a; Biehl et al., 2016b; Bjørlykke and Jahren, 2012; Cai et al., 490 

2014; Ehrenberg et al., 2012; Heydari, 1997; Jiang et al., 2015c; Machel and 491 

Buschkuehle, 2008; Mazzullo and Harris, 1991; Worden et al., 1996; Yang et al., 492 

2001).  493 

Conclusions 494 

1. Deeply buried Feixianguan Formation  dolostone reservoirs from the Sichuan Basin 495 

(mainly between 3000 and 6000 m) contain dissolution enlarged pore spaces. These 496 

dissolution pores have close genetic links to thermochemical sulphate reduction 497 

(TSR), suggesting that TSR was responsible for the enhancement of reservoir quality. 498 



This is in agreement with geochemical model results that demonstrate an overall 499 

porosity increase of 1.6% and doubled permeability.  500 

2. Elemental sulphur occurred as a liquid (or was dissolved in gas) present at the 501 

contact between petroleum and water or directly in contact with the host dolomites in 502 

the dissolution pores, inhibiting the new secondary pores from undergoing calcite 503 

precipitation. 504 

3. Creation of fresh water under deep burial environments may cause dissolution of 505 

carbonate minerals because the formation water may become transiently 506 

undersaturated with respect to calcite and dolomite. 507 

4. Overpressure caused complex cycling of fluids within the reservoir during TSR, 508 

resulting in some reservoir zones being occupied by calcite cements and others 509 

developing higher porosity, thus increasing reservoir heterogeneity. 510 

5. Further dissolution of carbonate probably occurred because of the release of H+ due 511 

to pyrite precipitation, with Fe sourced from a ferroan carbonate component in 512 

dolomite. This is supported by the positive δ13C values of present-day CO2 in these 513 

reservoirs. 514 

6. This is the first documented case of how TSR can improve carbonate reservoir 515 

quality under a relatively closed diagenetic system. This phenomenon seems not to 516 

have been fully appreciated in other sedimentary basins that experienced TSR. 517 
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Table 1. Point counting data showing percentages of each component in TSR-752 

prevailed dolo-grainstone reservoirs in the Feixiangian Formation 753 
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Table 2. Mineral volume and porosity change by TSR modeling, porosity before TSR. 755 
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Table 3. Permeability change by TSR modeling, the equation of relationship between 757 

porosity and permeability (y = 0.0166e0.5498x, R² = 0.6489) was obtained from core 758 

plug measurement from the Luojia-2 well. 759 
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Figure 1. (A) Location and main structural elements of the Sichuan Basin, modified 763 

from Hao et al. (2008). (B) Paleogeography and locations of the sampled gas fields in 764 

the Feixianguan Formation  dolostone reservoirs. 765 

 766 

 Figure 2.  Representative wells showing stratigraphic and porosity correlation of the 767 

ooid-enriched limestone (that has not experienced TSR) and dolostone (that 768 

experienced TSR) in the Feixianguan Formation. Dolostone that experienced TSR 769 

appears to have the better reservoir quality; modified from (Ma et al., 2008a). 770 

 771 

Figure 3. Photomicrographs show TSR-related calcite and elemental sulphur in 772 

dissolution pores in the Feixianguan Formation. A) EDS image of calcite (white 773 



colour in the pore space) with a small volume of elemental sulphur (green colour in 774 

the pore space) filling in dolomite host rock (red colour), from well D2, depth 4308 m. 775 

B) EDS image of elemental sulphur (green colour in the pore space) present around 776 

the dissolution enlarged pore spaces in dolomite host rock (red colour), from well LJ2, 777 

depth 3256.5 m; C) EDS image showing big elemental sulphur aggressive (green 778 

colour) and calcite cement (write colour) in dissolution enlarged pore, from well D2, 779 

depth 4308 m; D) BSEM image of elemental sulphur (red arrow) occurs as shield of 780 

dissolution enlarged pore, from well Du 4, depth 4793 m. 781 

Figure 4. BESM images showing dissolution enlarged pore spaces and TSR-related 782 

calcite and pyrite in the Feixianguan Formation. A) Dissolution enlarged pore with 783 

size up to few millimetres locally filling with small volume of pyrite, well LJ 2, depth 784 

3256.5 m. B) Dolo-grainstone enriched in dissolution enlarged pores  with few calcite 785 

cements, well LJ 2, depth 3256.5 m. C) Dolostone reservoir containing open 786 

dissolution-enlarged pore spaces and a lack of cementation, well LJ 3-58. D) Intensive 787 

calcite cementation is observed in the left side of the image, whereas abundant 788 

dissolution enlarged pores present in the right side, from well Du 4, depth 4793 m. 789 

Figure 5: BSEM images showing the protection of pore spaces by elemental sulphur 790 

and the dissolution of late stage dolomite in the Feixianguan Formation. A) Elemental 791 

sulphur (red arrow) occurs as a shield around the dolomite cements and host rock in 792 

an open pore, from well LJ 2, depth 3232.2 m. B) Elemental sulphur (red arrow) grow 793 

on the edge of an open pore, from well Po 2. C) Calcite precipitated in pore spaces 794 

that are lacking in elemental sulphur, pore spaces appear to be well-developed where 795 

elemental sulphur is present, from well Du 4, depth 4793 m. D) Late stage, pore-796 

filling dolomite cement showing evidence of dissolution demonstrates that 797 

mesogenetic dissolution occurred during deep burial diagenetic environments, from 798 

well LJ 3-58. 799 

Figure 6: Comparison of salinity and temperature from fluids inclusions in of oil-stage 800 

and gas-stage TSR calcite. Salinity of the formation water decreased from 801 

approximately 25 wt. % to less than 10 wt. % during oil-stage TSR, and formation 802 

salinity continue to decrease from about 10 wt. % down to approximately 5 wt. % 803 

during gas-stage TSR. 804 



Figure 7: (A) Trapping pressures of fluid inclusions in TSR calcite. (B) Trapping 805 

temperature plotted against calculated trapping fluid pressures of fluids inclusions in 806 

TSR calcite with the data split into samples that had oil-stage TSR (oil inclusions 807 

present) and ones that gas-stage TSR (no oil inclusions present). 808 
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Figure 1. (A) Location and main structural elements of the Sichuan Basin, modified 810 

from Hao et al. (2008). (B) Paleogeography and locations of the sampled gas fields in 811 

the Feixianguan Formation  dolostone reservoirs. 812 

 813 

 814 

  815 



Figure 2.  Representative wells showing stratigraphic and porosity correlation of the 816 

ooid-enriched limestone (that has not experienced TSR) and dolostone (that 817 

experienced TSR) in the Feixianguan Formation. Dolostone that experienced TSR 818 

appears to have the better reservoir quality; modified from (Ma et al., 2008a). 819 
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Figure 3. Photomicrographs show TSR-related calcite and elemental sulphur in 823 

dissolution pores in the Feixianguan Formation. A) EDS image of calcite (white 824 

colour in the pore space) with a small volume of elemental sulphur (green colour in 825 

the pore space) filling in dolomite host rock (red colour), from well D2, depth 4308 m. 826 

B) EDS image of elemental sulphur (green colour in the pore space) present around 827 

the dissolution enlarged pore spaces in dolomite host rock (red colour), from well LJ2, 828 

depth 3256.5 m; C) EDS image showing big elemental sulphur aggressive (green 829 

colour) and calcite cement (write colour) in dissolution enlarged pore, from well D2, 830 

depth 4308 m; D) BSEM image of elemental sulphur (red arrow) occurs as shield of 831 

dissolution enlarged pore, from well Du 4, depth 4793 m. 832 
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Figure 4. BESM images showing dissolution enlarged pore spaces and TSR-related 836 

calcite and pyrite in the Feixianguan Formation. A) Dissolution enlarged pore with 837 

size up to few millimetres locally filling with small volume of pyrite, well LJ 2, depth 838 

3256.5 m. B) Dolo-grainstone enriched in dissolution enlarged pores  with few calcite 839 

cements, well LJ 2, depth 3256.5 m. C) Dolostone reservoir containing open 840 

dissolution-enlarged pore spaces and a lack of cementation, well LJ 3-58. D) Intensive 841 

calcite cementation is observed in the left side of the image, whereas abundant 842 

dissolution enlarged pores present in the right side, from well Du 4, depth 4793 m. 843 
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Figure 5: BSEM images showing the protection of pore spaces by elemental sulphur 847 

and the dissolution of late stage dolomite in the Feixianguan Formation. A) Elemental 848 

sulphur (red arrow) occurs as a shield around the dolomite cements and host rock in 849 

an open pore, from well LJ 2, depth 3232.2 m. B) Elemental sulphur (red arrow) grow 850 

on the edge of an open pore, from well Po 2. C) Calcite precipitated in pore spaces 851 

that are lacking in elemental sulphur, pore spaces appear to be well-developed where 852 

elemental sulphur is present, from well Du 4, depth 4793 m. D) Late stage, pore-853 

filling dolomite cement showing evidence of dissolution demonstrates that 854 

mesogenetic dissolution occurred during deep burial diagenetic environments, from 855 

well LJ 3-58. 856 
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Figure 6: Comparison of salinity and temperature from fluids inclusions in of oil-stage 860 

and gas-stage TSR calcite. Salinity of the formation water decreased from 861 

approximately 25 wt. % to less than 10 wt. % during oil-stage TSR, and formation 862 

salinity continue to decrease from about 10 wt. % down to approximately 5 wt. % 863 

during gas-stage TSR. 864 
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Figure 7: (A) Trapping pressures of fluid inclusions in TSR calcite. (B) Trapping 867 

temperature plotted against calculated trapping fluid pressures of fluids inclusions in 868 

TSR calcite with the data split into samples that had oil-stage TSR (oil inclusions 869 

present) and ones that gas-stage TSR (no oil inclusions present). 870 
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Table 1.  874 

Sample 

No. 

Depth Grai

n 

Matri

x 

Carbonate cements (%) Porosit

y  

Bitume

n 

Pyrit

e 

Quart

z 

  (m) (%) (%) C1 C2 C3 D

1 

D

2 

(%) (%) (%) (%) 

LJ2-1 3198 67 6 0 0 2 7 2 6 9 0 1 

LJ2-18 3267 70 0 0 0 0 15 8 5 2 0 0 

LJ2-25 3256 65 0 0 0 0 15 5 8 5 2 0 

LJ2-33 3232 75 0 0 0 0 0 15 8 2 0 0 

LJ2-37 3233 56 0 0 4 0 17 0 20 3 0 0 

LJ2-26 3256 71 0 0 0 0 0 17 8 1 3 0 

LJ3-58 -- 69 0 0 2 0 10 5 13 0 1 0 

LJ3-27 -- 66 0 0 0 0 18 7 3 6 0 0 

LJ2 -- 71 0 0 2 0 8 15 2 1 1 0 

LJ2-23 -- 67 0 0 0 0 25 0 3 5 0 0 

D1 -- 58 0 0 3 0 17 4 9 8 0 1 

D2-25 4309 62 0 0 5 0 0 20 10 1 2 0 

D2-7 -- 57 0 0 0 0 0 18 16 2 2 5 

D4-4 4236 78 0 0 4 0 5 0 13 0 0 0 

D5 4793 55 0 0 3 0 11 6 12 9 0 4 

DW10

2 

4901 71 9 17 3 0 0 0 0 0 0 0 

PLD-3 outcro

p 

80 0 0 0 6 0 0 0 12 2 0 

PLD-4 outcro

p 

72 0 0 0 14 0 0 0 14 0 0 

LJ6-7 3936 65 0 0 0 0 12 8 8 7 0 0 

PG1a -- 70 0 0 0 0 12 0 17 1 0 0 

PG1b -- 72 0 0 0 0 5 5 17 1 0 0 

PG2-

24 

5020 63 0 0 0 0 10 0 27 0 0 0 

PG2-

21 

4987 60 0 0 0 0 0 14 25 1 0 0 

PG2-

20a 

4978 83 0 0 0 0 12 0 3 2 0 0 

PG2-

27 

5043 75 0 0 0 0 18 0 5 2 0 0 

PG2-

31 

5076 72 0 0 0 0 5 20 0 3 0 0 

PG2-

32 

5085 74 0 0 0 0 7 14 3 2 0 0 

PG2-

41 

5196 70 0 0 0 0 13 5 10 2 0 0 

PG2-

39 

5166 65 0 0 0 0 10 8 17 0 0 0 

PG2-

22a 

4980 64 0 0 0 0 0 20 14 2 0 0 

PG2-

26 

4937 75 0 0 0 0 13 0 12 0 0 0 

PG2-

21 

4934 80 0 0 6 0 0 7 7 0 0 0 

PG2-

22b 

4935 64 0 0 17 0 0 15 0 4 0 0 



PG2-5 4776 67 0 0 14 0 0 5 13 0 0 1 

PG2-

20b 

4982 38 0 0 0 0 12 17 33 0 0 0 

PG2-

30 

5066 87 0 0 0 0 0 0 12 1 0 0 

PG6-a -- 60 0 0 0 0 18 7 10 5 0 0 

PG6-b -- 68 0 0 0 0 0 0 2 26 4 0 

PG6-c 5142 75 0 0 0 0 0 18 5 2 0 0 

TS 5-9 -- 66 0 0 3 0 14 0 6 11 0 0 

TS 5-

11 

-- 56 0 0 0 0 14 0 18 12 0 0 

TS 5-

12 

-- 49 0 0 1 0 24 0 10 16 0 0 

TS 5-

13 

-- 53 18 0 2 0 14 0 2 11 0 0 

LGC 5933 65 0 0 3 0 17 0 13 2 0 0 

Average value 67.0 0.8 0.

4 

1.

6 

0.

5 

8.

6 

6.

5 

9.7 4.4 0.4 0.3 

-- data unavailable; C1: Pre-TSR calcite; C2: TSR calcite; C3: Post-TSR calcite; D1: Early reflux 875 
dolomite; D2: late burial dolomite 876 
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Table 2.  878 

 Minerals Initial volume  

before TSR  (cm3) 

Final volume  

after TSR (cm3) 

Relative 

porosity change 

(%) 

Net porosity  

   change（%） 

Case 1 

16% 

porosity 

Anhydrite 505 0.0 -6.00 -5.0 

Calcite  84 428 4.1 3.4 

Dolomite 7811 7811 0.0 0.0 

Total 8400 8239 -1.92 -1.6 

Case 2 

10% 

porosity 

Anhydrite 541 0.0 -6.00 -5.4 

Calcite  90 459 4.1 3.7 

Dolomite 8369 8369 0.0 0.0 

Total 9000 8830 -2.06 -1.7 
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Table 3.  881 

 Initial Porosity 

before TSR  (%) 

Final Porosity 

after TSR (%) 

Initial Permeability 

before TSR (mD) 

Final Permeability 

before TSR (mD) 

Case 1 

 

16 17.6 109.7 264.3 

Case 2 

 

10 11.7 4.1 10.3 
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